DWARF array bounds missing from C++ array definitions
[official-gcc.git] / gcc / combine.c
blobd295a81abf968da06124cf588116214633a69a4d
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "params.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
108 #include "function-abi.h"
110 /* Number of attempts to combine instructions in this function. */
112 static int combine_attempts;
114 /* Number of attempts that got as far as substitution in this function. */
116 static int combine_merges;
118 /* Number of instructions combined with added SETs in this function. */
120 static int combine_extras;
122 /* Number of instructions combined in this function. */
124 static int combine_successes;
126 /* Totals over entire compilation. */
128 static int total_attempts, total_merges, total_extras, total_successes;
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
137 static rtx_insn *i2mod;
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
141 static rtx i2mod_old_rhs;
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
145 static rtx i2mod_new_rhs;
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
167 Therefore, we maintain the following fields:
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
183 (The next two parameters are out of date).
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
197 /* Record last value assigned to (hard or pseudo) register n. */
199 rtx last_set_value;
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
204 int last_set_table_tick;
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
209 int last_set_label;
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
224 char last_set_invalid;
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
236 If an entry is zero, it means that we don't know anything special. */
238 unsigned char sign_bit_copies;
240 unsigned HOST_WIDE_INT nonzero_bits;
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
246 int truncation_label;
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
257 static vec<reg_stat_type> reg_stat;
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
267 static unsigned int reg_n_sets_max;
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
272 static int mem_last_set;
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
277 static int last_call_luid;
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
285 static rtx_insn *subst_insn;
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
294 static int subst_low_luid;
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
299 static HARD_REG_SET newpat_used_regs;
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
305 static rtx_insn *added_links_insn;
307 /* And similarly, for notes. */
309 static rtx_insn *added_notes_insn;
311 /* Basic block in which we are performing combines. */
312 static basic_block this_basic_block;
313 static bool optimize_this_for_speed_p;
316 /* Length of the currently allocated uid_insn_cost array. */
318 static int max_uid_known;
320 /* The following array records the insn_cost for every insn
321 in the instruction stream. */
323 static int *uid_insn_cost;
325 /* The following array records the LOG_LINKS for every insn in the
326 instruction stream as struct insn_link pointers. */
328 struct insn_link {
329 rtx_insn *insn;
330 unsigned int regno;
331 struct insn_link *next;
334 static struct insn_link **uid_log_links;
336 static inline int
337 insn_uid_check (const_rtx insn)
339 int uid = INSN_UID (insn);
340 gcc_checking_assert (uid <= max_uid_known);
341 return uid;
344 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
345 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
347 #define FOR_EACH_LOG_LINK(L, INSN) \
348 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
350 /* Links for LOG_LINKS are allocated from this obstack. */
352 static struct obstack insn_link_obstack;
354 /* Allocate a link. */
356 static inline struct insn_link *
357 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
359 struct insn_link *l
360 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
361 sizeof (struct insn_link));
362 l->insn = insn;
363 l->regno = regno;
364 l->next = next;
365 return l;
368 /* Incremented for each basic block. */
370 static int label_tick;
372 /* Reset to label_tick for each extended basic block in scanning order. */
374 static int label_tick_ebb_start;
376 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
377 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
379 static scalar_int_mode nonzero_bits_mode;
381 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
382 be safely used. It is zero while computing them and after combine has
383 completed. This former test prevents propagating values based on
384 previously set values, which can be incorrect if a variable is modified
385 in a loop. */
387 static int nonzero_sign_valid;
390 /* Record one modification to rtl structure
391 to be undone by storing old_contents into *where. */
393 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
395 struct undo
397 struct undo *next;
398 enum undo_kind kind;
399 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
400 union { rtx *r; int *i; struct insn_link **l; } where;
403 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
404 num_undo says how many are currently recorded.
406 other_insn is nonzero if we have modified some other insn in the process
407 of working on subst_insn. It must be verified too. */
409 struct undobuf
411 struct undo *undos;
412 struct undo *frees;
413 rtx_insn *other_insn;
416 static struct undobuf undobuf;
418 /* Number of times the pseudo being substituted for
419 was found and replaced. */
421 static int n_occurrences;
423 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
424 scalar_int_mode,
425 unsigned HOST_WIDE_INT *);
426 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
427 scalar_int_mode,
428 unsigned int *);
429 static void do_SUBST (rtx *, rtx);
430 static void do_SUBST_INT (int *, int);
431 static void init_reg_last (void);
432 static void setup_incoming_promotions (rtx_insn *);
433 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
434 static int cant_combine_insn_p (rtx_insn *);
435 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
436 rtx_insn *, rtx_insn *, rtx *, rtx *);
437 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
438 static int contains_muldiv (rtx);
439 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
440 int *, rtx_insn *);
441 static void undo_all (void);
442 static void undo_commit (void);
443 static rtx *find_split_point (rtx *, rtx_insn *, bool);
444 static rtx subst (rtx, rtx, rtx, int, int, int);
445 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
446 static rtx simplify_if_then_else (rtx);
447 static rtx simplify_set (rtx);
448 static rtx simplify_logical (rtx);
449 static rtx expand_compound_operation (rtx);
450 static const_rtx expand_field_assignment (const_rtx);
451 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
452 rtx, unsigned HOST_WIDE_INT, int, int, int);
453 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
454 unsigned HOST_WIDE_INT *);
455 static rtx canon_reg_for_combine (rtx, rtx);
456 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
457 scalar_int_mode, unsigned HOST_WIDE_INT, int);
458 static rtx force_to_mode (rtx, machine_mode,
459 unsigned HOST_WIDE_INT, int);
460 static rtx if_then_else_cond (rtx, rtx *, rtx *);
461 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
462 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
463 static rtx make_field_assignment (rtx);
464 static rtx apply_distributive_law (rtx);
465 static rtx distribute_and_simplify_rtx (rtx, int);
466 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
469 unsigned HOST_WIDE_INT);
470 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
471 HOST_WIDE_INT, machine_mode, int *);
472 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
473 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
474 int);
475 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
476 static rtx gen_lowpart_for_combine (machine_mode, rtx);
477 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
478 rtx, rtx *);
479 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
480 static void update_table_tick (rtx);
481 static void record_value_for_reg (rtx, rtx_insn *, rtx);
482 static void check_promoted_subreg (rtx_insn *, rtx);
483 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
484 static void record_dead_and_set_regs (rtx_insn *);
485 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
486 static rtx get_last_value (const_rtx);
487 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
488 static int reg_dead_at_p (rtx, rtx_insn *);
489 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
490 static int reg_bitfield_target_p (rtx, rtx);
491 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
492 static void distribute_links (struct insn_link *);
493 static void mark_used_regs_combine (rtx);
494 static void record_promoted_value (rtx_insn *, rtx);
495 static bool unmentioned_reg_p (rtx, rtx);
496 static void record_truncated_values (rtx *, void *);
497 static bool reg_truncated_to_mode (machine_mode, const_rtx);
498 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
501 /* It is not safe to use ordinary gen_lowpart in combine.
502 See comments in gen_lowpart_for_combine. */
503 #undef RTL_HOOKS_GEN_LOWPART
504 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
506 /* Our implementation of gen_lowpart never emits a new pseudo. */
507 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
508 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
510 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
511 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
513 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
514 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
516 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
517 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
519 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
522 /* Convenience wrapper for the canonicalize_comparison target hook.
523 Target hooks cannot use enum rtx_code. */
524 static inline void
525 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
526 bool op0_preserve_value)
528 int code_int = (int)*code;
529 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
530 *code = (enum rtx_code)code_int;
533 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
534 PATTERN cannot be split. Otherwise, it returns an insn sequence.
535 This is a wrapper around split_insns which ensures that the
536 reg_stat vector is made larger if the splitter creates a new
537 register. */
539 static rtx_insn *
540 combine_split_insns (rtx pattern, rtx_insn *insn)
542 rtx_insn *ret;
543 unsigned int nregs;
545 ret = split_insns (pattern, insn);
546 nregs = max_reg_num ();
547 if (nregs > reg_stat.length ())
548 reg_stat.safe_grow_cleared (nregs);
549 return ret;
552 /* This is used by find_single_use to locate an rtx in LOC that
553 contains exactly one use of DEST, which is typically either a REG
554 or CC0. It returns a pointer to the innermost rtx expression
555 containing DEST. Appearances of DEST that are being used to
556 totally replace it are not counted. */
558 static rtx *
559 find_single_use_1 (rtx dest, rtx *loc)
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx *result = NULL;
564 rtx *this_result;
565 int i;
566 const char *fmt;
568 switch (code)
570 case CONST:
571 case LABEL_REF:
572 case SYMBOL_REF:
573 CASE_CONST_ANY:
574 case CLOBBER:
575 return 0;
577 case SET:
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x)) != CC0
583 && GET_CODE (SET_DEST (x)) != PC
584 && !REG_P (SET_DEST (x))
585 && ! (GET_CODE (SET_DEST (x)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x)))
587 && !read_modify_subreg_p (SET_DEST (x))))
588 break;
590 return find_single_use_1 (dest, &SET_SRC (x));
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
596 default:
597 break;
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 if (fmt[i] == 'e')
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
621 else if (fmt[i] == 'E')
623 int j;
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
643 return result;
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
669 if (dest == cc0_rtx)
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
682 if (!REG_P (dest))
683 return 0;
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
695 if (link)
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
704 return 0;
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
713 static void
714 do_SUBST (rtx *into, rtx newval)
716 struct undo *buf;
717 rtx oldval = *into;
719 if (oldval == newval)
720 return;
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
757 buf->next = undobuf.undos, undobuf.undos = buf;
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
766 static void
767 do_SUBST_INT (int *into, int newval)
769 struct undo *buf;
770 int oldval = *into;
772 if (oldval == newval)
773 return;
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
785 buf->next = undobuf.undos, undobuf.undos = buf;
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
801 if (oldval == newval)
802 return;
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
814 buf->next = undobuf.undos, undobuf.undos = buf;
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
824 struct undo *buf;
825 struct insn_link * oldval = *into;
827 if (oldval == newval)
828 return;
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
840 buf->next = undobuf.undos, undobuf.undos = buf;
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
861 /* Lookup the original insn_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
865 if (i1)
867 i1_cost = INSN_COST (i1);
868 if (i0)
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
874 else
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
881 else
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
893 /* Calculate the replacement insn_costs. */
894 rtx tmp = PATTERN (i3);
895 PATTERN (i3) = newpat;
896 int tmpi = INSN_CODE (i3);
897 INSN_CODE (i3) = -1;
898 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
899 PATTERN (i3) = tmp;
900 INSN_CODE (i3) = tmpi;
901 if (newi2pat)
903 tmp = PATTERN (i2);
904 PATTERN (i2) = newi2pat;
905 tmpi = INSN_CODE (i2);
906 INSN_CODE (i2) = -1;
907 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
908 PATTERN (i2) = tmp;
909 INSN_CODE (i2) = tmpi;
910 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
911 ? new_i2_cost + new_i3_cost : 0;
913 else
915 new_cost = new_i3_cost;
916 new_i2_cost = 0;
919 if (undobuf.other_insn)
921 int old_other_cost, new_other_cost;
923 old_other_cost = INSN_COST (undobuf.other_insn);
924 tmp = PATTERN (undobuf.other_insn);
925 PATTERN (undobuf.other_insn) = newotherpat;
926 tmpi = INSN_CODE (undobuf.other_insn);
927 INSN_CODE (undobuf.other_insn) = -1;
928 new_other_cost = insn_cost (undobuf.other_insn,
929 optimize_this_for_speed_p);
930 PATTERN (undobuf.other_insn) = tmp;
931 INSN_CODE (undobuf.other_insn) = tmpi;
932 if (old_other_cost > 0 && new_other_cost > 0)
934 old_cost += old_other_cost;
935 new_cost += new_other_cost;
937 else
938 old_cost = 0;
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject = old_cost > 0 && new_cost > old_cost;
945 if (dump_file)
947 fprintf (dump_file, "%s combination of insns ",
948 reject ? "rejecting" : "allowing");
949 if (i0)
950 fprintf (dump_file, "%d, ", INSN_UID (i0));
951 if (i1 && INSN_UID (i1) != INSN_UID (i2))
952 fprintf (dump_file, "%d, ", INSN_UID (i1));
953 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
955 fprintf (dump_file, "original costs ");
956 if (i0)
957 fprintf (dump_file, "%d + ", i0_cost);
958 if (i1 && INSN_UID (i1) != INSN_UID (i2))
959 fprintf (dump_file, "%d + ", i1_cost);
960 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
962 if (newi2pat)
963 fprintf (dump_file, "replacement costs %d + %d = %d\n",
964 new_i2_cost, new_i3_cost, new_cost);
965 else
966 fprintf (dump_file, "replacement cost %d\n", new_cost);
969 if (reject)
970 return false;
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2) = new_i2_cost;
974 INSN_COST (i3) = new_i3_cost;
975 if (i1)
977 INSN_COST (i1) = 0;
978 if (i0)
979 INSN_COST (i0) = 0;
982 return true;
986 /* Delete any insns that copy a register to itself.
987 Return true if the CFG was changed. */
989 static bool
990 delete_noop_moves (void)
992 rtx_insn *insn, *next;
993 basic_block bb;
995 bool edges_deleted = false;
997 FOR_EACH_BB_FN (bb, cfun)
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1007 edges_deleted |= delete_insn_and_edges (insn);
1012 return edges_deleted;
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1017 static bool
1018 can_combine_def_p (df_ref def)
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 return false;
1024 unsigned int regno = DF_REF_REGNO (def);
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno == FRAME_POINTER_REGNUM
1028 && (!reload_completed || frame_pointer_needed))
1029 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 && regno == HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed || frame_pointer_needed))
1032 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1033 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1034 return false;
1036 return true;
1039 /* Return false if we do not want to (or cannot) combine USE. */
1040 static bool
1041 can_combine_use_p (df_ref use)
1043 /* Do not consider the usage of the stack pointer by function call. */
1044 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1045 return false;
1047 return true;
1050 /* Fill in log links field for all insns. */
1052 static void
1053 create_log_links (void)
1055 basic_block bb;
1056 rtx_insn **next_use;
1057 rtx_insn *insn;
1058 df_ref def, use;
1060 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1062 /* Pass through each block from the end, recording the uses of each
1063 register and establishing log links when def is encountered.
1064 Note that we do not clear next_use array in order to save time,
1065 so we have to test whether the use is in the same basic block as def.
1067 There are a few cases below when we do not consider the definition or
1068 usage -- these are taken from original flow.c did. Don't ask me why it is
1069 done this way; I don't know and if it works, I don't want to know. */
1071 FOR_EACH_BB_FN (bb, cfun)
1073 FOR_BB_INSNS_REVERSE (bb, insn)
1075 if (!NONDEBUG_INSN_P (insn))
1076 continue;
1078 /* Log links are created only once. */
1079 gcc_assert (!LOG_LINKS (insn));
1081 FOR_EACH_INSN_DEF (def, insn)
1083 unsigned int regno = DF_REF_REGNO (def);
1084 rtx_insn *use_insn;
1086 if (!next_use[regno])
1087 continue;
1089 if (!can_combine_def_p (def))
1090 continue;
1092 use_insn = next_use[regno];
1093 next_use[regno] = NULL;
1095 if (BLOCK_FOR_INSN (use_insn) != bb)
1096 continue;
1098 /* flow.c claimed:
1100 We don't build a LOG_LINK for hard registers contained
1101 in ASM_OPERANDs. If these registers get replaced,
1102 we might wind up changing the semantics of the insn,
1103 even if reload can make what appear to be valid
1104 assignments later. */
1105 if (regno < FIRST_PSEUDO_REGISTER
1106 && asm_noperands (PATTERN (use_insn)) >= 0)
1107 continue;
1109 /* Don't add duplicate links between instructions. */
1110 struct insn_link *links;
1111 FOR_EACH_LOG_LINK (links, use_insn)
1112 if (insn == links->insn && regno == links->regno)
1113 break;
1115 if (!links)
1116 LOG_LINKS (use_insn)
1117 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1120 FOR_EACH_INSN_USE (use, insn)
1121 if (can_combine_use_p (use))
1122 next_use[DF_REF_REGNO (use)] = insn;
1126 free (next_use);
1129 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1130 true if we found a LOG_LINK that proves that A feeds B. This only works
1131 if there are no instructions between A and B which could have a link
1132 depending on A, since in that case we would not record a link for B.
1133 We also check the implicit dependency created by a cc0 setter/user
1134 pair. */
1136 static bool
1137 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1139 struct insn_link *links;
1140 FOR_EACH_LOG_LINK (links, b)
1141 if (links->insn == a)
1142 return true;
1143 if (HAVE_cc0 && sets_cc0_p (a))
1144 return true;
1145 return false;
1148 /* Main entry point for combiner. F is the first insn of the function.
1149 NREGS is the first unused pseudo-reg number.
1151 Return nonzero if the CFG was changed (e.g. if the combiner has
1152 turned an indirect jump instruction into a direct jump). */
1153 static int
1154 combine_instructions (rtx_insn *f, unsigned int nregs)
1156 rtx_insn *insn, *next;
1157 rtx_insn *prev;
1158 struct insn_link *links, *nextlinks;
1159 rtx_insn *first;
1160 basic_block last_bb;
1162 int new_direct_jump_p = 0;
1164 for (first = f; first && !NONDEBUG_INSN_P (first); )
1165 first = NEXT_INSN (first);
1166 if (!first)
1167 return 0;
1169 combine_attempts = 0;
1170 combine_merges = 0;
1171 combine_extras = 0;
1172 combine_successes = 0;
1174 rtl_hooks = combine_rtl_hooks;
1176 reg_stat.safe_grow_cleared (nregs);
1178 init_recog_no_volatile ();
1180 /* Allocate array for insn info. */
1181 max_uid_known = get_max_uid ();
1182 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1183 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1184 gcc_obstack_init (&insn_link_obstack);
1186 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1188 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1189 problems when, for example, we have j <<= 1 in a loop. */
1191 nonzero_sign_valid = 0;
1192 label_tick = label_tick_ebb_start = 1;
1194 /* Scan all SETs and see if we can deduce anything about what
1195 bits are known to be zero for some registers and how many copies
1196 of the sign bit are known to exist for those registers.
1198 Also set any known values so that we can use it while searching
1199 for what bits are known to be set. */
1201 setup_incoming_promotions (first);
1202 /* Allow the entry block and the first block to fall into the same EBB.
1203 Conceptually the incoming promotions are assigned to the entry block. */
1204 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1206 create_log_links ();
1207 FOR_EACH_BB_FN (this_basic_block, cfun)
1209 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1210 last_call_luid = 0;
1211 mem_last_set = -1;
1213 label_tick++;
1214 if (!single_pred_p (this_basic_block)
1215 || single_pred (this_basic_block) != last_bb)
1216 label_tick_ebb_start = label_tick;
1217 last_bb = this_basic_block;
1219 FOR_BB_INSNS (this_basic_block, insn)
1220 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1222 rtx links;
1224 subst_low_luid = DF_INSN_LUID (insn);
1225 subst_insn = insn;
1227 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1228 record_dead_and_set_regs (insn);
1230 if (AUTO_INC_DEC)
1231 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1232 if (REG_NOTE_KIND (links) == REG_INC)
1233 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1234 insn);
1236 /* Record the current insn_cost of this instruction. */
1237 if (NONJUMP_INSN_P (insn))
1238 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1239 if (dump_file)
1241 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1242 dump_insn_slim (dump_file, insn);
1247 nonzero_sign_valid = 1;
1249 /* Now scan all the insns in forward order. */
1250 label_tick = label_tick_ebb_start = 1;
1251 init_reg_last ();
1252 setup_incoming_promotions (first);
1253 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1254 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1256 FOR_EACH_BB_FN (this_basic_block, cfun)
1258 rtx_insn *last_combined_insn = NULL;
1260 /* Ignore instruction combination in basic blocks that are going to
1261 be removed as unreachable anyway. See PR82386. */
1262 if (EDGE_COUNT (this_basic_block->preds) == 0)
1263 continue;
1265 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1266 last_call_luid = 0;
1267 mem_last_set = -1;
1269 label_tick++;
1270 if (!single_pred_p (this_basic_block)
1271 || single_pred (this_basic_block) != last_bb)
1272 label_tick_ebb_start = label_tick;
1273 last_bb = this_basic_block;
1275 rtl_profile_for_bb (this_basic_block);
1276 for (insn = BB_HEAD (this_basic_block);
1277 insn != NEXT_INSN (BB_END (this_basic_block));
1278 insn = next ? next : NEXT_INSN (insn))
1280 next = 0;
1281 if (!NONDEBUG_INSN_P (insn))
1282 continue;
1284 while (last_combined_insn
1285 && (!NONDEBUG_INSN_P (last_combined_insn)
1286 || last_combined_insn->deleted ()))
1287 last_combined_insn = PREV_INSN (last_combined_insn);
1288 if (last_combined_insn == NULL_RTX
1289 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1290 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1291 last_combined_insn = insn;
1293 /* See if we know about function return values before this
1294 insn based upon SUBREG flags. */
1295 check_promoted_subreg (insn, PATTERN (insn));
1297 /* See if we can find hardregs and subreg of pseudos in
1298 narrower modes. This could help turning TRUNCATEs
1299 into SUBREGs. */
1300 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1302 /* Try this insn with each insn it links back to. */
1304 FOR_EACH_LOG_LINK (links, insn)
1305 if ((next = try_combine (insn, links->insn, NULL,
1306 NULL, &new_direct_jump_p,
1307 last_combined_insn)) != 0)
1309 statistics_counter_event (cfun, "two-insn combine", 1);
1310 goto retry;
1313 /* Try each sequence of three linked insns ending with this one. */
1315 if (max_combine >= 3)
1316 FOR_EACH_LOG_LINK (links, insn)
1318 rtx_insn *link = links->insn;
1320 /* If the linked insn has been replaced by a note, then there
1321 is no point in pursuing this chain any further. */
1322 if (NOTE_P (link))
1323 continue;
1325 FOR_EACH_LOG_LINK (nextlinks, link)
1326 if ((next = try_combine (insn, link, nextlinks->insn,
1327 NULL, &new_direct_jump_p,
1328 last_combined_insn)) != 0)
1330 statistics_counter_event (cfun, "three-insn combine", 1);
1331 goto retry;
1335 /* Try to combine a jump insn that uses CC0
1336 with a preceding insn that sets CC0, and maybe with its
1337 logical predecessor as well.
1338 This is how we make decrement-and-branch insns.
1339 We need this special code because data flow connections
1340 via CC0 do not get entered in LOG_LINKS. */
1342 if (HAVE_cc0
1343 && JUMP_P (insn)
1344 && (prev = prev_nonnote_insn (insn)) != 0
1345 && NONJUMP_INSN_P (prev)
1346 && sets_cc0_p (PATTERN (prev)))
1348 if ((next = try_combine (insn, prev, NULL, NULL,
1349 &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1353 FOR_EACH_LOG_LINK (nextlinks, prev)
1354 if ((next = try_combine (insn, prev, nextlinks->insn,
1355 NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1360 /* Do the same for an insn that explicitly references CC0. */
1361 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1362 && (prev = prev_nonnote_insn (insn)) != 0
1363 && NONJUMP_INSN_P (prev)
1364 && sets_cc0_p (PATTERN (prev))
1365 && GET_CODE (PATTERN (insn)) == SET
1366 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1368 if ((next = try_combine (insn, prev, NULL, NULL,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1373 FOR_EACH_LOG_LINK (nextlinks, prev)
1374 if ((next = try_combine (insn, prev, nextlinks->insn,
1375 NULL, &new_direct_jump_p,
1376 last_combined_insn)) != 0)
1377 goto retry;
1380 /* Finally, see if any of the insns that this insn links to
1381 explicitly references CC0. If so, try this insn, that insn,
1382 and its predecessor if it sets CC0. */
1383 if (HAVE_cc0)
1385 FOR_EACH_LOG_LINK (links, insn)
1386 if (NONJUMP_INSN_P (links->insn)
1387 && GET_CODE (PATTERN (links->insn)) == SET
1388 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1389 && (prev = prev_nonnote_insn (links->insn)) != 0
1390 && NONJUMP_INSN_P (prev)
1391 && sets_cc0_p (PATTERN (prev))
1392 && (next = try_combine (insn, links->insn,
1393 prev, NULL, &new_direct_jump_p,
1394 last_combined_insn)) != 0)
1395 goto retry;
1398 /* Try combining an insn with two different insns whose results it
1399 uses. */
1400 if (max_combine >= 3)
1401 FOR_EACH_LOG_LINK (links, insn)
1402 for (nextlinks = links->next; nextlinks;
1403 nextlinks = nextlinks->next)
1404 if ((next = try_combine (insn, links->insn,
1405 nextlinks->insn, NULL,
1406 &new_direct_jump_p,
1407 last_combined_insn)) != 0)
1410 statistics_counter_event (cfun, "three-insn combine", 1);
1411 goto retry;
1414 /* Try four-instruction combinations. */
1415 if (max_combine >= 4)
1416 FOR_EACH_LOG_LINK (links, insn)
1418 struct insn_link *next1;
1419 rtx_insn *link = links->insn;
1421 /* If the linked insn has been replaced by a note, then there
1422 is no point in pursuing this chain any further. */
1423 if (NOTE_P (link))
1424 continue;
1426 FOR_EACH_LOG_LINK (next1, link)
1428 rtx_insn *link1 = next1->insn;
1429 if (NOTE_P (link1))
1430 continue;
1431 /* I0 -> I1 -> I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1441 /* I0, I1 -> I2, I2 -> I3. */
1442 for (nextlinks = next1->next; nextlinks;
1443 nextlinks = nextlinks->next)
1444 if ((next = try_combine (insn, link, link1,
1445 nextlinks->insn,
1446 &new_direct_jump_p,
1447 last_combined_insn)) != 0)
1449 statistics_counter_event (cfun, "four-insn combine", 1);
1450 goto retry;
1454 for (next1 = links->next; next1; next1 = next1->next)
1456 rtx_insn *link1 = next1->insn;
1457 if (NOTE_P (link1))
1458 continue;
1459 /* I0 -> I2; I1, I2 -> I3. */
1460 FOR_EACH_LOG_LINK (nextlinks, link)
1461 if ((next = try_combine (insn, link, link1,
1462 nextlinks->insn,
1463 &new_direct_jump_p,
1464 last_combined_insn)) != 0)
1466 statistics_counter_event (cfun, "four-insn combine", 1);
1467 goto retry;
1469 /* I0 -> I1; I1, I2 -> I3. */
1470 FOR_EACH_LOG_LINK (nextlinks, link1)
1471 if ((next = try_combine (insn, link, link1,
1472 nextlinks->insn,
1473 &new_direct_jump_p,
1474 last_combined_insn)) != 0)
1476 statistics_counter_event (cfun, "four-insn combine", 1);
1477 goto retry;
1482 /* Try this insn with each REG_EQUAL note it links back to. */
1483 FOR_EACH_LOG_LINK (links, insn)
1485 rtx set, note;
1486 rtx_insn *temp = links->insn;
1487 if ((set = single_set (temp)) != 0
1488 && (note = find_reg_equal_equiv_note (temp)) != 0
1489 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1490 /* Avoid using a register that may already been marked
1491 dead by an earlier instruction. */
1492 && ! unmentioned_reg_p (note, SET_SRC (set))
1493 && (GET_MODE (note) == VOIDmode
1494 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1495 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1496 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1497 || (GET_MODE (XEXP (SET_DEST (set), 0))
1498 == GET_MODE (note))))))
1500 /* Temporarily replace the set's source with the
1501 contents of the REG_EQUAL note. The insn will
1502 be deleted or recognized by try_combine. */
1503 rtx orig_src = SET_SRC (set);
1504 rtx orig_dest = SET_DEST (set);
1505 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1506 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1507 SET_SRC (set) = note;
1508 i2mod = temp;
1509 i2mod_old_rhs = copy_rtx (orig_src);
1510 i2mod_new_rhs = copy_rtx (note);
1511 next = try_combine (insn, i2mod, NULL, NULL,
1512 &new_direct_jump_p,
1513 last_combined_insn);
1514 i2mod = NULL;
1515 if (next)
1517 statistics_counter_event (cfun, "insn-with-note combine", 1);
1518 goto retry;
1520 SET_SRC (set) = orig_src;
1521 SET_DEST (set) = orig_dest;
1525 if (!NOTE_P (insn))
1526 record_dead_and_set_regs (insn);
1528 retry:
1533 default_rtl_profile ();
1534 clear_bb_flags ();
1535 new_direct_jump_p |= purge_all_dead_edges ();
1536 new_direct_jump_p |= delete_noop_moves ();
1538 /* Clean up. */
1539 obstack_free (&insn_link_obstack, NULL);
1540 free (uid_log_links);
1541 free (uid_insn_cost);
1542 reg_stat.release ();
1545 struct undo *undo, *next;
1546 for (undo = undobuf.frees; undo; undo = next)
1548 next = undo->next;
1549 free (undo);
1551 undobuf.frees = 0;
1554 total_attempts += combine_attempts;
1555 total_merges += combine_merges;
1556 total_extras += combine_extras;
1557 total_successes += combine_successes;
1559 nonzero_sign_valid = 0;
1560 rtl_hooks = general_rtl_hooks;
1562 /* Make recognizer allow volatile MEMs again. */
1563 init_recog ();
1565 return new_direct_jump_p;
1568 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1570 static void
1571 init_reg_last (void)
1573 unsigned int i;
1574 reg_stat_type *p;
1576 FOR_EACH_VEC_ELT (reg_stat, i, p)
1577 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1580 /* Set up any promoted values for incoming argument registers. */
1582 static void
1583 setup_incoming_promotions (rtx_insn *first)
1585 tree arg;
1586 bool strictly_local = false;
1588 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1589 arg = DECL_CHAIN (arg))
1591 rtx x, reg = DECL_INCOMING_RTL (arg);
1592 int uns1, uns3;
1593 machine_mode mode1, mode2, mode3, mode4;
1595 /* Only continue if the incoming argument is in a register. */
1596 if (!REG_P (reg))
1597 continue;
1599 /* Determine, if possible, whether all call sites of the current
1600 function lie within the current compilation unit. (This does
1601 take into account the exporting of a function via taking its
1602 address, and so forth.) */
1603 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1605 /* The mode and signedness of the argument before any promotions happen
1606 (equal to the mode of the pseudo holding it at that stage). */
1607 mode1 = TYPE_MODE (TREE_TYPE (arg));
1608 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1610 /* The mode and signedness of the argument after any source language and
1611 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1612 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1613 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1615 /* The mode and signedness of the argument as it is actually passed,
1616 see assign_parm_setup_reg in function.c. */
1617 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1618 TREE_TYPE (cfun->decl), 0);
1620 /* The mode of the register in which the argument is being passed. */
1621 mode4 = GET_MODE (reg);
1623 /* Eliminate sign extensions in the callee when:
1624 (a) A mode promotion has occurred; */
1625 if (mode1 == mode3)
1626 continue;
1627 /* (b) The mode of the register is the same as the mode of
1628 the argument as it is passed; */
1629 if (mode3 != mode4)
1630 continue;
1631 /* (c) There's no language level extension; */
1632 if (mode1 == mode2)
1634 /* (c.1) All callers are from the current compilation unit. If that's
1635 the case we don't have to rely on an ABI, we only have to know
1636 what we're generating right now, and we know that we will do the
1637 mode1 to mode2 promotion with the given sign. */
1638 else if (!strictly_local)
1639 continue;
1640 /* (c.2) The combination of the two promotions is useful. This is
1641 true when the signs match, or if the first promotion is unsigned.
1642 In the later case, (sign_extend (zero_extend x)) is the same as
1643 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1644 else if (uns1)
1645 uns3 = true;
1646 else if (uns3)
1647 continue;
1649 /* Record that the value was promoted from mode1 to mode3,
1650 so that any sign extension at the head of the current
1651 function may be eliminated. */
1652 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1653 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1654 record_value_for_reg (reg, first, x);
1658 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1659 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1660 because some machines (maybe most) will actually do the sign-extension and
1661 this is the conservative approach.
1663 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1664 kludge. */
1666 static rtx
1667 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1669 scalar_int_mode int_mode;
1670 if (CONST_INT_P (src)
1671 && is_a <scalar_int_mode> (mode, &int_mode)
1672 && GET_MODE_PRECISION (int_mode) < prec
1673 && INTVAL (src) > 0
1674 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1675 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1677 return src;
1680 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1681 and SET. */
1683 static void
1684 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1685 rtx x)
1687 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1688 unsigned HOST_WIDE_INT bits = 0;
1689 rtx reg_equal = NULL, src = SET_SRC (set);
1690 unsigned int num = 0;
1692 if (reg_equal_note)
1693 reg_equal = XEXP (reg_equal_note, 0);
1695 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1697 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1698 if (reg_equal)
1699 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1702 /* Don't call nonzero_bits if it cannot change anything. */
1703 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1705 machine_mode mode = GET_MODE (x);
1706 if (GET_MODE_CLASS (mode) == MODE_INT
1707 && HWI_COMPUTABLE_MODE_P (mode))
1708 mode = nonzero_bits_mode;
1709 bits = nonzero_bits (src, mode);
1710 if (reg_equal && bits)
1711 bits &= nonzero_bits (reg_equal, mode);
1712 rsp->nonzero_bits |= bits;
1715 /* Don't call num_sign_bit_copies if it cannot change anything. */
1716 if (rsp->sign_bit_copies != 1)
1718 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1719 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1721 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1722 if (num == 0 || numeq > num)
1723 num = numeq;
1725 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1726 rsp->sign_bit_copies = num;
1730 /* Called via note_stores. If X is a pseudo that is narrower than
1731 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1733 If we are setting only a portion of X and we can't figure out what
1734 portion, assume all bits will be used since we don't know what will
1735 be happening.
1737 Similarly, set how many bits of X are known to be copies of the sign bit
1738 at all locations in the function. This is the smallest number implied
1739 by any set of X. */
1741 static void
1742 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1744 rtx_insn *insn = (rtx_insn *) data;
1745 scalar_int_mode mode;
1747 if (REG_P (x)
1748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1749 /* If this register is undefined at the start of the file, we can't
1750 say what its contents were. */
1751 && ! REGNO_REG_SET_P
1752 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1753 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1754 && HWI_COMPUTABLE_MODE_P (mode))
1756 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1758 if (set == 0 || GET_CODE (set) == CLOBBER)
1760 rsp->nonzero_bits = GET_MODE_MASK (mode);
1761 rsp->sign_bit_copies = 1;
1762 return;
1765 /* If this register is being initialized using itself, and the
1766 register is uninitialized in this basic block, and there are
1767 no LOG_LINKS which set the register, then part of the
1768 register is uninitialized. In that case we can't assume
1769 anything about the number of nonzero bits.
1771 ??? We could do better if we checked this in
1772 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1773 could avoid making assumptions about the insn which initially
1774 sets the register, while still using the information in other
1775 insns. We would have to be careful to check every insn
1776 involved in the combination. */
1778 if (insn
1779 && reg_referenced_p (x, PATTERN (insn))
1780 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1781 REGNO (x)))
1783 struct insn_link *link;
1785 FOR_EACH_LOG_LINK (link, insn)
1786 if (dead_or_set_p (link->insn, x))
1787 break;
1788 if (!link)
1790 rsp->nonzero_bits = GET_MODE_MASK (mode);
1791 rsp->sign_bit_copies = 1;
1792 return;
1796 /* If this is a complex assignment, see if we can convert it into a
1797 simple assignment. */
1798 set = expand_field_assignment (set);
1800 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1801 set what we know about X. */
1803 if (SET_DEST (set) == x
1804 || (paradoxical_subreg_p (SET_DEST (set))
1805 && SUBREG_REG (SET_DEST (set)) == x))
1806 update_rsp_from_reg_equal (rsp, insn, set, x);
1807 else
1809 rsp->nonzero_bits = GET_MODE_MASK (mode);
1810 rsp->sign_bit_copies = 1;
1815 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1816 optionally insns that were previously combined into I3 or that will be
1817 combined into the merger of INSN and I3. The order is PRED, PRED2,
1818 INSN, SUCC, SUCC2, I3.
1820 Return 0 if the combination is not allowed for any reason.
1822 If the combination is allowed, *PDEST will be set to the single
1823 destination of INSN and *PSRC to the single source, and this function
1824 will return 1. */
1826 static int
1827 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1828 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1829 rtx *pdest, rtx *psrc)
1831 int i;
1832 const_rtx set = 0;
1833 rtx src, dest;
1834 rtx_insn *p;
1835 rtx link;
1836 bool all_adjacent = true;
1837 int (*is_volatile_p) (const_rtx);
1839 if (succ)
1841 if (succ2)
1843 if (next_active_insn (succ2) != i3)
1844 all_adjacent = false;
1845 if (next_active_insn (succ) != succ2)
1846 all_adjacent = false;
1848 else if (next_active_insn (succ) != i3)
1849 all_adjacent = false;
1850 if (next_active_insn (insn) != succ)
1851 all_adjacent = false;
1853 else if (next_active_insn (insn) != i3)
1854 all_adjacent = false;
1856 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1857 or a PARALLEL consisting of such a SET and CLOBBERs.
1859 If INSN has CLOBBER parallel parts, ignore them for our processing.
1860 By definition, these happen during the execution of the insn. When it
1861 is merged with another insn, all bets are off. If they are, in fact,
1862 needed and aren't also supplied in I3, they may be added by
1863 recog_for_combine. Otherwise, it won't match.
1865 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1866 note.
1868 Get the source and destination of INSN. If more than one, can't
1869 combine. */
1871 if (GET_CODE (PATTERN (insn)) == SET)
1872 set = PATTERN (insn);
1873 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1876 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1880 switch (GET_CODE (elt))
1882 /* This is important to combine floating point insns
1883 for the SH4 port. */
1884 case USE:
1885 /* Combining an isolated USE doesn't make sense.
1886 We depend here on combinable_i3pat to reject them. */
1887 /* The code below this loop only verifies that the inputs of
1888 the SET in INSN do not change. We call reg_set_between_p
1889 to verify that the REG in the USE does not change between
1890 I3 and INSN.
1891 If the USE in INSN was for a pseudo register, the matching
1892 insn pattern will likely match any register; combining this
1893 with any other USE would only be safe if we knew that the
1894 used registers have identical values, or if there was
1895 something to tell them apart, e.g. different modes. For
1896 now, we forgo such complicated tests and simply disallow
1897 combining of USES of pseudo registers with any other USE. */
1898 if (REG_P (XEXP (elt, 0))
1899 && GET_CODE (PATTERN (i3)) == PARALLEL)
1901 rtx i3pat = PATTERN (i3);
1902 int i = XVECLEN (i3pat, 0) - 1;
1903 unsigned int regno = REGNO (XEXP (elt, 0));
1907 rtx i3elt = XVECEXP (i3pat, 0, i);
1909 if (GET_CODE (i3elt) == USE
1910 && REG_P (XEXP (i3elt, 0))
1911 && (REGNO (XEXP (i3elt, 0)) == regno
1912 ? reg_set_between_p (XEXP (elt, 0),
1913 PREV_INSN (insn), i3)
1914 : regno >= FIRST_PSEUDO_REGISTER))
1915 return 0;
1917 while (--i >= 0);
1919 break;
1921 /* We can ignore CLOBBERs. */
1922 case CLOBBER:
1923 break;
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1938 set = elt;
1939 break;
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1953 else
1954 return 0;
1956 if (set == 0)
1957 return 0;
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump; if it were one
2123 and the incremented register were spilled, we would lose. */
2125 if (AUTO_INC_DEC)
2126 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2127 if (REG_NOTE_KIND (link) == REG_INC
2128 && (JUMP_P (i3)
2129 || reg_used_between_p (XEXP (link, 0), insn, i3)
2130 || (pred != NULL_RTX
2131 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2132 || (pred2 != NULL_RTX
2133 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2134 || (succ != NULL_RTX
2135 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2136 || (succ2 != NULL_RTX
2137 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2138 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2139 return 0;
2141 /* Don't combine an insn that follows a CC0-setting insn.
2142 An insn that uses CC0 must not be separated from the one that sets it.
2143 We do, however, allow I2 to follow a CC0-setting insn if that insn
2144 is passed as I1; in that case it will be deleted also.
2145 We also allow combining in this case if all the insns are adjacent
2146 because that would leave the two CC0 insns adjacent as well.
2147 It would be more logical to test whether CC0 occurs inside I1 or I2,
2148 but that would be much slower, and this ought to be equivalent. */
2150 if (HAVE_cc0)
2152 p = prev_nonnote_insn (insn);
2153 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2154 && ! all_adjacent)
2155 return 0;
2158 /* If we get here, we have passed all the tests and the combination is
2159 to be allowed. */
2161 *pdest = dest;
2162 *psrc = src;
2164 return 1;
2167 /* LOC is the location within I3 that contains its pattern or the component
2168 of a PARALLEL of the pattern. We validate that it is valid for combining.
2170 One problem is if I3 modifies its output, as opposed to replacing it
2171 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2172 doing so would produce an insn that is not equivalent to the original insns.
2174 Consider:
2176 (set (reg:DI 101) (reg:DI 100))
2177 (set (subreg:SI (reg:DI 101) 0) <foo>)
2179 This is NOT equivalent to:
2181 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2182 (set (reg:DI 101) (reg:DI 100))])
2184 Not only does this modify 100 (in which case it might still be valid
2185 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2187 We can also run into a problem if I2 sets a register that I1
2188 uses and I1 gets directly substituted into I3 (not via I2). In that
2189 case, we would be getting the wrong value of I2DEST into I3, so we
2190 must reject the combination. This case occurs when I2 and I1 both
2191 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2192 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2193 of a SET must prevent combination from occurring. The same situation
2194 can occur for I0, in which case I0_NOT_IN_SRC is set.
2196 Before doing the above check, we first try to expand a field assignment
2197 into a set of logical operations.
2199 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2200 we place a register that is both set and used within I3. If more than one
2201 such register is detected, we fail.
2203 Return 1 if the combination is valid, zero otherwise. */
2205 static int
2206 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2207 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2209 rtx x = *loc;
2211 if (GET_CODE (x) == SET)
2213 rtx set = x ;
2214 rtx dest = SET_DEST (set);
2215 rtx src = SET_SRC (set);
2216 rtx inner_dest = dest;
2217 rtx subdest;
2219 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2220 || GET_CODE (inner_dest) == SUBREG
2221 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2222 inner_dest = XEXP (inner_dest, 0);
2224 /* Check for the case where I3 modifies its output, as discussed
2225 above. We don't want to prevent pseudos from being combined
2226 into the address of a MEM, so only prevent the combination if
2227 i1 or i2 set the same MEM. */
2228 if ((inner_dest != dest &&
2229 (!MEM_P (inner_dest)
2230 || rtx_equal_p (i2dest, inner_dest)
2231 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2232 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2233 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2234 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2235 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2237 /* This is the same test done in can_combine_p except we can't test
2238 all_adjacent; we don't have to, since this instruction will stay
2239 in place, thus we are not considering increasing the lifetime of
2240 INNER_DEST.
2242 Also, if this insn sets a function argument, combining it with
2243 something that might need a spill could clobber a previous
2244 function argument; the all_adjacent test in can_combine_p also
2245 checks this; here, we do a more specific test for this case. */
2247 || (REG_P (inner_dest)
2248 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2249 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2250 GET_MODE (inner_dest)))
2251 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2252 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2253 return 0;
2255 /* If DEST is used in I3, it is being killed in this insn, so
2256 record that for later. We have to consider paradoxical
2257 subregs here, since they kill the whole register, but we
2258 ignore partial subregs, STRICT_LOW_PART, etc.
2259 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2260 STACK_POINTER_REGNUM, since these are always considered to be
2261 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2262 subdest = dest;
2263 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2264 subdest = SUBREG_REG (subdest);
2265 if (pi3dest_killed
2266 && REG_P (subdest)
2267 && reg_referenced_p (subdest, PATTERN (i3))
2268 && REGNO (subdest) != FRAME_POINTER_REGNUM
2269 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2270 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2271 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2272 || (REGNO (subdest) != ARG_POINTER_REGNUM
2273 || ! fixed_regs [REGNO (subdest)]))
2274 && REGNO (subdest) != STACK_POINTER_REGNUM)
2276 if (*pi3dest_killed)
2277 return 0;
2279 *pi3dest_killed = subdest;
2283 else if (GET_CODE (x) == PARALLEL)
2285 int i;
2287 for (i = 0; i < XVECLEN (x, 0); i++)
2288 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2289 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2290 return 0;
2293 return 1;
2296 /* Return 1 if X is an arithmetic expression that contains a multiplication
2297 and division. We don't count multiplications by powers of two here. */
2299 static int
2300 contains_muldiv (rtx x)
2302 switch (GET_CODE (x))
2304 case MOD: case DIV: case UMOD: case UDIV:
2305 return 1;
2307 case MULT:
2308 return ! (CONST_INT_P (XEXP (x, 1))
2309 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2310 default:
2311 if (BINARY_P (x))
2312 return contains_muldiv (XEXP (x, 0))
2313 || contains_muldiv (XEXP (x, 1));
2315 if (UNARY_P (x))
2316 return contains_muldiv (XEXP (x, 0));
2318 return 0;
2322 /* Determine whether INSN can be used in a combination. Return nonzero if
2323 not. This is used in try_combine to detect early some cases where we
2324 can't perform combinations. */
2326 static int
2327 cant_combine_insn_p (rtx_insn *insn)
2329 rtx set;
2330 rtx src, dest;
2332 /* If this isn't really an insn, we can't do anything.
2333 This can occur when flow deletes an insn that it has merged into an
2334 auto-increment address. */
2335 if (!NONDEBUG_INSN_P (insn))
2336 return 1;
2338 /* Never combine loads and stores involving hard regs that are likely
2339 to be spilled. The register allocator can usually handle such
2340 reg-reg moves by tying. If we allow the combiner to make
2341 substitutions of likely-spilled regs, reload might die.
2342 As an exception, we allow combinations involving fixed regs; these are
2343 not available to the register allocator so there's no risk involved. */
2345 set = single_set (insn);
2346 if (! set)
2347 return 0;
2348 src = SET_SRC (set);
2349 dest = SET_DEST (set);
2350 if (GET_CODE (src) == SUBREG)
2351 src = SUBREG_REG (src);
2352 if (GET_CODE (dest) == SUBREG)
2353 dest = SUBREG_REG (dest);
2354 if (REG_P (src) && REG_P (dest)
2355 && ((HARD_REGISTER_P (src)
2356 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2357 #ifdef LEAF_REGISTERS
2358 && ! LEAF_REGISTERS [REGNO (src)])
2359 #else
2361 #endif
2362 || (HARD_REGISTER_P (dest)
2363 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2364 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2365 return 1;
2367 return 0;
2370 struct likely_spilled_retval_info
2372 unsigned regno, nregs;
2373 unsigned mask;
2376 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2377 hard registers that are known to be written to / clobbered in full. */
2378 static void
2379 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2381 struct likely_spilled_retval_info *const info =
2382 (struct likely_spilled_retval_info *) data;
2383 unsigned regno, nregs;
2384 unsigned new_mask;
2386 if (!REG_P (XEXP (set, 0)))
2387 return;
2388 regno = REGNO (x);
2389 if (regno >= info->regno + info->nregs)
2390 return;
2391 nregs = REG_NREGS (x);
2392 if (regno + nregs <= info->regno)
2393 return;
2394 new_mask = (2U << (nregs - 1)) - 1;
2395 if (regno < info->regno)
2396 new_mask >>= info->regno - regno;
2397 else
2398 new_mask <<= regno - info->regno;
2399 info->mask &= ~new_mask;
2402 /* Return nonzero iff part of the return value is live during INSN, and
2403 it is likely spilled. This can happen when more than one insn is needed
2404 to copy the return value, e.g. when we consider to combine into the
2405 second copy insn for a complex value. */
2407 static int
2408 likely_spilled_retval_p (rtx_insn *insn)
2410 rtx_insn *use = BB_END (this_basic_block);
2411 rtx reg;
2412 rtx_insn *p;
2413 unsigned regno, nregs;
2414 /* We assume here that no machine mode needs more than
2415 32 hard registers when the value overlaps with a register
2416 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2417 unsigned mask;
2418 struct likely_spilled_retval_info info;
2420 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2421 return 0;
2422 reg = XEXP (PATTERN (use), 0);
2423 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2424 return 0;
2425 regno = REGNO (reg);
2426 nregs = REG_NREGS (reg);
2427 if (nregs == 1)
2428 return 0;
2429 mask = (2U << (nregs - 1)) - 1;
2431 /* Disregard parts of the return value that are set later. */
2432 info.regno = regno;
2433 info.nregs = nregs;
2434 info.mask = mask;
2435 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2436 if (INSN_P (p))
2437 note_stores (p, likely_spilled_retval_1, &info);
2438 mask = info.mask;
2440 /* Check if any of the (probably) live return value registers is
2441 likely spilled. */
2442 nregs --;
2445 if ((mask & 1 << nregs)
2446 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2447 return 1;
2448 } while (nregs--);
2449 return 0;
2452 /* Adjust INSN after we made a change to its destination.
2454 Changing the destination can invalidate notes that say something about
2455 the results of the insn and a LOG_LINK pointing to the insn. */
2457 static void
2458 adjust_for_new_dest (rtx_insn *insn)
2460 /* For notes, be conservative and simply remove them. */
2461 remove_reg_equal_equiv_notes (insn);
2463 /* The new insn will have a destination that was previously the destination
2464 of an insn just above it. Call distribute_links to make a LOG_LINK from
2465 the next use of that destination. */
2467 rtx set = single_set (insn);
2468 gcc_assert (set);
2470 rtx reg = SET_DEST (set);
2472 while (GET_CODE (reg) == ZERO_EXTRACT
2473 || GET_CODE (reg) == STRICT_LOW_PART
2474 || GET_CODE (reg) == SUBREG)
2475 reg = XEXP (reg, 0);
2476 gcc_assert (REG_P (reg));
2478 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2480 df_insn_rescan (insn);
2483 /* Return TRUE if combine can reuse reg X in mode MODE.
2484 ADDED_SETS is nonzero if the original set is still required. */
2485 static bool
2486 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2488 unsigned int regno;
2490 if (!REG_P (x))
2491 return false;
2493 /* Don't change between modes with different underlying register sizes,
2494 since this could lead to invalid subregs. */
2495 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2496 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2497 return false;
2499 regno = REGNO (x);
2500 /* Allow hard registers if the new mode is legal, and occupies no more
2501 registers than the old mode. */
2502 if (regno < FIRST_PSEUDO_REGISTER)
2503 return (targetm.hard_regno_mode_ok (regno, mode)
2504 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2506 /* Or a pseudo that is only used once. */
2507 return (regno < reg_n_sets_max
2508 && REG_N_SETS (regno) == 1
2509 && !added_sets
2510 && !REG_USERVAR_P (x));
2514 /* Check whether X, the destination of a set, refers to part of
2515 the register specified by REG. */
2517 static bool
2518 reg_subword_p (rtx x, rtx reg)
2520 /* Check that reg is an integer mode register. */
2521 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2522 return false;
2524 if (GET_CODE (x) == STRICT_LOW_PART
2525 || GET_CODE (x) == ZERO_EXTRACT)
2526 x = XEXP (x, 0);
2528 return GET_CODE (x) == SUBREG
2529 && SUBREG_REG (x) == reg
2530 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2533 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2534 Note that the INSN should be deleted *after* removing dead edges, so
2535 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2536 but not for a (set (pc) (label_ref FOO)). */
2538 static void
2539 update_cfg_for_uncondjump (rtx_insn *insn)
2541 basic_block bb = BLOCK_FOR_INSN (insn);
2542 gcc_assert (BB_END (bb) == insn);
2544 purge_dead_edges (bb);
2546 delete_insn (insn);
2547 if (EDGE_COUNT (bb->succs) == 1)
2549 rtx_insn *insn;
2551 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2553 /* Remove barriers from the footer if there are any. */
2554 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2555 if (BARRIER_P (insn))
2557 if (PREV_INSN (insn))
2558 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2559 else
2560 BB_FOOTER (bb) = NEXT_INSN (insn);
2561 if (NEXT_INSN (insn))
2562 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2564 else if (LABEL_P (insn))
2565 break;
2569 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2570 by an arbitrary number of CLOBBERs. */
2571 static bool
2572 is_parallel_of_n_reg_sets (rtx pat, int n)
2574 if (GET_CODE (pat) != PARALLEL)
2575 return false;
2577 int len = XVECLEN (pat, 0);
2578 if (len < n)
2579 return false;
2581 int i;
2582 for (i = 0; i < n; i++)
2583 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2584 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2585 return false;
2586 for ( ; i < len; i++)
2587 switch (GET_CODE (XVECEXP (pat, 0, i)))
2589 case CLOBBER:
2590 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2591 return false;
2592 break;
2593 default:
2594 return false;
2596 return true;
2599 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2600 CLOBBERs), can be split into individual SETs in that order, without
2601 changing semantics. */
2602 static bool
2603 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2605 if (!insn_nothrow_p (insn))
2606 return false;
2608 rtx pat = PATTERN (insn);
2610 int i, j;
2611 for (i = 0; i < n; i++)
2613 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2614 return false;
2616 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2618 for (j = i + 1; j < n; j++)
2619 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2620 return false;
2623 return true;
2626 /* Return whether X is just a single set, with the source
2627 a general_operand. */
2628 static bool
2629 is_just_move (rtx x)
2631 if (INSN_P (x))
2632 x = PATTERN (x);
2634 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2637 /* Callback function to count autoincs. */
2639 static int
2640 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2642 (*((int *) arg))++;
2644 return 0;
2647 /* Try to combine the insns I0, I1 and I2 into I3.
2648 Here I0, I1 and I2 appear earlier than I3.
2649 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2652 If we are combining more than two insns and the resulting insn is not
2653 recognized, try splitting it into two insns. If that happens, I2 and I3
2654 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2655 Otherwise, I0, I1 and I2 are pseudo-deleted.
2657 Return 0 if the combination does not work. Then nothing is changed.
2658 If we did the combination, return the insn at which combine should
2659 resume scanning.
2661 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2662 new direct jump instruction.
2664 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2665 been I3 passed to an earlier try_combine within the same basic
2666 block. */
2668 static rtx_insn *
2669 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2670 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2672 /* New patterns for I3 and I2, respectively. */
2673 rtx newpat, newi2pat = 0;
2674 rtvec newpat_vec_with_clobbers = 0;
2675 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2676 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2677 dead. */
2678 int added_sets_0, added_sets_1, added_sets_2;
2679 /* Total number of SETs to put into I3. */
2680 int total_sets;
2681 /* Nonzero if I2's or I1's body now appears in I3. */
2682 int i2_is_used = 0, i1_is_used = 0;
2683 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2684 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2685 /* Contains I3 if the destination of I3 is used in its source, which means
2686 that the old life of I3 is being killed. If that usage is placed into
2687 I2 and not in I3, a REG_DEAD note must be made. */
2688 rtx i3dest_killed = 0;
2689 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2690 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2691 /* Copy of SET_SRC of I1 and I0, if needed. */
2692 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2693 /* Set if I2DEST was reused as a scratch register. */
2694 bool i2scratch = false;
2695 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2696 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2697 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2698 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2699 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2700 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2701 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2702 /* Notes that must be added to REG_NOTES in I3 and I2. */
2703 rtx new_i3_notes, new_i2_notes;
2704 /* Notes that we substituted I3 into I2 instead of the normal case. */
2705 int i3_subst_into_i2 = 0;
2706 /* Notes that I1, I2 or I3 is a MULT operation. */
2707 int have_mult = 0;
2708 int swap_i2i3 = 0;
2709 int split_i2i3 = 0;
2710 int changed_i3_dest = 0;
2711 bool i2_was_move = false, i3_was_move = false;
2712 int n_auto_inc = 0;
2714 int maxreg;
2715 rtx_insn *temp_insn;
2716 rtx temp_expr;
2717 struct insn_link *link;
2718 rtx other_pat = 0;
2719 rtx new_other_notes;
2720 int i;
2721 scalar_int_mode dest_mode, temp_mode;
2723 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2724 never be). */
2725 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2726 return 0;
2728 /* Only try four-insn combinations when there's high likelihood of
2729 success. Look for simple insns, such as loads of constants or
2730 binary operations involving a constant. */
2731 if (i0)
2733 int i;
2734 int ngood = 0;
2735 int nshift = 0;
2736 rtx set0, set3;
2738 if (!flag_expensive_optimizations)
2739 return 0;
2741 for (i = 0; i < 4; i++)
2743 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2744 rtx set = single_set (insn);
2745 rtx src;
2746 if (!set)
2747 continue;
2748 src = SET_SRC (set);
2749 if (CONSTANT_P (src))
2751 ngood += 2;
2752 break;
2754 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2755 ngood++;
2756 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2757 || GET_CODE (src) == LSHIFTRT)
2758 nshift++;
2761 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2762 are likely manipulating its value. Ideally we'll be able to combine
2763 all four insns into a bitfield insertion of some kind.
2765 Note the source in I0 might be inside a sign/zero extension and the
2766 memory modes in I0 and I3 might be different. So extract the address
2767 from the destination of I3 and search for it in the source of I0.
2769 In the event that there's a match but the source/dest do not actually
2770 refer to the same memory, the worst that happens is we try some
2771 combinations that we wouldn't have otherwise. */
2772 if ((set0 = single_set (i0))
2773 /* Ensure the source of SET0 is a MEM, possibly buried inside
2774 an extension. */
2775 && (GET_CODE (SET_SRC (set0)) == MEM
2776 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2777 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2778 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2779 && (set3 = single_set (i3))
2780 /* Ensure the destination of SET3 is a MEM. */
2781 && GET_CODE (SET_DEST (set3)) == MEM
2782 /* Would it be better to extract the base address for the MEM
2783 in SET3 and look for that? I don't have cases where it matters
2784 but I could envision such cases. */
2785 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2786 ngood += 2;
2788 if (ngood < 2 && nshift < 2)
2789 return 0;
2792 /* Exit early if one of the insns involved can't be used for
2793 combinations. */
2794 if (CALL_P (i2)
2795 || (i1 && CALL_P (i1))
2796 || (i0 && CALL_P (i0))
2797 || cant_combine_insn_p (i3)
2798 || cant_combine_insn_p (i2)
2799 || (i1 && cant_combine_insn_p (i1))
2800 || (i0 && cant_combine_insn_p (i0))
2801 || likely_spilled_retval_p (i3))
2802 return 0;
2804 combine_attempts++;
2805 undobuf.other_insn = 0;
2807 /* Reset the hard register usage information. */
2808 CLEAR_HARD_REG_SET (newpat_used_regs);
2810 if (dump_file && (dump_flags & TDF_DETAILS))
2812 if (i0)
2813 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2814 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2815 else if (i1)
2816 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2817 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2818 else
2819 fprintf (dump_file, "\nTrying %d -> %d:\n",
2820 INSN_UID (i2), INSN_UID (i3));
2822 if (i0)
2823 dump_insn_slim (dump_file, i0);
2824 if (i1)
2825 dump_insn_slim (dump_file, i1);
2826 dump_insn_slim (dump_file, i2);
2827 dump_insn_slim (dump_file, i3);
2830 /* If multiple insns feed into one of I2 or I3, they can be in any
2831 order. To simplify the code below, reorder them in sequence. */
2832 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2833 std::swap (i0, i2);
2834 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2835 std::swap (i0, i1);
2836 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2837 std::swap (i1, i2);
2839 added_links_insn = 0;
2840 added_notes_insn = 0;
2842 /* First check for one important special case that the code below will
2843 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2844 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2845 we may be able to replace that destination with the destination of I3.
2846 This occurs in the common code where we compute both a quotient and
2847 remainder into a structure, in which case we want to do the computation
2848 directly into the structure to avoid register-register copies.
2850 Note that this case handles both multiple sets in I2 and also cases
2851 where I2 has a number of CLOBBERs inside the PARALLEL.
2853 We make very conservative checks below and only try to handle the
2854 most common cases of this. For example, we only handle the case
2855 where I2 and I3 are adjacent to avoid making difficult register
2856 usage tests. */
2858 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2859 && REG_P (SET_SRC (PATTERN (i3)))
2860 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2861 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2862 && GET_CODE (PATTERN (i2)) == PARALLEL
2863 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2864 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2865 below would need to check what is inside (and reg_overlap_mentioned_p
2866 doesn't support those codes anyway). Don't allow those destinations;
2867 the resulting insn isn't likely to be recognized anyway. */
2868 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2869 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2870 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2871 SET_DEST (PATTERN (i3)))
2872 && next_active_insn (i2) == i3)
2874 rtx p2 = PATTERN (i2);
2876 /* Make sure that the destination of I3,
2877 which we are going to substitute into one output of I2,
2878 is not used within another output of I2. We must avoid making this:
2879 (parallel [(set (mem (reg 69)) ...)
2880 (set (reg 69) ...)])
2881 which is not well-defined as to order of actions.
2882 (Besides, reload can't handle output reloads for this.)
2884 The problem can also happen if the dest of I3 is a memory ref,
2885 if another dest in I2 is an indirect memory ref.
2887 Neither can this PARALLEL be an asm. We do not allow combining
2888 that usually (see can_combine_p), so do not here either. */
2889 bool ok = true;
2890 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2892 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2893 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2894 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2895 SET_DEST (XVECEXP (p2, 0, i))))
2896 ok = false;
2897 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2898 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2899 ok = false;
2902 if (ok)
2903 for (i = 0; i < XVECLEN (p2, 0); i++)
2904 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2905 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2907 combine_merges++;
2909 subst_insn = i3;
2910 subst_low_luid = DF_INSN_LUID (i2);
2912 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2913 i2src = SET_SRC (XVECEXP (p2, 0, i));
2914 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2915 i2dest_killed = dead_or_set_p (i2, i2dest);
2917 /* Replace the dest in I2 with our dest and make the resulting
2918 insn the new pattern for I3. Then skip to where we validate
2919 the pattern. Everything was set up above. */
2920 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2921 newpat = p2;
2922 i3_subst_into_i2 = 1;
2923 goto validate_replacement;
2927 /* If I2 is setting a pseudo to a constant and I3 is setting some
2928 sub-part of it to another constant, merge them by making a new
2929 constant. */
2930 if (i1 == 0
2931 && (temp_expr = single_set (i2)) != 0
2932 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2933 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2934 && GET_CODE (PATTERN (i3)) == SET
2935 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2936 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2938 rtx dest = SET_DEST (PATTERN (i3));
2939 rtx temp_dest = SET_DEST (temp_expr);
2940 int offset = -1;
2941 int width = 0;
2943 if (GET_CODE (dest) == ZERO_EXTRACT)
2945 if (CONST_INT_P (XEXP (dest, 1))
2946 && CONST_INT_P (XEXP (dest, 2))
2947 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2948 &dest_mode))
2950 width = INTVAL (XEXP (dest, 1));
2951 offset = INTVAL (XEXP (dest, 2));
2952 dest = XEXP (dest, 0);
2953 if (BITS_BIG_ENDIAN)
2954 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2957 else
2959 if (GET_CODE (dest) == STRICT_LOW_PART)
2960 dest = XEXP (dest, 0);
2961 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2963 width = GET_MODE_PRECISION (dest_mode);
2964 offset = 0;
2968 if (offset >= 0)
2970 /* If this is the low part, we're done. */
2971 if (subreg_lowpart_p (dest))
2973 /* Handle the case where inner is twice the size of outer. */
2974 else if (GET_MODE_PRECISION (temp_mode)
2975 == 2 * GET_MODE_PRECISION (dest_mode))
2976 offset += GET_MODE_PRECISION (dest_mode);
2977 /* Otherwise give up for now. */
2978 else
2979 offset = -1;
2982 if (offset >= 0)
2984 rtx inner = SET_SRC (PATTERN (i3));
2985 rtx outer = SET_SRC (temp_expr);
2987 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2988 rtx_mode_t (inner, dest_mode),
2989 offset, width);
2991 combine_merges++;
2992 subst_insn = i3;
2993 subst_low_luid = DF_INSN_LUID (i2);
2994 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2995 i2dest = temp_dest;
2996 i2dest_killed = dead_or_set_p (i2, i2dest);
2998 /* Replace the source in I2 with the new constant and make the
2999 resulting insn the new pattern for I3. Then skip to where we
3000 validate the pattern. Everything was set up above. */
3001 SUBST (SET_SRC (temp_expr),
3002 immed_wide_int_const (o, temp_mode));
3004 newpat = PATTERN (i2);
3006 /* The dest of I3 has been replaced with the dest of I2. */
3007 changed_i3_dest = 1;
3008 goto validate_replacement;
3012 /* If we have no I1 and I2 looks like:
3013 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3014 (set Y OP)])
3015 make up a dummy I1 that is
3016 (set Y OP)
3017 and change I2 to be
3018 (set (reg:CC X) (compare:CC Y (const_int 0)))
3020 (We can ignore any trailing CLOBBERs.)
3022 This undoes a previous combination and allows us to match a branch-and-
3023 decrement insn. */
3025 if (!HAVE_cc0 && i1 == 0
3026 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3027 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3028 == MODE_CC)
3029 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3030 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3031 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3032 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3033 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3034 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3036 /* We make I1 with the same INSN_UID as I2. This gives it
3037 the same DF_INSN_LUID for value tracking. Our fake I1 will
3038 never appear in the insn stream so giving it the same INSN_UID
3039 as I2 will not cause a problem. */
3041 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3042 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3043 -1, NULL_RTX);
3044 INSN_UID (i1) = INSN_UID (i2);
3046 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3047 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3048 SET_DEST (PATTERN (i1)));
3049 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3050 SUBST_LINK (LOG_LINKS (i2),
3051 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3054 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3055 make those two SETs separate I1 and I2 insns, and make an I0 that is
3056 the original I1. */
3057 if (!HAVE_cc0 && i0 == 0
3058 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3059 && can_split_parallel_of_n_reg_sets (i2, 2)
3060 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3061 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3062 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3063 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3065 /* If there is no I1, there is no I0 either. */
3066 i0 = i1;
3068 /* We make I1 with the same INSN_UID as I2. This gives it
3069 the same DF_INSN_LUID for value tracking. Our fake I1 will
3070 never appear in the insn stream so giving it the same INSN_UID
3071 as I2 will not cause a problem. */
3073 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3074 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3075 -1, NULL_RTX);
3076 INSN_UID (i1) = INSN_UID (i2);
3078 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3081 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3082 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3084 if (dump_file && (dump_flags & TDF_DETAILS))
3085 fprintf (dump_file, "Can't combine i2 into i3\n");
3086 undo_all ();
3087 return 0;
3089 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3091 if (dump_file && (dump_flags & TDF_DETAILS))
3092 fprintf (dump_file, "Can't combine i1 into i3\n");
3093 undo_all ();
3094 return 0;
3096 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3098 if (dump_file && (dump_flags & TDF_DETAILS))
3099 fprintf (dump_file, "Can't combine i0 into i3\n");
3100 undo_all ();
3101 return 0;
3104 /* Record whether i2 and i3 are trivial moves. */
3105 i2_was_move = is_just_move (i2);
3106 i3_was_move = is_just_move (i3);
3108 /* Record whether I2DEST is used in I2SRC and similarly for the other
3109 cases. Knowing this will help in register status updating below. */
3110 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3111 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3112 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3113 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3114 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3115 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3116 i2dest_killed = dead_or_set_p (i2, i2dest);
3117 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3118 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3120 /* For the earlier insns, determine which of the subsequent ones they
3121 feed. */
3122 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3123 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3124 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3125 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3126 && reg_overlap_mentioned_p (i0dest, i2src))));
3128 /* Ensure that I3's pattern can be the destination of combines. */
3129 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3130 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3131 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3132 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3133 &i3dest_killed))
3135 undo_all ();
3136 return 0;
3139 /* See if any of the insns is a MULT operation. Unless one is, we will
3140 reject a combination that is, since it must be slower. Be conservative
3141 here. */
3142 if (GET_CODE (i2src) == MULT
3143 || (i1 != 0 && GET_CODE (i1src) == MULT)
3144 || (i0 != 0 && GET_CODE (i0src) == MULT)
3145 || (GET_CODE (PATTERN (i3)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3147 have_mult = 1;
3149 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3150 We used to do this EXCEPT in one case: I3 has a post-inc in an
3151 output operand. However, that exception can give rise to insns like
3152 mov r3,(r3)+
3153 which is a famous insn on the PDP-11 where the value of r3 used as the
3154 source was model-dependent. Avoid this sort of thing. */
3156 #if 0
3157 if (!(GET_CODE (PATTERN (i3)) == SET
3158 && REG_P (SET_SRC (PATTERN (i3)))
3159 && MEM_P (SET_DEST (PATTERN (i3)))
3160 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3161 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3162 /* It's not the exception. */
3163 #endif
3164 if (AUTO_INC_DEC)
3166 rtx link;
3167 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3168 if (REG_NOTE_KIND (link) == REG_INC
3169 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3170 || (i1 != 0
3171 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3173 undo_all ();
3174 return 0;
3178 /* See if the SETs in I1 or I2 need to be kept around in the merged
3179 instruction: whenever the value set there is still needed past I3.
3180 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3182 For the SET in I1, we have two cases: if I1 and I2 independently feed
3183 into I3, the set in I1 needs to be kept around unless I1DEST dies
3184 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3185 in I1 needs to be kept around unless I1DEST dies or is set in either
3186 I2 or I3. The same considerations apply to I0. */
3188 added_sets_2 = !dead_or_set_p (i3, i2dest);
3190 if (i1)
3191 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3192 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3193 else
3194 added_sets_1 = 0;
3196 if (i0)
3197 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3198 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3199 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3200 && dead_or_set_p (i2, i0dest)));
3201 else
3202 added_sets_0 = 0;
3204 /* We are about to copy insns for the case where they need to be kept
3205 around. Check that they can be copied in the merged instruction. */
3207 if (targetm.cannot_copy_insn_p
3208 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3209 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3210 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3212 undo_all ();
3213 return 0;
3216 /* Count how many auto_inc expressions there were in the original insns;
3217 we need to have the same number in the resulting patterns. */
3219 if (i0)
3220 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3221 if (i1)
3222 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3223 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3224 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3226 /* If the set in I2 needs to be kept around, we must make a copy of
3227 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3228 PATTERN (I2), we are only substituting for the original I1DEST, not into
3229 an already-substituted copy. This also prevents making self-referential
3230 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3231 I2DEST. */
3233 if (added_sets_2)
3235 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3236 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3237 else
3238 i2pat = copy_rtx (PATTERN (i2));
3241 if (added_sets_1)
3243 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3244 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3245 else
3246 i1pat = copy_rtx (PATTERN (i1));
3249 if (added_sets_0)
3251 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3252 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3253 else
3254 i0pat = copy_rtx (PATTERN (i0));
3257 combine_merges++;
3259 /* Substitute in the latest insn for the regs set by the earlier ones. */
3261 maxreg = max_reg_num ();
3263 subst_insn = i3;
3265 /* Many machines that don't use CC0 have insns that can both perform an
3266 arithmetic operation and set the condition code. These operations will
3267 be represented as a PARALLEL with the first element of the vector
3268 being a COMPARE of an arithmetic operation with the constant zero.
3269 The second element of the vector will set some pseudo to the result
3270 of the same arithmetic operation. If we simplify the COMPARE, we won't
3271 match such a pattern and so will generate an extra insn. Here we test
3272 for this case, where both the comparison and the operation result are
3273 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3274 I2SRC. Later we will make the PARALLEL that contains I2. */
3276 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3277 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3278 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3279 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3281 rtx newpat_dest;
3282 rtx *cc_use_loc = NULL;
3283 rtx_insn *cc_use_insn = NULL;
3284 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3285 machine_mode compare_mode, orig_compare_mode;
3286 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3287 scalar_int_mode mode;
3289 newpat = PATTERN (i3);
3290 newpat_dest = SET_DEST (newpat);
3291 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3293 if (undobuf.other_insn == 0
3294 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3295 &cc_use_insn)))
3297 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3298 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3299 compare_code = simplify_compare_const (compare_code, mode,
3300 op0, &op1);
3301 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3304 /* Do the rest only if op1 is const0_rtx, which may be the
3305 result of simplification. */
3306 if (op1 == const0_rtx)
3308 /* If a single use of the CC is found, prepare to modify it
3309 when SELECT_CC_MODE returns a new CC-class mode, or when
3310 the above simplify_compare_const() returned a new comparison
3311 operator. undobuf.other_insn is assigned the CC use insn
3312 when modifying it. */
3313 if (cc_use_loc)
3315 #ifdef SELECT_CC_MODE
3316 machine_mode new_mode
3317 = SELECT_CC_MODE (compare_code, op0, op1);
3318 if (new_mode != orig_compare_mode
3319 && can_change_dest_mode (SET_DEST (newpat),
3320 added_sets_2, new_mode))
3322 unsigned int regno = REGNO (newpat_dest);
3323 compare_mode = new_mode;
3324 if (regno < FIRST_PSEUDO_REGISTER)
3325 newpat_dest = gen_rtx_REG (compare_mode, regno);
3326 else
3328 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3329 newpat_dest = regno_reg_rtx[regno];
3332 #endif
3333 /* Cases for modifying the CC-using comparison. */
3334 if (compare_code != orig_compare_code
3335 /* ??? Do we need to verify the zero rtx? */
3336 && XEXP (*cc_use_loc, 1) == const0_rtx)
3338 /* Replace cc_use_loc with entire new RTX. */
3339 SUBST (*cc_use_loc,
3340 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3341 newpat_dest, const0_rtx));
3342 undobuf.other_insn = cc_use_insn;
3344 else if (compare_mode != orig_compare_mode)
3346 /* Just replace the CC reg with a new mode. */
3347 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3348 undobuf.other_insn = cc_use_insn;
3352 /* Now we modify the current newpat:
3353 First, SET_DEST(newpat) is updated if the CC mode has been
3354 altered. For targets without SELECT_CC_MODE, this should be
3355 optimized away. */
3356 if (compare_mode != orig_compare_mode)
3357 SUBST (SET_DEST (newpat), newpat_dest);
3358 /* This is always done to propagate i2src into newpat. */
3359 SUBST (SET_SRC (newpat),
3360 gen_rtx_COMPARE (compare_mode, op0, op1));
3361 /* Create new version of i2pat if needed; the below PARALLEL
3362 creation needs this to work correctly. */
3363 if (! rtx_equal_p (i2src, op0))
3364 i2pat = gen_rtx_SET (i2dest, op0);
3365 i2_is_used = 1;
3369 if (i2_is_used == 0)
3371 /* It is possible that the source of I2 or I1 may be performing
3372 an unneeded operation, such as a ZERO_EXTEND of something
3373 that is known to have the high part zero. Handle that case
3374 by letting subst look at the inner insns.
3376 Another way to do this would be to have a function that tries
3377 to simplify a single insn instead of merging two or more
3378 insns. We don't do this because of the potential of infinite
3379 loops and because of the potential extra memory required.
3380 However, doing it the way we are is a bit of a kludge and
3381 doesn't catch all cases.
3383 But only do this if -fexpensive-optimizations since it slows
3384 things down and doesn't usually win.
3386 This is not done in the COMPARE case above because the
3387 unmodified I2PAT is used in the PARALLEL and so a pattern
3388 with a modified I2SRC would not match. */
3390 if (flag_expensive_optimizations)
3392 /* Pass pc_rtx so no substitutions are done, just
3393 simplifications. */
3394 if (i1)
3396 subst_low_luid = DF_INSN_LUID (i1);
3397 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3400 subst_low_luid = DF_INSN_LUID (i2);
3401 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3404 n_occurrences = 0; /* `subst' counts here */
3405 subst_low_luid = DF_INSN_LUID (i2);
3407 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3408 copy of I2SRC each time we substitute it, in order to avoid creating
3409 self-referential RTL when we will be substituting I1SRC for I1DEST
3410 later. Likewise if I0 feeds into I2, either directly or indirectly
3411 through I1, and I0DEST is in I0SRC. */
3412 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3413 (i1_feeds_i2_n && i1dest_in_i1src)
3414 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3415 && i0dest_in_i0src));
3416 substed_i2 = 1;
3418 /* Record whether I2's body now appears within I3's body. */
3419 i2_is_used = n_occurrences;
3422 /* If we already got a failure, don't try to do more. Otherwise, try to
3423 substitute I1 if we have it. */
3425 if (i1 && GET_CODE (newpat) != CLOBBER)
3427 /* Before we can do this substitution, we must redo the test done
3428 above (see detailed comments there) that ensures I1DEST isn't
3429 mentioned in any SETs in NEWPAT that are field assignments. */
3430 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3431 0, 0, 0))
3433 undo_all ();
3434 return 0;
3437 n_occurrences = 0;
3438 subst_low_luid = DF_INSN_LUID (i1);
3440 /* If the following substitution will modify I1SRC, make a copy of it
3441 for the case where it is substituted for I1DEST in I2PAT later. */
3442 if (added_sets_2 && i1_feeds_i2_n)
3443 i1src_copy = copy_rtx (i1src);
3445 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3446 copy of I1SRC each time we substitute it, in order to avoid creating
3447 self-referential RTL when we will be substituting I0SRC for I0DEST
3448 later. */
3449 newpat = subst (newpat, i1dest, i1src, 0, 0,
3450 i0_feeds_i1_n && i0dest_in_i0src);
3451 substed_i1 = 1;
3453 /* Record whether I1's body now appears within I3's body. */
3454 i1_is_used = n_occurrences;
3457 /* Likewise for I0 if we have it. */
3459 if (i0 && GET_CODE (newpat) != CLOBBER)
3461 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3462 0, 0, 0))
3464 undo_all ();
3465 return 0;
3468 /* If the following substitution will modify I0SRC, make a copy of it
3469 for the case where it is substituted for I0DEST in I1PAT later. */
3470 if (added_sets_1 && i0_feeds_i1_n)
3471 i0src_copy = copy_rtx (i0src);
3472 /* And a copy for I0DEST in I2PAT substitution. */
3473 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3474 || (i0_feeds_i2_n)))
3475 i0src_copy2 = copy_rtx (i0src);
3477 n_occurrences = 0;
3478 subst_low_luid = DF_INSN_LUID (i0);
3479 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3480 substed_i0 = 1;
3483 if (n_auto_inc)
3485 int new_n_auto_inc = 0;
3486 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3488 if (n_auto_inc != new_n_auto_inc)
3490 if (dump_file && (dump_flags & TDF_DETAILS))
3491 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3492 undo_all ();
3493 return 0;
3497 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3498 to count all the ways that I2SRC and I1SRC can be used. */
3499 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3500 && i2_is_used + added_sets_2 > 1)
3501 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3502 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3503 > 1))
3504 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3505 && (n_occurrences + added_sets_0
3506 + (added_sets_1 && i0_feeds_i1_n)
3507 + (added_sets_2 && i0_feeds_i2_n)
3508 > 1))
3509 /* Fail if we tried to make a new register. */
3510 || max_reg_num () != maxreg
3511 /* Fail if we couldn't do something and have a CLOBBER. */
3512 || GET_CODE (newpat) == CLOBBER
3513 /* Fail if this new pattern is a MULT and we didn't have one before
3514 at the outer level. */
3515 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3516 && ! have_mult))
3518 undo_all ();
3519 return 0;
3522 /* If the actions of the earlier insns must be kept
3523 in addition to substituting them into the latest one,
3524 we must make a new PARALLEL for the latest insn
3525 to hold additional the SETs. */
3527 if (added_sets_0 || added_sets_1 || added_sets_2)
3529 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3530 combine_extras++;
3532 if (GET_CODE (newpat) == PARALLEL)
3534 rtvec old = XVEC (newpat, 0);
3535 total_sets = XVECLEN (newpat, 0) + extra_sets;
3536 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3537 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3538 sizeof (old->elem[0]) * old->num_elem);
3540 else
3542 rtx old = newpat;
3543 total_sets = 1 + extra_sets;
3544 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3545 XVECEXP (newpat, 0, 0) = old;
3548 if (added_sets_0)
3549 XVECEXP (newpat, 0, --total_sets) = i0pat;
3551 if (added_sets_1)
3553 rtx t = i1pat;
3554 if (i0_feeds_i1_n)
3555 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3557 XVECEXP (newpat, 0, --total_sets) = t;
3559 if (added_sets_2)
3561 rtx t = i2pat;
3562 if (i1_feeds_i2_n)
3563 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3564 i0_feeds_i1_n && i0dest_in_i0src);
3565 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3566 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3568 XVECEXP (newpat, 0, --total_sets) = t;
3572 validate_replacement:
3574 /* Note which hard regs this insn has as inputs. */
3575 mark_used_regs_combine (newpat);
3577 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3578 consider splitting this pattern, we might need these clobbers. */
3579 if (i1 && GET_CODE (newpat) == PARALLEL
3580 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3582 int len = XVECLEN (newpat, 0);
3584 newpat_vec_with_clobbers = rtvec_alloc (len);
3585 for (i = 0; i < len; i++)
3586 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3589 /* We have recognized nothing yet. */
3590 insn_code_number = -1;
3592 /* See if this is a PARALLEL of two SETs where one SET's destination is
3593 a register that is unused and this isn't marked as an instruction that
3594 might trap in an EH region. In that case, we just need the other SET.
3595 We prefer this over the PARALLEL.
3597 This can occur when simplifying a divmod insn. We *must* test for this
3598 case here because the code below that splits two independent SETs doesn't
3599 handle this case correctly when it updates the register status.
3601 It's pointless doing this if we originally had two sets, one from
3602 i3, and one from i2. Combining then splitting the parallel results
3603 in the original i2 again plus an invalid insn (which we delete).
3604 The net effect is only to move instructions around, which makes
3605 debug info less accurate.
3607 If the remaining SET came from I2 its destination should not be used
3608 between I2 and I3. See PR82024. */
3610 if (!(added_sets_2 && i1 == 0)
3611 && is_parallel_of_n_reg_sets (newpat, 2)
3612 && asm_noperands (newpat) < 0)
3614 rtx set0 = XVECEXP (newpat, 0, 0);
3615 rtx set1 = XVECEXP (newpat, 0, 1);
3616 rtx oldpat = newpat;
3618 if (((REG_P (SET_DEST (set1))
3619 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3620 || (GET_CODE (SET_DEST (set1)) == SUBREG
3621 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3622 && insn_nothrow_p (i3)
3623 && !side_effects_p (SET_SRC (set1)))
3625 newpat = set0;
3626 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3629 else if (((REG_P (SET_DEST (set0))
3630 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3631 || (GET_CODE (SET_DEST (set0)) == SUBREG
3632 && find_reg_note (i3, REG_UNUSED,
3633 SUBREG_REG (SET_DEST (set0)))))
3634 && insn_nothrow_p (i3)
3635 && !side_effects_p (SET_SRC (set0)))
3637 rtx dest = SET_DEST (set1);
3638 if (GET_CODE (dest) == SUBREG)
3639 dest = SUBREG_REG (dest);
3640 if (!reg_used_between_p (dest, i2, i3))
3642 newpat = set1;
3643 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3645 if (insn_code_number >= 0)
3646 changed_i3_dest = 1;
3650 if (insn_code_number < 0)
3651 newpat = oldpat;
3654 /* Is the result of combination a valid instruction? */
3655 if (insn_code_number < 0)
3656 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3658 /* If we were combining three insns and the result is a simple SET
3659 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3660 insns. There are two ways to do this. It can be split using a
3661 machine-specific method (like when you have an addition of a large
3662 constant) or by combine in the function find_split_point. */
3664 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3665 && asm_noperands (newpat) < 0)
3667 rtx parallel, *split;
3668 rtx_insn *m_split_insn;
3670 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3671 use I2DEST as a scratch register will help. In the latter case,
3672 convert I2DEST to the mode of the source of NEWPAT if we can. */
3674 m_split_insn = combine_split_insns (newpat, i3);
3676 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3677 inputs of NEWPAT. */
3679 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3680 possible to try that as a scratch reg. This would require adding
3681 more code to make it work though. */
3683 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3685 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3687 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3688 (temporarily, until we are committed to this instruction
3689 combination) does not work: for example, any call to nonzero_bits
3690 on the register (from a splitter in the MD file, for example)
3691 will get the old information, which is invalid.
3693 Since nowadays we can create registers during combine just fine,
3694 we should just create a new one here, not reuse i2dest. */
3696 /* First try to split using the original register as a
3697 scratch register. */
3698 parallel = gen_rtx_PARALLEL (VOIDmode,
3699 gen_rtvec (2, newpat,
3700 gen_rtx_CLOBBER (VOIDmode,
3701 i2dest)));
3702 m_split_insn = combine_split_insns (parallel, i3);
3704 /* If that didn't work, try changing the mode of I2DEST if
3705 we can. */
3706 if (m_split_insn == 0
3707 && new_mode != GET_MODE (i2dest)
3708 && new_mode != VOIDmode
3709 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3711 machine_mode old_mode = GET_MODE (i2dest);
3712 rtx ni2dest;
3714 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3715 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3716 else
3718 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3719 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3722 parallel = (gen_rtx_PARALLEL
3723 (VOIDmode,
3724 gen_rtvec (2, newpat,
3725 gen_rtx_CLOBBER (VOIDmode,
3726 ni2dest))));
3727 m_split_insn = combine_split_insns (parallel, i3);
3729 if (m_split_insn == 0
3730 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3732 struct undo *buf;
3734 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3735 buf = undobuf.undos;
3736 undobuf.undos = buf->next;
3737 buf->next = undobuf.frees;
3738 undobuf.frees = buf;
3742 i2scratch = m_split_insn != 0;
3745 /* If recog_for_combine has discarded clobbers, try to use them
3746 again for the split. */
3747 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3749 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3750 m_split_insn = combine_split_insns (parallel, i3);
3753 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3755 rtx m_split_pat = PATTERN (m_split_insn);
3756 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3757 if (insn_code_number >= 0)
3758 newpat = m_split_pat;
3760 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3761 && (next_nonnote_nondebug_insn (i2) == i3
3762 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3764 rtx i2set, i3set;
3765 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3766 newi2pat = PATTERN (m_split_insn);
3768 i3set = single_set (NEXT_INSN (m_split_insn));
3769 i2set = single_set (m_split_insn);
3771 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3773 /* If I2 or I3 has multiple SETs, we won't know how to track
3774 register status, so don't use these insns. If I2's destination
3775 is used between I2 and I3, we also can't use these insns. */
3777 if (i2_code_number >= 0 && i2set && i3set
3778 && (next_nonnote_nondebug_insn (i2) == i3
3779 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3780 insn_code_number = recog_for_combine (&newi3pat, i3,
3781 &new_i3_notes);
3782 if (insn_code_number >= 0)
3783 newpat = newi3pat;
3785 /* It is possible that both insns now set the destination of I3.
3786 If so, we must show an extra use of it. */
3788 if (insn_code_number >= 0)
3790 rtx new_i3_dest = SET_DEST (i3set);
3791 rtx new_i2_dest = SET_DEST (i2set);
3793 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3794 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3795 || GET_CODE (new_i3_dest) == SUBREG)
3796 new_i3_dest = XEXP (new_i3_dest, 0);
3798 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3799 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3800 || GET_CODE (new_i2_dest) == SUBREG)
3801 new_i2_dest = XEXP (new_i2_dest, 0);
3803 if (REG_P (new_i3_dest)
3804 && REG_P (new_i2_dest)
3805 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3806 && REGNO (new_i2_dest) < reg_n_sets_max)
3807 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3811 /* If we can split it and use I2DEST, go ahead and see if that
3812 helps things be recognized. Verify that none of the registers
3813 are set between I2 and I3. */
3814 if (insn_code_number < 0
3815 && (split = find_split_point (&newpat, i3, false)) != 0
3816 && (!HAVE_cc0 || REG_P (i2dest))
3817 /* We need I2DEST in the proper mode. If it is a hard register
3818 or the only use of a pseudo, we can change its mode.
3819 Make sure we don't change a hard register to have a mode that
3820 isn't valid for it, or change the number of registers. */
3821 && (GET_MODE (*split) == GET_MODE (i2dest)
3822 || GET_MODE (*split) == VOIDmode
3823 || can_change_dest_mode (i2dest, added_sets_2,
3824 GET_MODE (*split)))
3825 && (next_nonnote_nondebug_insn (i2) == i3
3826 || !modified_between_p (*split, i2, i3))
3827 /* We can't overwrite I2DEST if its value is still used by
3828 NEWPAT. */
3829 && ! reg_referenced_p (i2dest, newpat))
3831 rtx newdest = i2dest;
3832 enum rtx_code split_code = GET_CODE (*split);
3833 machine_mode split_mode = GET_MODE (*split);
3834 bool subst_done = false;
3835 newi2pat = NULL_RTX;
3837 i2scratch = true;
3839 /* *SPLIT may be part of I2SRC, so make sure we have the
3840 original expression around for later debug processing.
3841 We should not need I2SRC any more in other cases. */
3842 if (MAY_HAVE_DEBUG_BIND_INSNS)
3843 i2src = copy_rtx (i2src);
3844 else
3845 i2src = NULL;
3847 /* Get NEWDEST as a register in the proper mode. We have already
3848 validated that we can do this. */
3849 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3851 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3852 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3853 else
3855 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3856 newdest = regno_reg_rtx[REGNO (i2dest)];
3860 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3861 an ASHIFT. This can occur if it was inside a PLUS and hence
3862 appeared to be a memory address. This is a kludge. */
3863 if (split_code == MULT
3864 && CONST_INT_P (XEXP (*split, 1))
3865 && INTVAL (XEXP (*split, 1)) > 0
3866 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3868 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3869 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3870 XEXP (*split, 0), i_rtx));
3871 /* Update split_code because we may not have a multiply
3872 anymore. */
3873 split_code = GET_CODE (*split);
3876 /* Similarly for (plus (mult FOO (const_int pow2))). */
3877 if (split_code == PLUS
3878 && GET_CODE (XEXP (*split, 0)) == MULT
3879 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3880 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3881 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3883 rtx nsplit = XEXP (*split, 0);
3884 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3885 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3886 XEXP (nsplit, 0),
3887 i_rtx));
3888 /* Update split_code because we may not have a multiply
3889 anymore. */
3890 split_code = GET_CODE (*split);
3893 #ifdef INSN_SCHEDULING
3894 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3895 be written as a ZERO_EXTEND. */
3896 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3898 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3899 what it really is. */
3900 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3901 == SIGN_EXTEND)
3902 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3903 SUBREG_REG (*split)));
3904 else
3905 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3906 SUBREG_REG (*split)));
3908 #endif
3910 /* Attempt to split binary operators using arithmetic identities. */
3911 if (BINARY_P (SET_SRC (newpat))
3912 && split_mode == GET_MODE (SET_SRC (newpat))
3913 && ! side_effects_p (SET_SRC (newpat)))
3915 rtx setsrc = SET_SRC (newpat);
3916 machine_mode mode = GET_MODE (setsrc);
3917 enum rtx_code code = GET_CODE (setsrc);
3918 rtx src_op0 = XEXP (setsrc, 0);
3919 rtx src_op1 = XEXP (setsrc, 1);
3921 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3922 if (rtx_equal_p (src_op0, src_op1))
3924 newi2pat = gen_rtx_SET (newdest, src_op0);
3925 SUBST (XEXP (setsrc, 0), newdest);
3926 SUBST (XEXP (setsrc, 1), newdest);
3927 subst_done = true;
3929 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3930 else if ((code == PLUS || code == MULT)
3931 && GET_CODE (src_op0) == code
3932 && GET_CODE (XEXP (src_op0, 0)) == code
3933 && (INTEGRAL_MODE_P (mode)
3934 || (FLOAT_MODE_P (mode)
3935 && flag_unsafe_math_optimizations)))
3937 rtx p = XEXP (XEXP (src_op0, 0), 0);
3938 rtx q = XEXP (XEXP (src_op0, 0), 1);
3939 rtx r = XEXP (src_op0, 1);
3940 rtx s = src_op1;
3942 /* Split both "((X op Y) op X) op Y" and
3943 "((X op Y) op Y) op X" as "T op T" where T is
3944 "X op Y". */
3945 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3946 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3948 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3949 SUBST (XEXP (setsrc, 0), newdest);
3950 SUBST (XEXP (setsrc, 1), newdest);
3951 subst_done = true;
3953 /* Split "((X op X) op Y) op Y)" as "T op T" where
3954 T is "X op Y". */
3955 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3957 rtx tmp = simplify_gen_binary (code, mode, p, r);
3958 newi2pat = gen_rtx_SET (newdest, tmp);
3959 SUBST (XEXP (setsrc, 0), newdest);
3960 SUBST (XEXP (setsrc, 1), newdest);
3961 subst_done = true;
3966 if (!subst_done)
3968 newi2pat = gen_rtx_SET (newdest, *split);
3969 SUBST (*split, newdest);
3972 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3974 /* recog_for_combine might have added CLOBBERs to newi2pat.
3975 Make sure NEWPAT does not depend on the clobbered regs. */
3976 if (GET_CODE (newi2pat) == PARALLEL)
3977 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3978 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3980 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3981 if (reg_overlap_mentioned_p (reg, newpat))
3983 undo_all ();
3984 return 0;
3988 /* If the split point was a MULT and we didn't have one before,
3989 don't use one now. */
3990 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3991 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3995 /* Check for a case where we loaded from memory in a narrow mode and
3996 then sign extended it, but we need both registers. In that case,
3997 we have a PARALLEL with both loads from the same memory location.
3998 We can split this into a load from memory followed by a register-register
3999 copy. This saves at least one insn, more if register allocation can
4000 eliminate the copy.
4002 We cannot do this if the destination of the first assignment is a
4003 condition code register or cc0. We eliminate this case by making sure
4004 the SET_DEST and SET_SRC have the same mode.
4006 We cannot do this if the destination of the second assignment is
4007 a register that we have already assumed is zero-extended. Similarly
4008 for a SUBREG of such a register. */
4010 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4011 && GET_CODE (newpat) == PARALLEL
4012 && XVECLEN (newpat, 0) == 2
4013 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4014 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4015 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4016 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4017 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4018 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4019 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4020 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4021 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4022 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4023 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4024 (REG_P (temp_expr)
4025 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4026 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4027 BITS_PER_WORD)
4028 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4029 HOST_BITS_PER_INT)
4030 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4031 != GET_MODE_MASK (word_mode))))
4032 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4033 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4034 (REG_P (temp_expr)
4035 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4036 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4037 BITS_PER_WORD)
4038 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4039 HOST_BITS_PER_INT)
4040 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4041 != GET_MODE_MASK (word_mode)))))
4042 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4043 SET_SRC (XVECEXP (newpat, 0, 1)))
4044 && ! find_reg_note (i3, REG_UNUSED,
4045 SET_DEST (XVECEXP (newpat, 0, 0))))
4047 rtx ni2dest;
4049 newi2pat = XVECEXP (newpat, 0, 0);
4050 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4051 newpat = XVECEXP (newpat, 0, 1);
4052 SUBST (SET_SRC (newpat),
4053 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4054 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4056 if (i2_code_number >= 0)
4057 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4059 if (insn_code_number >= 0)
4060 swap_i2i3 = 1;
4063 /* Similarly, check for a case where we have a PARALLEL of two independent
4064 SETs but we started with three insns. In this case, we can do the sets
4065 as two separate insns. This case occurs when some SET allows two
4066 other insns to combine, but the destination of that SET is still live.
4068 Also do this if we started with two insns and (at least) one of the
4069 resulting sets is a noop; this noop will be deleted later.
4071 Also do this if we started with two insns neither of which was a simple
4072 move. */
4074 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4075 && GET_CODE (newpat) == PARALLEL
4076 && XVECLEN (newpat, 0) == 2
4077 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4078 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4079 && (i1
4080 || set_noop_p (XVECEXP (newpat, 0, 0))
4081 || set_noop_p (XVECEXP (newpat, 0, 1))
4082 || (!i2_was_move && !i3_was_move))
4083 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4084 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4085 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4086 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4087 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4088 XVECEXP (newpat, 0, 0))
4089 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4090 XVECEXP (newpat, 0, 1))
4091 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4092 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4094 rtx set0 = XVECEXP (newpat, 0, 0);
4095 rtx set1 = XVECEXP (newpat, 0, 1);
4097 /* Normally, it doesn't matter which of the two is done first,
4098 but the one that references cc0 can't be the second, and
4099 one which uses any regs/memory set in between i2 and i3 can't
4100 be first. The PARALLEL might also have been pre-existing in i3,
4101 so we need to make sure that we won't wrongly hoist a SET to i2
4102 that would conflict with a death note present in there, or would
4103 have its dest modified between i2 and i3. */
4104 if (!modified_between_p (SET_SRC (set1), i2, i3)
4105 && !(REG_P (SET_DEST (set1))
4106 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4107 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4108 && find_reg_note (i2, REG_DEAD,
4109 SUBREG_REG (SET_DEST (set1))))
4110 && !modified_between_p (SET_DEST (set1), i2, i3)
4111 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4112 /* If I3 is a jump, ensure that set0 is a jump so that
4113 we do not create invalid RTL. */
4114 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4117 newi2pat = set1;
4118 newpat = set0;
4120 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4121 && !(REG_P (SET_DEST (set0))
4122 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4123 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4124 && find_reg_note (i2, REG_DEAD,
4125 SUBREG_REG (SET_DEST (set0))))
4126 && !modified_between_p (SET_DEST (set0), i2, i3)
4127 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4128 /* If I3 is a jump, ensure that set1 is a jump so that
4129 we do not create invalid RTL. */
4130 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4133 newi2pat = set0;
4134 newpat = set1;
4136 else
4138 undo_all ();
4139 return 0;
4142 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4144 if (i2_code_number >= 0)
4146 /* recog_for_combine might have added CLOBBERs to newi2pat.
4147 Make sure NEWPAT does not depend on the clobbered regs. */
4148 if (GET_CODE (newi2pat) == PARALLEL)
4150 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4151 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4153 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4154 if (reg_overlap_mentioned_p (reg, newpat))
4156 undo_all ();
4157 return 0;
4162 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4164 if (insn_code_number >= 0)
4165 split_i2i3 = 1;
4169 /* If it still isn't recognized, fail and change things back the way they
4170 were. */
4171 if ((insn_code_number < 0
4172 /* Is the result a reasonable ASM_OPERANDS? */
4173 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4175 undo_all ();
4176 return 0;
4179 /* If we had to change another insn, make sure it is valid also. */
4180 if (undobuf.other_insn)
4182 CLEAR_HARD_REG_SET (newpat_used_regs);
4184 other_pat = PATTERN (undobuf.other_insn);
4185 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4186 &new_other_notes);
4188 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4190 undo_all ();
4191 return 0;
4195 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4196 they are adjacent to each other or not. */
4197 if (HAVE_cc0)
4199 rtx_insn *p = prev_nonnote_insn (i3);
4200 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4201 && sets_cc0_p (newi2pat))
4203 undo_all ();
4204 return 0;
4208 /* Only allow this combination if insn_cost reports that the
4209 replacement instructions are cheaper than the originals. */
4210 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4212 undo_all ();
4213 return 0;
4216 if (MAY_HAVE_DEBUG_BIND_INSNS)
4218 struct undo *undo;
4220 for (undo = undobuf.undos; undo; undo = undo->next)
4221 if (undo->kind == UNDO_MODE)
4223 rtx reg = *undo->where.r;
4224 machine_mode new_mode = GET_MODE (reg);
4225 machine_mode old_mode = undo->old_contents.m;
4227 /* Temporarily revert mode back. */
4228 adjust_reg_mode (reg, old_mode);
4230 if (reg == i2dest && i2scratch)
4232 /* If we used i2dest as a scratch register with a
4233 different mode, substitute it for the original
4234 i2src while its original mode is temporarily
4235 restored, and then clear i2scratch so that we don't
4236 do it again later. */
4237 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4238 this_basic_block);
4239 i2scratch = false;
4240 /* Put back the new mode. */
4241 adjust_reg_mode (reg, new_mode);
4243 else
4245 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4246 rtx_insn *first, *last;
4248 if (reg == i2dest)
4250 first = i2;
4251 last = last_combined_insn;
4253 else
4255 first = i3;
4256 last = undobuf.other_insn;
4257 gcc_assert (last);
4258 if (DF_INSN_LUID (last)
4259 < DF_INSN_LUID (last_combined_insn))
4260 last = last_combined_insn;
4263 /* We're dealing with a reg that changed mode but not
4264 meaning, so we want to turn it into a subreg for
4265 the new mode. However, because of REG sharing and
4266 because its mode had already changed, we have to do
4267 it in two steps. First, replace any debug uses of
4268 reg, with its original mode temporarily restored,
4269 with this copy we have created; then, replace the
4270 copy with the SUBREG of the original shared reg,
4271 once again changed to the new mode. */
4272 propagate_for_debug (first, last, reg, tempreg,
4273 this_basic_block);
4274 adjust_reg_mode (reg, new_mode);
4275 propagate_for_debug (first, last, tempreg,
4276 lowpart_subreg (old_mode, reg, new_mode),
4277 this_basic_block);
4282 /* If we will be able to accept this, we have made a
4283 change to the destination of I3. This requires us to
4284 do a few adjustments. */
4286 if (changed_i3_dest)
4288 PATTERN (i3) = newpat;
4289 adjust_for_new_dest (i3);
4292 /* We now know that we can do this combination. Merge the insns and
4293 update the status of registers and LOG_LINKS. */
4295 if (undobuf.other_insn)
4297 rtx note, next;
4299 PATTERN (undobuf.other_insn) = other_pat;
4301 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4302 ensure that they are still valid. Then add any non-duplicate
4303 notes added by recog_for_combine. */
4304 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4306 next = XEXP (note, 1);
4308 if ((REG_NOTE_KIND (note) == REG_DEAD
4309 && !reg_referenced_p (XEXP (note, 0),
4310 PATTERN (undobuf.other_insn)))
4311 ||(REG_NOTE_KIND (note) == REG_UNUSED
4312 && !reg_set_p (XEXP (note, 0),
4313 PATTERN (undobuf.other_insn)))
4314 /* Simply drop equal note since it may be no longer valid
4315 for other_insn. It may be possible to record that CC
4316 register is changed and only discard those notes, but
4317 in practice it's unnecessary complication and doesn't
4318 give any meaningful improvement.
4320 See PR78559. */
4321 || REG_NOTE_KIND (note) == REG_EQUAL
4322 || REG_NOTE_KIND (note) == REG_EQUIV)
4323 remove_note (undobuf.other_insn, note);
4326 distribute_notes (new_other_notes, undobuf.other_insn,
4327 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4328 NULL_RTX);
4331 if (swap_i2i3)
4333 /* I3 now uses what used to be its destination and which is now
4334 I2's destination. This requires us to do a few adjustments. */
4335 PATTERN (i3) = newpat;
4336 adjust_for_new_dest (i3);
4339 if (swap_i2i3 || split_i2i3)
4341 /* We might need a LOG_LINK from I3 to I2. But then we used to
4342 have one, so we still will.
4344 However, some later insn might be using I2's dest and have
4345 a LOG_LINK pointing at I3. We should change it to point at
4346 I2 instead. */
4348 /* newi2pat is usually a SET here; however, recog_for_combine might
4349 have added some clobbers. */
4350 rtx x = newi2pat;
4351 if (GET_CODE (x) == PARALLEL)
4352 x = XVECEXP (newi2pat, 0, 0);
4354 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4355 unsigned int regno = reg_or_subregno (SET_DEST (x));
4357 bool done = false;
4358 for (rtx_insn *insn = NEXT_INSN (i3);
4359 !done
4360 && insn
4361 && NONDEBUG_INSN_P (insn)
4362 && BLOCK_FOR_INSN (insn) == this_basic_block;
4363 insn = NEXT_INSN (insn))
4365 struct insn_link *link;
4366 FOR_EACH_LOG_LINK (link, insn)
4367 if (link->insn == i3 && link->regno == regno)
4369 link->insn = i2;
4370 done = true;
4371 break;
4377 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4378 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4379 rtx midnotes = 0;
4380 int from_luid;
4381 /* Compute which registers we expect to eliminate. newi2pat may be setting
4382 either i3dest or i2dest, so we must check it. */
4383 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4384 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4385 || !i2dest_killed
4386 ? 0 : i2dest);
4387 /* For i1, we need to compute both local elimination and global
4388 elimination information with respect to newi2pat because i1dest
4389 may be the same as i3dest, in which case newi2pat may be setting
4390 i1dest. Global information is used when distributing REG_DEAD
4391 note for i2 and i3, in which case it does matter if newi2pat sets
4392 i1dest or not.
4394 Local information is used when distributing REG_DEAD note for i1,
4395 in which case it doesn't matter if newi2pat sets i1dest or not.
4396 See PR62151, if we have four insns combination:
4397 i0: r0 <- i0src
4398 i1: r1 <- i1src (using r0)
4399 REG_DEAD (r0)
4400 i2: r0 <- i2src (using r1)
4401 i3: r3 <- i3src (using r0)
4402 ix: using r0
4403 From i1's point of view, r0 is eliminated, no matter if it is set
4404 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4405 should be discarded.
4407 Note local information only affects cases in forms like "I1->I2->I3",
4408 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4409 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4410 i0dest anyway. */
4411 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4412 || !i1dest_killed
4413 ? 0 : i1dest);
4414 rtx elim_i1 = (local_elim_i1 == 0
4415 || (newi2pat && reg_set_p (i1dest, newi2pat))
4416 ? 0 : i1dest);
4417 /* Same case as i1. */
4418 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4419 ? 0 : i0dest);
4420 rtx elim_i0 = (local_elim_i0 == 0
4421 || (newi2pat && reg_set_p (i0dest, newi2pat))
4422 ? 0 : i0dest);
4424 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4425 clear them. */
4426 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4427 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4428 if (i1)
4429 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4430 if (i0)
4431 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4433 /* Ensure that we do not have something that should not be shared but
4434 occurs multiple times in the new insns. Check this by first
4435 resetting all the `used' flags and then copying anything is shared. */
4437 reset_used_flags (i3notes);
4438 reset_used_flags (i2notes);
4439 reset_used_flags (i1notes);
4440 reset_used_flags (i0notes);
4441 reset_used_flags (newpat);
4442 reset_used_flags (newi2pat);
4443 if (undobuf.other_insn)
4444 reset_used_flags (PATTERN (undobuf.other_insn));
4446 i3notes = copy_rtx_if_shared (i3notes);
4447 i2notes = copy_rtx_if_shared (i2notes);
4448 i1notes = copy_rtx_if_shared (i1notes);
4449 i0notes = copy_rtx_if_shared (i0notes);
4450 newpat = copy_rtx_if_shared (newpat);
4451 newi2pat = copy_rtx_if_shared (newi2pat);
4452 if (undobuf.other_insn)
4453 reset_used_flags (PATTERN (undobuf.other_insn));
4455 INSN_CODE (i3) = insn_code_number;
4456 PATTERN (i3) = newpat;
4458 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4460 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4461 link = XEXP (link, 1))
4463 if (substed_i2)
4465 /* I2SRC must still be meaningful at this point. Some
4466 splitting operations can invalidate I2SRC, but those
4467 operations do not apply to calls. */
4468 gcc_assert (i2src);
4469 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4470 i2dest, i2src);
4472 if (substed_i1)
4473 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4474 i1dest, i1src);
4475 if (substed_i0)
4476 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4477 i0dest, i0src);
4481 if (undobuf.other_insn)
4482 INSN_CODE (undobuf.other_insn) = other_code_number;
4484 /* We had one special case above where I2 had more than one set and
4485 we replaced a destination of one of those sets with the destination
4486 of I3. In that case, we have to update LOG_LINKS of insns later
4487 in this basic block. Note that this (expensive) case is rare.
4489 Also, in this case, we must pretend that all REG_NOTEs for I2
4490 actually came from I3, so that REG_UNUSED notes from I2 will be
4491 properly handled. */
4493 if (i3_subst_into_i2)
4495 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4496 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4497 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4498 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4499 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4500 && ! find_reg_note (i2, REG_UNUSED,
4501 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4502 for (temp_insn = NEXT_INSN (i2);
4503 temp_insn
4504 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4505 || BB_HEAD (this_basic_block) != temp_insn);
4506 temp_insn = NEXT_INSN (temp_insn))
4507 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4508 FOR_EACH_LOG_LINK (link, temp_insn)
4509 if (link->insn == i2)
4510 link->insn = i3;
4512 if (i3notes)
4514 rtx link = i3notes;
4515 while (XEXP (link, 1))
4516 link = XEXP (link, 1);
4517 XEXP (link, 1) = i2notes;
4519 else
4520 i3notes = i2notes;
4521 i2notes = 0;
4524 LOG_LINKS (i3) = NULL;
4525 REG_NOTES (i3) = 0;
4526 LOG_LINKS (i2) = NULL;
4527 REG_NOTES (i2) = 0;
4529 if (newi2pat)
4531 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4532 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4533 this_basic_block);
4534 INSN_CODE (i2) = i2_code_number;
4535 PATTERN (i2) = newi2pat;
4537 else
4539 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4540 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4541 this_basic_block);
4542 SET_INSN_DELETED (i2);
4545 if (i1)
4547 LOG_LINKS (i1) = NULL;
4548 REG_NOTES (i1) = 0;
4549 if (MAY_HAVE_DEBUG_BIND_INSNS)
4550 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4551 this_basic_block);
4552 SET_INSN_DELETED (i1);
4555 if (i0)
4557 LOG_LINKS (i0) = NULL;
4558 REG_NOTES (i0) = 0;
4559 if (MAY_HAVE_DEBUG_BIND_INSNS)
4560 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4561 this_basic_block);
4562 SET_INSN_DELETED (i0);
4565 /* Get death notes for everything that is now used in either I3 or
4566 I2 and used to die in a previous insn. If we built two new
4567 patterns, move from I1 to I2 then I2 to I3 so that we get the
4568 proper movement on registers that I2 modifies. */
4570 if (i0)
4571 from_luid = DF_INSN_LUID (i0);
4572 else if (i1)
4573 from_luid = DF_INSN_LUID (i1);
4574 else
4575 from_luid = DF_INSN_LUID (i2);
4576 if (newi2pat)
4577 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4578 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4580 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4581 if (i3notes)
4582 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4583 elim_i2, elim_i1, elim_i0);
4584 if (i2notes)
4585 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4586 elim_i2, elim_i1, elim_i0);
4587 if (i1notes)
4588 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4589 elim_i2, local_elim_i1, local_elim_i0);
4590 if (i0notes)
4591 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4592 elim_i2, elim_i1, local_elim_i0);
4593 if (midnotes)
4594 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4595 elim_i2, elim_i1, elim_i0);
4597 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4598 know these are REG_UNUSED and want them to go to the desired insn,
4599 so we always pass it as i3. */
4601 if (newi2pat && new_i2_notes)
4602 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4603 NULL_RTX);
4605 if (new_i3_notes)
4606 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4607 NULL_RTX);
4609 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4610 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4611 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4612 in that case, it might delete I2. Similarly for I2 and I1.
4613 Show an additional death due to the REG_DEAD note we make here. If
4614 we discard it in distribute_notes, we will decrement it again. */
4616 if (i3dest_killed)
4618 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4619 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4620 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4621 elim_i1, elim_i0);
4622 else
4623 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4624 elim_i2, elim_i1, elim_i0);
4627 if (i2dest_in_i2src)
4629 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4630 if (newi2pat && reg_set_p (i2dest, newi2pat))
4631 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4632 NULL_RTX, NULL_RTX);
4633 else
4634 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4635 NULL_RTX, NULL_RTX, NULL_RTX);
4638 if (i1dest_in_i1src)
4640 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4641 if (newi2pat && reg_set_p (i1dest, newi2pat))
4642 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4643 NULL_RTX, NULL_RTX);
4644 else
4645 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4646 NULL_RTX, NULL_RTX, NULL_RTX);
4649 if (i0dest_in_i0src)
4651 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4652 if (newi2pat && reg_set_p (i0dest, newi2pat))
4653 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4654 NULL_RTX, NULL_RTX);
4655 else
4656 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4657 NULL_RTX, NULL_RTX, NULL_RTX);
4660 distribute_links (i3links);
4661 distribute_links (i2links);
4662 distribute_links (i1links);
4663 distribute_links (i0links);
4665 if (REG_P (i2dest))
4667 struct insn_link *link;
4668 rtx_insn *i2_insn = 0;
4669 rtx i2_val = 0, set;
4671 /* The insn that used to set this register doesn't exist, and
4672 this life of the register may not exist either. See if one of
4673 I3's links points to an insn that sets I2DEST. If it does,
4674 that is now the last known value for I2DEST. If we don't update
4675 this and I2 set the register to a value that depended on its old
4676 contents, we will get confused. If this insn is used, thing
4677 will be set correctly in combine_instructions. */
4678 FOR_EACH_LOG_LINK (link, i3)
4679 if ((set = single_set (link->insn)) != 0
4680 && rtx_equal_p (i2dest, SET_DEST (set)))
4681 i2_insn = link->insn, i2_val = SET_SRC (set);
4683 record_value_for_reg (i2dest, i2_insn, i2_val);
4685 /* If the reg formerly set in I2 died only once and that was in I3,
4686 zero its use count so it won't make `reload' do any work. */
4687 if (! added_sets_2
4688 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4689 && ! i2dest_in_i2src
4690 && REGNO (i2dest) < reg_n_sets_max)
4691 INC_REG_N_SETS (REGNO (i2dest), -1);
4694 if (i1 && REG_P (i1dest))
4696 struct insn_link *link;
4697 rtx_insn *i1_insn = 0;
4698 rtx i1_val = 0, set;
4700 FOR_EACH_LOG_LINK (link, i3)
4701 if ((set = single_set (link->insn)) != 0
4702 && rtx_equal_p (i1dest, SET_DEST (set)))
4703 i1_insn = link->insn, i1_val = SET_SRC (set);
4705 record_value_for_reg (i1dest, i1_insn, i1_val);
4707 if (! added_sets_1
4708 && ! i1dest_in_i1src
4709 && REGNO (i1dest) < reg_n_sets_max)
4710 INC_REG_N_SETS (REGNO (i1dest), -1);
4713 if (i0 && REG_P (i0dest))
4715 struct insn_link *link;
4716 rtx_insn *i0_insn = 0;
4717 rtx i0_val = 0, set;
4719 FOR_EACH_LOG_LINK (link, i3)
4720 if ((set = single_set (link->insn)) != 0
4721 && rtx_equal_p (i0dest, SET_DEST (set)))
4722 i0_insn = link->insn, i0_val = SET_SRC (set);
4724 record_value_for_reg (i0dest, i0_insn, i0_val);
4726 if (! added_sets_0
4727 && ! i0dest_in_i0src
4728 && REGNO (i0dest) < reg_n_sets_max)
4729 INC_REG_N_SETS (REGNO (i0dest), -1);
4732 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4733 been made to this insn. The order is important, because newi2pat
4734 can affect nonzero_bits of newpat. */
4735 if (newi2pat)
4736 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4737 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4740 if (undobuf.other_insn != NULL_RTX)
4742 if (dump_file)
4744 fprintf (dump_file, "modifying other_insn ");
4745 dump_insn_slim (dump_file, undobuf.other_insn);
4747 df_insn_rescan (undobuf.other_insn);
4750 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4752 if (dump_file)
4754 fprintf (dump_file, "modifying insn i0 ");
4755 dump_insn_slim (dump_file, i0);
4757 df_insn_rescan (i0);
4760 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4762 if (dump_file)
4764 fprintf (dump_file, "modifying insn i1 ");
4765 dump_insn_slim (dump_file, i1);
4767 df_insn_rescan (i1);
4770 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4772 if (dump_file)
4774 fprintf (dump_file, "modifying insn i2 ");
4775 dump_insn_slim (dump_file, i2);
4777 df_insn_rescan (i2);
4780 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4782 if (dump_file)
4784 fprintf (dump_file, "modifying insn i3 ");
4785 dump_insn_slim (dump_file, i3);
4787 df_insn_rescan (i3);
4790 /* Set new_direct_jump_p if a new return or simple jump instruction
4791 has been created. Adjust the CFG accordingly. */
4792 if (returnjump_p (i3) || any_uncondjump_p (i3))
4794 *new_direct_jump_p = 1;
4795 mark_jump_label (PATTERN (i3), i3, 0);
4796 update_cfg_for_uncondjump (i3);
4799 if (undobuf.other_insn != NULL_RTX
4800 && (returnjump_p (undobuf.other_insn)
4801 || any_uncondjump_p (undobuf.other_insn)))
4803 *new_direct_jump_p = 1;
4804 update_cfg_for_uncondjump (undobuf.other_insn);
4807 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4808 && XEXP (PATTERN (i3), 0) == const1_rtx)
4810 basic_block bb = BLOCK_FOR_INSN (i3);
4811 gcc_assert (bb);
4812 remove_edge (split_block (bb, i3));
4813 emit_barrier_after_bb (bb);
4814 *new_direct_jump_p = 1;
4817 if (undobuf.other_insn
4818 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4819 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4821 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4822 gcc_assert (bb);
4823 remove_edge (split_block (bb, undobuf.other_insn));
4824 emit_barrier_after_bb (bb);
4825 *new_direct_jump_p = 1;
4828 /* A noop might also need cleaning up of CFG, if it comes from the
4829 simplification of a jump. */
4830 if (JUMP_P (i3)
4831 && GET_CODE (newpat) == SET
4832 && SET_SRC (newpat) == pc_rtx
4833 && SET_DEST (newpat) == pc_rtx)
4835 *new_direct_jump_p = 1;
4836 update_cfg_for_uncondjump (i3);
4839 if (undobuf.other_insn != NULL_RTX
4840 && JUMP_P (undobuf.other_insn)
4841 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4842 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4843 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4845 *new_direct_jump_p = 1;
4846 update_cfg_for_uncondjump (undobuf.other_insn);
4849 combine_successes++;
4850 undo_commit ();
4852 rtx_insn *ret = newi2pat ? i2 : i3;
4853 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4854 ret = added_links_insn;
4855 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4856 ret = added_notes_insn;
4858 return ret;
4861 /* Get a marker for undoing to the current state. */
4863 static void *
4864 get_undo_marker (void)
4866 return undobuf.undos;
4869 /* Undo the modifications up to the marker. */
4871 static void
4872 undo_to_marker (void *marker)
4874 struct undo *undo, *next;
4876 for (undo = undobuf.undos; undo != marker; undo = next)
4878 gcc_assert (undo);
4880 next = undo->next;
4881 switch (undo->kind)
4883 case UNDO_RTX:
4884 *undo->where.r = undo->old_contents.r;
4885 break;
4886 case UNDO_INT:
4887 *undo->where.i = undo->old_contents.i;
4888 break;
4889 case UNDO_MODE:
4890 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4891 break;
4892 case UNDO_LINKS:
4893 *undo->where.l = undo->old_contents.l;
4894 break;
4895 default:
4896 gcc_unreachable ();
4899 undo->next = undobuf.frees;
4900 undobuf.frees = undo;
4903 undobuf.undos = (struct undo *) marker;
4906 /* Undo all the modifications recorded in undobuf. */
4908 static void
4909 undo_all (void)
4911 undo_to_marker (0);
4914 /* We've committed to accepting the changes we made. Move all
4915 of the undos to the free list. */
4917 static void
4918 undo_commit (void)
4920 struct undo *undo, *next;
4922 for (undo = undobuf.undos; undo; undo = next)
4924 next = undo->next;
4925 undo->next = undobuf.frees;
4926 undobuf.frees = undo;
4928 undobuf.undos = 0;
4931 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4932 where we have an arithmetic expression and return that point. LOC will
4933 be inside INSN.
4935 try_combine will call this function to see if an insn can be split into
4936 two insns. */
4938 static rtx *
4939 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4941 rtx x = *loc;
4942 enum rtx_code code = GET_CODE (x);
4943 rtx *split;
4944 unsigned HOST_WIDE_INT len = 0;
4945 HOST_WIDE_INT pos = 0;
4946 int unsignedp = 0;
4947 rtx inner = NULL_RTX;
4948 scalar_int_mode mode, inner_mode;
4950 /* First special-case some codes. */
4951 switch (code)
4953 case SUBREG:
4954 #ifdef INSN_SCHEDULING
4955 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4956 point. */
4957 if (MEM_P (SUBREG_REG (x)))
4958 return loc;
4959 #endif
4960 return find_split_point (&SUBREG_REG (x), insn, false);
4962 case MEM:
4963 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4964 using LO_SUM and HIGH. */
4965 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4966 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4968 machine_mode address_mode = get_address_mode (x);
4970 SUBST (XEXP (x, 0),
4971 gen_rtx_LO_SUM (address_mode,
4972 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4973 XEXP (x, 0)));
4974 return &XEXP (XEXP (x, 0), 0);
4977 /* If we have a PLUS whose second operand is a constant and the
4978 address is not valid, perhaps we can split it up using
4979 the machine-specific way to split large constants. We use
4980 the first pseudo-reg (one of the virtual regs) as a placeholder;
4981 it will not remain in the result. */
4982 if (GET_CODE (XEXP (x, 0)) == PLUS
4983 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4984 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4985 MEM_ADDR_SPACE (x)))
4987 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4988 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4989 subst_insn);
4991 /* This should have produced two insns, each of which sets our
4992 placeholder. If the source of the second is a valid address,
4993 we can put both sources together and make a split point
4994 in the middle. */
4996 if (seq
4997 && NEXT_INSN (seq) != NULL_RTX
4998 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4999 && NONJUMP_INSN_P (seq)
5000 && GET_CODE (PATTERN (seq)) == SET
5001 && SET_DEST (PATTERN (seq)) == reg
5002 && ! reg_mentioned_p (reg,
5003 SET_SRC (PATTERN (seq)))
5004 && NONJUMP_INSN_P (NEXT_INSN (seq))
5005 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5006 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5007 && memory_address_addr_space_p
5008 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5009 MEM_ADDR_SPACE (x)))
5011 rtx src1 = SET_SRC (PATTERN (seq));
5012 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5014 /* Replace the placeholder in SRC2 with SRC1. If we can
5015 find where in SRC2 it was placed, that can become our
5016 split point and we can replace this address with SRC2.
5017 Just try two obvious places. */
5019 src2 = replace_rtx (src2, reg, src1);
5020 split = 0;
5021 if (XEXP (src2, 0) == src1)
5022 split = &XEXP (src2, 0);
5023 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5024 && XEXP (XEXP (src2, 0), 0) == src1)
5025 split = &XEXP (XEXP (src2, 0), 0);
5027 if (split)
5029 SUBST (XEXP (x, 0), src2);
5030 return split;
5034 /* If that didn't work and we have a nested plus, like:
5035 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5036 is valid address, try to split (REG1 * CONST1). */
5037 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5038 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5039 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5040 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5041 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5042 0), 0)))))
5044 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5045 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5046 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5047 MEM_ADDR_SPACE (x)))
5049 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5050 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5052 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5054 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5055 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5056 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5057 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5058 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5059 0), 1)))))
5061 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5062 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5063 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5064 MEM_ADDR_SPACE (x)))
5066 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5067 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5069 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5072 /* If that didn't work, perhaps the first operand is complex and
5073 needs to be computed separately, so make a split point there.
5074 This will occur on machines that just support REG + CONST
5075 and have a constant moved through some previous computation. */
5076 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5077 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5078 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5079 return &XEXP (XEXP (x, 0), 0);
5082 /* If we have a PLUS whose first operand is complex, try computing it
5083 separately by making a split there. */
5084 if (GET_CODE (XEXP (x, 0)) == PLUS
5085 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5086 MEM_ADDR_SPACE (x))
5087 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5088 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5089 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5090 return &XEXP (XEXP (x, 0), 0);
5091 break;
5093 case SET:
5094 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5095 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5096 we need to put the operand into a register. So split at that
5097 point. */
5099 if (SET_DEST (x) == cc0_rtx
5100 && GET_CODE (SET_SRC (x)) != COMPARE
5101 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5102 && !OBJECT_P (SET_SRC (x))
5103 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5104 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5105 return &SET_SRC (x);
5107 /* See if we can split SET_SRC as it stands. */
5108 split = find_split_point (&SET_SRC (x), insn, true);
5109 if (split && split != &SET_SRC (x))
5110 return split;
5112 /* See if we can split SET_DEST as it stands. */
5113 split = find_split_point (&SET_DEST (x), insn, false);
5114 if (split && split != &SET_DEST (x))
5115 return split;
5117 /* See if this is a bitfield assignment with everything constant. If
5118 so, this is an IOR of an AND, so split it into that. */
5119 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5120 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5121 &inner_mode)
5122 && HWI_COMPUTABLE_MODE_P (inner_mode)
5123 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5124 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5125 && CONST_INT_P (SET_SRC (x))
5126 && ((INTVAL (XEXP (SET_DEST (x), 1))
5127 + INTVAL (XEXP (SET_DEST (x), 2)))
5128 <= GET_MODE_PRECISION (inner_mode))
5129 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5131 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5132 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5133 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5134 rtx dest = XEXP (SET_DEST (x), 0);
5135 unsigned HOST_WIDE_INT mask
5136 = (HOST_WIDE_INT_1U << len) - 1;
5137 rtx or_mask;
5139 if (BITS_BIG_ENDIAN)
5140 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5142 or_mask = gen_int_mode (src << pos, inner_mode);
5143 if (src == mask)
5144 SUBST (SET_SRC (x),
5145 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5146 else
5148 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5149 SUBST (SET_SRC (x),
5150 simplify_gen_binary (IOR, inner_mode,
5151 simplify_gen_binary (AND, inner_mode,
5152 dest, negmask),
5153 or_mask));
5156 SUBST (SET_DEST (x), dest);
5158 split = find_split_point (&SET_SRC (x), insn, true);
5159 if (split && split != &SET_SRC (x))
5160 return split;
5163 /* Otherwise, see if this is an operation that we can split into two.
5164 If so, try to split that. */
5165 code = GET_CODE (SET_SRC (x));
5167 switch (code)
5169 case AND:
5170 /* If we are AND'ing with a large constant that is only a single
5171 bit and the result is only being used in a context where we
5172 need to know if it is zero or nonzero, replace it with a bit
5173 extraction. This will avoid the large constant, which might
5174 have taken more than one insn to make. If the constant were
5175 not a valid argument to the AND but took only one insn to make,
5176 this is no worse, but if it took more than one insn, it will
5177 be better. */
5179 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5180 && REG_P (XEXP (SET_SRC (x), 0))
5181 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5182 && REG_P (SET_DEST (x))
5183 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5184 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5185 && XEXP (*split, 0) == SET_DEST (x)
5186 && XEXP (*split, 1) == const0_rtx)
5188 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5189 XEXP (SET_SRC (x), 0),
5190 pos, NULL_RTX, 1, 1, 0, 0);
5191 if (extraction != 0)
5193 SUBST (SET_SRC (x), extraction);
5194 return find_split_point (loc, insn, false);
5197 break;
5199 case NE:
5200 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5201 is known to be on, this can be converted into a NEG of a shift. */
5202 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5203 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5204 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5205 GET_MODE (XEXP (SET_SRC (x),
5206 0))))) >= 1))
5208 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5209 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5210 SUBST (SET_SRC (x),
5211 gen_rtx_NEG (mode,
5212 gen_rtx_LSHIFTRT (mode,
5213 XEXP (SET_SRC (x), 0),
5214 pos_rtx)));
5216 split = find_split_point (&SET_SRC (x), insn, true);
5217 if (split && split != &SET_SRC (x))
5218 return split;
5220 break;
5222 case SIGN_EXTEND:
5223 inner = XEXP (SET_SRC (x), 0);
5225 /* We can't optimize if either mode is a partial integer
5226 mode as we don't know how many bits are significant
5227 in those modes. */
5228 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5229 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5230 break;
5232 pos = 0;
5233 len = GET_MODE_PRECISION (inner_mode);
5234 unsignedp = 0;
5235 break;
5237 case SIGN_EXTRACT:
5238 case ZERO_EXTRACT:
5239 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5240 &inner_mode)
5241 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5242 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5244 inner = XEXP (SET_SRC (x), 0);
5245 len = INTVAL (XEXP (SET_SRC (x), 1));
5246 pos = INTVAL (XEXP (SET_SRC (x), 2));
5248 if (BITS_BIG_ENDIAN)
5249 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5250 unsignedp = (code == ZERO_EXTRACT);
5252 break;
5254 default:
5255 break;
5258 if (len
5259 && known_subrange_p (pos, len,
5260 0, GET_MODE_PRECISION (GET_MODE (inner)))
5261 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5263 /* For unsigned, we have a choice of a shift followed by an
5264 AND or two shifts. Use two shifts for field sizes where the
5265 constant might be too large. We assume here that we can
5266 always at least get 8-bit constants in an AND insn, which is
5267 true for every current RISC. */
5269 if (unsignedp && len <= 8)
5271 unsigned HOST_WIDE_INT mask
5272 = (HOST_WIDE_INT_1U << len) - 1;
5273 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5274 SUBST (SET_SRC (x),
5275 gen_rtx_AND (mode,
5276 gen_rtx_LSHIFTRT
5277 (mode, gen_lowpart (mode, inner), pos_rtx),
5278 gen_int_mode (mask, mode)));
5280 split = find_split_point (&SET_SRC (x), insn, true);
5281 if (split && split != &SET_SRC (x))
5282 return split;
5284 else
5286 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5287 int right_bits = GET_MODE_PRECISION (mode) - len;
5288 SUBST (SET_SRC (x),
5289 gen_rtx_fmt_ee
5290 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5291 gen_rtx_ASHIFT (mode,
5292 gen_lowpart (mode, inner),
5293 gen_int_shift_amount (mode, left_bits)),
5294 gen_int_shift_amount (mode, right_bits)));
5296 split = find_split_point (&SET_SRC (x), insn, true);
5297 if (split && split != &SET_SRC (x))
5298 return split;
5302 /* See if this is a simple operation with a constant as the second
5303 operand. It might be that this constant is out of range and hence
5304 could be used as a split point. */
5305 if (BINARY_P (SET_SRC (x))
5306 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5307 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5308 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5309 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5310 return &XEXP (SET_SRC (x), 1);
5312 /* Finally, see if this is a simple operation with its first operand
5313 not in a register. The operation might require this operand in a
5314 register, so return it as a split point. We can always do this
5315 because if the first operand were another operation, we would have
5316 already found it as a split point. */
5317 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5318 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5319 return &XEXP (SET_SRC (x), 0);
5321 return 0;
5323 case AND:
5324 case IOR:
5325 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5326 it is better to write this as (not (ior A B)) so we can split it.
5327 Similarly for IOR. */
5328 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5330 SUBST (*loc,
5331 gen_rtx_NOT (GET_MODE (x),
5332 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5333 GET_MODE (x),
5334 XEXP (XEXP (x, 0), 0),
5335 XEXP (XEXP (x, 1), 0))));
5336 return find_split_point (loc, insn, set_src);
5339 /* Many RISC machines have a large set of logical insns. If the
5340 second operand is a NOT, put it first so we will try to split the
5341 other operand first. */
5342 if (GET_CODE (XEXP (x, 1)) == NOT)
5344 rtx tem = XEXP (x, 0);
5345 SUBST (XEXP (x, 0), XEXP (x, 1));
5346 SUBST (XEXP (x, 1), tem);
5348 break;
5350 case PLUS:
5351 case MINUS:
5352 /* Canonicalization can produce (minus A (mult B C)), where C is a
5353 constant. It may be better to try splitting (plus (mult B -C) A)
5354 instead if this isn't a multiply by a power of two. */
5355 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5356 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5357 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5359 machine_mode mode = GET_MODE (x);
5360 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5361 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5362 SUBST (*loc, gen_rtx_PLUS (mode,
5363 gen_rtx_MULT (mode,
5364 XEXP (XEXP (x, 1), 0),
5365 gen_int_mode (other_int,
5366 mode)),
5367 XEXP (x, 0)));
5368 return find_split_point (loc, insn, set_src);
5371 /* Split at a multiply-accumulate instruction. However if this is
5372 the SET_SRC, we likely do not have such an instruction and it's
5373 worthless to try this split. */
5374 if (!set_src
5375 && (GET_CODE (XEXP (x, 0)) == MULT
5376 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5377 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5378 return loc;
5380 default:
5381 break;
5384 /* Otherwise, select our actions depending on our rtx class. */
5385 switch (GET_RTX_CLASS (code))
5387 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5388 case RTX_TERNARY:
5389 split = find_split_point (&XEXP (x, 2), insn, false);
5390 if (split)
5391 return split;
5392 /* fall through */
5393 case RTX_BIN_ARITH:
5394 case RTX_COMM_ARITH:
5395 case RTX_COMPARE:
5396 case RTX_COMM_COMPARE:
5397 split = find_split_point (&XEXP (x, 1), insn, false);
5398 if (split)
5399 return split;
5400 /* fall through */
5401 case RTX_UNARY:
5402 /* Some machines have (and (shift ...) ...) insns. If X is not
5403 an AND, but XEXP (X, 0) is, use it as our split point. */
5404 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5405 return &XEXP (x, 0);
5407 split = find_split_point (&XEXP (x, 0), insn, false);
5408 if (split)
5409 return split;
5410 return loc;
5412 default:
5413 /* Otherwise, we don't have a split point. */
5414 return 0;
5418 /* Throughout X, replace FROM with TO, and return the result.
5419 The result is TO if X is FROM;
5420 otherwise the result is X, but its contents may have been modified.
5421 If they were modified, a record was made in undobuf so that
5422 undo_all will (among other things) return X to its original state.
5424 If the number of changes necessary is too much to record to undo,
5425 the excess changes are not made, so the result is invalid.
5426 The changes already made can still be undone.
5427 undobuf.num_undo is incremented for such changes, so by testing that
5428 the caller can tell whether the result is valid.
5430 `n_occurrences' is incremented each time FROM is replaced.
5432 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5434 IN_COND is nonzero if we are at the top level of a condition.
5436 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5437 by copying if `n_occurrences' is nonzero. */
5439 static rtx
5440 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5442 enum rtx_code code = GET_CODE (x);
5443 machine_mode op0_mode = VOIDmode;
5444 const char *fmt;
5445 int len, i;
5446 rtx new_rtx;
5448 /* Two expressions are equal if they are identical copies of a shared
5449 RTX or if they are both registers with the same register number
5450 and mode. */
5452 #define COMBINE_RTX_EQUAL_P(X,Y) \
5453 ((X) == (Y) \
5454 || (REG_P (X) && REG_P (Y) \
5455 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5457 /* Do not substitute into clobbers of regs -- this will never result in
5458 valid RTL. */
5459 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5460 return x;
5462 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5464 n_occurrences++;
5465 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5468 /* If X and FROM are the same register but different modes, they
5469 will not have been seen as equal above. However, the log links code
5470 will make a LOG_LINKS entry for that case. If we do nothing, we
5471 will try to rerecognize our original insn and, when it succeeds,
5472 we will delete the feeding insn, which is incorrect.
5474 So force this insn not to match in this (rare) case. */
5475 if (! in_dest && code == REG && REG_P (from)
5476 && reg_overlap_mentioned_p (x, from))
5477 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5479 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5480 of which may contain things that can be combined. */
5481 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5482 return x;
5484 /* It is possible to have a subexpression appear twice in the insn.
5485 Suppose that FROM is a register that appears within TO.
5486 Then, after that subexpression has been scanned once by `subst',
5487 the second time it is scanned, TO may be found. If we were
5488 to scan TO here, we would find FROM within it and create a
5489 self-referent rtl structure which is completely wrong. */
5490 if (COMBINE_RTX_EQUAL_P (x, to))
5491 return to;
5493 /* Parallel asm_operands need special attention because all of the
5494 inputs are shared across the arms. Furthermore, unsharing the
5495 rtl results in recognition failures. Failure to handle this case
5496 specially can result in circular rtl.
5498 Solve this by doing a normal pass across the first entry of the
5499 parallel, and only processing the SET_DESTs of the subsequent
5500 entries. Ug. */
5502 if (code == PARALLEL
5503 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5504 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5506 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5508 /* If this substitution failed, this whole thing fails. */
5509 if (GET_CODE (new_rtx) == CLOBBER
5510 && XEXP (new_rtx, 0) == const0_rtx)
5511 return new_rtx;
5513 SUBST (XVECEXP (x, 0, 0), new_rtx);
5515 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5517 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5519 if (!REG_P (dest)
5520 && GET_CODE (dest) != CC0
5521 && GET_CODE (dest) != PC)
5523 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5525 /* If this substitution failed, this whole thing fails. */
5526 if (GET_CODE (new_rtx) == CLOBBER
5527 && XEXP (new_rtx, 0) == const0_rtx)
5528 return new_rtx;
5530 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5534 else
5536 len = GET_RTX_LENGTH (code);
5537 fmt = GET_RTX_FORMAT (code);
5539 /* We don't need to process a SET_DEST that is a register, CC0,
5540 or PC, so set up to skip this common case. All other cases
5541 where we want to suppress replacing something inside a
5542 SET_SRC are handled via the IN_DEST operand. */
5543 if (code == SET
5544 && (REG_P (SET_DEST (x))
5545 || GET_CODE (SET_DEST (x)) == CC0
5546 || GET_CODE (SET_DEST (x)) == PC))
5547 fmt = "ie";
5549 /* Trying to simplify the operands of a widening MULT is not likely
5550 to create RTL matching a machine insn. */
5551 if (code == MULT
5552 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5553 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5554 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5555 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5556 && REG_P (XEXP (XEXP (x, 0), 0))
5557 && REG_P (XEXP (XEXP (x, 1), 0))
5558 && from == to)
5559 return x;
5562 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5563 constant. */
5564 if (fmt[0] == 'e')
5565 op0_mode = GET_MODE (XEXP (x, 0));
5567 for (i = 0; i < len; i++)
5569 if (fmt[i] == 'E')
5571 int j;
5572 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5574 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5576 new_rtx = (unique_copy && n_occurrences
5577 ? copy_rtx (to) : to);
5578 n_occurrences++;
5580 else
5582 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5583 unique_copy);
5585 /* If this substitution failed, this whole thing
5586 fails. */
5587 if (GET_CODE (new_rtx) == CLOBBER
5588 && XEXP (new_rtx, 0) == const0_rtx)
5589 return new_rtx;
5592 SUBST (XVECEXP (x, i, j), new_rtx);
5595 else if (fmt[i] == 'e')
5597 /* If this is a register being set, ignore it. */
5598 new_rtx = XEXP (x, i);
5599 if (in_dest
5600 && i == 0
5601 && (((code == SUBREG || code == ZERO_EXTRACT)
5602 && REG_P (new_rtx))
5603 || code == STRICT_LOW_PART))
5606 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5608 /* In general, don't install a subreg involving two
5609 modes not tieable. It can worsen register
5610 allocation, and can even make invalid reload
5611 insns, since the reg inside may need to be copied
5612 from in the outside mode, and that may be invalid
5613 if it is an fp reg copied in integer mode.
5615 We allow two exceptions to this: It is valid if
5616 it is inside another SUBREG and the mode of that
5617 SUBREG and the mode of the inside of TO is
5618 tieable and it is valid if X is a SET that copies
5619 FROM to CC0. */
5621 if (GET_CODE (to) == SUBREG
5622 && !targetm.modes_tieable_p (GET_MODE (to),
5623 GET_MODE (SUBREG_REG (to)))
5624 && ! (code == SUBREG
5625 && (targetm.modes_tieable_p
5626 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5627 && (!HAVE_cc0
5628 || (! (code == SET
5629 && i == 1
5630 && XEXP (x, 0) == cc0_rtx))))
5631 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5633 if (code == SUBREG
5634 && REG_P (to)
5635 && REGNO (to) < FIRST_PSEUDO_REGISTER
5636 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5637 SUBREG_BYTE (x),
5638 GET_MODE (x)) < 0)
5639 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5641 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5642 n_occurrences++;
5644 else
5645 /* If we are in a SET_DEST, suppress most cases unless we
5646 have gone inside a MEM, in which case we want to
5647 simplify the address. We assume here that things that
5648 are actually part of the destination have their inner
5649 parts in the first expression. This is true for SUBREG,
5650 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5651 things aside from REG and MEM that should appear in a
5652 SET_DEST. */
5653 new_rtx = subst (XEXP (x, i), from, to,
5654 (((in_dest
5655 && (code == SUBREG || code == STRICT_LOW_PART
5656 || code == ZERO_EXTRACT))
5657 || code == SET)
5658 && i == 0),
5659 code == IF_THEN_ELSE && i == 0,
5660 unique_copy);
5662 /* If we found that we will have to reject this combination,
5663 indicate that by returning the CLOBBER ourselves, rather than
5664 an expression containing it. This will speed things up as
5665 well as prevent accidents where two CLOBBERs are considered
5666 to be equal, thus producing an incorrect simplification. */
5668 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5669 return new_rtx;
5671 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5673 machine_mode mode = GET_MODE (x);
5675 x = simplify_subreg (GET_MODE (x), new_rtx,
5676 GET_MODE (SUBREG_REG (x)),
5677 SUBREG_BYTE (x));
5678 if (! x)
5679 x = gen_rtx_CLOBBER (mode, const0_rtx);
5681 else if (CONST_SCALAR_INT_P (new_rtx)
5682 && (GET_CODE (x) == ZERO_EXTEND
5683 || GET_CODE (x) == FLOAT
5684 || GET_CODE (x) == UNSIGNED_FLOAT))
5686 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5687 new_rtx,
5688 GET_MODE (XEXP (x, 0)));
5689 if (!x)
5690 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5692 else
5693 SUBST (XEXP (x, i), new_rtx);
5698 /* Check if we are loading something from the constant pool via float
5699 extension; in this case we would undo compress_float_constant
5700 optimization and degenerate constant load to an immediate value. */
5701 if (GET_CODE (x) == FLOAT_EXTEND
5702 && MEM_P (XEXP (x, 0))
5703 && MEM_READONLY_P (XEXP (x, 0)))
5705 rtx tmp = avoid_constant_pool_reference (x);
5706 if (x != tmp)
5707 return x;
5710 /* Try to simplify X. If the simplification changed the code, it is likely
5711 that further simplification will help, so loop, but limit the number
5712 of repetitions that will be performed. */
5714 for (i = 0; i < 4; i++)
5716 /* If X is sufficiently simple, don't bother trying to do anything
5717 with it. */
5718 if (code != CONST_INT && code != REG && code != CLOBBER)
5719 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5721 if (GET_CODE (x) == code)
5722 break;
5724 code = GET_CODE (x);
5726 /* We no longer know the original mode of operand 0 since we
5727 have changed the form of X) */
5728 op0_mode = VOIDmode;
5731 return x;
5734 /* If X is a commutative operation whose operands are not in the canonical
5735 order, use substitutions to swap them. */
5737 static void
5738 maybe_swap_commutative_operands (rtx x)
5740 if (COMMUTATIVE_ARITH_P (x)
5741 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5743 rtx temp = XEXP (x, 0);
5744 SUBST (XEXP (x, 0), XEXP (x, 1));
5745 SUBST (XEXP (x, 1), temp);
5749 /* Simplify X, a piece of RTL. We just operate on the expression at the
5750 outer level; call `subst' to simplify recursively. Return the new
5751 expression.
5753 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5754 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5755 of a condition. */
5757 static rtx
5758 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5759 int in_cond)
5761 enum rtx_code code = GET_CODE (x);
5762 machine_mode mode = GET_MODE (x);
5763 scalar_int_mode int_mode;
5764 rtx temp;
5765 int i;
5767 /* If this is a commutative operation, put a constant last and a complex
5768 expression first. We don't need to do this for comparisons here. */
5769 maybe_swap_commutative_operands (x);
5771 /* Try to fold this expression in case we have constants that weren't
5772 present before. */
5773 temp = 0;
5774 switch (GET_RTX_CLASS (code))
5776 case RTX_UNARY:
5777 if (op0_mode == VOIDmode)
5778 op0_mode = GET_MODE (XEXP (x, 0));
5779 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5780 break;
5781 case RTX_COMPARE:
5782 case RTX_COMM_COMPARE:
5784 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5785 if (cmp_mode == VOIDmode)
5787 cmp_mode = GET_MODE (XEXP (x, 1));
5788 if (cmp_mode == VOIDmode)
5789 cmp_mode = op0_mode;
5791 temp = simplify_relational_operation (code, mode, cmp_mode,
5792 XEXP (x, 0), XEXP (x, 1));
5794 break;
5795 case RTX_COMM_ARITH:
5796 case RTX_BIN_ARITH:
5797 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5798 break;
5799 case RTX_BITFIELD_OPS:
5800 case RTX_TERNARY:
5801 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5802 XEXP (x, 1), XEXP (x, 2));
5803 break;
5804 default:
5805 break;
5808 if (temp)
5810 x = temp;
5811 code = GET_CODE (temp);
5812 op0_mode = VOIDmode;
5813 mode = GET_MODE (temp);
5816 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5817 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5818 things. Check for cases where both arms are testing the same
5819 condition.
5821 Don't do anything if all operands are very simple. */
5823 if ((BINARY_P (x)
5824 && ((!OBJECT_P (XEXP (x, 0))
5825 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5826 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5827 || (!OBJECT_P (XEXP (x, 1))
5828 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5829 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5830 || (UNARY_P (x)
5831 && (!OBJECT_P (XEXP (x, 0))
5832 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5833 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5835 rtx cond, true_rtx, false_rtx;
5837 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5838 if (cond != 0
5839 /* If everything is a comparison, what we have is highly unlikely
5840 to be simpler, so don't use it. */
5841 && ! (COMPARISON_P (x)
5842 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5843 /* Similarly, if we end up with one of the expressions the same
5844 as the original, it is certainly not simpler. */
5845 && ! rtx_equal_p (x, true_rtx)
5846 && ! rtx_equal_p (x, false_rtx))
5848 rtx cop1 = const0_rtx;
5849 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5851 if (cond_code == NE && COMPARISON_P (cond))
5852 return x;
5854 /* Simplify the alternative arms; this may collapse the true and
5855 false arms to store-flag values. Be careful to use copy_rtx
5856 here since true_rtx or false_rtx might share RTL with x as a
5857 result of the if_then_else_cond call above. */
5858 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5859 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5861 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5862 is unlikely to be simpler. */
5863 if (general_operand (true_rtx, VOIDmode)
5864 && general_operand (false_rtx, VOIDmode))
5866 enum rtx_code reversed;
5868 /* Restarting if we generate a store-flag expression will cause
5869 us to loop. Just drop through in this case. */
5871 /* If the result values are STORE_FLAG_VALUE and zero, we can
5872 just make the comparison operation. */
5873 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5874 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5875 cond, cop1);
5876 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5877 && ((reversed = reversed_comparison_code_parts
5878 (cond_code, cond, cop1, NULL))
5879 != UNKNOWN))
5880 x = simplify_gen_relational (reversed, mode, VOIDmode,
5881 cond, cop1);
5883 /* Likewise, we can make the negate of a comparison operation
5884 if the result values are - STORE_FLAG_VALUE and zero. */
5885 else if (CONST_INT_P (true_rtx)
5886 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5887 && false_rtx == const0_rtx)
5888 x = simplify_gen_unary (NEG, mode,
5889 simplify_gen_relational (cond_code,
5890 mode, VOIDmode,
5891 cond, cop1),
5892 mode);
5893 else if (CONST_INT_P (false_rtx)
5894 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5895 && true_rtx == const0_rtx
5896 && ((reversed = reversed_comparison_code_parts
5897 (cond_code, cond, cop1, NULL))
5898 != UNKNOWN))
5899 x = simplify_gen_unary (NEG, mode,
5900 simplify_gen_relational (reversed,
5901 mode, VOIDmode,
5902 cond, cop1),
5903 mode);
5905 code = GET_CODE (x);
5906 op0_mode = VOIDmode;
5911 /* First see if we can apply the inverse distributive law. */
5912 if (code == PLUS || code == MINUS
5913 || code == AND || code == IOR || code == XOR)
5915 x = apply_distributive_law (x);
5916 code = GET_CODE (x);
5917 op0_mode = VOIDmode;
5920 /* If CODE is an associative operation not otherwise handled, see if we
5921 can associate some operands. This can win if they are constants or
5922 if they are logically related (i.e. (a & b) & a). */
5923 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5924 || code == AND || code == IOR || code == XOR
5925 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5926 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5927 || (flag_associative_math && FLOAT_MODE_P (mode))))
5929 if (GET_CODE (XEXP (x, 0)) == code)
5931 rtx other = XEXP (XEXP (x, 0), 0);
5932 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5933 rtx inner_op1 = XEXP (x, 1);
5934 rtx inner;
5936 /* Make sure we pass the constant operand if any as the second
5937 one if this is a commutative operation. */
5938 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5939 std::swap (inner_op0, inner_op1);
5940 inner = simplify_binary_operation (code == MINUS ? PLUS
5941 : code == DIV ? MULT
5942 : code,
5943 mode, inner_op0, inner_op1);
5945 /* For commutative operations, try the other pair if that one
5946 didn't simplify. */
5947 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5949 other = XEXP (XEXP (x, 0), 1);
5950 inner = simplify_binary_operation (code, mode,
5951 XEXP (XEXP (x, 0), 0),
5952 XEXP (x, 1));
5955 if (inner)
5956 return simplify_gen_binary (code, mode, other, inner);
5960 /* A little bit of algebraic simplification here. */
5961 switch (code)
5963 case MEM:
5964 /* Ensure that our address has any ASHIFTs converted to MULT in case
5965 address-recognizing predicates are called later. */
5966 temp = make_compound_operation (XEXP (x, 0), MEM);
5967 SUBST (XEXP (x, 0), temp);
5968 break;
5970 case SUBREG:
5971 if (op0_mode == VOIDmode)
5972 op0_mode = GET_MODE (SUBREG_REG (x));
5974 /* See if this can be moved to simplify_subreg. */
5975 if (CONSTANT_P (SUBREG_REG (x))
5976 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5977 /* Don't call gen_lowpart if the inner mode
5978 is VOIDmode and we cannot simplify it, as SUBREG without
5979 inner mode is invalid. */
5980 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5981 || gen_lowpart_common (mode, SUBREG_REG (x))))
5982 return gen_lowpart (mode, SUBREG_REG (x));
5984 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5985 break;
5987 rtx temp;
5988 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5989 SUBREG_BYTE (x));
5990 if (temp)
5991 return temp;
5993 /* If op is known to have all lower bits zero, the result is zero. */
5994 scalar_int_mode int_mode, int_op0_mode;
5995 if (!in_dest
5996 && is_a <scalar_int_mode> (mode, &int_mode)
5997 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5998 && (GET_MODE_PRECISION (int_mode)
5999 < GET_MODE_PRECISION (int_op0_mode))
6000 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6001 SUBREG_BYTE (x))
6002 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6003 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6004 & GET_MODE_MASK (int_mode)) == 0)
6005 && !side_effects_p (SUBREG_REG (x)))
6006 return CONST0_RTX (int_mode);
6009 /* Don't change the mode of the MEM if that would change the meaning
6010 of the address. */
6011 if (MEM_P (SUBREG_REG (x))
6012 && (MEM_VOLATILE_P (SUBREG_REG (x))
6013 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6014 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6015 return gen_rtx_CLOBBER (mode, const0_rtx);
6017 /* Note that we cannot do any narrowing for non-constants since
6018 we might have been counting on using the fact that some bits were
6019 zero. We now do this in the SET. */
6021 break;
6023 case NEG:
6024 temp = expand_compound_operation (XEXP (x, 0));
6026 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6027 replaced by (lshiftrt X C). This will convert
6028 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6030 if (GET_CODE (temp) == ASHIFTRT
6031 && CONST_INT_P (XEXP (temp, 1))
6032 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6033 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6034 INTVAL (XEXP (temp, 1)));
6036 /* If X has only a single bit that might be nonzero, say, bit I, convert
6037 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6038 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6039 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6040 or a SUBREG of one since we'd be making the expression more
6041 complex if it was just a register. */
6043 if (!REG_P (temp)
6044 && ! (GET_CODE (temp) == SUBREG
6045 && REG_P (SUBREG_REG (temp)))
6046 && is_a <scalar_int_mode> (mode, &int_mode)
6047 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6049 rtx temp1 = simplify_shift_const
6050 (NULL_RTX, ASHIFTRT, int_mode,
6051 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6052 GET_MODE_PRECISION (int_mode) - 1 - i),
6053 GET_MODE_PRECISION (int_mode) - 1 - i);
6055 /* If all we did was surround TEMP with the two shifts, we
6056 haven't improved anything, so don't use it. Otherwise,
6057 we are better off with TEMP1. */
6058 if (GET_CODE (temp1) != ASHIFTRT
6059 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6060 || XEXP (XEXP (temp1, 0), 0) != temp)
6061 return temp1;
6063 break;
6065 case TRUNCATE:
6066 /* We can't handle truncation to a partial integer mode here
6067 because we don't know the real bitsize of the partial
6068 integer mode. */
6069 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6070 break;
6072 if (HWI_COMPUTABLE_MODE_P (mode))
6073 SUBST (XEXP (x, 0),
6074 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6075 GET_MODE_MASK (mode), 0));
6077 /* We can truncate a constant value and return it. */
6079 poly_int64 c;
6080 if (poly_int_rtx_p (XEXP (x, 0), &c))
6081 return gen_int_mode (c, mode);
6084 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6085 whose value is a comparison can be replaced with a subreg if
6086 STORE_FLAG_VALUE permits. */
6087 if (HWI_COMPUTABLE_MODE_P (mode)
6088 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6089 && (temp = get_last_value (XEXP (x, 0)))
6090 && COMPARISON_P (temp))
6091 return gen_lowpart (mode, XEXP (x, 0));
6092 break;
6094 case CONST:
6095 /* (const (const X)) can become (const X). Do it this way rather than
6096 returning the inner CONST since CONST can be shared with a
6097 REG_EQUAL note. */
6098 if (GET_CODE (XEXP (x, 0)) == CONST)
6099 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6100 break;
6102 case LO_SUM:
6103 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6104 can add in an offset. find_split_point will split this address up
6105 again if it doesn't match. */
6106 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6107 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6108 return XEXP (x, 1);
6109 break;
6111 case PLUS:
6112 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6113 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6114 bit-field and can be replaced by either a sign_extend or a
6115 sign_extract. The `and' may be a zero_extend and the two
6116 <c>, -<c> constants may be reversed. */
6117 if (GET_CODE (XEXP (x, 0)) == XOR
6118 && is_a <scalar_int_mode> (mode, &int_mode)
6119 && CONST_INT_P (XEXP (x, 1))
6120 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6121 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6122 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6123 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6124 && HWI_COMPUTABLE_MODE_P (int_mode)
6125 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6126 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6127 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6128 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6129 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6130 && known_eq ((GET_MODE_PRECISION
6131 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6132 (unsigned int) i + 1))))
6133 return simplify_shift_const
6134 (NULL_RTX, ASHIFTRT, int_mode,
6135 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6136 XEXP (XEXP (XEXP (x, 0), 0), 0),
6137 GET_MODE_PRECISION (int_mode) - (i + 1)),
6138 GET_MODE_PRECISION (int_mode) - (i + 1));
6140 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6141 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6142 the bitsize of the mode - 1. This allows simplification of
6143 "a = (b & 8) == 0;" */
6144 if (XEXP (x, 1) == constm1_rtx
6145 && !REG_P (XEXP (x, 0))
6146 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6147 && REG_P (SUBREG_REG (XEXP (x, 0))))
6148 && is_a <scalar_int_mode> (mode, &int_mode)
6149 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6150 return simplify_shift_const
6151 (NULL_RTX, ASHIFTRT, int_mode,
6152 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6153 gen_rtx_XOR (int_mode, XEXP (x, 0),
6154 const1_rtx),
6155 GET_MODE_PRECISION (int_mode) - 1),
6156 GET_MODE_PRECISION (int_mode) - 1);
6158 /* If we are adding two things that have no bits in common, convert
6159 the addition into an IOR. This will often be further simplified,
6160 for example in cases like ((a & 1) + (a & 2)), which can
6161 become a & 3. */
6163 if (HWI_COMPUTABLE_MODE_P (mode)
6164 && (nonzero_bits (XEXP (x, 0), mode)
6165 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6167 /* Try to simplify the expression further. */
6168 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6169 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6171 /* If we could, great. If not, do not go ahead with the IOR
6172 replacement, since PLUS appears in many special purpose
6173 address arithmetic instructions. */
6174 if (GET_CODE (temp) != CLOBBER
6175 && (GET_CODE (temp) != IOR
6176 || ((XEXP (temp, 0) != XEXP (x, 0)
6177 || XEXP (temp, 1) != XEXP (x, 1))
6178 && (XEXP (temp, 0) != XEXP (x, 1)
6179 || XEXP (temp, 1) != XEXP (x, 0)))))
6180 return temp;
6183 /* Canonicalize x + x into x << 1. */
6184 if (GET_MODE_CLASS (mode) == MODE_INT
6185 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6186 && !side_effects_p (XEXP (x, 0)))
6187 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6189 break;
6191 case MINUS:
6192 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6193 (and <foo> (const_int pow2-1)) */
6194 if (is_a <scalar_int_mode> (mode, &int_mode)
6195 && GET_CODE (XEXP (x, 1)) == AND
6196 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6197 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6198 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6199 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6200 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6201 break;
6203 case MULT:
6204 /* If we have (mult (plus A B) C), apply the distributive law and then
6205 the inverse distributive law to see if things simplify. This
6206 occurs mostly in addresses, often when unrolling loops. */
6208 if (GET_CODE (XEXP (x, 0)) == PLUS)
6210 rtx result = distribute_and_simplify_rtx (x, 0);
6211 if (result)
6212 return result;
6215 /* Try simplify a*(b/c) as (a*b)/c. */
6216 if (FLOAT_MODE_P (mode) && flag_associative_math
6217 && GET_CODE (XEXP (x, 0)) == DIV)
6219 rtx tem = simplify_binary_operation (MULT, mode,
6220 XEXP (XEXP (x, 0), 0),
6221 XEXP (x, 1));
6222 if (tem)
6223 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6225 break;
6227 case UDIV:
6228 /* If this is a divide by a power of two, treat it as a shift if
6229 its first operand is a shift. */
6230 if (is_a <scalar_int_mode> (mode, &int_mode)
6231 && CONST_INT_P (XEXP (x, 1))
6232 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6233 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6234 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6235 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6236 || GET_CODE (XEXP (x, 0)) == ROTATE
6237 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6238 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6239 XEXP (x, 0), i);
6240 break;
6242 case EQ: case NE:
6243 case GT: case GTU: case GE: case GEU:
6244 case LT: case LTU: case LE: case LEU:
6245 case UNEQ: case LTGT:
6246 case UNGT: case UNGE:
6247 case UNLT: case UNLE:
6248 case UNORDERED: case ORDERED:
6249 /* If the first operand is a condition code, we can't do anything
6250 with it. */
6251 if (GET_CODE (XEXP (x, 0)) == COMPARE
6252 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6253 && ! CC0_P (XEXP (x, 0))))
6255 rtx op0 = XEXP (x, 0);
6256 rtx op1 = XEXP (x, 1);
6257 enum rtx_code new_code;
6259 if (GET_CODE (op0) == COMPARE)
6260 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6262 /* Simplify our comparison, if possible. */
6263 new_code = simplify_comparison (code, &op0, &op1);
6265 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6266 if only the low-order bit is possibly nonzero in X (such as when
6267 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6268 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6269 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6270 (plus X 1).
6272 Remove any ZERO_EXTRACT we made when thinking this was a
6273 comparison. It may now be simpler to use, e.g., an AND. If a
6274 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6275 the call to make_compound_operation in the SET case.
6277 Don't apply these optimizations if the caller would
6278 prefer a comparison rather than a value.
6279 E.g., for the condition in an IF_THEN_ELSE most targets need
6280 an explicit comparison. */
6282 if (in_cond)
6285 else if (STORE_FLAG_VALUE == 1
6286 && new_code == NE
6287 && is_int_mode (mode, &int_mode)
6288 && op1 == const0_rtx
6289 && int_mode == GET_MODE (op0)
6290 && nonzero_bits (op0, int_mode) == 1)
6291 return gen_lowpart (int_mode,
6292 expand_compound_operation (op0));
6294 else if (STORE_FLAG_VALUE == 1
6295 && new_code == NE
6296 && is_int_mode (mode, &int_mode)
6297 && op1 == const0_rtx
6298 && int_mode == GET_MODE (op0)
6299 && (num_sign_bit_copies (op0, int_mode)
6300 == GET_MODE_PRECISION (int_mode)))
6302 op0 = expand_compound_operation (op0);
6303 return simplify_gen_unary (NEG, int_mode,
6304 gen_lowpart (int_mode, op0),
6305 int_mode);
6308 else if (STORE_FLAG_VALUE == 1
6309 && new_code == EQ
6310 && is_int_mode (mode, &int_mode)
6311 && op1 == const0_rtx
6312 && int_mode == GET_MODE (op0)
6313 && nonzero_bits (op0, int_mode) == 1)
6315 op0 = expand_compound_operation (op0);
6316 return simplify_gen_binary (XOR, int_mode,
6317 gen_lowpart (int_mode, op0),
6318 const1_rtx);
6321 else if (STORE_FLAG_VALUE == 1
6322 && new_code == EQ
6323 && is_int_mode (mode, &int_mode)
6324 && op1 == const0_rtx
6325 && int_mode == GET_MODE (op0)
6326 && (num_sign_bit_copies (op0, int_mode)
6327 == GET_MODE_PRECISION (int_mode)))
6329 op0 = expand_compound_operation (op0);
6330 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6333 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6334 those above. */
6335 if (in_cond)
6338 else if (STORE_FLAG_VALUE == -1
6339 && new_code == NE
6340 && is_int_mode (mode, &int_mode)
6341 && op1 == const0_rtx
6342 && int_mode == GET_MODE (op0)
6343 && (num_sign_bit_copies (op0, int_mode)
6344 == GET_MODE_PRECISION (int_mode)))
6345 return gen_lowpart (int_mode, expand_compound_operation (op0));
6347 else if (STORE_FLAG_VALUE == -1
6348 && new_code == NE
6349 && is_int_mode (mode, &int_mode)
6350 && op1 == const0_rtx
6351 && int_mode == GET_MODE (op0)
6352 && nonzero_bits (op0, int_mode) == 1)
6354 op0 = expand_compound_operation (op0);
6355 return simplify_gen_unary (NEG, int_mode,
6356 gen_lowpart (int_mode, op0),
6357 int_mode);
6360 else if (STORE_FLAG_VALUE == -1
6361 && new_code == EQ
6362 && is_int_mode (mode, &int_mode)
6363 && op1 == const0_rtx
6364 && int_mode == GET_MODE (op0)
6365 && (num_sign_bit_copies (op0, int_mode)
6366 == GET_MODE_PRECISION (int_mode)))
6368 op0 = expand_compound_operation (op0);
6369 return simplify_gen_unary (NOT, int_mode,
6370 gen_lowpart (int_mode, op0),
6371 int_mode);
6374 /* If X is 0/1, (eq X 0) is X-1. */
6375 else if (STORE_FLAG_VALUE == -1
6376 && new_code == EQ
6377 && is_int_mode (mode, &int_mode)
6378 && op1 == const0_rtx
6379 && int_mode == GET_MODE (op0)
6380 && nonzero_bits (op0, int_mode) == 1)
6382 op0 = expand_compound_operation (op0);
6383 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6386 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6387 one bit that might be nonzero, we can convert (ne x 0) to
6388 (ashift x c) where C puts the bit in the sign bit. Remove any
6389 AND with STORE_FLAG_VALUE when we are done, since we are only
6390 going to test the sign bit. */
6391 if (new_code == NE
6392 && is_int_mode (mode, &int_mode)
6393 && HWI_COMPUTABLE_MODE_P (int_mode)
6394 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6395 && op1 == const0_rtx
6396 && int_mode == GET_MODE (op0)
6397 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6399 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6400 expand_compound_operation (op0),
6401 GET_MODE_PRECISION (int_mode) - 1 - i);
6402 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6403 return XEXP (x, 0);
6404 else
6405 return x;
6408 /* If the code changed, return a whole new comparison.
6409 We also need to avoid using SUBST in cases where
6410 simplify_comparison has widened a comparison with a CONST_INT,
6411 since in that case the wider CONST_INT may fail the sanity
6412 checks in do_SUBST. */
6413 if (new_code != code
6414 || (CONST_INT_P (op1)
6415 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6416 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6417 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6419 /* Otherwise, keep this operation, but maybe change its operands.
6420 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6421 SUBST (XEXP (x, 0), op0);
6422 SUBST (XEXP (x, 1), op1);
6424 break;
6426 case IF_THEN_ELSE:
6427 return simplify_if_then_else (x);
6429 case ZERO_EXTRACT:
6430 case SIGN_EXTRACT:
6431 case ZERO_EXTEND:
6432 case SIGN_EXTEND:
6433 /* If we are processing SET_DEST, we are done. */
6434 if (in_dest)
6435 return x;
6437 return expand_compound_operation (x);
6439 case SET:
6440 return simplify_set (x);
6442 case AND:
6443 case IOR:
6444 return simplify_logical (x);
6446 case ASHIFT:
6447 case LSHIFTRT:
6448 case ASHIFTRT:
6449 case ROTATE:
6450 case ROTATERT:
6451 /* If this is a shift by a constant amount, simplify it. */
6452 if (CONST_INT_P (XEXP (x, 1)))
6453 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6454 INTVAL (XEXP (x, 1)));
6456 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6457 SUBST (XEXP (x, 1),
6458 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6459 (HOST_WIDE_INT_1U
6460 << exact_log2 (GET_MODE_UNIT_BITSIZE
6461 (GET_MODE (x))))
6462 - 1,
6463 0));
6464 break;
6466 default:
6467 break;
6470 return x;
6473 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6475 static rtx
6476 simplify_if_then_else (rtx x)
6478 machine_mode mode = GET_MODE (x);
6479 rtx cond = XEXP (x, 0);
6480 rtx true_rtx = XEXP (x, 1);
6481 rtx false_rtx = XEXP (x, 2);
6482 enum rtx_code true_code = GET_CODE (cond);
6483 int comparison_p = COMPARISON_P (cond);
6484 rtx temp;
6485 int i;
6486 enum rtx_code false_code;
6487 rtx reversed;
6488 scalar_int_mode int_mode, inner_mode;
6490 /* Simplify storing of the truth value. */
6491 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6492 return simplify_gen_relational (true_code, mode, VOIDmode,
6493 XEXP (cond, 0), XEXP (cond, 1));
6495 /* Also when the truth value has to be reversed. */
6496 if (comparison_p
6497 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6498 && (reversed = reversed_comparison (cond, mode)))
6499 return reversed;
6501 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6502 in it is being compared against certain values. Get the true and false
6503 comparisons and see if that says anything about the value of each arm. */
6505 if (comparison_p
6506 && ((false_code = reversed_comparison_code (cond, NULL))
6507 != UNKNOWN)
6508 && REG_P (XEXP (cond, 0)))
6510 HOST_WIDE_INT nzb;
6511 rtx from = XEXP (cond, 0);
6512 rtx true_val = XEXP (cond, 1);
6513 rtx false_val = true_val;
6514 int swapped = 0;
6516 /* If FALSE_CODE is EQ, swap the codes and arms. */
6518 if (false_code == EQ)
6520 swapped = 1, true_code = EQ, false_code = NE;
6521 std::swap (true_rtx, false_rtx);
6524 scalar_int_mode from_mode;
6525 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6527 /* If we are comparing against zero and the expression being
6528 tested has only a single bit that might be nonzero, that is
6529 its value when it is not equal to zero. Similarly if it is
6530 known to be -1 or 0. */
6531 if (true_code == EQ
6532 && true_val == const0_rtx
6533 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6535 false_code = EQ;
6536 false_val = gen_int_mode (nzb, from_mode);
6538 else if (true_code == EQ
6539 && true_val == const0_rtx
6540 && (num_sign_bit_copies (from, from_mode)
6541 == GET_MODE_PRECISION (from_mode)))
6543 false_code = EQ;
6544 false_val = constm1_rtx;
6548 /* Now simplify an arm if we know the value of the register in the
6549 branch and it is used in the arm. Be careful due to the potential
6550 of locally-shared RTL. */
6552 if (reg_mentioned_p (from, true_rtx))
6553 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6554 from, true_val),
6555 pc_rtx, pc_rtx, 0, 0, 0);
6556 if (reg_mentioned_p (from, false_rtx))
6557 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6558 from, false_val),
6559 pc_rtx, pc_rtx, 0, 0, 0);
6561 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6562 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6564 true_rtx = XEXP (x, 1);
6565 false_rtx = XEXP (x, 2);
6566 true_code = GET_CODE (cond);
6569 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6570 reversed, do so to avoid needing two sets of patterns for
6571 subtract-and-branch insns. Similarly if we have a constant in the true
6572 arm, the false arm is the same as the first operand of the comparison, or
6573 the false arm is more complicated than the true arm. */
6575 if (comparison_p
6576 && reversed_comparison_code (cond, NULL) != UNKNOWN
6577 && (true_rtx == pc_rtx
6578 || (CONSTANT_P (true_rtx)
6579 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6580 || true_rtx == const0_rtx
6581 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6582 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6583 && !OBJECT_P (false_rtx))
6584 || reg_mentioned_p (true_rtx, false_rtx)
6585 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6587 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6588 SUBST (XEXP (x, 1), false_rtx);
6589 SUBST (XEXP (x, 2), true_rtx);
6591 std::swap (true_rtx, false_rtx);
6592 cond = XEXP (x, 0);
6594 /* It is possible that the conditional has been simplified out. */
6595 true_code = GET_CODE (cond);
6596 comparison_p = COMPARISON_P (cond);
6599 /* If the two arms are identical, we don't need the comparison. */
6601 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6602 return true_rtx;
6604 /* Convert a == b ? b : a to "a". */
6605 if (true_code == EQ && ! side_effects_p (cond)
6606 && !HONOR_NANS (mode)
6607 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6608 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6609 return false_rtx;
6610 else if (true_code == NE && ! side_effects_p (cond)
6611 && !HONOR_NANS (mode)
6612 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6613 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6614 return true_rtx;
6616 /* Look for cases where we have (abs x) or (neg (abs X)). */
6618 if (GET_MODE_CLASS (mode) == MODE_INT
6619 && comparison_p
6620 && XEXP (cond, 1) == const0_rtx
6621 && GET_CODE (false_rtx) == NEG
6622 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6623 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6624 && ! side_effects_p (true_rtx))
6625 switch (true_code)
6627 case GT:
6628 case GE:
6629 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6630 case LT:
6631 case LE:
6632 return
6633 simplify_gen_unary (NEG, mode,
6634 simplify_gen_unary (ABS, mode, true_rtx, mode),
6635 mode);
6636 default:
6637 break;
6640 /* Look for MIN or MAX. */
6642 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6643 && comparison_p
6644 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6645 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6646 && ! side_effects_p (cond))
6647 switch (true_code)
6649 case GE:
6650 case GT:
6651 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6652 case LE:
6653 case LT:
6654 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6655 case GEU:
6656 case GTU:
6657 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6658 case LEU:
6659 case LTU:
6660 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6661 default:
6662 break;
6665 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6666 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6667 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6668 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6669 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6670 neither 1 or -1, but it isn't worth checking for. */
6672 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6673 && comparison_p
6674 && is_int_mode (mode, &int_mode)
6675 && ! side_effects_p (x))
6677 rtx t = make_compound_operation (true_rtx, SET);
6678 rtx f = make_compound_operation (false_rtx, SET);
6679 rtx cond_op0 = XEXP (cond, 0);
6680 rtx cond_op1 = XEXP (cond, 1);
6681 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6682 scalar_int_mode m = int_mode;
6683 rtx z = 0, c1 = NULL_RTX;
6685 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6686 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6687 || GET_CODE (t) == ASHIFT
6688 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6689 && rtx_equal_p (XEXP (t, 0), f))
6690 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6692 /* If an identity-zero op is commutative, check whether there
6693 would be a match if we swapped the operands. */
6694 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6695 || GET_CODE (t) == XOR)
6696 && rtx_equal_p (XEXP (t, 1), f))
6697 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6698 else if (GET_CODE (t) == SIGN_EXTEND
6699 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6700 && (GET_CODE (XEXP (t, 0)) == PLUS
6701 || GET_CODE (XEXP (t, 0)) == MINUS
6702 || GET_CODE (XEXP (t, 0)) == IOR
6703 || GET_CODE (XEXP (t, 0)) == XOR
6704 || GET_CODE (XEXP (t, 0)) == ASHIFT
6705 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6706 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6707 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6708 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6709 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6710 && (num_sign_bit_copies (f, GET_MODE (f))
6711 > (unsigned int)
6712 (GET_MODE_PRECISION (int_mode)
6713 - GET_MODE_PRECISION (inner_mode))))
6715 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6716 extend_op = SIGN_EXTEND;
6717 m = inner_mode;
6719 else if (GET_CODE (t) == SIGN_EXTEND
6720 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6721 && (GET_CODE (XEXP (t, 0)) == PLUS
6722 || GET_CODE (XEXP (t, 0)) == IOR
6723 || GET_CODE (XEXP (t, 0)) == XOR)
6724 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6725 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6726 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6727 && (num_sign_bit_copies (f, GET_MODE (f))
6728 > (unsigned int)
6729 (GET_MODE_PRECISION (int_mode)
6730 - GET_MODE_PRECISION (inner_mode))))
6732 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6733 extend_op = SIGN_EXTEND;
6734 m = inner_mode;
6736 else if (GET_CODE (t) == ZERO_EXTEND
6737 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6738 && (GET_CODE (XEXP (t, 0)) == PLUS
6739 || GET_CODE (XEXP (t, 0)) == MINUS
6740 || GET_CODE (XEXP (t, 0)) == IOR
6741 || GET_CODE (XEXP (t, 0)) == XOR
6742 || GET_CODE (XEXP (t, 0)) == ASHIFT
6743 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6744 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6745 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6746 && HWI_COMPUTABLE_MODE_P (int_mode)
6747 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6748 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6749 && ((nonzero_bits (f, GET_MODE (f))
6750 & ~GET_MODE_MASK (inner_mode))
6751 == 0))
6753 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6754 extend_op = ZERO_EXTEND;
6755 m = inner_mode;
6757 else if (GET_CODE (t) == ZERO_EXTEND
6758 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6759 && (GET_CODE (XEXP (t, 0)) == PLUS
6760 || GET_CODE (XEXP (t, 0)) == IOR
6761 || GET_CODE (XEXP (t, 0)) == XOR)
6762 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6763 && HWI_COMPUTABLE_MODE_P (int_mode)
6764 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6765 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6766 && ((nonzero_bits (f, GET_MODE (f))
6767 & ~GET_MODE_MASK (inner_mode))
6768 == 0))
6770 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6771 extend_op = ZERO_EXTEND;
6772 m = inner_mode;
6775 if (z)
6777 machine_mode cm = m;
6778 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6779 && GET_MODE (c1) != VOIDmode)
6780 cm = GET_MODE (c1);
6781 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6782 cond_op0, cond_op1),
6783 pc_rtx, pc_rtx, 0, 0, 0);
6784 temp = simplify_gen_binary (MULT, cm, temp,
6785 simplify_gen_binary (MULT, cm, c1,
6786 const_true_rtx));
6787 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6788 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6790 if (extend_op != UNKNOWN)
6791 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6793 return temp;
6797 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6798 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6799 negation of a single bit, we can convert this operation to a shift. We
6800 can actually do this more generally, but it doesn't seem worth it. */
6802 if (true_code == NE
6803 && is_a <scalar_int_mode> (mode, &int_mode)
6804 && XEXP (cond, 1) == const0_rtx
6805 && false_rtx == const0_rtx
6806 && CONST_INT_P (true_rtx)
6807 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6808 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6809 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6810 == GET_MODE_PRECISION (int_mode))
6811 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6812 return
6813 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6814 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6816 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6817 non-zero bit in A is C1. */
6818 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6819 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6820 && is_a <scalar_int_mode> (mode, &int_mode)
6821 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6822 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6823 == nonzero_bits (XEXP (cond, 0), inner_mode)
6824 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6826 rtx val = XEXP (cond, 0);
6827 if (inner_mode == int_mode)
6828 return val;
6829 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6830 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6833 return x;
6836 /* Simplify X, a SET expression. Return the new expression. */
6838 static rtx
6839 simplify_set (rtx x)
6841 rtx src = SET_SRC (x);
6842 rtx dest = SET_DEST (x);
6843 machine_mode mode
6844 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6845 rtx_insn *other_insn;
6846 rtx *cc_use;
6847 scalar_int_mode int_mode;
6849 /* (set (pc) (return)) gets written as (return). */
6850 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6851 return src;
6853 /* Now that we know for sure which bits of SRC we are using, see if we can
6854 simplify the expression for the object knowing that we only need the
6855 low-order bits. */
6857 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6859 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6860 SUBST (SET_SRC (x), src);
6863 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6864 the comparison result and try to simplify it unless we already have used
6865 undobuf.other_insn. */
6866 if ((GET_MODE_CLASS (mode) == MODE_CC
6867 || GET_CODE (src) == COMPARE
6868 || CC0_P (dest))
6869 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6870 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6871 && COMPARISON_P (*cc_use)
6872 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6874 enum rtx_code old_code = GET_CODE (*cc_use);
6875 enum rtx_code new_code;
6876 rtx op0, op1, tmp;
6877 int other_changed = 0;
6878 rtx inner_compare = NULL_RTX;
6879 machine_mode compare_mode = GET_MODE (dest);
6881 if (GET_CODE (src) == COMPARE)
6883 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6884 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6886 inner_compare = op0;
6887 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6890 else
6891 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6893 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6894 op0, op1);
6895 if (!tmp)
6896 new_code = old_code;
6897 else if (!CONSTANT_P (tmp))
6899 new_code = GET_CODE (tmp);
6900 op0 = XEXP (tmp, 0);
6901 op1 = XEXP (tmp, 1);
6903 else
6905 rtx pat = PATTERN (other_insn);
6906 undobuf.other_insn = other_insn;
6907 SUBST (*cc_use, tmp);
6909 /* Attempt to simplify CC user. */
6910 if (GET_CODE (pat) == SET)
6912 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6913 if (new_rtx != NULL_RTX)
6914 SUBST (SET_SRC (pat), new_rtx);
6917 /* Convert X into a no-op move. */
6918 SUBST (SET_DEST (x), pc_rtx);
6919 SUBST (SET_SRC (x), pc_rtx);
6920 return x;
6923 /* Simplify our comparison, if possible. */
6924 new_code = simplify_comparison (new_code, &op0, &op1);
6926 #ifdef SELECT_CC_MODE
6927 /* If this machine has CC modes other than CCmode, check to see if we
6928 need to use a different CC mode here. */
6929 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6930 compare_mode = GET_MODE (op0);
6931 else if (inner_compare
6932 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6933 && new_code == old_code
6934 && op0 == XEXP (inner_compare, 0)
6935 && op1 == XEXP (inner_compare, 1))
6936 compare_mode = GET_MODE (inner_compare);
6937 else
6938 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6940 /* If the mode changed, we have to change SET_DEST, the mode in the
6941 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6942 a hard register, just build new versions with the proper mode. If it
6943 is a pseudo, we lose unless it is only time we set the pseudo, in
6944 which case we can safely change its mode. */
6945 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6947 if (can_change_dest_mode (dest, 0, compare_mode))
6949 unsigned int regno = REGNO (dest);
6950 rtx new_dest;
6952 if (regno < FIRST_PSEUDO_REGISTER)
6953 new_dest = gen_rtx_REG (compare_mode, regno);
6954 else
6956 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6957 new_dest = regno_reg_rtx[regno];
6960 SUBST (SET_DEST (x), new_dest);
6961 SUBST (XEXP (*cc_use, 0), new_dest);
6962 other_changed = 1;
6964 dest = new_dest;
6967 #endif /* SELECT_CC_MODE */
6969 /* If the code changed, we have to build a new comparison in
6970 undobuf.other_insn. */
6971 if (new_code != old_code)
6973 int other_changed_previously = other_changed;
6974 unsigned HOST_WIDE_INT mask;
6975 rtx old_cc_use = *cc_use;
6977 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6978 dest, const0_rtx));
6979 other_changed = 1;
6981 /* If the only change we made was to change an EQ into an NE or
6982 vice versa, OP0 has only one bit that might be nonzero, and OP1
6983 is zero, check if changing the user of the condition code will
6984 produce a valid insn. If it won't, we can keep the original code
6985 in that insn by surrounding our operation with an XOR. */
6987 if (((old_code == NE && new_code == EQ)
6988 || (old_code == EQ && new_code == NE))
6989 && ! other_changed_previously && op1 == const0_rtx
6990 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6991 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6993 rtx pat = PATTERN (other_insn), note = 0;
6995 if ((recog_for_combine (&pat, other_insn, &note) < 0
6996 && ! check_asm_operands (pat)))
6998 *cc_use = old_cc_use;
6999 other_changed = 0;
7001 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7002 gen_int_mode (mask,
7003 GET_MODE (op0)));
7008 if (other_changed)
7009 undobuf.other_insn = other_insn;
7011 /* Don't generate a compare of a CC with 0, just use that CC. */
7012 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7014 SUBST (SET_SRC (x), op0);
7015 src = SET_SRC (x);
7017 /* Otherwise, if we didn't previously have the same COMPARE we
7018 want, create it from scratch. */
7019 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7020 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7022 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7023 src = SET_SRC (x);
7026 else
7028 /* Get SET_SRC in a form where we have placed back any
7029 compound expressions. Then do the checks below. */
7030 src = make_compound_operation (src, SET);
7031 SUBST (SET_SRC (x), src);
7034 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7035 and X being a REG or (subreg (reg)), we may be able to convert this to
7036 (set (subreg:m2 x) (op)).
7038 We can always do this if M1 is narrower than M2 because that means that
7039 we only care about the low bits of the result.
7041 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7042 perform a narrower operation than requested since the high-order bits will
7043 be undefined. On machine where it is defined, this transformation is safe
7044 as long as M1 and M2 have the same number of words. */
7046 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7047 && !OBJECT_P (SUBREG_REG (src))
7048 && (known_equal_after_align_up
7049 (GET_MODE_SIZE (GET_MODE (src)),
7050 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7051 UNITS_PER_WORD))
7052 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7053 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7054 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7055 GET_MODE (SUBREG_REG (src)),
7056 GET_MODE (src)))
7057 && (REG_P (dest)
7058 || (GET_CODE (dest) == SUBREG
7059 && REG_P (SUBREG_REG (dest)))))
7061 SUBST (SET_DEST (x),
7062 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7063 dest));
7064 SUBST (SET_SRC (x), SUBREG_REG (src));
7066 src = SET_SRC (x), dest = SET_DEST (x);
7069 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7070 in SRC. */
7071 if (dest == cc0_rtx
7072 && partial_subreg_p (src)
7073 && subreg_lowpart_p (src))
7075 rtx inner = SUBREG_REG (src);
7076 machine_mode inner_mode = GET_MODE (inner);
7078 /* Here we make sure that we don't have a sign bit on. */
7079 if (val_signbit_known_clear_p (GET_MODE (src),
7080 nonzero_bits (inner, inner_mode)))
7082 SUBST (SET_SRC (x), inner);
7083 src = SET_SRC (x);
7087 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7088 would require a paradoxical subreg. Replace the subreg with a
7089 zero_extend to avoid the reload that would otherwise be required.
7090 Don't do this unless we have a scalar integer mode, otherwise the
7091 transformation is incorrect. */
7093 enum rtx_code extend_op;
7094 if (paradoxical_subreg_p (src)
7095 && MEM_P (SUBREG_REG (src))
7096 && SCALAR_INT_MODE_P (GET_MODE (src))
7097 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7099 SUBST (SET_SRC (x),
7100 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7102 src = SET_SRC (x);
7105 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7106 are comparing an item known to be 0 or -1 against 0, use a logical
7107 operation instead. Check for one of the arms being an IOR of the other
7108 arm with some value. We compute three terms to be IOR'ed together. In
7109 practice, at most two will be nonzero. Then we do the IOR's. */
7111 if (GET_CODE (dest) != PC
7112 && GET_CODE (src) == IF_THEN_ELSE
7113 && is_int_mode (GET_MODE (src), &int_mode)
7114 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7115 && XEXP (XEXP (src, 0), 1) == const0_rtx
7116 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7117 && (!HAVE_conditional_move
7118 || ! can_conditionally_move_p (int_mode))
7119 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7120 == GET_MODE_PRECISION (int_mode))
7121 && ! side_effects_p (src))
7123 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7124 ? XEXP (src, 1) : XEXP (src, 2));
7125 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7126 ? XEXP (src, 2) : XEXP (src, 1));
7127 rtx term1 = const0_rtx, term2, term3;
7129 if (GET_CODE (true_rtx) == IOR
7130 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7131 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7132 else if (GET_CODE (true_rtx) == IOR
7133 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7134 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7135 else if (GET_CODE (false_rtx) == IOR
7136 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7137 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7138 else if (GET_CODE (false_rtx) == IOR
7139 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7140 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7142 term2 = simplify_gen_binary (AND, int_mode,
7143 XEXP (XEXP (src, 0), 0), true_rtx);
7144 term3 = simplify_gen_binary (AND, int_mode,
7145 simplify_gen_unary (NOT, int_mode,
7146 XEXP (XEXP (src, 0), 0),
7147 int_mode),
7148 false_rtx);
7150 SUBST (SET_SRC (x),
7151 simplify_gen_binary (IOR, int_mode,
7152 simplify_gen_binary (IOR, int_mode,
7153 term1, term2),
7154 term3));
7156 src = SET_SRC (x);
7159 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7160 whole thing fail. */
7161 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7162 return src;
7163 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7164 return dest;
7165 else
7166 /* Convert this into a field assignment operation, if possible. */
7167 return make_field_assignment (x);
7170 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7171 result. */
7173 static rtx
7174 simplify_logical (rtx x)
7176 rtx op0 = XEXP (x, 0);
7177 rtx op1 = XEXP (x, 1);
7178 scalar_int_mode mode;
7180 switch (GET_CODE (x))
7182 case AND:
7183 /* We can call simplify_and_const_int only if we don't lose
7184 any (sign) bits when converting INTVAL (op1) to
7185 "unsigned HOST_WIDE_INT". */
7186 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7187 && CONST_INT_P (op1)
7188 && (HWI_COMPUTABLE_MODE_P (mode)
7189 || INTVAL (op1) > 0))
7191 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7192 if (GET_CODE (x) != AND)
7193 return x;
7195 op0 = XEXP (x, 0);
7196 op1 = XEXP (x, 1);
7199 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7200 apply the distributive law and then the inverse distributive
7201 law to see if things simplify. */
7202 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7204 rtx result = distribute_and_simplify_rtx (x, 0);
7205 if (result)
7206 return result;
7208 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7210 rtx result = distribute_and_simplify_rtx (x, 1);
7211 if (result)
7212 return result;
7214 break;
7216 case IOR:
7217 /* If we have (ior (and A B) C), apply the distributive law and then
7218 the inverse distributive law to see if things simplify. */
7220 if (GET_CODE (op0) == AND)
7222 rtx result = distribute_and_simplify_rtx (x, 0);
7223 if (result)
7224 return result;
7227 if (GET_CODE (op1) == AND)
7229 rtx result = distribute_and_simplify_rtx (x, 1);
7230 if (result)
7231 return result;
7233 break;
7235 default:
7236 gcc_unreachable ();
7239 return x;
7242 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7243 operations" because they can be replaced with two more basic operations.
7244 ZERO_EXTEND is also considered "compound" because it can be replaced with
7245 an AND operation, which is simpler, though only one operation.
7247 The function expand_compound_operation is called with an rtx expression
7248 and will convert it to the appropriate shifts and AND operations,
7249 simplifying at each stage.
7251 The function make_compound_operation is called to convert an expression
7252 consisting of shifts and ANDs into the equivalent compound expression.
7253 It is the inverse of this function, loosely speaking. */
7255 static rtx
7256 expand_compound_operation (rtx x)
7258 unsigned HOST_WIDE_INT pos = 0, len;
7259 int unsignedp = 0;
7260 unsigned int modewidth;
7261 rtx tem;
7262 scalar_int_mode inner_mode;
7264 switch (GET_CODE (x))
7266 case ZERO_EXTEND:
7267 unsignedp = 1;
7268 /* FALLTHRU */
7269 case SIGN_EXTEND:
7270 /* We can't necessarily use a const_int for a multiword mode;
7271 it depends on implicitly extending the value.
7272 Since we don't know the right way to extend it,
7273 we can't tell whether the implicit way is right.
7275 Even for a mode that is no wider than a const_int,
7276 we can't win, because we need to sign extend one of its bits through
7277 the rest of it, and we don't know which bit. */
7278 if (CONST_INT_P (XEXP (x, 0)))
7279 return x;
7281 /* Reject modes that aren't scalar integers because turning vector
7282 or complex modes into shifts causes problems. */
7283 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7284 return x;
7286 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7287 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7288 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7289 reloaded. If not for that, MEM's would very rarely be safe.
7291 Reject modes bigger than a word, because we might not be able
7292 to reference a two-register group starting with an arbitrary register
7293 (and currently gen_lowpart might crash for a SUBREG). */
7295 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7296 return x;
7298 len = GET_MODE_PRECISION (inner_mode);
7299 /* If the inner object has VOIDmode (the only way this can happen
7300 is if it is an ASM_OPERANDS), we can't do anything since we don't
7301 know how much masking to do. */
7302 if (len == 0)
7303 return x;
7305 break;
7307 case ZERO_EXTRACT:
7308 unsignedp = 1;
7310 /* fall through */
7312 case SIGN_EXTRACT:
7313 /* If the operand is a CLOBBER, just return it. */
7314 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7315 return XEXP (x, 0);
7317 if (!CONST_INT_P (XEXP (x, 1))
7318 || !CONST_INT_P (XEXP (x, 2)))
7319 return x;
7321 /* Reject modes that aren't scalar integers because turning vector
7322 or complex modes into shifts causes problems. */
7323 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7324 return x;
7326 len = INTVAL (XEXP (x, 1));
7327 pos = INTVAL (XEXP (x, 2));
7329 /* This should stay within the object being extracted, fail otherwise. */
7330 if (len + pos > GET_MODE_PRECISION (inner_mode))
7331 return x;
7333 if (BITS_BIG_ENDIAN)
7334 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7336 break;
7338 default:
7339 return x;
7342 /* We've rejected non-scalar operations by now. */
7343 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7345 /* Convert sign extension to zero extension, if we know that the high
7346 bit is not set, as this is easier to optimize. It will be converted
7347 back to cheaper alternative in make_extraction. */
7348 if (GET_CODE (x) == SIGN_EXTEND
7349 && HWI_COMPUTABLE_MODE_P (mode)
7350 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7351 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7352 == 0))
7354 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7355 rtx temp2 = expand_compound_operation (temp);
7357 /* Make sure this is a profitable operation. */
7358 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7359 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7360 return temp2;
7361 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7362 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7363 return temp;
7364 else
7365 return x;
7368 /* We can optimize some special cases of ZERO_EXTEND. */
7369 if (GET_CODE (x) == ZERO_EXTEND)
7371 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7372 know that the last value didn't have any inappropriate bits
7373 set. */
7374 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7375 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7376 && HWI_COMPUTABLE_MODE_P (mode)
7377 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7378 & ~GET_MODE_MASK (inner_mode)) == 0)
7379 return XEXP (XEXP (x, 0), 0);
7381 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7382 if (GET_CODE (XEXP (x, 0)) == SUBREG
7383 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7384 && subreg_lowpart_p (XEXP (x, 0))
7385 && HWI_COMPUTABLE_MODE_P (mode)
7386 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7387 & ~GET_MODE_MASK (inner_mode)) == 0)
7388 return SUBREG_REG (XEXP (x, 0));
7390 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7391 is a comparison and STORE_FLAG_VALUE permits. This is like
7392 the first case, but it works even when MODE is larger
7393 than HOST_WIDE_INT. */
7394 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7395 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7396 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7397 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7398 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7399 return XEXP (XEXP (x, 0), 0);
7401 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7402 if (GET_CODE (XEXP (x, 0)) == SUBREG
7403 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7404 && subreg_lowpart_p (XEXP (x, 0))
7405 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7406 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7407 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7408 return SUBREG_REG (XEXP (x, 0));
7412 /* If we reach here, we want to return a pair of shifts. The inner
7413 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7414 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7415 logical depending on the value of UNSIGNEDP.
7417 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7418 converted into an AND of a shift.
7420 We must check for the case where the left shift would have a negative
7421 count. This can happen in a case like (x >> 31) & 255 on machines
7422 that can't shift by a constant. On those machines, we would first
7423 combine the shift with the AND to produce a variable-position
7424 extraction. Then the constant of 31 would be substituted in
7425 to produce such a position. */
7427 modewidth = GET_MODE_PRECISION (mode);
7428 if (modewidth >= pos + len)
7430 tem = gen_lowpart (mode, XEXP (x, 0));
7431 if (!tem || GET_CODE (tem) == CLOBBER)
7432 return x;
7433 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7434 tem, modewidth - pos - len);
7435 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7436 mode, tem, modewidth - len);
7438 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7439 tem = simplify_and_const_int (NULL_RTX, mode,
7440 simplify_shift_const (NULL_RTX, LSHIFTRT,
7441 mode, XEXP (x, 0),
7442 pos),
7443 (HOST_WIDE_INT_1U << len) - 1);
7444 else
7445 /* Any other cases we can't handle. */
7446 return x;
7448 /* If we couldn't do this for some reason, return the original
7449 expression. */
7450 if (GET_CODE (tem) == CLOBBER)
7451 return x;
7453 return tem;
7456 /* X is a SET which contains an assignment of one object into
7457 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7458 or certain SUBREGS). If possible, convert it into a series of
7459 logical operations.
7461 We half-heartedly support variable positions, but do not at all
7462 support variable lengths. */
7464 static const_rtx
7465 expand_field_assignment (const_rtx x)
7467 rtx inner;
7468 rtx pos; /* Always counts from low bit. */
7469 int len, inner_len;
7470 rtx mask, cleared, masked;
7471 scalar_int_mode compute_mode;
7473 /* Loop until we find something we can't simplify. */
7474 while (1)
7476 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7477 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7479 rtx x0 = XEXP (SET_DEST (x), 0);
7480 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7481 break;
7482 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7483 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7484 MAX_MODE_INT);
7486 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7487 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7489 inner = XEXP (SET_DEST (x), 0);
7490 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7491 break;
7493 len = INTVAL (XEXP (SET_DEST (x), 1));
7494 pos = XEXP (SET_DEST (x), 2);
7496 /* A constant position should stay within the width of INNER. */
7497 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7498 break;
7500 if (BITS_BIG_ENDIAN)
7502 if (CONST_INT_P (pos))
7503 pos = GEN_INT (inner_len - len - INTVAL (pos));
7504 else if (GET_CODE (pos) == MINUS
7505 && CONST_INT_P (XEXP (pos, 1))
7506 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7507 /* If position is ADJUST - X, new position is X. */
7508 pos = XEXP (pos, 0);
7509 else
7510 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7511 gen_int_mode (inner_len - len,
7512 GET_MODE (pos)),
7513 pos);
7517 /* If the destination is a subreg that overwrites the whole of the inner
7518 register, we can move the subreg to the source. */
7519 else if (GET_CODE (SET_DEST (x)) == SUBREG
7520 /* We need SUBREGs to compute nonzero_bits properly. */
7521 && nonzero_sign_valid
7522 && !read_modify_subreg_p (SET_DEST (x)))
7524 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7525 gen_lowpart
7526 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7527 SET_SRC (x)));
7528 continue;
7530 else
7531 break;
7533 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7534 inner = SUBREG_REG (inner);
7536 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7537 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7539 /* Don't do anything for vector or complex integral types. */
7540 if (! FLOAT_MODE_P (GET_MODE (inner)))
7541 break;
7543 /* Try to find an integral mode to pun with. */
7544 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7545 .exists (&compute_mode))
7546 break;
7548 inner = gen_lowpart (compute_mode, inner);
7551 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7552 if (len >= HOST_BITS_PER_WIDE_INT)
7553 break;
7555 /* Don't try to compute in too wide unsupported modes. */
7556 if (!targetm.scalar_mode_supported_p (compute_mode))
7557 break;
7559 /* Now compute the equivalent expression. Make a copy of INNER
7560 for the SET_DEST in case it is a MEM into which we will substitute;
7561 we don't want shared RTL in that case. */
7562 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7563 compute_mode);
7564 cleared = simplify_gen_binary (AND, compute_mode,
7565 simplify_gen_unary (NOT, compute_mode,
7566 simplify_gen_binary (ASHIFT,
7567 compute_mode,
7568 mask, pos),
7569 compute_mode),
7570 inner);
7571 masked = simplify_gen_binary (ASHIFT, compute_mode,
7572 simplify_gen_binary (
7573 AND, compute_mode,
7574 gen_lowpart (compute_mode, SET_SRC (x)),
7575 mask),
7576 pos);
7578 x = gen_rtx_SET (copy_rtx (inner),
7579 simplify_gen_binary (IOR, compute_mode,
7580 cleared, masked));
7583 return x;
7586 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7587 it is an RTX that represents the (variable) starting position; otherwise,
7588 POS is the (constant) starting bit position. Both are counted from the LSB.
7590 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7592 IN_DEST is nonzero if this is a reference in the destination of a SET.
7593 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7594 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7595 be used.
7597 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7598 ZERO_EXTRACT should be built even for bits starting at bit 0.
7600 MODE is the desired mode of the result (if IN_DEST == 0).
7602 The result is an RTX for the extraction or NULL_RTX if the target
7603 can't handle it. */
7605 static rtx
7606 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7607 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7608 int in_dest, int in_compare)
7610 /* This mode describes the size of the storage area
7611 to fetch the overall value from. Within that, we
7612 ignore the POS lowest bits, etc. */
7613 machine_mode is_mode = GET_MODE (inner);
7614 machine_mode inner_mode;
7615 scalar_int_mode wanted_inner_mode;
7616 scalar_int_mode wanted_inner_reg_mode = word_mode;
7617 scalar_int_mode pos_mode = word_mode;
7618 machine_mode extraction_mode = word_mode;
7619 rtx new_rtx = 0;
7620 rtx orig_pos_rtx = pos_rtx;
7621 HOST_WIDE_INT orig_pos;
7623 if (pos_rtx && CONST_INT_P (pos_rtx))
7624 pos = INTVAL (pos_rtx), pos_rtx = 0;
7626 if (GET_CODE (inner) == SUBREG
7627 && subreg_lowpart_p (inner)
7628 && (paradoxical_subreg_p (inner)
7629 /* If trying or potentionally trying to extract
7630 bits outside of is_mode, don't look through
7631 non-paradoxical SUBREGs. See PR82192. */
7632 || (pos_rtx == NULL_RTX
7633 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7635 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7636 consider just the QI as the memory to extract from.
7637 The subreg adds or removes high bits; its mode is
7638 irrelevant to the meaning of this extraction,
7639 since POS and LEN count from the lsb. */
7640 if (MEM_P (SUBREG_REG (inner)))
7641 is_mode = GET_MODE (SUBREG_REG (inner));
7642 inner = SUBREG_REG (inner);
7644 else if (GET_CODE (inner) == ASHIFT
7645 && CONST_INT_P (XEXP (inner, 1))
7646 && pos_rtx == 0 && pos == 0
7647 && len > UINTVAL (XEXP (inner, 1)))
7649 /* We're extracting the least significant bits of an rtx
7650 (ashift X (const_int C)), where LEN > C. Extract the
7651 least significant (LEN - C) bits of X, giving an rtx
7652 whose mode is MODE, then shift it left C times. */
7653 new_rtx = make_extraction (mode, XEXP (inner, 0),
7654 0, 0, len - INTVAL (XEXP (inner, 1)),
7655 unsignedp, in_dest, in_compare);
7656 if (new_rtx != 0)
7657 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7659 else if (GET_CODE (inner) == TRUNCATE
7660 /* If trying or potentionally trying to extract
7661 bits outside of is_mode, don't look through
7662 TRUNCATE. See PR82192. */
7663 && pos_rtx == NULL_RTX
7664 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7665 inner = XEXP (inner, 0);
7667 inner_mode = GET_MODE (inner);
7669 /* See if this can be done without an extraction. We never can if the
7670 width of the field is not the same as that of some integer mode. For
7671 registers, we can only avoid the extraction if the position is at the
7672 low-order bit and this is either not in the destination or we have the
7673 appropriate STRICT_LOW_PART operation available.
7675 For MEM, we can avoid an extract if the field starts on an appropriate
7676 boundary and we can change the mode of the memory reference. */
7678 scalar_int_mode tmode;
7679 if (int_mode_for_size (len, 1).exists (&tmode)
7680 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7681 && !MEM_P (inner)
7682 && (pos == 0 || REG_P (inner))
7683 && (inner_mode == tmode
7684 || !REG_P (inner)
7685 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7686 || reg_truncated_to_mode (tmode, inner))
7687 && (! in_dest
7688 || (REG_P (inner)
7689 && have_insn_for (STRICT_LOW_PART, tmode))))
7690 || (MEM_P (inner) && pos_rtx == 0
7691 && (pos
7692 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7693 : BITS_PER_UNIT)) == 0
7694 /* We can't do this if we are widening INNER_MODE (it
7695 may not be aligned, for one thing). */
7696 && !paradoxical_subreg_p (tmode, inner_mode)
7697 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7698 && (inner_mode == tmode
7699 || (! mode_dependent_address_p (XEXP (inner, 0),
7700 MEM_ADDR_SPACE (inner))
7701 && ! MEM_VOLATILE_P (inner))))))
7703 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7704 field. If the original and current mode are the same, we need not
7705 adjust the offset. Otherwise, we do if bytes big endian.
7707 If INNER is not a MEM, get a piece consisting of just the field
7708 of interest (in this case POS % BITS_PER_WORD must be 0). */
7710 if (MEM_P (inner))
7712 poly_int64 offset;
7714 /* POS counts from lsb, but make OFFSET count in memory order. */
7715 if (BYTES_BIG_ENDIAN)
7716 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7717 - len - pos);
7718 else
7719 offset = pos / BITS_PER_UNIT;
7721 new_rtx = adjust_address_nv (inner, tmode, offset);
7723 else if (REG_P (inner))
7725 if (tmode != inner_mode)
7727 /* We can't call gen_lowpart in a DEST since we
7728 always want a SUBREG (see below) and it would sometimes
7729 return a new hard register. */
7730 if (pos || in_dest)
7732 poly_uint64 offset
7733 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7735 /* Avoid creating invalid subregs, for example when
7736 simplifying (x>>32)&255. */
7737 if (!validate_subreg (tmode, inner_mode, inner, offset))
7738 return NULL_RTX;
7740 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7742 else
7743 new_rtx = gen_lowpart (tmode, inner);
7745 else
7746 new_rtx = inner;
7748 else
7749 new_rtx = force_to_mode (inner, tmode,
7750 len >= HOST_BITS_PER_WIDE_INT
7751 ? HOST_WIDE_INT_M1U
7752 : (HOST_WIDE_INT_1U << len) - 1, 0);
7754 /* If this extraction is going into the destination of a SET,
7755 make a STRICT_LOW_PART unless we made a MEM. */
7757 if (in_dest)
7758 return (MEM_P (new_rtx) ? new_rtx
7759 : (GET_CODE (new_rtx) != SUBREG
7760 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7761 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7763 if (mode == tmode)
7764 return new_rtx;
7766 if (CONST_SCALAR_INT_P (new_rtx))
7767 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7768 mode, new_rtx, tmode);
7770 /* If we know that no extraneous bits are set, and that the high
7771 bit is not set, convert the extraction to the cheaper of
7772 sign and zero extension, that are equivalent in these cases. */
7773 if (flag_expensive_optimizations
7774 && (HWI_COMPUTABLE_MODE_P (tmode)
7775 && ((nonzero_bits (new_rtx, tmode)
7776 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7777 == 0)))
7779 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7780 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7782 /* Prefer ZERO_EXTENSION, since it gives more information to
7783 backends. */
7784 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7785 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7786 return temp;
7787 return temp1;
7790 /* Otherwise, sign- or zero-extend unless we already are in the
7791 proper mode. */
7793 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7794 mode, new_rtx));
7797 /* Unless this is a COMPARE or we have a funny memory reference,
7798 don't do anything with zero-extending field extracts starting at
7799 the low-order bit since they are simple AND operations. */
7800 if (pos_rtx == 0 && pos == 0 && ! in_dest
7801 && ! in_compare && unsignedp)
7802 return 0;
7804 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7805 if the position is not a constant and the length is not 1. In all
7806 other cases, we would only be going outside our object in cases when
7807 an original shift would have been undefined. */
7808 if (MEM_P (inner)
7809 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7810 || (pos_rtx != 0 && len != 1)))
7811 return 0;
7813 enum extraction_pattern pattern = (in_dest ? EP_insv
7814 : unsignedp ? EP_extzv : EP_extv);
7816 /* If INNER is not from memory, we want it to have the mode of a register
7817 extraction pattern's structure operand, or word_mode if there is no
7818 such pattern. The same applies to extraction_mode and pos_mode
7819 and their respective operands.
7821 For memory, assume that the desired extraction_mode and pos_mode
7822 are the same as for a register operation, since at present we don't
7823 have named patterns for aligned memory structures. */
7824 class extraction_insn insn;
7825 unsigned int inner_size;
7826 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7827 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7829 wanted_inner_reg_mode = insn.struct_mode.require ();
7830 pos_mode = insn.pos_mode;
7831 extraction_mode = insn.field_mode;
7834 /* Never narrow an object, since that might not be safe. */
7836 if (mode != VOIDmode
7837 && partial_subreg_p (extraction_mode, mode))
7838 extraction_mode = mode;
7840 /* Punt if len is too large for extraction_mode. */
7841 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7842 return NULL_RTX;
7844 if (!MEM_P (inner))
7845 wanted_inner_mode = wanted_inner_reg_mode;
7846 else
7848 /* Be careful not to go beyond the extracted object and maintain the
7849 natural alignment of the memory. */
7850 wanted_inner_mode = smallest_int_mode_for_size (len);
7851 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7852 > GET_MODE_BITSIZE (wanted_inner_mode))
7853 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7856 orig_pos = pos;
7858 if (BITS_BIG_ENDIAN)
7860 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7861 BITS_BIG_ENDIAN style. If position is constant, compute new
7862 position. Otherwise, build subtraction.
7863 Note that POS is relative to the mode of the original argument.
7864 If it's a MEM we need to recompute POS relative to that.
7865 However, if we're extracting from (or inserting into) a register,
7866 we want to recompute POS relative to wanted_inner_mode. */
7867 int width;
7868 if (!MEM_P (inner))
7869 width = GET_MODE_BITSIZE (wanted_inner_mode);
7870 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7871 return NULL_RTX;
7873 if (pos_rtx == 0)
7874 pos = width - len - pos;
7875 else
7876 pos_rtx
7877 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7878 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7879 pos_rtx);
7880 /* POS may be less than 0 now, but we check for that below.
7881 Note that it can only be less than 0 if !MEM_P (inner). */
7884 /* If INNER has a wider mode, and this is a constant extraction, try to
7885 make it smaller and adjust the byte to point to the byte containing
7886 the value. */
7887 if (wanted_inner_mode != VOIDmode
7888 && inner_mode != wanted_inner_mode
7889 && ! pos_rtx
7890 && partial_subreg_p (wanted_inner_mode, is_mode)
7891 && MEM_P (inner)
7892 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7893 && ! MEM_VOLATILE_P (inner))
7895 poly_int64 offset = 0;
7897 /* The computations below will be correct if the machine is big
7898 endian in both bits and bytes or little endian in bits and bytes.
7899 If it is mixed, we must adjust. */
7901 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7902 adjust OFFSET to compensate. */
7903 if (BYTES_BIG_ENDIAN
7904 && paradoxical_subreg_p (is_mode, inner_mode))
7905 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7907 /* We can now move to the desired byte. */
7908 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7909 * GET_MODE_SIZE (wanted_inner_mode);
7910 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7912 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7913 && is_mode != wanted_inner_mode)
7914 offset = (GET_MODE_SIZE (is_mode)
7915 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7917 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7920 /* If INNER is not memory, get it into the proper mode. If we are changing
7921 its mode, POS must be a constant and smaller than the size of the new
7922 mode. */
7923 else if (!MEM_P (inner))
7925 /* On the LHS, don't create paradoxical subregs implicitely truncating
7926 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7927 if (in_dest
7928 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7929 wanted_inner_mode))
7930 return NULL_RTX;
7932 if (GET_MODE (inner) != wanted_inner_mode
7933 && (pos_rtx != 0
7934 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7935 return NULL_RTX;
7937 if (orig_pos < 0)
7938 return NULL_RTX;
7940 inner = force_to_mode (inner, wanted_inner_mode,
7941 pos_rtx
7942 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7943 ? HOST_WIDE_INT_M1U
7944 : (((HOST_WIDE_INT_1U << len) - 1)
7945 << orig_pos),
7949 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7950 have to zero extend. Otherwise, we can just use a SUBREG.
7952 We dealt with constant rtxes earlier, so pos_rtx cannot
7953 have VOIDmode at this point. */
7954 if (pos_rtx != 0
7955 && (GET_MODE_SIZE (pos_mode)
7956 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7958 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7959 GET_MODE (pos_rtx));
7961 /* If we know that no extraneous bits are set, and that the high
7962 bit is not set, convert extraction to cheaper one - either
7963 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7964 cases. */
7965 if (flag_expensive_optimizations
7966 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7967 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7968 & ~(((unsigned HOST_WIDE_INT)
7969 GET_MODE_MASK (GET_MODE (pos_rtx)))
7970 >> 1))
7971 == 0)))
7973 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7974 GET_MODE (pos_rtx));
7976 /* Prefer ZERO_EXTENSION, since it gives more information to
7977 backends. */
7978 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7979 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7980 temp = temp1;
7982 pos_rtx = temp;
7985 /* Make POS_RTX unless we already have it and it is correct. If we don't
7986 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7987 be a CONST_INT. */
7988 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7989 pos_rtx = orig_pos_rtx;
7991 else if (pos_rtx == 0)
7992 pos_rtx = GEN_INT (pos);
7994 /* Make the required operation. See if we can use existing rtx. */
7995 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7996 extraction_mode, inner, GEN_INT (len), pos_rtx);
7997 if (! in_dest)
7998 new_rtx = gen_lowpart (mode, new_rtx);
8000 return new_rtx;
8003 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8004 can be commuted with any other operations in X. Return X without
8005 that shift if so. */
8007 static rtx
8008 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8010 enum rtx_code code = GET_CODE (x);
8011 rtx tem;
8013 switch (code)
8015 case ASHIFT:
8016 /* This is the shift itself. If it is wide enough, we will return
8017 either the value being shifted if the shift count is equal to
8018 COUNT or a shift for the difference. */
8019 if (CONST_INT_P (XEXP (x, 1))
8020 && INTVAL (XEXP (x, 1)) >= count)
8021 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8022 INTVAL (XEXP (x, 1)) - count);
8023 break;
8025 case NEG: case NOT:
8026 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8027 return simplify_gen_unary (code, mode, tem, mode);
8029 break;
8031 case PLUS: case IOR: case XOR: case AND:
8032 /* If we can safely shift this constant and we find the inner shift,
8033 make a new operation. */
8034 if (CONST_INT_P (XEXP (x, 1))
8035 && (UINTVAL (XEXP (x, 1))
8036 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8037 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8039 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8040 return simplify_gen_binary (code, mode, tem,
8041 gen_int_mode (val, mode));
8043 break;
8045 default:
8046 break;
8049 return 0;
8052 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8053 level of the expression and MODE is its mode. IN_CODE is as for
8054 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8055 that should be used when recursing on operands of *X_PTR.
8057 There are two possible actions:
8059 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8060 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8062 - Return a new rtx, which the caller returns directly. */
8064 static rtx
8065 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8066 enum rtx_code in_code,
8067 enum rtx_code *next_code_ptr)
8069 rtx x = *x_ptr;
8070 enum rtx_code next_code = *next_code_ptr;
8071 enum rtx_code code = GET_CODE (x);
8072 int mode_width = GET_MODE_PRECISION (mode);
8073 rtx rhs, lhs;
8074 rtx new_rtx = 0;
8075 int i;
8076 rtx tem;
8077 scalar_int_mode inner_mode;
8078 bool equality_comparison = false;
8080 if (in_code == EQ)
8082 equality_comparison = true;
8083 in_code = COMPARE;
8086 /* Process depending on the code of this operation. If NEW is set
8087 nonzero, it will be returned. */
8089 switch (code)
8091 case ASHIFT:
8092 /* Convert shifts by constants into multiplications if inside
8093 an address. */
8094 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8095 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8096 && INTVAL (XEXP (x, 1)) >= 0)
8098 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8099 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8101 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8102 if (GET_CODE (new_rtx) == NEG)
8104 new_rtx = XEXP (new_rtx, 0);
8105 multval = -multval;
8107 multval = trunc_int_for_mode (multval, mode);
8108 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8110 break;
8112 case PLUS:
8113 lhs = XEXP (x, 0);
8114 rhs = XEXP (x, 1);
8115 lhs = make_compound_operation (lhs, next_code);
8116 rhs = make_compound_operation (rhs, next_code);
8117 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8119 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8120 XEXP (lhs, 1));
8121 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8123 else if (GET_CODE (lhs) == MULT
8124 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8126 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8127 simplify_gen_unary (NEG, mode,
8128 XEXP (lhs, 1),
8129 mode));
8130 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8132 else
8134 SUBST (XEXP (x, 0), lhs);
8135 SUBST (XEXP (x, 1), rhs);
8137 maybe_swap_commutative_operands (x);
8138 return x;
8140 case MINUS:
8141 lhs = XEXP (x, 0);
8142 rhs = XEXP (x, 1);
8143 lhs = make_compound_operation (lhs, next_code);
8144 rhs = make_compound_operation (rhs, next_code);
8145 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8147 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8148 XEXP (rhs, 1));
8149 return simplify_gen_binary (PLUS, mode, tem, lhs);
8151 else if (GET_CODE (rhs) == MULT
8152 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8154 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8155 simplify_gen_unary (NEG, mode,
8156 XEXP (rhs, 1),
8157 mode));
8158 return simplify_gen_binary (PLUS, mode, tem, lhs);
8160 else
8162 SUBST (XEXP (x, 0), lhs);
8163 SUBST (XEXP (x, 1), rhs);
8164 return x;
8167 case AND:
8168 /* If the second operand is not a constant, we can't do anything
8169 with it. */
8170 if (!CONST_INT_P (XEXP (x, 1)))
8171 break;
8173 /* If the constant is a power of two minus one and the first operand
8174 is a logical right shift, make an extraction. */
8175 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8176 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8178 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8179 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8180 i, 1, 0, in_code == COMPARE);
8183 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8184 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8185 && subreg_lowpart_p (XEXP (x, 0))
8186 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8187 &inner_mode)
8188 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8189 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8191 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8192 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8193 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8194 XEXP (inner_x0, 1),
8195 i, 1, 0, in_code == COMPARE);
8197 /* If we narrowed the mode when dropping the subreg, then we lose. */
8198 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8199 new_rtx = NULL;
8201 /* If that didn't give anything, see if the AND simplifies on
8202 its own. */
8203 if (!new_rtx && i >= 0)
8205 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8206 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8207 0, in_code == COMPARE);
8210 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8211 else if ((GET_CODE (XEXP (x, 0)) == XOR
8212 || GET_CODE (XEXP (x, 0)) == IOR)
8213 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8214 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8215 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8217 /* Apply the distributive law, and then try to make extractions. */
8218 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8219 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8220 XEXP (x, 1)),
8221 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8222 XEXP (x, 1)));
8223 new_rtx = make_compound_operation (new_rtx, in_code);
8226 /* If we are have (and (rotate X C) M) and C is larger than the number
8227 of bits in M, this is an extraction. */
8229 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8230 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8231 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8232 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8234 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8235 new_rtx = make_extraction (mode, new_rtx,
8236 (GET_MODE_PRECISION (mode)
8237 - INTVAL (XEXP (XEXP (x, 0), 1))),
8238 NULL_RTX, i, 1, 0, in_code == COMPARE);
8241 /* On machines without logical shifts, if the operand of the AND is
8242 a logical shift and our mask turns off all the propagated sign
8243 bits, we can replace the logical shift with an arithmetic shift. */
8244 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8245 && !have_insn_for (LSHIFTRT, mode)
8246 && have_insn_for (ASHIFTRT, mode)
8247 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8248 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8249 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8250 && mode_width <= HOST_BITS_PER_WIDE_INT)
8252 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8254 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8255 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8256 SUBST (XEXP (x, 0),
8257 gen_rtx_ASHIFTRT (mode,
8258 make_compound_operation (XEXP (XEXP (x,
8261 next_code),
8262 XEXP (XEXP (x, 0), 1)));
8265 /* If the constant is one less than a power of two, this might be
8266 representable by an extraction even if no shift is present.
8267 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8268 we are in a COMPARE. */
8269 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8270 new_rtx = make_extraction (mode,
8271 make_compound_operation (XEXP (x, 0),
8272 next_code),
8273 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8275 /* If we are in a comparison and this is an AND with a power of two,
8276 convert this into the appropriate bit extract. */
8277 else if (in_code == COMPARE
8278 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8279 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8280 new_rtx = make_extraction (mode,
8281 make_compound_operation (XEXP (x, 0),
8282 next_code),
8283 i, NULL_RTX, 1, 1, 0, 1);
8285 /* If the one operand is a paradoxical subreg of a register or memory and
8286 the constant (limited to the smaller mode) has only zero bits where
8287 the sub expression has known zero bits, this can be expressed as
8288 a zero_extend. */
8289 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8291 rtx sub;
8293 sub = XEXP (XEXP (x, 0), 0);
8294 machine_mode sub_mode = GET_MODE (sub);
8295 int sub_width;
8296 if ((REG_P (sub) || MEM_P (sub))
8297 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8298 && sub_width < mode_width)
8300 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8301 unsigned HOST_WIDE_INT mask;
8303 /* original AND constant with all the known zero bits set */
8304 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8305 if ((mask & mode_mask) == mode_mask)
8307 new_rtx = make_compound_operation (sub, next_code);
8308 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8309 1, 0, in_code == COMPARE);
8314 break;
8316 case LSHIFTRT:
8317 /* If the sign bit is known to be zero, replace this with an
8318 arithmetic shift. */
8319 if (have_insn_for (ASHIFTRT, mode)
8320 && ! have_insn_for (LSHIFTRT, mode)
8321 && mode_width <= HOST_BITS_PER_WIDE_INT
8322 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8324 new_rtx = gen_rtx_ASHIFTRT (mode,
8325 make_compound_operation (XEXP (x, 0),
8326 next_code),
8327 XEXP (x, 1));
8328 break;
8331 /* fall through */
8333 case ASHIFTRT:
8334 lhs = XEXP (x, 0);
8335 rhs = XEXP (x, 1);
8337 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8338 this is a SIGN_EXTRACT. */
8339 if (CONST_INT_P (rhs)
8340 && GET_CODE (lhs) == ASHIFT
8341 && CONST_INT_P (XEXP (lhs, 1))
8342 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8343 && INTVAL (XEXP (lhs, 1)) >= 0
8344 && INTVAL (rhs) < mode_width)
8346 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8347 new_rtx = make_extraction (mode, new_rtx,
8348 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8349 NULL_RTX, mode_width - INTVAL (rhs),
8350 code == LSHIFTRT, 0, in_code == COMPARE);
8351 break;
8354 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8355 If so, try to merge the shifts into a SIGN_EXTEND. We could
8356 also do this for some cases of SIGN_EXTRACT, but it doesn't
8357 seem worth the effort; the case checked for occurs on Alpha. */
8359 if (!OBJECT_P (lhs)
8360 && ! (GET_CODE (lhs) == SUBREG
8361 && (OBJECT_P (SUBREG_REG (lhs))))
8362 && CONST_INT_P (rhs)
8363 && INTVAL (rhs) >= 0
8364 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8365 && INTVAL (rhs) < mode_width
8366 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8367 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8368 next_code),
8369 0, NULL_RTX, mode_width - INTVAL (rhs),
8370 code == LSHIFTRT, 0, in_code == COMPARE);
8372 break;
8374 case SUBREG:
8375 /* Call ourselves recursively on the inner expression. If we are
8376 narrowing the object and it has a different RTL code from
8377 what it originally did, do this SUBREG as a force_to_mode. */
8379 rtx inner = SUBREG_REG (x), simplified;
8380 enum rtx_code subreg_code = in_code;
8382 /* If the SUBREG is masking of a logical right shift,
8383 make an extraction. */
8384 if (GET_CODE (inner) == LSHIFTRT
8385 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8386 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8387 && CONST_INT_P (XEXP (inner, 1))
8388 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8389 && subreg_lowpart_p (x))
8391 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8392 int width = GET_MODE_PRECISION (inner_mode)
8393 - INTVAL (XEXP (inner, 1));
8394 if (width > mode_width)
8395 width = mode_width;
8396 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8397 width, 1, 0, in_code == COMPARE);
8398 break;
8401 /* If in_code is COMPARE, it isn't always safe to pass it through
8402 to the recursive make_compound_operation call. */
8403 if (subreg_code == COMPARE
8404 && (!subreg_lowpart_p (x)
8405 || GET_CODE (inner) == SUBREG
8406 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8407 is (const_int 0), rather than
8408 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8409 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8410 for non-equality comparisons against 0 is not equivalent
8411 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8412 || (GET_CODE (inner) == AND
8413 && CONST_INT_P (XEXP (inner, 1))
8414 && partial_subreg_p (x)
8415 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8416 >= GET_MODE_BITSIZE (mode) - 1)))
8417 subreg_code = SET;
8419 tem = make_compound_operation (inner, subreg_code);
8421 simplified
8422 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8423 if (simplified)
8424 tem = simplified;
8426 if (GET_CODE (tem) != GET_CODE (inner)
8427 && partial_subreg_p (x)
8428 && subreg_lowpart_p (x))
8430 rtx newer
8431 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8433 /* If we have something other than a SUBREG, we might have
8434 done an expansion, so rerun ourselves. */
8435 if (GET_CODE (newer) != SUBREG)
8436 newer = make_compound_operation (newer, in_code);
8438 /* force_to_mode can expand compounds. If it just re-expanded
8439 the compound, use gen_lowpart to convert to the desired
8440 mode. */
8441 if (rtx_equal_p (newer, x)
8442 /* Likewise if it re-expanded the compound only partially.
8443 This happens for SUBREG of ZERO_EXTRACT if they extract
8444 the same number of bits. */
8445 || (GET_CODE (newer) == SUBREG
8446 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8447 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8448 && GET_CODE (inner) == AND
8449 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8450 return gen_lowpart (GET_MODE (x), tem);
8452 return newer;
8455 if (simplified)
8456 return tem;
8458 break;
8460 default:
8461 break;
8464 if (new_rtx)
8465 *x_ptr = gen_lowpart (mode, new_rtx);
8466 *next_code_ptr = next_code;
8467 return NULL_RTX;
8470 /* Look at the expression rooted at X. Look for expressions
8471 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8472 Form these expressions.
8474 Return the new rtx, usually just X.
8476 Also, for machines like the VAX that don't have logical shift insns,
8477 try to convert logical to arithmetic shift operations in cases where
8478 they are equivalent. This undoes the canonicalizations to logical
8479 shifts done elsewhere.
8481 We try, as much as possible, to re-use rtl expressions to save memory.
8483 IN_CODE says what kind of expression we are processing. Normally, it is
8484 SET. In a memory address it is MEM. When processing the arguments of
8485 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8486 precisely it is an equality comparison against zero. */
8489 make_compound_operation (rtx x, enum rtx_code in_code)
8491 enum rtx_code code = GET_CODE (x);
8492 const char *fmt;
8493 int i, j;
8494 enum rtx_code next_code;
8495 rtx new_rtx, tem;
8497 /* Select the code to be used in recursive calls. Once we are inside an
8498 address, we stay there. If we have a comparison, set to COMPARE,
8499 but once inside, go back to our default of SET. */
8501 next_code = (code == MEM ? MEM
8502 : ((code == COMPARE || COMPARISON_P (x))
8503 && XEXP (x, 1) == const0_rtx) ? COMPARE
8504 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8506 scalar_int_mode mode;
8507 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8509 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8510 &next_code);
8511 if (new_rtx)
8512 return new_rtx;
8513 code = GET_CODE (x);
8516 /* Now recursively process each operand of this operation. We need to
8517 handle ZERO_EXTEND specially so that we don't lose track of the
8518 inner mode. */
8519 if (code == ZERO_EXTEND)
8521 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8522 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8523 new_rtx, GET_MODE (XEXP (x, 0)));
8524 if (tem)
8525 return tem;
8526 SUBST (XEXP (x, 0), new_rtx);
8527 return x;
8530 fmt = GET_RTX_FORMAT (code);
8531 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8532 if (fmt[i] == 'e')
8534 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8535 SUBST (XEXP (x, i), new_rtx);
8537 else if (fmt[i] == 'E')
8538 for (j = 0; j < XVECLEN (x, i); j++)
8540 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8541 SUBST (XVECEXP (x, i, j), new_rtx);
8544 maybe_swap_commutative_operands (x);
8545 return x;
8548 /* Given M see if it is a value that would select a field of bits
8549 within an item, but not the entire word. Return -1 if not.
8550 Otherwise, return the starting position of the field, where 0 is the
8551 low-order bit.
8553 *PLEN is set to the length of the field. */
8555 static int
8556 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8558 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8559 int pos = m ? ctz_hwi (m) : -1;
8560 int len = 0;
8562 if (pos >= 0)
8563 /* Now shift off the low-order zero bits and see if we have a
8564 power of two minus 1. */
8565 len = exact_log2 ((m >> pos) + 1);
8567 if (len <= 0)
8568 pos = -1;
8570 *plen = len;
8571 return pos;
8574 /* If X refers to a register that equals REG in value, replace these
8575 references with REG. */
8576 static rtx
8577 canon_reg_for_combine (rtx x, rtx reg)
8579 rtx op0, op1, op2;
8580 const char *fmt;
8581 int i;
8582 bool copied;
8584 enum rtx_code code = GET_CODE (x);
8585 switch (GET_RTX_CLASS (code))
8587 case RTX_UNARY:
8588 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8589 if (op0 != XEXP (x, 0))
8590 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8591 GET_MODE (reg));
8592 break;
8594 case RTX_BIN_ARITH:
8595 case RTX_COMM_ARITH:
8596 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8597 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8598 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8599 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8600 break;
8602 case RTX_COMPARE:
8603 case RTX_COMM_COMPARE:
8604 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8605 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8606 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8607 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8608 GET_MODE (op0), op0, op1);
8609 break;
8611 case RTX_TERNARY:
8612 case RTX_BITFIELD_OPS:
8613 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8614 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8615 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8616 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8617 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8618 GET_MODE (op0), op0, op1, op2);
8619 /* FALLTHRU */
8621 case RTX_OBJ:
8622 if (REG_P (x))
8624 if (rtx_equal_p (get_last_value (reg), x)
8625 || rtx_equal_p (reg, get_last_value (x)))
8626 return reg;
8627 else
8628 break;
8631 /* fall through */
8633 default:
8634 fmt = GET_RTX_FORMAT (code);
8635 copied = false;
8636 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8637 if (fmt[i] == 'e')
8639 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8640 if (op != XEXP (x, i))
8642 if (!copied)
8644 copied = true;
8645 x = copy_rtx (x);
8647 XEXP (x, i) = op;
8650 else if (fmt[i] == 'E')
8652 int j;
8653 for (j = 0; j < XVECLEN (x, i); j++)
8655 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8656 if (op != XVECEXP (x, i, j))
8658 if (!copied)
8660 copied = true;
8661 x = copy_rtx (x);
8663 XVECEXP (x, i, j) = op;
8668 break;
8671 return x;
8674 /* Return X converted to MODE. If the value is already truncated to
8675 MODE we can just return a subreg even though in the general case we
8676 would need an explicit truncation. */
8678 static rtx
8679 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8681 if (!CONST_INT_P (x)
8682 && partial_subreg_p (mode, GET_MODE (x))
8683 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8684 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8686 /* Bit-cast X into an integer mode. */
8687 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8688 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8689 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8690 x, GET_MODE (x));
8693 return gen_lowpart (mode, x);
8696 /* See if X can be simplified knowing that we will only refer to it in
8697 MODE and will only refer to those bits that are nonzero in MASK.
8698 If other bits are being computed or if masking operations are done
8699 that select a superset of the bits in MASK, they can sometimes be
8700 ignored.
8702 Return a possibly simplified expression, but always convert X to
8703 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8705 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8706 are all off in X. This is used when X will be complemented, by either
8707 NOT, NEG, or XOR. */
8709 static rtx
8710 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8711 int just_select)
8713 enum rtx_code code = GET_CODE (x);
8714 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8715 machine_mode op_mode;
8716 unsigned HOST_WIDE_INT nonzero;
8718 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8719 code below will do the wrong thing since the mode of such an
8720 expression is VOIDmode.
8722 Also do nothing if X is a CLOBBER; this can happen if X was
8723 the return value from a call to gen_lowpart. */
8724 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8725 return x;
8727 /* We want to perform the operation in its present mode unless we know
8728 that the operation is valid in MODE, in which case we do the operation
8729 in MODE. */
8730 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8731 && have_insn_for (code, mode))
8732 ? mode : GET_MODE (x));
8734 /* It is not valid to do a right-shift in a narrower mode
8735 than the one it came in with. */
8736 if ((code == LSHIFTRT || code == ASHIFTRT)
8737 && partial_subreg_p (mode, GET_MODE (x)))
8738 op_mode = GET_MODE (x);
8740 /* Truncate MASK to fit OP_MODE. */
8741 if (op_mode)
8742 mask &= GET_MODE_MASK (op_mode);
8744 /* Determine what bits of X are guaranteed to be (non)zero. */
8745 nonzero = nonzero_bits (x, mode);
8747 /* If none of the bits in X are needed, return a zero. */
8748 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8749 x = const0_rtx;
8751 /* If X is a CONST_INT, return a new one. Do this here since the
8752 test below will fail. */
8753 if (CONST_INT_P (x))
8755 if (SCALAR_INT_MODE_P (mode))
8756 return gen_int_mode (INTVAL (x) & mask, mode);
8757 else
8759 x = GEN_INT (INTVAL (x) & mask);
8760 return gen_lowpart_common (mode, x);
8764 /* If X is narrower than MODE and we want all the bits in X's mode, just
8765 get X in the proper mode. */
8766 if (paradoxical_subreg_p (mode, GET_MODE (x))
8767 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8768 return gen_lowpart (mode, x);
8770 /* We can ignore the effect of a SUBREG if it narrows the mode or
8771 if the constant masks to zero all the bits the mode doesn't have. */
8772 if (GET_CODE (x) == SUBREG
8773 && subreg_lowpart_p (x)
8774 && (partial_subreg_p (x)
8775 || (mask
8776 & GET_MODE_MASK (GET_MODE (x))
8777 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8778 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8780 scalar_int_mode int_mode, xmode;
8781 if (is_a <scalar_int_mode> (mode, &int_mode)
8782 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8783 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8784 integer too. */
8785 return force_int_to_mode (x, int_mode, xmode,
8786 as_a <scalar_int_mode> (op_mode),
8787 mask, just_select);
8789 return gen_lowpart_or_truncate (mode, x);
8792 /* Subroutine of force_to_mode that handles cases in which both X and
8793 the result are scalar integers. MODE is the mode of the result,
8794 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8795 is preferred for simplified versions of X. The other arguments
8796 are as for force_to_mode. */
8798 static rtx
8799 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8800 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8801 int just_select)
8803 enum rtx_code code = GET_CODE (x);
8804 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8805 unsigned HOST_WIDE_INT fuller_mask;
8806 rtx op0, op1, temp;
8807 poly_int64 const_op0;
8809 /* When we have an arithmetic operation, or a shift whose count we
8810 do not know, we need to assume that all bits up to the highest-order
8811 bit in MASK will be needed. This is how we form such a mask. */
8812 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8813 fuller_mask = HOST_WIDE_INT_M1U;
8814 else
8815 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8816 - 1);
8818 switch (code)
8820 case CLOBBER:
8821 /* If X is a (clobber (const_int)), return it since we know we are
8822 generating something that won't match. */
8823 return x;
8825 case SIGN_EXTEND:
8826 case ZERO_EXTEND:
8827 case ZERO_EXTRACT:
8828 case SIGN_EXTRACT:
8829 x = expand_compound_operation (x);
8830 if (GET_CODE (x) != code)
8831 return force_to_mode (x, mode, mask, next_select);
8832 break;
8834 case TRUNCATE:
8835 /* Similarly for a truncate. */
8836 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8838 case AND:
8839 /* If this is an AND with a constant, convert it into an AND
8840 whose constant is the AND of that constant with MASK. If it
8841 remains an AND of MASK, delete it since it is redundant. */
8843 if (CONST_INT_P (XEXP (x, 1)))
8845 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8846 mask & INTVAL (XEXP (x, 1)));
8847 xmode = op_mode;
8849 /* If X is still an AND, see if it is an AND with a mask that
8850 is just some low-order bits. If so, and it is MASK, we don't
8851 need it. */
8853 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8854 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8855 x = XEXP (x, 0);
8857 /* If it remains an AND, try making another AND with the bits
8858 in the mode mask that aren't in MASK turned on. If the
8859 constant in the AND is wide enough, this might make a
8860 cheaper constant. */
8862 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8863 && GET_MODE_MASK (xmode) != mask
8864 && HWI_COMPUTABLE_MODE_P (xmode))
8866 unsigned HOST_WIDE_INT cval
8867 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8868 rtx y;
8870 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8871 gen_int_mode (cval, xmode));
8872 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8873 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8874 x = y;
8877 break;
8880 goto binop;
8882 case PLUS:
8883 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8884 low-order bits (as in an alignment operation) and FOO is already
8885 aligned to that boundary, mask C1 to that boundary as well.
8886 This may eliminate that PLUS and, later, the AND. */
8889 unsigned int width = GET_MODE_PRECISION (mode);
8890 unsigned HOST_WIDE_INT smask = mask;
8892 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8893 number, sign extend it. */
8895 if (width < HOST_BITS_PER_WIDE_INT
8896 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8897 smask |= HOST_WIDE_INT_M1U << width;
8899 if (CONST_INT_P (XEXP (x, 1))
8900 && pow2p_hwi (- smask)
8901 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8902 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8903 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8904 (INTVAL (XEXP (x, 1)) & smask)),
8905 mode, smask, next_select);
8908 /* fall through */
8910 case MULT:
8911 /* Substituting into the operands of a widening MULT is not likely to
8912 create RTL matching a machine insn. */
8913 if (code == MULT
8914 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8915 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8916 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8917 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8918 && REG_P (XEXP (XEXP (x, 0), 0))
8919 && REG_P (XEXP (XEXP (x, 1), 0)))
8920 return gen_lowpart_or_truncate (mode, x);
8922 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8923 most significant bit in MASK since carries from those bits will
8924 affect the bits we are interested in. */
8925 mask = fuller_mask;
8926 goto binop;
8928 case MINUS:
8929 /* If X is (minus C Y) where C's least set bit is larger than any bit
8930 in the mask, then we may replace with (neg Y). */
8931 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8932 && known_alignment (poly_uint64 (const_op0)) > mask)
8934 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8935 return force_to_mode (x, mode, mask, next_select);
8938 /* Similarly, if C contains every bit in the fuller_mask, then we may
8939 replace with (not Y). */
8940 if (CONST_INT_P (XEXP (x, 0))
8941 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8943 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8944 return force_to_mode (x, mode, mask, next_select);
8947 mask = fuller_mask;
8948 goto binop;
8950 case IOR:
8951 case XOR:
8952 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8953 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8954 operation which may be a bitfield extraction. Ensure that the
8955 constant we form is not wider than the mode of X. */
8957 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8958 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8959 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8960 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8961 && CONST_INT_P (XEXP (x, 1))
8962 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8963 + floor_log2 (INTVAL (XEXP (x, 1))))
8964 < GET_MODE_PRECISION (xmode))
8965 && (UINTVAL (XEXP (x, 1))
8966 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8968 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8969 << INTVAL (XEXP (XEXP (x, 0), 1)),
8970 xmode);
8971 temp = simplify_gen_binary (GET_CODE (x), xmode,
8972 XEXP (XEXP (x, 0), 0), temp);
8973 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8974 XEXP (XEXP (x, 0), 1));
8975 return force_to_mode (x, mode, mask, next_select);
8978 binop:
8979 /* For most binary operations, just propagate into the operation and
8980 change the mode if we have an operation of that mode. */
8982 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8983 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8985 /* If we ended up truncating both operands, truncate the result of the
8986 operation instead. */
8987 if (GET_CODE (op0) == TRUNCATE
8988 && GET_CODE (op1) == TRUNCATE)
8990 op0 = XEXP (op0, 0);
8991 op1 = XEXP (op1, 0);
8994 op0 = gen_lowpart_or_truncate (op_mode, op0);
8995 op1 = gen_lowpart_or_truncate (op_mode, op1);
8997 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8999 x = simplify_gen_binary (code, op_mode, op0, op1);
9000 xmode = op_mode;
9002 break;
9004 case ASHIFT:
9005 /* For left shifts, do the same, but just for the first operand.
9006 However, we cannot do anything with shifts where we cannot
9007 guarantee that the counts are smaller than the size of the mode
9008 because such a count will have a different meaning in a
9009 wider mode. */
9011 if (! (CONST_INT_P (XEXP (x, 1))
9012 && INTVAL (XEXP (x, 1)) >= 0
9013 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9014 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9015 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9016 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9017 break;
9019 /* If the shift count is a constant and we can do arithmetic in
9020 the mode of the shift, refine which bits we need. Otherwise, use the
9021 conservative form of the mask. */
9022 if (CONST_INT_P (XEXP (x, 1))
9023 && INTVAL (XEXP (x, 1)) >= 0
9024 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9025 && HWI_COMPUTABLE_MODE_P (op_mode))
9026 mask >>= INTVAL (XEXP (x, 1));
9027 else
9028 mask = fuller_mask;
9030 op0 = gen_lowpart_or_truncate (op_mode,
9031 force_to_mode (XEXP (x, 0), mode,
9032 mask, next_select));
9034 if (op_mode != xmode || op0 != XEXP (x, 0))
9036 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9037 xmode = op_mode;
9039 break;
9041 case LSHIFTRT:
9042 /* Here we can only do something if the shift count is a constant,
9043 this shift constant is valid for the host, and we can do arithmetic
9044 in OP_MODE. */
9046 if (CONST_INT_P (XEXP (x, 1))
9047 && INTVAL (XEXP (x, 1)) >= 0
9048 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9049 && HWI_COMPUTABLE_MODE_P (op_mode))
9051 rtx inner = XEXP (x, 0);
9052 unsigned HOST_WIDE_INT inner_mask;
9054 /* Select the mask of the bits we need for the shift operand. */
9055 inner_mask = mask << INTVAL (XEXP (x, 1));
9057 /* We can only change the mode of the shift if we can do arithmetic
9058 in the mode of the shift and INNER_MASK is no wider than the
9059 width of X's mode. */
9060 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9061 op_mode = xmode;
9063 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9065 if (xmode != op_mode || inner != XEXP (x, 0))
9067 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9068 xmode = op_mode;
9072 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9073 shift and AND produces only copies of the sign bit (C2 is one less
9074 than a power of two), we can do this with just a shift. */
9076 if (GET_CODE (x) == LSHIFTRT
9077 && CONST_INT_P (XEXP (x, 1))
9078 /* The shift puts one of the sign bit copies in the least significant
9079 bit. */
9080 && ((INTVAL (XEXP (x, 1))
9081 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9082 >= GET_MODE_PRECISION (xmode))
9083 && pow2p_hwi (mask + 1)
9084 /* Number of bits left after the shift must be more than the mask
9085 needs. */
9086 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9087 <= GET_MODE_PRECISION (xmode))
9088 /* Must be more sign bit copies than the mask needs. */
9089 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9090 >= exact_log2 (mask + 1)))
9092 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9093 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9094 gen_int_shift_amount (xmode, nbits));
9096 goto shiftrt;
9098 case ASHIFTRT:
9099 /* If we are just looking for the sign bit, we don't need this shift at
9100 all, even if it has a variable count. */
9101 if (val_signbit_p (xmode, mask))
9102 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9104 /* If this is a shift by a constant, get a mask that contains those bits
9105 that are not copies of the sign bit. We then have two cases: If
9106 MASK only includes those bits, this can be a logical shift, which may
9107 allow simplifications. If MASK is a single-bit field not within
9108 those bits, we are requesting a copy of the sign bit and hence can
9109 shift the sign bit to the appropriate location. */
9111 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9112 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9114 unsigned HOST_WIDE_INT nonzero;
9115 int i;
9117 /* If the considered data is wider than HOST_WIDE_INT, we can't
9118 represent a mask for all its bits in a single scalar.
9119 But we only care about the lower bits, so calculate these. */
9121 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9123 nonzero = HOST_WIDE_INT_M1U;
9125 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9126 is the number of bits a full-width mask would have set.
9127 We need only shift if these are fewer than nonzero can
9128 hold. If not, we must keep all bits set in nonzero. */
9130 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9131 < HOST_BITS_PER_WIDE_INT)
9132 nonzero >>= INTVAL (XEXP (x, 1))
9133 + HOST_BITS_PER_WIDE_INT
9134 - GET_MODE_PRECISION (xmode);
9136 else
9138 nonzero = GET_MODE_MASK (xmode);
9139 nonzero >>= INTVAL (XEXP (x, 1));
9142 if ((mask & ~nonzero) == 0)
9144 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9145 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9146 if (GET_CODE (x) != ASHIFTRT)
9147 return force_to_mode (x, mode, mask, next_select);
9150 else if ((i = exact_log2 (mask)) >= 0)
9152 x = simplify_shift_const
9153 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9154 GET_MODE_PRECISION (xmode) - 1 - i);
9156 if (GET_CODE (x) != ASHIFTRT)
9157 return force_to_mode (x, mode, mask, next_select);
9161 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9162 even if the shift count isn't a constant. */
9163 if (mask == 1)
9164 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9166 shiftrt:
9168 /* If this is a zero- or sign-extension operation that just affects bits
9169 we don't care about, remove it. Be sure the call above returned
9170 something that is still a shift. */
9172 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9173 && CONST_INT_P (XEXP (x, 1))
9174 && INTVAL (XEXP (x, 1)) >= 0
9175 && (INTVAL (XEXP (x, 1))
9176 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9177 && GET_CODE (XEXP (x, 0)) == ASHIFT
9178 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9179 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9180 next_select);
9182 break;
9184 case ROTATE:
9185 case ROTATERT:
9186 /* If the shift count is constant and we can do computations
9187 in the mode of X, compute where the bits we care about are.
9188 Otherwise, we can't do anything. Don't change the mode of
9189 the shift or propagate MODE into the shift, though. */
9190 if (CONST_INT_P (XEXP (x, 1))
9191 && INTVAL (XEXP (x, 1)) >= 0)
9193 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9194 xmode, gen_int_mode (mask, xmode),
9195 XEXP (x, 1));
9196 if (temp && CONST_INT_P (temp))
9197 x = simplify_gen_binary (code, xmode,
9198 force_to_mode (XEXP (x, 0), xmode,
9199 INTVAL (temp), next_select),
9200 XEXP (x, 1));
9202 break;
9204 case NEG:
9205 /* If we just want the low-order bit, the NEG isn't needed since it
9206 won't change the low-order bit. */
9207 if (mask == 1)
9208 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9210 /* We need any bits less significant than the most significant bit in
9211 MASK since carries from those bits will affect the bits we are
9212 interested in. */
9213 mask = fuller_mask;
9214 goto unop;
9216 case NOT:
9217 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9218 same as the XOR case above. Ensure that the constant we form is not
9219 wider than the mode of X. */
9221 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9222 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9223 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9224 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9225 < GET_MODE_PRECISION (xmode))
9226 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9228 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9229 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9230 x = simplify_gen_binary (LSHIFTRT, xmode,
9231 temp, XEXP (XEXP (x, 0), 1));
9233 return force_to_mode (x, mode, mask, next_select);
9236 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9237 use the full mask inside the NOT. */
9238 mask = fuller_mask;
9240 unop:
9241 op0 = gen_lowpart_or_truncate (op_mode,
9242 force_to_mode (XEXP (x, 0), mode, mask,
9243 next_select));
9244 if (op_mode != xmode || op0 != XEXP (x, 0))
9246 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9247 xmode = op_mode;
9249 break;
9251 case NE:
9252 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9253 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9254 which is equal to STORE_FLAG_VALUE. */
9255 if ((mask & ~STORE_FLAG_VALUE) == 0
9256 && XEXP (x, 1) == const0_rtx
9257 && GET_MODE (XEXP (x, 0)) == mode
9258 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9259 && (nonzero_bits (XEXP (x, 0), mode)
9260 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9261 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9263 break;
9265 case IF_THEN_ELSE:
9266 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9267 written in a narrower mode. We play it safe and do not do so. */
9269 op0 = gen_lowpart_or_truncate (xmode,
9270 force_to_mode (XEXP (x, 1), mode,
9271 mask, next_select));
9272 op1 = gen_lowpart_or_truncate (xmode,
9273 force_to_mode (XEXP (x, 2), mode,
9274 mask, next_select));
9275 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9276 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9277 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9278 op0, op1);
9279 break;
9281 default:
9282 break;
9285 /* Ensure we return a value of the proper mode. */
9286 return gen_lowpart_or_truncate (mode, x);
9289 /* Return nonzero if X is an expression that has one of two values depending on
9290 whether some other value is zero or nonzero. In that case, we return the
9291 value that is being tested, *PTRUE is set to the value if the rtx being
9292 returned has a nonzero value, and *PFALSE is set to the other alternative.
9294 If we return zero, we set *PTRUE and *PFALSE to X. */
9296 static rtx
9297 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9299 machine_mode mode = GET_MODE (x);
9300 enum rtx_code code = GET_CODE (x);
9301 rtx cond0, cond1, true0, true1, false0, false1;
9302 unsigned HOST_WIDE_INT nz;
9303 scalar_int_mode int_mode;
9305 /* If we are comparing a value against zero, we are done. */
9306 if ((code == NE || code == EQ)
9307 && XEXP (x, 1) == const0_rtx)
9309 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9310 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9311 return XEXP (x, 0);
9314 /* If this is a unary operation whose operand has one of two values, apply
9315 our opcode to compute those values. */
9316 else if (UNARY_P (x)
9317 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9319 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9320 *pfalse = simplify_gen_unary (code, mode, false0,
9321 GET_MODE (XEXP (x, 0)));
9322 return cond0;
9325 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9326 make can't possibly match and would suppress other optimizations. */
9327 else if (code == COMPARE)
9330 /* If this is a binary operation, see if either side has only one of two
9331 values. If either one does or if both do and they are conditional on
9332 the same value, compute the new true and false values. */
9333 else if (BINARY_P (x))
9335 rtx op0 = XEXP (x, 0);
9336 rtx op1 = XEXP (x, 1);
9337 cond0 = if_then_else_cond (op0, &true0, &false0);
9338 cond1 = if_then_else_cond (op1, &true1, &false1);
9340 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9341 && (REG_P (op0) || REG_P (op1)))
9343 /* Try to enable a simplification by undoing work done by
9344 if_then_else_cond if it converted a REG into something more
9345 complex. */
9346 if (REG_P (op0))
9348 cond0 = 0;
9349 true0 = false0 = op0;
9351 else
9353 cond1 = 0;
9354 true1 = false1 = op1;
9358 if ((cond0 != 0 || cond1 != 0)
9359 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9361 /* If if_then_else_cond returned zero, then true/false are the
9362 same rtl. We must copy one of them to prevent invalid rtl
9363 sharing. */
9364 if (cond0 == 0)
9365 true0 = copy_rtx (true0);
9366 else if (cond1 == 0)
9367 true1 = copy_rtx (true1);
9369 if (COMPARISON_P (x))
9371 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9372 true0, true1);
9373 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9374 false0, false1);
9376 else
9378 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9379 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9382 return cond0 ? cond0 : cond1;
9385 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9386 operands is zero when the other is nonzero, and vice-versa,
9387 and STORE_FLAG_VALUE is 1 or -1. */
9389 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9390 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9391 || code == UMAX)
9392 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9394 rtx op0 = XEXP (XEXP (x, 0), 1);
9395 rtx op1 = XEXP (XEXP (x, 1), 1);
9397 cond0 = XEXP (XEXP (x, 0), 0);
9398 cond1 = XEXP (XEXP (x, 1), 0);
9400 if (COMPARISON_P (cond0)
9401 && COMPARISON_P (cond1)
9402 && SCALAR_INT_MODE_P (mode)
9403 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9404 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9405 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9406 || ((swap_condition (GET_CODE (cond0))
9407 == reversed_comparison_code (cond1, NULL))
9408 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9409 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9410 && ! side_effects_p (x))
9412 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9413 *pfalse = simplify_gen_binary (MULT, mode,
9414 (code == MINUS
9415 ? simplify_gen_unary (NEG, mode,
9416 op1, mode)
9417 : op1),
9418 const_true_rtx);
9419 return cond0;
9423 /* Similarly for MULT, AND and UMIN, except that for these the result
9424 is always zero. */
9425 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9426 && (code == MULT || code == AND || code == UMIN)
9427 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9429 cond0 = XEXP (XEXP (x, 0), 0);
9430 cond1 = XEXP (XEXP (x, 1), 0);
9432 if (COMPARISON_P (cond0)
9433 && COMPARISON_P (cond1)
9434 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9435 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9436 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9437 || ((swap_condition (GET_CODE (cond0))
9438 == reversed_comparison_code (cond1, NULL))
9439 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9440 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9441 && ! side_effects_p (x))
9443 *ptrue = *pfalse = const0_rtx;
9444 return cond0;
9449 else if (code == IF_THEN_ELSE)
9451 /* If we have IF_THEN_ELSE already, extract the condition and
9452 canonicalize it if it is NE or EQ. */
9453 cond0 = XEXP (x, 0);
9454 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9455 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9456 return XEXP (cond0, 0);
9457 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9459 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9460 return XEXP (cond0, 0);
9462 else
9463 return cond0;
9466 /* If X is a SUBREG, we can narrow both the true and false values
9467 if the inner expression, if there is a condition. */
9468 else if (code == SUBREG
9469 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9470 &false0)) != 0)
9472 true0 = simplify_gen_subreg (mode, true0,
9473 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9474 false0 = simplify_gen_subreg (mode, false0,
9475 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9476 if (true0 && false0)
9478 *ptrue = true0;
9479 *pfalse = false0;
9480 return cond0;
9484 /* If X is a constant, this isn't special and will cause confusions
9485 if we treat it as such. Likewise if it is equivalent to a constant. */
9486 else if (CONSTANT_P (x)
9487 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9490 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9491 will be least confusing to the rest of the compiler. */
9492 else if (mode == BImode)
9494 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9495 return x;
9498 /* If X is known to be either 0 or -1, those are the true and
9499 false values when testing X. */
9500 else if (x == constm1_rtx || x == const0_rtx
9501 || (is_a <scalar_int_mode> (mode, &int_mode)
9502 && (num_sign_bit_copies (x, int_mode)
9503 == GET_MODE_PRECISION (int_mode))))
9505 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9506 return x;
9509 /* Likewise for 0 or a single bit. */
9510 else if (HWI_COMPUTABLE_MODE_P (mode)
9511 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9513 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9514 return x;
9517 /* Otherwise fail; show no condition with true and false values the same. */
9518 *ptrue = *pfalse = x;
9519 return 0;
9522 /* Return the value of expression X given the fact that condition COND
9523 is known to be true when applied to REG as its first operand and VAL
9524 as its second. X is known to not be shared and so can be modified in
9525 place.
9527 We only handle the simplest cases, and specifically those cases that
9528 arise with IF_THEN_ELSE expressions. */
9530 static rtx
9531 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9533 enum rtx_code code = GET_CODE (x);
9534 const char *fmt;
9535 int i, j;
9537 if (side_effects_p (x))
9538 return x;
9540 /* If either operand of the condition is a floating point value,
9541 then we have to avoid collapsing an EQ comparison. */
9542 if (cond == EQ
9543 && rtx_equal_p (x, reg)
9544 && ! FLOAT_MODE_P (GET_MODE (x))
9545 && ! FLOAT_MODE_P (GET_MODE (val)))
9546 return val;
9548 if (cond == UNEQ && rtx_equal_p (x, reg))
9549 return val;
9551 /* If X is (abs REG) and we know something about REG's relationship
9552 with zero, we may be able to simplify this. */
9554 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9555 switch (cond)
9557 case GE: case GT: case EQ:
9558 return XEXP (x, 0);
9559 case LT: case LE:
9560 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9561 XEXP (x, 0),
9562 GET_MODE (XEXP (x, 0)));
9563 default:
9564 break;
9567 /* The only other cases we handle are MIN, MAX, and comparisons if the
9568 operands are the same as REG and VAL. */
9570 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9572 if (rtx_equal_p (XEXP (x, 0), val))
9574 std::swap (val, reg);
9575 cond = swap_condition (cond);
9578 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9580 if (COMPARISON_P (x))
9582 if (comparison_dominates_p (cond, code))
9583 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9585 code = reversed_comparison_code (x, NULL);
9586 if (code != UNKNOWN
9587 && comparison_dominates_p (cond, code))
9588 return CONST0_RTX (GET_MODE (x));
9589 else
9590 return x;
9592 else if (code == SMAX || code == SMIN
9593 || code == UMIN || code == UMAX)
9595 int unsignedp = (code == UMIN || code == UMAX);
9597 /* Do not reverse the condition when it is NE or EQ.
9598 This is because we cannot conclude anything about
9599 the value of 'SMAX (x, y)' when x is not equal to y,
9600 but we can when x equals y. */
9601 if ((code == SMAX || code == UMAX)
9602 && ! (cond == EQ || cond == NE))
9603 cond = reverse_condition (cond);
9605 switch (cond)
9607 case GE: case GT:
9608 return unsignedp ? x : XEXP (x, 1);
9609 case LE: case LT:
9610 return unsignedp ? x : XEXP (x, 0);
9611 case GEU: case GTU:
9612 return unsignedp ? XEXP (x, 1) : x;
9613 case LEU: case LTU:
9614 return unsignedp ? XEXP (x, 0) : x;
9615 default:
9616 break;
9621 else if (code == SUBREG)
9623 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9624 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9626 if (SUBREG_REG (x) != r)
9628 /* We must simplify subreg here, before we lose track of the
9629 original inner_mode. */
9630 new_rtx = simplify_subreg (GET_MODE (x), r,
9631 inner_mode, SUBREG_BYTE (x));
9632 if (new_rtx)
9633 return new_rtx;
9634 else
9635 SUBST (SUBREG_REG (x), r);
9638 return x;
9640 /* We don't have to handle SIGN_EXTEND here, because even in the
9641 case of replacing something with a modeless CONST_INT, a
9642 CONST_INT is already (supposed to be) a valid sign extension for
9643 its narrower mode, which implies it's already properly
9644 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9645 story is different. */
9646 else if (code == ZERO_EXTEND)
9648 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9649 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9651 if (XEXP (x, 0) != r)
9653 /* We must simplify the zero_extend here, before we lose
9654 track of the original inner_mode. */
9655 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9656 r, inner_mode);
9657 if (new_rtx)
9658 return new_rtx;
9659 else
9660 SUBST (XEXP (x, 0), r);
9663 return x;
9666 fmt = GET_RTX_FORMAT (code);
9667 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9669 if (fmt[i] == 'e')
9670 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9671 else if (fmt[i] == 'E')
9672 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9673 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9674 cond, reg, val));
9677 return x;
9680 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9681 assignment as a field assignment. */
9683 static int
9684 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9686 if (widen_x && GET_MODE (x) != GET_MODE (y))
9688 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9689 return 0;
9690 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9691 return 0;
9692 x = adjust_address_nv (x, GET_MODE (y),
9693 byte_lowpart_offset (GET_MODE (y),
9694 GET_MODE (x)));
9697 if (x == y || rtx_equal_p (x, y))
9698 return 1;
9700 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9701 return 0;
9703 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9704 Note that all SUBREGs of MEM are paradoxical; otherwise they
9705 would have been rewritten. */
9706 if (MEM_P (x) && GET_CODE (y) == SUBREG
9707 && MEM_P (SUBREG_REG (y))
9708 && rtx_equal_p (SUBREG_REG (y),
9709 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9710 return 1;
9712 if (MEM_P (y) && GET_CODE (x) == SUBREG
9713 && MEM_P (SUBREG_REG (x))
9714 && rtx_equal_p (SUBREG_REG (x),
9715 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9716 return 1;
9718 /* We used to see if get_last_value of X and Y were the same but that's
9719 not correct. In one direction, we'll cause the assignment to have
9720 the wrong destination and in the case, we'll import a register into this
9721 insn that might have already have been dead. So fail if none of the
9722 above cases are true. */
9723 return 0;
9726 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9727 Return that assignment if so.
9729 We only handle the most common cases. */
9731 static rtx
9732 make_field_assignment (rtx x)
9734 rtx dest = SET_DEST (x);
9735 rtx src = SET_SRC (x);
9736 rtx assign;
9737 rtx rhs, lhs;
9738 HOST_WIDE_INT c1;
9739 HOST_WIDE_INT pos;
9740 unsigned HOST_WIDE_INT len;
9741 rtx other;
9743 /* All the rules in this function are specific to scalar integers. */
9744 scalar_int_mode mode;
9745 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9746 return x;
9748 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9749 a clear of a one-bit field. We will have changed it to
9750 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9751 for a SUBREG. */
9753 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9754 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9755 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9756 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9758 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9759 1, 1, 1, 0);
9760 if (assign != 0)
9761 return gen_rtx_SET (assign, const0_rtx);
9762 return x;
9765 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9766 && subreg_lowpart_p (XEXP (src, 0))
9767 && partial_subreg_p (XEXP (src, 0))
9768 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9769 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9770 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9771 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9773 assign = make_extraction (VOIDmode, dest, 0,
9774 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9775 1, 1, 1, 0);
9776 if (assign != 0)
9777 return gen_rtx_SET (assign, const0_rtx);
9778 return x;
9781 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9782 one-bit field. */
9783 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9784 && XEXP (XEXP (src, 0), 0) == const1_rtx
9785 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9787 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9788 1, 1, 1, 0);
9789 if (assign != 0)
9790 return gen_rtx_SET (assign, const1_rtx);
9791 return x;
9794 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9795 SRC is an AND with all bits of that field set, then we can discard
9796 the AND. */
9797 if (GET_CODE (dest) == ZERO_EXTRACT
9798 && CONST_INT_P (XEXP (dest, 1))
9799 && GET_CODE (src) == AND
9800 && CONST_INT_P (XEXP (src, 1)))
9802 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9803 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9804 unsigned HOST_WIDE_INT ze_mask;
9806 if (width >= HOST_BITS_PER_WIDE_INT)
9807 ze_mask = -1;
9808 else
9809 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9811 /* Complete overlap. We can remove the source AND. */
9812 if ((and_mask & ze_mask) == ze_mask)
9813 return gen_rtx_SET (dest, XEXP (src, 0));
9815 /* Partial overlap. We can reduce the source AND. */
9816 if ((and_mask & ze_mask) != and_mask)
9818 src = gen_rtx_AND (mode, XEXP (src, 0),
9819 gen_int_mode (and_mask & ze_mask, mode));
9820 return gen_rtx_SET (dest, src);
9824 /* The other case we handle is assignments into a constant-position
9825 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9826 a mask that has all one bits except for a group of zero bits and
9827 OTHER is known to have zeros where C1 has ones, this is such an
9828 assignment. Compute the position and length from C1. Shift OTHER
9829 to the appropriate position, force it to the required mode, and
9830 make the extraction. Check for the AND in both operands. */
9832 /* One or more SUBREGs might obscure the constant-position field
9833 assignment. The first one we are likely to encounter is an outer
9834 narrowing SUBREG, which we can just strip for the purposes of
9835 identifying the constant-field assignment. */
9836 scalar_int_mode src_mode = mode;
9837 if (GET_CODE (src) == SUBREG
9838 && subreg_lowpart_p (src)
9839 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9840 src = SUBREG_REG (src);
9842 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9843 return x;
9845 rhs = expand_compound_operation (XEXP (src, 0));
9846 lhs = expand_compound_operation (XEXP (src, 1));
9848 if (GET_CODE (rhs) == AND
9849 && CONST_INT_P (XEXP (rhs, 1))
9850 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9851 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9852 /* The second SUBREG that might get in the way is a paradoxical
9853 SUBREG around the first operand of the AND. We want to
9854 pretend the operand is as wide as the destination here. We
9855 do this by adjusting the MEM to wider mode for the sole
9856 purpose of the call to rtx_equal_for_field_assignment_p. Also
9857 note this trick only works for MEMs. */
9858 else if (GET_CODE (rhs) == AND
9859 && paradoxical_subreg_p (XEXP (rhs, 0))
9860 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9861 && CONST_INT_P (XEXP (rhs, 1))
9862 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9863 dest, true))
9864 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9865 else if (GET_CODE (lhs) == AND
9866 && CONST_INT_P (XEXP (lhs, 1))
9867 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9868 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9869 /* The second SUBREG that might get in the way is a paradoxical
9870 SUBREG around the first operand of the AND. We want to
9871 pretend the operand is as wide as the destination here. We
9872 do this by adjusting the MEM to wider mode for the sole
9873 purpose of the call to rtx_equal_for_field_assignment_p. Also
9874 note this trick only works for MEMs. */
9875 else if (GET_CODE (lhs) == AND
9876 && paradoxical_subreg_p (XEXP (lhs, 0))
9877 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9878 && CONST_INT_P (XEXP (lhs, 1))
9879 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9880 dest, true))
9881 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9882 else
9883 return x;
9885 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9886 if (pos < 0
9887 || pos + len > GET_MODE_PRECISION (mode)
9888 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9889 || (c1 & nonzero_bits (other, mode)) != 0)
9890 return x;
9892 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9893 if (assign == 0)
9894 return x;
9896 /* The mode to use for the source is the mode of the assignment, or of
9897 what is inside a possible STRICT_LOW_PART. */
9898 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9899 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9901 /* Shift OTHER right POS places and make it the source, restricting it
9902 to the proper length and mode. */
9904 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9905 src_mode, other, pos),
9906 dest);
9907 src = force_to_mode (src, new_mode,
9908 len >= HOST_BITS_PER_WIDE_INT
9909 ? HOST_WIDE_INT_M1U
9910 : (HOST_WIDE_INT_1U << len) - 1,
9913 /* If SRC is masked by an AND that does not make a difference in
9914 the value being stored, strip it. */
9915 if (GET_CODE (assign) == ZERO_EXTRACT
9916 && CONST_INT_P (XEXP (assign, 1))
9917 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9918 && GET_CODE (src) == AND
9919 && CONST_INT_P (XEXP (src, 1))
9920 && UINTVAL (XEXP (src, 1))
9921 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9922 src = XEXP (src, 0);
9924 return gen_rtx_SET (assign, src);
9927 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9928 if so. */
9930 static rtx
9931 apply_distributive_law (rtx x)
9933 enum rtx_code code = GET_CODE (x);
9934 enum rtx_code inner_code;
9935 rtx lhs, rhs, other;
9936 rtx tem;
9938 /* Distributivity is not true for floating point as it can change the
9939 value. So we don't do it unless -funsafe-math-optimizations. */
9940 if (FLOAT_MODE_P (GET_MODE (x))
9941 && ! flag_unsafe_math_optimizations)
9942 return x;
9944 /* The outer operation can only be one of the following: */
9945 if (code != IOR && code != AND && code != XOR
9946 && code != PLUS && code != MINUS)
9947 return x;
9949 lhs = XEXP (x, 0);
9950 rhs = XEXP (x, 1);
9952 /* If either operand is a primitive we can't do anything, so get out
9953 fast. */
9954 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9955 return x;
9957 lhs = expand_compound_operation (lhs);
9958 rhs = expand_compound_operation (rhs);
9959 inner_code = GET_CODE (lhs);
9960 if (inner_code != GET_CODE (rhs))
9961 return x;
9963 /* See if the inner and outer operations distribute. */
9964 switch (inner_code)
9966 case LSHIFTRT:
9967 case ASHIFTRT:
9968 case AND:
9969 case IOR:
9970 /* These all distribute except over PLUS. */
9971 if (code == PLUS || code == MINUS)
9972 return x;
9973 break;
9975 case MULT:
9976 if (code != PLUS && code != MINUS)
9977 return x;
9978 break;
9980 case ASHIFT:
9981 /* This is also a multiply, so it distributes over everything. */
9982 break;
9984 /* This used to handle SUBREG, but this turned out to be counter-
9985 productive, since (subreg (op ...)) usually is not handled by
9986 insn patterns, and this "optimization" therefore transformed
9987 recognizable patterns into unrecognizable ones. Therefore the
9988 SUBREG case was removed from here.
9990 It is possible that distributing SUBREG over arithmetic operations
9991 leads to an intermediate result than can then be optimized further,
9992 e.g. by moving the outer SUBREG to the other side of a SET as done
9993 in simplify_set. This seems to have been the original intent of
9994 handling SUBREGs here.
9996 However, with current GCC this does not appear to actually happen,
9997 at least on major platforms. If some case is found where removing
9998 the SUBREG case here prevents follow-on optimizations, distributing
9999 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10001 default:
10002 return x;
10005 /* Set LHS and RHS to the inner operands (A and B in the example
10006 above) and set OTHER to the common operand (C in the example).
10007 There is only one way to do this unless the inner operation is
10008 commutative. */
10009 if (COMMUTATIVE_ARITH_P (lhs)
10010 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10011 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10012 else if (COMMUTATIVE_ARITH_P (lhs)
10013 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10014 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10015 else if (COMMUTATIVE_ARITH_P (lhs)
10016 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10017 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10018 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10019 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10020 else
10021 return x;
10023 /* Form the new inner operation, seeing if it simplifies first. */
10024 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10026 /* There is one exception to the general way of distributing:
10027 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10028 if (code == XOR && inner_code == IOR)
10030 inner_code = AND;
10031 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10034 /* We may be able to continuing distributing the result, so call
10035 ourselves recursively on the inner operation before forming the
10036 outer operation, which we return. */
10037 return simplify_gen_binary (inner_code, GET_MODE (x),
10038 apply_distributive_law (tem), other);
10041 /* See if X is of the form (* (+ A B) C), and if so convert to
10042 (+ (* A C) (* B C)) and try to simplify.
10044 Most of the time, this results in no change. However, if some of
10045 the operands are the same or inverses of each other, simplifications
10046 will result.
10048 For example, (and (ior A B) (not B)) can occur as the result of
10049 expanding a bit field assignment. When we apply the distributive
10050 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10051 which then simplifies to (and (A (not B))).
10053 Note that no checks happen on the validity of applying the inverse
10054 distributive law. This is pointless since we can do it in the
10055 few places where this routine is called.
10057 N is the index of the term that is decomposed (the arithmetic operation,
10058 i.e. (+ A B) in the first example above). !N is the index of the term that
10059 is distributed, i.e. of C in the first example above. */
10060 static rtx
10061 distribute_and_simplify_rtx (rtx x, int n)
10063 machine_mode mode;
10064 enum rtx_code outer_code, inner_code;
10065 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10067 /* Distributivity is not true for floating point as it can change the
10068 value. So we don't do it unless -funsafe-math-optimizations. */
10069 if (FLOAT_MODE_P (GET_MODE (x))
10070 && ! flag_unsafe_math_optimizations)
10071 return NULL_RTX;
10073 decomposed = XEXP (x, n);
10074 if (!ARITHMETIC_P (decomposed))
10075 return NULL_RTX;
10077 mode = GET_MODE (x);
10078 outer_code = GET_CODE (x);
10079 distributed = XEXP (x, !n);
10081 inner_code = GET_CODE (decomposed);
10082 inner_op0 = XEXP (decomposed, 0);
10083 inner_op1 = XEXP (decomposed, 1);
10085 /* Special case (and (xor B C) (not A)), which is equivalent to
10086 (xor (ior A B) (ior A C)) */
10087 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10089 distributed = XEXP (distributed, 0);
10090 outer_code = IOR;
10093 if (n == 0)
10095 /* Distribute the second term. */
10096 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10097 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10099 else
10101 /* Distribute the first term. */
10102 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10103 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10106 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10107 new_op0, new_op1));
10108 if (GET_CODE (tmp) != outer_code
10109 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10110 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10111 return tmp;
10113 return NULL_RTX;
10116 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10117 in MODE. Return an equivalent form, if different from (and VAROP
10118 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10120 static rtx
10121 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10122 unsigned HOST_WIDE_INT constop)
10124 unsigned HOST_WIDE_INT nonzero;
10125 unsigned HOST_WIDE_INT orig_constop;
10126 rtx orig_varop;
10127 int i;
10129 orig_varop = varop;
10130 orig_constop = constop;
10131 if (GET_CODE (varop) == CLOBBER)
10132 return NULL_RTX;
10134 /* Simplify VAROP knowing that we will be only looking at some of the
10135 bits in it.
10137 Note by passing in CONSTOP, we guarantee that the bits not set in
10138 CONSTOP are not significant and will never be examined. We must
10139 ensure that is the case by explicitly masking out those bits
10140 before returning. */
10141 varop = force_to_mode (varop, mode, constop, 0);
10143 /* If VAROP is a CLOBBER, we will fail so return it. */
10144 if (GET_CODE (varop) == CLOBBER)
10145 return varop;
10147 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10148 to VAROP and return the new constant. */
10149 if (CONST_INT_P (varop))
10150 return gen_int_mode (INTVAL (varop) & constop, mode);
10152 /* See what bits may be nonzero in VAROP. Unlike the general case of
10153 a call to nonzero_bits, here we don't care about bits outside
10154 MODE. */
10156 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10158 /* Turn off all bits in the constant that are known to already be zero.
10159 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10160 which is tested below. */
10162 constop &= nonzero;
10164 /* If we don't have any bits left, return zero. */
10165 if (constop == 0)
10166 return const0_rtx;
10168 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10169 a power of two, we can replace this with an ASHIFT. */
10170 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10171 && (i = exact_log2 (constop)) >= 0)
10172 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10174 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10175 or XOR, then try to apply the distributive law. This may eliminate
10176 operations if either branch can be simplified because of the AND.
10177 It may also make some cases more complex, but those cases probably
10178 won't match a pattern either with or without this. */
10180 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10182 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10183 return
10184 gen_lowpart
10185 (mode,
10186 apply_distributive_law
10187 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10188 simplify_and_const_int (NULL_RTX, varop_mode,
10189 XEXP (varop, 0),
10190 constop),
10191 simplify_and_const_int (NULL_RTX, varop_mode,
10192 XEXP (varop, 1),
10193 constop))));
10196 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10197 the AND and see if one of the operands simplifies to zero. If so, we
10198 may eliminate it. */
10200 if (GET_CODE (varop) == PLUS
10201 && pow2p_hwi (constop + 1))
10203 rtx o0, o1;
10205 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10206 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10207 if (o0 == const0_rtx)
10208 return o1;
10209 if (o1 == const0_rtx)
10210 return o0;
10213 /* Make a SUBREG if necessary. If we can't make it, fail. */
10214 varop = gen_lowpart (mode, varop);
10215 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10216 return NULL_RTX;
10218 /* If we are only masking insignificant bits, return VAROP. */
10219 if (constop == nonzero)
10220 return varop;
10222 if (varop == orig_varop && constop == orig_constop)
10223 return NULL_RTX;
10225 /* Otherwise, return an AND. */
10226 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10230 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10231 in MODE.
10233 Return an equivalent form, if different from X. Otherwise, return X. If
10234 X is zero, we are to always construct the equivalent form. */
10236 static rtx
10237 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10238 unsigned HOST_WIDE_INT constop)
10240 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10241 if (tem)
10242 return tem;
10244 if (!x)
10245 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10246 gen_int_mode (constop, mode));
10247 if (GET_MODE (x) != mode)
10248 x = gen_lowpart (mode, x);
10249 return x;
10252 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10253 We don't care about bits outside of those defined in MODE.
10254 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10256 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10257 a shift, AND, or zero_extract, we can do better. */
10259 static rtx
10260 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10261 scalar_int_mode mode,
10262 unsigned HOST_WIDE_INT *nonzero)
10264 rtx tem;
10265 reg_stat_type *rsp;
10267 /* If X is a register whose nonzero bits value is current, use it.
10268 Otherwise, if X is a register whose value we can find, use that
10269 value. Otherwise, use the previously-computed global nonzero bits
10270 for this register. */
10272 rsp = &reg_stat[REGNO (x)];
10273 if (rsp->last_set_value != 0
10274 && (rsp->last_set_mode == mode
10275 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10276 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10277 && GET_MODE_CLASS (mode) == MODE_INT))
10278 && ((rsp->last_set_label >= label_tick_ebb_start
10279 && rsp->last_set_label < label_tick)
10280 || (rsp->last_set_label == label_tick
10281 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10282 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10283 && REGNO (x) < reg_n_sets_max
10284 && REG_N_SETS (REGNO (x)) == 1
10285 && !REGNO_REG_SET_P
10286 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10287 REGNO (x)))))
10289 /* Note that, even if the precision of last_set_mode is lower than that
10290 of mode, record_value_for_reg invoked nonzero_bits on the register
10291 with nonzero_bits_mode (because last_set_mode is necessarily integral
10292 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10293 are all valid, hence in mode too since nonzero_bits_mode is defined
10294 to the largest HWI_COMPUTABLE_MODE_P mode. */
10295 *nonzero &= rsp->last_set_nonzero_bits;
10296 return NULL;
10299 tem = get_last_value (x);
10300 if (tem)
10302 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10303 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10305 return tem;
10308 if (nonzero_sign_valid && rsp->nonzero_bits)
10310 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10312 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10313 /* We don't know anything about the upper bits. */
10314 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10316 *nonzero &= mask;
10319 return NULL;
10322 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10323 end of X that are known to be equal to the sign bit. X will be used
10324 in mode MODE; the returned value will always be between 1 and the
10325 number of bits in MODE. */
10327 static rtx
10328 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10329 scalar_int_mode mode,
10330 unsigned int *result)
10332 rtx tem;
10333 reg_stat_type *rsp;
10335 rsp = &reg_stat[REGNO (x)];
10336 if (rsp->last_set_value != 0
10337 && rsp->last_set_mode == mode
10338 && ((rsp->last_set_label >= label_tick_ebb_start
10339 && rsp->last_set_label < label_tick)
10340 || (rsp->last_set_label == label_tick
10341 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10342 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10343 && REGNO (x) < reg_n_sets_max
10344 && REG_N_SETS (REGNO (x)) == 1
10345 && !REGNO_REG_SET_P
10346 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10347 REGNO (x)))))
10349 *result = rsp->last_set_sign_bit_copies;
10350 return NULL;
10353 tem = get_last_value (x);
10354 if (tem != 0)
10355 return tem;
10357 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10358 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10359 *result = rsp->sign_bit_copies;
10361 return NULL;
10364 /* Return the number of "extended" bits there are in X, when interpreted
10365 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10366 unsigned quantities, this is the number of high-order zero bits.
10367 For signed quantities, this is the number of copies of the sign bit
10368 minus 1. In both case, this function returns the number of "spare"
10369 bits. For example, if two quantities for which this function returns
10370 at least 1 are added, the addition is known not to overflow.
10372 This function will always return 0 unless called during combine, which
10373 implies that it must be called from a define_split. */
10375 unsigned int
10376 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10378 if (nonzero_sign_valid == 0)
10379 return 0;
10381 scalar_int_mode int_mode;
10382 return (unsignedp
10383 ? (is_a <scalar_int_mode> (mode, &int_mode)
10384 && HWI_COMPUTABLE_MODE_P (int_mode)
10385 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10386 - floor_log2 (nonzero_bits (x, int_mode)))
10387 : 0)
10388 : num_sign_bit_copies (x, mode) - 1);
10391 /* This function is called from `simplify_shift_const' to merge two
10392 outer operations. Specifically, we have already found that we need
10393 to perform operation *POP0 with constant *PCONST0 at the outermost
10394 position. We would now like to also perform OP1 with constant CONST1
10395 (with *POP0 being done last).
10397 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10398 the resulting operation. *PCOMP_P is set to 1 if we would need to
10399 complement the innermost operand, otherwise it is unchanged.
10401 MODE is the mode in which the operation will be done. No bits outside
10402 the width of this mode matter. It is assumed that the width of this mode
10403 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10405 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10406 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10407 result is simply *PCONST0.
10409 If the resulting operation cannot be expressed as one operation, we
10410 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10412 static int
10413 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10415 enum rtx_code op0 = *pop0;
10416 HOST_WIDE_INT const0 = *pconst0;
10418 const0 &= GET_MODE_MASK (mode);
10419 const1 &= GET_MODE_MASK (mode);
10421 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10422 if (op0 == AND)
10423 const1 &= const0;
10425 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10426 if OP0 is SET. */
10428 if (op1 == UNKNOWN || op0 == SET)
10429 return 1;
10431 else if (op0 == UNKNOWN)
10432 op0 = op1, const0 = const1;
10434 else if (op0 == op1)
10436 switch (op0)
10438 case AND:
10439 const0 &= const1;
10440 break;
10441 case IOR:
10442 const0 |= const1;
10443 break;
10444 case XOR:
10445 const0 ^= const1;
10446 break;
10447 case PLUS:
10448 const0 += const1;
10449 break;
10450 case NEG:
10451 op0 = UNKNOWN;
10452 break;
10453 default:
10454 break;
10458 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10459 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10460 return 0;
10462 /* If the two constants aren't the same, we can't do anything. The
10463 remaining six cases can all be done. */
10464 else if (const0 != const1)
10465 return 0;
10467 else
10468 switch (op0)
10470 case IOR:
10471 if (op1 == AND)
10472 /* (a & b) | b == b */
10473 op0 = SET;
10474 else /* op1 == XOR */
10475 /* (a ^ b) | b == a | b */
10477 break;
10479 case XOR:
10480 if (op1 == AND)
10481 /* (a & b) ^ b == (~a) & b */
10482 op0 = AND, *pcomp_p = 1;
10483 else /* op1 == IOR */
10484 /* (a | b) ^ b == a & ~b */
10485 op0 = AND, const0 = ~const0;
10486 break;
10488 case AND:
10489 if (op1 == IOR)
10490 /* (a | b) & b == b */
10491 op0 = SET;
10492 else /* op1 == XOR */
10493 /* (a ^ b) & b) == (~a) & b */
10494 *pcomp_p = 1;
10495 break;
10496 default:
10497 break;
10500 /* Check for NO-OP cases. */
10501 const0 &= GET_MODE_MASK (mode);
10502 if (const0 == 0
10503 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10504 op0 = UNKNOWN;
10505 else if (const0 == 0 && op0 == AND)
10506 op0 = SET;
10507 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10508 && op0 == AND)
10509 op0 = UNKNOWN;
10511 *pop0 = op0;
10513 /* ??? Slightly redundant with the above mask, but not entirely.
10514 Moving this above means we'd have to sign-extend the mode mask
10515 for the final test. */
10516 if (op0 != UNKNOWN && op0 != NEG)
10517 *pconst0 = trunc_int_for_mode (const0, mode);
10519 return 1;
10522 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10523 the shift in. The original shift operation CODE is performed on OP in
10524 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10525 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10526 result of the shift is subject to operation OUTER_CODE with operand
10527 OUTER_CONST. */
10529 static scalar_int_mode
10530 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10531 scalar_int_mode orig_mode, scalar_int_mode mode,
10532 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10534 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10536 /* In general we can't perform in wider mode for right shift and rotate. */
10537 switch (code)
10539 case ASHIFTRT:
10540 /* We can still widen if the bits brought in from the left are identical
10541 to the sign bit of ORIG_MODE. */
10542 if (num_sign_bit_copies (op, mode)
10543 > (unsigned) (GET_MODE_PRECISION (mode)
10544 - GET_MODE_PRECISION (orig_mode)))
10545 return mode;
10546 return orig_mode;
10548 case LSHIFTRT:
10549 /* Similarly here but with zero bits. */
10550 if (HWI_COMPUTABLE_MODE_P (mode)
10551 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10552 return mode;
10554 /* We can also widen if the bits brought in will be masked off. This
10555 operation is performed in ORIG_MODE. */
10556 if (outer_code == AND)
10558 int care_bits = low_bitmask_len (orig_mode, outer_const);
10560 if (care_bits >= 0
10561 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10562 return mode;
10564 /* fall through */
10566 case ROTATE:
10567 return orig_mode;
10569 case ROTATERT:
10570 gcc_unreachable ();
10572 default:
10573 return mode;
10577 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10578 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10579 if we cannot simplify it. Otherwise, return a simplified value.
10581 The shift is normally computed in the widest mode we find in VAROP, as
10582 long as it isn't a different number of words than RESULT_MODE. Exceptions
10583 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10585 static rtx
10586 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10587 rtx varop, int orig_count)
10589 enum rtx_code orig_code = code;
10590 rtx orig_varop = varop;
10591 int count, log2;
10592 machine_mode mode = result_mode;
10593 machine_mode shift_mode;
10594 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10595 /* We form (outer_op (code varop count) (outer_const)). */
10596 enum rtx_code outer_op = UNKNOWN;
10597 HOST_WIDE_INT outer_const = 0;
10598 int complement_p = 0;
10599 rtx new_rtx, x;
10601 /* Make sure and truncate the "natural" shift on the way in. We don't
10602 want to do this inside the loop as it makes it more difficult to
10603 combine shifts. */
10604 if (SHIFT_COUNT_TRUNCATED)
10605 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10607 /* If we were given an invalid count, don't do anything except exactly
10608 what was requested. */
10610 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10611 return NULL_RTX;
10613 count = orig_count;
10615 /* Unless one of the branches of the `if' in this loop does a `continue',
10616 we will `break' the loop after the `if'. */
10618 while (count != 0)
10620 /* If we have an operand of (clobber (const_int 0)), fail. */
10621 if (GET_CODE (varop) == CLOBBER)
10622 return NULL_RTX;
10624 /* Convert ROTATERT to ROTATE. */
10625 if (code == ROTATERT)
10627 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10628 code = ROTATE;
10629 count = bitsize - count;
10632 shift_mode = result_mode;
10633 if (shift_mode != mode)
10635 /* We only change the modes of scalar shifts. */
10636 int_mode = as_a <scalar_int_mode> (mode);
10637 int_result_mode = as_a <scalar_int_mode> (result_mode);
10638 shift_mode = try_widen_shift_mode (code, varop, count,
10639 int_result_mode, int_mode,
10640 outer_op, outer_const);
10643 scalar_int_mode shift_unit_mode
10644 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10646 /* Handle cases where the count is greater than the size of the mode
10647 minus 1. For ASHIFT, use the size minus one as the count (this can
10648 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10649 take the count modulo the size. For other shifts, the result is
10650 zero.
10652 Since these shifts are being produced by the compiler by combining
10653 multiple operations, each of which are defined, we know what the
10654 result is supposed to be. */
10656 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10658 if (code == ASHIFTRT)
10659 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10660 else if (code == ROTATE || code == ROTATERT)
10661 count %= GET_MODE_PRECISION (shift_unit_mode);
10662 else
10664 /* We can't simply return zero because there may be an
10665 outer op. */
10666 varop = const0_rtx;
10667 count = 0;
10668 break;
10672 /* If we discovered we had to complement VAROP, leave. Making a NOT
10673 here would cause an infinite loop. */
10674 if (complement_p)
10675 break;
10677 if (shift_mode == shift_unit_mode)
10679 /* An arithmetic right shift of a quantity known to be -1 or 0
10680 is a no-op. */
10681 if (code == ASHIFTRT
10682 && (num_sign_bit_copies (varop, shift_unit_mode)
10683 == GET_MODE_PRECISION (shift_unit_mode)))
10685 count = 0;
10686 break;
10689 /* If we are doing an arithmetic right shift and discarding all but
10690 the sign bit copies, this is equivalent to doing a shift by the
10691 bitsize minus one. Convert it into that shift because it will
10692 often allow other simplifications. */
10694 if (code == ASHIFTRT
10695 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10696 >= GET_MODE_PRECISION (shift_unit_mode)))
10697 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10699 /* We simplify the tests below and elsewhere by converting
10700 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10701 `make_compound_operation' will convert it to an ASHIFTRT for
10702 those machines (such as VAX) that don't have an LSHIFTRT. */
10703 if (code == ASHIFTRT
10704 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10705 && val_signbit_known_clear_p (shift_unit_mode,
10706 nonzero_bits (varop,
10707 shift_unit_mode)))
10708 code = LSHIFTRT;
10710 if (((code == LSHIFTRT
10711 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10712 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10713 || (code == ASHIFT
10714 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10715 && !((nonzero_bits (varop, shift_unit_mode) << count)
10716 & GET_MODE_MASK (shift_unit_mode))))
10717 && !side_effects_p (varop))
10718 varop = const0_rtx;
10721 switch (GET_CODE (varop))
10723 case SIGN_EXTEND:
10724 case ZERO_EXTEND:
10725 case SIGN_EXTRACT:
10726 case ZERO_EXTRACT:
10727 new_rtx = expand_compound_operation (varop);
10728 if (new_rtx != varop)
10730 varop = new_rtx;
10731 continue;
10733 break;
10735 case MEM:
10736 /* The following rules apply only to scalars. */
10737 if (shift_mode != shift_unit_mode)
10738 break;
10739 int_mode = as_a <scalar_int_mode> (mode);
10741 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10742 minus the width of a smaller mode, we can do this with a
10743 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10744 if ((code == ASHIFTRT || code == LSHIFTRT)
10745 && ! mode_dependent_address_p (XEXP (varop, 0),
10746 MEM_ADDR_SPACE (varop))
10747 && ! MEM_VOLATILE_P (varop)
10748 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10749 .exists (&tmode)))
10751 new_rtx = adjust_address_nv (varop, tmode,
10752 BYTES_BIG_ENDIAN ? 0
10753 : count / BITS_PER_UNIT);
10755 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10756 : ZERO_EXTEND, int_mode, new_rtx);
10757 count = 0;
10758 continue;
10760 break;
10762 case SUBREG:
10763 /* The following rules apply only to scalars. */
10764 if (shift_mode != shift_unit_mode)
10765 break;
10766 int_mode = as_a <scalar_int_mode> (mode);
10767 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10769 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10770 the same number of words as what we've seen so far. Then store
10771 the widest mode in MODE. */
10772 if (subreg_lowpart_p (varop)
10773 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10774 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10775 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10776 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10777 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10779 varop = SUBREG_REG (varop);
10780 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10781 mode = inner_mode;
10782 continue;
10784 break;
10786 case MULT:
10787 /* Some machines use MULT instead of ASHIFT because MULT
10788 is cheaper. But it is still better on those machines to
10789 merge two shifts into one. */
10790 if (CONST_INT_P (XEXP (varop, 1))
10791 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10793 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10794 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10795 XEXP (varop, 0), log2_rtx);
10796 continue;
10798 break;
10800 case UDIV:
10801 /* Similar, for when divides are cheaper. */
10802 if (CONST_INT_P (XEXP (varop, 1))
10803 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10805 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10806 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10807 XEXP (varop, 0), log2_rtx);
10808 continue;
10810 break;
10812 case ASHIFTRT:
10813 /* If we are extracting just the sign bit of an arithmetic
10814 right shift, that shift is not needed. However, the sign
10815 bit of a wider mode may be different from what would be
10816 interpreted as the sign bit in a narrower mode, so, if
10817 the result is narrower, don't discard the shift. */
10818 if (code == LSHIFTRT
10819 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10820 && (GET_MODE_UNIT_BITSIZE (result_mode)
10821 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10823 varop = XEXP (varop, 0);
10824 continue;
10827 /* fall through */
10829 case LSHIFTRT:
10830 case ASHIFT:
10831 case ROTATE:
10832 /* The following rules apply only to scalars. */
10833 if (shift_mode != shift_unit_mode)
10834 break;
10835 int_mode = as_a <scalar_int_mode> (mode);
10836 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10837 int_result_mode = as_a <scalar_int_mode> (result_mode);
10839 /* Here we have two nested shifts. The result is usually the
10840 AND of a new shift with a mask. We compute the result below. */
10841 if (CONST_INT_P (XEXP (varop, 1))
10842 && INTVAL (XEXP (varop, 1)) >= 0
10843 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10844 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10845 && HWI_COMPUTABLE_MODE_P (int_mode))
10847 enum rtx_code first_code = GET_CODE (varop);
10848 unsigned int first_count = INTVAL (XEXP (varop, 1));
10849 unsigned HOST_WIDE_INT mask;
10850 rtx mask_rtx;
10852 /* We have one common special case. We can't do any merging if
10853 the inner code is an ASHIFTRT of a smaller mode. However, if
10854 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10855 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10856 we can convert it to
10857 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10858 This simplifies certain SIGN_EXTEND operations. */
10859 if (code == ASHIFT && first_code == ASHIFTRT
10860 && count == (GET_MODE_PRECISION (int_result_mode)
10861 - GET_MODE_PRECISION (int_varop_mode)))
10863 /* C3 has the low-order C1 bits zero. */
10865 mask = GET_MODE_MASK (int_mode)
10866 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10868 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10869 XEXP (varop, 0), mask);
10870 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10871 int_result_mode, varop, count);
10872 count = first_count;
10873 code = ASHIFTRT;
10874 continue;
10877 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10878 than C1 high-order bits equal to the sign bit, we can convert
10879 this to either an ASHIFT or an ASHIFTRT depending on the
10880 two counts.
10882 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10884 if (code == ASHIFTRT && first_code == ASHIFT
10885 && int_varop_mode == shift_unit_mode
10886 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10887 > first_count))
10889 varop = XEXP (varop, 0);
10890 count -= first_count;
10891 if (count < 0)
10893 count = -count;
10894 code = ASHIFT;
10897 continue;
10900 /* There are some cases we can't do. If CODE is ASHIFTRT,
10901 we can only do this if FIRST_CODE is also ASHIFTRT.
10903 We can't do the case when CODE is ROTATE and FIRST_CODE is
10904 ASHIFTRT.
10906 If the mode of this shift is not the mode of the outer shift,
10907 we can't do this if either shift is a right shift or ROTATE.
10909 Finally, we can't do any of these if the mode is too wide
10910 unless the codes are the same.
10912 Handle the case where the shift codes are the same
10913 first. */
10915 if (code == first_code)
10917 if (int_varop_mode != int_result_mode
10918 && (code == ASHIFTRT || code == LSHIFTRT
10919 || code == ROTATE))
10920 break;
10922 count += first_count;
10923 varop = XEXP (varop, 0);
10924 continue;
10927 if (code == ASHIFTRT
10928 || (code == ROTATE && first_code == ASHIFTRT)
10929 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10930 || (int_varop_mode != int_result_mode
10931 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10932 || first_code == ROTATE
10933 || code == ROTATE)))
10934 break;
10936 /* To compute the mask to apply after the shift, shift the
10937 nonzero bits of the inner shift the same way the
10938 outer shift will. */
10940 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10941 int_result_mode);
10942 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10943 mask_rtx
10944 = simplify_const_binary_operation (code, int_result_mode,
10945 mask_rtx, count_rtx);
10947 /* Give up if we can't compute an outer operation to use. */
10948 if (mask_rtx == 0
10949 || !CONST_INT_P (mask_rtx)
10950 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10951 INTVAL (mask_rtx),
10952 int_result_mode, &complement_p))
10953 break;
10955 /* If the shifts are in the same direction, we add the
10956 counts. Otherwise, we subtract them. */
10957 if ((code == ASHIFTRT || code == LSHIFTRT)
10958 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10959 count += first_count;
10960 else
10961 count -= first_count;
10963 /* If COUNT is positive, the new shift is usually CODE,
10964 except for the two exceptions below, in which case it is
10965 FIRST_CODE. If the count is negative, FIRST_CODE should
10966 always be used */
10967 if (count > 0
10968 && ((first_code == ROTATE && code == ASHIFT)
10969 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10970 code = first_code;
10971 else if (count < 0)
10972 code = first_code, count = -count;
10974 varop = XEXP (varop, 0);
10975 continue;
10978 /* If we have (A << B << C) for any shift, we can convert this to
10979 (A << C << B). This wins if A is a constant. Only try this if
10980 B is not a constant. */
10982 else if (GET_CODE (varop) == code
10983 && CONST_INT_P (XEXP (varop, 0))
10984 && !CONST_INT_P (XEXP (varop, 1)))
10986 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10987 sure the result will be masked. See PR70222. */
10988 if (code == LSHIFTRT
10989 && int_mode != int_result_mode
10990 && !merge_outer_ops (&outer_op, &outer_const, AND,
10991 GET_MODE_MASK (int_result_mode)
10992 >> orig_count, int_result_mode,
10993 &complement_p))
10994 break;
10995 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10996 up outer sign extension (often left and right shift) is
10997 hardly more efficient than the original. See PR70429. */
10998 if (code == ASHIFTRT && int_mode != int_result_mode)
10999 break;
11001 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11002 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11003 XEXP (varop, 0),
11004 count_rtx);
11005 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11006 count = 0;
11007 continue;
11009 break;
11011 case NOT:
11012 /* The following rules apply only to scalars. */
11013 if (shift_mode != shift_unit_mode)
11014 break;
11016 /* Make this fit the case below. */
11017 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11018 continue;
11020 case IOR:
11021 case AND:
11022 case XOR:
11023 /* The following rules apply only to scalars. */
11024 if (shift_mode != shift_unit_mode)
11025 break;
11026 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11027 int_result_mode = as_a <scalar_int_mode> (result_mode);
11029 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11030 with C the size of VAROP - 1 and the shift is logical if
11031 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11032 we have an (le X 0) operation. If we have an arithmetic shift
11033 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11034 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11036 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11037 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11038 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11039 && (code == LSHIFTRT || code == ASHIFTRT)
11040 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11041 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11043 count = 0;
11044 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11045 const0_rtx);
11047 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11048 varop = gen_rtx_NEG (int_varop_mode, varop);
11050 continue;
11053 /* If we have (shift (logical)), move the logical to the outside
11054 to allow it to possibly combine with another logical and the
11055 shift to combine with another shift. This also canonicalizes to
11056 what a ZERO_EXTRACT looks like. Also, some machines have
11057 (and (shift)) insns. */
11059 if (CONST_INT_P (XEXP (varop, 1))
11060 /* We can't do this if we have (ashiftrt (xor)) and the
11061 constant has its sign bit set in shift_unit_mode with
11062 shift_unit_mode wider than result_mode. */
11063 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11064 && int_result_mode != shift_unit_mode
11065 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11066 shift_unit_mode) < 0)
11067 && (new_rtx = simplify_const_binary_operation
11068 (code, int_result_mode,
11069 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11070 gen_int_shift_amount (int_result_mode, count))) != 0
11071 && CONST_INT_P (new_rtx)
11072 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11073 INTVAL (new_rtx), int_result_mode,
11074 &complement_p))
11076 varop = XEXP (varop, 0);
11077 continue;
11080 /* If we can't do that, try to simplify the shift in each arm of the
11081 logical expression, make a new logical expression, and apply
11082 the inverse distributive law. This also can't be done for
11083 (ashiftrt (xor)) where we've widened the shift and the constant
11084 changes the sign bit. */
11085 if (CONST_INT_P (XEXP (varop, 1))
11086 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11087 && int_result_mode != shift_unit_mode
11088 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11089 shift_unit_mode) < 0))
11091 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11092 XEXP (varop, 0), count);
11093 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11094 XEXP (varop, 1), count);
11096 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11097 lhs, rhs);
11098 varop = apply_distributive_law (varop);
11100 count = 0;
11101 continue;
11103 break;
11105 case EQ:
11106 /* The following rules apply only to scalars. */
11107 if (shift_mode != shift_unit_mode)
11108 break;
11109 int_result_mode = as_a <scalar_int_mode> (result_mode);
11111 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11112 says that the sign bit can be tested, FOO has mode MODE, C is
11113 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11114 that may be nonzero. */
11115 if (code == LSHIFTRT
11116 && XEXP (varop, 1) == const0_rtx
11117 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11118 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11119 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11120 && STORE_FLAG_VALUE == -1
11121 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11122 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11123 int_result_mode, &complement_p))
11125 varop = XEXP (varop, 0);
11126 count = 0;
11127 continue;
11129 break;
11131 case NEG:
11132 /* The following rules apply only to scalars. */
11133 if (shift_mode != shift_unit_mode)
11134 break;
11135 int_result_mode = as_a <scalar_int_mode> (result_mode);
11137 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11138 than the number of bits in the mode is equivalent to A. */
11139 if (code == LSHIFTRT
11140 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11141 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11143 varop = XEXP (varop, 0);
11144 count = 0;
11145 continue;
11148 /* NEG commutes with ASHIFT since it is multiplication. Move the
11149 NEG outside to allow shifts to combine. */
11150 if (code == ASHIFT
11151 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11152 int_result_mode, &complement_p))
11154 varop = XEXP (varop, 0);
11155 continue;
11157 break;
11159 case PLUS:
11160 /* The following rules apply only to scalars. */
11161 if (shift_mode != shift_unit_mode)
11162 break;
11163 int_result_mode = as_a <scalar_int_mode> (result_mode);
11165 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11166 is one less than the number of bits in the mode is
11167 equivalent to (xor A 1). */
11168 if (code == LSHIFTRT
11169 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11170 && XEXP (varop, 1) == constm1_rtx
11171 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11172 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11173 int_result_mode, &complement_p))
11175 count = 0;
11176 varop = XEXP (varop, 0);
11177 continue;
11180 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11181 that might be nonzero in BAR are those being shifted out and those
11182 bits are known zero in FOO, we can replace the PLUS with FOO.
11183 Similarly in the other operand order. This code occurs when
11184 we are computing the size of a variable-size array. */
11186 if ((code == ASHIFTRT || code == LSHIFTRT)
11187 && count < HOST_BITS_PER_WIDE_INT
11188 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11189 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11190 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11192 varop = XEXP (varop, 0);
11193 continue;
11195 else if ((code == ASHIFTRT || code == LSHIFTRT)
11196 && count < HOST_BITS_PER_WIDE_INT
11197 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11198 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11199 >> count) == 0
11200 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11201 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11203 varop = XEXP (varop, 1);
11204 continue;
11207 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11208 if (code == ASHIFT
11209 && CONST_INT_P (XEXP (varop, 1))
11210 && (new_rtx = simplify_const_binary_operation
11211 (ASHIFT, int_result_mode,
11212 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11213 gen_int_shift_amount (int_result_mode, count))) != 0
11214 && CONST_INT_P (new_rtx)
11215 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11216 INTVAL (new_rtx), int_result_mode,
11217 &complement_p))
11219 varop = XEXP (varop, 0);
11220 continue;
11223 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11224 signbit', and attempt to change the PLUS to an XOR and move it to
11225 the outer operation as is done above in the AND/IOR/XOR case
11226 leg for shift(logical). See details in logical handling above
11227 for reasoning in doing so. */
11228 if (code == LSHIFTRT
11229 && CONST_INT_P (XEXP (varop, 1))
11230 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11231 && (new_rtx = simplify_const_binary_operation
11232 (code, int_result_mode,
11233 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11234 gen_int_shift_amount (int_result_mode, count))) != 0
11235 && CONST_INT_P (new_rtx)
11236 && merge_outer_ops (&outer_op, &outer_const, XOR,
11237 INTVAL (new_rtx), int_result_mode,
11238 &complement_p))
11240 varop = XEXP (varop, 0);
11241 continue;
11244 break;
11246 case MINUS:
11247 /* The following rules apply only to scalars. */
11248 if (shift_mode != shift_unit_mode)
11249 break;
11250 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11252 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11253 with C the size of VAROP - 1 and the shift is logical if
11254 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11255 we have a (gt X 0) operation. If the shift is arithmetic with
11256 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11257 we have a (neg (gt X 0)) operation. */
11259 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11260 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11261 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11262 && (code == LSHIFTRT || code == ASHIFTRT)
11263 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11264 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11265 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11267 count = 0;
11268 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11269 const0_rtx);
11271 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11272 varop = gen_rtx_NEG (int_varop_mode, varop);
11274 continue;
11276 break;
11278 case TRUNCATE:
11279 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11280 if the truncate does not affect the value. */
11281 if (code == LSHIFTRT
11282 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11283 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11284 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11285 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11286 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11288 rtx varop_inner = XEXP (varop, 0);
11289 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11290 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11291 new_count);
11292 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11293 XEXP (varop_inner, 0),
11294 new_count_rtx);
11295 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11296 count = 0;
11297 continue;
11299 break;
11301 default:
11302 break;
11305 break;
11308 shift_mode = result_mode;
11309 if (shift_mode != mode)
11311 /* We only change the modes of scalar shifts. */
11312 int_mode = as_a <scalar_int_mode> (mode);
11313 int_result_mode = as_a <scalar_int_mode> (result_mode);
11314 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11315 int_mode, outer_op, outer_const);
11318 /* We have now finished analyzing the shift. The result should be
11319 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11320 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11321 to the result of the shift. OUTER_CONST is the relevant constant,
11322 but we must turn off all bits turned off in the shift. */
11324 if (outer_op == UNKNOWN
11325 && orig_code == code && orig_count == count
11326 && varop == orig_varop
11327 && shift_mode == GET_MODE (varop))
11328 return NULL_RTX;
11330 /* Make a SUBREG if necessary. If we can't make it, fail. */
11331 varop = gen_lowpart (shift_mode, varop);
11332 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11333 return NULL_RTX;
11335 /* If we have an outer operation and we just made a shift, it is
11336 possible that we could have simplified the shift were it not
11337 for the outer operation. So try to do the simplification
11338 recursively. */
11340 if (outer_op != UNKNOWN)
11341 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11342 else
11343 x = NULL_RTX;
11345 if (x == NULL_RTX)
11346 x = simplify_gen_binary (code, shift_mode, varop,
11347 gen_int_shift_amount (shift_mode, count));
11349 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11350 turn off all the bits that the shift would have turned off. */
11351 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11352 /* We only change the modes of scalar shifts. */
11353 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11354 x, GET_MODE_MASK (result_mode) >> orig_count);
11356 /* Do the remainder of the processing in RESULT_MODE. */
11357 x = gen_lowpart_or_truncate (result_mode, x);
11359 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11360 operation. */
11361 if (complement_p)
11362 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11364 if (outer_op != UNKNOWN)
11366 int_result_mode = as_a <scalar_int_mode> (result_mode);
11368 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11369 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11370 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11372 if (outer_op == AND)
11373 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11374 else if (outer_op == SET)
11376 /* This means that we have determined that the result is
11377 equivalent to a constant. This should be rare. */
11378 if (!side_effects_p (x))
11379 x = GEN_INT (outer_const);
11381 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11382 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11383 else
11384 x = simplify_gen_binary (outer_op, int_result_mode, x,
11385 GEN_INT (outer_const));
11388 return x;
11391 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11392 The result of the shift is RESULT_MODE. If we cannot simplify it,
11393 return X or, if it is NULL, synthesize the expression with
11394 simplify_gen_binary. Otherwise, return a simplified value.
11396 The shift is normally computed in the widest mode we find in VAROP, as
11397 long as it isn't a different number of words than RESULT_MODE. Exceptions
11398 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11400 static rtx
11401 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11402 rtx varop, int count)
11404 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11405 if (tem)
11406 return tem;
11408 if (!x)
11409 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11410 gen_int_shift_amount (GET_MODE (varop), count));
11411 if (GET_MODE (x) != result_mode)
11412 x = gen_lowpart (result_mode, x);
11413 return x;
11417 /* A subroutine of recog_for_combine. See there for arguments and
11418 return value. */
11420 static int
11421 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11423 rtx pat = *pnewpat;
11424 rtx pat_without_clobbers;
11425 int insn_code_number;
11426 int num_clobbers_to_add = 0;
11427 int i;
11428 rtx notes = NULL_RTX;
11429 rtx old_notes, old_pat;
11430 int old_icode;
11432 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11433 we use to indicate that something didn't match. If we find such a
11434 thing, force rejection. */
11435 if (GET_CODE (pat) == PARALLEL)
11436 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11437 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11438 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11439 return -1;
11441 old_pat = PATTERN (insn);
11442 old_notes = REG_NOTES (insn);
11443 PATTERN (insn) = pat;
11444 REG_NOTES (insn) = NULL_RTX;
11446 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11447 if (dump_file && (dump_flags & TDF_DETAILS))
11449 if (insn_code_number < 0)
11450 fputs ("Failed to match this instruction:\n", dump_file);
11451 else
11452 fputs ("Successfully matched this instruction:\n", dump_file);
11453 print_rtl_single (dump_file, pat);
11456 /* If it isn't, there is the possibility that we previously had an insn
11457 that clobbered some register as a side effect, but the combined
11458 insn doesn't need to do that. So try once more without the clobbers
11459 unless this represents an ASM insn. */
11461 if (insn_code_number < 0 && ! check_asm_operands (pat)
11462 && GET_CODE (pat) == PARALLEL)
11464 int pos;
11466 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11467 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11469 if (i != pos)
11470 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11471 pos++;
11474 SUBST_INT (XVECLEN (pat, 0), pos);
11476 if (pos == 1)
11477 pat = XVECEXP (pat, 0, 0);
11479 PATTERN (insn) = pat;
11480 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11481 if (dump_file && (dump_flags & TDF_DETAILS))
11483 if (insn_code_number < 0)
11484 fputs ("Failed to match this instruction:\n", dump_file);
11485 else
11486 fputs ("Successfully matched this instruction:\n", dump_file);
11487 print_rtl_single (dump_file, pat);
11491 pat_without_clobbers = pat;
11493 PATTERN (insn) = old_pat;
11494 REG_NOTES (insn) = old_notes;
11496 /* Recognize all noop sets, these will be killed by followup pass. */
11497 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11498 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11500 /* If we had any clobbers to add, make a new pattern than contains
11501 them. Then check to make sure that all of them are dead. */
11502 if (num_clobbers_to_add)
11504 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11505 rtvec_alloc (GET_CODE (pat) == PARALLEL
11506 ? (XVECLEN (pat, 0)
11507 + num_clobbers_to_add)
11508 : num_clobbers_to_add + 1));
11510 if (GET_CODE (pat) == PARALLEL)
11511 for (i = 0; i < XVECLEN (pat, 0); i++)
11512 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11513 else
11514 XVECEXP (newpat, 0, 0) = pat;
11516 add_clobbers (newpat, insn_code_number);
11518 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11519 i < XVECLEN (newpat, 0); i++)
11521 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11522 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11523 return -1;
11524 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11526 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11527 notes = alloc_reg_note (REG_UNUSED,
11528 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11531 pat = newpat;
11534 if (insn_code_number >= 0
11535 && insn_code_number != NOOP_MOVE_INSN_CODE)
11537 old_pat = PATTERN (insn);
11538 old_notes = REG_NOTES (insn);
11539 old_icode = INSN_CODE (insn);
11540 PATTERN (insn) = pat;
11541 REG_NOTES (insn) = notes;
11542 INSN_CODE (insn) = insn_code_number;
11544 /* Allow targets to reject combined insn. */
11545 if (!targetm.legitimate_combined_insn (insn))
11547 if (dump_file && (dump_flags & TDF_DETAILS))
11548 fputs ("Instruction not appropriate for target.",
11549 dump_file);
11551 /* Callers expect recog_for_combine to strip
11552 clobbers from the pattern on failure. */
11553 pat = pat_without_clobbers;
11554 notes = NULL_RTX;
11556 insn_code_number = -1;
11559 PATTERN (insn) = old_pat;
11560 REG_NOTES (insn) = old_notes;
11561 INSN_CODE (insn) = old_icode;
11564 *pnewpat = pat;
11565 *pnotes = notes;
11567 return insn_code_number;
11570 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11571 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11572 Return whether anything was so changed. */
11574 static bool
11575 change_zero_ext (rtx pat)
11577 bool changed = false;
11578 rtx *src = &SET_SRC (pat);
11580 subrtx_ptr_iterator::array_type array;
11581 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11583 rtx x = **iter;
11584 scalar_int_mode mode, inner_mode;
11585 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11586 continue;
11587 int size;
11589 if (GET_CODE (x) == ZERO_EXTRACT
11590 && CONST_INT_P (XEXP (x, 1))
11591 && CONST_INT_P (XEXP (x, 2))
11592 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11593 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11595 size = INTVAL (XEXP (x, 1));
11597 int start = INTVAL (XEXP (x, 2));
11598 if (BITS_BIG_ENDIAN)
11599 start = GET_MODE_PRECISION (inner_mode) - size - start;
11601 if (start != 0)
11602 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11603 gen_int_shift_amount (inner_mode, start));
11604 else
11605 x = XEXP (x, 0);
11607 if (mode != inner_mode)
11609 if (REG_P (x) && HARD_REGISTER_P (x)
11610 && !can_change_dest_mode (x, 0, mode))
11611 continue;
11613 x = gen_lowpart_SUBREG (mode, x);
11616 else if (GET_CODE (x) == ZERO_EXTEND
11617 && GET_CODE (XEXP (x, 0)) == SUBREG
11618 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11619 && !paradoxical_subreg_p (XEXP (x, 0))
11620 && subreg_lowpart_p (XEXP (x, 0)))
11622 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11623 size = GET_MODE_PRECISION (inner_mode);
11624 x = SUBREG_REG (XEXP (x, 0));
11625 if (GET_MODE (x) != mode)
11627 if (REG_P (x) && HARD_REGISTER_P (x)
11628 && !can_change_dest_mode (x, 0, mode))
11629 continue;
11631 x = gen_lowpart_SUBREG (mode, x);
11634 else if (GET_CODE (x) == ZERO_EXTEND
11635 && REG_P (XEXP (x, 0))
11636 && HARD_REGISTER_P (XEXP (x, 0))
11637 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11639 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11640 size = GET_MODE_PRECISION (inner_mode);
11641 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11643 else
11644 continue;
11646 if (!(GET_CODE (x) == LSHIFTRT
11647 && CONST_INT_P (XEXP (x, 1))
11648 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11650 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11651 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11654 SUBST (**iter, x);
11655 changed = true;
11658 if (changed)
11659 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11660 maybe_swap_commutative_operands (**iter);
11662 rtx *dst = &SET_DEST (pat);
11663 scalar_int_mode mode;
11664 if (GET_CODE (*dst) == ZERO_EXTRACT
11665 && REG_P (XEXP (*dst, 0))
11666 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11667 && CONST_INT_P (XEXP (*dst, 1))
11668 && CONST_INT_P (XEXP (*dst, 2)))
11670 rtx reg = XEXP (*dst, 0);
11671 int width = INTVAL (XEXP (*dst, 1));
11672 int offset = INTVAL (XEXP (*dst, 2));
11673 int reg_width = GET_MODE_PRECISION (mode);
11674 if (BITS_BIG_ENDIAN)
11675 offset = reg_width - width - offset;
11677 rtx x, y, z, w;
11678 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11679 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11680 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11681 if (offset)
11682 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11683 else
11684 y = SET_SRC (pat);
11685 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11686 w = gen_rtx_IOR (mode, x, z);
11687 SUBST (SET_DEST (pat), reg);
11688 SUBST (SET_SRC (pat), w);
11690 changed = true;
11693 return changed;
11696 /* Like recog, but we receive the address of a pointer to a new pattern.
11697 We try to match the rtx that the pointer points to.
11698 If that fails, we may try to modify or replace the pattern,
11699 storing the replacement into the same pointer object.
11701 Modifications include deletion or addition of CLOBBERs. If the
11702 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11703 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11704 (and undo if that fails).
11706 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11707 the CLOBBERs are placed.
11709 The value is the final insn code from the pattern ultimately matched,
11710 or -1. */
11712 static int
11713 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11715 rtx pat = *pnewpat;
11716 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11717 if (insn_code_number >= 0 || check_asm_operands (pat))
11718 return insn_code_number;
11720 void *marker = get_undo_marker ();
11721 bool changed = false;
11723 if (GET_CODE (pat) == SET)
11724 changed = change_zero_ext (pat);
11725 else if (GET_CODE (pat) == PARALLEL)
11727 int i;
11728 for (i = 0; i < XVECLEN (pat, 0); i++)
11730 rtx set = XVECEXP (pat, 0, i);
11731 if (GET_CODE (set) == SET)
11732 changed |= change_zero_ext (set);
11736 if (changed)
11738 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11740 if (insn_code_number < 0)
11741 undo_to_marker (marker);
11744 return insn_code_number;
11747 /* Like gen_lowpart_general but for use by combine. In combine it
11748 is not possible to create any new pseudoregs. However, it is
11749 safe to create invalid memory addresses, because combine will
11750 try to recognize them and all they will do is make the combine
11751 attempt fail.
11753 If for some reason this cannot do its job, an rtx
11754 (clobber (const_int 0)) is returned.
11755 An insn containing that will not be recognized. */
11757 static rtx
11758 gen_lowpart_for_combine (machine_mode omode, rtx x)
11760 machine_mode imode = GET_MODE (x);
11761 rtx result;
11763 if (omode == imode)
11764 return x;
11766 /* We can only support MODE being wider than a word if X is a
11767 constant integer or has a mode the same size. */
11768 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11769 && ! (CONST_SCALAR_INT_P (x)
11770 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11771 goto fail;
11773 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11774 won't know what to do. So we will strip off the SUBREG here and
11775 process normally. */
11776 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11778 x = SUBREG_REG (x);
11780 /* For use in case we fall down into the address adjustments
11781 further below, we need to adjust the known mode and size of
11782 x; imode and isize, since we just adjusted x. */
11783 imode = GET_MODE (x);
11785 if (imode == omode)
11786 return x;
11789 result = gen_lowpart_common (omode, x);
11791 if (result)
11792 return result;
11794 if (MEM_P (x))
11796 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11797 address. */
11798 if (MEM_VOLATILE_P (x)
11799 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11800 goto fail;
11802 /* If we want to refer to something bigger than the original memref,
11803 generate a paradoxical subreg instead. That will force a reload
11804 of the original memref X. */
11805 if (paradoxical_subreg_p (omode, imode))
11806 return gen_rtx_SUBREG (omode, x, 0);
11808 poly_int64 offset = byte_lowpart_offset (omode, imode);
11809 return adjust_address_nv (x, omode, offset);
11812 /* If X is a comparison operator, rewrite it in a new mode. This
11813 probably won't match, but may allow further simplifications. */
11814 else if (COMPARISON_P (x))
11815 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11817 /* If we couldn't simplify X any other way, just enclose it in a
11818 SUBREG. Normally, this SUBREG won't match, but some patterns may
11819 include an explicit SUBREG or we may simplify it further in combine. */
11820 else
11822 rtx res;
11824 if (imode == VOIDmode)
11826 imode = int_mode_for_mode (omode).require ();
11827 x = gen_lowpart_common (imode, x);
11828 if (x == NULL)
11829 goto fail;
11831 res = lowpart_subreg (omode, x, imode);
11832 if (res)
11833 return res;
11836 fail:
11837 return gen_rtx_CLOBBER (omode, const0_rtx);
11840 /* Try to simplify a comparison between OP0 and a constant OP1,
11841 where CODE is the comparison code that will be tested, into a
11842 (CODE OP0 const0_rtx) form.
11844 The result is a possibly different comparison code to use.
11845 *POP1 may be updated. */
11847 static enum rtx_code
11848 simplify_compare_const (enum rtx_code code, machine_mode mode,
11849 rtx op0, rtx *pop1)
11851 scalar_int_mode int_mode;
11852 HOST_WIDE_INT const_op = INTVAL (*pop1);
11854 /* Get the constant we are comparing against and turn off all bits
11855 not on in our mode. */
11856 if (mode != VOIDmode)
11857 const_op = trunc_int_for_mode (const_op, mode);
11859 /* If we are comparing against a constant power of two and the value
11860 being compared can only have that single bit nonzero (e.g., it was
11861 `and'ed with that bit), we can replace this with a comparison
11862 with zero. */
11863 if (const_op
11864 && (code == EQ || code == NE || code == GE || code == GEU
11865 || code == LT || code == LTU)
11866 && is_a <scalar_int_mode> (mode, &int_mode)
11867 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11868 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11869 && (nonzero_bits (op0, int_mode)
11870 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11872 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11873 const_op = 0;
11876 /* Similarly, if we are comparing a value known to be either -1 or
11877 0 with -1, change it to the opposite comparison against zero. */
11878 if (const_op == -1
11879 && (code == EQ || code == NE || code == GT || code == LE
11880 || code == GEU || code == LTU)
11881 && is_a <scalar_int_mode> (mode, &int_mode)
11882 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11884 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11885 const_op = 0;
11888 /* Do some canonicalizations based on the comparison code. We prefer
11889 comparisons against zero and then prefer equality comparisons.
11890 If we can reduce the size of a constant, we will do that too. */
11891 switch (code)
11893 case LT:
11894 /* < C is equivalent to <= (C - 1) */
11895 if (const_op > 0)
11897 const_op -= 1;
11898 code = LE;
11899 /* ... fall through to LE case below. */
11900 gcc_fallthrough ();
11902 else
11903 break;
11905 case LE:
11906 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11907 if (const_op < 0)
11909 const_op += 1;
11910 code = LT;
11913 /* If we are doing a <= 0 comparison on a value known to have
11914 a zero sign bit, we can replace this with == 0. */
11915 else if (const_op == 0
11916 && is_a <scalar_int_mode> (mode, &int_mode)
11917 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11918 && (nonzero_bits (op0, int_mode)
11919 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11920 == 0)
11921 code = EQ;
11922 break;
11924 case GE:
11925 /* >= C is equivalent to > (C - 1). */
11926 if (const_op > 0)
11928 const_op -= 1;
11929 code = GT;
11930 /* ... fall through to GT below. */
11931 gcc_fallthrough ();
11933 else
11934 break;
11936 case GT:
11937 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11938 if (const_op < 0)
11940 const_op += 1;
11941 code = GE;
11944 /* If we are doing a > 0 comparison on a value known to have
11945 a zero sign bit, we can replace this with != 0. */
11946 else if (const_op == 0
11947 && is_a <scalar_int_mode> (mode, &int_mode)
11948 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11949 && (nonzero_bits (op0, int_mode)
11950 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11951 == 0)
11952 code = NE;
11953 break;
11955 case LTU:
11956 /* < C is equivalent to <= (C - 1). */
11957 if (const_op > 0)
11959 const_op -= 1;
11960 code = LEU;
11961 /* ... fall through ... */
11962 gcc_fallthrough ();
11964 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11965 else if (is_a <scalar_int_mode> (mode, &int_mode)
11966 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11967 && ((unsigned HOST_WIDE_INT) const_op
11968 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11970 const_op = 0;
11971 code = GE;
11972 break;
11974 else
11975 break;
11977 case LEU:
11978 /* unsigned <= 0 is equivalent to == 0 */
11979 if (const_op == 0)
11980 code = EQ;
11981 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11982 else if (is_a <scalar_int_mode> (mode, &int_mode)
11983 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11984 && ((unsigned HOST_WIDE_INT) const_op
11985 == ((HOST_WIDE_INT_1U
11986 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11988 const_op = 0;
11989 code = GE;
11991 break;
11993 case GEU:
11994 /* >= C is equivalent to > (C - 1). */
11995 if (const_op > 1)
11997 const_op -= 1;
11998 code = GTU;
11999 /* ... fall through ... */
12000 gcc_fallthrough ();
12003 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12004 else if (is_a <scalar_int_mode> (mode, &int_mode)
12005 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12006 && ((unsigned HOST_WIDE_INT) const_op
12007 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12009 const_op = 0;
12010 code = LT;
12011 break;
12013 else
12014 break;
12016 case GTU:
12017 /* unsigned > 0 is equivalent to != 0 */
12018 if (const_op == 0)
12019 code = NE;
12020 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12021 else if (is_a <scalar_int_mode> (mode, &int_mode)
12022 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12023 && ((unsigned HOST_WIDE_INT) const_op
12024 == (HOST_WIDE_INT_1U
12025 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12027 const_op = 0;
12028 code = LT;
12030 break;
12032 default:
12033 break;
12036 *pop1 = GEN_INT (const_op);
12037 return code;
12040 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12041 comparison code that will be tested.
12043 The result is a possibly different comparison code to use. *POP0 and
12044 *POP1 may be updated.
12046 It is possible that we might detect that a comparison is either always
12047 true or always false. However, we do not perform general constant
12048 folding in combine, so this knowledge isn't useful. Such tautologies
12049 should have been detected earlier. Hence we ignore all such cases. */
12051 static enum rtx_code
12052 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12054 rtx op0 = *pop0;
12055 rtx op1 = *pop1;
12056 rtx tem, tem1;
12057 int i;
12058 scalar_int_mode mode, inner_mode, tmode;
12059 opt_scalar_int_mode tmode_iter;
12061 /* Try a few ways of applying the same transformation to both operands. */
12062 while (1)
12064 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12065 so check specially. */
12066 if (!WORD_REGISTER_OPERATIONS
12067 && code != GTU && code != GEU && code != LTU && code != LEU
12068 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12069 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12070 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12071 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12072 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12073 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12074 && (is_a <scalar_int_mode>
12075 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12076 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12077 && CONST_INT_P (XEXP (op0, 1))
12078 && XEXP (op0, 1) == XEXP (op1, 1)
12079 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12080 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12081 && (INTVAL (XEXP (op0, 1))
12082 == (GET_MODE_PRECISION (mode)
12083 - GET_MODE_PRECISION (inner_mode))))
12085 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12086 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12089 /* If both operands are the same constant shift, see if we can ignore the
12090 shift. We can if the shift is a rotate or if the bits shifted out of
12091 this shift are known to be zero for both inputs and if the type of
12092 comparison is compatible with the shift. */
12093 if (GET_CODE (op0) == GET_CODE (op1)
12094 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12095 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12096 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12097 && (code != GT && code != LT && code != GE && code != LE))
12098 || (GET_CODE (op0) == ASHIFTRT
12099 && (code != GTU && code != LTU
12100 && code != GEU && code != LEU)))
12101 && CONST_INT_P (XEXP (op0, 1))
12102 && INTVAL (XEXP (op0, 1)) >= 0
12103 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12104 && XEXP (op0, 1) == XEXP (op1, 1))
12106 machine_mode mode = GET_MODE (op0);
12107 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12108 int shift_count = INTVAL (XEXP (op0, 1));
12110 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12111 mask &= (mask >> shift_count) << shift_count;
12112 else if (GET_CODE (op0) == ASHIFT)
12113 mask = (mask & (mask << shift_count)) >> shift_count;
12115 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12116 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12117 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12118 else
12119 break;
12122 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12123 SUBREGs are of the same mode, and, in both cases, the AND would
12124 be redundant if the comparison was done in the narrower mode,
12125 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12126 and the operand's possibly nonzero bits are 0xffffff01; in that case
12127 if we only care about QImode, we don't need the AND). This case
12128 occurs if the output mode of an scc insn is not SImode and
12129 STORE_FLAG_VALUE == 1 (e.g., the 386).
12131 Similarly, check for a case where the AND's are ZERO_EXTEND
12132 operations from some narrower mode even though a SUBREG is not
12133 present. */
12135 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12136 && CONST_INT_P (XEXP (op0, 1))
12137 && CONST_INT_P (XEXP (op1, 1)))
12139 rtx inner_op0 = XEXP (op0, 0);
12140 rtx inner_op1 = XEXP (op1, 0);
12141 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12142 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12143 int changed = 0;
12145 if (paradoxical_subreg_p (inner_op0)
12146 && GET_CODE (inner_op1) == SUBREG
12147 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12148 && (GET_MODE (SUBREG_REG (inner_op0))
12149 == GET_MODE (SUBREG_REG (inner_op1)))
12150 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12151 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12152 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12153 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12155 op0 = SUBREG_REG (inner_op0);
12156 op1 = SUBREG_REG (inner_op1);
12158 /* The resulting comparison is always unsigned since we masked
12159 off the original sign bit. */
12160 code = unsigned_condition (code);
12162 changed = 1;
12165 else if (c0 == c1)
12166 FOR_EACH_MODE_UNTIL (tmode,
12167 as_a <scalar_int_mode> (GET_MODE (op0)))
12168 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12170 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12171 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12172 code = unsigned_condition (code);
12173 changed = 1;
12174 break;
12177 if (! changed)
12178 break;
12181 /* If both operands are NOT, we can strip off the outer operation
12182 and adjust the comparison code for swapped operands; similarly for
12183 NEG, except that this must be an equality comparison. */
12184 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12185 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12186 && (code == EQ || code == NE)))
12187 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12189 else
12190 break;
12193 /* If the first operand is a constant, swap the operands and adjust the
12194 comparison code appropriately, but don't do this if the second operand
12195 is already a constant integer. */
12196 if (swap_commutative_operands_p (op0, op1))
12198 std::swap (op0, op1);
12199 code = swap_condition (code);
12202 /* We now enter a loop during which we will try to simplify the comparison.
12203 For the most part, we only are concerned with comparisons with zero,
12204 but some things may really be comparisons with zero but not start
12205 out looking that way. */
12207 while (CONST_INT_P (op1))
12209 machine_mode raw_mode = GET_MODE (op0);
12210 scalar_int_mode int_mode;
12211 int equality_comparison_p;
12212 int sign_bit_comparison_p;
12213 int unsigned_comparison_p;
12214 HOST_WIDE_INT const_op;
12216 /* We only want to handle integral modes. This catches VOIDmode,
12217 CCmode, and the floating-point modes. An exception is that we
12218 can handle VOIDmode if OP0 is a COMPARE or a comparison
12219 operation. */
12221 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12222 && ! (raw_mode == VOIDmode
12223 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12224 break;
12226 /* Try to simplify the compare to constant, possibly changing the
12227 comparison op, and/or changing op1 to zero. */
12228 code = simplify_compare_const (code, raw_mode, op0, &op1);
12229 const_op = INTVAL (op1);
12231 /* Compute some predicates to simplify code below. */
12233 equality_comparison_p = (code == EQ || code == NE);
12234 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12235 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12236 || code == GEU);
12238 /* If this is a sign bit comparison and we can do arithmetic in
12239 MODE, say that we will only be needing the sign bit of OP0. */
12240 if (sign_bit_comparison_p
12241 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12242 && HWI_COMPUTABLE_MODE_P (int_mode))
12243 op0 = force_to_mode (op0, int_mode,
12244 HOST_WIDE_INT_1U
12245 << (GET_MODE_PRECISION (int_mode) - 1),
12248 if (COMPARISON_P (op0))
12250 /* We can't do anything if OP0 is a condition code value, rather
12251 than an actual data value. */
12252 if (const_op != 0
12253 || CC0_P (XEXP (op0, 0))
12254 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12255 break;
12257 /* Get the two operands being compared. */
12258 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12259 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12260 else
12261 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12263 /* Check for the cases where we simply want the result of the
12264 earlier test or the opposite of that result. */
12265 if (code == NE || code == EQ
12266 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12267 && (code == LT || code == GE)))
12269 enum rtx_code new_code;
12270 if (code == LT || code == NE)
12271 new_code = GET_CODE (op0);
12272 else
12273 new_code = reversed_comparison_code (op0, NULL);
12275 if (new_code != UNKNOWN)
12277 code = new_code;
12278 op0 = tem;
12279 op1 = tem1;
12280 continue;
12283 break;
12286 if (raw_mode == VOIDmode)
12287 break;
12288 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12290 /* Now try cases based on the opcode of OP0. If none of the cases
12291 does a "continue", we exit this loop immediately after the
12292 switch. */
12294 unsigned int mode_width = GET_MODE_PRECISION (mode);
12295 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12296 switch (GET_CODE (op0))
12298 case ZERO_EXTRACT:
12299 /* If we are extracting a single bit from a variable position in
12300 a constant that has only a single bit set and are comparing it
12301 with zero, we can convert this into an equality comparison
12302 between the position and the location of the single bit. */
12303 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12304 have already reduced the shift count modulo the word size. */
12305 if (!SHIFT_COUNT_TRUNCATED
12306 && CONST_INT_P (XEXP (op0, 0))
12307 && XEXP (op0, 1) == const1_rtx
12308 && equality_comparison_p && const_op == 0
12309 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12311 if (BITS_BIG_ENDIAN)
12312 i = BITS_PER_WORD - 1 - i;
12314 op0 = XEXP (op0, 2);
12315 op1 = GEN_INT (i);
12316 const_op = i;
12318 /* Result is nonzero iff shift count is equal to I. */
12319 code = reverse_condition (code);
12320 continue;
12323 /* fall through */
12325 case SIGN_EXTRACT:
12326 tem = expand_compound_operation (op0);
12327 if (tem != op0)
12329 op0 = tem;
12330 continue;
12332 break;
12334 case NOT:
12335 /* If testing for equality, we can take the NOT of the constant. */
12336 if (equality_comparison_p
12337 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12339 op0 = XEXP (op0, 0);
12340 op1 = tem;
12341 continue;
12344 /* If just looking at the sign bit, reverse the sense of the
12345 comparison. */
12346 if (sign_bit_comparison_p)
12348 op0 = XEXP (op0, 0);
12349 code = (code == GE ? LT : GE);
12350 continue;
12352 break;
12354 case NEG:
12355 /* If testing for equality, we can take the NEG of the constant. */
12356 if (equality_comparison_p
12357 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12359 op0 = XEXP (op0, 0);
12360 op1 = tem;
12361 continue;
12364 /* The remaining cases only apply to comparisons with zero. */
12365 if (const_op != 0)
12366 break;
12368 /* When X is ABS or is known positive,
12369 (neg X) is < 0 if and only if X != 0. */
12371 if (sign_bit_comparison_p
12372 && (GET_CODE (XEXP (op0, 0)) == ABS
12373 || (mode_width <= HOST_BITS_PER_WIDE_INT
12374 && (nonzero_bits (XEXP (op0, 0), mode)
12375 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12376 == 0)))
12378 op0 = XEXP (op0, 0);
12379 code = (code == LT ? NE : EQ);
12380 continue;
12383 /* If we have NEG of something whose two high-order bits are the
12384 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12385 if (num_sign_bit_copies (op0, mode) >= 2)
12387 op0 = XEXP (op0, 0);
12388 code = swap_condition (code);
12389 continue;
12391 break;
12393 case ROTATE:
12394 /* If we are testing equality and our count is a constant, we
12395 can perform the inverse operation on our RHS. */
12396 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12397 && (tem = simplify_binary_operation (ROTATERT, mode,
12398 op1, XEXP (op0, 1))) != 0)
12400 op0 = XEXP (op0, 0);
12401 op1 = tem;
12402 continue;
12405 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12406 a particular bit. Convert it to an AND of a constant of that
12407 bit. This will be converted into a ZERO_EXTRACT. */
12408 if (const_op == 0 && sign_bit_comparison_p
12409 && CONST_INT_P (XEXP (op0, 1))
12410 && mode_width <= HOST_BITS_PER_WIDE_INT)
12412 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12413 (HOST_WIDE_INT_1U
12414 << (mode_width - 1
12415 - INTVAL (XEXP (op0, 1)))));
12416 code = (code == LT ? NE : EQ);
12417 continue;
12420 /* Fall through. */
12422 case ABS:
12423 /* ABS is ignorable inside an equality comparison with zero. */
12424 if (const_op == 0 && equality_comparison_p)
12426 op0 = XEXP (op0, 0);
12427 continue;
12429 break;
12431 case SIGN_EXTEND:
12432 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12433 (compare FOO CONST) if CONST fits in FOO's mode and we
12434 are either testing inequality or have an unsigned
12435 comparison with ZERO_EXTEND or a signed comparison with
12436 SIGN_EXTEND. But don't do it if we don't have a compare
12437 insn of the given mode, since we'd have to revert it
12438 later on, and then we wouldn't know whether to sign- or
12439 zero-extend. */
12440 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12441 && ! unsigned_comparison_p
12442 && HWI_COMPUTABLE_MODE_P (mode)
12443 && trunc_int_for_mode (const_op, mode) == const_op
12444 && have_insn_for (COMPARE, mode))
12446 op0 = XEXP (op0, 0);
12447 continue;
12449 break;
12451 case SUBREG:
12452 /* Check for the case where we are comparing A - C1 with C2, that is
12454 (subreg:MODE (plus (A) (-C1))) op (C2)
12456 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12457 comparison in the wider mode. One of the following two conditions
12458 must be true in order for this to be valid:
12460 1. The mode extension results in the same bit pattern being added
12461 on both sides and the comparison is equality or unsigned. As
12462 C2 has been truncated to fit in MODE, the pattern can only be
12463 all 0s or all 1s.
12465 2. The mode extension results in the sign bit being copied on
12466 each side.
12468 The difficulty here is that we have predicates for A but not for
12469 (A - C1) so we need to check that C1 is within proper bounds so
12470 as to perturbate A as little as possible. */
12472 if (mode_width <= HOST_BITS_PER_WIDE_INT
12473 && subreg_lowpart_p (op0)
12474 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12475 &inner_mode)
12476 && GET_MODE_PRECISION (inner_mode) > mode_width
12477 && GET_CODE (SUBREG_REG (op0)) == PLUS
12478 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12480 rtx a = XEXP (SUBREG_REG (op0), 0);
12481 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12483 if ((c1 > 0
12484 && (unsigned HOST_WIDE_INT) c1
12485 < HOST_WIDE_INT_1U << (mode_width - 1)
12486 && (equality_comparison_p || unsigned_comparison_p)
12487 /* (A - C1) zero-extends if it is positive and sign-extends
12488 if it is negative, C2 both zero- and sign-extends. */
12489 && (((nonzero_bits (a, inner_mode)
12490 & ~GET_MODE_MASK (mode)) == 0
12491 && const_op >= 0)
12492 /* (A - C1) sign-extends if it is positive and 1-extends
12493 if it is negative, C2 both sign- and 1-extends. */
12494 || (num_sign_bit_copies (a, inner_mode)
12495 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12496 - mode_width)
12497 && const_op < 0)))
12498 || ((unsigned HOST_WIDE_INT) c1
12499 < HOST_WIDE_INT_1U << (mode_width - 2)
12500 /* (A - C1) always sign-extends, like C2. */
12501 && num_sign_bit_copies (a, inner_mode)
12502 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12503 - (mode_width - 1))))
12505 op0 = SUBREG_REG (op0);
12506 continue;
12510 /* If the inner mode is narrower and we are extracting the low part,
12511 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12512 if (paradoxical_subreg_p (op0))
12514 else if (subreg_lowpart_p (op0)
12515 && GET_MODE_CLASS (mode) == MODE_INT
12516 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12517 && (code == NE || code == EQ)
12518 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12519 && !paradoxical_subreg_p (op0)
12520 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12521 & ~GET_MODE_MASK (mode)) == 0)
12523 /* Remove outer subregs that don't do anything. */
12524 tem = gen_lowpart (inner_mode, op1);
12526 if ((nonzero_bits (tem, inner_mode)
12527 & ~GET_MODE_MASK (mode)) == 0)
12529 op0 = SUBREG_REG (op0);
12530 op1 = tem;
12531 continue;
12533 break;
12535 else
12536 break;
12538 /* FALLTHROUGH */
12540 case ZERO_EXTEND:
12541 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12542 && (unsigned_comparison_p || equality_comparison_p)
12543 && HWI_COMPUTABLE_MODE_P (mode)
12544 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12545 && const_op >= 0
12546 && have_insn_for (COMPARE, mode))
12548 op0 = XEXP (op0, 0);
12549 continue;
12551 break;
12553 case PLUS:
12554 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12555 this for equality comparisons due to pathological cases involving
12556 overflows. */
12557 if (equality_comparison_p
12558 && (tem = simplify_binary_operation (MINUS, mode,
12559 op1, XEXP (op0, 1))) != 0)
12561 op0 = XEXP (op0, 0);
12562 op1 = tem;
12563 continue;
12566 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12567 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12568 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12570 op0 = XEXP (XEXP (op0, 0), 0);
12571 code = (code == LT ? EQ : NE);
12572 continue;
12574 break;
12576 case MINUS:
12577 /* We used to optimize signed comparisons against zero, but that
12578 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12579 arrive here as equality comparisons, or (GEU, LTU) are
12580 optimized away. No need to special-case them. */
12582 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12583 (eq B (minus A C)), whichever simplifies. We can only do
12584 this for equality comparisons due to pathological cases involving
12585 overflows. */
12586 if (equality_comparison_p
12587 && (tem = simplify_binary_operation (PLUS, mode,
12588 XEXP (op0, 1), op1)) != 0)
12590 op0 = XEXP (op0, 0);
12591 op1 = tem;
12592 continue;
12595 if (equality_comparison_p
12596 && (tem = simplify_binary_operation (MINUS, mode,
12597 XEXP (op0, 0), op1)) != 0)
12599 op0 = XEXP (op0, 1);
12600 op1 = tem;
12601 continue;
12604 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12605 of bits in X minus 1, is one iff X > 0. */
12606 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12607 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12608 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12609 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12611 op0 = XEXP (op0, 1);
12612 code = (code == GE ? LE : GT);
12613 continue;
12615 break;
12617 case XOR:
12618 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12619 if C is zero or B is a constant. */
12620 if (equality_comparison_p
12621 && (tem = simplify_binary_operation (XOR, mode,
12622 XEXP (op0, 1), op1)) != 0)
12624 op0 = XEXP (op0, 0);
12625 op1 = tem;
12626 continue;
12628 break;
12631 case IOR:
12632 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12633 iff X <= 0. */
12634 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12635 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12636 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12638 op0 = XEXP (op0, 1);
12639 code = (code == GE ? GT : LE);
12640 continue;
12642 break;
12644 case AND:
12645 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12646 will be converted to a ZERO_EXTRACT later. */
12647 if (const_op == 0 && equality_comparison_p
12648 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12649 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12651 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12652 XEXP (XEXP (op0, 0), 1));
12653 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12654 continue;
12657 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12658 zero and X is a comparison and C1 and C2 describe only bits set
12659 in STORE_FLAG_VALUE, we can compare with X. */
12660 if (const_op == 0 && equality_comparison_p
12661 && mode_width <= HOST_BITS_PER_WIDE_INT
12662 && CONST_INT_P (XEXP (op0, 1))
12663 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12664 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12665 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12666 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12668 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12669 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12670 if ((~STORE_FLAG_VALUE & mask) == 0
12671 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12672 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12673 && COMPARISON_P (tem))))
12675 op0 = XEXP (XEXP (op0, 0), 0);
12676 continue;
12680 /* If we are doing an equality comparison of an AND of a bit equal
12681 to the sign bit, replace this with a LT or GE comparison of
12682 the underlying value. */
12683 if (equality_comparison_p
12684 && const_op == 0
12685 && CONST_INT_P (XEXP (op0, 1))
12686 && mode_width <= HOST_BITS_PER_WIDE_INT
12687 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12688 == HOST_WIDE_INT_1U << (mode_width - 1)))
12690 op0 = XEXP (op0, 0);
12691 code = (code == EQ ? GE : LT);
12692 continue;
12695 /* If this AND operation is really a ZERO_EXTEND from a narrower
12696 mode, the constant fits within that mode, and this is either an
12697 equality or unsigned comparison, try to do this comparison in
12698 the narrower mode.
12700 Note that in:
12702 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12703 -> (ne:DI (reg:SI 4) (const_int 0))
12705 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12706 known to hold a value of the required mode the
12707 transformation is invalid. */
12708 if ((equality_comparison_p || unsigned_comparison_p)
12709 && CONST_INT_P (XEXP (op0, 1))
12710 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12711 & GET_MODE_MASK (mode))
12712 + 1)) >= 0
12713 && const_op >> i == 0
12714 && int_mode_for_size (i, 1).exists (&tmode))
12716 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12717 continue;
12720 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12721 fits in both M1 and M2 and the SUBREG is either paradoxical
12722 or represents the low part, permute the SUBREG and the AND
12723 and try again. */
12724 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12725 && CONST_INT_P (XEXP (op0, 1)))
12727 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12728 /* Require an integral mode, to avoid creating something like
12729 (AND:SF ...). */
12730 if ((is_a <scalar_int_mode>
12731 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12732 /* It is unsafe to commute the AND into the SUBREG if the
12733 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12734 not defined. As originally written the upper bits
12735 have a defined value due to the AND operation.
12736 However, if we commute the AND inside the SUBREG then
12737 they no longer have defined values and the meaning of
12738 the code has been changed.
12739 Also C1 should not change value in the smaller mode,
12740 see PR67028 (a positive C1 can become negative in the
12741 smaller mode, so that the AND does no longer mask the
12742 upper bits). */
12743 && ((WORD_REGISTER_OPERATIONS
12744 && mode_width > GET_MODE_PRECISION (tmode)
12745 && mode_width <= BITS_PER_WORD
12746 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12747 || (mode_width <= GET_MODE_PRECISION (tmode)
12748 && subreg_lowpart_p (XEXP (op0, 0))))
12749 && mode_width <= HOST_BITS_PER_WIDE_INT
12750 && HWI_COMPUTABLE_MODE_P (tmode)
12751 && (c1 & ~mask) == 0
12752 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12753 && c1 != mask
12754 && c1 != GET_MODE_MASK (tmode))
12756 op0 = simplify_gen_binary (AND, tmode,
12757 SUBREG_REG (XEXP (op0, 0)),
12758 gen_int_mode (c1, tmode));
12759 op0 = gen_lowpart (mode, op0);
12760 continue;
12764 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12765 if (const_op == 0 && equality_comparison_p
12766 && XEXP (op0, 1) == const1_rtx
12767 && GET_CODE (XEXP (op0, 0)) == NOT)
12769 op0 = simplify_and_const_int (NULL_RTX, mode,
12770 XEXP (XEXP (op0, 0), 0), 1);
12771 code = (code == NE ? EQ : NE);
12772 continue;
12775 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12776 (eq (and (lshiftrt X) 1) 0).
12777 Also handle the case where (not X) is expressed using xor. */
12778 if (const_op == 0 && equality_comparison_p
12779 && XEXP (op0, 1) == const1_rtx
12780 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12782 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12783 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12785 if (GET_CODE (shift_op) == NOT
12786 || (GET_CODE (shift_op) == XOR
12787 && CONST_INT_P (XEXP (shift_op, 1))
12788 && CONST_INT_P (shift_count)
12789 && HWI_COMPUTABLE_MODE_P (mode)
12790 && (UINTVAL (XEXP (shift_op, 1))
12791 == HOST_WIDE_INT_1U
12792 << INTVAL (shift_count))))
12795 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12796 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12797 code = (code == NE ? EQ : NE);
12798 continue;
12801 break;
12803 case ASHIFT:
12804 /* If we have (compare (ashift FOO N) (const_int C)) and
12805 the high order N bits of FOO (N+1 if an inequality comparison)
12806 are known to be zero, we can do this by comparing FOO with C
12807 shifted right N bits so long as the low-order N bits of C are
12808 zero. */
12809 if (CONST_INT_P (XEXP (op0, 1))
12810 && INTVAL (XEXP (op0, 1)) >= 0
12811 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12812 < HOST_BITS_PER_WIDE_INT)
12813 && (((unsigned HOST_WIDE_INT) const_op
12814 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12815 - 1)) == 0)
12816 && mode_width <= HOST_BITS_PER_WIDE_INT
12817 && (nonzero_bits (XEXP (op0, 0), mode)
12818 & ~(mask >> (INTVAL (XEXP (op0, 1))
12819 + ! equality_comparison_p))) == 0)
12821 /* We must perform a logical shift, not an arithmetic one,
12822 as we want the top N bits of C to be zero. */
12823 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12825 temp >>= INTVAL (XEXP (op0, 1));
12826 op1 = gen_int_mode (temp, mode);
12827 op0 = XEXP (op0, 0);
12828 continue;
12831 /* If we are doing a sign bit comparison, it means we are testing
12832 a particular bit. Convert it to the appropriate AND. */
12833 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12834 && mode_width <= HOST_BITS_PER_WIDE_INT)
12836 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12837 (HOST_WIDE_INT_1U
12838 << (mode_width - 1
12839 - INTVAL (XEXP (op0, 1)))));
12840 code = (code == LT ? NE : EQ);
12841 continue;
12844 /* If this an equality comparison with zero and we are shifting
12845 the low bit to the sign bit, we can convert this to an AND of the
12846 low-order bit. */
12847 if (const_op == 0 && equality_comparison_p
12848 && CONST_INT_P (XEXP (op0, 1))
12849 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12851 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12852 continue;
12854 break;
12856 case ASHIFTRT:
12857 /* If this is an equality comparison with zero, we can do this
12858 as a logical shift, which might be much simpler. */
12859 if (equality_comparison_p && const_op == 0
12860 && CONST_INT_P (XEXP (op0, 1)))
12862 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12863 XEXP (op0, 0),
12864 INTVAL (XEXP (op0, 1)));
12865 continue;
12868 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12869 do the comparison in a narrower mode. */
12870 if (! unsigned_comparison_p
12871 && CONST_INT_P (XEXP (op0, 1))
12872 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12873 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12874 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12875 .exists (&tmode))
12876 && (((unsigned HOST_WIDE_INT) const_op
12877 + (GET_MODE_MASK (tmode) >> 1) + 1)
12878 <= GET_MODE_MASK (tmode)))
12880 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12881 continue;
12884 /* Likewise if OP0 is a PLUS of a sign extension with a
12885 constant, which is usually represented with the PLUS
12886 between the shifts. */
12887 if (! unsigned_comparison_p
12888 && CONST_INT_P (XEXP (op0, 1))
12889 && GET_CODE (XEXP (op0, 0)) == PLUS
12890 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12891 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12892 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12893 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12894 .exists (&tmode))
12895 && (((unsigned HOST_WIDE_INT) const_op
12896 + (GET_MODE_MASK (tmode) >> 1) + 1)
12897 <= GET_MODE_MASK (tmode)))
12899 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12900 rtx add_const = XEXP (XEXP (op0, 0), 1);
12901 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12902 add_const, XEXP (op0, 1));
12904 op0 = simplify_gen_binary (PLUS, tmode,
12905 gen_lowpart (tmode, inner),
12906 new_const);
12907 continue;
12910 /* FALLTHROUGH */
12911 case LSHIFTRT:
12912 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12913 the low order N bits of FOO are known to be zero, we can do this
12914 by comparing FOO with C shifted left N bits so long as no
12915 overflow occurs. Even if the low order N bits of FOO aren't known
12916 to be zero, if the comparison is >= or < we can use the same
12917 optimization and for > or <= by setting all the low
12918 order N bits in the comparison constant. */
12919 if (CONST_INT_P (XEXP (op0, 1))
12920 && INTVAL (XEXP (op0, 1)) > 0
12921 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12922 && mode_width <= HOST_BITS_PER_WIDE_INT
12923 && (((unsigned HOST_WIDE_INT) const_op
12924 + (GET_CODE (op0) != LSHIFTRT
12925 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12926 + 1)
12927 : 0))
12928 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12930 unsigned HOST_WIDE_INT low_bits
12931 = (nonzero_bits (XEXP (op0, 0), mode)
12932 & ((HOST_WIDE_INT_1U
12933 << INTVAL (XEXP (op0, 1))) - 1));
12934 if (low_bits == 0 || !equality_comparison_p)
12936 /* If the shift was logical, then we must make the condition
12937 unsigned. */
12938 if (GET_CODE (op0) == LSHIFTRT)
12939 code = unsigned_condition (code);
12941 const_op = (unsigned HOST_WIDE_INT) const_op
12942 << INTVAL (XEXP (op0, 1));
12943 if (low_bits != 0
12944 && (code == GT || code == GTU
12945 || code == LE || code == LEU))
12946 const_op
12947 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12948 op1 = GEN_INT (const_op);
12949 op0 = XEXP (op0, 0);
12950 continue;
12954 /* If we are using this shift to extract just the sign bit, we
12955 can replace this with an LT or GE comparison. */
12956 if (const_op == 0
12957 && (equality_comparison_p || sign_bit_comparison_p)
12958 && CONST_INT_P (XEXP (op0, 1))
12959 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12961 op0 = XEXP (op0, 0);
12962 code = (code == NE || code == GT ? LT : GE);
12963 continue;
12965 break;
12967 default:
12968 break;
12971 break;
12974 /* Now make any compound operations involved in this comparison. Then,
12975 check for an outmost SUBREG on OP0 that is not doing anything or is
12976 paradoxical. The latter transformation must only be performed when
12977 it is known that the "extra" bits will be the same in op0 and op1 or
12978 that they don't matter. There are three cases to consider:
12980 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12981 care bits and we can assume they have any convenient value. So
12982 making the transformation is safe.
12984 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12985 In this case the upper bits of op0 are undefined. We should not make
12986 the simplification in that case as we do not know the contents of
12987 those bits.
12989 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12990 In that case we know those bits are zeros or ones. We must also be
12991 sure that they are the same as the upper bits of op1.
12993 We can never remove a SUBREG for a non-equality comparison because
12994 the sign bit is in a different place in the underlying object. */
12996 rtx_code op0_mco_code = SET;
12997 if (op1 == const0_rtx)
12998 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13000 op0 = make_compound_operation (op0, op0_mco_code);
13001 op1 = make_compound_operation (op1, SET);
13003 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13004 && is_int_mode (GET_MODE (op0), &mode)
13005 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13006 && (code == NE || code == EQ))
13008 if (paradoxical_subreg_p (op0))
13010 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13011 implemented. */
13012 if (REG_P (SUBREG_REG (op0)))
13014 op0 = SUBREG_REG (op0);
13015 op1 = gen_lowpart (inner_mode, op1);
13018 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13019 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13020 & ~GET_MODE_MASK (mode)) == 0)
13022 tem = gen_lowpart (inner_mode, op1);
13024 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13025 op0 = SUBREG_REG (op0), op1 = tem;
13029 /* We now do the opposite procedure: Some machines don't have compare
13030 insns in all modes. If OP0's mode is an integer mode smaller than a
13031 word and we can't do a compare in that mode, see if there is a larger
13032 mode for which we can do the compare. There are a number of cases in
13033 which we can use the wider mode. */
13035 if (is_int_mode (GET_MODE (op0), &mode)
13036 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13037 && ! have_insn_for (COMPARE, mode))
13038 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13040 tmode = tmode_iter.require ();
13041 if (!HWI_COMPUTABLE_MODE_P (tmode))
13042 break;
13043 if (have_insn_for (COMPARE, tmode))
13045 int zero_extended;
13047 /* If this is a test for negative, we can make an explicit
13048 test of the sign bit. Test this first so we can use
13049 a paradoxical subreg to extend OP0. */
13051 if (op1 == const0_rtx && (code == LT || code == GE)
13052 && HWI_COMPUTABLE_MODE_P (mode))
13054 unsigned HOST_WIDE_INT sign
13055 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13056 op0 = simplify_gen_binary (AND, tmode,
13057 gen_lowpart (tmode, op0),
13058 gen_int_mode (sign, tmode));
13059 code = (code == LT) ? NE : EQ;
13060 break;
13063 /* If the only nonzero bits in OP0 and OP1 are those in the
13064 narrower mode and this is an equality or unsigned comparison,
13065 we can use the wider mode. Similarly for sign-extended
13066 values, in which case it is true for all comparisons. */
13067 zero_extended = ((code == EQ || code == NE
13068 || code == GEU || code == GTU
13069 || code == LEU || code == LTU)
13070 && (nonzero_bits (op0, tmode)
13071 & ~GET_MODE_MASK (mode)) == 0
13072 && ((CONST_INT_P (op1)
13073 || (nonzero_bits (op1, tmode)
13074 & ~GET_MODE_MASK (mode)) == 0)));
13076 if (zero_extended
13077 || ((num_sign_bit_copies (op0, tmode)
13078 > (unsigned int) (GET_MODE_PRECISION (tmode)
13079 - GET_MODE_PRECISION (mode)))
13080 && (num_sign_bit_copies (op1, tmode)
13081 > (unsigned int) (GET_MODE_PRECISION (tmode)
13082 - GET_MODE_PRECISION (mode)))))
13084 /* If OP0 is an AND and we don't have an AND in MODE either,
13085 make a new AND in the proper mode. */
13086 if (GET_CODE (op0) == AND
13087 && !have_insn_for (AND, mode))
13088 op0 = simplify_gen_binary (AND, tmode,
13089 gen_lowpart (tmode,
13090 XEXP (op0, 0)),
13091 gen_lowpart (tmode,
13092 XEXP (op0, 1)));
13093 else
13095 if (zero_extended)
13097 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13098 op0, mode);
13099 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13100 op1, mode);
13102 else
13104 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13105 op0, mode);
13106 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13107 op1, mode);
13109 break;
13115 /* We may have changed the comparison operands. Re-canonicalize. */
13116 if (swap_commutative_operands_p (op0, op1))
13118 std::swap (op0, op1);
13119 code = swap_condition (code);
13122 /* If this machine only supports a subset of valid comparisons, see if we
13123 can convert an unsupported one into a supported one. */
13124 target_canonicalize_comparison (&code, &op0, &op1, 0);
13126 *pop0 = op0;
13127 *pop1 = op1;
13129 return code;
13132 /* Utility function for record_value_for_reg. Count number of
13133 rtxs in X. */
13134 static int
13135 count_rtxs (rtx x)
13137 enum rtx_code code = GET_CODE (x);
13138 const char *fmt;
13139 int i, j, ret = 1;
13141 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13142 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13144 rtx x0 = XEXP (x, 0);
13145 rtx x1 = XEXP (x, 1);
13147 if (x0 == x1)
13148 return 1 + 2 * count_rtxs (x0);
13150 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13151 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13152 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13153 return 2 + 2 * count_rtxs (x0)
13154 + count_rtxs (x == XEXP (x1, 0)
13155 ? XEXP (x1, 1) : XEXP (x1, 0));
13157 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13158 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13159 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13160 return 2 + 2 * count_rtxs (x1)
13161 + count_rtxs (x == XEXP (x0, 0)
13162 ? XEXP (x0, 1) : XEXP (x0, 0));
13165 fmt = GET_RTX_FORMAT (code);
13166 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13167 if (fmt[i] == 'e')
13168 ret += count_rtxs (XEXP (x, i));
13169 else if (fmt[i] == 'E')
13170 for (j = 0; j < XVECLEN (x, i); j++)
13171 ret += count_rtxs (XVECEXP (x, i, j));
13173 return ret;
13176 /* Utility function for following routine. Called when X is part of a value
13177 being stored into last_set_value. Sets last_set_table_tick
13178 for each register mentioned. Similar to mention_regs in cse.c */
13180 static void
13181 update_table_tick (rtx x)
13183 enum rtx_code code = GET_CODE (x);
13184 const char *fmt = GET_RTX_FORMAT (code);
13185 int i, j;
13187 if (code == REG)
13189 unsigned int regno = REGNO (x);
13190 unsigned int endregno = END_REGNO (x);
13191 unsigned int r;
13193 for (r = regno; r < endregno; r++)
13195 reg_stat_type *rsp = &reg_stat[r];
13196 rsp->last_set_table_tick = label_tick;
13199 return;
13202 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13203 if (fmt[i] == 'e')
13205 /* Check for identical subexpressions. If x contains
13206 identical subexpression we only have to traverse one of
13207 them. */
13208 if (i == 0 && ARITHMETIC_P (x))
13210 /* Note that at this point x1 has already been
13211 processed. */
13212 rtx x0 = XEXP (x, 0);
13213 rtx x1 = XEXP (x, 1);
13215 /* If x0 and x1 are identical then there is no need to
13216 process x0. */
13217 if (x0 == x1)
13218 break;
13220 /* If x0 is identical to a subexpression of x1 then while
13221 processing x1, x0 has already been processed. Thus we
13222 are done with x. */
13223 if (ARITHMETIC_P (x1)
13224 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13225 break;
13227 /* If x1 is identical to a subexpression of x0 then we
13228 still have to process the rest of x0. */
13229 if (ARITHMETIC_P (x0)
13230 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13232 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13233 break;
13237 update_table_tick (XEXP (x, i));
13239 else if (fmt[i] == 'E')
13240 for (j = 0; j < XVECLEN (x, i); j++)
13241 update_table_tick (XVECEXP (x, i, j));
13244 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13245 are saying that the register is clobbered and we no longer know its
13246 value. If INSN is zero, don't update reg_stat[].last_set; this is
13247 only permitted with VALUE also zero and is used to invalidate the
13248 register. */
13250 static void
13251 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13253 unsigned int regno = REGNO (reg);
13254 unsigned int endregno = END_REGNO (reg);
13255 unsigned int i;
13256 reg_stat_type *rsp;
13258 /* If VALUE contains REG and we have a previous value for REG, substitute
13259 the previous value. */
13260 if (value && insn && reg_overlap_mentioned_p (reg, value))
13262 rtx tem;
13264 /* Set things up so get_last_value is allowed to see anything set up to
13265 our insn. */
13266 subst_low_luid = DF_INSN_LUID (insn);
13267 tem = get_last_value (reg);
13269 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13270 it isn't going to be useful and will take a lot of time to process,
13271 so just use the CLOBBER. */
13273 if (tem)
13275 if (ARITHMETIC_P (tem)
13276 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13277 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13278 tem = XEXP (tem, 0);
13279 else if (count_occurrences (value, reg, 1) >= 2)
13281 /* If there are two or more occurrences of REG in VALUE,
13282 prevent the value from growing too much. */
13283 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13284 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13287 value = replace_rtx (copy_rtx (value), reg, tem);
13291 /* For each register modified, show we don't know its value, that
13292 we don't know about its bitwise content, that its value has been
13293 updated, and that we don't know the location of the death of the
13294 register. */
13295 for (i = regno; i < endregno; i++)
13297 rsp = &reg_stat[i];
13299 if (insn)
13300 rsp->last_set = insn;
13302 rsp->last_set_value = 0;
13303 rsp->last_set_mode = VOIDmode;
13304 rsp->last_set_nonzero_bits = 0;
13305 rsp->last_set_sign_bit_copies = 0;
13306 rsp->last_death = 0;
13307 rsp->truncated_to_mode = VOIDmode;
13310 /* Mark registers that are being referenced in this value. */
13311 if (value)
13312 update_table_tick (value);
13314 /* Now update the status of each register being set.
13315 If someone is using this register in this block, set this register
13316 to invalid since we will get confused between the two lives in this
13317 basic block. This makes using this register always invalid. In cse, we
13318 scan the table to invalidate all entries using this register, but this
13319 is too much work for us. */
13321 for (i = regno; i < endregno; i++)
13323 rsp = &reg_stat[i];
13324 rsp->last_set_label = label_tick;
13325 if (!insn
13326 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13327 rsp->last_set_invalid = 1;
13328 else
13329 rsp->last_set_invalid = 0;
13332 /* The value being assigned might refer to X (like in "x++;"). In that
13333 case, we must replace it with (clobber (const_int 0)) to prevent
13334 infinite loops. */
13335 rsp = &reg_stat[regno];
13336 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13338 value = copy_rtx (value);
13339 if (!get_last_value_validate (&value, insn, label_tick, 1))
13340 value = 0;
13343 /* For the main register being modified, update the value, the mode, the
13344 nonzero bits, and the number of sign bit copies. */
13346 rsp->last_set_value = value;
13348 if (value)
13350 machine_mode mode = GET_MODE (reg);
13351 subst_low_luid = DF_INSN_LUID (insn);
13352 rsp->last_set_mode = mode;
13353 if (GET_MODE_CLASS (mode) == MODE_INT
13354 && HWI_COMPUTABLE_MODE_P (mode))
13355 mode = nonzero_bits_mode;
13356 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13357 rsp->last_set_sign_bit_copies
13358 = num_sign_bit_copies (value, GET_MODE (reg));
13362 /* Called via note_stores from record_dead_and_set_regs to handle one
13363 SET or CLOBBER in an insn. DATA is the instruction in which the
13364 set is occurring. */
13366 static void
13367 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13369 rtx_insn *record_dead_insn = (rtx_insn *) data;
13371 if (GET_CODE (dest) == SUBREG)
13372 dest = SUBREG_REG (dest);
13374 if (!record_dead_insn)
13376 if (REG_P (dest))
13377 record_value_for_reg (dest, NULL, NULL_RTX);
13378 return;
13381 if (REG_P (dest))
13383 /* If we are setting the whole register, we know its value. Otherwise
13384 show that we don't know the value. We can handle a SUBREG if it's
13385 the low part, but we must be careful with paradoxical SUBREGs on
13386 RISC architectures because we cannot strip e.g. an extension around
13387 a load and record the naked load since the RTL middle-end considers
13388 that the upper bits are defined according to LOAD_EXTEND_OP. */
13389 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13390 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13391 else if (GET_CODE (setter) == SET
13392 && GET_CODE (SET_DEST (setter)) == SUBREG
13393 && SUBREG_REG (SET_DEST (setter)) == dest
13394 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13395 BITS_PER_WORD)
13396 && subreg_lowpart_p (SET_DEST (setter)))
13397 record_value_for_reg (dest, record_dead_insn,
13398 WORD_REGISTER_OPERATIONS
13399 && word_register_operation_p (SET_SRC (setter))
13400 && paradoxical_subreg_p (SET_DEST (setter))
13401 ? SET_SRC (setter)
13402 : gen_lowpart (GET_MODE (dest),
13403 SET_SRC (setter)));
13404 else
13405 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13407 else if (MEM_P (dest)
13408 /* Ignore pushes, they clobber nothing. */
13409 && ! push_operand (dest, GET_MODE (dest)))
13410 mem_last_set = DF_INSN_LUID (record_dead_insn);
13413 /* Update the records of when each REG was most recently set or killed
13414 for the things done by INSN. This is the last thing done in processing
13415 INSN in the combiner loop.
13417 We update reg_stat[], in particular fields last_set, last_set_value,
13418 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13419 last_death, and also the similar information mem_last_set (which insn
13420 most recently modified memory) and last_call_luid (which insn was the
13421 most recent subroutine call). */
13423 static void
13424 record_dead_and_set_regs (rtx_insn *insn)
13426 rtx link;
13427 unsigned int i;
13429 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13431 if (REG_NOTE_KIND (link) == REG_DEAD
13432 && REG_P (XEXP (link, 0)))
13434 unsigned int regno = REGNO (XEXP (link, 0));
13435 unsigned int endregno = END_REGNO (XEXP (link, 0));
13437 for (i = regno; i < endregno; i++)
13439 reg_stat_type *rsp;
13441 rsp = &reg_stat[i];
13442 rsp->last_death = insn;
13445 else if (REG_NOTE_KIND (link) == REG_INC)
13446 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13449 if (CALL_P (insn))
13451 HARD_REG_SET callee_clobbers
13452 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13453 hard_reg_set_iterator hrsi;
13454 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13456 reg_stat_type *rsp;
13458 /* ??? We could try to preserve some information from the last
13459 set of register I if the call doesn't actually clobber
13460 (reg:last_set_mode I), which might be true for ABIs with
13461 partial clobbers. However, it would be difficult to
13462 update last_set_nonzero_bits and last_sign_bit_copies
13463 to account for the part of I that actually was clobbered.
13464 It wouldn't help much anyway, since we rarely see this
13465 situation before RA. */
13466 rsp = &reg_stat[i];
13467 rsp->last_set_invalid = 1;
13468 rsp->last_set = insn;
13469 rsp->last_set_value = 0;
13470 rsp->last_set_mode = VOIDmode;
13471 rsp->last_set_nonzero_bits = 0;
13472 rsp->last_set_sign_bit_copies = 0;
13473 rsp->last_death = 0;
13474 rsp->truncated_to_mode = VOIDmode;
13477 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13479 /* We can't combine into a call pattern. Remember, though, that
13480 the return value register is set at this LUID. We could
13481 still replace a register with the return value from the
13482 wrong subroutine call! */
13483 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13485 else
13486 note_stores (insn, record_dead_and_set_regs_1, insn);
13489 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13490 register present in the SUBREG, so for each such SUBREG go back and
13491 adjust nonzero and sign bit information of the registers that are
13492 known to have some zero/sign bits set.
13494 This is needed because when combine blows the SUBREGs away, the
13495 information on zero/sign bits is lost and further combines can be
13496 missed because of that. */
13498 static void
13499 record_promoted_value (rtx_insn *insn, rtx subreg)
13501 struct insn_link *links;
13502 rtx set;
13503 unsigned int regno = REGNO (SUBREG_REG (subreg));
13504 machine_mode mode = GET_MODE (subreg);
13506 if (!HWI_COMPUTABLE_MODE_P (mode))
13507 return;
13509 for (links = LOG_LINKS (insn); links;)
13511 reg_stat_type *rsp;
13513 insn = links->insn;
13514 set = single_set (insn);
13516 if (! set || !REG_P (SET_DEST (set))
13517 || REGNO (SET_DEST (set)) != regno
13518 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13520 links = links->next;
13521 continue;
13524 rsp = &reg_stat[regno];
13525 if (rsp->last_set == insn)
13527 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13528 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13531 if (REG_P (SET_SRC (set)))
13533 regno = REGNO (SET_SRC (set));
13534 links = LOG_LINKS (insn);
13536 else
13537 break;
13541 /* Check if X, a register, is known to contain a value already
13542 truncated to MODE. In this case we can use a subreg to refer to
13543 the truncated value even though in the generic case we would need
13544 an explicit truncation. */
13546 static bool
13547 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13549 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13550 machine_mode truncated = rsp->truncated_to_mode;
13552 if (truncated == 0
13553 || rsp->truncation_label < label_tick_ebb_start)
13554 return false;
13555 if (!partial_subreg_p (mode, truncated))
13556 return true;
13557 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13558 return true;
13559 return false;
13562 /* If X is a hard reg or a subreg record the mode that the register is
13563 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13564 able to turn a truncate into a subreg using this information. Return true
13565 if traversing X is complete. */
13567 static bool
13568 record_truncated_value (rtx x)
13570 machine_mode truncated_mode;
13571 reg_stat_type *rsp;
13573 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13575 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13576 truncated_mode = GET_MODE (x);
13578 if (!partial_subreg_p (truncated_mode, original_mode))
13579 return true;
13581 truncated_mode = GET_MODE (x);
13582 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13583 return true;
13585 x = SUBREG_REG (x);
13587 /* ??? For hard-regs we now record everything. We might be able to
13588 optimize this using last_set_mode. */
13589 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13590 truncated_mode = GET_MODE (x);
13591 else
13592 return false;
13594 rsp = &reg_stat[REGNO (x)];
13595 if (rsp->truncated_to_mode == 0
13596 || rsp->truncation_label < label_tick_ebb_start
13597 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13599 rsp->truncated_to_mode = truncated_mode;
13600 rsp->truncation_label = label_tick;
13603 return true;
13606 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13607 the modes they are used in. This can help truning TRUNCATEs into
13608 SUBREGs. */
13610 static void
13611 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13613 subrtx_var_iterator::array_type array;
13614 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13615 if (record_truncated_value (*iter))
13616 iter.skip_subrtxes ();
13619 /* Scan X for promoted SUBREGs. For each one found,
13620 note what it implies to the registers used in it. */
13622 static void
13623 check_promoted_subreg (rtx_insn *insn, rtx x)
13625 if (GET_CODE (x) == SUBREG
13626 && SUBREG_PROMOTED_VAR_P (x)
13627 && REG_P (SUBREG_REG (x)))
13628 record_promoted_value (insn, x);
13629 else
13631 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13632 int i, j;
13634 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13635 switch (format[i])
13637 case 'e':
13638 check_promoted_subreg (insn, XEXP (x, i));
13639 break;
13640 case 'V':
13641 case 'E':
13642 if (XVEC (x, i) != 0)
13643 for (j = 0; j < XVECLEN (x, i); j++)
13644 check_promoted_subreg (insn, XVECEXP (x, i, j));
13645 break;
13650 /* Verify that all the registers and memory references mentioned in *LOC are
13651 still valid. *LOC was part of a value set in INSN when label_tick was
13652 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13653 the invalid references with (clobber (const_int 0)) and return 1. This
13654 replacement is useful because we often can get useful information about
13655 the form of a value (e.g., if it was produced by a shift that always
13656 produces -1 or 0) even though we don't know exactly what registers it
13657 was produced from. */
13659 static int
13660 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13662 rtx x = *loc;
13663 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13664 int len = GET_RTX_LENGTH (GET_CODE (x));
13665 int i, j;
13667 if (REG_P (x))
13669 unsigned int regno = REGNO (x);
13670 unsigned int endregno = END_REGNO (x);
13671 unsigned int j;
13673 for (j = regno; j < endregno; j++)
13675 reg_stat_type *rsp = &reg_stat[j];
13676 if (rsp->last_set_invalid
13677 /* If this is a pseudo-register that was only set once and not
13678 live at the beginning of the function, it is always valid. */
13679 || (! (regno >= FIRST_PSEUDO_REGISTER
13680 && regno < reg_n_sets_max
13681 && REG_N_SETS (regno) == 1
13682 && (!REGNO_REG_SET_P
13683 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13684 regno)))
13685 && rsp->last_set_label > tick))
13687 if (replace)
13688 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13689 return replace;
13693 return 1;
13695 /* If this is a memory reference, make sure that there were no stores after
13696 it that might have clobbered the value. We don't have alias info, so we
13697 assume any store invalidates it. Moreover, we only have local UIDs, so
13698 we also assume that there were stores in the intervening basic blocks. */
13699 else if (MEM_P (x) && !MEM_READONLY_P (x)
13700 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13702 if (replace)
13703 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13704 return replace;
13707 for (i = 0; i < len; i++)
13709 if (fmt[i] == 'e')
13711 /* Check for identical subexpressions. If x contains
13712 identical subexpression we only have to traverse one of
13713 them. */
13714 if (i == 1 && ARITHMETIC_P (x))
13716 /* Note that at this point x0 has already been checked
13717 and found valid. */
13718 rtx x0 = XEXP (x, 0);
13719 rtx x1 = XEXP (x, 1);
13721 /* If x0 and x1 are identical then x is also valid. */
13722 if (x0 == x1)
13723 return 1;
13725 /* If x1 is identical to a subexpression of x0 then
13726 while checking x0, x1 has already been checked. Thus
13727 it is valid and so as x. */
13728 if (ARITHMETIC_P (x0)
13729 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13730 return 1;
13732 /* If x0 is identical to a subexpression of x1 then x is
13733 valid iff the rest of x1 is valid. */
13734 if (ARITHMETIC_P (x1)
13735 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13736 return
13737 get_last_value_validate (&XEXP (x1,
13738 x0 == XEXP (x1, 0) ? 1 : 0),
13739 insn, tick, replace);
13742 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13743 replace) == 0)
13744 return 0;
13746 else if (fmt[i] == 'E')
13747 for (j = 0; j < XVECLEN (x, i); j++)
13748 if (get_last_value_validate (&XVECEXP (x, i, j),
13749 insn, tick, replace) == 0)
13750 return 0;
13753 /* If we haven't found a reason for it to be invalid, it is valid. */
13754 return 1;
13757 /* Get the last value assigned to X, if known. Some registers
13758 in the value may be replaced with (clobber (const_int 0)) if their value
13759 is known longer known reliably. */
13761 static rtx
13762 get_last_value (const_rtx x)
13764 unsigned int regno;
13765 rtx value;
13766 reg_stat_type *rsp;
13768 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13769 then convert it to the desired mode. If this is a paradoxical SUBREG,
13770 we cannot predict what values the "extra" bits might have. */
13771 if (GET_CODE (x) == SUBREG
13772 && subreg_lowpart_p (x)
13773 && !paradoxical_subreg_p (x)
13774 && (value = get_last_value (SUBREG_REG (x))) != 0)
13775 return gen_lowpart (GET_MODE (x), value);
13777 if (!REG_P (x))
13778 return 0;
13780 regno = REGNO (x);
13781 rsp = &reg_stat[regno];
13782 value = rsp->last_set_value;
13784 /* If we don't have a value, or if it isn't for this basic block and
13785 it's either a hard register, set more than once, or it's a live
13786 at the beginning of the function, return 0.
13788 Because if it's not live at the beginning of the function then the reg
13789 is always set before being used (is never used without being set).
13790 And, if it's set only once, and it's always set before use, then all
13791 uses must have the same last value, even if it's not from this basic
13792 block. */
13794 if (value == 0
13795 || (rsp->last_set_label < label_tick_ebb_start
13796 && (regno < FIRST_PSEUDO_REGISTER
13797 || regno >= reg_n_sets_max
13798 || REG_N_SETS (regno) != 1
13799 || REGNO_REG_SET_P
13800 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13801 return 0;
13803 /* If the value was set in a later insn than the ones we are processing,
13804 we can't use it even if the register was only set once. */
13805 if (rsp->last_set_label == label_tick
13806 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13807 return 0;
13809 /* If fewer bits were set than what we are asked for now, we cannot use
13810 the value. */
13811 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13812 GET_MODE_PRECISION (GET_MODE (x))))
13813 return 0;
13815 /* If the value has all its registers valid, return it. */
13816 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13817 return value;
13819 /* Otherwise, make a copy and replace any invalid register with
13820 (clobber (const_int 0)). If that fails for some reason, return 0. */
13822 value = copy_rtx (value);
13823 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13824 return value;
13826 return 0;
13829 /* Define three variables used for communication between the following
13830 routines. */
13832 static unsigned int reg_dead_regno, reg_dead_endregno;
13833 static int reg_dead_flag;
13834 rtx reg_dead_reg;
13836 /* Function called via note_stores from reg_dead_at_p.
13838 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13839 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13841 static void
13842 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13844 unsigned int regno, endregno;
13846 if (!REG_P (dest))
13847 return;
13849 regno = REGNO (dest);
13850 endregno = END_REGNO (dest);
13851 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13852 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13855 /* Return nonzero if REG is known to be dead at INSN.
13857 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13858 referencing REG, it is dead. If we hit a SET referencing REG, it is
13859 live. Otherwise, see if it is live or dead at the start of the basic
13860 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13861 must be assumed to be always live. */
13863 static int
13864 reg_dead_at_p (rtx reg, rtx_insn *insn)
13866 basic_block block;
13867 unsigned int i;
13869 /* Set variables for reg_dead_at_p_1. */
13870 reg_dead_regno = REGNO (reg);
13871 reg_dead_endregno = END_REGNO (reg);
13872 reg_dead_reg = reg;
13874 reg_dead_flag = 0;
13876 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13877 we allow the machine description to decide whether use-and-clobber
13878 patterns are OK. */
13879 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13881 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13882 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13883 return 0;
13886 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13887 beginning of basic block. */
13888 block = BLOCK_FOR_INSN (insn);
13889 for (;;)
13891 if (INSN_P (insn))
13893 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13894 return 1;
13896 note_stores (insn, reg_dead_at_p_1, NULL);
13897 if (reg_dead_flag)
13898 return reg_dead_flag == 1 ? 1 : 0;
13900 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13901 return 1;
13904 if (insn == BB_HEAD (block))
13905 break;
13907 insn = PREV_INSN (insn);
13910 /* Look at live-in sets for the basic block that we were in. */
13911 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13912 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13913 return 0;
13915 return 1;
13918 /* Note hard registers in X that are used. */
13920 static void
13921 mark_used_regs_combine (rtx x)
13923 RTX_CODE code = GET_CODE (x);
13924 unsigned int regno;
13925 int i;
13927 switch (code)
13929 case LABEL_REF:
13930 case SYMBOL_REF:
13931 case CONST:
13932 CASE_CONST_ANY:
13933 case PC:
13934 case ADDR_VEC:
13935 case ADDR_DIFF_VEC:
13936 case ASM_INPUT:
13937 /* CC0 must die in the insn after it is set, so we don't need to take
13938 special note of it here. */
13939 case CC0:
13940 return;
13942 case CLOBBER:
13943 /* If we are clobbering a MEM, mark any hard registers inside the
13944 address as used. */
13945 if (MEM_P (XEXP (x, 0)))
13946 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13947 return;
13949 case REG:
13950 regno = REGNO (x);
13951 /* A hard reg in a wide mode may really be multiple registers.
13952 If so, mark all of them just like the first. */
13953 if (regno < FIRST_PSEUDO_REGISTER)
13955 /* None of this applies to the stack, frame or arg pointers. */
13956 if (regno == STACK_POINTER_REGNUM
13957 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13958 && regno == HARD_FRAME_POINTER_REGNUM)
13959 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13960 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13961 || regno == FRAME_POINTER_REGNUM)
13962 return;
13964 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13966 return;
13968 case SET:
13970 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13971 the address. */
13972 rtx testreg = SET_DEST (x);
13974 while (GET_CODE (testreg) == SUBREG
13975 || GET_CODE (testreg) == ZERO_EXTRACT
13976 || GET_CODE (testreg) == STRICT_LOW_PART)
13977 testreg = XEXP (testreg, 0);
13979 if (MEM_P (testreg))
13980 mark_used_regs_combine (XEXP (testreg, 0));
13982 mark_used_regs_combine (SET_SRC (x));
13984 return;
13986 default:
13987 break;
13990 /* Recursively scan the operands of this expression. */
13993 const char *fmt = GET_RTX_FORMAT (code);
13995 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13997 if (fmt[i] == 'e')
13998 mark_used_regs_combine (XEXP (x, i));
13999 else if (fmt[i] == 'E')
14001 int j;
14003 for (j = 0; j < XVECLEN (x, i); j++)
14004 mark_used_regs_combine (XVECEXP (x, i, j));
14010 /* Remove register number REGNO from the dead registers list of INSN.
14012 Return the note used to record the death, if there was one. */
14015 remove_death (unsigned int regno, rtx_insn *insn)
14017 rtx note = find_regno_note (insn, REG_DEAD, regno);
14019 if (note)
14020 remove_note (insn, note);
14022 return note;
14025 /* For each register (hardware or pseudo) used within expression X, if its
14026 death is in an instruction with luid between FROM_LUID (inclusive) and
14027 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14028 list headed by PNOTES.
14030 That said, don't move registers killed by maybe_kill_insn.
14032 This is done when X is being merged by combination into TO_INSN. These
14033 notes will then be distributed as needed. */
14035 static void
14036 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14037 rtx *pnotes)
14039 const char *fmt;
14040 int len, i;
14041 enum rtx_code code = GET_CODE (x);
14043 if (code == REG)
14045 unsigned int regno = REGNO (x);
14046 rtx_insn *where_dead = reg_stat[regno].last_death;
14048 /* If we do not know where the register died, it may still die between
14049 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14050 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14052 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14053 while (insn
14054 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14055 && DF_INSN_LUID (insn) >= from_luid)
14057 if (dead_or_set_regno_p (insn, regno))
14059 if (find_regno_note (insn, REG_DEAD, regno))
14060 where_dead = insn;
14061 break;
14064 insn = prev_real_nondebug_insn (insn);
14068 /* Don't move the register if it gets killed in between from and to. */
14069 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14070 && ! reg_referenced_p (x, maybe_kill_insn))
14071 return;
14073 if (where_dead
14074 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14075 && DF_INSN_LUID (where_dead) >= from_luid
14076 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14078 rtx note = remove_death (regno, where_dead);
14080 /* It is possible for the call above to return 0. This can occur
14081 when last_death points to I2 or I1 that we combined with.
14082 In that case make a new note.
14084 We must also check for the case where X is a hard register
14085 and NOTE is a death note for a range of hard registers
14086 including X. In that case, we must put REG_DEAD notes for
14087 the remaining registers in place of NOTE. */
14089 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14090 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14092 unsigned int deadregno = REGNO (XEXP (note, 0));
14093 unsigned int deadend = END_REGNO (XEXP (note, 0));
14094 unsigned int ourend = END_REGNO (x);
14095 unsigned int i;
14097 for (i = deadregno; i < deadend; i++)
14098 if (i < regno || i >= ourend)
14099 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14102 /* If we didn't find any note, or if we found a REG_DEAD note that
14103 covers only part of the given reg, and we have a multi-reg hard
14104 register, then to be safe we must check for REG_DEAD notes
14105 for each register other than the first. They could have
14106 their own REG_DEAD notes lying around. */
14107 else if ((note == 0
14108 || (note != 0
14109 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14110 GET_MODE (x))))
14111 && regno < FIRST_PSEUDO_REGISTER
14112 && REG_NREGS (x) > 1)
14114 unsigned int ourend = END_REGNO (x);
14115 unsigned int i, offset;
14116 rtx oldnotes = 0;
14118 if (note)
14119 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14120 else
14121 offset = 1;
14123 for (i = regno + offset; i < ourend; i++)
14124 move_deaths (regno_reg_rtx[i],
14125 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14128 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14130 XEXP (note, 1) = *pnotes;
14131 *pnotes = note;
14133 else
14134 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14137 return;
14140 else if (GET_CODE (x) == SET)
14142 rtx dest = SET_DEST (x);
14144 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14146 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14147 that accesses one word of a multi-word item, some
14148 piece of everything register in the expression is used by
14149 this insn, so remove any old death. */
14150 /* ??? So why do we test for equality of the sizes? */
14152 if (GET_CODE (dest) == ZERO_EXTRACT
14153 || GET_CODE (dest) == STRICT_LOW_PART
14154 || (GET_CODE (dest) == SUBREG
14155 && !read_modify_subreg_p (dest)))
14157 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14158 return;
14161 /* If this is some other SUBREG, we know it replaces the entire
14162 value, so use that as the destination. */
14163 if (GET_CODE (dest) == SUBREG)
14164 dest = SUBREG_REG (dest);
14166 /* If this is a MEM, adjust deaths of anything used in the address.
14167 For a REG (the only other possibility), the entire value is
14168 being replaced so the old value is not used in this insn. */
14170 if (MEM_P (dest))
14171 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14172 to_insn, pnotes);
14173 return;
14176 else if (GET_CODE (x) == CLOBBER)
14177 return;
14179 len = GET_RTX_LENGTH (code);
14180 fmt = GET_RTX_FORMAT (code);
14182 for (i = 0; i < len; i++)
14184 if (fmt[i] == 'E')
14186 int j;
14187 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14188 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14189 to_insn, pnotes);
14191 else if (fmt[i] == 'e')
14192 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14196 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14197 pattern of an insn. X must be a REG. */
14199 static int
14200 reg_bitfield_target_p (rtx x, rtx body)
14202 int i;
14204 if (GET_CODE (body) == SET)
14206 rtx dest = SET_DEST (body);
14207 rtx target;
14208 unsigned int regno, tregno, endregno, endtregno;
14210 if (GET_CODE (dest) == ZERO_EXTRACT)
14211 target = XEXP (dest, 0);
14212 else if (GET_CODE (dest) == STRICT_LOW_PART)
14213 target = SUBREG_REG (XEXP (dest, 0));
14214 else
14215 return 0;
14217 if (GET_CODE (target) == SUBREG)
14218 target = SUBREG_REG (target);
14220 if (!REG_P (target))
14221 return 0;
14223 tregno = REGNO (target), regno = REGNO (x);
14224 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14225 return target == x;
14227 endtregno = end_hard_regno (GET_MODE (target), tregno);
14228 endregno = end_hard_regno (GET_MODE (x), regno);
14230 return endregno > tregno && regno < endtregno;
14233 else if (GET_CODE (body) == PARALLEL)
14234 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14235 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14236 return 1;
14238 return 0;
14241 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14242 as appropriate. I3 and I2 are the insns resulting from the combination
14243 insns including FROM (I2 may be zero).
14245 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14246 not need REG_DEAD notes because they are being substituted for. This
14247 saves searching in the most common cases.
14249 Each note in the list is either ignored or placed on some insns, depending
14250 on the type of note. */
14252 static void
14253 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14254 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14256 rtx note, next_note;
14257 rtx tem_note;
14258 rtx_insn *tem_insn;
14260 for (note = notes; note; note = next_note)
14262 rtx_insn *place = 0, *place2 = 0;
14264 next_note = XEXP (note, 1);
14265 switch (REG_NOTE_KIND (note))
14267 case REG_BR_PROB:
14268 case REG_BR_PRED:
14269 /* Doesn't matter much where we put this, as long as it's somewhere.
14270 It is preferable to keep these notes on branches, which is most
14271 likely to be i3. */
14272 place = i3;
14273 break;
14275 case REG_NON_LOCAL_GOTO:
14276 if (JUMP_P (i3))
14277 place = i3;
14278 else
14280 gcc_assert (i2 && JUMP_P (i2));
14281 place = i2;
14283 break;
14285 case REG_EH_REGION:
14286 /* These notes must remain with the call or trapping instruction. */
14287 if (CALL_P (i3))
14288 place = i3;
14289 else if (i2 && CALL_P (i2))
14290 place = i2;
14291 else
14293 gcc_assert (cfun->can_throw_non_call_exceptions);
14294 if (may_trap_p (i3))
14295 place = i3;
14296 else if (i2 && may_trap_p (i2))
14297 place = i2;
14298 /* ??? Otherwise assume we've combined things such that we
14299 can now prove that the instructions can't trap. Drop the
14300 note in this case. */
14302 break;
14304 case REG_ARGS_SIZE:
14305 /* ??? How to distribute between i3-i1. Assume i3 contains the
14306 entire adjustment. Assert i3 contains at least some adjust. */
14307 if (!noop_move_p (i3))
14309 poly_int64 old_size, args_size = get_args_size (note);
14310 /* fixup_args_size_notes looks at REG_NORETURN note,
14311 so ensure the note is placed there first. */
14312 if (CALL_P (i3))
14314 rtx *np;
14315 for (np = &next_note; *np; np = &XEXP (*np, 1))
14316 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14318 rtx n = *np;
14319 *np = XEXP (n, 1);
14320 XEXP (n, 1) = REG_NOTES (i3);
14321 REG_NOTES (i3) = n;
14322 break;
14325 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14326 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14327 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14328 gcc_assert (maybe_ne (old_size, args_size)
14329 || (CALL_P (i3)
14330 && !ACCUMULATE_OUTGOING_ARGS
14331 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14333 break;
14335 case REG_NORETURN:
14336 case REG_SETJMP:
14337 case REG_TM:
14338 case REG_CALL_DECL:
14339 case REG_CALL_NOCF_CHECK:
14340 /* These notes must remain with the call. It should not be
14341 possible for both I2 and I3 to be a call. */
14342 if (CALL_P (i3))
14343 place = i3;
14344 else
14346 gcc_assert (i2 && CALL_P (i2));
14347 place = i2;
14349 break;
14351 case REG_UNUSED:
14352 /* Any clobbers for i3 may still exist, and so we must process
14353 REG_UNUSED notes from that insn.
14355 Any clobbers from i2 or i1 can only exist if they were added by
14356 recog_for_combine. In that case, recog_for_combine created the
14357 necessary REG_UNUSED notes. Trying to keep any original
14358 REG_UNUSED notes from these insns can cause incorrect output
14359 if it is for the same register as the original i3 dest.
14360 In that case, we will notice that the register is set in i3,
14361 and then add a REG_UNUSED note for the destination of i3, which
14362 is wrong. However, it is possible to have REG_UNUSED notes from
14363 i2 or i1 for register which were both used and clobbered, so
14364 we keep notes from i2 or i1 if they will turn into REG_DEAD
14365 notes. */
14367 /* If this register is set or clobbered in I3, put the note there
14368 unless there is one already. */
14369 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14371 if (from_insn != i3)
14372 break;
14374 if (! (REG_P (XEXP (note, 0))
14375 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14376 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14377 place = i3;
14379 /* Otherwise, if this register is used by I3, then this register
14380 now dies here, so we must put a REG_DEAD note here unless there
14381 is one already. */
14382 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14383 && ! (REG_P (XEXP (note, 0))
14384 ? find_regno_note (i3, REG_DEAD,
14385 REGNO (XEXP (note, 0)))
14386 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14388 PUT_REG_NOTE_KIND (note, REG_DEAD);
14389 place = i3;
14392 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14393 but we can't tell which at this point. We must reset any
14394 expectations we had about the value that was previously
14395 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14396 and, if appropriate, restore its previous value, but we
14397 don't have enough information for that at this point. */
14398 else
14400 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14402 /* Otherwise, if this register is now referenced in i2
14403 then the register used to be modified in one of the
14404 original insns. If it was i3 (say, in an unused
14405 parallel), it's now completely gone, so the note can
14406 be discarded. But if it was modified in i2, i1 or i0
14407 and we still reference it in i2, then we're
14408 referencing the previous value, and since the
14409 register was modified and REG_UNUSED, we know that
14410 the previous value is now dead. So, if we only
14411 reference the register in i2, we change the note to
14412 REG_DEAD, to reflect the previous value. However, if
14413 we're also setting or clobbering the register as
14414 scratch, we know (because the register was not
14415 referenced in i3) that it's unused, just as it was
14416 unused before, and we place the note in i2. */
14417 if (from_insn != i3 && i2 && INSN_P (i2)
14418 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14420 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14421 PUT_REG_NOTE_KIND (note, REG_DEAD);
14422 if (! (REG_P (XEXP (note, 0))
14423 ? find_regno_note (i2, REG_NOTE_KIND (note),
14424 REGNO (XEXP (note, 0)))
14425 : find_reg_note (i2, REG_NOTE_KIND (note),
14426 XEXP (note, 0))))
14427 place = i2;
14431 break;
14433 case REG_EQUAL:
14434 case REG_EQUIV:
14435 case REG_NOALIAS:
14436 /* These notes say something about results of an insn. We can
14437 only support them if they used to be on I3 in which case they
14438 remain on I3. Otherwise they are ignored.
14440 If the note refers to an expression that is not a constant, we
14441 must also ignore the note since we cannot tell whether the
14442 equivalence is still true. It might be possible to do
14443 slightly better than this (we only have a problem if I2DEST
14444 or I1DEST is present in the expression), but it doesn't
14445 seem worth the trouble. */
14447 if (from_insn == i3
14448 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14449 place = i3;
14450 break;
14452 case REG_INC:
14453 /* These notes say something about how a register is used. They must
14454 be present on any use of the register in I2 or I3. */
14455 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14456 place = i3;
14458 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14460 if (place)
14461 place2 = i2;
14462 else
14463 place = i2;
14465 break;
14467 case REG_LABEL_TARGET:
14468 case REG_LABEL_OPERAND:
14469 /* This can show up in several ways -- either directly in the
14470 pattern, or hidden off in the constant pool with (or without?)
14471 a REG_EQUAL note. */
14472 /* ??? Ignore the without-reg_equal-note problem for now. */
14473 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14474 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14475 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14476 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14477 place = i3;
14479 if (i2
14480 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14481 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14482 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14483 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14485 if (place)
14486 place2 = i2;
14487 else
14488 place = i2;
14491 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14492 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14493 there. */
14494 if (place && JUMP_P (place)
14495 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14496 && (JUMP_LABEL (place) == NULL
14497 || JUMP_LABEL (place) == XEXP (note, 0)))
14499 rtx label = JUMP_LABEL (place);
14501 if (!label)
14502 JUMP_LABEL (place) = XEXP (note, 0);
14503 else if (LABEL_P (label))
14504 LABEL_NUSES (label)--;
14507 if (place2 && JUMP_P (place2)
14508 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14509 && (JUMP_LABEL (place2) == NULL
14510 || JUMP_LABEL (place2) == XEXP (note, 0)))
14512 rtx label = JUMP_LABEL (place2);
14514 if (!label)
14515 JUMP_LABEL (place2) = XEXP (note, 0);
14516 else if (LABEL_P (label))
14517 LABEL_NUSES (label)--;
14518 place2 = 0;
14520 break;
14522 case REG_NONNEG:
14523 /* This note says something about the value of a register prior
14524 to the execution of an insn. It is too much trouble to see
14525 if the note is still correct in all situations. It is better
14526 to simply delete it. */
14527 break;
14529 case REG_DEAD:
14530 /* If we replaced the right hand side of FROM_INSN with a
14531 REG_EQUAL note, the original use of the dying register
14532 will not have been combined into I3 and I2. In such cases,
14533 FROM_INSN is guaranteed to be the first of the combined
14534 instructions, so we simply need to search back before
14535 FROM_INSN for the previous use or set of this register,
14536 then alter the notes there appropriately.
14538 If the register is used as an input in I3, it dies there.
14539 Similarly for I2, if it is nonzero and adjacent to I3.
14541 If the register is not used as an input in either I3 or I2
14542 and it is not one of the registers we were supposed to eliminate,
14543 there are two possibilities. We might have a non-adjacent I2
14544 or we might have somehow eliminated an additional register
14545 from a computation. For example, we might have had A & B where
14546 we discover that B will always be zero. In this case we will
14547 eliminate the reference to A.
14549 In both cases, we must search to see if we can find a previous
14550 use of A and put the death note there. */
14552 if (from_insn
14553 && from_insn == i2mod
14554 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14555 tem_insn = from_insn;
14556 else
14558 if (from_insn
14559 && CALL_P (from_insn)
14560 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14561 place = from_insn;
14562 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14564 /* If the new I2 sets the same register that is marked
14565 dead in the note, we do not in general know where to
14566 put the note. One important case we _can_ handle is
14567 when the note comes from I3. */
14568 if (from_insn == i3)
14569 place = i3;
14570 else
14571 break;
14573 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14574 place = i3;
14575 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14576 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14577 place = i2;
14578 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14579 && !(i2mod
14580 && reg_overlap_mentioned_p (XEXP (note, 0),
14581 i2mod_old_rhs)))
14582 || rtx_equal_p (XEXP (note, 0), elim_i1)
14583 || rtx_equal_p (XEXP (note, 0), elim_i0))
14584 break;
14585 tem_insn = i3;
14588 if (place == 0)
14590 basic_block bb = this_basic_block;
14592 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14594 if (!NONDEBUG_INSN_P (tem_insn))
14596 if (tem_insn == BB_HEAD (bb))
14597 break;
14598 continue;
14601 /* If the register is being set at TEM_INSN, see if that is all
14602 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14603 into a REG_UNUSED note instead. Don't delete sets to
14604 global register vars. */
14605 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14606 || !global_regs[REGNO (XEXP (note, 0))])
14607 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14609 rtx set = single_set (tem_insn);
14610 rtx inner_dest = 0;
14611 rtx_insn *cc0_setter = NULL;
14613 if (set != 0)
14614 for (inner_dest = SET_DEST (set);
14615 (GET_CODE (inner_dest) == STRICT_LOW_PART
14616 || GET_CODE (inner_dest) == SUBREG
14617 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14618 inner_dest = XEXP (inner_dest, 0))
14621 /* Verify that it was the set, and not a clobber that
14622 modified the register.
14624 CC0 targets must be careful to maintain setter/user
14625 pairs. If we cannot delete the setter due to side
14626 effects, mark the user with an UNUSED note instead
14627 of deleting it. */
14629 if (set != 0 && ! side_effects_p (SET_SRC (set))
14630 && rtx_equal_p (XEXP (note, 0), inner_dest)
14631 && (!HAVE_cc0
14632 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14633 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14634 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14636 /* Move the notes and links of TEM_INSN elsewhere.
14637 This might delete other dead insns recursively.
14638 First set the pattern to something that won't use
14639 any register. */
14640 rtx old_notes = REG_NOTES (tem_insn);
14642 PATTERN (tem_insn) = pc_rtx;
14643 REG_NOTES (tem_insn) = NULL;
14645 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14646 NULL_RTX, NULL_RTX, NULL_RTX);
14647 distribute_links (LOG_LINKS (tem_insn));
14649 unsigned int regno = REGNO (XEXP (note, 0));
14650 reg_stat_type *rsp = &reg_stat[regno];
14651 if (rsp->last_set == tem_insn)
14652 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14654 SET_INSN_DELETED (tem_insn);
14655 if (tem_insn == i2)
14656 i2 = NULL;
14658 /* Delete the setter too. */
14659 if (cc0_setter)
14661 PATTERN (cc0_setter) = pc_rtx;
14662 old_notes = REG_NOTES (cc0_setter);
14663 REG_NOTES (cc0_setter) = NULL;
14665 distribute_notes (old_notes, cc0_setter,
14666 cc0_setter, NULL,
14667 NULL_RTX, NULL_RTX, NULL_RTX);
14668 distribute_links (LOG_LINKS (cc0_setter));
14670 SET_INSN_DELETED (cc0_setter);
14671 if (cc0_setter == i2)
14672 i2 = NULL;
14675 else
14677 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14679 /* If there isn't already a REG_UNUSED note, put one
14680 here. Do not place a REG_DEAD note, even if
14681 the register is also used here; that would not
14682 match the algorithm used in lifetime analysis
14683 and can cause the consistency check in the
14684 scheduler to fail. */
14685 if (! find_regno_note (tem_insn, REG_UNUSED,
14686 REGNO (XEXP (note, 0))))
14687 place = tem_insn;
14688 break;
14691 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14692 || (CALL_P (tem_insn)
14693 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14695 place = tem_insn;
14697 /* If we are doing a 3->2 combination, and we have a
14698 register which formerly died in i3 and was not used
14699 by i2, which now no longer dies in i3 and is used in
14700 i2 but does not die in i2, and place is between i2
14701 and i3, then we may need to move a link from place to
14702 i2. */
14703 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14704 && from_insn
14705 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14706 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14708 struct insn_link *links = LOG_LINKS (place);
14709 LOG_LINKS (place) = NULL;
14710 distribute_links (links);
14712 break;
14715 if (tem_insn == BB_HEAD (bb))
14716 break;
14721 /* If the register is set or already dead at PLACE, we needn't do
14722 anything with this note if it is still a REG_DEAD note.
14723 We check here if it is set at all, not if is it totally replaced,
14724 which is what `dead_or_set_p' checks, so also check for it being
14725 set partially. */
14727 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14729 unsigned int regno = REGNO (XEXP (note, 0));
14730 reg_stat_type *rsp = &reg_stat[regno];
14732 if (dead_or_set_p (place, XEXP (note, 0))
14733 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14735 /* Unless the register previously died in PLACE, clear
14736 last_death. [I no longer understand why this is
14737 being done.] */
14738 if (rsp->last_death != place)
14739 rsp->last_death = 0;
14740 place = 0;
14742 else
14743 rsp->last_death = place;
14745 /* If this is a death note for a hard reg that is occupying
14746 multiple registers, ensure that we are still using all
14747 parts of the object. If we find a piece of the object
14748 that is unused, we must arrange for an appropriate REG_DEAD
14749 note to be added for it. However, we can't just emit a USE
14750 and tag the note to it, since the register might actually
14751 be dead; so we recourse, and the recursive call then finds
14752 the previous insn that used this register. */
14754 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14756 unsigned int endregno = END_REGNO (XEXP (note, 0));
14757 bool all_used = true;
14758 unsigned int i;
14760 for (i = regno; i < endregno; i++)
14761 if ((! refers_to_regno_p (i, PATTERN (place))
14762 && ! find_regno_fusage (place, USE, i))
14763 || dead_or_set_regno_p (place, i))
14765 all_used = false;
14766 break;
14769 if (! all_used)
14771 /* Put only REG_DEAD notes for pieces that are
14772 not already dead or set. */
14774 for (i = regno; i < endregno;
14775 i += hard_regno_nregs (i, reg_raw_mode[i]))
14777 rtx piece = regno_reg_rtx[i];
14778 basic_block bb = this_basic_block;
14780 if (! dead_or_set_p (place, piece)
14781 && ! reg_bitfield_target_p (piece,
14782 PATTERN (place)))
14784 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14785 NULL_RTX);
14787 distribute_notes (new_note, place, place,
14788 NULL, NULL_RTX, NULL_RTX,
14789 NULL_RTX);
14791 else if (! refers_to_regno_p (i, PATTERN (place))
14792 && ! find_regno_fusage (place, USE, i))
14793 for (tem_insn = PREV_INSN (place); ;
14794 tem_insn = PREV_INSN (tem_insn))
14796 if (!NONDEBUG_INSN_P (tem_insn))
14798 if (tem_insn == BB_HEAD (bb))
14799 break;
14800 continue;
14802 if (dead_or_set_p (tem_insn, piece)
14803 || reg_bitfield_target_p (piece,
14804 PATTERN (tem_insn)))
14806 add_reg_note (tem_insn, REG_UNUSED, piece);
14807 break;
14812 place = 0;
14816 break;
14818 default:
14819 /* Any other notes should not be present at this point in the
14820 compilation. */
14821 gcc_unreachable ();
14824 if (place)
14826 XEXP (note, 1) = REG_NOTES (place);
14827 REG_NOTES (place) = note;
14829 /* Set added_notes_insn to the earliest insn we added a note to. */
14830 if (added_notes_insn == 0
14831 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14832 added_notes_insn = place;
14835 if (place2)
14837 add_shallow_copy_of_reg_note (place2, note);
14839 /* Set added_notes_insn to the earliest insn we added a note to. */
14840 if (added_notes_insn == 0
14841 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14842 added_notes_insn = place2;
14847 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14848 I3, I2, and I1 to new locations. This is also called to add a link
14849 pointing at I3 when I3's destination is changed. */
14851 static void
14852 distribute_links (struct insn_link *links)
14854 struct insn_link *link, *next_link;
14856 for (link = links; link; link = next_link)
14858 rtx_insn *place = 0;
14859 rtx_insn *insn;
14860 rtx set, reg;
14862 next_link = link->next;
14864 /* If the insn that this link points to is a NOTE, ignore it. */
14865 if (NOTE_P (link->insn))
14866 continue;
14868 set = 0;
14869 rtx pat = PATTERN (link->insn);
14870 if (GET_CODE (pat) == SET)
14871 set = pat;
14872 else if (GET_CODE (pat) == PARALLEL)
14874 int i;
14875 for (i = 0; i < XVECLEN (pat, 0); i++)
14877 set = XVECEXP (pat, 0, i);
14878 if (GET_CODE (set) != SET)
14879 continue;
14881 reg = SET_DEST (set);
14882 while (GET_CODE (reg) == ZERO_EXTRACT
14883 || GET_CODE (reg) == STRICT_LOW_PART
14884 || GET_CODE (reg) == SUBREG)
14885 reg = XEXP (reg, 0);
14887 if (!REG_P (reg))
14888 continue;
14890 if (REGNO (reg) == link->regno)
14891 break;
14893 if (i == XVECLEN (pat, 0))
14894 continue;
14896 else
14897 continue;
14899 reg = SET_DEST (set);
14901 while (GET_CODE (reg) == ZERO_EXTRACT
14902 || GET_CODE (reg) == STRICT_LOW_PART
14903 || GET_CODE (reg) == SUBREG)
14904 reg = XEXP (reg, 0);
14906 if (reg == pc_rtx)
14907 continue;
14909 /* A LOG_LINK is defined as being placed on the first insn that uses
14910 a register and points to the insn that sets the register. Start
14911 searching at the next insn after the target of the link and stop
14912 when we reach a set of the register or the end of the basic block.
14914 Note that this correctly handles the link that used to point from
14915 I3 to I2. Also note that not much searching is typically done here
14916 since most links don't point very far away. */
14918 for (insn = NEXT_INSN (link->insn);
14919 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14920 || BB_HEAD (this_basic_block->next_bb) != insn));
14921 insn = NEXT_INSN (insn))
14922 if (DEBUG_INSN_P (insn))
14923 continue;
14924 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14926 if (reg_referenced_p (reg, PATTERN (insn)))
14927 place = insn;
14928 break;
14930 else if (CALL_P (insn)
14931 && find_reg_fusage (insn, USE, reg))
14933 place = insn;
14934 break;
14936 else if (INSN_P (insn) && reg_set_p (reg, insn))
14937 break;
14939 /* If we found a place to put the link, place it there unless there
14940 is already a link to the same insn as LINK at that point. */
14942 if (place)
14944 struct insn_link *link2;
14946 FOR_EACH_LOG_LINK (link2, place)
14947 if (link2->insn == link->insn && link2->regno == link->regno)
14948 break;
14950 if (link2 == NULL)
14952 link->next = LOG_LINKS (place);
14953 LOG_LINKS (place) = link;
14955 /* Set added_links_insn to the earliest insn we added a
14956 link to. */
14957 if (added_links_insn == 0
14958 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14959 added_links_insn = place;
14965 /* Check for any register or memory mentioned in EQUIV that is not
14966 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14967 of EXPR where some registers may have been replaced by constants. */
14969 static bool
14970 unmentioned_reg_p (rtx equiv, rtx expr)
14972 subrtx_iterator::array_type array;
14973 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14975 const_rtx x = *iter;
14976 if ((REG_P (x) || MEM_P (x))
14977 && !reg_mentioned_p (x, expr))
14978 return true;
14980 return false;
14983 DEBUG_FUNCTION void
14984 dump_combine_stats (FILE *file)
14986 fprintf
14987 (file,
14988 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14989 combine_attempts, combine_merges, combine_extras, combine_successes);
14992 void
14993 dump_combine_total_stats (FILE *file)
14995 fprintf
14996 (file,
14997 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14998 total_attempts, total_merges, total_extras, total_successes);
15001 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15002 the reg-to-reg copy can usefully combine with later instructions, but we
15003 do not want to combine the hard reg into later instructions, for that
15004 restricts register allocation. */
15005 static void
15006 make_more_copies (void)
15008 basic_block bb;
15010 FOR_EACH_BB_FN (bb, cfun)
15012 rtx_insn *insn;
15014 FOR_BB_INSNS (bb, insn)
15016 if (!NONDEBUG_INSN_P (insn))
15017 continue;
15019 rtx set = single_set (insn);
15020 if (!set)
15021 continue;
15023 rtx dest = SET_DEST (set);
15024 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15025 continue;
15027 rtx src = SET_SRC (set);
15028 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15029 continue;
15030 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15031 continue;
15033 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15034 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15035 SET_SRC (set) = new_reg;
15036 emit_insn_before (new_insn, insn);
15037 df_insn_rescan (insn);
15042 /* Try combining insns through substitution. */
15043 static unsigned int
15044 rest_of_handle_combine (void)
15046 make_more_copies ();
15048 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15049 df_note_add_problem ();
15050 df_analyze ();
15052 regstat_init_n_sets_and_refs ();
15053 reg_n_sets_max = max_reg_num ();
15055 int rebuild_jump_labels_after_combine
15056 = combine_instructions (get_insns (), max_reg_num ());
15058 /* Combining insns may have turned an indirect jump into a
15059 direct jump. Rebuild the JUMP_LABEL fields of jumping
15060 instructions. */
15061 if (rebuild_jump_labels_after_combine)
15063 if (dom_info_available_p (CDI_DOMINATORS))
15064 free_dominance_info (CDI_DOMINATORS);
15065 timevar_push (TV_JUMP);
15066 rebuild_jump_labels (get_insns ());
15067 cleanup_cfg (0);
15068 timevar_pop (TV_JUMP);
15071 regstat_free_n_sets_and_refs ();
15072 return 0;
15075 namespace {
15077 const pass_data pass_data_combine =
15079 RTL_PASS, /* type */
15080 "combine", /* name */
15081 OPTGROUP_NONE, /* optinfo_flags */
15082 TV_COMBINE, /* tv_id */
15083 PROP_cfglayout, /* properties_required */
15084 0, /* properties_provided */
15085 0, /* properties_destroyed */
15086 0, /* todo_flags_start */
15087 TODO_df_finish, /* todo_flags_finish */
15090 class pass_combine : public rtl_opt_pass
15092 public:
15093 pass_combine (gcc::context *ctxt)
15094 : rtl_opt_pass (pass_data_combine, ctxt)
15097 /* opt_pass methods: */
15098 virtual bool gate (function *) { return (optimize > 0); }
15099 virtual unsigned int execute (function *)
15101 return rest_of_handle_combine ();
15104 }; // class pass_combine
15106 } // anon namespace
15108 rtl_opt_pass *
15109 make_pass_combine (gcc::context *ctxt)
15111 return new pass_combine (ctxt);