pr88074.c: Require c99_runtime.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob8b062232c688370cccfc13fb669b032538a54675
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id);
609 -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that
610 -- In_Default_Expr can be properly adjusted.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
719 -----------------------
720 -- Access_Definition --
721 -----------------------
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
758 declare
759 Par : Node_Id;
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
837 if Present (Access_To_Subprogram_Definition (N)) then
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
863 -- If the anonymous access itself is protected, a full type
864 -- declaratiton will be created for it, so that the equivalent
865 -- record type can be constructed. For further details, see
866 -- Replace_Anonymous_Access_To_Protected-Subprogram.
868 if Ekind (Current_Scope) = E_Protected_Type
869 and then not Protected_Present (Access_To_Subprogram_Definition (N))
870 then
871 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
872 end if;
874 return Anon_Type;
875 end if;
877 Find_Type (Subtype_Mark (N));
878 Desig_Type := Entity (Subtype_Mark (N));
880 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
881 Set_Etype (Anon_Type, Anon_Type);
883 -- Make sure the anonymous access type has size and alignment fields
884 -- set, as required by gigi. This is necessary in the case of the
885 -- Task_Body_Procedure.
887 if not Has_Private_Component (Desig_Type) then
888 Layout_Type (Anon_Type);
889 end if;
891 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
892 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
893 -- the null value is allowed. In Ada 95 the null value is never allowed.
895 if Ada_Version >= Ada_2005 then
896 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
897 else
898 Set_Can_Never_Be_Null (Anon_Type, True);
899 end if;
901 -- The anonymous access type is as public as the discriminated type or
902 -- subprogram that defines it. It is imported (for back-end purposes)
903 -- if the designated type is.
905 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
907 -- Ada 2005 (AI-231): Propagate the access-constant attribute
909 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
911 -- The context is either a subprogram declaration, object declaration,
912 -- or an access discriminant, in a private or a full type declaration.
913 -- In the case of a subprogram, if the designated type is incomplete,
914 -- the operation will be a primitive operation of the full type, to be
915 -- updated subsequently. If the type is imported through a limited_with
916 -- clause, the subprogram is not a primitive operation of the type
917 -- (which is declared elsewhere in some other scope).
919 if Ekind (Desig_Type) = E_Incomplete_Type
920 and then not From_Limited_With (Desig_Type)
921 and then Is_Overloadable (Current_Scope)
922 then
923 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
924 Set_Has_Delayed_Freeze (Current_Scope);
925 end if;
927 -- Ada 2005: If the designated type is an interface that may contain
928 -- tasks, create a Master entity for the declaration. This must be done
929 -- before expansion of the full declaration, because the declaration may
930 -- include an expression that is an allocator, whose expansion needs the
931 -- proper Master for the created tasks.
933 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
934 then
935 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
936 then
937 Build_Class_Wide_Master (Anon_Type);
939 -- Similarly, if the type is an anonymous access that designates
940 -- tasks, create a master entity for it in the current context.
942 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
943 then
944 Build_Master_Entity (Defining_Identifier (Related_Nod));
945 Build_Master_Renaming (Anon_Type);
946 end if;
947 end if;
949 -- For a private component of a protected type, it is imperative that
950 -- the back-end elaborate the type immediately after the protected
951 -- declaration, because this type will be used in the declarations
952 -- created for the component within each protected body, so we must
953 -- create an itype reference for it now.
955 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
956 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
958 -- Similarly, if the access definition is the return result of a
959 -- function, create an itype reference for it because it will be used
960 -- within the function body. For a regular function that is not a
961 -- compilation unit, insert reference after the declaration. For a
962 -- protected operation, insert it after the enclosing protected type
963 -- declaration. In either case, do not create a reference for a type
964 -- obtained through a limited_with clause, because this would introduce
965 -- semantic dependencies.
967 -- Similarly, do not create a reference if the designated type is a
968 -- generic formal, because no use of it will reach the backend.
970 elsif Nkind (Related_Nod) = N_Function_Specification
971 and then not From_Limited_With (Desig_Type)
972 and then not Is_Generic_Type (Desig_Type)
973 then
974 if Present (Enclosing_Prot_Type) then
975 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
977 elsif Is_List_Member (Parent (Related_Nod))
978 and then Nkind (Parent (N)) /= N_Parameter_Specification
979 then
980 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
981 end if;
983 -- Finally, create an itype reference for an object declaration of an
984 -- anonymous access type. This is strictly necessary only for deferred
985 -- constants, but in any case will avoid out-of-scope problems in the
986 -- back-end.
988 elsif Nkind (Related_Nod) = N_Object_Declaration then
989 Build_Itype_Reference (Anon_Type, Related_Nod);
990 end if;
992 return Anon_Type;
993 end Access_Definition;
995 -----------------------------------
996 -- Access_Subprogram_Declaration --
997 -----------------------------------
999 procedure Access_Subprogram_Declaration
1000 (T_Name : Entity_Id;
1001 T_Def : Node_Id)
1003 procedure Check_For_Premature_Usage (Def : Node_Id);
1004 -- Check that type T_Name is not used, directly or recursively, as a
1005 -- parameter or a return type in Def. Def is either a subtype, an
1006 -- access_definition, or an access_to_subprogram_definition.
1008 -------------------------------
1009 -- Check_For_Premature_Usage --
1010 -------------------------------
1012 procedure Check_For_Premature_Usage (Def : Node_Id) is
1013 Param : Node_Id;
1015 begin
1016 -- Check for a subtype mark
1018 if Nkind (Def) in N_Has_Etype then
1019 if Etype (Def) = T_Name then
1020 Error_Msg_N
1021 ("type& cannot be used before end of its declaration", Def);
1022 end if;
1024 -- If this is not a subtype, then this is an access_definition
1026 elsif Nkind (Def) = N_Access_Definition then
1027 if Present (Access_To_Subprogram_Definition (Def)) then
1028 Check_For_Premature_Usage
1029 (Access_To_Subprogram_Definition (Def));
1030 else
1031 Check_For_Premature_Usage (Subtype_Mark (Def));
1032 end if;
1034 -- The only cases left are N_Access_Function_Definition and
1035 -- N_Access_Procedure_Definition.
1037 else
1038 if Present (Parameter_Specifications (Def)) then
1039 Param := First (Parameter_Specifications (Def));
1040 while Present (Param) loop
1041 Check_For_Premature_Usage (Parameter_Type (Param));
1042 Param := Next (Param);
1043 end loop;
1044 end if;
1046 if Nkind (Def) = N_Access_Function_Definition then
1047 Check_For_Premature_Usage (Result_Definition (Def));
1048 end if;
1049 end if;
1050 end Check_For_Premature_Usage;
1052 -- Local variables
1054 Formals : constant List_Id := Parameter_Specifications (T_Def);
1055 Formal : Entity_Id;
1056 D_Ityp : Node_Id;
1057 Desig_Type : constant Entity_Id :=
1058 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1060 -- Start of processing for Access_Subprogram_Declaration
1062 begin
1063 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1065 -- Associate the Itype node with the inner full-type declaration or
1066 -- subprogram spec or entry body. This is required to handle nested
1067 -- anonymous declarations. For example:
1069 -- procedure P
1070 -- (X : access procedure
1071 -- (Y : access procedure
1072 -- (Z : access T)))
1074 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1075 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1076 N_Private_Type_Declaration,
1077 N_Private_Extension_Declaration,
1078 N_Procedure_Specification,
1079 N_Function_Specification,
1080 N_Entry_Body)
1082 or else
1083 Nkind_In (D_Ityp, N_Object_Declaration,
1084 N_Object_Renaming_Declaration,
1085 N_Formal_Object_Declaration,
1086 N_Formal_Type_Declaration,
1087 N_Task_Type_Declaration,
1088 N_Protected_Type_Declaration))
1089 loop
1090 D_Ityp := Parent (D_Ityp);
1091 pragma Assert (D_Ityp /= Empty);
1092 end loop;
1094 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1096 if Nkind_In (D_Ityp, N_Procedure_Specification,
1097 N_Function_Specification)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1101 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1102 N_Object_Declaration,
1103 N_Object_Renaming_Declaration,
1104 N_Formal_Type_Declaration)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1107 end if;
1109 if Nkind (T_Def) = N_Access_Function_Definition then
1110 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1111 declare
1112 Acc : constant Node_Id := Result_Definition (T_Def);
1114 begin
1115 if Present (Access_To_Subprogram_Definition (Acc))
1116 and then
1117 Protected_Present (Access_To_Subprogram_Definition (Acc))
1118 then
1119 Set_Etype
1120 (Desig_Type,
1121 Replace_Anonymous_Access_To_Protected_Subprogram
1122 (T_Def));
1124 else
1125 Set_Etype
1126 (Desig_Type,
1127 Access_Definition (T_Def, Result_Definition (T_Def)));
1128 end if;
1129 end;
1131 else
1132 Analyze (Result_Definition (T_Def));
1134 declare
1135 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1137 begin
1138 -- If a null exclusion is imposed on the result type, then
1139 -- create a null-excluding itype (an access subtype) and use
1140 -- it as the function's Etype.
1142 if Is_Access_Type (Typ)
1143 and then Null_Exclusion_In_Return_Present (T_Def)
1144 then
1145 Set_Etype (Desig_Type,
1146 Create_Null_Excluding_Itype
1147 (T => Typ,
1148 Related_Nod => T_Def,
1149 Scope_Id => Current_Scope));
1151 else
1152 if From_Limited_With (Typ) then
1154 -- AI05-151: Incomplete types are allowed in all basic
1155 -- declarations, including access to subprograms.
1157 if Ada_Version >= Ada_2012 then
1158 null;
1160 else
1161 Error_Msg_NE
1162 ("illegal use of incomplete type&",
1163 Result_Definition (T_Def), Typ);
1164 end if;
1166 elsif Ekind (Current_Scope) = E_Package
1167 and then In_Private_Part (Current_Scope)
1168 then
1169 if Ekind (Typ) = E_Incomplete_Type then
1170 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1172 elsif Is_Class_Wide_Type (Typ)
1173 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1174 then
1175 Append_Elmt
1176 (Desig_Type, Private_Dependents (Etype (Typ)));
1177 end if;
1178 end if;
1180 Set_Etype (Desig_Type, Typ);
1181 end if;
1182 end;
1183 end if;
1185 if not (Is_Type (Etype (Desig_Type))) then
1186 Error_Msg_N
1187 ("expect type in function specification",
1188 Result_Definition (T_Def));
1189 end if;
1191 else
1192 Set_Etype (Desig_Type, Standard_Void_Type);
1193 end if;
1195 if Present (Formals) then
1196 Push_Scope (Desig_Type);
1198 -- Some special tests here. These special tests can be removed
1199 -- if and when Itypes always have proper parent pointers to their
1200 -- declarations???
1202 -- Special test 1) Link defining_identifier of formals. Required by
1203 -- First_Formal to provide its functionality.
1205 declare
1206 F : Node_Id;
1208 begin
1209 F := First (Formals);
1211 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1212 -- when it is part of an unconstrained type and subtype expansion
1213 -- is disabled. To avoid back-end problems with shared profiles,
1214 -- use previous subprogram type as the designated type, and then
1215 -- remove scope added above.
1217 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1218 then
1219 Set_Etype (T_Name, T_Name);
1220 Init_Size_Align (T_Name);
1221 Set_Directly_Designated_Type (T_Name,
1222 Scope (Defining_Identifier (F)));
1223 End_Scope;
1224 return;
1225 end if;
1227 while Present (F) loop
1228 if No (Parent (Defining_Identifier (F))) then
1229 Set_Parent (Defining_Identifier (F), F);
1230 end if;
1232 Next (F);
1233 end loop;
1234 end;
1236 Process_Formals (Formals, Parent (T_Def));
1238 -- Special test 2) End_Scope requires that the parent pointer be set
1239 -- to something reasonable, but Itypes don't have parent pointers. So
1240 -- we set it and then unset it ???
1242 Set_Parent (Desig_Type, T_Name);
1243 End_Scope;
1244 Set_Parent (Desig_Type, Empty);
1245 end if;
1247 -- Check for premature usage of the type being defined
1249 Check_For_Premature_Usage (T_Def);
1251 -- The return type and/or any parameter type may be incomplete. Mark the
1252 -- subprogram_type as depending on the incomplete type, so that it can
1253 -- be updated when the full type declaration is seen. This only applies
1254 -- to incomplete types declared in some enclosing scope, not to limited
1255 -- views from other packages.
1257 -- Prior to Ada 2012, access to functions can only have in_parameters.
1259 if Present (Formals) then
1260 Formal := First_Formal (Desig_Type);
1261 while Present (Formal) loop
1262 if Ekind (Formal) /= E_In_Parameter
1263 and then Nkind (T_Def) = N_Access_Function_Definition
1264 and then Ada_Version < Ada_2012
1265 then
1266 Error_Msg_N ("functions can only have IN parameters", Formal);
1267 end if;
1269 if Ekind (Etype (Formal)) = E_Incomplete_Type
1270 and then In_Open_Scopes (Scope (Etype (Formal)))
1271 then
1272 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1273 Set_Has_Delayed_Freeze (Desig_Type);
1274 end if;
1276 Next_Formal (Formal);
1277 end loop;
1278 end if;
1280 -- Check whether an indirect call without actuals may be possible. This
1281 -- is used when resolving calls whose result is then indexed.
1283 May_Need_Actuals (Desig_Type);
1285 -- If the return type is incomplete, this is legal as long as the type
1286 -- is declared in the current scope and will be completed in it (rather
1287 -- than being part of limited view).
1289 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1290 and then not Has_Delayed_Freeze (Desig_Type)
1291 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1292 then
1293 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1294 Set_Has_Delayed_Freeze (Desig_Type);
1295 end if;
1297 Check_Delayed_Subprogram (Desig_Type);
1299 if Protected_Present (T_Def) then
1300 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1301 Set_Convention (Desig_Type, Convention_Protected);
1302 else
1303 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1304 end if;
1306 Set_Can_Use_Internal_Rep (T_Name,
1307 not Always_Compatible_Rep_On_Target);
1308 Set_Etype (T_Name, T_Name);
1309 Init_Size_Align (T_Name);
1310 Set_Directly_Designated_Type (T_Name, Desig_Type);
1312 -- If the access_to_subprogram is not declared at the library level,
1313 -- it can only point to subprograms that are at the same or deeper
1314 -- accessibility level. The corresponding subprogram type might
1315 -- require an activation record when compiling for C.
1317 Set_Needs_Activation_Record (Desig_Type,
1318 not Is_Library_Level_Entity (T_Name));
1320 Generate_Reference_To_Formals (T_Name);
1322 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1324 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1326 Check_Restriction (No_Access_Subprograms, T_Def);
1327 end Access_Subprogram_Declaration;
1329 ----------------------------
1330 -- Access_Type_Declaration --
1331 ----------------------------
1333 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1334 P : constant Node_Id := Parent (Def);
1335 S : constant Node_Id := Subtype_Indication (Def);
1337 Full_Desig : Entity_Id;
1339 begin
1340 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1342 -- Check for permissible use of incomplete type
1344 if Nkind (S) /= N_Subtype_Indication then
1345 Analyze (S);
1347 if Present (Entity (S))
1348 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1349 then
1350 Set_Directly_Designated_Type (T, Entity (S));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1409 Full_Desig := Designated_Type (T);
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own class-wide type", S);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1428 Set_Etype (T, T);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task (T, False);
1443 Set_Has_Protected (T, False);
1444 Set_Has_Timing_Event (T, False);
1445 Set_Has_Controlled_Component (T, False);
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1457 if No (Associated_Storage_Pool (T)) then
1458 Set_Finalization_Master (T, Empty);
1459 end if;
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1462 -- attributes
1464 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1465 Set_Is_Access_Constant (T, Constant_Present (Def));
1466 end Access_Type_Declaration;
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1472 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 L : List_Id;
1475 Last_Tag : Node_Id;
1477 procedure Add_Tag (Iface : Entity_Id);
1478 -- Add tag for one of the progenitor interfaces
1480 -------------
1481 -- Add_Tag --
1482 -------------
1484 procedure Add_Tag (Iface : Entity_Id) is
1485 Decl : Node_Id;
1486 Def : Node_Id;
1487 Tag : Entity_Id;
1488 Offset : Entity_Id;
1490 begin
1491 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1493 -- This is a reasonable place to propagate predicates
1495 if Has_Predicates (Iface) then
1496 Set_Has_Predicates (Typ);
1497 end if;
1499 Def :=
1500 Make_Component_Definition (Loc,
1501 Aliased_Present => True,
1502 Subtype_Indication =>
1503 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1505 Tag := Make_Temporary (Loc, 'V');
1507 Decl :=
1508 Make_Component_Declaration (Loc,
1509 Defining_Identifier => Tag,
1510 Component_Definition => Def);
1512 Analyze_Component_Declaration (Decl);
1514 Set_Analyzed (Decl);
1515 Set_Ekind (Tag, E_Component);
1516 Set_Is_Tag (Tag);
1517 Set_Is_Aliased (Tag);
1518 Set_Related_Type (Tag, Iface);
1519 Init_Component_Location (Tag);
1521 pragma Assert (Is_Frozen (Iface));
1523 Set_DT_Entry_Count (Tag,
1524 DT_Entry_Count (First_Entity (Iface)));
1526 if No (Last_Tag) then
1527 Prepend (Decl, L);
1528 else
1529 Insert_After (Last_Tag, Decl);
1530 end if;
1532 Last_Tag := Decl;
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1539 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1540 Def :=
1541 Make_Component_Definition (Loc,
1542 Subtype_Indication =>
1543 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1545 Offset := Make_Temporary (Loc, 'V');
1547 Decl :=
1548 Make_Component_Declaration (Loc,
1549 Defining_Identifier => Offset,
1550 Component_Definition => Def);
1552 Analyze_Component_Declaration (Decl);
1554 Set_Analyzed (Decl);
1555 Set_Ekind (Offset, E_Component);
1556 Set_Is_Aliased (Offset);
1557 Set_Related_Type (Offset, Iface);
1558 Init_Component_Location (Offset);
1559 Insert_After (Last_Tag, Decl);
1560 Last_Tag := Decl;
1561 end if;
1562 end Add_Tag;
1564 -- Local variables
1566 Elmt : Elmt_Id;
1567 Ext : Node_Id;
1568 Comp : Node_Id;
1570 -- Start of processing for Add_Interface_Tag_Components
1572 begin
1573 if not RTE_Available (RE_Interface_Tag) then
1574 Error_Msg
1575 ("(Ada 2005) interface types not supported by this run-time!",
1576 Sloc (N));
1577 return;
1578 end if;
1580 if Ekind (Typ) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type (Typ)
1582 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1583 or else (not Is_Concurrent_Record_Type (Typ)
1584 and then No (Interfaces (Typ))
1585 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1586 then
1587 return;
1588 end if;
1590 -- Find the current last tag
1592 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1593 Ext := Record_Extension_Part (Type_Definition (N));
1594 else
1595 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1596 Ext := Type_Definition (N);
1597 end if;
1599 Last_Tag := Empty;
1601 if not (Present (Component_List (Ext))) then
1602 Set_Null_Present (Ext, False);
1603 L := New_List;
1604 Set_Component_List (Ext,
1605 Make_Component_List (Loc,
1606 Component_Items => L,
1607 Null_Present => False));
1608 else
1609 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1610 L := Component_Items
1611 (Component_List
1612 (Record_Extension_Part
1613 (Type_Definition (N))));
1614 else
1615 L := Component_Items
1616 (Component_List
1617 (Type_Definition (N)));
1618 end if;
1620 -- Find the last tag component
1622 Comp := First (L);
1623 while Present (Comp) loop
1624 if Nkind (Comp) = N_Component_Declaration
1625 and then Is_Tag (Defining_Identifier (Comp))
1626 then
1627 Last_Tag := Comp;
1628 end if;
1630 Next (Comp);
1631 end loop;
1632 end if;
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1637 -- by the parent.
1639 if Present (Interfaces (Typ)) then
1640 Elmt := First_Elmt (Interfaces (Typ));
1641 while Present (Elmt) loop
1642 Add_Tag (Node (Elmt));
1643 Next_Elmt (Elmt);
1644 end loop;
1645 end if;
1646 end Add_Interface_Tag_Components;
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1652 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1653 Elmt : Elmt_Id;
1654 Iface : Entity_Id;
1655 Iface_Elmt : Elmt_Id;
1656 Iface_Prim : Entity_Id;
1657 Ifaces_List : Elist_Id;
1658 New_Subp : Entity_Id := Empty;
1659 Prim : Entity_Id;
1660 Restore_Scope : Boolean := False;
1662 begin
1663 pragma Assert (Ada_Version >= Ada_2005
1664 and then Is_Record_Type (Tagged_Type)
1665 and then Is_Tagged_Type (Tagged_Type)
1666 and then Has_Interfaces (Tagged_Type)
1667 and then not Is_Interface (Tagged_Type));
1669 -- Ensure that the internal entities are added to the scope of the type
1671 if Scope (Tagged_Type) /= Current_Scope then
1672 Push_Scope (Scope (Tagged_Type));
1673 Restore_Scope := True;
1674 end if;
1676 Collect_Interfaces (Tagged_Type, Ifaces_List);
1678 Iface_Elmt := First_Elmt (Ifaces_List);
1679 while Present (Iface_Elmt) loop
1680 Iface := Node (Iface_Elmt);
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1690 Elmt := First_Elmt (Primitive_Operations (Iface));
1691 while Present (Elmt) loop
1692 Iface_Prim := Node (Elmt);
1694 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1695 Prim :=
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type => Tagged_Type,
1698 Iface_Prim => Iface_Prim);
1700 if No (Prim) and then Serious_Errors_Detected > 0 then
1701 goto Continue;
1702 end if;
1704 pragma Assert (Present (Prim));
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1714 if Chars (Prim) /= Chars (Iface_Prim) then
1715 pragma Assert (Has_Suffix (Prim, 'P'));
1716 Derive_Subprogram
1717 (New_Subp => New_Subp,
1718 Parent_Subp => Iface_Prim,
1719 Derived_Type => Tagged_Type,
1720 Parent_Type => Iface);
1721 Set_Alias (New_Subp, Prim);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp, Is_Abstract_Subprogram (Prim));
1724 end if;
1726 Derive_Subprogram
1727 (New_Subp => New_Subp,
1728 Parent_Subp => Iface_Prim,
1729 Derived_Type => Tagged_Type,
1730 Parent_Type => Iface);
1732 declare
1733 Anc : Entity_Id;
1734 begin
1735 if Is_Inherited_Operation (Prim)
1736 and then Present (Alias (Prim))
1737 then
1738 Anc := Alias (Prim);
1739 else
1740 Anc := Overridden_Operation (Prim);
1741 end if;
1743 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1744 -- nonconforming preconditions in both an ancestor and
1745 -- a progenitor operation.
1747 -- If the operation is a primitive wrapper it is an explicit
1748 -- (overriding) operqtion and all is fine.
1750 if Present (Anc)
1751 and then Has_Non_Trivial_Precondition (Anc)
1752 and then Has_Non_Trivial_Precondition (Iface_Prim)
1753 then
1754 if Is_Abstract_Subprogram (Prim)
1755 or else
1756 (Ekind (Prim) = E_Procedure
1757 and then Nkind (Parent (Prim)) =
1758 N_Procedure_Specification
1759 and then Null_Present (Parent (Prim)))
1760 or else Is_Primitive_Wrapper (Prim)
1761 then
1762 null;
1764 -- The operation is inherited and must be overridden
1766 elsif not Comes_From_Source (Prim) then
1767 Error_Msg_NE
1768 ("&inherits non-conforming preconditions and must "
1769 & "be overridden (RM 6.1.1 (10-16)",
1770 Parent (Tagged_Type), Prim);
1771 end if;
1772 end if;
1773 end;
1775 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1776 -- associated with interface types. These entities are
1777 -- only registered in the list of primitives of its
1778 -- corresponding tagged type because they are only used
1779 -- to fill the contents of the secondary dispatch tables.
1780 -- Therefore they are removed from the homonym chains.
1782 Set_Is_Hidden (New_Subp);
1783 Set_Is_Internal (New_Subp);
1784 Set_Alias (New_Subp, Prim);
1785 Set_Is_Abstract_Subprogram
1786 (New_Subp, Is_Abstract_Subprogram (Prim));
1787 Set_Interface_Alias (New_Subp, Iface_Prim);
1789 -- If the returned type is an interface then propagate it to
1790 -- the returned type. Needed by the thunk to generate the code
1791 -- which displaces "this" to reference the corresponding
1792 -- secondary dispatch table in the returned object.
1794 if Is_Interface (Etype (Iface_Prim)) then
1795 Set_Etype (New_Subp, Etype (Iface_Prim));
1796 end if;
1798 -- Internal entities associated with interface types are only
1799 -- registered in the list of primitives of the tagged type.
1800 -- They are only used to fill the contents of the secondary
1801 -- dispatch tables. Therefore they are not needed in the
1802 -- homonym chains.
1804 Remove_Homonym (New_Subp);
1806 -- Hidden entities associated with interfaces must have set
1807 -- the Has_Delay_Freeze attribute to ensure that, in case
1808 -- of locally defined tagged types (or compiling with static
1809 -- dispatch tables generation disabled) the corresponding
1810 -- entry of the secondary dispatch table is filled when such
1811 -- an entity is frozen. This is an expansion activity that must
1812 -- be suppressed for ASIS because it leads to gigi elaboration
1813 -- issues in annotate mode.
1815 if not ASIS_Mode then
1816 Set_Has_Delayed_Freeze (New_Subp);
1817 end if;
1818 end if;
1820 <<Continue>>
1821 Next_Elmt (Elmt);
1822 end loop;
1824 Next_Elmt (Iface_Elmt);
1825 end loop;
1827 if Restore_Scope then
1828 Pop_Scope;
1829 end if;
1830 end Add_Internal_Interface_Entities;
1832 -----------------------------------
1833 -- Analyze_Component_Declaration --
1834 -----------------------------------
1836 procedure Analyze_Component_Declaration (N : Node_Id) is
1837 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1838 Id : constant Entity_Id := Defining_Identifier (N);
1839 E : constant Node_Id := Expression (N);
1840 Typ : constant Node_Id :=
1841 Subtype_Indication (Component_Definition (N));
1842 T : Entity_Id;
1843 P : Entity_Id;
1845 function Contains_POC (Constr : Node_Id) return Boolean;
1846 -- Determines whether a constraint uses the discriminant of a record
1847 -- type thus becoming a per-object constraint (POC).
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1850 -- Typ is the type of the current component, check whether this type is
1851 -- a limited type. Used to validate declaration against that of
1852 -- enclosing record.
1854 ------------------
1855 -- Contains_POC --
1856 ------------------
1858 function Contains_POC (Constr : Node_Id) return Boolean is
1859 begin
1860 -- Prevent cascaded errors
1862 if Error_Posted (Constr) then
1863 return False;
1864 end if;
1866 case Nkind (Constr) is
1867 when N_Attribute_Reference =>
1868 return Attribute_Name (Constr) = Name_Access
1869 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1871 when N_Discriminant_Association =>
1872 return Denotes_Discriminant (Expression (Constr));
1874 when N_Identifier =>
1875 return Denotes_Discriminant (Constr);
1877 when N_Index_Or_Discriminant_Constraint =>
1878 declare
1879 IDC : Node_Id;
1881 begin
1882 IDC := First (Constraints (Constr));
1883 while Present (IDC) loop
1885 -- One per-object constraint is sufficient
1887 if Contains_POC (IDC) then
1888 return True;
1889 end if;
1891 Next (IDC);
1892 end loop;
1894 return False;
1895 end;
1897 when N_Range =>
1898 return Denotes_Discriminant (Low_Bound (Constr))
1899 or else
1900 Denotes_Discriminant (High_Bound (Constr));
1902 when N_Range_Constraint =>
1903 return Denotes_Discriminant (Range_Expression (Constr));
1905 when others =>
1906 return False;
1907 end case;
1908 end Contains_POC;
1910 ----------------------
1911 -- Is_Known_Limited --
1912 ----------------------
1914 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1915 P : constant Entity_Id := Etype (Typ);
1916 R : constant Entity_Id := Root_Type (Typ);
1918 begin
1919 if Is_Limited_Record (Typ) then
1920 return True;
1922 -- If the root type is limited (and not a limited interface) so is
1923 -- the current type.
1925 elsif Is_Limited_Record (R)
1926 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1927 then
1928 return True;
1930 -- Else the type may have a limited interface progenitor, but a
1931 -- limited record parent that is not an interface.
1933 elsif R /= P
1934 and then Is_Limited_Record (P)
1935 and then not Is_Interface (P)
1936 then
1937 return True;
1939 else
1940 return False;
1941 end if;
1942 end Is_Known_Limited;
1944 -- Start of processing for Analyze_Component_Declaration
1946 begin
1947 Generate_Definition (Id);
1948 Enter_Name (Id);
1950 if Present (Typ) then
1951 T := Find_Type_Of_Object
1952 (Subtype_Indication (Component_Definition (N)), N);
1954 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1955 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1956 end if;
1958 -- Ada 2005 (AI-230): Access Definition case
1960 else
1961 pragma Assert (Present
1962 (Access_Definition (Component_Definition (N))));
1964 T := Access_Definition
1965 (Related_Nod => N,
1966 N => Access_Definition (Component_Definition (N)));
1967 Set_Is_Local_Anonymous_Access (T);
1969 -- Ada 2005 (AI-254)
1971 if Present (Access_To_Subprogram_Definition
1972 (Access_Definition (Component_Definition (N))))
1973 and then Protected_Present (Access_To_Subprogram_Definition
1974 (Access_Definition
1975 (Component_Definition (N))))
1976 then
1977 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1978 end if;
1979 end if;
1981 -- If the subtype is a constrained subtype of the enclosing record,
1982 -- (which must have a partial view) the back-end does not properly
1983 -- handle the recursion. Rewrite the component declaration with an
1984 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1985 -- the tree directly because side effects have already been removed from
1986 -- discriminant constraints.
1988 if Ekind (T) = E_Access_Subtype
1989 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1990 and then Comes_From_Source (T)
1991 and then Nkind (Parent (T)) = N_Subtype_Declaration
1992 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1993 then
1994 Rewrite
1995 (Subtype_Indication (Component_Definition (N)),
1996 New_Copy_Tree (Subtype_Indication (Parent (T))));
1997 T := Find_Type_Of_Object
1998 (Subtype_Indication (Component_Definition (N)), N);
1999 end if;
2001 -- If the component declaration includes a default expression, then we
2002 -- check that the component is not of a limited type (RM 3.7(5)),
2003 -- and do the special preanalysis of the expression (see section on
2004 -- "Handling of Default and Per-Object Expressions" in the spec of
2005 -- package Sem).
2007 if Present (E) then
2008 Check_SPARK_05_Restriction ("default expression is not allowed", E);
2009 Preanalyze_Default_Expression (E, T);
2010 Check_Initialization (T, E);
2012 if Ada_Version >= Ada_2005
2013 and then Ekind (T) = E_Anonymous_Access_Type
2014 and then Etype (E) /= Any_Type
2015 then
2016 -- Check RM 3.9.2(9): "if the expected type for an expression is
2017 -- an anonymous access-to-specific tagged type, then the object
2018 -- designated by the expression shall not be dynamically tagged
2019 -- unless it is a controlling operand in a call on a dispatching
2020 -- operation"
2022 if Is_Tagged_Type (Directly_Designated_Type (T))
2023 and then
2024 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2025 and then
2026 Ekind (Directly_Designated_Type (Etype (E))) =
2027 E_Class_Wide_Type
2028 then
2029 Error_Msg_N
2030 ("access to specific tagged type required (RM 3.9.2(9))", E);
2031 end if;
2033 -- (Ada 2005: AI-230): Accessibility check for anonymous
2034 -- components
2036 if Type_Access_Level (Etype (E)) >
2037 Deepest_Type_Access_Level (T)
2038 then
2039 Error_Msg_N
2040 ("expression has deeper access level than component " &
2041 "(RM 3.10.2 (12.2))", E);
2042 end if;
2044 -- The initialization expression is a reference to an access
2045 -- discriminant. The type of the discriminant is always deeper
2046 -- than any access type.
2048 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2049 and then Is_Entity_Name (E)
2050 and then Ekind (Entity (E)) = E_In_Parameter
2051 and then Present (Discriminal_Link (Entity (E)))
2052 then
2053 Error_Msg_N
2054 ("discriminant has deeper accessibility level than target",
2056 end if;
2057 end if;
2058 end if;
2060 -- The parent type may be a private view with unknown discriminants,
2061 -- and thus unconstrained. Regular components must be constrained.
2063 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2064 if Is_Class_Wide_Type (T) then
2065 Error_Msg_N
2066 ("class-wide subtype with unknown discriminants" &
2067 " in component declaration",
2068 Subtype_Indication (Component_Definition (N)));
2069 else
2070 Error_Msg_N
2071 ("unconstrained subtype in component declaration",
2072 Subtype_Indication (Component_Definition (N)));
2073 end if;
2075 -- Components cannot be abstract, except for the special case of
2076 -- the _Parent field (case of extending an abstract tagged type)
2078 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2079 Error_Msg_N ("type of a component cannot be abstract", N);
2080 end if;
2082 Set_Etype (Id, T);
2083 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2085 -- The component declaration may have a per-object constraint, set
2086 -- the appropriate flag in the defining identifier of the subtype.
2088 if Present (Subtype_Indication (Component_Definition (N))) then
2089 declare
2090 Sindic : constant Node_Id :=
2091 Subtype_Indication (Component_Definition (N));
2092 begin
2093 if Nkind (Sindic) = N_Subtype_Indication
2094 and then Present (Constraint (Sindic))
2095 and then Contains_POC (Constraint (Sindic))
2096 then
2097 Set_Has_Per_Object_Constraint (Id);
2098 end if;
2099 end;
2100 end if;
2102 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2103 -- out some static checks.
2105 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2106 Null_Exclusion_Static_Checks (N);
2107 end if;
2109 -- If this component is private (or depends on a private type), flag the
2110 -- record type to indicate that some operations are not available.
2112 P := Private_Component (T);
2114 if Present (P) then
2116 -- Check for circular definitions
2118 if P = Any_Type then
2119 Set_Etype (Id, Any_Type);
2121 -- There is a gap in the visibility of operations only if the
2122 -- component type is not defined in the scope of the record type.
2124 elsif Scope (P) = Scope (Current_Scope) then
2125 null;
2127 elsif Is_Limited_Type (P) then
2128 Set_Is_Limited_Composite (Current_Scope);
2130 else
2131 Set_Is_Private_Composite (Current_Scope);
2132 end if;
2133 end if;
2135 if P /= Any_Type
2136 and then Is_Limited_Type (T)
2137 and then Chars (Id) /= Name_uParent
2138 and then Is_Tagged_Type (Current_Scope)
2139 then
2140 if Is_Derived_Type (Current_Scope)
2141 and then not Is_Known_Limited (Current_Scope)
2142 then
2143 Error_Msg_N
2144 ("extension of nonlimited type cannot have limited components",
2147 if Is_Interface (Root_Type (Current_Scope)) then
2148 Error_Msg_N
2149 ("\limitedness is not inherited from limited interface", N);
2150 Error_Msg_N ("\add LIMITED to type indication", N);
2151 end if;
2153 Explain_Limited_Type (T, N);
2154 Set_Etype (Id, Any_Type);
2155 Set_Is_Limited_Composite (Current_Scope, False);
2157 elsif not Is_Derived_Type (Current_Scope)
2158 and then not Is_Limited_Record (Current_Scope)
2159 and then not Is_Concurrent_Type (Current_Scope)
2160 then
2161 Error_Msg_N
2162 ("nonlimited tagged type cannot have limited components", N);
2163 Explain_Limited_Type (T, N);
2164 Set_Etype (Id, Any_Type);
2165 Set_Is_Limited_Composite (Current_Scope, False);
2166 end if;
2167 end if;
2169 -- If the component is an unconstrained task or protected type with
2170 -- discriminants, the component and the enclosing record are limited
2171 -- and the component is constrained by its default values. Compute
2172 -- its actual subtype, else it may be allocated the maximum size by
2173 -- the backend, and possibly overflow.
2175 if Is_Concurrent_Type (T)
2176 and then not Is_Constrained (T)
2177 and then Has_Discriminants (T)
2178 and then not Has_Discriminants (Current_Scope)
2179 then
2180 declare
2181 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2183 begin
2184 Set_Etype (Id, Act_T);
2186 -- Rewrite component definition to use the constrained subtype
2188 Rewrite (Component_Definition (N),
2189 Make_Component_Definition (Loc,
2190 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2191 end;
2192 end if;
2194 Set_Original_Record_Component (Id, Id);
2196 if Has_Aspects (N) then
2197 Analyze_Aspect_Specifications (N, Id);
2198 end if;
2200 Analyze_Dimension (N);
2201 end Analyze_Component_Declaration;
2203 --------------------------
2204 -- Analyze_Declarations --
2205 --------------------------
2207 procedure Analyze_Declarations (L : List_Id) is
2208 Decl : Node_Id;
2210 procedure Adjust_Decl;
2211 -- Adjust Decl not to include implicit label declarations, since these
2212 -- have strange Sloc values that result in elaboration check problems.
2213 -- (They have the sloc of the label as found in the source, and that
2214 -- is ahead of the current declarative part).
2216 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2217 -- Create the subprogram bodies which verify the run-time semantics of
2218 -- the pragmas listed below for each elibigle type found in declarative
2219 -- list Decls. The pragmas are:
2221 -- Default_Initial_Condition
2222 -- Invariant
2223 -- Type_Invariant
2225 -- Context denotes the owner of the declarative list.
2227 procedure Check_Entry_Contracts;
2228 -- Perform a preanalysis of the pre- and postconditions of an entry
2229 -- declaration. This must be done before full resolution and creation
2230 -- of the parameter block, etc. to catch illegal uses within the
2231 -- contract expression. Full analysis of the expression is done when
2232 -- the contract is processed.
2234 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2235 -- Check if a nested package has entities within it that rely on library
2236 -- level private types where the full view has not been completed for
2237 -- the purposes of checking if it is acceptable to freeze an expression
2238 -- function at the point of declaration.
2240 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2241 -- Determine whether Body_Decl denotes the body of a late controlled
2242 -- primitive (either Initialize, Adjust or Finalize). If this is the
2243 -- case, add a proper spec if the body lacks one. The spec is inserted
2244 -- before Body_Decl and immediately analyzed.
2246 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2247 -- Spec_Id is the entity of a package that may define abstract states,
2248 -- and in the case of a child unit, whose ancestors may define abstract
2249 -- states. If the states have partial visible refinement, remove the
2250 -- partial visibility of each constituent at the end of the package
2251 -- spec and body declarations.
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2254 -- Spec_Id is the entity of a package that may define abstract states.
2255 -- If the states have visible refinement, remove the visibility of each
2256 -- constituent at the end of the package body declaration.
2258 procedure Resolve_Aspects;
2259 -- Utility to resolve the expressions of aspects at the end of a list of
2260 -- declarations, or before a declaration that freezes previous entities,
2261 -- such as in a subprogram body.
2263 -----------------
2264 -- Adjust_Decl --
2265 -----------------
2267 procedure Adjust_Decl is
2268 begin
2269 while Present (Prev (Decl))
2270 and then Nkind (Decl) = N_Implicit_Label_Declaration
2271 loop
2272 Prev (Decl);
2273 end loop;
2274 end Adjust_Decl;
2276 ----------------------------
2277 -- Build_Assertion_Bodies --
2278 ----------------------------
2280 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2281 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2282 -- Create the subprogram bodies which verify the run-time semantics
2283 -- of the pragmas listed below for type Typ. The pragmas are:
2285 -- Default_Initial_Condition
2286 -- Invariant
2287 -- Type_Invariant
2289 -------------------------------------
2290 -- Build_Assertion_Bodies_For_Type --
2291 -------------------------------------
2293 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2294 begin
2295 -- Preanalyze and resolve the Default_Initial_Condition assertion
2296 -- expression at the end of the declarations to catch any errors.
2298 if Has_DIC (Typ) then
2299 Build_DIC_Procedure_Body (Typ);
2300 end if;
2302 if Nkind (Context) = N_Package_Specification then
2304 -- Preanalyze and resolve the class-wide invariants of an
2305 -- interface at the end of whichever declarative part has the
2306 -- interface type. Note that an interface may be declared in
2307 -- any non-package declarative part, but reaching the end of
2308 -- such a declarative part will always freeze the type and
2309 -- generate the invariant procedure (see Freeze_Type).
2311 if Is_Interface (Typ) then
2313 -- Interfaces are treated as the partial view of a private
2314 -- type, in order to achieve uniformity with the general
2315 -- case. As a result, an interface receives only a "partial"
2316 -- invariant procedure, which is never called.
2318 if Has_Own_Invariants (Typ) then
2319 Build_Invariant_Procedure_Body
2320 (Typ => Typ,
2321 Partial_Invariant => True);
2322 end if;
2324 -- Preanalyze and resolve the invariants of a private type
2325 -- at the end of the visible declarations to catch potential
2326 -- errors. Inherited class-wide invariants are not included
2327 -- because they have already been resolved.
2329 elsif Decls = Visible_Declarations (Context)
2330 and then Ekind_In (Typ, E_Limited_Private_Type,
2331 E_Private_Type,
2332 E_Record_Type_With_Private)
2333 and then Has_Own_Invariants (Typ)
2334 then
2335 Build_Invariant_Procedure_Body
2336 (Typ => Typ,
2337 Partial_Invariant => True);
2339 -- Preanalyze and resolve the invariants of a private type's
2340 -- full view at the end of the private declarations to catch
2341 -- potential errors.
2343 elsif Decls = Private_Declarations (Context)
2344 and then not Is_Private_Type (Typ)
2345 and then Has_Private_Declaration (Typ)
2346 and then Has_Invariants (Typ)
2347 then
2348 Build_Invariant_Procedure_Body (Typ);
2349 end if;
2350 end if;
2351 end Build_Assertion_Bodies_For_Type;
2353 -- Local variables
2355 Decl : Node_Id;
2356 Decl_Id : Entity_Id;
2358 -- Start of processing for Build_Assertion_Bodies
2360 begin
2361 Decl := First (Decls);
2362 while Present (Decl) loop
2363 if Is_Declaration (Decl) then
2364 Decl_Id := Defining_Entity (Decl);
2366 if Is_Type (Decl_Id) then
2367 Build_Assertion_Bodies_For_Type (Decl_Id);
2368 end if;
2369 end if;
2371 Next (Decl);
2372 end loop;
2373 end Build_Assertion_Bodies;
2375 ---------------------------
2376 -- Check_Entry_Contracts --
2377 ---------------------------
2379 procedure Check_Entry_Contracts is
2380 ASN : Node_Id;
2381 Ent : Entity_Id;
2382 Exp : Node_Id;
2384 begin
2385 Ent := First_Entity (Current_Scope);
2386 while Present (Ent) loop
2388 -- This only concerns entries with pre/postconditions
2390 if Ekind (Ent) = E_Entry
2391 and then Present (Contract (Ent))
2392 and then Present (Pre_Post_Conditions (Contract (Ent)))
2393 then
2394 ASN := Pre_Post_Conditions (Contract (Ent));
2395 Push_Scope (Ent);
2396 Install_Formals (Ent);
2398 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2399 -- is performed on a copy of the pragma expression, to prevent
2400 -- modifying the original expression.
2402 while Present (ASN) loop
2403 if Nkind (ASN) = N_Pragma then
2404 Exp :=
2405 New_Copy_Tree
2406 (Expression
2407 (First (Pragma_Argument_Associations (ASN))));
2408 Set_Parent (Exp, ASN);
2410 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2411 end if;
2413 ASN := Next_Pragma (ASN);
2414 end loop;
2416 End_Scope;
2417 end if;
2419 Next_Entity (Ent);
2420 end loop;
2421 end Check_Entry_Contracts;
2423 ----------------------------------
2424 -- Contains_Lib_Incomplete_Type --
2425 ----------------------------------
2427 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2428 Curr : Entity_Id;
2430 begin
2431 -- Avoid looking through scopes that do not meet the precondition of
2432 -- Pkg not being within a library unit spec.
2434 if not Is_Compilation_Unit (Pkg)
2435 and then not Is_Generic_Instance (Pkg)
2436 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2437 then
2438 -- Loop through all entities in the current scope to identify
2439 -- an entity that depends on a private type.
2441 Curr := First_Entity (Pkg);
2442 loop
2443 if Nkind (Curr) in N_Entity
2444 and then Depends_On_Private (Curr)
2445 then
2446 return True;
2447 end if;
2449 exit when Last_Entity (Current_Scope) = Curr;
2450 Curr := Next_Entity (Curr);
2451 end loop;
2452 end if;
2454 return False;
2455 end Contains_Lib_Incomplete_Type;
2457 --------------------------------------
2458 -- Handle_Late_Controlled_Primitive --
2459 --------------------------------------
2461 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2462 Body_Spec : constant Node_Id := Specification (Body_Decl);
2463 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2464 Loc : constant Source_Ptr := Sloc (Body_Id);
2465 Params : constant List_Id :=
2466 Parameter_Specifications (Body_Spec);
2467 Spec : Node_Id;
2468 Spec_Id : Entity_Id;
2469 Typ : Node_Id;
2471 begin
2472 -- Consider only procedure bodies whose name matches one of the three
2473 -- controlled primitives.
2475 if Nkind (Body_Spec) /= N_Procedure_Specification
2476 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2477 Name_Finalize,
2478 Name_Initialize)
2479 then
2480 return;
2482 -- A controlled primitive must have exactly one formal which is not
2483 -- an anonymous access type.
2485 elsif List_Length (Params) /= 1 then
2486 return;
2487 end if;
2489 Typ := Parameter_Type (First (Params));
2491 if Nkind (Typ) = N_Access_Definition then
2492 return;
2493 end if;
2495 Find_Type (Typ);
2497 -- The type of the formal must be derived from [Limited_]Controlled
2499 if not Is_Controlled (Entity (Typ)) then
2500 return;
2501 end if;
2503 -- Check whether a specification exists for this body. We do not
2504 -- analyze the spec of the body in full, because it will be analyzed
2505 -- again when the body is properly analyzed, and we cannot create
2506 -- duplicate entries in the formals chain. We look for an explicit
2507 -- specification because the body may be an overriding operation and
2508 -- an inherited spec may be present.
2510 Spec_Id := Current_Entity (Body_Id);
2512 while Present (Spec_Id) loop
2513 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2514 and then Scope (Spec_Id) = Current_Scope
2515 and then Present (First_Formal (Spec_Id))
2516 and then No (Next_Formal (First_Formal (Spec_Id)))
2517 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2518 and then Comes_From_Source (Spec_Id)
2519 then
2520 return;
2521 end if;
2523 Spec_Id := Homonym (Spec_Id);
2524 end loop;
2526 -- At this point the body is known to be a late controlled primitive.
2527 -- Generate a matching spec and insert it before the body. Note the
2528 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2529 -- tree in this case.
2531 Spec := Copy_Separate_Tree (Body_Spec);
2533 -- Ensure that the subprogram declaration does not inherit the null
2534 -- indicator from the body as we now have a proper spec/body pair.
2536 Set_Null_Present (Spec, False);
2538 -- Ensure that the freeze node is inserted after the declaration of
2539 -- the primitive since its expansion will freeze the primitive.
2541 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2543 Insert_Before_And_Analyze (Body_Decl, Decl);
2544 end Handle_Late_Controlled_Primitive;
2546 ----------------------------------------
2547 -- Remove_Partial_Visible_Refinements --
2548 ----------------------------------------
2550 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2551 State_Elmt : Elmt_Id;
2552 begin
2553 if Present (Abstract_States (Spec_Id)) then
2554 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2555 while Present (State_Elmt) loop
2556 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2557 Next_Elmt (State_Elmt);
2558 end loop;
2559 end if;
2561 -- For a child unit, also hide the partial state refinement from
2562 -- ancestor packages.
2564 if Is_Child_Unit (Spec_Id) then
2565 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2566 end if;
2567 end Remove_Partial_Visible_Refinements;
2569 --------------------------------
2570 -- Remove_Visible_Refinements --
2571 --------------------------------
2573 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2574 State_Elmt : Elmt_Id;
2575 begin
2576 if Present (Abstract_States (Spec_Id)) then
2577 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2578 while Present (State_Elmt) loop
2579 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2580 Next_Elmt (State_Elmt);
2581 end loop;
2582 end if;
2583 end Remove_Visible_Refinements;
2585 ---------------------
2586 -- Resolve_Aspects --
2587 ---------------------
2589 procedure Resolve_Aspects is
2590 E : Entity_Id;
2592 begin
2593 E := First_Entity (Current_Scope);
2594 while Present (E) loop
2595 Resolve_Aspect_Expressions (E);
2596 Next_Entity (E);
2597 end loop;
2598 end Resolve_Aspects;
2600 -- Local variables
2602 Context : Node_Id := Empty;
2603 Freeze_From : Entity_Id := Empty;
2604 Next_Decl : Node_Id;
2606 Body_Seen : Boolean := False;
2607 -- Flag set when the first body [stub] is encountered
2609 -- Start of processing for Analyze_Declarations
2611 begin
2612 if Restriction_Check_Required (SPARK_05) then
2613 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2614 end if;
2616 Decl := First (L);
2617 while Present (Decl) loop
2619 -- Package spec cannot contain a package declaration in SPARK
2621 if Nkind (Decl) = N_Package_Declaration
2622 and then Nkind (Parent (L)) = N_Package_Specification
2623 then
2624 Check_SPARK_05_Restriction
2625 ("package specification cannot contain a package declaration",
2626 Decl);
2627 end if;
2629 -- Complete analysis of declaration
2631 Analyze (Decl);
2632 Next_Decl := Next (Decl);
2634 if No (Freeze_From) then
2635 Freeze_From := First_Entity (Current_Scope);
2636 end if;
2638 -- At the end of a declarative part, freeze remaining entities
2639 -- declared in it. The end of the visible declarations of package
2640 -- specification is not the end of a declarative part if private
2641 -- declarations are present. The end of a package declaration is a
2642 -- freezing point only if it a library package. A task definition or
2643 -- protected type definition is not a freeze point either. Finally,
2644 -- we do not freeze entities in generic scopes, because there is no
2645 -- code generated for them and freeze nodes will be generated for
2646 -- the instance.
2648 -- The end of a package instantiation is not a freeze point, but
2649 -- for now we make it one, because the generic body is inserted
2650 -- (currently) immediately after. Generic instantiations will not
2651 -- be a freeze point once delayed freezing of bodies is implemented.
2652 -- (This is needed in any case for early instantiations ???).
2654 if No (Next_Decl) then
2655 if Nkind (Parent (L)) = N_Component_List then
2656 null;
2658 elsif Nkind_In (Parent (L), N_Protected_Definition,
2659 N_Task_Definition)
2660 then
2661 Check_Entry_Contracts;
2663 elsif Nkind (Parent (L)) /= N_Package_Specification then
2664 if Nkind (Parent (L)) = N_Package_Body then
2665 Freeze_From := First_Entity (Current_Scope);
2666 end if;
2668 -- There may have been several freezing points previously,
2669 -- for example object declarations or subprogram bodies, but
2670 -- at the end of a declarative part we check freezing from
2671 -- the beginning, even though entities may already be frozen,
2672 -- in order to perform visibility checks on delayed aspects.
2674 Adjust_Decl;
2676 -- If the current scope is a generic subprogram body. Skip the
2677 -- generic formal parameters that are not frozen here.
2679 if Is_Subprogram (Current_Scope)
2680 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2681 N_Generic_Subprogram_Declaration
2682 and then Present (First_Entity (Current_Scope))
2683 then
2684 while Is_Generic_Formal (Freeze_From) loop
2685 Freeze_From := Next_Entity (Freeze_From);
2686 end loop;
2688 Freeze_All (Freeze_From, Decl);
2689 Freeze_From := Last_Entity (Current_Scope);
2691 else
2692 -- For declarations in a subprogram body there is no issue
2693 -- with name resolution in aspect specifications, but in
2694 -- ASIS mode we need to preanalyze aspect specifications
2695 -- that may otherwise only be analyzed during expansion
2696 -- (e.g. during generation of a related subprogram).
2698 if ASIS_Mode then
2699 Resolve_Aspects;
2700 end if;
2702 Freeze_All (First_Entity (Current_Scope), Decl);
2703 Freeze_From := Last_Entity (Current_Scope);
2704 end if;
2706 -- Current scope is a package specification
2708 elsif Scope (Current_Scope) /= Standard_Standard
2709 and then not Is_Child_Unit (Current_Scope)
2710 and then No (Generic_Parent (Parent (L)))
2711 then
2712 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2713 -- resolved at the end of the immediately enclosing declaration
2714 -- list (AI05-0183-1).
2716 Resolve_Aspects;
2718 elsif L /= Visible_Declarations (Parent (L))
2719 or else No (Private_Declarations (Parent (L)))
2720 or else Is_Empty_List (Private_Declarations (Parent (L)))
2721 then
2722 Adjust_Decl;
2724 -- End of a package declaration
2726 -- In compilation mode the expansion of freeze node takes care
2727 -- of resolving expressions of all aspects in the list. In ASIS
2728 -- mode this must be done explicitly.
2730 if ASIS_Mode
2731 and then Scope (Current_Scope) = Standard_Standard
2732 then
2733 Resolve_Aspects;
2734 end if;
2736 -- This is a freeze point because it is the end of a
2737 -- compilation unit.
2739 Freeze_All (First_Entity (Current_Scope), Decl);
2740 Freeze_From := Last_Entity (Current_Scope);
2742 -- At the end of the visible declarations the expressions in
2743 -- aspects of all entities declared so far must be resolved.
2744 -- The entities themselves might be frozen later, and the
2745 -- generated pragmas and attribute definition clauses analyzed
2746 -- in full at that point, but name resolution must take place
2747 -- now.
2748 -- In addition to being the proper semantics, this is mandatory
2749 -- within generic units, because global name capture requires
2750 -- those expressions to be analyzed, given that the generated
2751 -- pragmas do not appear in the original generic tree.
2753 elsif Serious_Errors_Detected = 0 then
2754 Resolve_Aspects;
2755 end if;
2757 -- If next node is a body then freeze all types before the body.
2758 -- An exception occurs for some expander-generated bodies. If these
2759 -- are generated at places where in general language rules would not
2760 -- allow a freeze point, then we assume that the expander has
2761 -- explicitly checked that all required types are properly frozen,
2762 -- and we do not cause general freezing here. This special circuit
2763 -- is used when the encountered body is marked as having already
2764 -- been analyzed.
2766 -- In all other cases (bodies that come from source, and expander
2767 -- generated bodies that have not been analyzed yet), freeze all
2768 -- types now. Note that in the latter case, the expander must take
2769 -- care to attach the bodies at a proper place in the tree so as to
2770 -- not cause unwanted freezing at that point.
2772 -- It is also necessary to check for a case where both an expression
2773 -- function is used and the current scope depends on an incomplete
2774 -- private type from a library unit, otherwise premature freezing of
2775 -- the private type will occur.
2777 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2778 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2779 or else not Was_Expression_Function (Next_Decl))
2780 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2781 and then not Contains_Lib_Incomplete_Type
2782 (Current_Scope)))
2783 then
2784 -- When a controlled type is frozen, the expander generates stream
2785 -- and controlled-type support routines. If the freeze is caused
2786 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2787 -- expander will end up using the wrong version of these routines,
2788 -- as the body has not been processed yet. To remedy this, detect
2789 -- a late controlled primitive and create a proper spec for it.
2790 -- This ensures that the primitive will override its inherited
2791 -- counterpart before the freeze takes place.
2793 -- If the declaration we just processed is a body, do not attempt
2794 -- to examine Next_Decl as the late primitive idiom can only apply
2795 -- to the first encountered body.
2797 -- The spec of the late primitive is not generated in ASIS mode to
2798 -- ensure a consistent list of primitives that indicates the true
2799 -- semantic structure of the program (which is not relevant when
2800 -- generating executable code).
2802 -- ??? A cleaner approach may be possible and/or this solution
2803 -- could be extended to general-purpose late primitives, TBD.
2805 if not ASIS_Mode
2806 and then not Body_Seen
2807 and then not Is_Body (Decl)
2808 then
2809 Body_Seen := True;
2811 if Nkind (Next_Decl) = N_Subprogram_Body then
2812 Handle_Late_Controlled_Primitive (Next_Decl);
2813 end if;
2815 else
2816 -- In ASIS mode, if the next declaration is a body, complete
2817 -- the analysis of declarations so far.
2819 Resolve_Aspects;
2820 end if;
2822 Adjust_Decl;
2824 -- The generated body of an expression function does not freeze,
2825 -- unless it is a completion, in which case only the expression
2826 -- itself freezes. This is handled when the body itself is
2827 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2829 Freeze_All (Freeze_From, Decl);
2830 Freeze_From := Last_Entity (Current_Scope);
2831 end if;
2833 Decl := Next_Decl;
2834 end loop;
2836 -- Post-freezing actions
2838 if Present (L) then
2839 Context := Parent (L);
2841 -- Certain contract annocations have forward visibility semantics and
2842 -- must be analyzed after all declarative items have been processed.
2843 -- This timing ensures that entities referenced by such contracts are
2844 -- visible.
2846 -- Analyze the contract of an immediately enclosing package spec or
2847 -- body first because other contracts may depend on its information.
2849 if Nkind (Context) = N_Package_Body then
2850 Analyze_Package_Body_Contract (Defining_Entity (Context));
2852 elsif Nkind (Context) = N_Package_Specification then
2853 Analyze_Package_Contract (Defining_Entity (Context));
2854 end if;
2856 -- Analyze the contracts of various constructs in the declarative
2857 -- list.
2859 Analyze_Contracts (L);
2861 if Nkind (Context) = N_Package_Body then
2863 -- Ensure that all abstract states and objects declared in the
2864 -- state space of a package body are utilized as constituents.
2866 Check_Unused_Body_States (Defining_Entity (Context));
2868 -- State refinements are visible up to the end of the package body
2869 -- declarations. Hide the state refinements from visibility to
2870 -- restore the original state conditions.
2872 Remove_Visible_Refinements (Corresponding_Spec (Context));
2873 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2875 elsif Nkind (Context) = N_Package_Specification then
2877 -- Partial state refinements are visible up to the end of the
2878 -- package spec declarations. Hide the partial state refinements
2879 -- from visibility to restore the original state conditions.
2881 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2882 end if;
2884 -- Verify that all abstract states found in any package declared in
2885 -- the input declarative list have proper refinements. The check is
2886 -- performed only when the context denotes a block, entry, package,
2887 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2889 Check_State_Refinements (Context);
2891 -- Create the subprogram bodies which verify the run-time semantics
2892 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2893 -- types within the current declarative list. This ensures that all
2894 -- assertion expressions are preanalyzed and resolved at the end of
2895 -- the declarative part. Note that the resolution happens even when
2896 -- freezing does not take place.
2898 Build_Assertion_Bodies (L, Context);
2899 end if;
2900 end Analyze_Declarations;
2902 -----------------------------------
2903 -- Analyze_Full_Type_Declaration --
2904 -----------------------------------
2906 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2907 Def : constant Node_Id := Type_Definition (N);
2908 Def_Id : constant Entity_Id := Defining_Identifier (N);
2909 T : Entity_Id;
2910 Prev : Entity_Id;
2912 Is_Remote : constant Boolean :=
2913 (Is_Remote_Types (Current_Scope)
2914 or else Is_Remote_Call_Interface (Current_Scope))
2915 and then not (In_Private_Part (Current_Scope)
2916 or else In_Package_Body (Current_Scope));
2918 procedure Check_Nonoverridable_Aspects;
2919 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2920 -- be overridden, and can only be confirmed on derivation.
2922 procedure Check_Ops_From_Incomplete_Type;
2923 -- If there is a tagged incomplete partial view of the type, traverse
2924 -- the primitives of the incomplete view and change the type of any
2925 -- controlling formals and result to indicate the full view. The
2926 -- primitives will be added to the full type's primitive operations
2927 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2928 -- is called from Process_Incomplete_Dependents).
2930 ----------------------------------
2931 -- Check_Nonoverridable_Aspects --
2932 ----------------------------------
2934 procedure Check_Nonoverridable_Aspects is
2935 function Get_Aspect_Spec
2936 (Specs : List_Id;
2937 Aspect_Name : Name_Id) return Node_Id;
2938 -- Check whether a list of aspect specifications includes an entry
2939 -- for a specific aspect. The list is either that of a partial or
2940 -- a full view.
2942 ---------------------
2943 -- Get_Aspect_Spec --
2944 ---------------------
2946 function Get_Aspect_Spec
2947 (Specs : List_Id;
2948 Aspect_Name : Name_Id) return Node_Id
2950 Spec : Node_Id;
2952 begin
2953 Spec := First (Specs);
2954 while Present (Spec) loop
2955 if Chars (Identifier (Spec)) = Aspect_Name then
2956 return Spec;
2957 end if;
2958 Next (Spec);
2959 end loop;
2961 return Empty;
2962 end Get_Aspect_Spec;
2964 -- Local variables
2966 Prev_Aspects : constant List_Id :=
2967 Aspect_Specifications (Parent (Def_Id));
2968 Par_Type : Entity_Id;
2969 Prev_Aspect : Node_Id;
2971 -- Start of processing for Check_Nonoverridable_Aspects
2973 begin
2974 -- Get parent type of derived type. Note that Prev is the entity in
2975 -- the partial declaration, but its contents are now those of full
2976 -- view, while Def_Id reflects the partial view.
2978 if Is_Private_Type (Def_Id) then
2979 Par_Type := Etype (Full_View (Def_Id));
2980 else
2981 Par_Type := Etype (Def_Id);
2982 end if;
2984 -- If there is an inherited Implicit_Dereference, verify that it is
2985 -- made explicit in the partial view.
2987 if Has_Discriminants (Base_Type (Par_Type))
2988 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2989 and then Present (Discriminant_Specifications (Parent (Prev)))
2990 and then Present (Get_Reference_Discriminant (Par_Type))
2991 then
2992 Prev_Aspect :=
2993 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2995 if No (Prev_Aspect)
2996 and then Present
2997 (Discriminant_Specifications
2998 (Original_Node (Parent (Prev))))
2999 then
3000 Error_Msg_N
3001 ("type does not inherit implicit dereference", Prev);
3003 else
3004 -- If one of the views has the aspect specified, verify that it
3005 -- is consistent with that of the parent.
3007 declare
3008 Par_Discr : constant Entity_Id :=
3009 Get_Reference_Discriminant (Par_Type);
3010 Cur_Discr : constant Entity_Id :=
3011 Get_Reference_Discriminant (Prev);
3013 begin
3014 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3015 Error_Msg_N ("aspect incosistent with that of parent", N);
3016 end if;
3018 -- Check that specification in partial view matches the
3019 -- inherited aspect. Compare names directly because aspect
3020 -- expression may not be analyzed.
3022 if Present (Prev_Aspect)
3023 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3024 and then Chars (Expression (Prev_Aspect)) /=
3025 Chars (Cur_Discr)
3026 then
3027 Error_Msg_N
3028 ("aspect incosistent with that of parent", N);
3029 end if;
3030 end;
3031 end if;
3032 end if;
3034 -- TBD : other nonoverridable aspects.
3035 end Check_Nonoverridable_Aspects;
3037 ------------------------------------
3038 -- Check_Ops_From_Incomplete_Type --
3039 ------------------------------------
3041 procedure Check_Ops_From_Incomplete_Type is
3042 Elmt : Elmt_Id;
3043 Formal : Entity_Id;
3044 Op : Entity_Id;
3046 begin
3047 if Prev /= T
3048 and then Ekind (Prev) = E_Incomplete_Type
3049 and then Is_Tagged_Type (Prev)
3050 and then Is_Tagged_Type (T)
3051 then
3052 Elmt := First_Elmt (Primitive_Operations (Prev));
3053 while Present (Elmt) loop
3054 Op := Node (Elmt);
3056 Formal := First_Formal (Op);
3057 while Present (Formal) loop
3058 if Etype (Formal) = Prev then
3059 Set_Etype (Formal, T);
3060 end if;
3062 Next_Formal (Formal);
3063 end loop;
3065 if Etype (Op) = Prev then
3066 Set_Etype (Op, T);
3067 end if;
3069 Next_Elmt (Elmt);
3070 end loop;
3071 end if;
3072 end Check_Ops_From_Incomplete_Type;
3074 -- Start of processing for Analyze_Full_Type_Declaration
3076 begin
3077 Prev := Find_Type_Name (N);
3079 -- The full view, if present, now points to the current type. If there
3080 -- is an incomplete partial view, set a link to it, to simplify the
3081 -- retrieval of primitive operations of the type.
3083 -- Ada 2005 (AI-50217): If the type was previously decorated when
3084 -- imported through a LIMITED WITH clause, it appears as incomplete
3085 -- but has no full view.
3087 if Ekind (Prev) = E_Incomplete_Type
3088 and then Present (Full_View (Prev))
3089 then
3090 T := Full_View (Prev);
3091 Set_Incomplete_View (N, Parent (Prev));
3092 else
3093 T := Prev;
3094 end if;
3096 Set_Is_Pure (T, Is_Pure (Current_Scope));
3098 -- We set the flag Is_First_Subtype here. It is needed to set the
3099 -- corresponding flag for the Implicit class-wide-type created
3100 -- during tagged types processing.
3102 Set_Is_First_Subtype (T, True);
3104 -- Only composite types other than array types are allowed to have
3105 -- discriminants.
3107 case Nkind (Def) is
3109 -- For derived types, the rule will be checked once we've figured
3110 -- out the parent type.
3112 when N_Derived_Type_Definition =>
3113 null;
3115 -- For record types, discriminants are allowed, unless we are in
3116 -- SPARK.
3118 when N_Record_Definition =>
3119 if Present (Discriminant_Specifications (N)) then
3120 Check_SPARK_05_Restriction
3121 ("discriminant type is not allowed",
3122 Defining_Identifier
3123 (First (Discriminant_Specifications (N))));
3124 end if;
3126 when others =>
3127 if Present (Discriminant_Specifications (N)) then
3128 Error_Msg_N
3129 ("elementary or array type cannot have discriminants",
3130 Defining_Identifier
3131 (First (Discriminant_Specifications (N))));
3132 end if;
3133 end case;
3135 -- Elaborate the type definition according to kind, and generate
3136 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3137 -- already done (this happens during the reanalysis that follows a call
3138 -- to the high level optimizer).
3140 if not Analyzed (T) then
3141 Set_Analyzed (T);
3143 -- Set the SPARK mode from the current context
3145 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3146 Set_SPARK_Pragma_Inherited (T);
3148 case Nkind (Def) is
3149 when N_Access_To_Subprogram_Definition =>
3150 Access_Subprogram_Declaration (T, Def);
3152 -- If this is a remote access to subprogram, we must create the
3153 -- equivalent fat pointer type, and related subprograms.
3155 if Is_Remote then
3156 Process_Remote_AST_Declaration (N);
3157 end if;
3159 -- Validate categorization rule against access type declaration
3160 -- usually a violation in Pure unit, Shared_Passive unit.
3162 Validate_Access_Type_Declaration (T, N);
3164 when N_Access_To_Object_Definition =>
3165 Access_Type_Declaration (T, Def);
3167 -- Validate categorization rule against access type declaration
3168 -- usually a violation in Pure unit, Shared_Passive unit.
3170 Validate_Access_Type_Declaration (T, N);
3172 -- If we are in a Remote_Call_Interface package and define a
3173 -- RACW, then calling stubs and specific stream attributes
3174 -- must be added.
3176 if Is_Remote
3177 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3178 then
3179 Add_RACW_Features (Def_Id);
3180 end if;
3182 when N_Array_Type_Definition =>
3183 Array_Type_Declaration (T, Def);
3185 when N_Derived_Type_Definition =>
3186 Derived_Type_Declaration (T, N, T /= Def_Id);
3188 -- Inherit predicates from parent, and protect against illegal
3189 -- derivations.
3191 if Is_Type (T) and then Has_Predicates (T) then
3192 Set_Has_Predicates (Def_Id);
3193 end if;
3195 -- Save the scenario for examination by the ABE Processing
3196 -- phase.
3198 Record_Elaboration_Scenario (N);
3200 when N_Enumeration_Type_Definition =>
3201 Enumeration_Type_Declaration (T, Def);
3203 when N_Floating_Point_Definition =>
3204 Floating_Point_Type_Declaration (T, Def);
3206 when N_Decimal_Fixed_Point_Definition =>
3207 Decimal_Fixed_Point_Type_Declaration (T, Def);
3209 when N_Ordinary_Fixed_Point_Definition =>
3210 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3212 when N_Signed_Integer_Type_Definition =>
3213 Signed_Integer_Type_Declaration (T, Def);
3215 when N_Modular_Type_Definition =>
3216 Modular_Type_Declaration (T, Def);
3218 when N_Record_Definition =>
3219 Record_Type_Declaration (T, N, Prev);
3221 -- If declaration has a parse error, nothing to elaborate.
3223 when N_Error =>
3224 null;
3226 when others =>
3227 raise Program_Error;
3228 end case;
3229 end if;
3231 if Etype (T) = Any_Type then
3232 return;
3233 end if;
3235 -- Controlled type is not allowed in SPARK
3237 if Is_Visibly_Controlled (T) then
3238 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3239 end if;
3241 -- Some common processing for all types
3243 Set_Depends_On_Private (T, Has_Private_Component (T));
3244 Check_Ops_From_Incomplete_Type;
3246 -- Both the declared entity, and its anonymous base type if one was
3247 -- created, need freeze nodes allocated.
3249 declare
3250 B : constant Entity_Id := Base_Type (T);
3252 begin
3253 -- In the case where the base type differs from the first subtype, we
3254 -- pre-allocate a freeze node, and set the proper link to the first
3255 -- subtype. Freeze_Entity will use this preallocated freeze node when
3256 -- it freezes the entity.
3258 -- This does not apply if the base type is a generic type, whose
3259 -- declaration is independent of the current derived definition.
3261 if B /= T and then not Is_Generic_Type (B) then
3262 Ensure_Freeze_Node (B);
3263 Set_First_Subtype_Link (Freeze_Node (B), T);
3264 end if;
3266 -- A type that is imported through a limited_with clause cannot
3267 -- generate any code, and thus need not be frozen. However, an access
3268 -- type with an imported designated type needs a finalization list,
3269 -- which may be referenced in some other package that has non-limited
3270 -- visibility on the designated type. Thus we must create the
3271 -- finalization list at the point the access type is frozen, to
3272 -- prevent unsatisfied references at link time.
3274 if not From_Limited_With (T) or else Is_Access_Type (T) then
3275 Set_Has_Delayed_Freeze (T);
3276 end if;
3277 end;
3279 -- Case where T is the full declaration of some private type which has
3280 -- been swapped in Defining_Identifier (N).
3282 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3283 Process_Full_View (N, T, Def_Id);
3285 -- Record the reference. The form of this is a little strange, since
3286 -- the full declaration has been swapped in. So the first parameter
3287 -- here represents the entity to which a reference is made which is
3288 -- the "real" entity, i.e. the one swapped in, and the second
3289 -- parameter provides the reference location.
3291 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3292 -- since we don't want a complaint about the full type being an
3293 -- unwanted reference to the private type
3295 declare
3296 B : constant Boolean := Has_Pragma_Unreferenced (T);
3297 begin
3298 Set_Has_Pragma_Unreferenced (T, False);
3299 Generate_Reference (T, T, 'c');
3300 Set_Has_Pragma_Unreferenced (T, B);
3301 end;
3303 Set_Completion_Referenced (Def_Id);
3305 -- For completion of incomplete type, process incomplete dependents
3306 -- and always mark the full type as referenced (it is the incomplete
3307 -- type that we get for any real reference).
3309 elsif Ekind (Prev) = E_Incomplete_Type then
3310 Process_Incomplete_Dependents (N, T, Prev);
3311 Generate_Reference (Prev, Def_Id, 'c');
3312 Set_Completion_Referenced (Def_Id);
3314 -- If not private type or incomplete type completion, this is a real
3315 -- definition of a new entity, so record it.
3317 else
3318 Generate_Definition (Def_Id);
3319 end if;
3321 -- Propagate any pending access types whose finalization masters need to
3322 -- be fully initialized from the partial to the full view. Guard against
3323 -- an illegal full view that remains unanalyzed.
3325 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3326 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3327 end if;
3329 if Chars (Scope (Def_Id)) = Name_System
3330 and then Chars (Def_Id) = Name_Address
3331 and then In_Predefined_Unit (N)
3332 then
3333 Set_Is_Descendant_Of_Address (Def_Id);
3334 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3335 Set_Is_Descendant_Of_Address (Prev);
3336 end if;
3338 Set_Optimize_Alignment_Flags (Def_Id);
3339 Check_Eliminated (Def_Id);
3341 -- If the declaration is a completion and aspects are present, apply
3342 -- them to the entity for the type which is currently the partial
3343 -- view, but which is the one that will be frozen.
3345 if Has_Aspects (N) then
3347 -- In most cases the partial view is a private type, and both views
3348 -- appear in different declarative parts. In the unusual case where
3349 -- the partial view is incomplete, perform the analysis on the
3350 -- full view, to prevent freezing anomalies with the corresponding
3351 -- class-wide type, which otherwise might be frozen before the
3352 -- dispatch table is built.
3354 if Prev /= Def_Id
3355 and then Ekind (Prev) /= E_Incomplete_Type
3356 then
3357 Analyze_Aspect_Specifications (N, Prev);
3359 -- Normal case
3361 else
3362 Analyze_Aspect_Specifications (N, Def_Id);
3363 end if;
3364 end if;
3366 if Is_Derived_Type (Prev)
3367 and then Def_Id /= Prev
3368 then
3369 Check_Nonoverridable_Aspects;
3370 end if;
3371 end Analyze_Full_Type_Declaration;
3373 ----------------------------------
3374 -- Analyze_Incomplete_Type_Decl --
3375 ----------------------------------
3377 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3378 F : constant Boolean := Is_Pure (Current_Scope);
3379 T : Entity_Id;
3381 begin
3382 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3384 Generate_Definition (Defining_Identifier (N));
3386 -- Process an incomplete declaration. The identifier must not have been
3387 -- declared already in the scope. However, an incomplete declaration may
3388 -- appear in the private part of a package, for a private type that has
3389 -- already been declared.
3391 -- In this case, the discriminants (if any) must match
3393 T := Find_Type_Name (N);
3395 Set_Ekind (T, E_Incomplete_Type);
3396 Set_Etype (T, T);
3397 Set_Is_First_Subtype (T);
3398 Init_Size_Align (T);
3400 -- Set the SPARK mode from the current context
3402 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3403 Set_SPARK_Pragma_Inherited (T);
3405 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3406 -- incomplete types.
3408 if Tagged_Present (N) then
3409 Set_Is_Tagged_Type (T, True);
3410 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3411 Make_Class_Wide_Type (T);
3412 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3413 end if;
3415 Set_Stored_Constraint (T, No_Elist);
3417 if Present (Discriminant_Specifications (N)) then
3418 Push_Scope (T);
3419 Process_Discriminants (N);
3420 End_Scope;
3421 end if;
3423 -- If the type has discriminants, nontrivial subtypes may be declared
3424 -- before the full view of the type. The full views of those subtypes
3425 -- will be built after the full view of the type.
3427 Set_Private_Dependents (T, New_Elmt_List);
3428 Set_Is_Pure (T, F);
3429 end Analyze_Incomplete_Type_Decl;
3431 -----------------------------------
3432 -- Analyze_Interface_Declaration --
3433 -----------------------------------
3435 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3436 CW : constant Entity_Id := Class_Wide_Type (T);
3438 begin
3439 Set_Is_Tagged_Type (T);
3440 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3442 Set_Is_Limited_Record (T, Limited_Present (Def)
3443 or else Task_Present (Def)
3444 or else Protected_Present (Def)
3445 or else Synchronized_Present (Def));
3447 -- Type is abstract if full declaration carries keyword, or if previous
3448 -- partial view did.
3450 Set_Is_Abstract_Type (T);
3451 Set_Is_Interface (T);
3453 -- Type is a limited interface if it includes the keyword limited, task,
3454 -- protected, or synchronized.
3456 Set_Is_Limited_Interface
3457 (T, Limited_Present (Def)
3458 or else Protected_Present (Def)
3459 or else Synchronized_Present (Def)
3460 or else Task_Present (Def));
3462 Set_Interfaces (T, New_Elmt_List);
3463 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3465 -- Complete the decoration of the class-wide entity if it was already
3466 -- built (i.e. during the creation of the limited view)
3468 if Present (CW) then
3469 Set_Is_Interface (CW);
3470 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3471 end if;
3473 -- Check runtime support for synchronized interfaces
3475 if (Is_Task_Interface (T)
3476 or else Is_Protected_Interface (T)
3477 or else Is_Synchronized_Interface (T))
3478 and then not RTE_Available (RE_Select_Specific_Data)
3479 then
3480 Error_Msg_CRT ("synchronized interfaces", T);
3481 end if;
3482 end Analyze_Interface_Declaration;
3484 -----------------------------
3485 -- Analyze_Itype_Reference --
3486 -----------------------------
3488 -- Nothing to do. This node is placed in the tree only for the benefit of
3489 -- back end processing, and has no effect on the semantic processing.
3491 procedure Analyze_Itype_Reference (N : Node_Id) is
3492 begin
3493 pragma Assert (Is_Itype (Itype (N)));
3494 null;
3495 end Analyze_Itype_Reference;
3497 --------------------------------
3498 -- Analyze_Number_Declaration --
3499 --------------------------------
3501 procedure Analyze_Number_Declaration (N : Node_Id) is
3502 E : constant Node_Id := Expression (N);
3503 Id : constant Entity_Id := Defining_Identifier (N);
3504 Index : Interp_Index;
3505 It : Interp;
3506 T : Entity_Id;
3508 begin
3509 Generate_Definition (Id);
3510 Enter_Name (Id);
3512 -- This is an optimization of a common case of an integer literal
3514 if Nkind (E) = N_Integer_Literal then
3515 Set_Is_Static_Expression (E, True);
3516 Set_Etype (E, Universal_Integer);
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520 Set_Is_Frozen (Id, True);
3521 return;
3522 end if;
3524 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3526 -- Process expression, replacing error by integer zero, to avoid
3527 -- cascaded errors or aborts further along in the processing
3529 -- Replace Error by integer zero, which seems least likely to cause
3530 -- cascaded errors.
3532 if E = Error then
3533 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3534 Set_Error_Posted (E);
3535 end if;
3537 Analyze (E);
3539 -- Verify that the expression is static and numeric. If
3540 -- the expression is overloaded, we apply the preference
3541 -- rule that favors root numeric types.
3543 if not Is_Overloaded (E) then
3544 T := Etype (E);
3545 if Has_Dynamic_Predicate_Aspect (T) then
3546 Error_Msg_N
3547 ("subtype has dynamic predicate, "
3548 & "not allowed in number declaration", N);
3549 end if;
3551 else
3552 T := Any_Type;
3554 Get_First_Interp (E, Index, It);
3555 while Present (It.Typ) loop
3556 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3557 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3558 then
3559 if T = Any_Type then
3560 T := It.Typ;
3562 elsif It.Typ = Universal_Real
3563 or else
3564 It.Typ = Universal_Integer
3565 then
3566 -- Choose universal interpretation over any other
3568 T := It.Typ;
3569 exit;
3570 end if;
3571 end if;
3573 Get_Next_Interp (Index, It);
3574 end loop;
3575 end if;
3577 if Is_Integer_Type (T) then
3578 Resolve (E, T);
3579 Set_Etype (Id, Universal_Integer);
3580 Set_Ekind (Id, E_Named_Integer);
3582 elsif Is_Real_Type (T) then
3584 -- Because the real value is converted to universal_real, this is a
3585 -- legal context for a universal fixed expression.
3587 if T = Universal_Fixed then
3588 declare
3589 Loc : constant Source_Ptr := Sloc (N);
3590 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3591 Subtype_Mark =>
3592 New_Occurrence_Of (Universal_Real, Loc),
3593 Expression => Relocate_Node (E));
3595 begin
3596 Rewrite (E, Conv);
3597 Analyze (E);
3598 end;
3600 elsif T = Any_Fixed then
3601 Error_Msg_N ("illegal context for mixed mode operation", E);
3603 -- Expression is of the form : universal_fixed * integer. Try to
3604 -- resolve as universal_real.
3606 T := Universal_Real;
3607 Set_Etype (E, T);
3608 end if;
3610 Resolve (E, T);
3611 Set_Etype (Id, Universal_Real);
3612 Set_Ekind (Id, E_Named_Real);
3614 else
3615 Wrong_Type (E, Any_Numeric);
3616 Resolve (E, T);
3618 Set_Etype (Id, T);
3619 Set_Ekind (Id, E_Constant);
3620 Set_Never_Set_In_Source (Id, True);
3621 Set_Is_True_Constant (Id, True);
3622 return;
3623 end if;
3625 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3626 Set_Etype (E, Etype (Id));
3627 end if;
3629 if not Is_OK_Static_Expression (E) then
3630 Flag_Non_Static_Expr
3631 ("non-static expression used in number declaration!", E);
3632 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3633 Set_Etype (E, Any_Type);
3634 end if;
3636 Analyze_Dimension (N);
3637 end Analyze_Number_Declaration;
3639 --------------------------------
3640 -- Analyze_Object_Declaration --
3641 --------------------------------
3643 -- WARNING: This routine manages Ghost regions. Return statements must be
3644 -- replaced by gotos which jump to the end of the routine and restore the
3645 -- Ghost mode.
3647 procedure Analyze_Object_Declaration (N : Node_Id) is
3648 Loc : constant Source_Ptr := Sloc (N);
3649 Id : constant Entity_Id := Defining_Identifier (N);
3650 Act_T : Entity_Id;
3651 T : Entity_Id;
3653 E : Node_Id := Expression (N);
3654 -- E is set to Expression (N) throughout this routine. When Expression
3655 -- (N) is modified, E is changed accordingly.
3657 Prev_Entity : Entity_Id := Empty;
3659 procedure Check_Dynamic_Object (Typ : Entity_Id);
3660 -- A library-level object with nonstatic discriminant constraints may
3661 -- require dynamic allocation. The declaration is illegal if the
3662 -- profile includes the restriction No_Implicit_Heap_Allocations.
3664 procedure Check_For_Null_Excluding_Components
3665 (Obj_Typ : Entity_Id;
3666 Obj_Decl : Node_Id);
3667 -- Verify that each null-excluding component of object declaration
3668 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3669 -- a compile-time warning if this is not the case.
3671 function Count_Tasks (T : Entity_Id) return Uint;
3672 -- This function is called when a non-generic library level object of a
3673 -- task type is declared. Its function is to count the static number of
3674 -- tasks declared within the type (it is only called if Has_Task is set
3675 -- for T). As a side effect, if an array of tasks with nonstatic bounds
3676 -- or a variant record type is encountered, Check_Restriction is called
3677 -- indicating the count is unknown.
3679 function Delayed_Aspect_Present return Boolean;
3680 -- If the declaration has an expression that is an aggregate, and it
3681 -- has aspects that require delayed analysis, the resolution of the
3682 -- aggregate must be deferred to the freeze point of the object. This
3683 -- special processing was created for address clauses, but it must
3684 -- also apply to Alignment. This must be done before the aspect
3685 -- specifications are analyzed because we must handle the aggregate
3686 -- before the analysis of the object declaration is complete.
3688 -- Any other relevant delayed aspects on object declarations ???
3690 --------------------------
3691 -- Check_Dynamic_Object --
3692 --------------------------
3694 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3695 Comp : Entity_Id;
3696 Obj_Type : Entity_Id;
3698 begin
3699 Obj_Type := Typ;
3701 if Is_Private_Type (Obj_Type)
3702 and then Present (Full_View (Obj_Type))
3703 then
3704 Obj_Type := Full_View (Obj_Type);
3705 end if;
3707 if Known_Static_Esize (Obj_Type) then
3708 return;
3709 end if;
3711 if Restriction_Active (No_Implicit_Heap_Allocations)
3712 and then Expander_Active
3713 and then Has_Discriminants (Obj_Type)
3714 then
3715 Comp := First_Component (Obj_Type);
3716 while Present (Comp) loop
3717 if Known_Static_Esize (Etype (Comp))
3718 or else Size_Known_At_Compile_Time (Etype (Comp))
3719 then
3720 null;
3722 elsif not Discriminated_Size (Comp)
3723 and then Comes_From_Source (Comp)
3724 then
3725 Error_Msg_NE
3726 ("component& of non-static size will violate restriction "
3727 & "No_Implicit_Heap_Allocation?", N, Comp);
3729 elsif Is_Record_Type (Etype (Comp)) then
3730 Check_Dynamic_Object (Etype (Comp));
3731 end if;
3733 Next_Component (Comp);
3734 end loop;
3735 end if;
3736 end Check_Dynamic_Object;
3738 -----------------------------------------
3739 -- Check_For_Null_Excluding_Components --
3740 -----------------------------------------
3742 procedure Check_For_Null_Excluding_Components
3743 (Obj_Typ : Entity_Id;
3744 Obj_Decl : Node_Id)
3746 procedure Check_Component
3747 (Comp_Typ : Entity_Id;
3748 Comp_Decl : Node_Id := Empty;
3749 Array_Comp : Boolean := False);
3750 -- Apply a compile-time null-exclusion check on a component denoted
3751 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3752 -- subcomponents (if any).
3754 ---------------------
3755 -- Check_Component --
3756 ---------------------
3758 procedure Check_Component
3759 (Comp_Typ : Entity_Id;
3760 Comp_Decl : Node_Id := Empty;
3761 Array_Comp : Boolean := False)
3763 Comp : Entity_Id;
3764 T : Entity_Id;
3766 begin
3767 -- Do not consider internally-generated components or those that
3768 -- are already initialized.
3770 if Present (Comp_Decl)
3771 and then (not Comes_From_Source (Comp_Decl)
3772 or else Present (Expression (Comp_Decl)))
3773 then
3774 return;
3775 end if;
3777 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3778 and then Present (Full_View (Comp_Typ))
3779 then
3780 T := Full_View (Comp_Typ);
3781 else
3782 T := Comp_Typ;
3783 end if;
3785 -- Verify a component of a null-excluding access type
3787 if Is_Access_Type (T)
3788 and then Can_Never_Be_Null (T)
3789 then
3790 if Comp_Decl = Obj_Decl then
3791 Null_Exclusion_Static_Checks
3792 (N => Obj_Decl,
3793 Comp => Empty,
3794 Array_Comp => Array_Comp);
3796 else
3797 Null_Exclusion_Static_Checks
3798 (N => Obj_Decl,
3799 Comp => Comp_Decl,
3800 Array_Comp => Array_Comp);
3801 end if;
3803 -- Check array components
3805 elsif Is_Array_Type (T) then
3807 -- There is no suitable component when the object is of an
3808 -- array type. However, a namable component may appear at some
3809 -- point during the recursive inspection, but not at the top
3810 -- level. At the top level just indicate array component case.
3812 if Comp_Decl = Obj_Decl then
3813 Check_Component (Component_Type (T), Array_Comp => True);
3814 else
3815 Check_Component (Component_Type (T), Comp_Decl);
3816 end if;
3818 -- Verify all components of type T
3820 -- Note: No checks are performed on types with discriminants due
3821 -- to complexities involving variants. ???
3823 elsif (Is_Concurrent_Type (T)
3824 or else Is_Incomplete_Or_Private_Type (T)
3825 or else Is_Record_Type (T))
3826 and then not Has_Discriminants (T)
3827 then
3828 Comp := First_Component (T);
3829 while Present (Comp) loop
3830 Check_Component (Etype (Comp), Parent (Comp));
3832 Comp := Next_Component (Comp);
3833 end loop;
3834 end if;
3835 end Check_Component;
3837 -- Start processing for Check_For_Null_Excluding_Components
3839 begin
3840 Check_Component (Obj_Typ, Obj_Decl);
3841 end Check_For_Null_Excluding_Components;
3843 -----------------
3844 -- Count_Tasks --
3845 -----------------
3847 function Count_Tasks (T : Entity_Id) return Uint is
3848 C : Entity_Id;
3849 X : Node_Id;
3850 V : Uint;
3852 begin
3853 if Is_Task_Type (T) then
3854 return Uint_1;
3856 elsif Is_Record_Type (T) then
3857 if Has_Discriminants (T) then
3858 Check_Restriction (Max_Tasks, N);
3859 return Uint_0;
3861 else
3862 V := Uint_0;
3863 C := First_Component (T);
3864 while Present (C) loop
3865 V := V + Count_Tasks (Etype (C));
3866 Next_Component (C);
3867 end loop;
3869 return V;
3870 end if;
3872 elsif Is_Array_Type (T) then
3873 X := First_Index (T);
3874 V := Count_Tasks (Component_Type (T));
3875 while Present (X) loop
3876 C := Etype (X);
3878 if not Is_OK_Static_Subtype (C) then
3879 Check_Restriction (Max_Tasks, N);
3880 return Uint_0;
3881 else
3882 V := V * (UI_Max (Uint_0,
3883 Expr_Value (Type_High_Bound (C)) -
3884 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3885 end if;
3887 Next_Index (X);
3888 end loop;
3890 return V;
3892 else
3893 return Uint_0;
3894 end if;
3895 end Count_Tasks;
3897 ----------------------------
3898 -- Delayed_Aspect_Present --
3899 ----------------------------
3901 function Delayed_Aspect_Present return Boolean is
3902 A : Node_Id;
3903 A_Id : Aspect_Id;
3905 begin
3906 if Present (Aspect_Specifications (N)) then
3907 A := First (Aspect_Specifications (N));
3908 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3909 while Present (A) loop
3910 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3911 return True;
3912 end if;
3914 Next (A);
3915 end loop;
3916 end if;
3918 return False;
3919 end Delayed_Aspect_Present;
3921 -- Local variables
3923 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3924 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3925 -- Save the Ghost-related attributes to restore on exit
3927 Related_Id : Entity_Id;
3929 -- Start of processing for Analyze_Object_Declaration
3931 begin
3932 -- There are three kinds of implicit types generated by an
3933 -- object declaration:
3935 -- 1. Those generated by the original Object Definition
3937 -- 2. Those generated by the Expression
3939 -- 3. Those used to constrain the Object Definition with the
3940 -- expression constraints when the definition is unconstrained.
3942 -- They must be generated in this order to avoid order of elaboration
3943 -- issues. Thus the first step (after entering the name) is to analyze
3944 -- the object definition.
3946 if Constant_Present (N) then
3947 Prev_Entity := Current_Entity_In_Scope (Id);
3949 if Present (Prev_Entity)
3950 and then
3951 -- If the homograph is an implicit subprogram, it is overridden
3952 -- by the current declaration.
3954 ((Is_Overloadable (Prev_Entity)
3955 and then Is_Inherited_Operation (Prev_Entity))
3957 -- The current object is a discriminal generated for an entry
3958 -- family index. Even though the index is a constant, in this
3959 -- particular context there is no true constant redeclaration.
3960 -- Enter_Name will handle the visibility.
3962 or else
3963 (Is_Discriminal (Id)
3964 and then Ekind (Discriminal_Link (Id)) =
3965 E_Entry_Index_Parameter)
3967 -- The current object is the renaming for a generic declared
3968 -- within the instance.
3970 or else
3971 (Ekind (Prev_Entity) = E_Package
3972 and then Nkind (Parent (Prev_Entity)) =
3973 N_Package_Renaming_Declaration
3974 and then not Comes_From_Source (Prev_Entity)
3975 and then
3976 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3978 -- The entity may be a homonym of a private component of the
3979 -- enclosing protected object, for which we create a local
3980 -- renaming declaration. The declaration is legal, even if
3981 -- useless when it just captures that component.
3983 or else
3984 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3985 and then Nkind (Parent (Prev_Entity)) =
3986 N_Object_Renaming_Declaration))
3987 then
3988 Prev_Entity := Empty;
3989 end if;
3990 end if;
3992 if Present (Prev_Entity) then
3994 -- The object declaration is Ghost when it completes a deferred Ghost
3995 -- constant.
3997 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3999 Constant_Redeclaration (Id, N, T);
4001 Generate_Reference (Prev_Entity, Id, 'c');
4002 Set_Completion_Referenced (Id);
4004 if Error_Posted (N) then
4006 -- Type mismatch or illegal redeclaration; do not analyze
4007 -- expression to avoid cascaded errors.
4009 T := Find_Type_Of_Object (Object_Definition (N), N);
4010 Set_Etype (Id, T);
4011 Set_Ekind (Id, E_Variable);
4012 goto Leave;
4013 end if;
4015 -- In the normal case, enter identifier at the start to catch premature
4016 -- usage in the initialization expression.
4018 else
4019 Generate_Definition (Id);
4020 Enter_Name (Id);
4022 Mark_Coextensions (N, Object_Definition (N));
4024 T := Find_Type_Of_Object (Object_Definition (N), N);
4026 if Nkind (Object_Definition (N)) = N_Access_Definition
4027 and then Present
4028 (Access_To_Subprogram_Definition (Object_Definition (N)))
4029 and then Protected_Present
4030 (Access_To_Subprogram_Definition (Object_Definition (N)))
4031 then
4032 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4033 end if;
4035 if Error_Posted (Id) then
4036 Set_Etype (Id, T);
4037 Set_Ekind (Id, E_Variable);
4038 goto Leave;
4039 end if;
4040 end if;
4042 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4043 -- out some static checks.
4045 if Ada_Version >= Ada_2005 then
4047 -- In case of aggregates we must also take care of the correct
4048 -- initialization of nested aggregates bug this is done at the
4049 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4051 if Can_Never_Be_Null (T) then
4052 if Present (Expression (N))
4053 and then Nkind (Expression (N)) = N_Aggregate
4054 then
4055 null;
4057 else
4058 declare
4059 Save_Typ : constant Entity_Id := Etype (Id);
4060 begin
4061 Set_Etype (Id, T); -- Temp. decoration for static checks
4062 Null_Exclusion_Static_Checks (N);
4063 Set_Etype (Id, Save_Typ);
4064 end;
4065 end if;
4067 -- We might be dealing with an object of a composite type containing
4068 -- null-excluding components without an aggregate, so we must verify
4069 -- that such components have default initialization.
4071 else
4072 Check_For_Null_Excluding_Components (T, N);
4073 end if;
4074 end if;
4076 -- Object is marked pure if it is in a pure scope
4078 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4080 -- If deferred constant, make sure context is appropriate. We detect
4081 -- a deferred constant as a constant declaration with no expression.
4082 -- A deferred constant can appear in a package body if its completion
4083 -- is by means of an interface pragma.
4085 if Constant_Present (N) and then No (E) then
4087 -- A deferred constant may appear in the declarative part of the
4088 -- following constructs:
4090 -- blocks
4091 -- entry bodies
4092 -- extended return statements
4093 -- package specs
4094 -- package bodies
4095 -- subprogram bodies
4096 -- task bodies
4098 -- When declared inside a package spec, a deferred constant must be
4099 -- completed by a full constant declaration or pragma Import. In all
4100 -- other cases, the only proper completion is pragma Import. Extended
4101 -- return statements are flagged as invalid contexts because they do
4102 -- not have a declarative part and so cannot accommodate the pragma.
4104 if Ekind (Current_Scope) = E_Return_Statement then
4105 Error_Msg_N
4106 ("invalid context for deferred constant declaration (RM 7.4)",
4108 Error_Msg_N
4109 ("\declaration requires an initialization expression",
4111 Set_Constant_Present (N, False);
4113 -- In Ada 83, deferred constant must be of private type
4115 elsif not Is_Private_Type (T) then
4116 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4117 Error_Msg_N
4118 ("(Ada 83) deferred constant must be private type", N);
4119 end if;
4120 end if;
4122 -- If not a deferred constant, then the object declaration freezes
4123 -- its type, unless the object is of an anonymous type and has delayed
4124 -- aspects. In that case the type is frozen when the object itself is.
4126 else
4127 Check_Fully_Declared (T, N);
4129 if Has_Delayed_Aspects (Id)
4130 and then Is_Array_Type (T)
4131 and then Is_Itype (T)
4132 then
4133 Set_Has_Delayed_Freeze (T);
4134 else
4135 Freeze_Before (N, T);
4136 end if;
4137 end if;
4139 -- If the object was created by a constrained array definition, then
4140 -- set the link in both the anonymous base type and anonymous subtype
4141 -- that are built to represent the array type to point to the object.
4143 if Nkind (Object_Definition (Declaration_Node (Id))) =
4144 N_Constrained_Array_Definition
4145 then
4146 Set_Related_Array_Object (T, Id);
4147 Set_Related_Array_Object (Base_Type (T), Id);
4148 end if;
4150 -- Special checks for protected objects not at library level
4152 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4153 Check_Restriction (No_Local_Protected_Objects, Id);
4155 -- Protected objects with interrupt handlers must be at library level
4157 -- Ada 2005: This test is not needed (and the corresponding clause
4158 -- in the RM is removed) because accessibility checks are sufficient
4159 -- to make handlers not at the library level illegal.
4161 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4162 -- applies to the '95 version of the language as well.
4164 if Is_Protected_Type (T)
4165 and then Has_Interrupt_Handler (T)
4166 and then Ada_Version < Ada_95
4167 then
4168 Error_Msg_N
4169 ("interrupt object can only be declared at library level", Id);
4170 end if;
4171 end if;
4173 -- Check for violation of No_Local_Timing_Events
4175 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4176 Check_Restriction (No_Local_Timing_Events, Id);
4177 end if;
4179 -- The actual subtype of the object is the nominal subtype, unless
4180 -- the nominal one is unconstrained and obtained from the expression.
4182 Act_T := T;
4184 -- These checks should be performed before the initialization expression
4185 -- is considered, so that the Object_Definition node is still the same
4186 -- as in source code.
4188 -- In SPARK, the nominal subtype is always given by a subtype mark
4189 -- and must not be unconstrained. (The only exception to this is the
4190 -- acceptance of declarations of constants of type String.)
4192 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4193 then
4194 Check_SPARK_05_Restriction
4195 ("subtype mark required", Object_Definition (N));
4197 elsif Is_Array_Type (T)
4198 and then not Is_Constrained (T)
4199 and then T /= Standard_String
4200 then
4201 Check_SPARK_05_Restriction
4202 ("subtype mark of constrained type expected",
4203 Object_Definition (N));
4204 end if;
4206 if Is_Library_Level_Entity (Id) then
4207 Check_Dynamic_Object (T);
4208 end if;
4210 -- There are no aliased objects in SPARK
4212 if Aliased_Present (N) then
4213 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4214 end if;
4216 -- Process initialization expression if present and not in error
4218 if Present (E) and then E /= Error then
4220 -- Generate an error in case of CPP class-wide object initialization.
4221 -- Required because otherwise the expansion of the class-wide
4222 -- assignment would try to use 'size to initialize the object
4223 -- (primitive that is not available in CPP tagged types).
4225 if Is_Class_Wide_Type (Act_T)
4226 and then
4227 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4228 or else
4229 (Present (Full_View (Root_Type (Etype (Act_T))))
4230 and then
4231 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4232 then
4233 Error_Msg_N
4234 ("predefined assignment not available for 'C'P'P tagged types",
4236 end if;
4238 Mark_Coextensions (N, E);
4239 Analyze (E);
4241 -- In case of errors detected in the analysis of the expression,
4242 -- decorate it with the expected type to avoid cascaded errors
4244 if No (Etype (E)) then
4245 Set_Etype (E, T);
4246 end if;
4248 -- If an initialization expression is present, then we set the
4249 -- Is_True_Constant flag. It will be reset if this is a variable
4250 -- and it is indeed modified.
4252 Set_Is_True_Constant (Id, True);
4254 -- If we are analyzing a constant declaration, set its completion
4255 -- flag after analyzing and resolving the expression.
4257 if Constant_Present (N) then
4258 Set_Has_Completion (Id);
4259 end if;
4261 -- Set type and resolve (type may be overridden later on). Note:
4262 -- Ekind (Id) must still be E_Void at this point so that incorrect
4263 -- early usage within E is properly diagnosed.
4265 Set_Etype (Id, T);
4267 -- If the expression is an aggregate we must look ahead to detect
4268 -- the possible presence of an address clause, and defer resolution
4269 -- and expansion of the aggregate to the freeze point of the entity.
4271 -- This is not always legal because the aggregate may contain other
4272 -- references that need freezing, e.g. references to other entities
4273 -- with address clauses. In any case, when compiling with -gnatI the
4274 -- presence of the address clause must be ignored.
4276 if Comes_From_Source (N)
4277 and then Expander_Active
4278 and then Nkind (E) = N_Aggregate
4279 and then
4280 ((Present (Following_Address_Clause (N))
4281 and then not Ignore_Rep_Clauses)
4282 or else Delayed_Aspect_Present)
4283 then
4284 Set_Etype (E, T);
4286 -- If the aggregate is limited it will be built in place, and its
4287 -- expansion is deferred until the object declaration is expanded.
4289 if Is_Limited_Type (T) then
4290 Set_Expansion_Delayed (E);
4291 end if;
4293 else
4294 -- If the expression is a formal that is a "subprogram pointer"
4295 -- this is illegal in accessibility terms (see RM 3.10.2 (13.1/2)
4296 -- and AARM 3.10.2 (13.b/2)). Add an explicit conversion to force
4297 -- the corresponding check, as is done for assignments.
4299 if Is_Entity_Name (E)
4300 and then Present (Entity (E))
4301 and then Is_Formal (Entity (E))
4302 and then
4303 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4304 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4305 then
4306 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4307 end if;
4309 Resolve (E, T);
4310 end if;
4312 -- No further action needed if E is a call to an inlined function
4313 -- which returns an unconstrained type and it has been expanded into
4314 -- a procedure call. In that case N has been replaced by an object
4315 -- declaration without initializing expression and it has been
4316 -- analyzed (see Expand_Inlined_Call).
4318 if Back_End_Inlining
4319 and then Expander_Active
4320 and then Nkind (E) = N_Function_Call
4321 and then Nkind (Name (E)) in N_Has_Entity
4322 and then Is_Inlined (Entity (Name (E)))
4323 and then not Is_Constrained (Etype (E))
4324 and then Analyzed (N)
4325 and then No (Expression (N))
4326 then
4327 goto Leave;
4328 end if;
4330 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4331 -- node (which was marked already-analyzed), we need to set the type
4332 -- to something other than Any_Access in order to keep gigi happy.
4334 if Etype (E) = Any_Access then
4335 Set_Etype (E, T);
4336 end if;
4338 -- If the object is an access to variable, the initialization
4339 -- expression cannot be an access to constant.
4341 if Is_Access_Type (T)
4342 and then not Is_Access_Constant (T)
4343 and then Is_Access_Type (Etype (E))
4344 and then Is_Access_Constant (Etype (E))
4345 then
4346 Error_Msg_N
4347 ("access to variable cannot be initialized with an "
4348 & "access-to-constant expression", E);
4349 end if;
4351 if not Assignment_OK (N) then
4352 Check_Initialization (T, E);
4353 end if;
4355 Check_Unset_Reference (E);
4357 -- If this is a variable, then set current value. If this is a
4358 -- declared constant of a scalar type with a static expression,
4359 -- indicate that it is always valid.
4361 if not Constant_Present (N) then
4362 if Compile_Time_Known_Value (E) then
4363 Set_Current_Value (Id, E);
4364 end if;
4366 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4367 Set_Is_Known_Valid (Id);
4369 -- If it is a constant initialized with a valid nonstatic entity,
4370 -- the constant is known valid as well, and can inherit the subtype
4371 -- of the entity if it is a subtype of the given type. This info
4372 -- is preserved on the actual subtype of the constant.
4374 elsif Is_Scalar_Type (T)
4375 and then Is_Entity_Name (E)
4376 and then Is_Known_Valid (Entity (E))
4377 and then In_Subrange_Of (Etype (Entity (E)), T)
4378 then
4379 Set_Is_Known_Valid (Id);
4380 Set_Ekind (Id, E_Constant);
4381 Set_Actual_Subtype (Id, Etype (Entity (E)));
4382 end if;
4384 -- Deal with setting of null flags
4386 if Is_Access_Type (T) then
4387 if Known_Non_Null (E) then
4388 Set_Is_Known_Non_Null (Id, True);
4389 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4390 Set_Is_Known_Null (Id, True);
4391 end if;
4392 end if;
4394 -- Check incorrect use of dynamically tagged expressions
4396 if Is_Tagged_Type (T) then
4397 Check_Dynamically_Tagged_Expression
4398 (Expr => E,
4399 Typ => T,
4400 Related_Nod => N);
4401 end if;
4403 Apply_Scalar_Range_Check (E, T);
4404 Apply_Static_Length_Check (E, T);
4406 if Nkind (Original_Node (N)) = N_Object_Declaration
4407 and then Comes_From_Source (Original_Node (N))
4409 -- Only call test if needed
4411 and then Restriction_Check_Required (SPARK_05)
4412 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4413 then
4414 Check_SPARK_05_Restriction
4415 ("initialization expression is not appropriate", E);
4416 end if;
4418 -- A formal parameter of a specific tagged type whose related
4419 -- subprogram is subject to pragma Extensions_Visible with value
4420 -- "False" cannot be implicitly converted to a class-wide type by
4421 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4422 -- not consider internally generated expressions.
4424 if Is_Class_Wide_Type (T)
4425 and then Comes_From_Source (E)
4426 and then Is_EVF_Expression (E)
4427 then
4428 Error_Msg_N
4429 ("formal parameter cannot be implicitly converted to "
4430 & "class-wide type when Extensions_Visible is False", E);
4431 end if;
4432 end if;
4434 -- If the No_Streams restriction is set, check that the type of the
4435 -- object is not, and does not contain, any subtype derived from
4436 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4437 -- Has_Stream just for efficiency reasons. There is no point in
4438 -- spending time on a Has_Stream check if the restriction is not set.
4440 if Restriction_Check_Required (No_Streams) then
4441 if Has_Stream (T) then
4442 Check_Restriction (No_Streams, N);
4443 end if;
4444 end if;
4446 -- Deal with predicate check before we start to do major rewriting. It
4447 -- is OK to initialize and then check the initialized value, since the
4448 -- object goes out of scope if we get a predicate failure. Note that we
4449 -- do this in the analyzer and not the expander because the analyzer
4450 -- does some substantial rewriting in some cases.
4452 -- We need a predicate check if the type has predicates that are not
4453 -- ignored, and if either there is an initializing expression, or for
4454 -- default initialization when we have at least one case of an explicit
4455 -- default initial value and then this is not an internal declaration
4456 -- whose initialization comes later (as for an aggregate expansion).
4457 -- If expression is an aggregate it may be expanded into assignments
4458 -- and the declaration itself is marked with No_Initialization, but
4459 -- the predicate still applies.
4461 if not Suppress_Assignment_Checks (N)
4462 and then Present (Predicate_Function (T))
4463 and then not Predicates_Ignored (T)
4464 and then
4465 (not No_Initialization (N)
4466 or else (Present (E) and then Nkind (E) = N_Aggregate))
4467 and then
4468 (Present (E)
4469 or else
4470 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4471 then
4472 -- If the type has a static predicate and the expression is known at
4473 -- compile time, see if the expression satisfies the predicate.
4475 if Present (E) then
4476 Check_Expression_Against_Static_Predicate (E, T);
4477 end if;
4479 -- If the type is a null record and there is no explicit initial
4480 -- expression, no predicate check applies.
4482 if No (E) and then Is_Null_Record_Type (T) then
4483 null;
4485 -- Do not generate a predicate check if the initialization expression
4486 -- is a type conversion because the conversion has been subjected to
4487 -- the same check. This is a small optimization which avoid redundant
4488 -- checks.
4490 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4491 null;
4493 else
4494 Insert_After (N,
4495 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4496 end if;
4497 end if;
4499 -- Case of unconstrained type
4501 if not Is_Definite_Subtype (T) then
4503 -- In SPARK, a declaration of unconstrained type is allowed
4504 -- only for constants of type string.
4506 if Is_String_Type (T) and then not Constant_Present (N) then
4507 Check_SPARK_05_Restriction
4508 ("declaration of object of unconstrained type not allowed", N);
4509 end if;
4511 -- Nothing to do in deferred constant case
4513 if Constant_Present (N) and then No (E) then
4514 null;
4516 -- Case of no initialization present
4518 elsif No (E) then
4519 if No_Initialization (N) then
4520 null;
4522 elsif Is_Class_Wide_Type (T) then
4523 Error_Msg_N
4524 ("initialization required in class-wide declaration ", N);
4526 else
4527 Error_Msg_N
4528 ("unconstrained subtype not allowed (need initialization)",
4529 Object_Definition (N));
4531 if Is_Record_Type (T) and then Has_Discriminants (T) then
4532 Error_Msg_N
4533 ("\provide initial value or explicit discriminant values",
4534 Object_Definition (N));
4536 Error_Msg_NE
4537 ("\or give default discriminant values for type&",
4538 Object_Definition (N), T);
4540 elsif Is_Array_Type (T) then
4541 Error_Msg_N
4542 ("\provide initial value or explicit array bounds",
4543 Object_Definition (N));
4544 end if;
4545 end if;
4547 -- Case of initialization present but in error. Set initial
4548 -- expression as absent (but do not make above complaints)
4550 elsif E = Error then
4551 Set_Expression (N, Empty);
4552 E := Empty;
4554 -- Case of initialization present
4556 else
4557 -- Check restrictions in Ada 83
4559 if not Constant_Present (N) then
4561 -- Unconstrained variables not allowed in Ada 83 mode
4563 if Ada_Version = Ada_83
4564 and then Comes_From_Source (Object_Definition (N))
4565 then
4566 Error_Msg_N
4567 ("(Ada 83) unconstrained variable not allowed",
4568 Object_Definition (N));
4569 end if;
4570 end if;
4572 -- Now we constrain the variable from the initializing expression
4574 -- If the expression is an aggregate, it has been expanded into
4575 -- individual assignments. Retrieve the actual type from the
4576 -- expanded construct.
4578 if Is_Array_Type (T)
4579 and then No_Initialization (N)
4580 and then Nkind (Original_Node (E)) = N_Aggregate
4581 then
4582 Act_T := Etype (E);
4584 -- In case of class-wide interface object declarations we delay
4585 -- the generation of the equivalent record type declarations until
4586 -- its expansion because there are cases in they are not required.
4588 elsif Is_Interface (T) then
4589 null;
4591 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4592 -- we should prevent the generation of another Itype with the
4593 -- same name as the one already generated, or we end up with
4594 -- two identical types in GNATprove.
4596 elsif GNATprove_Mode then
4597 null;
4599 -- If the type is an unchecked union, no subtype can be built from
4600 -- the expression. Rewrite declaration as a renaming, which the
4601 -- back-end can handle properly. This is a rather unusual case,
4602 -- because most unchecked_union declarations have default values
4603 -- for discriminants and are thus not indefinite.
4605 elsif Is_Unchecked_Union (T) then
4606 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4607 Set_Ekind (Id, E_Constant);
4608 else
4609 Set_Ekind (Id, E_Variable);
4610 end if;
4612 Rewrite (N,
4613 Make_Object_Renaming_Declaration (Loc,
4614 Defining_Identifier => Id,
4615 Subtype_Mark => New_Occurrence_Of (T, Loc),
4616 Name => E));
4618 Set_Renamed_Object (Id, E);
4619 Freeze_Before (N, T);
4620 Set_Is_Frozen (Id);
4621 goto Leave;
4623 else
4624 -- Ensure that the generated subtype has a unique external name
4625 -- when the related object is public. This guarantees that the
4626 -- subtype and its bounds will not be affected by switches or
4627 -- pragmas that may offset the internal counter due to extra
4628 -- generated code.
4630 if Is_Public (Id) then
4631 Related_Id := Id;
4632 else
4633 Related_Id := Empty;
4634 end if;
4636 Expand_Subtype_From_Expr
4637 (N => N,
4638 Unc_Type => T,
4639 Subtype_Indic => Object_Definition (N),
4640 Exp => E,
4641 Related_Id => Related_Id);
4643 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4644 end if;
4646 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4648 if Aliased_Present (N) then
4649 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4650 end if;
4652 Freeze_Before (N, Act_T);
4653 Freeze_Before (N, T);
4654 end if;
4656 elsif Is_Array_Type (T)
4657 and then No_Initialization (N)
4658 and then (Nkind (Original_Node (E)) = N_Aggregate
4659 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4660 and then Nkind (Original_Node (Expression
4661 (Original_Node (E)))) = N_Aggregate))
4662 then
4663 if not Is_Entity_Name (Object_Definition (N)) then
4664 Act_T := Etype (E);
4665 Check_Compile_Time_Size (Act_T);
4667 if Aliased_Present (N) then
4668 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4669 end if;
4670 end if;
4672 -- When the given object definition and the aggregate are specified
4673 -- independently, and their lengths might differ do a length check.
4674 -- This cannot happen if the aggregate is of the form (others =>...)
4676 if not Is_Constrained (T) then
4677 null;
4679 elsif Nkind (E) = N_Raise_Constraint_Error then
4681 -- Aggregate is statically illegal. Place back in declaration
4683 Set_Expression (N, E);
4684 Set_No_Initialization (N, False);
4686 elsif T = Etype (E) then
4687 null;
4689 elsif Nkind (E) = N_Aggregate
4690 and then Present (Component_Associations (E))
4691 and then Present (Choice_List (First (Component_Associations (E))))
4692 and then
4693 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4694 N_Others_Choice
4695 then
4696 null;
4698 else
4699 Apply_Length_Check (E, T);
4700 end if;
4702 -- If the type is limited unconstrained with defaulted discriminants and
4703 -- there is no expression, then the object is constrained by the
4704 -- defaults, so it is worthwhile building the corresponding subtype.
4706 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4707 and then not Is_Constrained (T)
4708 and then Has_Discriminants (T)
4709 then
4710 if No (E) then
4711 Act_T := Build_Default_Subtype (T, N);
4712 else
4713 -- Ada 2005: A limited object may be initialized by means of an
4714 -- aggregate. If the type has default discriminants it has an
4715 -- unconstrained nominal type, Its actual subtype will be obtained
4716 -- from the aggregate, and not from the default discriminants.
4718 Act_T := Etype (E);
4719 end if;
4721 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4723 elsif Nkind (E) = N_Function_Call
4724 and then Constant_Present (N)
4725 and then Has_Unconstrained_Elements (Etype (E))
4726 then
4727 -- The back-end has problems with constants of a discriminated type
4728 -- with defaults, if the initial value is a function call. We
4729 -- generate an intermediate temporary that will receive a reference
4730 -- to the result of the call. The initialization expression then
4731 -- becomes a dereference of that temporary.
4733 Remove_Side_Effects (E);
4735 -- If this is a constant declaration of an unconstrained type and
4736 -- the initialization is an aggregate, we can use the subtype of the
4737 -- aggregate for the declared entity because it is immutable.
4739 elsif not Is_Constrained (T)
4740 and then Has_Discriminants (T)
4741 and then Constant_Present (N)
4742 and then not Has_Unchecked_Union (T)
4743 and then Nkind (E) = N_Aggregate
4744 then
4745 Act_T := Etype (E);
4746 end if;
4748 -- Check No_Wide_Characters restriction
4750 Check_Wide_Character_Restriction (T, Object_Definition (N));
4752 -- Indicate this is not set in source. Certainly true for constants, and
4753 -- true for variables so far (will be reset for a variable if and when
4754 -- we encounter a modification in the source).
4756 Set_Never_Set_In_Source (Id);
4758 -- Now establish the proper kind and type of the object
4760 if Constant_Present (N) then
4761 Set_Ekind (Id, E_Constant);
4762 Set_Is_True_Constant (Id);
4764 else
4765 Set_Ekind (Id, E_Variable);
4767 -- A variable is set as shared passive if it appears in a shared
4768 -- passive package, and is at the outer level. This is not done for
4769 -- entities generated during expansion, because those are always
4770 -- manipulated locally.
4772 if Is_Shared_Passive (Current_Scope)
4773 and then Is_Library_Level_Entity (Id)
4774 and then Comes_From_Source (Id)
4775 then
4776 Set_Is_Shared_Passive (Id);
4777 Check_Shared_Var (Id, T, N);
4778 end if;
4780 -- Set Has_Initial_Value if initializing expression present. Note
4781 -- that if there is no initializing expression, we leave the state
4782 -- of this flag unchanged (usually it will be False, but notably in
4783 -- the case of exception choice variables, it will already be true).
4785 if Present (E) then
4786 Set_Has_Initial_Value (Id);
4787 end if;
4788 end if;
4790 -- Set the SPARK mode from the current context (may be overwritten later
4791 -- with explicit pragma).
4793 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4794 Set_SPARK_Pragma_Inherited (Id);
4796 -- Preserve relevant elaboration-related attributes of the context which
4797 -- are no longer available or very expensive to recompute once analysis,
4798 -- resolution, and expansion are over.
4800 Mark_Elaboration_Attributes
4801 (N_Id => Id,
4802 Checks => True,
4803 Warnings => True);
4805 -- Initialize alignment and size and capture alignment setting
4807 Init_Alignment (Id);
4808 Init_Esize (Id);
4809 Set_Optimize_Alignment_Flags (Id);
4811 -- Deal with aliased case
4813 if Aliased_Present (N) then
4814 Set_Is_Aliased (Id);
4816 -- If the object is aliased and the type is unconstrained with
4817 -- defaulted discriminants and there is no expression, then the
4818 -- object is constrained by the defaults, so it is worthwhile
4819 -- building the corresponding subtype.
4821 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4822 -- unconstrained, then only establish an actual subtype if the
4823 -- nominal subtype is indefinite. In definite cases the object is
4824 -- unconstrained in Ada 2005.
4826 if No (E)
4827 and then Is_Record_Type (T)
4828 and then not Is_Constrained (T)
4829 and then Has_Discriminants (T)
4830 and then (Ada_Version < Ada_2005
4831 or else not Is_Definite_Subtype (T))
4832 then
4833 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4834 end if;
4835 end if;
4837 -- Now we can set the type of the object
4839 Set_Etype (Id, Act_T);
4841 -- Non-constant object is marked to be treated as volatile if type is
4842 -- volatile and we clear the Current_Value setting that may have been
4843 -- set above. Doing so for constants isn't required and might interfere
4844 -- with possible uses of the object as a static expression in contexts
4845 -- incompatible with volatility (e.g. as a case-statement alternative).
4847 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4848 Set_Treat_As_Volatile (Id);
4849 Set_Current_Value (Id, Empty);
4850 end if;
4852 -- Deal with controlled types
4854 if Has_Controlled_Component (Etype (Id))
4855 or else Is_Controlled (Etype (Id))
4856 then
4857 if not Is_Library_Level_Entity (Id) then
4858 Check_Restriction (No_Nested_Finalization, N);
4859 else
4860 Validate_Controlled_Object (Id);
4861 end if;
4862 end if;
4864 if Has_Task (Etype (Id)) then
4865 Check_Restriction (No_Tasking, N);
4867 -- Deal with counting max tasks
4869 -- Nothing to do if inside a generic
4871 if Inside_A_Generic then
4872 null;
4874 -- If library level entity, then count tasks
4876 elsif Is_Library_Level_Entity (Id) then
4877 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4879 -- If not library level entity, then indicate we don't know max
4880 -- tasks and also check task hierarchy restriction and blocking
4881 -- operation (since starting a task is definitely blocking).
4883 else
4884 Check_Restriction (Max_Tasks, N);
4885 Check_Restriction (No_Task_Hierarchy, N);
4886 Check_Potentially_Blocking_Operation (N);
4887 end if;
4889 -- A rather specialized test. If we see two tasks being declared
4890 -- of the same type in the same object declaration, and the task
4891 -- has an entry with an address clause, we know that program error
4892 -- will be raised at run time since we can't have two tasks with
4893 -- entries at the same address.
4895 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4896 declare
4897 E : Entity_Id;
4899 begin
4900 E := First_Entity (Etype (Id));
4901 while Present (E) loop
4902 if Ekind (E) = E_Entry
4903 and then Present (Get_Attribute_Definition_Clause
4904 (E, Attribute_Address))
4905 then
4906 Error_Msg_Warn := SPARK_Mode /= On;
4907 Error_Msg_N
4908 ("more than one task with same entry address<<", N);
4909 Error_Msg_N ("\Program_Error [<<", N);
4910 Insert_Action (N,
4911 Make_Raise_Program_Error (Loc,
4912 Reason => PE_Duplicated_Entry_Address));
4913 exit;
4914 end if;
4916 Next_Entity (E);
4917 end loop;
4918 end;
4919 end if;
4920 end if;
4922 -- Some simple constant-propagation: if the expression is a constant
4923 -- string initialized with a literal, share the literal. This avoids
4924 -- a run-time copy.
4926 if Present (E)
4927 and then Is_Entity_Name (E)
4928 and then Ekind (Entity (E)) = E_Constant
4929 and then Base_Type (Etype (E)) = Standard_String
4930 then
4931 declare
4932 Val : constant Node_Id := Constant_Value (Entity (E));
4933 begin
4934 if Present (Val) and then Nkind (Val) = N_String_Literal then
4935 Rewrite (E, New_Copy (Val));
4936 end if;
4937 end;
4938 end if;
4940 -- Another optimization: if the nominal subtype is unconstrained and
4941 -- the expression is a function call that returns an unconstrained
4942 -- type, rewrite the declaration as a renaming of the result of the
4943 -- call. The exceptions below are cases where the copy is expected,
4944 -- either by the back end (Aliased case) or by the semantics, as for
4945 -- initializing controlled types or copying tags for class-wide types.
4947 if Present (E)
4948 and then Nkind (E) = N_Explicit_Dereference
4949 and then Nkind (Original_Node (E)) = N_Function_Call
4950 and then not Is_Library_Level_Entity (Id)
4951 and then not Is_Constrained (Underlying_Type (T))
4952 and then not Is_Aliased (Id)
4953 and then not Is_Class_Wide_Type (T)
4954 and then not Is_Controlled (T)
4955 and then not Has_Controlled_Component (Base_Type (T))
4956 and then Expander_Active
4957 then
4958 Rewrite (N,
4959 Make_Object_Renaming_Declaration (Loc,
4960 Defining_Identifier => Id,
4961 Access_Definition => Empty,
4962 Subtype_Mark => New_Occurrence_Of
4963 (Base_Type (Etype (Id)), Loc),
4964 Name => E));
4966 Set_Renamed_Object (Id, E);
4968 -- Force generation of debugging information for the constant and for
4969 -- the renamed function call.
4971 Set_Debug_Info_Needed (Id);
4972 Set_Debug_Info_Needed (Entity (Prefix (E)));
4973 end if;
4975 if Present (Prev_Entity)
4976 and then Is_Frozen (Prev_Entity)
4977 and then not Error_Posted (Id)
4978 then
4979 Error_Msg_N ("full constant declaration appears too late", N);
4980 end if;
4982 Check_Eliminated (Id);
4984 -- Deal with setting In_Private_Part flag if in private part
4986 if Ekind (Scope (Id)) = E_Package
4987 and then In_Private_Part (Scope (Id))
4988 then
4989 Set_In_Private_Part (Id);
4990 end if;
4992 <<Leave>>
4993 -- Initialize the refined state of a variable here because this is a
4994 -- common destination for legal and illegal object declarations.
4996 if Ekind (Id) = E_Variable then
4997 Set_Encapsulating_State (Id, Empty);
4998 end if;
5000 if Has_Aspects (N) then
5001 Analyze_Aspect_Specifications (N, Id);
5002 end if;
5004 Analyze_Dimension (N);
5006 -- Verify whether the object declaration introduces an illegal hidden
5007 -- state within a package subject to a null abstract state.
5009 if Ekind (Id) = E_Variable then
5010 Check_No_Hidden_State (Id);
5011 end if;
5013 Restore_Ghost_Region (Saved_GM, Saved_IGR);
5014 end Analyze_Object_Declaration;
5016 ---------------------------
5017 -- Analyze_Others_Choice --
5018 ---------------------------
5020 -- Nothing to do for the others choice node itself, the semantic analysis
5021 -- of the others choice will occur as part of the processing of the parent
5023 procedure Analyze_Others_Choice (N : Node_Id) is
5024 pragma Warnings (Off, N);
5025 begin
5026 null;
5027 end Analyze_Others_Choice;
5029 -------------------------------------------
5030 -- Analyze_Private_Extension_Declaration --
5031 -------------------------------------------
5033 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5034 Indic : constant Node_Id := Subtype_Indication (N);
5035 T : constant Entity_Id := Defining_Identifier (N);
5036 Iface : Entity_Id;
5037 Iface_Elmt : Elmt_Id;
5038 Parent_Base : Entity_Id;
5039 Parent_Type : Entity_Id;
5041 begin
5042 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5044 if Is_Non_Empty_List (Interface_List (N)) then
5045 declare
5046 Intf : Node_Id;
5047 T : Entity_Id;
5049 begin
5050 Intf := First (Interface_List (N));
5051 while Present (Intf) loop
5052 T := Find_Type_Of_Subtype_Indic (Intf);
5054 Diagnose_Interface (Intf, T);
5055 Next (Intf);
5056 end loop;
5057 end;
5058 end if;
5060 Generate_Definition (T);
5062 -- For other than Ada 2012, just enter the name in the current scope
5064 if Ada_Version < Ada_2012 then
5065 Enter_Name (T);
5067 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5068 -- case of private type that completes an incomplete type.
5070 else
5071 declare
5072 Prev : Entity_Id;
5074 begin
5075 Prev := Find_Type_Name (N);
5077 pragma Assert (Prev = T
5078 or else (Ekind (Prev) = E_Incomplete_Type
5079 and then Present (Full_View (Prev))
5080 and then Full_View (Prev) = T));
5081 end;
5082 end if;
5084 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5085 Parent_Base := Base_Type (Parent_Type);
5087 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5088 Set_Ekind (T, Ekind (Parent_Type));
5089 Set_Etype (T, Any_Type);
5090 goto Leave;
5092 elsif not Is_Tagged_Type (Parent_Type) then
5093 Error_Msg_N
5094 ("parent of type extension must be a tagged type ", Indic);
5095 goto Leave;
5097 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5098 Error_Msg_N ("premature derivation of incomplete type", Indic);
5099 goto Leave;
5101 elsif Is_Concurrent_Type (Parent_Type) then
5102 Error_Msg_N
5103 ("parent type of a private extension cannot be a synchronized "
5104 & "tagged type (RM 3.9.1 (3/1))", N);
5106 Set_Etype (T, Any_Type);
5107 Set_Ekind (T, E_Limited_Private_Type);
5108 Set_Private_Dependents (T, New_Elmt_List);
5109 Set_Error_Posted (T);
5110 goto Leave;
5111 end if;
5113 -- Perhaps the parent type should be changed to the class-wide type's
5114 -- specific type in this case to prevent cascading errors ???
5116 if Is_Class_Wide_Type (Parent_Type) then
5117 Error_Msg_N
5118 ("parent of type extension must not be a class-wide type", Indic);
5119 goto Leave;
5120 end if;
5122 if (not Is_Package_Or_Generic_Package (Current_Scope)
5123 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5124 or else In_Private_Part (Current_Scope)
5125 then
5126 Error_Msg_N ("invalid context for private extension", N);
5127 end if;
5129 -- Set common attributes
5131 Set_Is_Pure (T, Is_Pure (Current_Scope));
5132 Set_Scope (T, Current_Scope);
5133 Set_Ekind (T, E_Record_Type_With_Private);
5134 Init_Size_Align (T);
5135 Set_Default_SSO (T);
5136 Set_No_Reordering (T, No_Component_Reordering);
5138 Set_Etype (T, Parent_Base);
5139 Propagate_Concurrent_Flags (T, Parent_Base);
5141 Set_Convention (T, Convention (Parent_Type));
5142 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5143 Set_Is_First_Subtype (T);
5144 Make_Class_Wide_Type (T);
5146 -- Set the SPARK mode from the current context
5148 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5149 Set_SPARK_Pragma_Inherited (T);
5151 if Unknown_Discriminants_Present (N) then
5152 Set_Discriminant_Constraint (T, No_Elist);
5153 end if;
5155 Build_Derived_Record_Type (N, Parent_Type, T);
5157 -- A private extension inherits the Default_Initial_Condition pragma
5158 -- coming from any parent type within the derivation chain.
5160 if Has_DIC (Parent_Type) then
5161 Set_Has_Inherited_DIC (T);
5162 end if;
5164 -- A private extension inherits any class-wide invariants coming from a
5165 -- parent type or an interface. Note that the invariant procedure of the
5166 -- parent type should not be inherited because the private extension may
5167 -- define invariants of its own.
5169 if Has_Inherited_Invariants (Parent_Type)
5170 or else Has_Inheritable_Invariants (Parent_Type)
5171 then
5172 Set_Has_Inherited_Invariants (T);
5174 elsif Present (Interfaces (T)) then
5175 Iface_Elmt := First_Elmt (Interfaces (T));
5176 while Present (Iface_Elmt) loop
5177 Iface := Node (Iface_Elmt);
5179 if Has_Inheritable_Invariants (Iface) then
5180 Set_Has_Inherited_Invariants (T);
5181 exit;
5182 end if;
5184 Next_Elmt (Iface_Elmt);
5185 end loop;
5186 end if;
5188 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5189 -- synchronized formal derived type.
5191 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5192 Set_Is_Limited_Record (T);
5194 -- Formal derived type case
5196 if Is_Generic_Type (T) then
5198 -- The parent must be a tagged limited type or a synchronized
5199 -- interface.
5201 if (not Is_Tagged_Type (Parent_Type)
5202 or else not Is_Limited_Type (Parent_Type))
5203 and then
5204 (not Is_Interface (Parent_Type)
5205 or else not Is_Synchronized_Interface (Parent_Type))
5206 then
5207 Error_Msg_NE
5208 ("parent type of & must be tagged limited or synchronized",
5209 N, T);
5210 end if;
5212 -- The progenitors (if any) must be limited or synchronized
5213 -- interfaces.
5215 if Present (Interfaces (T)) then
5216 Iface_Elmt := First_Elmt (Interfaces (T));
5217 while Present (Iface_Elmt) loop
5218 Iface := Node (Iface_Elmt);
5220 if not Is_Limited_Interface (Iface)
5221 and then not Is_Synchronized_Interface (Iface)
5222 then
5223 Error_Msg_NE
5224 ("progenitor & must be limited or synchronized",
5225 N, Iface);
5226 end if;
5228 Next_Elmt (Iface_Elmt);
5229 end loop;
5230 end if;
5232 -- Regular derived extension, the parent must be a limited or
5233 -- synchronized interface.
5235 else
5236 if not Is_Interface (Parent_Type)
5237 or else (not Is_Limited_Interface (Parent_Type)
5238 and then not Is_Synchronized_Interface (Parent_Type))
5239 then
5240 Error_Msg_NE
5241 ("parent type of & must be limited interface", N, T);
5242 end if;
5243 end if;
5245 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5246 -- extension with a synchronized parent must be explicitly declared
5247 -- synchronized, because the full view will be a synchronized type.
5248 -- This must be checked before the check for limited types below,
5249 -- to ensure that types declared limited are not allowed to extend
5250 -- synchronized interfaces.
5252 elsif Is_Interface (Parent_Type)
5253 and then Is_Synchronized_Interface (Parent_Type)
5254 and then not Synchronized_Present (N)
5255 then
5256 Error_Msg_NE
5257 ("private extension of& must be explicitly synchronized",
5258 N, Parent_Type);
5260 elsif Limited_Present (N) then
5261 Set_Is_Limited_Record (T);
5263 if not Is_Limited_Type (Parent_Type)
5264 and then
5265 (not Is_Interface (Parent_Type)
5266 or else not Is_Limited_Interface (Parent_Type))
5267 then
5268 Error_Msg_NE ("parent type& of limited extension must be limited",
5269 N, Parent_Type);
5270 end if;
5271 end if;
5273 -- Remember that its parent type has a private extension. Used to warn
5274 -- on public primitives of the parent type defined after its private
5275 -- extensions (see Check_Dispatching_Operation).
5277 Set_Has_Private_Extension (Parent_Type);
5279 <<Leave>>
5280 if Has_Aspects (N) then
5281 Analyze_Aspect_Specifications (N, T);
5282 end if;
5283 end Analyze_Private_Extension_Declaration;
5285 ---------------------------------
5286 -- Analyze_Subtype_Declaration --
5287 ---------------------------------
5289 procedure Analyze_Subtype_Declaration
5290 (N : Node_Id;
5291 Skip : Boolean := False)
5293 Id : constant Entity_Id := Defining_Identifier (N);
5294 R_Checks : Check_Result;
5295 T : Entity_Id;
5297 begin
5298 Generate_Definition (Id);
5299 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5300 Init_Size_Align (Id);
5302 -- The following guard condition on Enter_Name is to handle cases where
5303 -- the defining identifier has already been entered into the scope but
5304 -- the declaration as a whole needs to be analyzed.
5306 -- This case in particular happens for derived enumeration types. The
5307 -- derived enumeration type is processed as an inserted enumeration type
5308 -- declaration followed by a rewritten subtype declaration. The defining
5309 -- identifier, however, is entered into the name scope very early in the
5310 -- processing of the original type declaration and therefore needs to be
5311 -- avoided here, when the created subtype declaration is analyzed. (See
5312 -- Build_Derived_Types)
5314 -- This also happens when the full view of a private type is derived
5315 -- type with constraints. In this case the entity has been introduced
5316 -- in the private declaration.
5318 -- Finally this happens in some complex cases when validity checks are
5319 -- enabled, where the same subtype declaration may be analyzed twice.
5320 -- This can happen if the subtype is created by the preanalysis of
5321 -- an attribute tht gives the range of a loop statement, and the loop
5322 -- itself appears within an if_statement that will be rewritten during
5323 -- expansion.
5325 if Skip
5326 or else (Present (Etype (Id))
5327 and then (Is_Private_Type (Etype (Id))
5328 or else Is_Task_Type (Etype (Id))
5329 or else Is_Rewrite_Substitution (N)))
5330 then
5331 null;
5333 elsif Current_Entity (Id) = Id then
5334 null;
5336 else
5337 Enter_Name (Id);
5338 end if;
5340 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5342 -- Class-wide equivalent types of records with unknown discriminants
5343 -- involve the generation of an itype which serves as the private view
5344 -- of a constrained record subtype. In such cases the base type of the
5345 -- current subtype we are processing is the private itype. Use the full
5346 -- of the private itype when decorating various attributes.
5348 if Is_Itype (T)
5349 and then Is_Private_Type (T)
5350 and then Present (Full_View (T))
5351 then
5352 T := Full_View (T);
5353 end if;
5355 -- Inherit common attributes
5357 Set_Is_Volatile (Id, Is_Volatile (T));
5358 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5359 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5360 Set_Convention (Id, Convention (T));
5362 -- If ancestor has predicates then so does the subtype, and in addition
5363 -- we must delay the freeze to properly arrange predicate inheritance.
5365 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5366 -- in which T = ID, so the above tests and assignments do nothing???
5368 if Has_Predicates (T)
5369 or else (Present (Ancestor_Subtype (T))
5370 and then Has_Predicates (Ancestor_Subtype (T)))
5371 then
5372 Set_Has_Predicates (Id);
5373 Set_Has_Delayed_Freeze (Id);
5375 -- Generated subtypes inherit the predicate function from the parent
5376 -- (no aspects to examine on the generated declaration).
5378 if not Comes_From_Source (N) then
5379 Set_Ekind (Id, Ekind (T));
5381 if Present (Predicate_Function (Id)) then
5382 null;
5384 elsif Present (Predicate_Function (T)) then
5385 Set_Predicate_Function (Id, Predicate_Function (T));
5387 elsif Present (Ancestor_Subtype (T))
5388 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5389 then
5390 Set_Predicate_Function (Id,
5391 Predicate_Function (Ancestor_Subtype (T)));
5392 end if;
5393 end if;
5394 end if;
5396 -- Subtype of Boolean cannot have a constraint in SPARK
5398 if Is_Boolean_Type (T)
5399 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5400 then
5401 Check_SPARK_05_Restriction
5402 ("subtype of Boolean cannot have constraint", N);
5403 end if;
5405 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5406 declare
5407 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5408 One_Cstr : Node_Id;
5409 Low : Node_Id;
5410 High : Node_Id;
5412 begin
5413 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5414 One_Cstr := First (Constraints (Cstr));
5415 while Present (One_Cstr) loop
5417 -- Index or discriminant constraint in SPARK must be a
5418 -- subtype mark.
5420 if not
5421 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5422 then
5423 Check_SPARK_05_Restriction
5424 ("subtype mark required", One_Cstr);
5426 -- String subtype must have a lower bound of 1 in SPARK.
5427 -- Note that we do not need to test for the nonstatic case
5428 -- here, since that was already taken care of in
5429 -- Process_Range_Expr_In_Decl.
5431 elsif Base_Type (T) = Standard_String then
5432 Get_Index_Bounds (One_Cstr, Low, High);
5434 if Is_OK_Static_Expression (Low)
5435 and then Expr_Value (Low) /= 1
5436 then
5437 Check_SPARK_05_Restriction
5438 ("String subtype must have lower bound of 1", N);
5439 end if;
5440 end if;
5442 Next (One_Cstr);
5443 end loop;
5444 end if;
5445 end;
5446 end if;
5448 -- In the case where there is no constraint given in the subtype
5449 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5450 -- semantic attributes must be established here.
5452 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5453 Set_Etype (Id, Base_Type (T));
5455 -- Subtype of unconstrained array without constraint is not allowed
5456 -- in SPARK.
5458 if Is_Array_Type (T) and then not Is_Constrained (T) then
5459 Check_SPARK_05_Restriction
5460 ("subtype of unconstrained array must have constraint", N);
5461 end if;
5463 case Ekind (T) is
5464 when Array_Kind =>
5465 Set_Ekind (Id, E_Array_Subtype);
5466 Copy_Array_Subtype_Attributes (Id, T);
5468 when Decimal_Fixed_Point_Kind =>
5469 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5470 Set_Digits_Value (Id, Digits_Value (T));
5471 Set_Delta_Value (Id, Delta_Value (T));
5472 Set_Scale_Value (Id, Scale_Value (T));
5473 Set_Small_Value (Id, Small_Value (T));
5474 Set_Scalar_Range (Id, Scalar_Range (T));
5475 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5476 Set_Is_Constrained (Id, Is_Constrained (T));
5477 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5478 Set_RM_Size (Id, RM_Size (T));
5480 when Enumeration_Kind =>
5481 Set_Ekind (Id, E_Enumeration_Subtype);
5482 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5483 Set_Scalar_Range (Id, Scalar_Range (T));
5484 Set_Is_Character_Type (Id, Is_Character_Type (T));
5485 Set_Is_Constrained (Id, Is_Constrained (T));
5486 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5487 Set_RM_Size (Id, RM_Size (T));
5489 when Ordinary_Fixed_Point_Kind =>
5490 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5491 Set_Scalar_Range (Id, Scalar_Range (T));
5492 Set_Small_Value (Id, Small_Value (T));
5493 Set_Delta_Value (Id, Delta_Value (T));
5494 Set_Is_Constrained (Id, Is_Constrained (T));
5495 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5496 Set_RM_Size (Id, RM_Size (T));
5498 when Float_Kind =>
5499 Set_Ekind (Id, E_Floating_Point_Subtype);
5500 Set_Scalar_Range (Id, Scalar_Range (T));
5501 Set_Digits_Value (Id, Digits_Value (T));
5502 Set_Is_Constrained (Id, Is_Constrained (T));
5504 -- If the floating point type has dimensions, these will be
5505 -- inherited subsequently when Analyze_Dimensions is called.
5507 when Signed_Integer_Kind =>
5508 Set_Ekind (Id, E_Signed_Integer_Subtype);
5509 Set_Scalar_Range (Id, Scalar_Range (T));
5510 Set_Is_Constrained (Id, Is_Constrained (T));
5511 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5512 Set_RM_Size (Id, RM_Size (T));
5514 when Modular_Integer_Kind =>
5515 Set_Ekind (Id, E_Modular_Integer_Subtype);
5516 Set_Scalar_Range (Id, Scalar_Range (T));
5517 Set_Is_Constrained (Id, Is_Constrained (T));
5518 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5519 Set_RM_Size (Id, RM_Size (T));
5521 when Class_Wide_Kind =>
5522 Set_Ekind (Id, E_Class_Wide_Subtype);
5523 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5524 Set_Cloned_Subtype (Id, T);
5525 Set_Is_Tagged_Type (Id, True);
5526 Set_Has_Unknown_Discriminants
5527 (Id, True);
5528 Set_No_Tagged_Streams_Pragma
5529 (Id, No_Tagged_Streams_Pragma (T));
5531 if Ekind (T) = E_Class_Wide_Subtype then
5532 Set_Equivalent_Type (Id, Equivalent_Type (T));
5533 end if;
5535 when E_Record_Subtype
5536 | E_Record_Type
5538 Set_Ekind (Id, E_Record_Subtype);
5540 if Ekind (T) = E_Record_Subtype
5541 and then Present (Cloned_Subtype (T))
5542 then
5543 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5544 else
5545 Set_Cloned_Subtype (Id, T);
5546 end if;
5548 Set_First_Entity (Id, First_Entity (T));
5549 Set_Last_Entity (Id, Last_Entity (T));
5550 Set_Has_Discriminants (Id, Has_Discriminants (T));
5551 Set_Is_Constrained (Id, Is_Constrained (T));
5552 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5553 Set_Has_Implicit_Dereference
5554 (Id, Has_Implicit_Dereference (T));
5555 Set_Has_Unknown_Discriminants
5556 (Id, Has_Unknown_Discriminants (T));
5558 if Has_Discriminants (T) then
5559 Set_Discriminant_Constraint
5560 (Id, Discriminant_Constraint (T));
5561 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5563 elsif Has_Unknown_Discriminants (Id) then
5564 Set_Discriminant_Constraint (Id, No_Elist);
5565 end if;
5567 if Is_Tagged_Type (T) then
5568 Set_Is_Tagged_Type (Id, True);
5569 Set_No_Tagged_Streams_Pragma
5570 (Id, No_Tagged_Streams_Pragma (T));
5571 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5572 Set_Direct_Primitive_Operations
5573 (Id, Direct_Primitive_Operations (T));
5574 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5576 if Is_Interface (T) then
5577 Set_Is_Interface (Id);
5578 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5579 end if;
5580 end if;
5582 when Private_Kind =>
5583 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5584 Set_Has_Discriminants (Id, Has_Discriminants (T));
5585 Set_Is_Constrained (Id, Is_Constrained (T));
5586 Set_First_Entity (Id, First_Entity (T));
5587 Set_Last_Entity (Id, Last_Entity (T));
5588 Set_Private_Dependents (Id, New_Elmt_List);
5589 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5590 Set_Has_Implicit_Dereference
5591 (Id, Has_Implicit_Dereference (T));
5592 Set_Has_Unknown_Discriminants
5593 (Id, Has_Unknown_Discriminants (T));
5594 Set_Known_To_Have_Preelab_Init
5595 (Id, Known_To_Have_Preelab_Init (T));
5597 if Is_Tagged_Type (T) then
5598 Set_Is_Tagged_Type (Id);
5599 Set_No_Tagged_Streams_Pragma (Id,
5600 No_Tagged_Streams_Pragma (T));
5601 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5602 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5603 Set_Direct_Primitive_Operations (Id,
5604 Direct_Primitive_Operations (T));
5605 end if;
5607 -- In general the attributes of the subtype of a private type
5608 -- are the attributes of the partial view of parent. However,
5609 -- the full view may be a discriminated type, and the subtype
5610 -- must share the discriminant constraint to generate correct
5611 -- calls to initialization procedures.
5613 if Has_Discriminants (T) then
5614 Set_Discriminant_Constraint
5615 (Id, Discriminant_Constraint (T));
5616 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5618 elsif Present (Full_View (T))
5619 and then Has_Discriminants (Full_View (T))
5620 then
5621 Set_Discriminant_Constraint
5622 (Id, Discriminant_Constraint (Full_View (T)));
5623 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5625 -- This would seem semantically correct, but apparently
5626 -- generates spurious errors about missing components ???
5628 -- Set_Has_Discriminants (Id);
5629 end if;
5631 Prepare_Private_Subtype_Completion (Id, N);
5633 -- If this is the subtype of a constrained private type with
5634 -- discriminants that has got a full view and we also have
5635 -- built a completion just above, show that the completion
5636 -- is a clone of the full view to the back-end.
5638 if Has_Discriminants (T)
5639 and then not Has_Unknown_Discriminants (T)
5640 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5641 and then Present (Full_View (T))
5642 and then Present (Full_View (Id))
5643 then
5644 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5645 end if;
5647 when Access_Kind =>
5648 Set_Ekind (Id, E_Access_Subtype);
5649 Set_Is_Constrained (Id, Is_Constrained (T));
5650 Set_Is_Access_Constant
5651 (Id, Is_Access_Constant (T));
5652 Set_Directly_Designated_Type
5653 (Id, Designated_Type (T));
5654 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5656 -- A Pure library_item must not contain the declaration of a
5657 -- named access type, except within a subprogram, generic
5658 -- subprogram, task unit, or protected unit, or if it has
5659 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5661 if Comes_From_Source (Id)
5662 and then In_Pure_Unit
5663 and then not In_Subprogram_Task_Protected_Unit
5664 and then not No_Pool_Assigned (Id)
5665 then
5666 Error_Msg_N
5667 ("named access types not allowed in pure unit", N);
5668 end if;
5670 when Concurrent_Kind =>
5671 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5672 Set_Corresponding_Record_Type (Id,
5673 Corresponding_Record_Type (T));
5674 Set_First_Entity (Id, First_Entity (T));
5675 Set_First_Private_Entity (Id, First_Private_Entity (T));
5676 Set_Has_Discriminants (Id, Has_Discriminants (T));
5677 Set_Is_Constrained (Id, Is_Constrained (T));
5678 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5679 Set_Last_Entity (Id, Last_Entity (T));
5681 if Is_Tagged_Type (T) then
5682 Set_No_Tagged_Streams_Pragma
5683 (Id, No_Tagged_Streams_Pragma (T));
5684 end if;
5686 if Has_Discriminants (T) then
5687 Set_Discriminant_Constraint
5688 (Id, Discriminant_Constraint (T));
5689 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5690 end if;
5692 when Incomplete_Kind =>
5693 if Ada_Version >= Ada_2005 then
5695 -- In Ada 2005 an incomplete type can be explicitly tagged:
5696 -- propagate indication. Note that we also have to include
5697 -- subtypes for Ada 2012 extended use of incomplete types.
5699 Set_Ekind (Id, E_Incomplete_Subtype);
5700 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5701 Set_Private_Dependents (Id, New_Elmt_List);
5703 if Is_Tagged_Type (Id) then
5704 Set_No_Tagged_Streams_Pragma
5705 (Id, No_Tagged_Streams_Pragma (T));
5706 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5707 end if;
5709 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5710 -- incomplete type visible through a limited with clause.
5712 if From_Limited_With (T)
5713 and then Present (Non_Limited_View (T))
5714 then
5715 Set_From_Limited_With (Id);
5716 Set_Non_Limited_View (Id, Non_Limited_View (T));
5718 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5719 -- to the private dependents of the original incomplete
5720 -- type for future transformation.
5722 else
5723 Append_Elmt (Id, Private_Dependents (T));
5724 end if;
5726 -- If the subtype name denotes an incomplete type an error
5727 -- was already reported by Process_Subtype.
5729 else
5730 Set_Etype (Id, Any_Type);
5731 end if;
5733 when others =>
5734 raise Program_Error;
5735 end case;
5737 -- If there is no constraint in the subtype indication, the
5738 -- declared entity inherits predicates from the parent.
5740 Inherit_Predicate_Flags (Id, T);
5741 end if;
5743 if Etype (Id) = Any_Type then
5744 goto Leave;
5745 end if;
5747 -- Some common processing on all types
5749 Set_Size_Info (Id, T);
5750 Set_First_Rep_Item (Id, First_Rep_Item (T));
5752 -- If the parent type is a generic actual, so is the subtype. This may
5753 -- happen in a nested instance. Why Comes_From_Source test???
5755 if not Comes_From_Source (N) then
5756 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5757 end if;
5759 -- If this is a subtype declaration for an actual in an instance,
5760 -- inherit static and dynamic predicates if any.
5762 -- If declaration has no aspect specifications, inherit predicate
5763 -- info as well. Unclear how to handle the case of both specified
5764 -- and inherited predicates ??? Other inherited aspects, such as
5765 -- invariants, should be OK, but the combination with later pragmas
5766 -- may also require special merging.
5768 if Has_Predicates (T)
5769 and then Present (Predicate_Function (T))
5770 and then
5771 ((In_Instance and then not Comes_From_Source (N))
5772 or else No (Aspect_Specifications (N)))
5773 then
5774 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5776 if Has_Static_Predicate (T) then
5777 Set_Has_Static_Predicate (Id);
5778 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5779 end if;
5780 end if;
5782 -- Remaining processing depends on characteristics of base type
5784 T := Etype (Id);
5786 Set_Is_Immediately_Visible (Id, True);
5787 Set_Depends_On_Private (Id, Has_Private_Component (T));
5788 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5790 if Is_Interface (T) then
5791 Set_Is_Interface (Id);
5792 end if;
5794 if Present (Generic_Parent_Type (N))
5795 and then
5796 (Nkind (Parent (Generic_Parent_Type (N))) /=
5797 N_Formal_Type_Declaration
5798 or else Nkind (Formal_Type_Definition
5799 (Parent (Generic_Parent_Type (N)))) /=
5800 N_Formal_Private_Type_Definition)
5801 then
5802 if Is_Tagged_Type (Id) then
5804 -- If this is a generic actual subtype for a synchronized type,
5805 -- the primitive operations are those of the corresponding record
5806 -- for which there is a separate subtype declaration.
5808 if Is_Concurrent_Type (Id) then
5809 null;
5810 elsif Is_Class_Wide_Type (Id) then
5811 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5812 else
5813 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5814 end if;
5816 elsif Scope (Etype (Id)) /= Standard_Standard then
5817 Derive_Subprograms (Generic_Parent_Type (N), Id);
5818 end if;
5819 end if;
5821 if Is_Private_Type (T) and then Present (Full_View (T)) then
5822 Conditional_Delay (Id, Full_View (T));
5824 -- The subtypes of components or subcomponents of protected types
5825 -- do not need freeze nodes, which would otherwise appear in the
5826 -- wrong scope (before the freeze node for the protected type). The
5827 -- proper subtypes are those of the subcomponents of the corresponding
5828 -- record.
5830 elsif Ekind (Scope (Id)) /= E_Protected_Type
5831 and then Present (Scope (Scope (Id))) -- error defense
5832 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5833 then
5834 Conditional_Delay (Id, T);
5835 end if;
5837 -- If we have a subtype of an incomplete type whose full type is a
5838 -- derived numeric type, we need to have a freeze node for the subtype.
5839 -- Otherwise gigi will complain while computing the (static) bounds of
5840 -- the subtype.
5842 if Is_Itype (T)
5843 and then Is_Elementary_Type (Id)
5844 and then Etype (Id) /= Id
5845 then
5846 declare
5847 Partial : constant Entity_Id :=
5848 Incomplete_Or_Partial_View (First_Subtype (Id));
5849 begin
5850 if Present (Partial)
5851 and then Ekind (Partial) = E_Incomplete_Type
5852 then
5853 Set_Has_Delayed_Freeze (Id);
5854 end if;
5855 end;
5856 end if;
5858 -- Check that Constraint_Error is raised for a scalar subtype indication
5859 -- when the lower or upper bound of a non-null range lies outside the
5860 -- range of the type mark.
5862 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5863 if Is_Scalar_Type (Etype (Id))
5864 and then Scalar_Range (Id) /=
5865 Scalar_Range
5866 (Etype (Subtype_Mark (Subtype_Indication (N))))
5867 then
5868 Apply_Range_Check
5869 (Scalar_Range (Id),
5870 Etype (Subtype_Mark (Subtype_Indication (N))));
5872 -- In the array case, check compatibility for each index
5874 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5875 then
5876 -- This really should be a subprogram that finds the indications
5877 -- to check???
5879 declare
5880 Subt_Index : Node_Id := First_Index (Id);
5881 Target_Index : Node_Id :=
5882 First_Index (Etype
5883 (Subtype_Mark (Subtype_Indication (N))));
5884 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5886 begin
5887 while Present (Subt_Index) loop
5888 if ((Nkind (Subt_Index) = N_Identifier
5889 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5890 or else Nkind (Subt_Index) = N_Subtype_Indication)
5891 and then
5892 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5893 then
5894 declare
5895 Target_Typ : constant Entity_Id :=
5896 Etype (Target_Index);
5897 begin
5898 R_Checks :=
5899 Get_Range_Checks
5900 (Scalar_Range (Etype (Subt_Index)),
5901 Target_Typ,
5902 Etype (Subt_Index),
5903 Defining_Identifier (N));
5905 -- Reset Has_Dynamic_Range_Check on the subtype to
5906 -- prevent elision of the index check due to a dynamic
5907 -- check generated for a preceding index (needed since
5908 -- Insert_Range_Checks tries to avoid generating
5909 -- redundant checks on a given declaration).
5911 Set_Has_Dynamic_Range_Check (N, False);
5913 Insert_Range_Checks
5914 (R_Checks,
5916 Target_Typ,
5917 Sloc (Defining_Identifier (N)));
5919 -- Record whether this index involved a dynamic check
5921 Has_Dyn_Chk :=
5922 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5923 end;
5924 end if;
5926 Next_Index (Subt_Index);
5927 Next_Index (Target_Index);
5928 end loop;
5930 -- Finally, mark whether the subtype involves dynamic checks
5932 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5933 end;
5934 end if;
5935 end if;
5937 Set_Optimize_Alignment_Flags (Id);
5938 Check_Eliminated (Id);
5940 <<Leave>>
5941 if Has_Aspects (N) then
5942 Analyze_Aspect_Specifications (N, Id);
5943 end if;
5945 Analyze_Dimension (N);
5947 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5948 -- indications on composite types where the constraints are dynamic.
5949 -- Note that object declarations and aggregates generate implicit
5950 -- subtype declarations, which this covers. One special case is that the
5951 -- implicitly generated "=" for discriminated types includes an
5952 -- offending subtype declaration, which is harmless, so we ignore it
5953 -- here.
5955 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5956 declare
5957 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5958 begin
5959 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5960 and then not (Is_Internal (Id)
5961 and then Is_TSS (Scope (Id),
5962 TSS_Composite_Equality))
5963 and then not Within_Init_Proc
5964 and then not All_Composite_Constraints_Static (Cstr)
5965 then
5966 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5967 end if;
5968 end;
5969 end if;
5970 end Analyze_Subtype_Declaration;
5972 --------------------------------
5973 -- Analyze_Subtype_Indication --
5974 --------------------------------
5976 procedure Analyze_Subtype_Indication (N : Node_Id) is
5977 T : constant Entity_Id := Subtype_Mark (N);
5978 R : constant Node_Id := Range_Expression (Constraint (N));
5980 begin
5981 Analyze (T);
5983 if R /= Error then
5984 Analyze (R);
5985 Set_Etype (N, Etype (R));
5986 Resolve (R, Entity (T));
5987 else
5988 Set_Error_Posted (R);
5989 Set_Error_Posted (T);
5990 end if;
5991 end Analyze_Subtype_Indication;
5993 --------------------------
5994 -- Analyze_Variant_Part --
5995 --------------------------
5997 procedure Analyze_Variant_Part (N : Node_Id) is
5998 Discr_Name : Node_Id;
5999 Discr_Type : Entity_Id;
6001 procedure Process_Variant (A : Node_Id);
6002 -- Analyze declarations for a single variant
6004 package Analyze_Variant_Choices is
6005 new Generic_Analyze_Choices (Process_Variant);
6006 use Analyze_Variant_Choices;
6008 ---------------------
6009 -- Process_Variant --
6010 ---------------------
6012 procedure Process_Variant (A : Node_Id) is
6013 CL : constant Node_Id := Component_List (A);
6014 begin
6015 if not Null_Present (CL) then
6016 Analyze_Declarations (Component_Items (CL));
6018 if Present (Variant_Part (CL)) then
6019 Analyze (Variant_Part (CL));
6020 end if;
6021 end if;
6022 end Process_Variant;
6024 -- Start of processing for Analyze_Variant_Part
6026 begin
6027 Discr_Name := Name (N);
6028 Analyze (Discr_Name);
6030 -- If Discr_Name bad, get out (prevent cascaded errors)
6032 if Etype (Discr_Name) = Any_Type then
6033 return;
6034 end if;
6036 -- Check invalid discriminant in variant part
6038 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6039 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6040 end if;
6042 Discr_Type := Etype (Entity (Discr_Name));
6044 if not Is_Discrete_Type (Discr_Type) then
6045 Error_Msg_N
6046 ("discriminant in a variant part must be of a discrete type",
6047 Name (N));
6048 return;
6049 end if;
6051 -- Now analyze the choices, which also analyzes the declarations that
6052 -- are associated with each choice.
6054 Analyze_Choices (Variants (N), Discr_Type);
6056 -- Note: we used to instantiate and call Check_Choices here to check
6057 -- that the choices covered the discriminant, but it's too early to do
6058 -- that because of statically predicated subtypes, whose analysis may
6059 -- be deferred to their freeze point which may be as late as the freeze
6060 -- point of the containing record. So this call is now to be found in
6061 -- Freeze_Record_Declaration.
6063 end Analyze_Variant_Part;
6065 ----------------------------
6066 -- Array_Type_Declaration --
6067 ----------------------------
6069 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6070 Component_Def : constant Node_Id := Component_Definition (Def);
6071 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6072 P : constant Node_Id := Parent (Def);
6073 Element_Type : Entity_Id;
6074 Implicit_Base : Entity_Id;
6075 Index : Node_Id;
6076 Nb_Index : Nat;
6077 Priv : Entity_Id;
6078 Related_Id : Entity_Id := Empty;
6080 begin
6081 if Nkind (Def) = N_Constrained_Array_Definition then
6082 Index := First (Discrete_Subtype_Definitions (Def));
6083 else
6084 Index := First (Subtype_Marks (Def));
6085 end if;
6087 -- Find proper names for the implicit types which may be public. In case
6088 -- of anonymous arrays we use the name of the first object of that type
6089 -- as prefix.
6091 if No (T) then
6092 Related_Id := Defining_Identifier (P);
6093 else
6094 Related_Id := T;
6095 end if;
6097 Nb_Index := 1;
6098 while Present (Index) loop
6099 Analyze (Index);
6101 -- Test for odd case of trying to index a type by the type itself
6103 if Is_Entity_Name (Index) and then Entity (Index) = T then
6104 Error_Msg_N ("type& cannot be indexed by itself", Index);
6105 Set_Entity (Index, Standard_Boolean);
6106 Set_Etype (Index, Standard_Boolean);
6107 end if;
6109 -- Check SPARK restriction requiring a subtype mark
6111 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6112 Check_SPARK_05_Restriction ("subtype mark required", Index);
6113 end if;
6115 -- Add a subtype declaration for each index of private array type
6116 -- declaration whose etype is also private. For example:
6118 -- package Pkg is
6119 -- type Index is private;
6120 -- private
6121 -- type Table is array (Index) of ...
6122 -- end;
6124 -- This is currently required by the expander for the internally
6125 -- generated equality subprogram of records with variant parts in
6126 -- which the etype of some component is such private type.
6128 if Ekind (Current_Scope) = E_Package
6129 and then In_Private_Part (Current_Scope)
6130 and then Has_Private_Declaration (Etype (Index))
6131 then
6132 declare
6133 Loc : constant Source_Ptr := Sloc (Def);
6134 Decl : Entity_Id;
6135 New_E : Entity_Id;
6137 begin
6138 New_E := Make_Temporary (Loc, 'T');
6139 Set_Is_Internal (New_E);
6141 Decl :=
6142 Make_Subtype_Declaration (Loc,
6143 Defining_Identifier => New_E,
6144 Subtype_Indication =>
6145 New_Occurrence_Of (Etype (Index), Loc));
6147 Insert_Before (Parent (Def), Decl);
6148 Analyze (Decl);
6149 Set_Etype (Index, New_E);
6151 -- If the index is a range or a subtype indication it carries
6152 -- no entity. Example:
6154 -- package Pkg is
6155 -- type T is private;
6156 -- private
6157 -- type T is new Natural;
6158 -- Table : array (T(1) .. T(10)) of Boolean;
6159 -- end Pkg;
6161 -- Otherwise the type of the reference is its entity.
6163 if Is_Entity_Name (Index) then
6164 Set_Entity (Index, New_E);
6165 end if;
6166 end;
6167 end if;
6169 Make_Index (Index, P, Related_Id, Nb_Index);
6171 -- Check error of subtype with predicate for index type
6173 Bad_Predicated_Subtype_Use
6174 ("subtype& has predicate, not allowed as index subtype",
6175 Index, Etype (Index));
6177 -- Move to next index
6179 Next_Index (Index);
6180 Nb_Index := Nb_Index + 1;
6181 end loop;
6183 -- Process subtype indication if one is present
6185 if Present (Component_Typ) then
6186 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6188 Set_Etype (Component_Typ, Element_Type);
6190 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6191 Check_SPARK_05_Restriction
6192 ("subtype mark required", Component_Typ);
6193 end if;
6195 -- Ada 2005 (AI-230): Access Definition case
6197 else pragma Assert (Present (Access_Definition (Component_Def)));
6199 -- Indicate that the anonymous access type is created by the
6200 -- array type declaration.
6202 Element_Type := Access_Definition
6203 (Related_Nod => P,
6204 N => Access_Definition (Component_Def));
6205 Set_Is_Local_Anonymous_Access (Element_Type);
6207 -- Propagate the parent. This field is needed if we have to generate
6208 -- the master_id associated with an anonymous access to task type
6209 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6211 Set_Parent (Element_Type, Parent (T));
6213 -- Ada 2005 (AI-230): In case of components that are anonymous access
6214 -- types the level of accessibility depends on the enclosing type
6215 -- declaration
6217 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6219 -- Ada 2005 (AI-254)
6221 declare
6222 CD : constant Node_Id :=
6223 Access_To_Subprogram_Definition
6224 (Access_Definition (Component_Def));
6225 begin
6226 if Present (CD) and then Protected_Present (CD) then
6227 Element_Type :=
6228 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6229 end if;
6230 end;
6231 end if;
6233 -- Constrained array case
6235 if No (T) then
6236 T := Create_Itype (E_Void, P, Related_Id, 'T');
6237 end if;
6239 if Nkind (Def) = N_Constrained_Array_Definition then
6241 -- Establish Implicit_Base as unconstrained base type
6243 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6245 Set_Etype (Implicit_Base, Implicit_Base);
6246 Set_Scope (Implicit_Base, Current_Scope);
6247 Set_Has_Delayed_Freeze (Implicit_Base);
6248 Set_Default_SSO (Implicit_Base);
6250 -- The constrained array type is a subtype of the unconstrained one
6252 Set_Ekind (T, E_Array_Subtype);
6253 Init_Size_Align (T);
6254 Set_Etype (T, Implicit_Base);
6255 Set_Scope (T, Current_Scope);
6256 Set_Is_Constrained (T);
6257 Set_First_Index (T,
6258 First (Discrete_Subtype_Definitions (Def)));
6259 Set_Has_Delayed_Freeze (T);
6261 -- Complete setup of implicit base type
6263 Set_Component_Size (Implicit_Base, Uint_0);
6264 Set_Component_Type (Implicit_Base, Element_Type);
6265 Set_Finalize_Storage_Only
6266 (Implicit_Base,
6267 Finalize_Storage_Only (Element_Type));
6268 Set_First_Index (Implicit_Base, First_Index (T));
6269 Set_Has_Controlled_Component
6270 (Implicit_Base,
6271 Has_Controlled_Component (Element_Type)
6272 or else Is_Controlled (Element_Type));
6273 Set_Packed_Array_Impl_Type
6274 (Implicit_Base, Empty);
6276 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6278 -- Unconstrained array case
6280 else
6281 Set_Ekind (T, E_Array_Type);
6282 Init_Size_Align (T);
6283 Set_Etype (T, T);
6284 Set_Scope (T, Current_Scope);
6285 Set_Component_Size (T, Uint_0);
6286 Set_Is_Constrained (T, False);
6287 Set_First_Index (T, First (Subtype_Marks (Def)));
6288 Set_Has_Delayed_Freeze (T, True);
6289 Propagate_Concurrent_Flags (T, Element_Type);
6290 Set_Has_Controlled_Component (T, Has_Controlled_Component
6291 (Element_Type)
6292 or else
6293 Is_Controlled (Element_Type));
6294 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6295 (Element_Type));
6296 Set_Default_SSO (T);
6297 end if;
6299 -- Common attributes for both cases
6301 Set_Component_Type (Base_Type (T), Element_Type);
6302 Set_Packed_Array_Impl_Type (T, Empty);
6304 if Aliased_Present (Component_Definition (Def)) then
6305 Check_SPARK_05_Restriction
6306 ("aliased is not allowed", Component_Definition (Def));
6307 Set_Has_Aliased_Components (Etype (T));
6308 end if;
6310 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6311 -- array type to ensure that objects of this type are initialized.
6313 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6314 Set_Can_Never_Be_Null (T);
6316 if Null_Exclusion_Present (Component_Definition (Def))
6318 -- No need to check itypes because in their case this check was
6319 -- done at their point of creation
6321 and then not Is_Itype (Element_Type)
6322 then
6323 Error_Msg_N
6324 ("`NOT NULL` not allowed (null already excluded)",
6325 Subtype_Indication (Component_Definition (Def)));
6326 end if;
6327 end if;
6329 Priv := Private_Component (Element_Type);
6331 if Present (Priv) then
6333 -- Check for circular definitions
6335 if Priv = Any_Type then
6336 Set_Component_Type (Etype (T), Any_Type);
6338 -- There is a gap in the visibility of operations on the composite
6339 -- type only if the component type is defined in a different scope.
6341 elsif Scope (Priv) = Current_Scope then
6342 null;
6344 elsif Is_Limited_Type (Priv) then
6345 Set_Is_Limited_Composite (Etype (T));
6346 Set_Is_Limited_Composite (T);
6347 else
6348 Set_Is_Private_Composite (Etype (T));
6349 Set_Is_Private_Composite (T);
6350 end if;
6351 end if;
6353 -- A syntax error in the declaration itself may lead to an empty index
6354 -- list, in which case do a minimal patch.
6356 if No (First_Index (T)) then
6357 Error_Msg_N ("missing index definition in array type declaration", T);
6359 declare
6360 Indexes : constant List_Id :=
6361 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6362 begin
6363 Set_Discrete_Subtype_Definitions (Def, Indexes);
6364 Set_First_Index (T, First (Indexes));
6365 return;
6366 end;
6367 end if;
6369 -- Create a concatenation operator for the new type. Internal array
6370 -- types created for packed entities do not need such, they are
6371 -- compatible with the user-defined type.
6373 if Number_Dimensions (T) = 1
6374 and then not Is_Packed_Array_Impl_Type (T)
6375 then
6376 New_Concatenation_Op (T);
6377 end if;
6379 -- In the case of an unconstrained array the parser has already verified
6380 -- that all the indexes are unconstrained but we still need to make sure
6381 -- that the element type is constrained.
6383 if not Is_Definite_Subtype (Element_Type) then
6384 Error_Msg_N
6385 ("unconstrained element type in array declaration",
6386 Subtype_Indication (Component_Def));
6388 elsif Is_Abstract_Type (Element_Type) then
6389 Error_Msg_N
6390 ("the type of a component cannot be abstract",
6391 Subtype_Indication (Component_Def));
6392 end if;
6394 -- There may be an invariant declared for the component type, but
6395 -- the construction of the component invariant checking procedure
6396 -- takes place during expansion.
6397 end Array_Type_Declaration;
6399 ------------------------------------------------------
6400 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6401 ------------------------------------------------------
6403 function Replace_Anonymous_Access_To_Protected_Subprogram
6404 (N : Node_Id) return Entity_Id
6406 Loc : constant Source_Ptr := Sloc (N);
6408 Curr_Scope : constant Scope_Stack_Entry :=
6409 Scope_Stack.Table (Scope_Stack.Last);
6411 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6413 Acc : Node_Id;
6414 -- Access definition in declaration
6416 Comp : Node_Id;
6417 -- Object definition or formal definition with an access definition
6419 Decl : Node_Id;
6420 -- Declaration of anonymous access to subprogram type
6422 Spec : Node_Id;
6423 -- Original specification in access to subprogram
6425 P : Node_Id;
6427 begin
6428 Set_Is_Internal (Anon);
6430 case Nkind (N) is
6431 when N_Constrained_Array_Definition
6432 | N_Component_Declaration
6433 | N_Unconstrained_Array_Definition
6435 Comp := Component_Definition (N);
6436 Acc := Access_Definition (Comp);
6438 when N_Discriminant_Specification =>
6439 Comp := Discriminant_Type (N);
6440 Acc := Comp;
6442 when N_Parameter_Specification =>
6443 Comp := Parameter_Type (N);
6444 Acc := Comp;
6446 when N_Access_Function_Definition =>
6447 Comp := Result_Definition (N);
6448 Acc := Comp;
6450 when N_Object_Declaration =>
6451 Comp := Object_Definition (N);
6452 Acc := Comp;
6454 when N_Function_Specification =>
6455 Comp := Result_Definition (N);
6456 Acc := Comp;
6458 when others =>
6459 raise Program_Error;
6460 end case;
6462 Spec := Access_To_Subprogram_Definition (Acc);
6464 Decl :=
6465 Make_Full_Type_Declaration (Loc,
6466 Defining_Identifier => Anon,
6467 Type_Definition => Copy_Separate_Tree (Spec));
6469 Mark_Rewrite_Insertion (Decl);
6471 -- In ASIS mode, analyze the profile on the original node, because
6472 -- the separate copy does not provide enough links to recover the
6473 -- original tree. Analysis is limited to type annotations, within
6474 -- a temporary scope that serves as an anonymous subprogram to collect
6475 -- otherwise useless temporaries and itypes.
6477 if ASIS_Mode then
6478 declare
6479 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6481 begin
6482 if Nkind (Spec) = N_Access_Function_Definition then
6483 Set_Ekind (Typ, E_Function);
6484 else
6485 Set_Ekind (Typ, E_Procedure);
6486 end if;
6488 Set_Parent (Typ, N);
6489 Set_Scope (Typ, Current_Scope);
6490 Push_Scope (Typ);
6492 -- Nothing to do if procedure is parameterless
6494 if Present (Parameter_Specifications (Spec)) then
6495 Process_Formals (Parameter_Specifications (Spec), Spec);
6496 end if;
6498 if Nkind (Spec) = N_Access_Function_Definition then
6499 declare
6500 Def : constant Node_Id := Result_Definition (Spec);
6502 begin
6503 -- The result might itself be an anonymous access type, so
6504 -- have to recurse.
6506 if Nkind (Def) = N_Access_Definition then
6507 if Present (Access_To_Subprogram_Definition (Def)) then
6508 Set_Etype
6509 (Def,
6510 Replace_Anonymous_Access_To_Protected_Subprogram
6511 (Spec));
6512 else
6513 Find_Type (Subtype_Mark (Def));
6514 end if;
6516 else
6517 Find_Type (Def);
6518 end if;
6519 end;
6520 end if;
6522 End_Scope;
6523 end;
6524 end if;
6526 -- Insert the new declaration in the nearest enclosing scope. If the
6527 -- parent is a body and N is its return type, the declaration belongs
6528 -- in the enclosing scope. Likewise if N is the type of a parameter.
6530 P := Parent (N);
6532 if Nkind (N) = N_Function_Specification
6533 and then Nkind (P) = N_Subprogram_Body
6534 then
6535 P := Parent (P);
6536 elsif Nkind (N) = N_Parameter_Specification
6537 and then Nkind (P) in N_Subprogram_Specification
6538 and then Nkind (Parent (P)) = N_Subprogram_Body
6539 then
6540 P := Parent (Parent (P));
6541 end if;
6543 while Present (P) and then not Has_Declarations (P) loop
6544 P := Parent (P);
6545 end loop;
6547 pragma Assert (Present (P));
6549 if Nkind (P) = N_Package_Specification then
6550 Prepend (Decl, Visible_Declarations (P));
6551 else
6552 Prepend (Decl, Declarations (P));
6553 end if;
6555 -- Replace the anonymous type with an occurrence of the new declaration.
6556 -- In all cases the rewritten node does not have the null-exclusion
6557 -- attribute because (if present) it was already inherited by the
6558 -- anonymous entity (Anon). Thus, in case of components we do not
6559 -- inherit this attribute.
6561 if Nkind (N) = N_Parameter_Specification then
6562 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6563 Set_Etype (Defining_Identifier (N), Anon);
6564 Set_Null_Exclusion_Present (N, False);
6566 elsif Nkind (N) = N_Object_Declaration then
6567 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6568 Set_Etype (Defining_Identifier (N), Anon);
6570 elsif Nkind (N) = N_Access_Function_Definition then
6571 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6573 elsif Nkind (N) = N_Function_Specification then
6574 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6575 Set_Etype (Defining_Unit_Name (N), Anon);
6577 else
6578 Rewrite (Comp,
6579 Make_Component_Definition (Loc,
6580 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6581 end if;
6583 Mark_Rewrite_Insertion (Comp);
6585 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6586 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6587 and then not Is_Type (Current_Scope))
6588 then
6590 -- Declaration can be analyzed in the current scope.
6592 Analyze (Decl);
6594 else
6595 -- Temporarily remove the current scope (record or subprogram) from
6596 -- the stack to add the new declarations to the enclosing scope.
6597 -- The anonymous entity is an Itype with the proper attributes.
6599 Scope_Stack.Decrement_Last;
6600 Analyze (Decl);
6601 Set_Is_Itype (Anon);
6602 Set_Associated_Node_For_Itype (Anon, N);
6603 Scope_Stack.Append (Curr_Scope);
6604 end if;
6606 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6607 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6608 return Anon;
6609 end Replace_Anonymous_Access_To_Protected_Subprogram;
6611 -------------------------------
6612 -- Build_Derived_Access_Type --
6613 -------------------------------
6615 procedure Build_Derived_Access_Type
6616 (N : Node_Id;
6617 Parent_Type : Entity_Id;
6618 Derived_Type : Entity_Id)
6620 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6622 Desig_Type : Entity_Id;
6623 Discr : Entity_Id;
6624 Discr_Con_Elist : Elist_Id;
6625 Discr_Con_El : Elmt_Id;
6626 Subt : Entity_Id;
6628 begin
6629 -- Set the designated type so it is available in case this is an access
6630 -- to a self-referential type, e.g. a standard list type with a next
6631 -- pointer. Will be reset after subtype is built.
6633 Set_Directly_Designated_Type
6634 (Derived_Type, Designated_Type (Parent_Type));
6636 Subt := Process_Subtype (S, N);
6638 if Nkind (S) /= N_Subtype_Indication
6639 and then Subt /= Base_Type (Subt)
6640 then
6641 Set_Ekind (Derived_Type, E_Access_Subtype);
6642 end if;
6644 if Ekind (Derived_Type) = E_Access_Subtype then
6645 declare
6646 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6647 Ibase : constant Entity_Id :=
6648 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6649 Svg_Chars : constant Name_Id := Chars (Ibase);
6650 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6651 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6653 begin
6654 Copy_Node (Pbase, Ibase);
6656 -- Restore Itype status after Copy_Node
6658 Set_Is_Itype (Ibase);
6659 Set_Associated_Node_For_Itype (Ibase, N);
6661 Set_Chars (Ibase, Svg_Chars);
6662 Set_Prev_Entity (Ibase, Svg_Prev_E);
6663 Set_Next_Entity (Ibase, Svg_Next_E);
6664 Set_Sloc (Ibase, Sloc (Derived_Type));
6665 Set_Scope (Ibase, Scope (Derived_Type));
6666 Set_Freeze_Node (Ibase, Empty);
6667 Set_Is_Frozen (Ibase, False);
6668 Set_Comes_From_Source (Ibase, False);
6669 Set_Is_First_Subtype (Ibase, False);
6671 Set_Etype (Ibase, Pbase);
6672 Set_Etype (Derived_Type, Ibase);
6673 end;
6674 end if;
6676 Set_Directly_Designated_Type
6677 (Derived_Type, Designated_Type (Subt));
6679 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6680 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6681 Set_Size_Info (Derived_Type, Parent_Type);
6682 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6683 Set_Depends_On_Private (Derived_Type,
6684 Has_Private_Component (Derived_Type));
6685 Conditional_Delay (Derived_Type, Subt);
6687 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6688 -- that it is not redundant.
6690 if Null_Exclusion_Present (Type_Definition (N)) then
6691 Set_Can_Never_Be_Null (Derived_Type);
6693 elsif Can_Never_Be_Null (Parent_Type) then
6694 Set_Can_Never_Be_Null (Derived_Type);
6695 end if;
6697 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6698 -- the root type for this information.
6700 -- Apply range checks to discriminants for derived record case
6701 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6703 Desig_Type := Designated_Type (Derived_Type);
6705 if Is_Composite_Type (Desig_Type)
6706 and then (not Is_Array_Type (Desig_Type))
6707 and then Has_Discriminants (Desig_Type)
6708 and then Base_Type (Desig_Type) /= Desig_Type
6709 then
6710 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6711 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6713 Discr := First_Discriminant (Base_Type (Desig_Type));
6714 while Present (Discr_Con_El) loop
6715 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6716 Next_Elmt (Discr_Con_El);
6717 Next_Discriminant (Discr);
6718 end loop;
6719 end if;
6720 end Build_Derived_Access_Type;
6722 ------------------------------
6723 -- Build_Derived_Array_Type --
6724 ------------------------------
6726 procedure Build_Derived_Array_Type
6727 (N : Node_Id;
6728 Parent_Type : Entity_Id;
6729 Derived_Type : Entity_Id)
6731 Loc : constant Source_Ptr := Sloc (N);
6732 Tdef : constant Node_Id := Type_Definition (N);
6733 Indic : constant Node_Id := Subtype_Indication (Tdef);
6734 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6735 Implicit_Base : Entity_Id := Empty;
6736 New_Indic : Node_Id;
6738 procedure Make_Implicit_Base;
6739 -- If the parent subtype is constrained, the derived type is a subtype
6740 -- of an implicit base type derived from the parent base.
6742 ------------------------
6743 -- Make_Implicit_Base --
6744 ------------------------
6746 procedure Make_Implicit_Base is
6747 begin
6748 Implicit_Base :=
6749 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6751 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6752 Set_Etype (Implicit_Base, Parent_Base);
6754 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6755 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6757 Set_Has_Delayed_Freeze (Implicit_Base, True);
6758 end Make_Implicit_Base;
6760 -- Start of processing for Build_Derived_Array_Type
6762 begin
6763 if not Is_Constrained (Parent_Type) then
6764 if Nkind (Indic) /= N_Subtype_Indication then
6765 Set_Ekind (Derived_Type, E_Array_Type);
6767 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6768 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6770 Set_Has_Delayed_Freeze (Derived_Type, True);
6772 else
6773 Make_Implicit_Base;
6774 Set_Etype (Derived_Type, Implicit_Base);
6776 New_Indic :=
6777 Make_Subtype_Declaration (Loc,
6778 Defining_Identifier => Derived_Type,
6779 Subtype_Indication =>
6780 Make_Subtype_Indication (Loc,
6781 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6782 Constraint => Constraint (Indic)));
6784 Rewrite (N, New_Indic);
6785 Analyze (N);
6786 end if;
6788 else
6789 if Nkind (Indic) /= N_Subtype_Indication then
6790 Make_Implicit_Base;
6792 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6793 Set_Etype (Derived_Type, Implicit_Base);
6794 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6796 else
6797 Error_Msg_N ("illegal constraint on constrained type", Indic);
6798 end if;
6799 end if;
6801 -- If parent type is not a derived type itself, and is declared in
6802 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6803 -- the new type's concatenation operator since Derive_Subprograms
6804 -- will not inherit the parent's operator. If the parent type is
6805 -- unconstrained, the operator is of the unconstrained base type.
6807 if Number_Dimensions (Parent_Type) = 1
6808 and then not Is_Limited_Type (Parent_Type)
6809 and then not Is_Derived_Type (Parent_Type)
6810 and then not Is_Package_Or_Generic_Package
6811 (Scope (Base_Type (Parent_Type)))
6812 then
6813 if not Is_Constrained (Parent_Type)
6814 and then Is_Constrained (Derived_Type)
6815 then
6816 New_Concatenation_Op (Implicit_Base);
6817 else
6818 New_Concatenation_Op (Derived_Type);
6819 end if;
6820 end if;
6821 end Build_Derived_Array_Type;
6823 -----------------------------------
6824 -- Build_Derived_Concurrent_Type --
6825 -----------------------------------
6827 procedure Build_Derived_Concurrent_Type
6828 (N : Node_Id;
6829 Parent_Type : Entity_Id;
6830 Derived_Type : Entity_Id)
6832 Loc : constant Source_Ptr := Sloc (N);
6834 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6835 Corr_Decl : Node_Id;
6836 Corr_Decl_Needed : Boolean;
6837 -- If the derived type has fewer discriminants than its parent, the
6838 -- corresponding record is also a derived type, in order to account for
6839 -- the bound discriminants. We create a full type declaration for it in
6840 -- this case.
6842 Constraint_Present : constant Boolean :=
6843 Nkind (Subtype_Indication (Type_Definition (N))) =
6844 N_Subtype_Indication;
6846 D_Constraint : Node_Id;
6847 New_Constraint : Elist_Id := No_Elist;
6848 Old_Disc : Entity_Id;
6849 New_Disc : Entity_Id;
6850 New_N : Node_Id;
6852 begin
6853 Set_Stored_Constraint (Derived_Type, No_Elist);
6854 Corr_Decl_Needed := False;
6855 Old_Disc := Empty;
6857 if Present (Discriminant_Specifications (N))
6858 and then Constraint_Present
6859 then
6860 Old_Disc := First_Discriminant (Parent_Type);
6861 New_Disc := First (Discriminant_Specifications (N));
6862 while Present (New_Disc) and then Present (Old_Disc) loop
6863 Next_Discriminant (Old_Disc);
6864 Next (New_Disc);
6865 end loop;
6866 end if;
6868 if Present (Old_Disc) and then Expander_Active then
6870 -- The new type has fewer discriminants, so we need to create a new
6871 -- corresponding record, which is derived from the corresponding
6872 -- record of the parent, and has a stored constraint that captures
6873 -- the values of the discriminant constraints. The corresponding
6874 -- record is needed only if expander is active and code generation is
6875 -- enabled.
6877 -- The type declaration for the derived corresponding record has the
6878 -- same discriminant part and constraints as the current declaration.
6879 -- Copy the unanalyzed tree to build declaration.
6881 Corr_Decl_Needed := True;
6882 New_N := Copy_Separate_Tree (N);
6884 Corr_Decl :=
6885 Make_Full_Type_Declaration (Loc,
6886 Defining_Identifier => Corr_Record,
6887 Discriminant_Specifications =>
6888 Discriminant_Specifications (New_N),
6889 Type_Definition =>
6890 Make_Derived_Type_Definition (Loc,
6891 Subtype_Indication =>
6892 Make_Subtype_Indication (Loc,
6893 Subtype_Mark =>
6894 New_Occurrence_Of
6895 (Corresponding_Record_Type (Parent_Type), Loc),
6896 Constraint =>
6897 Constraint
6898 (Subtype_Indication (Type_Definition (New_N))))));
6899 end if;
6901 -- Copy Storage_Size and Relative_Deadline variables if task case
6903 if Is_Task_Type (Parent_Type) then
6904 Set_Storage_Size_Variable (Derived_Type,
6905 Storage_Size_Variable (Parent_Type));
6906 Set_Relative_Deadline_Variable (Derived_Type,
6907 Relative_Deadline_Variable (Parent_Type));
6908 end if;
6910 if Present (Discriminant_Specifications (N)) then
6911 Push_Scope (Derived_Type);
6912 Check_Or_Process_Discriminants (N, Derived_Type);
6914 if Constraint_Present then
6915 New_Constraint :=
6916 Expand_To_Stored_Constraint
6917 (Parent_Type,
6918 Build_Discriminant_Constraints
6919 (Parent_Type,
6920 Subtype_Indication (Type_Definition (N)), True));
6921 end if;
6923 End_Scope;
6925 elsif Constraint_Present then
6927 -- Build constrained subtype, copying the constraint, and derive
6928 -- from it to create a derived constrained type.
6930 declare
6931 Loc : constant Source_Ptr := Sloc (N);
6932 Anon : constant Entity_Id :=
6933 Make_Defining_Identifier (Loc,
6934 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6935 Decl : Node_Id;
6937 begin
6938 Decl :=
6939 Make_Subtype_Declaration (Loc,
6940 Defining_Identifier => Anon,
6941 Subtype_Indication =>
6942 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6943 Insert_Before (N, Decl);
6944 Analyze (Decl);
6946 Rewrite (Subtype_Indication (Type_Definition (N)),
6947 New_Occurrence_Of (Anon, Loc));
6948 Set_Analyzed (Derived_Type, False);
6949 Analyze (N);
6950 return;
6951 end;
6952 end if;
6954 -- By default, operations and private data are inherited from parent.
6955 -- However, in the presence of bound discriminants, a new corresponding
6956 -- record will be created, see below.
6958 Set_Has_Discriminants
6959 (Derived_Type, Has_Discriminants (Parent_Type));
6960 Set_Corresponding_Record_Type
6961 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6963 -- Is_Constrained is set according the parent subtype, but is set to
6964 -- False if the derived type is declared with new discriminants.
6966 Set_Is_Constrained
6967 (Derived_Type,
6968 (Is_Constrained (Parent_Type) or else Constraint_Present)
6969 and then not Present (Discriminant_Specifications (N)));
6971 if Constraint_Present then
6972 if not Has_Discriminants (Parent_Type) then
6973 Error_Msg_N ("untagged parent must have discriminants", N);
6975 elsif Present (Discriminant_Specifications (N)) then
6977 -- Verify that new discriminants are used to constrain old ones
6979 D_Constraint :=
6980 First
6981 (Constraints
6982 (Constraint (Subtype_Indication (Type_Definition (N)))));
6984 Old_Disc := First_Discriminant (Parent_Type);
6986 while Present (D_Constraint) loop
6987 if Nkind (D_Constraint) /= N_Discriminant_Association then
6989 -- Positional constraint. If it is a reference to a new
6990 -- discriminant, it constrains the corresponding old one.
6992 if Nkind (D_Constraint) = N_Identifier then
6993 New_Disc := First_Discriminant (Derived_Type);
6994 while Present (New_Disc) loop
6995 exit when Chars (New_Disc) = Chars (D_Constraint);
6996 Next_Discriminant (New_Disc);
6997 end loop;
6999 if Present (New_Disc) then
7000 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
7001 end if;
7002 end if;
7004 Next_Discriminant (Old_Disc);
7006 -- if this is a named constraint, search by name for the old
7007 -- discriminants constrained by the new one.
7009 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
7011 -- Find new discriminant with that name
7013 New_Disc := First_Discriminant (Derived_Type);
7014 while Present (New_Disc) loop
7015 exit when
7016 Chars (New_Disc) = Chars (Expression (D_Constraint));
7017 Next_Discriminant (New_Disc);
7018 end loop;
7020 if Present (New_Disc) then
7022 -- Verify that new discriminant renames some discriminant
7023 -- of the parent type, and associate the new discriminant
7024 -- with one or more old ones that it renames.
7026 declare
7027 Selector : Node_Id;
7029 begin
7030 Selector := First (Selector_Names (D_Constraint));
7031 while Present (Selector) loop
7032 Old_Disc := First_Discriminant (Parent_Type);
7033 while Present (Old_Disc) loop
7034 exit when Chars (Old_Disc) = Chars (Selector);
7035 Next_Discriminant (Old_Disc);
7036 end loop;
7038 if Present (Old_Disc) then
7039 Set_Corresponding_Discriminant
7040 (New_Disc, Old_Disc);
7041 end if;
7043 Next (Selector);
7044 end loop;
7045 end;
7046 end if;
7047 end if;
7049 Next (D_Constraint);
7050 end loop;
7052 New_Disc := First_Discriminant (Derived_Type);
7053 while Present (New_Disc) loop
7054 if No (Corresponding_Discriminant (New_Disc)) then
7055 Error_Msg_NE
7056 ("new discriminant& must constrain old one", N, New_Disc);
7058 elsif not
7059 Subtypes_Statically_Compatible
7060 (Etype (New_Disc),
7061 Etype (Corresponding_Discriminant (New_Disc)))
7062 then
7063 Error_Msg_NE
7064 ("& not statically compatible with parent discriminant",
7065 N, New_Disc);
7066 end if;
7068 Next_Discriminant (New_Disc);
7069 end loop;
7070 end if;
7072 elsif Present (Discriminant_Specifications (N)) then
7073 Error_Msg_N
7074 ("missing discriminant constraint in untagged derivation", N);
7075 end if;
7077 -- The entity chain of the derived type includes the new discriminants
7078 -- but shares operations with the parent.
7080 if Present (Discriminant_Specifications (N)) then
7081 Old_Disc := First_Discriminant (Parent_Type);
7082 while Present (Old_Disc) loop
7083 if No (Next_Entity (Old_Disc))
7084 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7085 then
7086 Link_Entities
7087 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7088 exit;
7089 end if;
7091 Next_Discriminant (Old_Disc);
7092 end loop;
7094 else
7095 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7096 if Has_Discriminants (Parent_Type) then
7097 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7098 Set_Discriminant_Constraint (
7099 Derived_Type, Discriminant_Constraint (Parent_Type));
7100 end if;
7101 end if;
7103 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7105 Set_Has_Completion (Derived_Type);
7107 if Corr_Decl_Needed then
7108 Set_Stored_Constraint (Derived_Type, New_Constraint);
7109 Insert_After (N, Corr_Decl);
7110 Analyze (Corr_Decl);
7111 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7112 end if;
7113 end Build_Derived_Concurrent_Type;
7115 ------------------------------------
7116 -- Build_Derived_Enumeration_Type --
7117 ------------------------------------
7119 procedure Build_Derived_Enumeration_Type
7120 (N : Node_Id;
7121 Parent_Type : Entity_Id;
7122 Derived_Type : Entity_Id)
7124 Loc : constant Source_Ptr := Sloc (N);
7125 Def : constant Node_Id := Type_Definition (N);
7126 Indic : constant Node_Id := Subtype_Indication (Def);
7127 Implicit_Base : Entity_Id;
7128 Literal : Entity_Id;
7129 New_Lit : Entity_Id;
7130 Literals_List : List_Id;
7131 Type_Decl : Node_Id;
7132 Hi, Lo : Node_Id;
7133 Rang_Expr : Node_Id;
7135 begin
7136 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7137 -- not have explicit literals lists we need to process types derived
7138 -- from them specially. This is handled by Derived_Standard_Character.
7139 -- If the parent type is a generic type, there are no literals either,
7140 -- and we construct the same skeletal representation as for the generic
7141 -- parent type.
7143 if Is_Standard_Character_Type (Parent_Type) then
7144 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7146 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7147 declare
7148 Lo : Node_Id;
7149 Hi : Node_Id;
7151 begin
7152 if Nkind (Indic) /= N_Subtype_Indication then
7153 Lo :=
7154 Make_Attribute_Reference (Loc,
7155 Attribute_Name => Name_First,
7156 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7157 Set_Etype (Lo, Derived_Type);
7159 Hi :=
7160 Make_Attribute_Reference (Loc,
7161 Attribute_Name => Name_Last,
7162 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7163 Set_Etype (Hi, Derived_Type);
7165 Set_Scalar_Range (Derived_Type,
7166 Make_Range (Loc,
7167 Low_Bound => Lo,
7168 High_Bound => Hi));
7169 else
7171 -- Analyze subtype indication and verify compatibility
7172 -- with parent type.
7174 if Base_Type (Process_Subtype (Indic, N)) /=
7175 Base_Type (Parent_Type)
7176 then
7177 Error_Msg_N
7178 ("illegal constraint for formal discrete type", N);
7179 end if;
7180 end if;
7181 end;
7183 else
7184 -- If a constraint is present, analyze the bounds to catch
7185 -- premature usage of the derived literals.
7187 if Nkind (Indic) = N_Subtype_Indication
7188 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7189 then
7190 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7191 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7192 end if;
7194 -- Introduce an implicit base type for the derived type even if there
7195 -- is no constraint attached to it, since this seems closer to the
7196 -- Ada semantics. Build a full type declaration tree for the derived
7197 -- type using the implicit base type as the defining identifier. The
7198 -- build a subtype declaration tree which applies the constraint (if
7199 -- any) have it replace the derived type declaration.
7201 Literal := First_Literal (Parent_Type);
7202 Literals_List := New_List;
7203 while Present (Literal)
7204 and then Ekind (Literal) = E_Enumeration_Literal
7205 loop
7206 -- Literals of the derived type have the same representation as
7207 -- those of the parent type, but this representation can be
7208 -- overridden by an explicit representation clause. Indicate
7209 -- that there is no explicit representation given yet. These
7210 -- derived literals are implicit operations of the new type,
7211 -- and can be overridden by explicit ones.
7213 if Nkind (Literal) = N_Defining_Character_Literal then
7214 New_Lit :=
7215 Make_Defining_Character_Literal (Loc, Chars (Literal));
7216 else
7217 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7218 end if;
7220 Set_Ekind (New_Lit, E_Enumeration_Literal);
7221 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7222 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7223 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7224 Set_Alias (New_Lit, Literal);
7225 Set_Is_Known_Valid (New_Lit, True);
7227 Append (New_Lit, Literals_List);
7228 Next_Literal (Literal);
7229 end loop;
7231 Implicit_Base :=
7232 Make_Defining_Identifier (Sloc (Derived_Type),
7233 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7235 -- Indicate the proper nature of the derived type. This must be done
7236 -- before analysis of the literals, to recognize cases when a literal
7237 -- may be hidden by a previous explicit function definition (cf.
7238 -- c83031a).
7240 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7241 Set_Etype (Derived_Type, Implicit_Base);
7243 Type_Decl :=
7244 Make_Full_Type_Declaration (Loc,
7245 Defining_Identifier => Implicit_Base,
7246 Discriminant_Specifications => No_List,
7247 Type_Definition =>
7248 Make_Enumeration_Type_Definition (Loc, Literals_List));
7250 Mark_Rewrite_Insertion (Type_Decl);
7251 Insert_Before (N, Type_Decl);
7252 Analyze (Type_Decl);
7254 -- The anonymous base now has a full declaration, but this base
7255 -- is not a first subtype.
7257 Set_Is_First_Subtype (Implicit_Base, False);
7259 -- After the implicit base is analyzed its Etype needs to be changed
7260 -- to reflect the fact that it is derived from the parent type which
7261 -- was ignored during analysis. We also set the size at this point.
7263 Set_Etype (Implicit_Base, Parent_Type);
7265 Set_Size_Info (Implicit_Base, Parent_Type);
7266 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7267 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7269 -- Copy other flags from parent type
7271 Set_Has_Non_Standard_Rep
7272 (Implicit_Base, Has_Non_Standard_Rep
7273 (Parent_Type));
7274 Set_Has_Pragma_Ordered
7275 (Implicit_Base, Has_Pragma_Ordered
7276 (Parent_Type));
7277 Set_Has_Delayed_Freeze (Implicit_Base);
7279 -- Process the subtype indication including a validation check on the
7280 -- constraint, if any. If a constraint is given, its bounds must be
7281 -- implicitly converted to the new type.
7283 if Nkind (Indic) = N_Subtype_Indication then
7284 declare
7285 R : constant Node_Id :=
7286 Range_Expression (Constraint (Indic));
7288 begin
7289 if Nkind (R) = N_Range then
7290 Hi := Build_Scalar_Bound
7291 (High_Bound (R), Parent_Type, Implicit_Base);
7292 Lo := Build_Scalar_Bound
7293 (Low_Bound (R), Parent_Type, Implicit_Base);
7295 else
7296 -- Constraint is a Range attribute. Replace with explicit
7297 -- mention of the bounds of the prefix, which must be a
7298 -- subtype.
7300 Analyze (Prefix (R));
7301 Hi :=
7302 Convert_To (Implicit_Base,
7303 Make_Attribute_Reference (Loc,
7304 Attribute_Name => Name_Last,
7305 Prefix =>
7306 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7308 Lo :=
7309 Convert_To (Implicit_Base,
7310 Make_Attribute_Reference (Loc,
7311 Attribute_Name => Name_First,
7312 Prefix =>
7313 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7314 end if;
7315 end;
7317 else
7318 Hi :=
7319 Build_Scalar_Bound
7320 (Type_High_Bound (Parent_Type),
7321 Parent_Type, Implicit_Base);
7322 Lo :=
7323 Build_Scalar_Bound
7324 (Type_Low_Bound (Parent_Type),
7325 Parent_Type, Implicit_Base);
7326 end if;
7328 Rang_Expr :=
7329 Make_Range (Loc,
7330 Low_Bound => Lo,
7331 High_Bound => Hi);
7333 -- If we constructed a default range for the case where no range
7334 -- was given, then the expressions in the range must not freeze
7335 -- since they do not correspond to expressions in the source.
7336 -- However, if the type inherits predicates the expressions will
7337 -- be elaborated earlier and must freeze.
7339 if Nkind (Indic) /= N_Subtype_Indication
7340 and then not Has_Predicates (Derived_Type)
7341 then
7342 Set_Must_Not_Freeze (Lo);
7343 Set_Must_Not_Freeze (Hi);
7344 Set_Must_Not_Freeze (Rang_Expr);
7345 end if;
7347 Rewrite (N,
7348 Make_Subtype_Declaration (Loc,
7349 Defining_Identifier => Derived_Type,
7350 Subtype_Indication =>
7351 Make_Subtype_Indication (Loc,
7352 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7353 Constraint =>
7354 Make_Range_Constraint (Loc,
7355 Range_Expression => Rang_Expr))));
7357 Analyze (N);
7359 -- Propagate the aspects from the original type declaration to the
7360 -- declaration of the implicit base.
7362 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7364 -- Apply a range check. Since this range expression doesn't have an
7365 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7366 -- this right???
7368 if Nkind (Indic) = N_Subtype_Indication then
7369 Apply_Range_Check
7370 (Range_Expression (Constraint (Indic)), Parent_Type,
7371 Source_Typ => Entity (Subtype_Mark (Indic)));
7372 end if;
7373 end if;
7374 end Build_Derived_Enumeration_Type;
7376 --------------------------------
7377 -- Build_Derived_Numeric_Type --
7378 --------------------------------
7380 procedure Build_Derived_Numeric_Type
7381 (N : Node_Id;
7382 Parent_Type : Entity_Id;
7383 Derived_Type : Entity_Id)
7385 Loc : constant Source_Ptr := Sloc (N);
7386 Tdef : constant Node_Id := Type_Definition (N);
7387 Indic : constant Node_Id := Subtype_Indication (Tdef);
7388 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7389 No_Constraint : constant Boolean := Nkind (Indic) /=
7390 N_Subtype_Indication;
7391 Implicit_Base : Entity_Id;
7393 Lo : Node_Id;
7394 Hi : Node_Id;
7396 begin
7397 -- Process the subtype indication including a validation check on
7398 -- the constraint if any.
7400 Discard_Node (Process_Subtype (Indic, N));
7402 -- Introduce an implicit base type for the derived type even if there
7403 -- is no constraint attached to it, since this seems closer to the Ada
7404 -- semantics.
7406 Implicit_Base :=
7407 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7409 Set_Etype (Implicit_Base, Parent_Base);
7410 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7411 Set_Size_Info (Implicit_Base, Parent_Base);
7412 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7413 Set_Parent (Implicit_Base, Parent (Derived_Type));
7414 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7416 -- Set RM Size for discrete type or decimal fixed-point type
7417 -- Ordinary fixed-point is excluded, why???
7419 if Is_Discrete_Type (Parent_Base)
7420 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7421 then
7422 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7423 end if;
7425 Set_Has_Delayed_Freeze (Implicit_Base);
7427 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7428 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7430 Set_Scalar_Range (Implicit_Base,
7431 Make_Range (Loc,
7432 Low_Bound => Lo,
7433 High_Bound => Hi));
7435 if Has_Infinities (Parent_Base) then
7436 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7437 end if;
7439 -- The Derived_Type, which is the entity of the declaration, is a
7440 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7441 -- absence of an explicit constraint.
7443 Set_Etype (Derived_Type, Implicit_Base);
7445 -- If we did not have a constraint, then the Ekind is set from the
7446 -- parent type (otherwise Process_Subtype has set the bounds)
7448 if No_Constraint then
7449 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7450 end if;
7452 -- If we did not have a range constraint, then set the range from the
7453 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7455 if No_Constraint or else not Has_Range_Constraint (Indic) then
7456 Set_Scalar_Range (Derived_Type,
7457 Make_Range (Loc,
7458 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7459 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7460 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7462 if Has_Infinities (Parent_Type) then
7463 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7464 end if;
7466 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7467 end if;
7469 Set_Is_Descendant_Of_Address (Derived_Type,
7470 Is_Descendant_Of_Address (Parent_Type));
7471 Set_Is_Descendant_Of_Address (Implicit_Base,
7472 Is_Descendant_Of_Address (Parent_Type));
7474 -- Set remaining type-specific fields, depending on numeric type
7476 if Is_Modular_Integer_Type (Parent_Type) then
7477 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7479 Set_Non_Binary_Modulus
7480 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7482 Set_Is_Known_Valid
7483 (Implicit_Base, Is_Known_Valid (Parent_Base));
7485 elsif Is_Floating_Point_Type (Parent_Type) then
7487 -- Digits of base type is always copied from the digits value of
7488 -- the parent base type, but the digits of the derived type will
7489 -- already have been set if there was a constraint present.
7491 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7492 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7494 if No_Constraint then
7495 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7496 end if;
7498 elsif Is_Fixed_Point_Type (Parent_Type) then
7500 -- Small of base type and derived type are always copied from the
7501 -- parent base type, since smalls never change. The delta of the
7502 -- base type is also copied from the parent base type. However the
7503 -- delta of the derived type will have been set already if a
7504 -- constraint was present.
7506 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7507 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7508 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7510 if No_Constraint then
7511 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7512 end if;
7514 -- The scale and machine radix in the decimal case are always
7515 -- copied from the parent base type.
7517 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7518 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7519 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7521 Set_Machine_Radix_10
7522 (Derived_Type, Machine_Radix_10 (Parent_Base));
7523 Set_Machine_Radix_10
7524 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7526 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7528 if No_Constraint then
7529 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7531 else
7532 -- the analysis of the subtype_indication sets the
7533 -- digits value of the derived type.
7535 null;
7536 end if;
7537 end if;
7538 end if;
7540 if Is_Integer_Type (Parent_Type) then
7541 Set_Has_Shift_Operator
7542 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7543 end if;
7545 -- The type of the bounds is that of the parent type, and they
7546 -- must be converted to the derived type.
7548 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7550 -- The implicit_base should be frozen when the derived type is frozen,
7551 -- but note that it is used in the conversions of the bounds. For fixed
7552 -- types we delay the determination of the bounds until the proper
7553 -- freezing point. For other numeric types this is rejected by GCC, for
7554 -- reasons that are currently unclear (???), so we choose to freeze the
7555 -- implicit base now. In the case of integers and floating point types
7556 -- this is harmless because subsequent representation clauses cannot
7557 -- affect anything, but it is still baffling that we cannot use the
7558 -- same mechanism for all derived numeric types.
7560 -- There is a further complication: actually some representation
7561 -- clauses can affect the implicit base type. For example, attribute
7562 -- definition clauses for stream-oriented attributes need to set the
7563 -- corresponding TSS entries on the base type, and this normally
7564 -- cannot be done after the base type is frozen, so the circuitry in
7565 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7566 -- and not use Set_TSS in this case.
7568 -- There are also consequences for the case of delayed representation
7569 -- aspects for some cases. For example, a Size aspect is delayed and
7570 -- should not be evaluated to the freeze point. This early freezing
7571 -- means that the size attribute evaluation happens too early???
7573 if Is_Fixed_Point_Type (Parent_Type) then
7574 Conditional_Delay (Implicit_Base, Parent_Type);
7575 else
7576 Freeze_Before (N, Implicit_Base);
7577 end if;
7578 end Build_Derived_Numeric_Type;
7580 --------------------------------
7581 -- Build_Derived_Private_Type --
7582 --------------------------------
7584 procedure Build_Derived_Private_Type
7585 (N : Node_Id;
7586 Parent_Type : Entity_Id;
7587 Derived_Type : Entity_Id;
7588 Is_Completion : Boolean;
7589 Derive_Subps : Boolean := True)
7591 Loc : constant Source_Ptr := Sloc (N);
7592 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7593 Par_Scope : constant Entity_Id := Scope (Par_Base);
7594 Full_N : constant Node_Id := New_Copy_Tree (N);
7595 Full_Der : Entity_Id := New_Copy (Derived_Type);
7596 Full_P : Entity_Id;
7598 procedure Build_Full_Derivation;
7599 -- Build full derivation, i.e. derive from the full view
7601 procedure Copy_And_Build;
7602 -- Copy derived type declaration, replace parent with its full view,
7603 -- and build derivation
7605 ---------------------------
7606 -- Build_Full_Derivation --
7607 ---------------------------
7609 procedure Build_Full_Derivation is
7610 begin
7611 -- If parent scope is not open, install the declarations
7613 if not In_Open_Scopes (Par_Scope) then
7614 Install_Private_Declarations (Par_Scope);
7615 Install_Visible_Declarations (Par_Scope);
7616 Copy_And_Build;
7617 Uninstall_Declarations (Par_Scope);
7619 -- If parent scope is open and in another unit, and parent has a
7620 -- completion, then the derivation is taking place in the visible
7621 -- part of a child unit. In that case retrieve the full view of
7622 -- the parent momentarily.
7624 elsif not In_Same_Source_Unit (N, Parent_Type) then
7625 Full_P := Full_View (Parent_Type);
7626 Exchange_Declarations (Parent_Type);
7627 Copy_And_Build;
7628 Exchange_Declarations (Full_P);
7630 -- Otherwise it is a local derivation
7632 else
7633 Copy_And_Build;
7634 end if;
7635 end Build_Full_Derivation;
7637 --------------------
7638 -- Copy_And_Build --
7639 --------------------
7641 procedure Copy_And_Build is
7642 Full_Parent : Entity_Id := Parent_Type;
7644 begin
7645 -- If the parent is itself derived from another private type,
7646 -- installing the private declarations has not affected its
7647 -- privacy status, so use its own full view explicitly.
7649 if Is_Private_Type (Full_Parent)
7650 and then Present (Full_View (Full_Parent))
7651 then
7652 Full_Parent := Full_View (Full_Parent);
7653 end if;
7655 -- And its underlying full view if necessary
7657 if Is_Private_Type (Full_Parent)
7658 and then Present (Underlying_Full_View (Full_Parent))
7659 then
7660 Full_Parent := Underlying_Full_View (Full_Parent);
7661 end if;
7663 -- For record, access and most enumeration types, derivation from
7664 -- the full view requires a fully-fledged declaration. In the other
7665 -- cases, just use an itype.
7667 if Ekind (Full_Parent) in Record_Kind
7668 or else Ekind (Full_Parent) in Access_Kind
7669 or else
7670 (Ekind (Full_Parent) in Enumeration_Kind
7671 and then not Is_Standard_Character_Type (Full_Parent)
7672 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7673 then
7674 -- Copy and adjust declaration to provide a completion for what
7675 -- is originally a private declaration. Indicate that full view
7676 -- is internally generated.
7678 Set_Comes_From_Source (Full_N, False);
7679 Set_Comes_From_Source (Full_Der, False);
7680 Set_Parent (Full_Der, Full_N);
7681 Set_Defining_Identifier (Full_N, Full_Der);
7683 -- If there are no constraints, adjust the subtype mark
7685 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7686 N_Subtype_Indication
7687 then
7688 Set_Subtype_Indication
7689 (Type_Definition (Full_N),
7690 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7691 end if;
7693 Insert_After (N, Full_N);
7695 -- Build full view of derived type from full view of parent which
7696 -- is now installed. Subprograms have been derived on the partial
7697 -- view, the completion does not derive them anew.
7699 if Ekind (Full_Parent) in Record_Kind then
7701 -- If parent type is tagged, the completion inherits the proper
7702 -- primitive operations.
7704 if Is_Tagged_Type (Parent_Type) then
7705 Build_Derived_Record_Type
7706 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7707 else
7708 Build_Derived_Record_Type
7709 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7710 end if;
7712 else
7713 Build_Derived_Type
7714 (Full_N, Full_Parent, Full_Der,
7715 Is_Completion => False, Derive_Subps => False);
7716 end if;
7718 -- The full declaration has been introduced into the tree and
7719 -- processed in the step above. It should not be analyzed again
7720 -- (when encountered later in the current list of declarations)
7721 -- to prevent spurious name conflicts. The full entity remains
7722 -- invisible.
7724 Set_Analyzed (Full_N);
7726 else
7727 Full_Der :=
7728 Make_Defining_Identifier (Sloc (Derived_Type),
7729 Chars => Chars (Derived_Type));
7730 Set_Is_Itype (Full_Der);
7731 Set_Associated_Node_For_Itype (Full_Der, N);
7732 Set_Parent (Full_Der, N);
7733 Build_Derived_Type
7734 (N, Full_Parent, Full_Der,
7735 Is_Completion => False, Derive_Subps => False);
7736 end if;
7738 Set_Has_Private_Declaration (Full_Der);
7739 Set_Has_Private_Declaration (Derived_Type);
7741 Set_Scope (Full_Der, Scope (Derived_Type));
7742 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7743 Set_Has_Size_Clause (Full_Der, False);
7744 Set_Has_Alignment_Clause (Full_Der, False);
7745 Set_Has_Delayed_Freeze (Full_Der);
7746 Set_Is_Frozen (Full_Der, False);
7747 Set_Freeze_Node (Full_Der, Empty);
7748 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7749 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7751 -- The convention on the base type may be set in the private part
7752 -- and not propagated to the subtype until later, so we obtain the
7753 -- convention from the base type of the parent.
7755 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7756 end Copy_And_Build;
7758 -- Start of processing for Build_Derived_Private_Type
7760 begin
7761 if Is_Tagged_Type (Parent_Type) then
7762 Full_P := Full_View (Parent_Type);
7764 -- A type extension of a type with unknown discriminants is an
7765 -- indefinite type that the back-end cannot handle directly.
7766 -- We treat it as a private type, and build a completion that is
7767 -- derived from the full view of the parent, and hopefully has
7768 -- known discriminants.
7770 -- If the full view of the parent type has an underlying record view,
7771 -- use it to generate the underlying record view of this derived type
7772 -- (required for chains of derivations with unknown discriminants).
7774 -- Minor optimization: we avoid the generation of useless underlying
7775 -- record view entities if the private type declaration has unknown
7776 -- discriminants but its corresponding full view has no
7777 -- discriminants.
7779 if Has_Unknown_Discriminants (Parent_Type)
7780 and then Present (Full_P)
7781 and then (Has_Discriminants (Full_P)
7782 or else Present (Underlying_Record_View (Full_P)))
7783 and then not In_Open_Scopes (Par_Scope)
7784 and then Expander_Active
7785 then
7786 declare
7787 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7788 New_Ext : constant Node_Id :=
7789 Copy_Separate_Tree
7790 (Record_Extension_Part (Type_Definition (N)));
7791 Decl : Node_Id;
7793 begin
7794 Build_Derived_Record_Type
7795 (N, Parent_Type, Derived_Type, Derive_Subps);
7797 -- Build anonymous completion, as a derivation from the full
7798 -- view of the parent. This is not a completion in the usual
7799 -- sense, because the current type is not private.
7801 Decl :=
7802 Make_Full_Type_Declaration (Loc,
7803 Defining_Identifier => Full_Der,
7804 Type_Definition =>
7805 Make_Derived_Type_Definition (Loc,
7806 Subtype_Indication =>
7807 New_Copy_Tree
7808 (Subtype_Indication (Type_Definition (N))),
7809 Record_Extension_Part => New_Ext));
7811 -- If the parent type has an underlying record view, use it
7812 -- here to build the new underlying record view.
7814 if Present (Underlying_Record_View (Full_P)) then
7815 pragma Assert
7816 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7817 = N_Identifier);
7818 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7819 Underlying_Record_View (Full_P));
7820 end if;
7822 Install_Private_Declarations (Par_Scope);
7823 Install_Visible_Declarations (Par_Scope);
7824 Insert_Before (N, Decl);
7826 -- Mark entity as an underlying record view before analysis,
7827 -- to avoid generating the list of its primitive operations
7828 -- (which is not really required for this entity) and thus
7829 -- prevent spurious errors associated with missing overriding
7830 -- of abstract primitives (overridden only for Derived_Type).
7832 Set_Ekind (Full_Der, E_Record_Type);
7833 Set_Is_Underlying_Record_View (Full_Der);
7834 Set_Default_SSO (Full_Der);
7835 Set_No_Reordering (Full_Der, No_Component_Reordering);
7837 Analyze (Decl);
7839 pragma Assert (Has_Discriminants (Full_Der)
7840 and then not Has_Unknown_Discriminants (Full_Der));
7842 Uninstall_Declarations (Par_Scope);
7844 -- Freeze the underlying record view, to prevent generation of
7845 -- useless dispatching information, which is simply shared with
7846 -- the real derived type.
7848 Set_Is_Frozen (Full_Der);
7850 -- If the derived type has access discriminants, create
7851 -- references to their anonymous types now, to prevent
7852 -- back-end problems when their first use is in generated
7853 -- bodies of primitives.
7855 declare
7856 E : Entity_Id;
7858 begin
7859 E := First_Entity (Full_Der);
7861 while Present (E) loop
7862 if Ekind (E) = E_Discriminant
7863 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7864 then
7865 Build_Itype_Reference (Etype (E), Decl);
7866 end if;
7868 Next_Entity (E);
7869 end loop;
7870 end;
7872 -- Set up links between real entity and underlying record view
7874 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7875 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7876 end;
7878 -- If discriminants are known, build derived record
7880 else
7881 Build_Derived_Record_Type
7882 (N, Parent_Type, Derived_Type, Derive_Subps);
7883 end if;
7885 return;
7887 elsif Has_Discriminants (Parent_Type) then
7889 -- Build partial view of derived type from partial view of parent.
7890 -- This must be done before building the full derivation because the
7891 -- second derivation will modify the discriminants of the first and
7892 -- the discriminants are chained with the rest of the components in
7893 -- the full derivation.
7895 Build_Derived_Record_Type
7896 (N, Parent_Type, Derived_Type, Derive_Subps);
7898 -- Build the full derivation if this is not the anonymous derived
7899 -- base type created by Build_Derived_Record_Type in the constrained
7900 -- case (see point 5. of its head comment) since we build it for the
7901 -- derived subtype. And skip it for synchronized types altogether, as
7902 -- gigi does not use these types directly.
7904 if Present (Full_View (Parent_Type))
7905 and then not Is_Itype (Derived_Type)
7906 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7907 then
7908 declare
7909 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7910 Discr : Entity_Id;
7911 Last_Discr : Entity_Id;
7913 begin
7914 -- If this is not a completion, construct the implicit full
7915 -- view by deriving from the full view of the parent type.
7916 -- But if this is a completion, the derived private type
7917 -- being built is a full view and the full derivation can
7918 -- only be its underlying full view.
7920 Build_Full_Derivation;
7922 if not Is_Completion then
7923 Set_Full_View (Derived_Type, Full_Der);
7924 else
7925 Set_Underlying_Full_View (Derived_Type, Full_Der);
7926 Set_Is_Underlying_Full_View (Full_Der);
7927 end if;
7929 if not Is_Base_Type (Derived_Type) then
7930 Set_Full_View (Der_Base, Base_Type (Full_Der));
7931 end if;
7933 -- Copy the discriminant list from full view to the partial
7934 -- view (base type and its subtype). Gigi requires that the
7935 -- partial and full views have the same discriminants.
7937 -- Note that since the partial view points to discriminants
7938 -- in the full view, their scope will be that of the full
7939 -- view. This might cause some front end problems and need
7940 -- adjustment???
7942 Discr := First_Discriminant (Base_Type (Full_Der));
7943 Set_First_Entity (Der_Base, Discr);
7945 loop
7946 Last_Discr := Discr;
7947 Next_Discriminant (Discr);
7948 exit when No (Discr);
7949 end loop;
7951 Set_Last_Entity (Der_Base, Last_Discr);
7952 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7953 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7954 end;
7955 end if;
7957 elsif Present (Full_View (Parent_Type))
7958 and then Has_Discriminants (Full_View (Parent_Type))
7959 then
7960 if Has_Unknown_Discriminants (Parent_Type)
7961 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7962 N_Subtype_Indication
7963 then
7964 Error_Msg_N
7965 ("cannot constrain type with unknown discriminants",
7966 Subtype_Indication (Type_Definition (N)));
7967 return;
7968 end if;
7970 -- If this is not a completion, construct the implicit full view by
7971 -- deriving from the full view of the parent type. But if this is a
7972 -- completion, the derived private type being built is a full view
7973 -- and the full derivation can only be its underlying full view.
7975 Build_Full_Derivation;
7977 if not Is_Completion then
7978 Set_Full_View (Derived_Type, Full_Der);
7979 else
7980 Set_Underlying_Full_View (Derived_Type, Full_Der);
7981 Set_Is_Underlying_Full_View (Full_Der);
7982 end if;
7984 -- In any case, the primitive operations are inherited from the
7985 -- parent type, not from the internal full view.
7987 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7989 if Derive_Subps then
7990 Derive_Subprograms (Parent_Type, Derived_Type);
7991 end if;
7993 Set_Stored_Constraint (Derived_Type, No_Elist);
7994 Set_Is_Constrained
7995 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7997 else
7998 -- Untagged type, No discriminants on either view
8000 if Nkind (Subtype_Indication (Type_Definition (N))) =
8001 N_Subtype_Indication
8002 then
8003 Error_Msg_N
8004 ("illegal constraint on type without discriminants", N);
8005 end if;
8007 if Present (Discriminant_Specifications (N))
8008 and then Present (Full_View (Parent_Type))
8009 and then not Is_Tagged_Type (Full_View (Parent_Type))
8010 then
8011 Error_Msg_N ("cannot add discriminants to untagged type", N);
8012 end if;
8014 Set_Stored_Constraint (Derived_Type, No_Elist);
8015 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
8017 Set_Is_Controlled_Active
8018 (Derived_Type, Is_Controlled_Active (Parent_Type));
8020 Set_Disable_Controlled
8021 (Derived_Type, Disable_Controlled (Parent_Type));
8023 Set_Has_Controlled_Component
8024 (Derived_Type, Has_Controlled_Component (Parent_Type));
8026 -- Direct controlled types do not inherit Finalize_Storage_Only flag
8028 if not Is_Controlled (Parent_Type) then
8029 Set_Finalize_Storage_Only
8030 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8031 end if;
8033 -- If this is not a completion, construct the implicit full view by
8034 -- deriving from the full view of the parent type.
8036 -- ??? If the parent is untagged private and its completion is
8037 -- tagged, this mechanism will not work because we cannot derive from
8038 -- the tagged full view unless we have an extension.
8040 if Present (Full_View (Parent_Type))
8041 and then not Is_Tagged_Type (Full_View (Parent_Type))
8042 and then not Is_Completion
8043 then
8044 Build_Full_Derivation;
8045 Set_Full_View (Derived_Type, Full_Der);
8046 end if;
8047 end if;
8049 Set_Has_Unknown_Discriminants (Derived_Type,
8050 Has_Unknown_Discriminants (Parent_Type));
8052 if Is_Private_Type (Derived_Type) then
8053 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8054 end if;
8056 -- If the parent base type is in scope, add the derived type to its
8057 -- list of private dependents, because its full view may become
8058 -- visible subsequently (in a nested private part, a body, or in a
8059 -- further child unit).
8061 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8062 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8064 -- Check for unusual case where a type completed by a private
8065 -- derivation occurs within a package nested in a child unit, and
8066 -- the parent is declared in an ancestor.
8068 if Is_Child_Unit (Scope (Current_Scope))
8069 and then Is_Completion
8070 and then In_Private_Part (Current_Scope)
8071 and then Scope (Parent_Type) /= Current_Scope
8073 -- Note that if the parent has a completion in the private part,
8074 -- (which is itself a derivation from some other private type)
8075 -- it is that completion that is visible, there is no full view
8076 -- available, and no special processing is needed.
8078 and then Present (Full_View (Parent_Type))
8079 then
8080 -- In this case, the full view of the parent type will become
8081 -- visible in the body of the enclosing child, and only then will
8082 -- the current type be possibly non-private. Build an underlying
8083 -- full view that will be installed when the enclosing child body
8084 -- is compiled.
8086 if Present (Underlying_Full_View (Derived_Type)) then
8087 Full_Der := Underlying_Full_View (Derived_Type);
8088 else
8089 Build_Full_Derivation;
8090 Set_Underlying_Full_View (Derived_Type, Full_Der);
8091 Set_Is_Underlying_Full_View (Full_Der);
8092 end if;
8094 -- The full view will be used to swap entities on entry/exit to
8095 -- the body, and must appear in the entity list for the package.
8097 Append_Entity (Full_Der, Scope (Derived_Type));
8098 end if;
8099 end if;
8100 end Build_Derived_Private_Type;
8102 -------------------------------
8103 -- Build_Derived_Record_Type --
8104 -------------------------------
8106 -- 1. INTRODUCTION
8108 -- Ideally we would like to use the same model of type derivation for
8109 -- tagged and untagged record types. Unfortunately this is not quite
8110 -- possible because the semantics of representation clauses is different
8111 -- for tagged and untagged records under inheritance. Consider the
8112 -- following:
8114 -- type R (...) is [tagged] record ... end record;
8115 -- type T (...) is new R (...) [with ...];
8117 -- The representation clauses for T can specify a completely different
8118 -- record layout from R's. Hence the same component can be placed in two
8119 -- very different positions in objects of type T and R. If R and T are
8120 -- tagged types, representation clauses for T can only specify the layout
8121 -- of non inherited components, thus components that are common in R and T
8122 -- have the same position in objects of type R and T.
8124 -- This has two implications. The first is that the entire tree for R's
8125 -- declaration needs to be copied for T in the untagged case, so that T
8126 -- can be viewed as a record type of its own with its own representation
8127 -- clauses. The second implication is the way we handle discriminants.
8128 -- Specifically, in the untagged case we need a way to communicate to Gigi
8129 -- what are the real discriminants in the record, while for the semantics
8130 -- we need to consider those introduced by the user to rename the
8131 -- discriminants in the parent type. This is handled by introducing the
8132 -- notion of stored discriminants. See below for more.
8134 -- Fortunately the way regular components are inherited can be handled in
8135 -- the same way in tagged and untagged types.
8137 -- To complicate things a bit more the private view of a private extension
8138 -- cannot be handled in the same way as the full view (for one thing the
8139 -- semantic rules are somewhat different). We will explain what differs
8140 -- below.
8142 -- 2. DISCRIMINANTS UNDER INHERITANCE
8144 -- The semantic rules governing the discriminants of derived types are
8145 -- quite subtle.
8147 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8148 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8150 -- If parent type has discriminants, then the discriminants that are
8151 -- declared in the derived type are [3.4 (11)]:
8153 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8154 -- there is one;
8156 -- o Otherwise, each discriminant of the parent type (implicitly declared
8157 -- in the same order with the same specifications). In this case, the
8158 -- discriminants are said to be "inherited", or if unknown in the parent
8159 -- are also unknown in the derived type.
8161 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8163 -- o The parent subtype must be constrained;
8165 -- o If the parent type is not a tagged type, then each discriminant of
8166 -- the derived type must be used in the constraint defining a parent
8167 -- subtype. [Implementation note: This ensures that the new discriminant
8168 -- can share storage with an existing discriminant.]
8170 -- For the derived type each discriminant of the parent type is either
8171 -- inherited, constrained to equal some new discriminant of the derived
8172 -- type, or constrained to the value of an expression.
8174 -- When inherited or constrained to equal some new discriminant, the
8175 -- parent discriminant and the discriminant of the derived type are said
8176 -- to "correspond".
8178 -- If a discriminant of the parent type is constrained to a specific value
8179 -- in the derived type definition, then the discriminant is said to be
8180 -- "specified" by that derived type definition.
8182 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8184 -- We have spoken about stored discriminants in point 1 (introduction)
8185 -- above. There are two sorts of stored discriminants: implicit and
8186 -- explicit. As long as the derived type inherits the same discriminants as
8187 -- the root record type, stored discriminants are the same as regular
8188 -- discriminants, and are said to be implicit. However, if any discriminant
8189 -- in the root type was renamed in the derived type, then the derived
8190 -- type will contain explicit stored discriminants. Explicit stored
8191 -- discriminants are discriminants in addition to the semantically visible
8192 -- discriminants defined for the derived type. Stored discriminants are
8193 -- used by Gigi to figure out what are the physical discriminants in
8194 -- objects of the derived type (see precise definition in einfo.ads).
8195 -- As an example, consider the following:
8197 -- type R (D1, D2, D3 : Int) is record ... end record;
8198 -- type T1 is new R;
8199 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8200 -- type T3 is new T2;
8201 -- type T4 (Y : Int) is new T3 (Y, 99);
8203 -- The following table summarizes the discriminants and stored
8204 -- discriminants in R and T1 through T4:
8206 -- Type Discrim Stored Discrim Comment
8207 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8208 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8209 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8210 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8211 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8213 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8214 -- find the corresponding discriminant in the parent type, while
8215 -- Original_Record_Component (abbreviated ORC below) the actual physical
8216 -- component that is renamed. Finally the field Is_Completely_Hidden
8217 -- (abbreviated ICH below) is set for all explicit stored discriminants
8218 -- (see einfo.ads for more info). For the above example this gives:
8220 -- Discrim CD ORC ICH
8221 -- ^^^^^^^ ^^ ^^^ ^^^
8222 -- D1 in R empty itself no
8223 -- D2 in R empty itself no
8224 -- D3 in R empty itself no
8226 -- D1 in T1 D1 in R itself no
8227 -- D2 in T1 D2 in R itself no
8228 -- D3 in T1 D3 in R itself no
8230 -- X1 in T2 D3 in T1 D3 in T2 no
8231 -- X2 in T2 D1 in T1 D1 in T2 no
8232 -- D1 in T2 empty itself yes
8233 -- D2 in T2 empty itself yes
8234 -- D3 in T2 empty itself yes
8236 -- X1 in T3 X1 in T2 D3 in T3 no
8237 -- X2 in T3 X2 in T2 D1 in T3 no
8238 -- D1 in T3 empty itself yes
8239 -- D2 in T3 empty itself yes
8240 -- D3 in T3 empty itself yes
8242 -- Y in T4 X1 in T3 D3 in T4 no
8243 -- D1 in T4 empty itself yes
8244 -- D2 in T4 empty itself yes
8245 -- D3 in T4 empty itself yes
8247 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8249 -- Type derivation for tagged types is fairly straightforward. If no
8250 -- discriminants are specified by the derived type, these are inherited
8251 -- from the parent. No explicit stored discriminants are ever necessary.
8252 -- The only manipulation that is done to the tree is that of adding a
8253 -- _parent field with parent type and constrained to the same constraint
8254 -- specified for the parent in the derived type definition. For instance:
8256 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8257 -- type T1 is new R with null record;
8258 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8260 -- are changed into:
8262 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8263 -- _parent : R (D1, D2, D3);
8264 -- end record;
8266 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8267 -- _parent : T1 (X2, 88, X1);
8268 -- end record;
8270 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8271 -- ORC and ICH fields are:
8273 -- Discrim CD ORC ICH
8274 -- ^^^^^^^ ^^ ^^^ ^^^
8275 -- D1 in R empty itself no
8276 -- D2 in R empty itself no
8277 -- D3 in R empty itself no
8279 -- D1 in T1 D1 in R D1 in R no
8280 -- D2 in T1 D2 in R D2 in R no
8281 -- D3 in T1 D3 in R D3 in R no
8283 -- X1 in T2 D3 in T1 D3 in R no
8284 -- X2 in T2 D1 in T1 D1 in R no
8286 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8288 -- Regardless of whether we dealing with a tagged or untagged type
8289 -- we will transform all derived type declarations of the form
8291 -- type T is new R (...) [with ...];
8292 -- or
8293 -- subtype S is R (...);
8294 -- type T is new S [with ...];
8295 -- into
8296 -- type BT is new R [with ...];
8297 -- subtype T is BT (...);
8299 -- That is, the base derived type is constrained only if it has no
8300 -- discriminants. The reason for doing this is that GNAT's semantic model
8301 -- assumes that a base type with discriminants is unconstrained.
8303 -- Note that, strictly speaking, the above transformation is not always
8304 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8306 -- procedure B34011A is
8307 -- type REC (D : integer := 0) is record
8308 -- I : Integer;
8309 -- end record;
8311 -- package P is
8312 -- type T6 is new Rec;
8313 -- function F return T6;
8314 -- end P;
8316 -- use P;
8317 -- package Q6 is
8318 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8319 -- end Q6;
8321 -- The definition of Q6.U is illegal. However transforming Q6.U into
8323 -- type BaseU is new T6;
8324 -- subtype U is BaseU (Q6.F.I)
8326 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8327 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8328 -- the transformation described above.
8330 -- There is another instance where the above transformation is incorrect.
8331 -- Consider:
8333 -- package Pack is
8334 -- type Base (D : Integer) is tagged null record;
8335 -- procedure P (X : Base);
8337 -- type Der is new Base (2) with null record;
8338 -- procedure P (X : Der);
8339 -- end Pack;
8341 -- Then the above transformation turns this into
8343 -- type Der_Base is new Base with null record;
8344 -- -- procedure P (X : Base) is implicitly inherited here
8345 -- -- as procedure P (X : Der_Base).
8347 -- subtype Der is Der_Base (2);
8348 -- procedure P (X : Der);
8349 -- -- The overriding of P (X : Der_Base) is illegal since we
8350 -- -- have a parameter conformance problem.
8352 -- To get around this problem, after having semantically processed Der_Base
8353 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8354 -- Discriminant_Constraint from Der so that when parameter conformance is
8355 -- checked when P is overridden, no semantic errors are flagged.
8357 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8359 -- Regardless of whether we are dealing with a tagged or untagged type
8360 -- we will transform all derived type declarations of the form
8362 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8363 -- type T is new R [with ...];
8364 -- into
8365 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8367 -- The reason for such transformation is that it allows us to implement a
8368 -- very clean form of component inheritance as explained below.
8370 -- Note that this transformation is not achieved by direct tree rewriting
8371 -- and manipulation, but rather by redoing the semantic actions that the
8372 -- above transformation will entail. This is done directly in routine
8373 -- Inherit_Components.
8375 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8377 -- In both tagged and untagged derived types, regular non discriminant
8378 -- components are inherited in the derived type from the parent type. In
8379 -- the absence of discriminants component, inheritance is straightforward
8380 -- as components can simply be copied from the parent.
8382 -- If the parent has discriminants, inheriting components constrained with
8383 -- these discriminants requires caution. Consider the following example:
8385 -- type R (D1, D2 : Positive) is [tagged] record
8386 -- S : String (D1 .. D2);
8387 -- end record;
8389 -- type T1 is new R [with null record];
8390 -- type T2 (X : positive) is new R (1, X) [with null record];
8392 -- As explained in 6. above, T1 is rewritten as
8393 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8394 -- which makes the treatment for T1 and T2 identical.
8396 -- What we want when inheriting S, is that references to D1 and D2 in R are
8397 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8398 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8399 -- with either discriminant references in the derived type or expressions.
8400 -- This replacement is achieved as follows: before inheriting R's
8401 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8402 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8403 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8404 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8405 -- by String (1 .. X).
8407 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8409 -- We explain here the rules governing private type extensions relevant to
8410 -- type derivation. These rules are explained on the following example:
8412 -- type D [(...)] is new A [(...)] with private; <-- partial view
8413 -- type D [(...)] is new P [(...)] with null record; <-- full view
8415 -- Type A is called the ancestor subtype of the private extension.
8416 -- Type P is the parent type of the full view of the private extension. It
8417 -- must be A or a type derived from A.
8419 -- The rules concerning the discriminants of private type extensions are
8420 -- [7.3(10-13)]:
8422 -- o If a private extension inherits known discriminants from the ancestor
8423 -- subtype, then the full view must also inherit its discriminants from
8424 -- the ancestor subtype and the parent subtype of the full view must be
8425 -- constrained if and only if the ancestor subtype is constrained.
8427 -- o If a partial view has unknown discriminants, then the full view may
8428 -- define a definite or an indefinite subtype, with or without
8429 -- discriminants.
8431 -- o If a partial view has neither known nor unknown discriminants, then
8432 -- the full view must define a definite subtype.
8434 -- o If the ancestor subtype of a private extension has constrained
8435 -- discriminants, then the parent subtype of the full view must impose a
8436 -- statically matching constraint on those discriminants.
8438 -- This means that only the following forms of private extensions are
8439 -- allowed:
8441 -- type D is new A with private; <-- partial view
8442 -- type D is new P with null record; <-- full view
8444 -- If A has no discriminants than P has no discriminants, otherwise P must
8445 -- inherit A's discriminants.
8447 -- type D is new A (...) with private; <-- partial view
8448 -- type D is new P (:::) with null record; <-- full view
8450 -- P must inherit A's discriminants and (...) and (:::) must statically
8451 -- match.
8453 -- subtype A is R (...);
8454 -- type D is new A with private; <-- partial view
8455 -- type D is new P with null record; <-- full view
8457 -- P must have inherited R's discriminants and must be derived from A or
8458 -- any of its subtypes.
8460 -- type D (..) is new A with private; <-- partial view
8461 -- type D (..) is new P [(:::)] with null record; <-- full view
8463 -- No specific constraints on P's discriminants or constraint (:::).
8464 -- Note that A can be unconstrained, but the parent subtype P must either
8465 -- be constrained or (:::) must be present.
8467 -- type D (..) is new A [(...)] with private; <-- partial view
8468 -- type D (..) is new P [(:::)] with null record; <-- full view
8470 -- P's constraints on A's discriminants must statically match those
8471 -- imposed by (...).
8473 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8475 -- The full view of a private extension is handled exactly as described
8476 -- above. The model chose for the private view of a private extension is
8477 -- the same for what concerns discriminants (i.e. they receive the same
8478 -- treatment as in the tagged case). However, the private view of the
8479 -- private extension always inherits the components of the parent base,
8480 -- without replacing any discriminant reference. Strictly speaking this is
8481 -- incorrect. However, Gigi never uses this view to generate code so this
8482 -- is a purely semantic issue. In theory, a set of transformations similar
8483 -- to those given in 5. and 6. above could be applied to private views of
8484 -- private extensions to have the same model of component inheritance as
8485 -- for non private extensions. However, this is not done because it would
8486 -- further complicate private type processing. Semantically speaking, this
8487 -- leaves us in an uncomfortable situation. As an example consider:
8489 -- package Pack is
8490 -- type R (D : integer) is tagged record
8491 -- S : String (1 .. D);
8492 -- end record;
8493 -- procedure P (X : R);
8494 -- type T is new R (1) with private;
8495 -- private
8496 -- type T is new R (1) with null record;
8497 -- end;
8499 -- This is transformed into:
8501 -- package Pack is
8502 -- type R (D : integer) is tagged record
8503 -- S : String (1 .. D);
8504 -- end record;
8505 -- procedure P (X : R);
8506 -- type T is new R (1) with private;
8507 -- private
8508 -- type BaseT is new R with null record;
8509 -- subtype T is BaseT (1);
8510 -- end;
8512 -- (strictly speaking the above is incorrect Ada)
8514 -- From the semantic standpoint the private view of private extension T
8515 -- should be flagged as constrained since one can clearly have
8517 -- Obj : T;
8519 -- in a unit withing Pack. However, when deriving subprograms for the
8520 -- private view of private extension T, T must be seen as unconstrained
8521 -- since T has discriminants (this is a constraint of the current
8522 -- subprogram derivation model). Thus, when processing the private view of
8523 -- a private extension such as T, we first mark T as unconstrained, we
8524 -- process it, we perform program derivation and just before returning from
8525 -- Build_Derived_Record_Type we mark T as constrained.
8527 -- ??? Are there are other uncomfortable cases that we will have to
8528 -- deal with.
8530 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8532 -- Types that are derived from a visible record type and have a private
8533 -- extension present other peculiarities. They behave mostly like private
8534 -- types, but if they have primitive operations defined, these will not
8535 -- have the proper signatures for further inheritance, because other
8536 -- primitive operations will use the implicit base that we define for
8537 -- private derivations below. This affect subprogram inheritance (see
8538 -- Derive_Subprograms for details). We also derive the implicit base from
8539 -- the base type of the full view, so that the implicit base is a record
8540 -- type and not another private type, This avoids infinite loops.
8542 procedure Build_Derived_Record_Type
8543 (N : Node_Id;
8544 Parent_Type : Entity_Id;
8545 Derived_Type : Entity_Id;
8546 Derive_Subps : Boolean := True)
8548 Discriminant_Specs : constant Boolean :=
8549 Present (Discriminant_Specifications (N));
8550 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8551 Loc : constant Source_Ptr := Sloc (N);
8552 Private_Extension : constant Boolean :=
8553 Nkind (N) = N_Private_Extension_Declaration;
8554 Assoc_List : Elist_Id;
8555 Constraint_Present : Boolean;
8556 Constrs : Elist_Id;
8557 Discrim : Entity_Id;
8558 Indic : Node_Id;
8559 Inherit_Discrims : Boolean := False;
8560 Last_Discrim : Entity_Id;
8561 New_Base : Entity_Id;
8562 New_Decl : Node_Id;
8563 New_Discrs : Elist_Id;
8564 New_Indic : Node_Id;
8565 Parent_Base : Entity_Id;
8566 Save_Etype : Entity_Id;
8567 Save_Discr_Constr : Elist_Id;
8568 Save_Next_Entity : Entity_Id;
8569 Type_Def : Node_Id;
8571 Discs : Elist_Id := New_Elmt_List;
8572 -- An empty Discs list means that there were no constraints in the
8573 -- subtype indication or that there was an error processing it.
8575 begin
8576 if Ekind (Parent_Type) = E_Record_Type_With_Private
8577 and then Present (Full_View (Parent_Type))
8578 and then Has_Discriminants (Parent_Type)
8579 then
8580 Parent_Base := Base_Type (Full_View (Parent_Type));
8581 else
8582 Parent_Base := Base_Type (Parent_Type);
8583 end if;
8585 -- AI05-0115: if this is a derivation from a private type in some
8586 -- other scope that may lead to invisible components for the derived
8587 -- type, mark it accordingly.
8589 if Is_Private_Type (Parent_Type) then
8590 if Scope (Parent_Base) = Scope (Derived_Type) then
8591 null;
8593 elsif In_Open_Scopes (Scope (Parent_Base))
8594 and then In_Private_Part (Scope (Parent_Base))
8595 then
8596 null;
8598 else
8599 Set_Has_Private_Ancestor (Derived_Type);
8600 end if;
8602 else
8603 Set_Has_Private_Ancestor
8604 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8605 end if;
8607 -- Before we start the previously documented transformations, here is
8608 -- little fix for size and alignment of tagged types. Normally when we
8609 -- derive type D from type P, we copy the size and alignment of P as the
8610 -- default for D, and in the absence of explicit representation clauses
8611 -- for D, the size and alignment are indeed the same as the parent.
8613 -- But this is wrong for tagged types, since fields may be added, and
8614 -- the default size may need to be larger, and the default alignment may
8615 -- need to be larger.
8617 -- We therefore reset the size and alignment fields in the tagged case.
8618 -- Note that the size and alignment will in any case be at least as
8619 -- large as the parent type (since the derived type has a copy of the
8620 -- parent type in the _parent field)
8622 -- The type is also marked as being tagged here, which is needed when
8623 -- processing components with a self-referential anonymous access type
8624 -- in the call to Check_Anonymous_Access_Components below. Note that
8625 -- this flag is also set later on for completeness.
8627 if Is_Tagged then
8628 Set_Is_Tagged_Type (Derived_Type);
8629 Init_Size_Align (Derived_Type);
8630 end if;
8632 -- STEP 0a: figure out what kind of derived type declaration we have
8634 if Private_Extension then
8635 Type_Def := N;
8636 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8637 Set_Default_SSO (Derived_Type);
8638 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8640 else
8641 Type_Def := Type_Definition (N);
8643 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8644 -- Parent_Base can be a private type or private extension. However,
8645 -- for tagged types with an extension the newly added fields are
8646 -- visible and hence the Derived_Type is always an E_Record_Type.
8647 -- (except that the parent may have its own private fields).
8648 -- For untagged types we preserve the Ekind of the Parent_Base.
8650 if Present (Record_Extension_Part (Type_Def)) then
8651 Set_Ekind (Derived_Type, E_Record_Type);
8652 Set_Default_SSO (Derived_Type);
8653 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8655 -- Create internal access types for components with anonymous
8656 -- access types.
8658 if Ada_Version >= Ada_2005 then
8659 Check_Anonymous_Access_Components
8660 (N, Derived_Type, Derived_Type,
8661 Component_List (Record_Extension_Part (Type_Def)));
8662 end if;
8664 else
8665 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8666 end if;
8667 end if;
8669 -- Indic can either be an N_Identifier if the subtype indication
8670 -- contains no constraint or an N_Subtype_Indication if the subtype
8671 -- indication has a constraint.
8673 Indic := Subtype_Indication (Type_Def);
8674 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8676 -- Check that the type has visible discriminants. The type may be
8677 -- a private type with unknown discriminants whose full view has
8678 -- discriminants which are invisible.
8680 if Constraint_Present then
8681 if not Has_Discriminants (Parent_Base)
8682 or else
8683 (Has_Unknown_Discriminants (Parent_Base)
8684 and then Is_Private_Type (Parent_Base))
8685 then
8686 Error_Msg_N
8687 ("invalid constraint: type has no discriminant",
8688 Constraint (Indic));
8690 Constraint_Present := False;
8691 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8693 elsif Is_Constrained (Parent_Type) then
8694 Error_Msg_N
8695 ("invalid constraint: parent type is already constrained",
8696 Constraint (Indic));
8698 Constraint_Present := False;
8699 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8700 end if;
8701 end if;
8703 -- STEP 0b: If needed, apply transformation given in point 5. above
8705 if not Private_Extension
8706 and then Has_Discriminants (Parent_Type)
8707 and then not Discriminant_Specs
8708 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8709 then
8710 -- First, we must analyze the constraint (see comment in point 5.)
8711 -- The constraint may come from the subtype indication of the full
8712 -- declaration.
8714 if Constraint_Present then
8715 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8717 -- If there is no explicit constraint, there might be one that is
8718 -- inherited from a constrained parent type. In that case verify that
8719 -- it conforms to the constraint in the partial view. In perverse
8720 -- cases the parent subtypes of the partial and full view can have
8721 -- different constraints.
8723 elsif Present (Stored_Constraint (Parent_Type)) then
8724 New_Discrs := Stored_Constraint (Parent_Type);
8726 else
8727 New_Discrs := No_Elist;
8728 end if;
8730 if Has_Discriminants (Derived_Type)
8731 and then Has_Private_Declaration (Derived_Type)
8732 and then Present (Discriminant_Constraint (Derived_Type))
8733 and then Present (New_Discrs)
8734 then
8735 -- Verify that constraints of the full view statically match
8736 -- those given in the partial view.
8738 declare
8739 C1, C2 : Elmt_Id;
8741 begin
8742 C1 := First_Elmt (New_Discrs);
8743 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8744 while Present (C1) and then Present (C2) loop
8745 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8746 or else
8747 (Is_OK_Static_Expression (Node (C1))
8748 and then Is_OK_Static_Expression (Node (C2))
8749 and then
8750 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8751 then
8752 null;
8754 else
8755 if Constraint_Present then
8756 Error_Msg_N
8757 ("constraint not conformant to previous declaration",
8758 Node (C1));
8759 else
8760 Error_Msg_N
8761 ("constraint of full view is incompatible "
8762 & "with partial view", N);
8763 end if;
8764 end if;
8766 Next_Elmt (C1);
8767 Next_Elmt (C2);
8768 end loop;
8769 end;
8770 end if;
8772 -- Insert and analyze the declaration for the unconstrained base type
8774 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8776 New_Decl :=
8777 Make_Full_Type_Declaration (Loc,
8778 Defining_Identifier => New_Base,
8779 Type_Definition =>
8780 Make_Derived_Type_Definition (Loc,
8781 Abstract_Present => Abstract_Present (Type_Def),
8782 Limited_Present => Limited_Present (Type_Def),
8783 Subtype_Indication =>
8784 New_Occurrence_Of (Parent_Base, Loc),
8785 Record_Extension_Part =>
8786 Relocate_Node (Record_Extension_Part (Type_Def)),
8787 Interface_List => Interface_List (Type_Def)));
8789 Set_Parent (New_Decl, Parent (N));
8790 Mark_Rewrite_Insertion (New_Decl);
8791 Insert_Before (N, New_Decl);
8793 -- In the extension case, make sure ancestor is frozen appropriately
8794 -- (see also non-discriminated case below).
8796 if Present (Record_Extension_Part (Type_Def))
8797 or else Is_Interface (Parent_Base)
8798 then
8799 Freeze_Before (New_Decl, Parent_Type);
8800 end if;
8802 -- Note that this call passes False for the Derive_Subps parameter
8803 -- because subprogram derivation is deferred until after creating
8804 -- the subtype (see below).
8806 Build_Derived_Type
8807 (New_Decl, Parent_Base, New_Base,
8808 Is_Completion => False, Derive_Subps => False);
8810 -- ??? This needs re-examination to determine whether the
8811 -- above call can simply be replaced by a call to Analyze.
8813 Set_Analyzed (New_Decl);
8815 -- Insert and analyze the declaration for the constrained subtype
8817 if Constraint_Present then
8818 New_Indic :=
8819 Make_Subtype_Indication (Loc,
8820 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8821 Constraint => Relocate_Node (Constraint (Indic)));
8823 else
8824 declare
8825 Constr_List : constant List_Id := New_List;
8826 C : Elmt_Id;
8827 Expr : Node_Id;
8829 begin
8830 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8831 while Present (C) loop
8832 Expr := Node (C);
8834 -- It is safe here to call New_Copy_Tree since we called
8835 -- Force_Evaluation on each constraint previously
8836 -- in Build_Discriminant_Constraints.
8838 Append (New_Copy_Tree (Expr), To => Constr_List);
8840 Next_Elmt (C);
8841 end loop;
8843 New_Indic :=
8844 Make_Subtype_Indication (Loc,
8845 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8846 Constraint =>
8847 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8848 end;
8849 end if;
8851 Rewrite (N,
8852 Make_Subtype_Declaration (Loc,
8853 Defining_Identifier => Derived_Type,
8854 Subtype_Indication => New_Indic));
8856 Analyze (N);
8858 -- Derivation of subprograms must be delayed until the full subtype
8859 -- has been established, to ensure proper overriding of subprograms
8860 -- inherited by full types. If the derivations occurred as part of
8861 -- the call to Build_Derived_Type above, then the check for type
8862 -- conformance would fail because earlier primitive subprograms
8863 -- could still refer to the full type prior the change to the new
8864 -- subtype and hence would not match the new base type created here.
8865 -- Subprograms are not derived, however, when Derive_Subps is False
8866 -- (since otherwise there could be redundant derivations).
8868 if Derive_Subps then
8869 Derive_Subprograms (Parent_Type, Derived_Type);
8870 end if;
8872 -- For tagged types the Discriminant_Constraint of the new base itype
8873 -- is inherited from the first subtype so that no subtype conformance
8874 -- problem arise when the first subtype overrides primitive
8875 -- operations inherited by the implicit base type.
8877 if Is_Tagged then
8878 Set_Discriminant_Constraint
8879 (New_Base, Discriminant_Constraint (Derived_Type));
8880 end if;
8882 return;
8883 end if;
8885 -- If we get here Derived_Type will have no discriminants or it will be
8886 -- a discriminated unconstrained base type.
8888 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8890 if Is_Tagged then
8892 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8893 -- The declaration of a specific descendant of an interface type
8894 -- freezes the interface type (RM 13.14).
8896 if not Private_Extension or else Is_Interface (Parent_Base) then
8897 Freeze_Before (N, Parent_Type);
8898 end if;
8900 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8901 -- cannot be declared at a deeper level than its parent type is
8902 -- removed. The check on derivation within a generic body is also
8903 -- relaxed, but there's a restriction that a derived tagged type
8904 -- cannot be declared in a generic body if it's derived directly
8905 -- or indirectly from a formal type of that generic.
8907 if Ada_Version >= Ada_2005 then
8908 if Present (Enclosing_Generic_Body (Derived_Type)) then
8909 declare
8910 Ancestor_Type : Entity_Id;
8912 begin
8913 -- Check to see if any ancestor of the derived type is a
8914 -- formal type.
8916 Ancestor_Type := Parent_Type;
8917 while not Is_Generic_Type (Ancestor_Type)
8918 and then Etype (Ancestor_Type) /= Ancestor_Type
8919 loop
8920 Ancestor_Type := Etype (Ancestor_Type);
8921 end loop;
8923 -- If the derived type does have a formal type as an
8924 -- ancestor, then it's an error if the derived type is
8925 -- declared within the body of the generic unit that
8926 -- declares the formal type in its generic formal part. It's
8927 -- sufficient to check whether the ancestor type is declared
8928 -- inside the same generic body as the derived type (such as
8929 -- within a nested generic spec), in which case the
8930 -- derivation is legal. If the formal type is declared
8931 -- outside of that generic body, then it's guaranteed that
8932 -- the derived type is declared within the generic body of
8933 -- the generic unit declaring the formal type.
8935 if Is_Generic_Type (Ancestor_Type)
8936 and then Enclosing_Generic_Body (Ancestor_Type) /=
8937 Enclosing_Generic_Body (Derived_Type)
8938 then
8939 Error_Msg_NE
8940 ("parent type of& must not be descendant of formal type"
8941 & " of an enclosing generic body",
8942 Indic, Derived_Type);
8943 end if;
8944 end;
8945 end if;
8947 elsif Type_Access_Level (Derived_Type) /=
8948 Type_Access_Level (Parent_Type)
8949 and then not Is_Generic_Type (Derived_Type)
8950 then
8951 if Is_Controlled (Parent_Type) then
8952 Error_Msg_N
8953 ("controlled type must be declared at the library level",
8954 Indic);
8955 else
8956 Error_Msg_N
8957 ("type extension at deeper accessibility level than parent",
8958 Indic);
8959 end if;
8961 else
8962 declare
8963 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8964 begin
8965 if Present (GB)
8966 and then GB /= Enclosing_Generic_Body (Parent_Base)
8967 then
8968 Error_Msg_NE
8969 ("parent type of& must not be outside generic body"
8970 & " (RM 3.9.1(4))",
8971 Indic, Derived_Type);
8972 end if;
8973 end;
8974 end if;
8975 end if;
8977 -- Ada 2005 (AI-251)
8979 if Ada_Version >= Ada_2005 and then Is_Tagged then
8981 -- "The declaration of a specific descendant of an interface type
8982 -- freezes the interface type" (RM 13.14).
8984 declare
8985 Iface : Node_Id;
8986 begin
8987 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8988 Iface := First (Interface_List (Type_Def));
8989 while Present (Iface) loop
8990 Freeze_Before (N, Etype (Iface));
8991 Next (Iface);
8992 end loop;
8993 end if;
8994 end;
8995 end if;
8997 -- STEP 1b : preliminary cleanup of the full view of private types
8999 -- If the type is already marked as having discriminants, then it's the
9000 -- completion of a private type or private extension and we need to
9001 -- retain the discriminants from the partial view if the current
9002 -- declaration has Discriminant_Specifications so that we can verify
9003 -- conformance. However, we must remove any existing components that
9004 -- were inherited from the parent (and attached in Copy_And_Swap)
9005 -- because the full type inherits all appropriate components anyway, and
9006 -- we do not want the partial view's components interfering.
9008 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
9009 Discrim := First_Discriminant (Derived_Type);
9010 loop
9011 Last_Discrim := Discrim;
9012 Next_Discriminant (Discrim);
9013 exit when No (Discrim);
9014 end loop;
9016 Set_Last_Entity (Derived_Type, Last_Discrim);
9018 -- In all other cases wipe out the list of inherited components (even
9019 -- inherited discriminants), it will be properly rebuilt here.
9021 else
9022 Set_First_Entity (Derived_Type, Empty);
9023 Set_Last_Entity (Derived_Type, Empty);
9024 end if;
9026 -- STEP 1c: Initialize some flags for the Derived_Type
9028 -- The following flags must be initialized here so that
9029 -- Process_Discriminants can check that discriminants of tagged types do
9030 -- not have a default initial value and that access discriminants are
9031 -- only specified for limited records. For completeness, these flags are
9032 -- also initialized along with all the other flags below.
9034 -- AI-419: Limitedness is not inherited from an interface parent, so to
9035 -- be limited in that case the type must be explicitly declared as
9036 -- limited. However, task and protected interfaces are always limited.
9038 if Limited_Present (Type_Def) then
9039 Set_Is_Limited_Record (Derived_Type);
9041 elsif Is_Limited_Record (Parent_Type)
9042 or else (Present (Full_View (Parent_Type))
9043 and then Is_Limited_Record (Full_View (Parent_Type)))
9044 then
9045 if not Is_Interface (Parent_Type)
9046 or else Is_Synchronized_Interface (Parent_Type)
9047 or else Is_Protected_Interface (Parent_Type)
9048 or else Is_Task_Interface (Parent_Type)
9049 then
9050 Set_Is_Limited_Record (Derived_Type);
9051 end if;
9052 end if;
9054 -- STEP 2a: process discriminants of derived type if any
9056 Push_Scope (Derived_Type);
9058 if Discriminant_Specs then
9059 Set_Has_Unknown_Discriminants (Derived_Type, False);
9061 -- The following call initializes fields Has_Discriminants and
9062 -- Discriminant_Constraint, unless we are processing the completion
9063 -- of a private type declaration.
9065 Check_Or_Process_Discriminants (N, Derived_Type);
9067 -- For untagged types, the constraint on the Parent_Type must be
9068 -- present and is used to rename the discriminants.
9070 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9071 Error_Msg_N ("untagged parent must have discriminants", Indic);
9073 elsif not Is_Tagged and then not Constraint_Present then
9074 Error_Msg_N
9075 ("discriminant constraint needed for derived untagged records",
9076 Indic);
9078 -- Otherwise the parent subtype must be constrained unless we have a
9079 -- private extension.
9081 elsif not Constraint_Present
9082 and then not Private_Extension
9083 and then not Is_Constrained (Parent_Type)
9084 then
9085 Error_Msg_N
9086 ("unconstrained type not allowed in this context", Indic);
9088 elsif Constraint_Present then
9089 -- The following call sets the field Corresponding_Discriminant
9090 -- for the discriminants in the Derived_Type.
9092 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9094 -- For untagged types all new discriminants must rename
9095 -- discriminants in the parent. For private extensions new
9096 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9098 Discrim := First_Discriminant (Derived_Type);
9099 while Present (Discrim) loop
9100 if not Is_Tagged
9101 and then No (Corresponding_Discriminant (Discrim))
9102 then
9103 Error_Msg_N
9104 ("new discriminants must constrain old ones", Discrim);
9106 elsif Private_Extension
9107 and then Present (Corresponding_Discriminant (Discrim))
9108 then
9109 Error_Msg_N
9110 ("only static constraints allowed for parent"
9111 & " discriminants in the partial view", Indic);
9112 exit;
9113 end if;
9115 -- If a new discriminant is used in the constraint, then its
9116 -- subtype must be statically compatible with the parent
9117 -- discriminant's subtype (3.7(15)).
9119 -- However, if the record contains an array constrained by
9120 -- the discriminant but with some different bound, the compiler
9121 -- tries to create a smaller range for the discriminant type.
9122 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9123 -- the discriminant type is a scalar type, the check must use
9124 -- the original discriminant type in the parent declaration.
9126 declare
9127 Corr_Disc : constant Entity_Id :=
9128 Corresponding_Discriminant (Discrim);
9129 Disc_Type : constant Entity_Id := Etype (Discrim);
9130 Corr_Type : Entity_Id;
9132 begin
9133 if Present (Corr_Disc) then
9134 if Is_Scalar_Type (Disc_Type) then
9135 Corr_Type :=
9136 Entity (Discriminant_Type (Parent (Corr_Disc)));
9137 else
9138 Corr_Type := Etype (Corr_Disc);
9139 end if;
9141 if not
9142 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9143 then
9144 Error_Msg_N
9145 ("subtype must be compatible "
9146 & "with parent discriminant",
9147 Discrim);
9148 end if;
9149 end if;
9150 end;
9152 Next_Discriminant (Discrim);
9153 end loop;
9155 -- Check whether the constraints of the full view statically
9156 -- match those imposed by the parent subtype [7.3(13)].
9158 if Present (Stored_Constraint (Derived_Type)) then
9159 declare
9160 C1, C2 : Elmt_Id;
9162 begin
9163 C1 := First_Elmt (Discs);
9164 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9165 while Present (C1) and then Present (C2) loop
9166 if not
9167 Fully_Conformant_Expressions (Node (C1), Node (C2))
9168 then
9169 Error_Msg_N
9170 ("not conformant with previous declaration",
9171 Node (C1));
9172 end if;
9174 Next_Elmt (C1);
9175 Next_Elmt (C2);
9176 end loop;
9177 end;
9178 end if;
9179 end if;
9181 -- STEP 2b: No new discriminants, inherit discriminants if any
9183 else
9184 if Private_Extension then
9185 Set_Has_Unknown_Discriminants
9186 (Derived_Type,
9187 Has_Unknown_Discriminants (Parent_Type)
9188 or else Unknown_Discriminants_Present (N));
9190 -- The partial view of the parent may have unknown discriminants,
9191 -- but if the full view has discriminants and the parent type is
9192 -- in scope they must be inherited.
9194 elsif Has_Unknown_Discriminants (Parent_Type)
9195 and then
9196 (not Has_Discriminants (Parent_Type)
9197 or else not In_Open_Scopes (Scope (Parent_Base)))
9198 then
9199 Set_Has_Unknown_Discriminants (Derived_Type);
9200 end if;
9202 if not Has_Unknown_Discriminants (Derived_Type)
9203 and then not Has_Unknown_Discriminants (Parent_Base)
9204 and then Has_Discriminants (Parent_Type)
9205 then
9206 Inherit_Discrims := True;
9207 Set_Has_Discriminants
9208 (Derived_Type, True);
9209 Set_Discriminant_Constraint
9210 (Derived_Type, Discriminant_Constraint (Parent_Base));
9211 end if;
9213 -- The following test is true for private types (remember
9214 -- transformation 5. is not applied to those) and in an error
9215 -- situation.
9217 if Constraint_Present then
9218 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9219 end if;
9221 -- For now mark a new derived type as constrained only if it has no
9222 -- discriminants. At the end of Build_Derived_Record_Type we properly
9223 -- set this flag in the case of private extensions. See comments in
9224 -- point 9. just before body of Build_Derived_Record_Type.
9226 Set_Is_Constrained
9227 (Derived_Type,
9228 not (Inherit_Discrims
9229 or else Has_Unknown_Discriminants (Derived_Type)));
9230 end if;
9232 -- STEP 3: initialize fields of derived type
9234 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9235 Set_Stored_Constraint (Derived_Type, No_Elist);
9237 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9238 -- but cannot be interfaces
9240 if not Private_Extension
9241 and then Ekind (Derived_Type) /= E_Private_Type
9242 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9243 then
9244 if Interface_Present (Type_Def) then
9245 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9246 end if;
9248 Set_Interfaces (Derived_Type, No_Elist);
9249 end if;
9251 -- Fields inherited from the Parent_Type
9253 Set_Has_Specified_Layout
9254 (Derived_Type, Has_Specified_Layout (Parent_Type));
9255 Set_Is_Limited_Composite
9256 (Derived_Type, Is_Limited_Composite (Parent_Type));
9257 Set_Is_Private_Composite
9258 (Derived_Type, Is_Private_Composite (Parent_Type));
9260 if Is_Tagged_Type (Parent_Type) then
9261 Set_No_Tagged_Streams_Pragma
9262 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9263 end if;
9265 -- Fields inherited from the Parent_Base
9267 Set_Has_Controlled_Component
9268 (Derived_Type, Has_Controlled_Component (Parent_Base));
9269 Set_Has_Non_Standard_Rep
9270 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9271 Set_Has_Primitive_Operations
9272 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9274 -- Set fields for private derived types
9276 if Is_Private_Type (Derived_Type) then
9277 Set_Depends_On_Private (Derived_Type, True);
9278 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9279 end if;
9281 -- Inherit fields for non-private types. If this is the completion of a
9282 -- derivation from a private type, the parent itself is private and the
9283 -- attributes come from its full view, which must be present.
9285 if Is_Record_Type (Derived_Type) then
9286 declare
9287 Parent_Full : Entity_Id;
9289 begin
9290 if Is_Private_Type (Parent_Base)
9291 and then not Is_Record_Type (Parent_Base)
9292 then
9293 Parent_Full := Full_View (Parent_Base);
9294 else
9295 Parent_Full := Parent_Base;
9296 end if;
9298 Set_Component_Alignment
9299 (Derived_Type, Component_Alignment (Parent_Full));
9300 Set_C_Pass_By_Copy
9301 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9302 Set_Has_Complex_Representation
9303 (Derived_Type, Has_Complex_Representation (Parent_Full));
9305 -- For untagged types, inherit the layout by default to avoid
9306 -- costly changes of representation for type conversions.
9308 if not Is_Tagged then
9309 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9310 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9311 end if;
9312 end;
9313 end if;
9315 -- Set fields for tagged types
9317 if Is_Tagged then
9318 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9320 -- All tagged types defined in Ada.Finalization are controlled
9322 if Chars (Scope (Derived_Type)) = Name_Finalization
9323 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9324 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9325 then
9326 Set_Is_Controlled_Active (Derived_Type);
9327 else
9328 Set_Is_Controlled_Active
9329 (Derived_Type, Is_Controlled_Active (Parent_Base));
9330 end if;
9332 -- Minor optimization: there is no need to generate the class-wide
9333 -- entity associated with an underlying record view.
9335 if not Is_Underlying_Record_View (Derived_Type) then
9336 Make_Class_Wide_Type (Derived_Type);
9337 end if;
9339 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9341 if Has_Discriminants (Derived_Type)
9342 and then Constraint_Present
9343 then
9344 Set_Stored_Constraint
9345 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9346 end if;
9348 if Ada_Version >= Ada_2005 then
9349 declare
9350 Ifaces_List : Elist_Id;
9352 begin
9353 -- Checks rules 3.9.4 (13/2 and 14/2)
9355 if Comes_From_Source (Derived_Type)
9356 and then not Is_Private_Type (Derived_Type)
9357 and then Is_Interface (Parent_Type)
9358 and then not Is_Interface (Derived_Type)
9359 then
9360 if Is_Task_Interface (Parent_Type) then
9361 Error_Msg_N
9362 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9363 Derived_Type);
9365 elsif Is_Protected_Interface (Parent_Type) then
9366 Error_Msg_N
9367 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9368 Derived_Type);
9369 end if;
9370 end if;
9372 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9374 Check_Interfaces (N, Type_Def);
9376 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9377 -- not already in the parents.
9379 Collect_Interfaces
9380 (T => Derived_Type,
9381 Ifaces_List => Ifaces_List,
9382 Exclude_Parents => True);
9384 Set_Interfaces (Derived_Type, Ifaces_List);
9386 -- If the derived type is the anonymous type created for
9387 -- a declaration whose parent has a constraint, propagate
9388 -- the interface list to the source type. This must be done
9389 -- prior to the completion of the analysis of the source type
9390 -- because the components in the extension may contain current
9391 -- instances whose legality depends on some ancestor.
9393 if Is_Itype (Derived_Type) then
9394 declare
9395 Def : constant Node_Id :=
9396 Associated_Node_For_Itype (Derived_Type);
9397 begin
9398 if Present (Def)
9399 and then Nkind (Def) = N_Full_Type_Declaration
9400 then
9401 Set_Interfaces
9402 (Defining_Identifier (Def), Ifaces_List);
9403 end if;
9404 end;
9405 end if;
9407 -- A type extension is automatically Ghost when one of its
9408 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9409 -- also inherited when the parent type is Ghost, but this is
9410 -- done in Build_Derived_Type as the mechanism also handles
9411 -- untagged derivations.
9413 if Implements_Ghost_Interface (Derived_Type) then
9414 Set_Is_Ghost_Entity (Derived_Type);
9415 end if;
9416 end;
9417 end if;
9418 end if;
9420 -- STEP 4: Inherit components from the parent base and constrain them.
9421 -- Apply the second transformation described in point 6. above.
9423 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9424 or else not Has_Discriminants (Parent_Type)
9425 or else not Is_Constrained (Parent_Type)
9426 then
9427 Constrs := Discs;
9428 else
9429 Constrs := Discriminant_Constraint (Parent_Type);
9430 end if;
9432 Assoc_List :=
9433 Inherit_Components
9434 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9436 -- STEP 5a: Copy the parent record declaration for untagged types
9438 Set_Has_Implicit_Dereference
9439 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9441 if not Is_Tagged then
9443 -- Discriminant_Constraint (Derived_Type) has been properly
9444 -- constructed. Save it and temporarily set it to Empty because we
9445 -- do not want the call to New_Copy_Tree below to mess this list.
9447 if Has_Discriminants (Derived_Type) then
9448 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9449 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9450 else
9451 Save_Discr_Constr := No_Elist;
9452 end if;
9454 -- Save the Etype field of Derived_Type. It is correctly set now,
9455 -- but the call to New_Copy tree may remap it to point to itself,
9456 -- which is not what we want. Ditto for the Next_Entity field.
9458 Save_Etype := Etype (Derived_Type);
9459 Save_Next_Entity := Next_Entity (Derived_Type);
9461 -- Assoc_List maps all stored discriminants in the Parent_Base to
9462 -- stored discriminants in the Derived_Type. It is fundamental that
9463 -- no types or itypes with discriminants other than the stored
9464 -- discriminants appear in the entities declared inside
9465 -- Derived_Type, since the back end cannot deal with it.
9467 New_Decl :=
9468 New_Copy_Tree
9469 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9470 Copy_Dimensions_Of_Components (Derived_Type);
9472 -- Restore the fields saved prior to the New_Copy_Tree call
9473 -- and compute the stored constraint.
9475 Set_Etype (Derived_Type, Save_Etype);
9476 Link_Entities (Derived_Type, Save_Next_Entity);
9478 if Has_Discriminants (Derived_Type) then
9479 Set_Discriminant_Constraint
9480 (Derived_Type, Save_Discr_Constr);
9481 Set_Stored_Constraint
9482 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9484 Replace_Components (Derived_Type, New_Decl);
9485 end if;
9487 -- Insert the new derived type declaration
9489 Rewrite (N, New_Decl);
9491 -- STEP 5b: Complete the processing for record extensions in generics
9493 -- There is no completion for record extensions declared in the
9494 -- parameter part of a generic, so we need to complete processing for
9495 -- these generic record extensions here. The Record_Type_Definition call
9496 -- will change the Ekind of the components from E_Void to E_Component.
9498 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9499 Record_Type_Definition (Empty, Derived_Type);
9501 -- STEP 5c: Process the record extension for non private tagged types
9503 elsif not Private_Extension then
9504 Expand_Record_Extension (Derived_Type, Type_Def);
9506 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9507 -- derived type to propagate some semantic information. This led
9508 -- to other ASIS failures and has been removed.
9510 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9511 -- implemented interfaces if we are in expansion mode
9513 if Expander_Active
9514 and then Has_Interfaces (Derived_Type)
9515 then
9516 Add_Interface_Tag_Components (N, Derived_Type);
9517 end if;
9519 -- Analyze the record extension
9521 Record_Type_Definition
9522 (Record_Extension_Part (Type_Def), Derived_Type);
9523 end if;
9525 End_Scope;
9527 -- Nothing else to do if there is an error in the derivation.
9528 -- An unusual case: the full view may be derived from a type in an
9529 -- instance, when the partial view was used illegally as an actual
9530 -- in that instance, leading to a circular definition.
9532 if Etype (Derived_Type) = Any_Type
9533 or else Etype (Parent_Type) = Derived_Type
9534 then
9535 return;
9536 end if;
9538 -- Set delayed freeze and then derive subprograms, we need to do
9539 -- this in this order so that derived subprograms inherit the
9540 -- derived freeze if necessary.
9542 Set_Has_Delayed_Freeze (Derived_Type);
9544 if Derive_Subps then
9545 Derive_Subprograms (Parent_Type, Derived_Type);
9546 end if;
9548 -- If we have a private extension which defines a constrained derived
9549 -- type mark as constrained here after we have derived subprograms. See
9550 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9552 if Private_Extension and then Inherit_Discrims then
9553 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9554 Set_Is_Constrained (Derived_Type, True);
9555 Set_Discriminant_Constraint (Derived_Type, Discs);
9557 elsif Is_Constrained (Parent_Type) then
9558 Set_Is_Constrained
9559 (Derived_Type, True);
9560 Set_Discriminant_Constraint
9561 (Derived_Type, Discriminant_Constraint (Parent_Type));
9562 end if;
9563 end if;
9565 -- Update the class-wide type, which shares the now-completed entity
9566 -- list with its specific type. In case of underlying record views,
9567 -- we do not generate the corresponding class wide entity.
9569 if Is_Tagged
9570 and then not Is_Underlying_Record_View (Derived_Type)
9571 then
9572 Set_First_Entity
9573 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9574 Set_Last_Entity
9575 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9576 end if;
9578 Check_Function_Writable_Actuals (N);
9579 end Build_Derived_Record_Type;
9581 ------------------------
9582 -- Build_Derived_Type --
9583 ------------------------
9585 procedure Build_Derived_Type
9586 (N : Node_Id;
9587 Parent_Type : Entity_Id;
9588 Derived_Type : Entity_Id;
9589 Is_Completion : Boolean;
9590 Derive_Subps : Boolean := True)
9592 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9594 begin
9595 -- Set common attributes
9597 Set_Scope (Derived_Type, Current_Scope);
9598 Set_Etype (Derived_Type, Parent_Base);
9599 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9600 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9602 Set_Size_Info (Derived_Type, Parent_Type);
9603 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9605 Set_Is_Controlled_Active
9606 (Derived_Type, Is_Controlled_Active (Parent_Type));
9608 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9609 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9610 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9612 if Is_Tagged_Type (Derived_Type) then
9613 Set_No_Tagged_Streams_Pragma
9614 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9615 end if;
9617 -- If the parent has primitive routines, set the derived type link
9619 if Has_Primitive_Operations (Parent_Type) then
9620 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9621 end if;
9623 -- If the parent type is a private subtype, the convention on the base
9624 -- type may be set in the private part, and not propagated to the
9625 -- subtype until later, so we obtain the convention from the base type.
9627 Set_Convention (Derived_Type, Convention (Parent_Base));
9629 -- Set SSO default for record or array type
9631 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9632 and then Is_Base_Type (Derived_Type)
9633 then
9634 Set_Default_SSO (Derived_Type);
9635 end if;
9637 -- A derived type inherits the Default_Initial_Condition pragma coming
9638 -- from any parent type within the derivation chain.
9640 if Has_DIC (Parent_Type) then
9641 Set_Has_Inherited_DIC (Derived_Type);
9642 end if;
9644 -- A derived type inherits any class-wide invariants coming from a
9645 -- parent type or an interface. Note that the invariant procedure of
9646 -- the parent type should not be inherited because the derived type may
9647 -- define invariants of its own.
9649 if not Is_Interface (Derived_Type) then
9650 if Has_Inherited_Invariants (Parent_Type)
9651 or else Has_Inheritable_Invariants (Parent_Type)
9652 then
9653 Set_Has_Inherited_Invariants (Derived_Type);
9655 elsif Is_Concurrent_Type (Derived_Type)
9656 or else Is_Tagged_Type (Derived_Type)
9657 then
9658 declare
9659 Iface : Entity_Id;
9660 Ifaces : Elist_Id;
9661 Iface_Elmt : Elmt_Id;
9663 begin
9664 Collect_Interfaces
9665 (T => Derived_Type,
9666 Ifaces_List => Ifaces,
9667 Exclude_Parents => True);
9669 if Present (Ifaces) then
9670 Iface_Elmt := First_Elmt (Ifaces);
9671 while Present (Iface_Elmt) loop
9672 Iface := Node (Iface_Elmt);
9674 if Has_Inheritable_Invariants (Iface) then
9675 Set_Has_Inherited_Invariants (Derived_Type);
9676 exit;
9677 end if;
9679 Next_Elmt (Iface_Elmt);
9680 end loop;
9681 end if;
9682 end;
9683 end if;
9684 end if;
9686 -- We similarly inherit predicates. Note that for scalar derived types
9687 -- the predicate is inherited from the first subtype, and not from its
9688 -- (anonymous) base type.
9690 if Has_Predicates (Parent_Type)
9691 or else Has_Predicates (First_Subtype (Parent_Type))
9692 then
9693 Set_Has_Predicates (Derived_Type);
9694 end if;
9696 -- The derived type inherits representation clauses from the parent
9697 -- type, and from any interfaces.
9699 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9701 declare
9702 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9703 begin
9704 while Present (Iface) loop
9705 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9706 Next (Iface);
9707 end loop;
9708 end;
9710 -- If the parent type has delayed rep aspects, then mark the derived
9711 -- type as possibly inheriting a delayed rep aspect.
9713 if Has_Delayed_Rep_Aspects (Parent_Type) then
9714 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9715 end if;
9717 -- A derived type becomes Ghost when its parent type is also Ghost
9718 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9719 -- directly inherited because the Ghost policy in effect may differ.
9721 if Is_Ghost_Entity (Parent_Type) then
9722 Set_Is_Ghost_Entity (Derived_Type);
9723 end if;
9725 -- Type dependent processing
9727 case Ekind (Parent_Type) is
9728 when Numeric_Kind =>
9729 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9731 when Array_Kind =>
9732 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9734 when Class_Wide_Kind
9735 | E_Record_Subtype
9736 | E_Record_Type
9738 Build_Derived_Record_Type
9739 (N, Parent_Type, Derived_Type, Derive_Subps);
9740 return;
9742 when Enumeration_Kind =>
9743 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9745 when Access_Kind =>
9746 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9748 when Incomplete_Or_Private_Kind =>
9749 Build_Derived_Private_Type
9750 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9752 -- For discriminated types, the derivation includes deriving
9753 -- primitive operations. For others it is done below.
9755 if Is_Tagged_Type (Parent_Type)
9756 or else Has_Discriminants (Parent_Type)
9757 or else (Present (Full_View (Parent_Type))
9758 and then Has_Discriminants (Full_View (Parent_Type)))
9759 then
9760 return;
9761 end if;
9763 when Concurrent_Kind =>
9764 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9766 when others =>
9767 raise Program_Error;
9768 end case;
9770 -- Nothing more to do if some error occurred
9772 if Etype (Derived_Type) = Any_Type then
9773 return;
9774 end if;
9776 -- Set delayed freeze and then derive subprograms, we need to do this
9777 -- in this order so that derived subprograms inherit the derived freeze
9778 -- if necessary.
9780 Set_Has_Delayed_Freeze (Derived_Type);
9782 if Derive_Subps then
9783 Derive_Subprograms (Parent_Type, Derived_Type);
9784 end if;
9786 Set_Has_Primitive_Operations
9787 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9788 end Build_Derived_Type;
9790 -----------------------
9791 -- Build_Discriminal --
9792 -----------------------
9794 procedure Build_Discriminal (Discrim : Entity_Id) is
9795 D_Minal : Entity_Id;
9796 CR_Disc : Entity_Id;
9798 begin
9799 -- A discriminal has the same name as the discriminant
9801 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9803 Set_Ekind (D_Minal, E_In_Parameter);
9804 Set_Mechanism (D_Minal, Default_Mechanism);
9805 Set_Etype (D_Minal, Etype (Discrim));
9806 Set_Scope (D_Minal, Current_Scope);
9807 Set_Parent (D_Minal, Parent (Discrim));
9809 Set_Discriminal (Discrim, D_Minal);
9810 Set_Discriminal_Link (D_Minal, Discrim);
9812 -- For task types, build at once the discriminants of the corresponding
9813 -- record, which are needed if discriminants are used in entry defaults
9814 -- and in family bounds.
9816 if Is_Concurrent_Type (Current_Scope)
9817 or else
9818 Is_Limited_Type (Current_Scope)
9819 then
9820 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9822 Set_Ekind (CR_Disc, E_In_Parameter);
9823 Set_Mechanism (CR_Disc, Default_Mechanism);
9824 Set_Etype (CR_Disc, Etype (Discrim));
9825 Set_Scope (CR_Disc, Current_Scope);
9826 Set_Discriminal_Link (CR_Disc, Discrim);
9827 Set_CR_Discriminant (Discrim, CR_Disc);
9828 end if;
9829 end Build_Discriminal;
9831 ------------------------------------
9832 -- Build_Discriminant_Constraints --
9833 ------------------------------------
9835 function Build_Discriminant_Constraints
9836 (T : Entity_Id;
9837 Def : Node_Id;
9838 Derived_Def : Boolean := False) return Elist_Id
9840 C : constant Node_Id := Constraint (Def);
9841 Nb_Discr : constant Nat := Number_Discriminants (T);
9843 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9844 -- Saves the expression corresponding to a given discriminant in T
9846 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9847 -- Return the Position number within array Discr_Expr of a discriminant
9848 -- D within the discriminant list of the discriminated type T.
9850 procedure Process_Discriminant_Expression
9851 (Expr : Node_Id;
9852 D : Entity_Id);
9853 -- If this is a discriminant constraint on a partial view, do not
9854 -- generate an overflow check on the discriminant expression. The check
9855 -- will be generated when constraining the full view. Otherwise the
9856 -- backend creates duplicate symbols for the temporaries corresponding
9857 -- to the expressions to be checked, causing spurious assembler errors.
9859 ------------------
9860 -- Pos_Of_Discr --
9861 ------------------
9863 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9864 Disc : Entity_Id;
9866 begin
9867 Disc := First_Discriminant (T);
9868 for J in Discr_Expr'Range loop
9869 if Disc = D then
9870 return J;
9871 end if;
9873 Next_Discriminant (Disc);
9874 end loop;
9876 -- Note: Since this function is called on discriminants that are
9877 -- known to belong to the discriminated type, falling through the
9878 -- loop with no match signals an internal compiler error.
9880 raise Program_Error;
9881 end Pos_Of_Discr;
9883 -------------------------------------
9884 -- Process_Discriminant_Expression --
9885 -------------------------------------
9887 procedure Process_Discriminant_Expression
9888 (Expr : Node_Id;
9889 D : Entity_Id)
9891 BDT : constant Entity_Id := Base_Type (Etype (D));
9893 begin
9894 -- If this is a discriminant constraint on a partial view, do
9895 -- not generate an overflow on the discriminant expression. The
9896 -- check will be generated when constraining the full view.
9898 if Is_Private_Type (T)
9899 and then Present (Full_View (T))
9900 then
9901 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9902 else
9903 Analyze_And_Resolve (Expr, BDT);
9904 end if;
9905 end Process_Discriminant_Expression;
9907 -- Declarations local to Build_Discriminant_Constraints
9909 Discr : Entity_Id;
9910 E : Entity_Id;
9911 Elist : constant Elist_Id := New_Elmt_List;
9913 Constr : Node_Id;
9914 Expr : Node_Id;
9915 Id : Node_Id;
9916 Position : Nat;
9917 Found : Boolean;
9919 Discrim_Present : Boolean := False;
9921 -- Start of processing for Build_Discriminant_Constraints
9923 begin
9924 -- The following loop will process positional associations only.
9925 -- For a positional association, the (single) discriminant is
9926 -- implicitly specified by position, in textual order (RM 3.7.2).
9928 Discr := First_Discriminant (T);
9929 Constr := First (Constraints (C));
9930 for D in Discr_Expr'Range loop
9931 exit when Nkind (Constr) = N_Discriminant_Association;
9933 if No (Constr) then
9934 Error_Msg_N ("too few discriminants given in constraint", C);
9935 return New_Elmt_List;
9937 elsif Nkind (Constr) = N_Range
9938 or else (Nkind (Constr) = N_Attribute_Reference
9939 and then Attribute_Name (Constr) = Name_Range)
9940 then
9941 Error_Msg_N
9942 ("a range is not a valid discriminant constraint", Constr);
9943 Discr_Expr (D) := Error;
9945 elsif Nkind (Constr) = N_Subtype_Indication then
9946 Error_Msg_N
9947 ("a subtype indication is not a valid discriminant constraint",
9948 Constr);
9949 Discr_Expr (D) := Error;
9951 else
9952 Process_Discriminant_Expression (Constr, Discr);
9953 Discr_Expr (D) := Constr;
9954 end if;
9956 Next_Discriminant (Discr);
9957 Next (Constr);
9958 end loop;
9960 if No (Discr) and then Present (Constr) then
9961 Error_Msg_N ("too many discriminants given in constraint", Constr);
9962 return New_Elmt_List;
9963 end if;
9965 -- Named associations can be given in any order, but if both positional
9966 -- and named associations are used in the same discriminant constraint,
9967 -- then positional associations must occur first, at their normal
9968 -- position. Hence once a named association is used, the rest of the
9969 -- discriminant constraint must use only named associations.
9971 while Present (Constr) loop
9973 -- Positional association forbidden after a named association
9975 if Nkind (Constr) /= N_Discriminant_Association then
9976 Error_Msg_N ("positional association follows named one", Constr);
9977 return New_Elmt_List;
9979 -- Otherwise it is a named association
9981 else
9982 -- E records the type of the discriminants in the named
9983 -- association. All the discriminants specified in the same name
9984 -- association must have the same type.
9986 E := Empty;
9988 -- Search the list of discriminants in T to see if the simple name
9989 -- given in the constraint matches any of them.
9991 Id := First (Selector_Names (Constr));
9992 while Present (Id) loop
9993 Found := False;
9995 -- If Original_Discriminant is present, we are processing a
9996 -- generic instantiation and this is an instance node. We need
9997 -- to find the name of the corresponding discriminant in the
9998 -- actual record type T and not the name of the discriminant in
9999 -- the generic formal. Example:
10001 -- generic
10002 -- type G (D : int) is private;
10003 -- package P is
10004 -- subtype W is G (D => 1);
10005 -- end package;
10006 -- type Rec (X : int) is record ... end record;
10007 -- package Q is new P (G => Rec);
10009 -- At the point of the instantiation, formal type G is Rec
10010 -- and therefore when reanalyzing "subtype W is G (D => 1);"
10011 -- which really looks like "subtype W is Rec (D => 1);" at
10012 -- the point of instantiation, we want to find the discriminant
10013 -- that corresponds to D in Rec, i.e. X.
10015 if Present (Original_Discriminant (Id))
10016 and then In_Instance
10017 then
10018 Discr := Find_Corresponding_Discriminant (Id, T);
10019 Found := True;
10021 else
10022 Discr := First_Discriminant (T);
10023 while Present (Discr) loop
10024 if Chars (Discr) = Chars (Id) then
10025 Found := True;
10026 exit;
10027 end if;
10029 Next_Discriminant (Discr);
10030 end loop;
10032 if not Found then
10033 Error_Msg_N ("& does not match any discriminant", Id);
10034 return New_Elmt_List;
10036 -- If the parent type is a generic formal, preserve the
10037 -- name of the discriminant for subsequent instances.
10038 -- see comment at the beginning of this if statement.
10040 elsif Is_Generic_Type (Root_Type (T)) then
10041 Set_Original_Discriminant (Id, Discr);
10042 end if;
10043 end if;
10045 Position := Pos_Of_Discr (T, Discr);
10047 if Present (Discr_Expr (Position)) then
10048 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10050 else
10051 -- Each discriminant specified in the same named association
10052 -- must be associated with a separate copy of the
10053 -- corresponding expression.
10055 if Present (Next (Id)) then
10056 Expr := New_Copy_Tree (Expression (Constr));
10057 Set_Parent (Expr, Parent (Expression (Constr)));
10058 else
10059 Expr := Expression (Constr);
10060 end if;
10062 Discr_Expr (Position) := Expr;
10063 Process_Discriminant_Expression (Expr, Discr);
10064 end if;
10066 -- A discriminant association with more than one discriminant
10067 -- name is only allowed if the named discriminants are all of
10068 -- the same type (RM 3.7.1(8)).
10070 if E = Empty then
10071 E := Base_Type (Etype (Discr));
10073 elsif Base_Type (Etype (Discr)) /= E then
10074 Error_Msg_N
10075 ("all discriminants in an association " &
10076 "must have the same type", Id);
10077 end if;
10079 Next (Id);
10080 end loop;
10081 end if;
10083 Next (Constr);
10084 end loop;
10086 -- A discriminant constraint must provide exactly one value for each
10087 -- discriminant of the type (RM 3.7.1(8)).
10089 for J in Discr_Expr'Range loop
10090 if No (Discr_Expr (J)) then
10091 Error_Msg_N ("too few discriminants given in constraint", C);
10092 return New_Elmt_List;
10093 end if;
10094 end loop;
10096 -- Determine if there are discriminant expressions in the constraint
10098 for J in Discr_Expr'Range loop
10099 if Denotes_Discriminant
10100 (Discr_Expr (J), Check_Concurrent => True)
10101 then
10102 Discrim_Present := True;
10103 end if;
10104 end loop;
10106 -- Build an element list consisting of the expressions given in the
10107 -- discriminant constraint and apply the appropriate checks. The list
10108 -- is constructed after resolving any named discriminant associations
10109 -- and therefore the expressions appear in the textual order of the
10110 -- discriminants.
10112 Discr := First_Discriminant (T);
10113 for J in Discr_Expr'Range loop
10114 if Discr_Expr (J) /= Error then
10115 Append_Elmt (Discr_Expr (J), Elist);
10117 -- If any of the discriminant constraints is given by a
10118 -- discriminant and we are in a derived type declaration we
10119 -- have a discriminant renaming. Establish link between new
10120 -- and old discriminant. The new discriminant has an implicit
10121 -- dereference if the old one does.
10123 if Denotes_Discriminant (Discr_Expr (J)) then
10124 if Derived_Def then
10125 declare
10126 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10128 begin
10129 Set_Corresponding_Discriminant (New_Discr, Discr);
10130 Set_Has_Implicit_Dereference (New_Discr,
10131 Has_Implicit_Dereference (Discr));
10132 end;
10133 end if;
10135 -- Force the evaluation of non-discriminant expressions.
10136 -- If we have found a discriminant in the constraint 3.4(26)
10137 -- and 3.8(18) demand that no range checks are performed are
10138 -- after evaluation. If the constraint is for a component
10139 -- definition that has a per-object constraint, expressions are
10140 -- evaluated but not checked either. In all other cases perform
10141 -- a range check.
10143 else
10144 if Discrim_Present then
10145 null;
10147 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10148 and then Has_Per_Object_Constraint
10149 (Defining_Identifier (Parent (Parent (Def))))
10150 then
10151 null;
10153 elsif Is_Access_Type (Etype (Discr)) then
10154 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10156 else
10157 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10158 end if;
10160 Force_Evaluation (Discr_Expr (J));
10161 end if;
10163 -- Check that the designated type of an access discriminant's
10164 -- expression is not a class-wide type unless the discriminant's
10165 -- designated type is also class-wide.
10167 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10168 and then not Is_Class_Wide_Type
10169 (Designated_Type (Etype (Discr)))
10170 and then Etype (Discr_Expr (J)) /= Any_Type
10171 and then Is_Class_Wide_Type
10172 (Designated_Type (Etype (Discr_Expr (J))))
10173 then
10174 Wrong_Type (Discr_Expr (J), Etype (Discr));
10176 elsif Is_Access_Type (Etype (Discr))
10177 and then not Is_Access_Constant (Etype (Discr))
10178 and then Is_Access_Type (Etype (Discr_Expr (J)))
10179 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10180 then
10181 Error_Msg_NE
10182 ("constraint for discriminant& must be access to variable",
10183 Def, Discr);
10184 end if;
10185 end if;
10187 Next_Discriminant (Discr);
10188 end loop;
10190 return Elist;
10191 end Build_Discriminant_Constraints;
10193 ---------------------------------
10194 -- Build_Discriminated_Subtype --
10195 ---------------------------------
10197 procedure Build_Discriminated_Subtype
10198 (T : Entity_Id;
10199 Def_Id : Entity_Id;
10200 Elist : Elist_Id;
10201 Related_Nod : Node_Id;
10202 For_Access : Boolean := False)
10204 Has_Discrs : constant Boolean := Has_Discriminants (T);
10205 Constrained : constant Boolean :=
10206 (Has_Discrs
10207 and then not Is_Empty_Elmt_List (Elist)
10208 and then not Is_Class_Wide_Type (T))
10209 or else Is_Constrained (T);
10211 begin
10212 if Ekind (T) = E_Record_Type then
10213 if For_Access then
10214 Set_Ekind (Def_Id, E_Private_Subtype);
10215 Set_Is_For_Access_Subtype (Def_Id, True);
10216 else
10217 Set_Ekind (Def_Id, E_Record_Subtype);
10218 end if;
10220 -- Inherit preelaboration flag from base, for types for which it
10221 -- may have been set: records, private types, protected types.
10223 Set_Known_To_Have_Preelab_Init
10224 (Def_Id, Known_To_Have_Preelab_Init (T));
10226 elsif Ekind (T) = E_Task_Type then
10227 Set_Ekind (Def_Id, E_Task_Subtype);
10229 elsif Ekind (T) = E_Protected_Type then
10230 Set_Ekind (Def_Id, E_Protected_Subtype);
10231 Set_Known_To_Have_Preelab_Init
10232 (Def_Id, Known_To_Have_Preelab_Init (T));
10234 elsif Is_Private_Type (T) then
10235 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10236 Set_Known_To_Have_Preelab_Init
10237 (Def_Id, Known_To_Have_Preelab_Init (T));
10239 -- Private subtypes may have private dependents
10241 Set_Private_Dependents (Def_Id, New_Elmt_List);
10243 elsif Is_Class_Wide_Type (T) then
10244 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10246 else
10247 -- Incomplete type. Attach subtype to list of dependents, to be
10248 -- completed with full view of parent type, unless is it the
10249 -- designated subtype of a record component within an init_proc.
10250 -- This last case arises for a component of an access type whose
10251 -- designated type is incomplete (e.g. a Taft Amendment type).
10252 -- The designated subtype is within an inner scope, and needs no
10253 -- elaboration, because only the access type is needed in the
10254 -- initialization procedure.
10256 if Ekind (T) = E_Incomplete_Type then
10257 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10258 else
10259 Set_Ekind (Def_Id, Ekind (T));
10260 end if;
10262 if For_Access and then Within_Init_Proc then
10263 null;
10264 else
10265 Append_Elmt (Def_Id, Private_Dependents (T));
10266 end if;
10267 end if;
10269 Set_Etype (Def_Id, T);
10270 Init_Size_Align (Def_Id);
10271 Set_Has_Discriminants (Def_Id, Has_Discrs);
10272 Set_Is_Constrained (Def_Id, Constrained);
10274 Set_First_Entity (Def_Id, First_Entity (T));
10275 Set_Last_Entity (Def_Id, Last_Entity (T));
10276 Set_Has_Implicit_Dereference
10277 (Def_Id, Has_Implicit_Dereference (T));
10278 Set_Has_Pragma_Unreferenced_Objects
10279 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10281 -- If the subtype is the completion of a private declaration, there may
10282 -- have been representation clauses for the partial view, and they must
10283 -- be preserved. Build_Derived_Type chains the inherited clauses with
10284 -- the ones appearing on the extension. If this comes from a subtype
10285 -- declaration, all clauses are inherited.
10287 if No (First_Rep_Item (Def_Id)) then
10288 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10289 end if;
10291 if Is_Tagged_Type (T) then
10292 Set_Is_Tagged_Type (Def_Id);
10293 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10294 Make_Class_Wide_Type (Def_Id);
10295 end if;
10297 Set_Stored_Constraint (Def_Id, No_Elist);
10299 if Has_Discrs then
10300 Set_Discriminant_Constraint (Def_Id, Elist);
10301 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10302 end if;
10304 if Is_Tagged_Type (T) then
10306 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10307 -- concurrent record type (which has the list of primitive
10308 -- operations).
10310 if Ada_Version >= Ada_2005
10311 and then Is_Concurrent_Type (T)
10312 then
10313 Set_Corresponding_Record_Type (Def_Id,
10314 Corresponding_Record_Type (T));
10315 else
10316 Set_Direct_Primitive_Operations (Def_Id,
10317 Direct_Primitive_Operations (T));
10318 end if;
10320 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10321 end if;
10323 -- Subtypes introduced by component declarations do not need to be
10324 -- marked as delayed, and do not get freeze nodes, because the semantics
10325 -- verifies that the parents of the subtypes are frozen before the
10326 -- enclosing record is frozen.
10328 if not Is_Type (Scope (Def_Id)) then
10329 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10331 if Is_Private_Type (T)
10332 and then Present (Full_View (T))
10333 then
10334 Conditional_Delay (Def_Id, Full_View (T));
10335 else
10336 Conditional_Delay (Def_Id, T);
10337 end if;
10338 end if;
10340 if Is_Record_Type (T) then
10341 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10343 if Has_Discrs
10344 and then not Is_Empty_Elmt_List (Elist)
10345 and then not For_Access
10346 then
10347 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10349 elsif not For_Access then
10350 Set_Cloned_Subtype (Def_Id, T);
10351 end if;
10352 end if;
10353 end Build_Discriminated_Subtype;
10355 ---------------------------
10356 -- Build_Itype_Reference --
10357 ---------------------------
10359 procedure Build_Itype_Reference
10360 (Ityp : Entity_Id;
10361 Nod : Node_Id)
10363 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10364 begin
10366 -- Itype references are only created for use by the back-end
10368 if Inside_A_Generic then
10369 return;
10370 else
10371 Set_Itype (IR, Ityp);
10373 -- If Nod is a library unit entity, then Insert_After won't work,
10374 -- because Nod is not a member of any list. Therefore, we use
10375 -- Add_Global_Declaration in this case. This can happen if we have a
10376 -- build-in-place library function, child unit or not.
10378 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10379 or else
10380 (Nkind_In (Nod,
10381 N_Defining_Program_Unit_Name, N_Subprogram_Declaration)
10382 and then Is_Compilation_Unit (Defining_Entity (Nod)))
10383 then
10384 Add_Global_Declaration (IR);
10385 else
10386 Insert_After (Nod, IR);
10387 end if;
10388 end if;
10389 end Build_Itype_Reference;
10391 ------------------------
10392 -- Build_Scalar_Bound --
10393 ------------------------
10395 function Build_Scalar_Bound
10396 (Bound : Node_Id;
10397 Par_T : Entity_Id;
10398 Der_T : Entity_Id) return Node_Id
10400 New_Bound : Entity_Id;
10402 begin
10403 -- Note: not clear why this is needed, how can the original bound
10404 -- be unanalyzed at this point? and if it is, what business do we
10405 -- have messing around with it? and why is the base type of the
10406 -- parent type the right type for the resolution. It probably is
10407 -- not. It is OK for the new bound we are creating, but not for
10408 -- the old one??? Still if it never happens, no problem.
10410 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10412 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10413 New_Bound := New_Copy (Bound);
10414 Set_Etype (New_Bound, Der_T);
10415 Set_Analyzed (New_Bound);
10417 elsif Is_Entity_Name (Bound) then
10418 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10420 -- The following is almost certainly wrong. What business do we have
10421 -- relocating a node (Bound) that is presumably still attached to
10422 -- the tree elsewhere???
10424 else
10425 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10426 end if;
10428 Set_Etype (New_Bound, Der_T);
10429 return New_Bound;
10430 end Build_Scalar_Bound;
10432 --------------------------------
10433 -- Build_Underlying_Full_View --
10434 --------------------------------
10436 procedure Build_Underlying_Full_View
10437 (N : Node_Id;
10438 Typ : Entity_Id;
10439 Par : Entity_Id)
10441 Loc : constant Source_Ptr := Sloc (N);
10442 Subt : constant Entity_Id :=
10443 Make_Defining_Identifier
10444 (Loc, New_External_Name (Chars (Typ), 'S'));
10446 Constr : Node_Id;
10447 Indic : Node_Id;
10448 C : Node_Id;
10449 Id : Node_Id;
10451 procedure Set_Discriminant_Name (Id : Node_Id);
10452 -- If the derived type has discriminants, they may rename discriminants
10453 -- of the parent. When building the full view of the parent, we need to
10454 -- recover the names of the original discriminants if the constraint is
10455 -- given by named associations.
10457 ---------------------------
10458 -- Set_Discriminant_Name --
10459 ---------------------------
10461 procedure Set_Discriminant_Name (Id : Node_Id) is
10462 Disc : Entity_Id;
10464 begin
10465 Set_Original_Discriminant (Id, Empty);
10467 if Has_Discriminants (Typ) then
10468 Disc := First_Discriminant (Typ);
10469 while Present (Disc) loop
10470 if Chars (Disc) = Chars (Id)
10471 and then Present (Corresponding_Discriminant (Disc))
10472 then
10473 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10474 end if;
10475 Next_Discriminant (Disc);
10476 end loop;
10477 end if;
10478 end Set_Discriminant_Name;
10480 -- Start of processing for Build_Underlying_Full_View
10482 begin
10483 if Nkind (N) = N_Full_Type_Declaration then
10484 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10486 elsif Nkind (N) = N_Subtype_Declaration then
10487 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10489 elsif Nkind (N) = N_Component_Declaration then
10490 Constr :=
10491 New_Copy_Tree
10492 (Constraint (Subtype_Indication (Component_Definition (N))));
10494 else
10495 raise Program_Error;
10496 end if;
10498 C := First (Constraints (Constr));
10499 while Present (C) loop
10500 if Nkind (C) = N_Discriminant_Association then
10501 Id := First (Selector_Names (C));
10502 while Present (Id) loop
10503 Set_Discriminant_Name (Id);
10504 Next (Id);
10505 end loop;
10506 end if;
10508 Next (C);
10509 end loop;
10511 Indic :=
10512 Make_Subtype_Declaration (Loc,
10513 Defining_Identifier => Subt,
10514 Subtype_Indication =>
10515 Make_Subtype_Indication (Loc,
10516 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10517 Constraint => New_Copy_Tree (Constr)));
10519 -- If this is a component subtype for an outer itype, it is not
10520 -- a list member, so simply set the parent link for analysis: if
10521 -- the enclosing type does not need to be in a declarative list,
10522 -- neither do the components.
10524 if Is_List_Member (N)
10525 and then Nkind (N) /= N_Component_Declaration
10526 then
10527 Insert_Before (N, Indic);
10528 else
10529 Set_Parent (Indic, Parent (N));
10530 end if;
10532 Analyze (Indic);
10533 Set_Underlying_Full_View (Typ, Full_View (Subt));
10534 Set_Is_Underlying_Full_View (Full_View (Subt));
10535 end Build_Underlying_Full_View;
10537 -------------------------------
10538 -- Check_Abstract_Overriding --
10539 -------------------------------
10541 procedure Check_Abstract_Overriding (T : Entity_Id) is
10542 Alias_Subp : Entity_Id;
10543 Elmt : Elmt_Id;
10544 Op_List : Elist_Id;
10545 Subp : Entity_Id;
10546 Type_Def : Node_Id;
10548 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10549 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10550 -- which has pragma Implemented already set. Check whether Subp's entity
10551 -- kind conforms to the implementation kind of the overridden routine.
10553 procedure Check_Pragma_Implemented
10554 (Subp : Entity_Id;
10555 Iface_Subp : Entity_Id);
10556 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10557 -- Iface_Subp and both entities have pragma Implemented already set on
10558 -- them. Check whether the two implementation kinds are conforming.
10560 procedure Inherit_Pragma_Implemented
10561 (Subp : Entity_Id;
10562 Iface_Subp : Entity_Id);
10563 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10564 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10565 -- Propagate the implementation kind of Iface_Subp to Subp.
10567 ------------------------------
10568 -- Check_Pragma_Implemented --
10569 ------------------------------
10571 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10572 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10573 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10574 Subp_Alias : constant Entity_Id := Alias (Subp);
10575 Contr_Typ : Entity_Id;
10576 Impl_Subp : Entity_Id;
10578 begin
10579 -- Subp must have an alias since it is a hidden entity used to link
10580 -- an interface subprogram to its overriding counterpart.
10582 pragma Assert (Present (Subp_Alias));
10584 -- Handle aliases to synchronized wrappers
10586 Impl_Subp := Subp_Alias;
10588 if Is_Primitive_Wrapper (Impl_Subp) then
10589 Impl_Subp := Wrapped_Entity (Impl_Subp);
10590 end if;
10592 -- Extract the type of the controlling formal
10594 Contr_Typ := Etype (First_Formal (Subp_Alias));
10596 if Is_Concurrent_Record_Type (Contr_Typ) then
10597 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10598 end if;
10600 -- An interface subprogram whose implementation kind is By_Entry must
10601 -- be implemented by an entry.
10603 if Impl_Kind = Name_By_Entry
10604 and then Ekind (Impl_Subp) /= E_Entry
10605 then
10606 Error_Msg_Node_2 := Iface_Alias;
10607 Error_Msg_NE
10608 ("type & must implement abstract subprogram & with an entry",
10609 Subp_Alias, Contr_Typ);
10611 elsif Impl_Kind = Name_By_Protected_Procedure then
10613 -- An interface subprogram whose implementation kind is By_
10614 -- Protected_Procedure cannot be implemented by a primitive
10615 -- procedure of a task type.
10617 if Ekind (Contr_Typ) /= E_Protected_Type then
10618 Error_Msg_Node_2 := Contr_Typ;
10619 Error_Msg_NE
10620 ("interface subprogram & cannot be implemented by a " &
10621 "primitive procedure of task type &", Subp_Alias,
10622 Iface_Alias);
10624 -- An interface subprogram whose implementation kind is By_
10625 -- Protected_Procedure must be implemented by a procedure.
10627 elsif Ekind (Impl_Subp) /= E_Procedure then
10628 Error_Msg_Node_2 := Iface_Alias;
10629 Error_Msg_NE
10630 ("type & must implement abstract subprogram & with a " &
10631 "procedure", Subp_Alias, Contr_Typ);
10633 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10634 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10635 then
10636 Error_Msg_Name_1 := Impl_Kind;
10637 Error_Msg_N
10638 ("overriding operation& must have synchronization%",
10639 Subp_Alias);
10640 end if;
10642 -- If primitive has Optional synchronization, overriding operation
10643 -- must match if it has an explicit synchronization..
10645 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10646 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10647 then
10648 Error_Msg_Name_1 := Impl_Kind;
10649 Error_Msg_N
10650 ("overriding operation& must have syncrhonization%",
10651 Subp_Alias);
10652 end if;
10653 end Check_Pragma_Implemented;
10655 ------------------------------
10656 -- Check_Pragma_Implemented --
10657 ------------------------------
10659 procedure Check_Pragma_Implemented
10660 (Subp : Entity_Id;
10661 Iface_Subp : Entity_Id)
10663 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10664 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10666 begin
10667 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10668 -- and overriding subprogram are different. In general this is an
10669 -- error except when the implementation kind of the overridden
10670 -- subprograms is By_Any or Optional.
10672 if Iface_Kind /= Subp_Kind
10673 and then Iface_Kind /= Name_By_Any
10674 and then Iface_Kind /= Name_Optional
10675 then
10676 if Iface_Kind = Name_By_Entry then
10677 Error_Msg_N
10678 ("incompatible implementation kind, overridden subprogram " &
10679 "is marked By_Entry", Subp);
10680 else
10681 Error_Msg_N
10682 ("incompatible implementation kind, overridden subprogram " &
10683 "is marked By_Protected_Procedure", Subp);
10684 end if;
10685 end if;
10686 end Check_Pragma_Implemented;
10688 --------------------------------
10689 -- Inherit_Pragma_Implemented --
10690 --------------------------------
10692 procedure Inherit_Pragma_Implemented
10693 (Subp : Entity_Id;
10694 Iface_Subp : Entity_Id)
10696 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10697 Loc : constant Source_Ptr := Sloc (Subp);
10698 Impl_Prag : Node_Id;
10700 begin
10701 -- Since the implementation kind is stored as a representation item
10702 -- rather than a flag, create a pragma node.
10704 Impl_Prag :=
10705 Make_Pragma (Loc,
10706 Chars => Name_Implemented,
10707 Pragma_Argument_Associations => New_List (
10708 Make_Pragma_Argument_Association (Loc,
10709 Expression => New_Occurrence_Of (Subp, Loc)),
10711 Make_Pragma_Argument_Association (Loc,
10712 Expression => Make_Identifier (Loc, Iface_Kind))));
10714 -- The pragma doesn't need to be analyzed because it is internally
10715 -- built. It is safe to directly register it as a rep item since we
10716 -- are only interested in the characters of the implementation kind.
10718 Record_Rep_Item (Subp, Impl_Prag);
10719 end Inherit_Pragma_Implemented;
10721 -- Start of processing for Check_Abstract_Overriding
10723 begin
10724 Op_List := Primitive_Operations (T);
10726 -- Loop to check primitive operations
10728 Elmt := First_Elmt (Op_List);
10729 while Present (Elmt) loop
10730 Subp := Node (Elmt);
10731 Alias_Subp := Alias (Subp);
10733 -- Inherited subprograms are identified by the fact that they do not
10734 -- come from source, and the associated source location is the
10735 -- location of the first subtype of the derived type.
10737 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10738 -- subprograms that "require overriding".
10740 -- Special exception, do not complain about failure to override the
10741 -- stream routines _Input and _Output, as well as the primitive
10742 -- operations used in dispatching selects since we always provide
10743 -- automatic overridings for these subprograms.
10745 -- The partial view of T may have been a private extension, for
10746 -- which inherited functions dispatching on result are abstract.
10747 -- If the full view is a null extension, there is no need for
10748 -- overriding in Ada 2005, but wrappers need to be built for them
10749 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10751 if Is_Null_Extension (T)
10752 and then Has_Controlling_Result (Subp)
10753 and then Ada_Version >= Ada_2005
10754 and then Present (Alias_Subp)
10755 and then not Comes_From_Source (Subp)
10756 and then not Is_Abstract_Subprogram (Alias_Subp)
10757 and then not Is_Access_Type (Etype (Subp))
10758 then
10759 null;
10761 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10762 -- processing because this check is done with the aliased
10763 -- entity
10765 elsif Present (Interface_Alias (Subp)) then
10766 null;
10768 elsif (Is_Abstract_Subprogram (Subp)
10769 or else Requires_Overriding (Subp)
10770 or else
10771 (Has_Controlling_Result (Subp)
10772 and then Present (Alias_Subp)
10773 and then not Comes_From_Source (Subp)
10774 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10775 and then not Is_TSS (Subp, TSS_Stream_Input)
10776 and then not Is_TSS (Subp, TSS_Stream_Output)
10777 and then not Is_Abstract_Type (T)
10778 and then not Is_Predefined_Interface_Primitive (Subp)
10780 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10781 -- with abstract interface types because the check will be done
10782 -- with the aliased entity (otherwise we generate a duplicated
10783 -- error message).
10785 and then not Present (Interface_Alias (Subp))
10786 then
10787 if Present (Alias_Subp) then
10789 -- Only perform the check for a derived subprogram when the
10790 -- type has an explicit record extension. This avoids incorrect
10791 -- flagging of abstract subprograms for the case of a type
10792 -- without an extension that is derived from a formal type
10793 -- with a tagged actual (can occur within a private part).
10795 -- Ada 2005 (AI-391): In the case of an inherited function with
10796 -- a controlling result of the type, the rule does not apply if
10797 -- the type is a null extension (unless the parent function
10798 -- itself is abstract, in which case the function must still be
10799 -- be overridden). The expander will generate an overriding
10800 -- wrapper function calling the parent subprogram (see
10801 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10803 Type_Def := Type_Definition (Parent (T));
10805 if Nkind (Type_Def) = N_Derived_Type_Definition
10806 and then Present (Record_Extension_Part (Type_Def))
10807 and then
10808 (Ada_Version < Ada_2005
10809 or else not Is_Null_Extension (T)
10810 or else Ekind (Subp) = E_Procedure
10811 or else not Has_Controlling_Result (Subp)
10812 or else Is_Abstract_Subprogram (Alias_Subp)
10813 or else Requires_Overriding (Subp)
10814 or else Is_Access_Type (Etype (Subp)))
10815 then
10816 -- Avoid reporting error in case of abstract predefined
10817 -- primitive inherited from interface type because the
10818 -- body of internally generated predefined primitives
10819 -- of tagged types are generated later by Freeze_Type
10821 if Is_Interface (Root_Type (T))
10822 and then Is_Abstract_Subprogram (Subp)
10823 and then Is_Predefined_Dispatching_Operation (Subp)
10824 and then not Comes_From_Source (Ultimate_Alias (Subp))
10825 then
10826 null;
10828 -- A null extension is not obliged to override an inherited
10829 -- procedure subject to pragma Extensions_Visible with value
10830 -- False and at least one controlling OUT parameter
10831 -- (SPARK RM 6.1.7(6)).
10833 elsif Is_Null_Extension (T)
10834 and then Is_EVF_Procedure (Subp)
10835 then
10836 null;
10838 else
10839 Error_Msg_NE
10840 ("type must be declared abstract or & overridden",
10841 T, Subp);
10843 -- Traverse the whole chain of aliased subprograms to
10844 -- complete the error notification. This is especially
10845 -- useful for traceability of the chain of entities when
10846 -- the subprogram corresponds with an interface
10847 -- subprogram (which may be defined in another package).
10849 if Present (Alias_Subp) then
10850 declare
10851 E : Entity_Id;
10853 begin
10854 E := Subp;
10855 while Present (Alias (E)) loop
10857 -- Avoid reporting redundant errors on entities
10858 -- inherited from interfaces
10860 if Sloc (E) /= Sloc (T) then
10861 Error_Msg_Sloc := Sloc (E);
10862 Error_Msg_NE
10863 ("\& has been inherited #", T, Subp);
10864 end if;
10866 E := Alias (E);
10867 end loop;
10869 Error_Msg_Sloc := Sloc (E);
10871 -- AI05-0068: report if there is an overriding
10872 -- non-abstract subprogram that is invisible.
10874 if Is_Hidden (E)
10875 and then not Is_Abstract_Subprogram (E)
10876 then
10877 Error_Msg_NE
10878 ("\& subprogram# is not visible",
10879 T, Subp);
10881 -- Clarify the case where a non-null extension must
10882 -- override inherited procedure subject to pragma
10883 -- Extensions_Visible with value False and at least
10884 -- one controlling OUT param.
10886 elsif Is_EVF_Procedure (E) then
10887 Error_Msg_NE
10888 ("\& # is subject to Extensions_Visible False",
10889 T, Subp);
10891 else
10892 Error_Msg_NE
10893 ("\& has been inherited from subprogram #",
10894 T, Subp);
10895 end if;
10896 end;
10897 end if;
10898 end if;
10900 -- Ada 2005 (AI-345): Protected or task type implementing
10901 -- abstract interfaces.
10903 elsif Is_Concurrent_Record_Type (T)
10904 and then Present (Interfaces (T))
10905 then
10906 -- There is no need to check here RM 9.4(11.9/3) since we
10907 -- are processing the corresponding record type and the
10908 -- mode of the overriding subprograms was verified by
10909 -- Check_Conformance when the corresponding concurrent
10910 -- type declaration was analyzed.
10912 Error_Msg_NE
10913 ("interface subprogram & must be overridden", T, Subp);
10915 -- Examine primitive operations of synchronized type to find
10916 -- homonyms that have the wrong profile.
10918 declare
10919 Prim : Entity_Id;
10921 begin
10922 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10923 while Present (Prim) loop
10924 if Chars (Prim) = Chars (Subp) then
10925 Error_Msg_NE
10926 ("profile is not type conformant with prefixed "
10927 & "view profile of inherited operation&",
10928 Prim, Subp);
10929 end if;
10931 Next_Entity (Prim);
10932 end loop;
10933 end;
10934 end if;
10936 else
10937 Error_Msg_Node_2 := T;
10938 Error_Msg_N
10939 ("abstract subprogram& not allowed for type&", Subp);
10941 -- Also post unconditional warning on the type (unconditional
10942 -- so that if there are more than one of these cases, we get
10943 -- them all, and not just the first one).
10945 Error_Msg_Node_2 := Subp;
10946 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10947 end if;
10949 -- A subprogram subject to pragma Extensions_Visible with value
10950 -- "True" cannot override a subprogram subject to the same pragma
10951 -- with value "False" (SPARK RM 6.1.7(5)).
10953 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10954 and then Present (Overridden_Operation (Subp))
10955 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10956 Extensions_Visible_False
10957 then
10958 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10959 Error_Msg_N
10960 ("subprogram & with Extensions_Visible True cannot override "
10961 & "subprogram # with Extensions_Visible False", Subp);
10962 end if;
10964 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10966 -- Subp is an expander-generated procedure which maps an interface
10967 -- alias to a protected wrapper. The interface alias is flagged by
10968 -- pragma Implemented. Ensure that Subp is a procedure when the
10969 -- implementation kind is By_Protected_Procedure or an entry when
10970 -- By_Entry.
10972 if Ada_Version >= Ada_2012
10973 and then Is_Hidden (Subp)
10974 and then Present (Interface_Alias (Subp))
10975 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10976 then
10977 Check_Pragma_Implemented (Subp);
10978 end if;
10980 -- Subp is an interface primitive which overrides another interface
10981 -- primitive marked with pragma Implemented.
10983 if Ada_Version >= Ada_2012
10984 and then Present (Overridden_Operation (Subp))
10985 and then Has_Rep_Pragma
10986 (Overridden_Operation (Subp), Name_Implemented)
10987 then
10988 -- If the overriding routine is also marked by Implemented, check
10989 -- that the two implementation kinds are conforming.
10991 if Has_Rep_Pragma (Subp, Name_Implemented) then
10992 Check_Pragma_Implemented
10993 (Subp => Subp,
10994 Iface_Subp => Overridden_Operation (Subp));
10996 -- Otherwise the overriding routine inherits the implementation
10997 -- kind from the overridden subprogram.
10999 else
11000 Inherit_Pragma_Implemented
11001 (Subp => Subp,
11002 Iface_Subp => Overridden_Operation (Subp));
11003 end if;
11004 end if;
11006 -- If the operation is a wrapper for a synchronized primitive, it
11007 -- may be called indirectly through a dispatching select. We assume
11008 -- that it will be referenced elsewhere indirectly, and suppress
11009 -- warnings about an unused entity.
11011 if Is_Primitive_Wrapper (Subp)
11012 and then Present (Wrapped_Entity (Subp))
11013 then
11014 Set_Referenced (Wrapped_Entity (Subp));
11015 end if;
11017 Next_Elmt (Elmt);
11018 end loop;
11019 end Check_Abstract_Overriding;
11021 ------------------------------------------------
11022 -- Check_Access_Discriminant_Requires_Limited --
11023 ------------------------------------------------
11025 procedure Check_Access_Discriminant_Requires_Limited
11026 (D : Node_Id;
11027 Loc : Node_Id)
11029 begin
11030 -- A discriminant_specification for an access discriminant shall appear
11031 -- only in the declaration for a task or protected type, or for a type
11032 -- with the reserved word 'limited' in its definition or in one of its
11033 -- ancestors (RM 3.7(10)).
11035 -- AI-0063: The proper condition is that type must be immutably limited,
11036 -- or else be a partial view.
11038 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11039 if Is_Limited_View (Current_Scope)
11040 or else
11041 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11042 and then Limited_Present (Parent (Current_Scope)))
11043 then
11044 null;
11046 else
11047 Error_Msg_N
11048 ("access discriminants allowed only for limited types", Loc);
11049 end if;
11050 end if;
11051 end Check_Access_Discriminant_Requires_Limited;
11053 -----------------------------------
11054 -- Check_Aliased_Component_Types --
11055 -----------------------------------
11057 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11058 C : Entity_Id;
11060 begin
11061 -- ??? Also need to check components of record extensions, but not
11062 -- components of protected types (which are always limited).
11064 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11065 -- types to be unconstrained. This is safe because it is illegal to
11066 -- create access subtypes to such types with explicit discriminant
11067 -- constraints.
11069 if not Is_Limited_Type (T) then
11070 if Ekind (T) = E_Record_Type then
11071 C := First_Component (T);
11072 while Present (C) loop
11073 if Is_Aliased (C)
11074 and then Has_Discriminants (Etype (C))
11075 and then not Is_Constrained (Etype (C))
11076 and then not In_Instance_Body
11077 and then Ada_Version < Ada_2005
11078 then
11079 Error_Msg_N
11080 ("aliased component must be constrained (RM 3.6(11))",
11082 end if;
11084 Next_Component (C);
11085 end loop;
11087 elsif Ekind (T) = E_Array_Type then
11088 if Has_Aliased_Components (T)
11089 and then Has_Discriminants (Component_Type (T))
11090 and then not Is_Constrained (Component_Type (T))
11091 and then not In_Instance_Body
11092 and then Ada_Version < Ada_2005
11093 then
11094 Error_Msg_N
11095 ("aliased component type must be constrained (RM 3.6(11))",
11097 end if;
11098 end if;
11099 end if;
11100 end Check_Aliased_Component_Types;
11102 ---------------------------------------
11103 -- Check_Anonymous_Access_Components --
11104 ---------------------------------------
11106 procedure Check_Anonymous_Access_Components
11107 (Typ_Decl : Node_Id;
11108 Typ : Entity_Id;
11109 Prev : Entity_Id;
11110 Comp_List : Node_Id)
11112 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11113 Anon_Access : Entity_Id;
11114 Acc_Def : Node_Id;
11115 Comp : Node_Id;
11116 Comp_Def : Node_Id;
11117 Decl : Node_Id;
11118 Type_Def : Node_Id;
11120 procedure Build_Incomplete_Type_Declaration;
11121 -- If the record type contains components that include an access to the
11122 -- current record, then create an incomplete type declaration for the
11123 -- record, to be used as the designated type of the anonymous access.
11124 -- This is done only once, and only if there is no previous partial
11125 -- view of the type.
11127 function Designates_T (Subt : Node_Id) return Boolean;
11128 -- Check whether a node designates the enclosing record type, or 'Class
11129 -- of that type
11131 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11132 -- Check whether an access definition includes a reference to
11133 -- the enclosing record type. The reference can be a subtype mark
11134 -- in the access definition itself, a 'Class attribute reference, or
11135 -- recursively a reference appearing in a parameter specification
11136 -- or result definition of an access_to_subprogram definition.
11138 --------------------------------------
11139 -- Build_Incomplete_Type_Declaration --
11140 --------------------------------------
11142 procedure Build_Incomplete_Type_Declaration is
11143 Decl : Node_Id;
11144 Inc_T : Entity_Id;
11145 H : Entity_Id;
11147 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11148 -- it's "is new ... with record" or else "is tagged record ...".
11150 Is_Tagged : constant Boolean :=
11151 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11152 and then
11153 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11154 or else
11155 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11156 and then Tagged_Present (Type_Definition (Typ_Decl)));
11158 begin
11159 -- If there is a previous partial view, no need to create a new one
11160 -- If the partial view, given by Prev, is incomplete, If Prev is
11161 -- a private declaration, full declaration is flagged accordingly.
11163 if Prev /= Typ then
11164 if Is_Tagged then
11165 Make_Class_Wide_Type (Prev);
11166 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11167 Set_Etype (Class_Wide_Type (Typ), Typ);
11168 end if;
11170 return;
11172 elsif Has_Private_Declaration (Typ) then
11174 -- If we refer to T'Class inside T, and T is the completion of a
11175 -- private type, then make sure the class-wide type exists.
11177 if Is_Tagged then
11178 Make_Class_Wide_Type (Typ);
11179 end if;
11181 return;
11183 -- If there was a previous anonymous access type, the incomplete
11184 -- type declaration will have been created already.
11186 elsif Present (Current_Entity (Typ))
11187 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11188 and then Full_View (Current_Entity (Typ)) = Typ
11189 then
11190 if Is_Tagged
11191 and then Comes_From_Source (Current_Entity (Typ))
11192 and then not Is_Tagged_Type (Current_Entity (Typ))
11193 then
11194 Make_Class_Wide_Type (Typ);
11195 Error_Msg_N
11196 ("incomplete view of tagged type should be declared tagged??",
11197 Parent (Current_Entity (Typ)));
11198 end if;
11199 return;
11201 else
11202 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11203 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11205 -- Type has already been inserted into the current scope. Remove
11206 -- it, and add incomplete declaration for type, so that subsequent
11207 -- anonymous access types can use it. The entity is unchained from
11208 -- the homonym list and from immediate visibility. After analysis,
11209 -- the entity in the incomplete declaration becomes immediately
11210 -- visible in the record declaration that follows.
11212 H := Current_Entity (Typ);
11214 if H = Typ then
11215 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11216 else
11217 while Present (H)
11218 and then Homonym (H) /= Typ
11219 loop
11220 H := Homonym (Typ);
11221 end loop;
11223 Set_Homonym (H, Homonym (Typ));
11224 end if;
11226 Insert_Before (Typ_Decl, Decl);
11227 Analyze (Decl);
11228 Set_Full_View (Inc_T, Typ);
11230 if Is_Tagged then
11232 -- Create a common class-wide type for both views, and set the
11233 -- Etype of the class-wide type to the full view.
11235 Make_Class_Wide_Type (Inc_T);
11236 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11237 Set_Etype (Class_Wide_Type (Typ), Typ);
11238 end if;
11239 end if;
11240 end Build_Incomplete_Type_Declaration;
11242 ------------------
11243 -- Designates_T --
11244 ------------------
11246 function Designates_T (Subt : Node_Id) return Boolean is
11247 Type_Id : constant Name_Id := Chars (Typ);
11249 function Names_T (Nam : Node_Id) return Boolean;
11250 -- The record type has not been introduced in the current scope
11251 -- yet, so we must examine the name of the type itself, either
11252 -- an identifier T, or an expanded name of the form P.T, where
11253 -- P denotes the current scope.
11255 -------------
11256 -- Names_T --
11257 -------------
11259 function Names_T (Nam : Node_Id) return Boolean is
11260 begin
11261 if Nkind (Nam) = N_Identifier then
11262 return Chars (Nam) = Type_Id;
11264 elsif Nkind (Nam) = N_Selected_Component then
11265 if Chars (Selector_Name (Nam)) = Type_Id then
11266 if Nkind (Prefix (Nam)) = N_Identifier then
11267 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11269 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11270 return Chars (Selector_Name (Prefix (Nam))) =
11271 Chars (Current_Scope);
11272 else
11273 return False;
11274 end if;
11276 else
11277 return False;
11278 end if;
11280 else
11281 return False;
11282 end if;
11283 end Names_T;
11285 -- Start of processing for Designates_T
11287 begin
11288 if Nkind (Subt) = N_Identifier then
11289 return Chars (Subt) = Type_Id;
11291 -- Reference can be through an expanded name which has not been
11292 -- analyzed yet, and which designates enclosing scopes.
11294 elsif Nkind (Subt) = N_Selected_Component then
11295 if Names_T (Subt) then
11296 return True;
11298 -- Otherwise it must denote an entity that is already visible.
11299 -- The access definition may name a subtype of the enclosing
11300 -- type, if there is a previous incomplete declaration for it.
11302 else
11303 Find_Selected_Component (Subt);
11304 return
11305 Is_Entity_Name (Subt)
11306 and then Scope (Entity (Subt)) = Current_Scope
11307 and then
11308 (Chars (Base_Type (Entity (Subt))) = Type_Id
11309 or else
11310 (Is_Class_Wide_Type (Entity (Subt))
11311 and then
11312 Chars (Etype (Base_Type (Entity (Subt)))) =
11313 Type_Id));
11314 end if;
11316 -- A reference to the current type may appear as the prefix of
11317 -- a 'Class attribute.
11319 elsif Nkind (Subt) = N_Attribute_Reference
11320 and then Attribute_Name (Subt) = Name_Class
11321 then
11322 return Names_T (Prefix (Subt));
11324 else
11325 return False;
11326 end if;
11327 end Designates_T;
11329 ----------------
11330 -- Mentions_T --
11331 ----------------
11333 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11334 Param_Spec : Node_Id;
11336 Acc_Subprg : constant Node_Id :=
11337 Access_To_Subprogram_Definition (Acc_Def);
11339 begin
11340 if No (Acc_Subprg) then
11341 return Designates_T (Subtype_Mark (Acc_Def));
11342 end if;
11344 -- Component is an access_to_subprogram: examine its formals,
11345 -- and result definition in the case of an access_to_function.
11347 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11348 while Present (Param_Spec) loop
11349 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11350 and then Mentions_T (Parameter_Type (Param_Spec))
11351 then
11352 return True;
11354 elsif Designates_T (Parameter_Type (Param_Spec)) then
11355 return True;
11356 end if;
11358 Next (Param_Spec);
11359 end loop;
11361 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11362 if Nkind (Result_Definition (Acc_Subprg)) =
11363 N_Access_Definition
11364 then
11365 return Mentions_T (Result_Definition (Acc_Subprg));
11366 else
11367 return Designates_T (Result_Definition (Acc_Subprg));
11368 end if;
11369 end if;
11371 return False;
11372 end Mentions_T;
11374 -- Start of processing for Check_Anonymous_Access_Components
11376 begin
11377 if No (Comp_List) then
11378 return;
11379 end if;
11381 Comp := First (Component_Items (Comp_List));
11382 while Present (Comp) loop
11383 if Nkind (Comp) = N_Component_Declaration
11384 and then Present
11385 (Access_Definition (Component_Definition (Comp)))
11386 and then
11387 Mentions_T (Access_Definition (Component_Definition (Comp)))
11388 then
11389 Comp_Def := Component_Definition (Comp);
11390 Acc_Def :=
11391 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11393 Build_Incomplete_Type_Declaration;
11394 Anon_Access := Make_Temporary (Loc, 'S');
11396 -- Create a declaration for the anonymous access type: either
11397 -- an access_to_object or an access_to_subprogram.
11399 if Present (Acc_Def) then
11400 if Nkind (Acc_Def) = N_Access_Function_Definition then
11401 Type_Def :=
11402 Make_Access_Function_Definition (Loc,
11403 Parameter_Specifications =>
11404 Parameter_Specifications (Acc_Def),
11405 Result_Definition => Result_Definition (Acc_Def));
11406 else
11407 Type_Def :=
11408 Make_Access_Procedure_Definition (Loc,
11409 Parameter_Specifications =>
11410 Parameter_Specifications (Acc_Def));
11411 end if;
11413 else
11414 Type_Def :=
11415 Make_Access_To_Object_Definition (Loc,
11416 Subtype_Indication =>
11417 Relocate_Node
11418 (Subtype_Mark (Access_Definition (Comp_Def))));
11420 Set_Constant_Present
11421 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11422 Set_All_Present
11423 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11424 end if;
11426 Set_Null_Exclusion_Present
11427 (Type_Def,
11428 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11430 Decl :=
11431 Make_Full_Type_Declaration (Loc,
11432 Defining_Identifier => Anon_Access,
11433 Type_Definition => Type_Def);
11435 Insert_Before (Typ_Decl, Decl);
11436 Analyze (Decl);
11438 -- If an access to subprogram, create the extra formals
11440 if Present (Acc_Def) then
11441 Create_Extra_Formals (Designated_Type (Anon_Access));
11443 -- If an access to object, preserve entity of designated type,
11444 -- for ASIS use, before rewriting the component definition.
11446 else
11447 declare
11448 Desig : Entity_Id;
11450 begin
11451 Desig := Entity (Subtype_Indication (Type_Def));
11453 -- If the access definition is to the current record,
11454 -- the visible entity at this point is an incomplete
11455 -- type. Retrieve the full view to simplify ASIS queries
11457 if Ekind (Desig) = E_Incomplete_Type then
11458 Desig := Full_View (Desig);
11459 end if;
11461 Set_Entity
11462 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11463 end;
11464 end if;
11466 Rewrite (Comp_Def,
11467 Make_Component_Definition (Loc,
11468 Subtype_Indication =>
11469 New_Occurrence_Of (Anon_Access, Loc)));
11471 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11472 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11473 else
11474 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11475 end if;
11477 Set_Is_Local_Anonymous_Access (Anon_Access);
11478 end if;
11480 Next (Comp);
11481 end loop;
11483 if Present (Variant_Part (Comp_List)) then
11484 declare
11485 V : Node_Id;
11486 begin
11487 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11488 while Present (V) loop
11489 Check_Anonymous_Access_Components
11490 (Typ_Decl, Typ, Prev, Component_List (V));
11491 Next_Non_Pragma (V);
11492 end loop;
11493 end;
11494 end if;
11495 end Check_Anonymous_Access_Components;
11497 ----------------------
11498 -- Check_Completion --
11499 ----------------------
11501 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11502 E : Entity_Id;
11504 procedure Post_Error;
11505 -- Post error message for lack of completion for entity E
11507 ----------------
11508 -- Post_Error --
11509 ----------------
11511 procedure Post_Error is
11512 procedure Missing_Body;
11513 -- Output missing body message
11515 ------------------
11516 -- Missing_Body --
11517 ------------------
11519 procedure Missing_Body is
11520 begin
11521 -- Spec is in same unit, so we can post on spec
11523 if In_Same_Source_Unit (Body_Id, E) then
11524 Error_Msg_N ("missing body for &", E);
11526 -- Spec is in a separate unit, so we have to post on the body
11528 else
11529 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11530 end if;
11531 end Missing_Body;
11533 -- Start of processing for Post_Error
11535 begin
11536 if not Comes_From_Source (E) then
11537 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11539 -- It may be an anonymous protected type created for a
11540 -- single variable. Post error on variable, if present.
11542 declare
11543 Var : Entity_Id;
11545 begin
11546 Var := First_Entity (Current_Scope);
11547 while Present (Var) loop
11548 exit when Etype (Var) = E
11549 and then Comes_From_Source (Var);
11551 Next_Entity (Var);
11552 end loop;
11554 if Present (Var) then
11555 E := Var;
11556 end if;
11557 end;
11558 end if;
11559 end if;
11561 -- If a generated entity has no completion, then either previous
11562 -- semantic errors have disabled the expansion phase, or else we had
11563 -- missing subunits, or else we are compiling without expansion,
11564 -- or else something is very wrong.
11566 if not Comes_From_Source (E) then
11567 pragma Assert
11568 (Serious_Errors_Detected > 0
11569 or else Configurable_Run_Time_Violations > 0
11570 or else Subunits_Missing
11571 or else not Expander_Active);
11572 return;
11574 -- Here for source entity
11576 else
11577 -- Here if no body to post the error message, so we post the error
11578 -- on the declaration that has no completion. This is not really
11579 -- the right place to post it, think about this later ???
11581 if No (Body_Id) then
11582 if Is_Type (E) then
11583 Error_Msg_NE
11584 ("missing full declaration for }", Parent (E), E);
11585 else
11586 Error_Msg_NE ("missing body for &", Parent (E), E);
11587 end if;
11589 -- Package body has no completion for a declaration that appears
11590 -- in the corresponding spec. Post error on the body, with a
11591 -- reference to the non-completed declaration.
11593 else
11594 Error_Msg_Sloc := Sloc (E);
11596 if Is_Type (E) then
11597 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11599 elsif Is_Overloadable (E)
11600 and then Current_Entity_In_Scope (E) /= E
11601 then
11602 -- It may be that the completion is mistyped and appears as
11603 -- a distinct overloading of the entity.
11605 declare
11606 Candidate : constant Entity_Id :=
11607 Current_Entity_In_Scope (E);
11608 Decl : constant Node_Id :=
11609 Unit_Declaration_Node (Candidate);
11611 begin
11612 if Is_Overloadable (Candidate)
11613 and then Ekind (Candidate) = Ekind (E)
11614 and then Nkind (Decl) = N_Subprogram_Body
11615 and then Acts_As_Spec (Decl)
11616 then
11617 Check_Type_Conformant (Candidate, E);
11619 else
11620 Missing_Body;
11621 end if;
11622 end;
11624 else
11625 Missing_Body;
11626 end if;
11627 end if;
11628 end if;
11629 end Post_Error;
11631 -- Local variables
11633 Pack_Id : constant Entity_Id := Current_Scope;
11635 -- Start of processing for Check_Completion
11637 begin
11638 E := First_Entity (Pack_Id);
11639 while Present (E) loop
11640 if Is_Intrinsic_Subprogram (E) then
11641 null;
11643 -- The following situation requires special handling: a child unit
11644 -- that appears in the context clause of the body of its parent:
11646 -- procedure Parent.Child (...);
11648 -- with Parent.Child;
11649 -- package body Parent is
11651 -- Here Parent.Child appears as a local entity, but should not be
11652 -- flagged as requiring completion, because it is a compilation
11653 -- unit.
11655 -- Ignore missing completion for a subprogram that does not come from
11656 -- source (including the _Call primitive operation of RAS types,
11657 -- which has to have the flag Comes_From_Source for other purposes):
11658 -- we assume that the expander will provide the missing completion.
11659 -- In case of previous errors, other expansion actions that provide
11660 -- bodies for null procedures with not be invoked, so inhibit message
11661 -- in those cases.
11663 -- Note that E_Operator is not in the list that follows, because
11664 -- this kind is reserved for predefined operators, that are
11665 -- intrinsic and do not need completion.
11667 elsif Ekind_In (E, E_Function,
11668 E_Procedure,
11669 E_Generic_Function,
11670 E_Generic_Procedure)
11671 then
11672 if Has_Completion (E) then
11673 null;
11675 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11676 null;
11678 elsif Is_Subprogram (E)
11679 and then (not Comes_From_Source (E)
11680 or else Chars (E) = Name_uCall)
11681 then
11682 null;
11684 elsif
11685 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11686 then
11687 null;
11689 elsif Nkind (Parent (E)) = N_Procedure_Specification
11690 and then Null_Present (Parent (E))
11691 and then Serious_Errors_Detected > 0
11692 then
11693 null;
11695 else
11696 Post_Error;
11697 end if;
11699 elsif Is_Entry (E) then
11700 if not Has_Completion (E) and then
11701 (Ekind (Scope (E)) = E_Protected_Object
11702 or else Ekind (Scope (E)) = E_Protected_Type)
11703 then
11704 Post_Error;
11705 end if;
11707 elsif Is_Package_Or_Generic_Package (E) then
11708 if Unit_Requires_Body (E) then
11709 if not Has_Completion (E)
11710 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11711 N_Compilation_Unit
11712 then
11713 Post_Error;
11714 end if;
11716 elsif not Is_Child_Unit (E) then
11717 May_Need_Implicit_Body (E);
11718 end if;
11720 -- A formal incomplete type (Ada 2012) does not require a completion;
11721 -- other incomplete type declarations do.
11723 elsif Ekind (E) = E_Incomplete_Type
11724 and then No (Underlying_Type (E))
11725 and then not Is_Generic_Type (E)
11726 then
11727 Post_Error;
11729 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11730 and then not Has_Completion (E)
11731 then
11732 Post_Error;
11734 -- A single task declared in the current scope is a constant, verify
11735 -- that the body of its anonymous type is in the same scope. If the
11736 -- task is defined elsewhere, this may be a renaming declaration for
11737 -- which no completion is needed.
11739 elsif Ekind (E) = E_Constant
11740 and then Ekind (Etype (E)) = E_Task_Type
11741 and then not Has_Completion (Etype (E))
11742 and then Scope (Etype (E)) = Current_Scope
11743 then
11744 Post_Error;
11746 elsif Ekind (E) = E_Protected_Object
11747 and then not Has_Completion (Etype (E))
11748 then
11749 Post_Error;
11751 elsif Ekind (E) = E_Record_Type then
11752 if Is_Tagged_Type (E) then
11753 Check_Abstract_Overriding (E);
11754 Check_Conventions (E);
11755 end if;
11757 Check_Aliased_Component_Types (E);
11759 elsif Ekind (E) = E_Array_Type then
11760 Check_Aliased_Component_Types (E);
11762 end if;
11764 Next_Entity (E);
11765 end loop;
11766 end Check_Completion;
11768 ------------------------------------
11769 -- Check_CPP_Type_Has_No_Defaults --
11770 ------------------------------------
11772 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11773 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11774 Clist : Node_Id;
11775 Comp : Node_Id;
11777 begin
11778 -- Obtain the component list
11780 if Nkind (Tdef) = N_Record_Definition then
11781 Clist := Component_List (Tdef);
11782 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11783 Clist := Component_List (Record_Extension_Part (Tdef));
11784 end if;
11786 -- Check all components to ensure no default expressions
11788 if Present (Clist) then
11789 Comp := First (Component_Items (Clist));
11790 while Present (Comp) loop
11791 if Present (Expression (Comp)) then
11792 Error_Msg_N
11793 ("component of imported 'C'P'P type cannot have "
11794 & "default expression", Expression (Comp));
11795 end if;
11797 Next (Comp);
11798 end loop;
11799 end if;
11800 end Check_CPP_Type_Has_No_Defaults;
11802 ----------------------------
11803 -- Check_Delta_Expression --
11804 ----------------------------
11806 procedure Check_Delta_Expression (E : Node_Id) is
11807 begin
11808 if not (Is_Real_Type (Etype (E))) then
11809 Wrong_Type (E, Any_Real);
11811 elsif not Is_OK_Static_Expression (E) then
11812 Flag_Non_Static_Expr
11813 ("non-static expression used for delta value!", E);
11815 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11816 Error_Msg_N ("delta expression must be positive", E);
11818 else
11819 return;
11820 end if;
11822 -- If any of above errors occurred, then replace the incorrect
11823 -- expression by the real 0.1, which should prevent further errors.
11825 Rewrite (E,
11826 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11827 Analyze_And_Resolve (E, Standard_Float);
11828 end Check_Delta_Expression;
11830 -----------------------------
11831 -- Check_Digits_Expression --
11832 -----------------------------
11834 procedure Check_Digits_Expression (E : Node_Id) is
11835 begin
11836 if not (Is_Integer_Type (Etype (E))) then
11837 Wrong_Type (E, Any_Integer);
11839 elsif not Is_OK_Static_Expression (E) then
11840 Flag_Non_Static_Expr
11841 ("non-static expression used for digits value!", E);
11843 elsif Expr_Value (E) <= 0 then
11844 Error_Msg_N ("digits value must be greater than zero", E);
11846 else
11847 return;
11848 end if;
11850 -- If any of above errors occurred, then replace the incorrect
11851 -- expression by the integer 1, which should prevent further errors.
11853 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11854 Analyze_And_Resolve (E, Standard_Integer);
11856 end Check_Digits_Expression;
11858 --------------------------
11859 -- Check_Initialization --
11860 --------------------------
11862 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11863 begin
11864 -- Special processing for limited types
11866 if Is_Limited_Type (T)
11867 and then not In_Instance
11868 and then not In_Inlined_Body
11869 then
11870 if not OK_For_Limited_Init (T, Exp) then
11872 -- In GNAT mode, this is just a warning, to allow it to be evilly
11873 -- turned off. Otherwise it is a real error.
11875 if GNAT_Mode then
11876 Error_Msg_N
11877 ("??cannot initialize entities of limited type!", Exp);
11879 elsif Ada_Version < Ada_2005 then
11881 -- The side effect removal machinery may generate illegal Ada
11882 -- code to avoid the usage of access types and 'reference in
11883 -- SPARK mode. Since this is legal code with respect to theorem
11884 -- proving, do not emit the error.
11886 if GNATprove_Mode
11887 and then Nkind (Exp) = N_Function_Call
11888 and then Nkind (Parent (Exp)) = N_Object_Declaration
11889 and then not Comes_From_Source
11890 (Defining_Identifier (Parent (Exp)))
11891 then
11892 null;
11894 else
11895 Error_Msg_N
11896 ("cannot initialize entities of limited type", Exp);
11897 Explain_Limited_Type (T, Exp);
11898 end if;
11900 else
11901 -- Specialize error message according to kind of illegal
11902 -- initial expression.
11904 if Nkind (Exp) = N_Type_Conversion
11905 and then Nkind (Expression (Exp)) = N_Function_Call
11906 then
11907 -- No error for internally-generated object declarations,
11908 -- which can come from build-in-place assignment statements.
11910 if Nkind (Parent (Exp)) = N_Object_Declaration
11911 and then not Comes_From_Source
11912 (Defining_Identifier (Parent (Exp)))
11913 then
11914 null;
11916 else
11917 Error_Msg_N
11918 ("illegal context for call to function with limited "
11919 & "result", Exp);
11920 end if;
11922 else
11923 Error_Msg_N
11924 ("initialization of limited object requires aggregate or "
11925 & "function call", Exp);
11926 end if;
11927 end if;
11928 end if;
11929 end if;
11931 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11932 -- set unless we can be sure that no range check is required.
11934 if (GNATprove_Mode or not Expander_Active)
11935 and then Is_Scalar_Type (T)
11936 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11937 then
11938 Set_Do_Range_Check (Exp);
11939 end if;
11940 end Check_Initialization;
11942 ----------------------
11943 -- Check_Interfaces --
11944 ----------------------
11946 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11947 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11949 Iface : Node_Id;
11950 Iface_Def : Node_Id;
11951 Iface_Typ : Entity_Id;
11952 Parent_Node : Node_Id;
11954 Is_Task : Boolean := False;
11955 -- Set True if parent type or any progenitor is a task interface
11957 Is_Protected : Boolean := False;
11958 -- Set True if parent type or any progenitor is a protected interface
11960 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11961 -- Check that a progenitor is compatible with declaration. If an error
11962 -- message is output, it is posted on Error_Node.
11964 ------------------
11965 -- Check_Ifaces --
11966 ------------------
11968 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11969 Iface_Id : constant Entity_Id :=
11970 Defining_Identifier (Parent (Iface_Def));
11971 Type_Def : Node_Id;
11973 begin
11974 if Nkind (N) = N_Private_Extension_Declaration then
11975 Type_Def := N;
11976 else
11977 Type_Def := Type_Definition (N);
11978 end if;
11980 if Is_Task_Interface (Iface_Id) then
11981 Is_Task := True;
11983 elsif Is_Protected_Interface (Iface_Id) then
11984 Is_Protected := True;
11985 end if;
11987 if Is_Synchronized_Interface (Iface_Id) then
11989 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11990 -- extension derived from a synchronized interface must explicitly
11991 -- be declared synchronized, because the full view will be a
11992 -- synchronized type.
11994 if Nkind (N) = N_Private_Extension_Declaration then
11995 if not Synchronized_Present (N) then
11996 Error_Msg_NE
11997 ("private extension of& must be explicitly synchronized",
11998 N, Iface_Id);
11999 end if;
12001 -- However, by 3.9.4(16/2), a full type that is a record extension
12002 -- is never allowed to derive from a synchronized interface (note
12003 -- that interfaces must be excluded from this check, because those
12004 -- are represented by derived type definitions in some cases).
12006 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12007 and then not Interface_Present (Type_Definition (N))
12008 then
12009 Error_Msg_N ("record extension cannot derive from synchronized "
12010 & "interface", Error_Node);
12011 end if;
12012 end if;
12014 -- Check that the characteristics of the progenitor are compatible
12015 -- with the explicit qualifier in the declaration.
12016 -- The check only applies to qualifiers that come from source.
12017 -- Limited_Present also appears in the declaration of corresponding
12018 -- records, and the check does not apply to them.
12020 if Limited_Present (Type_Def)
12021 and then not
12022 Is_Concurrent_Record_Type (Defining_Identifier (N))
12023 then
12024 if Is_Limited_Interface (Parent_Type)
12025 and then not Is_Limited_Interface (Iface_Id)
12026 then
12027 Error_Msg_NE
12028 ("progenitor & must be limited interface",
12029 Error_Node, Iface_Id);
12031 elsif
12032 (Task_Present (Iface_Def)
12033 or else Protected_Present (Iface_Def)
12034 or else Synchronized_Present (Iface_Def))
12035 and then Nkind (N) /= N_Private_Extension_Declaration
12036 and then not Error_Posted (N)
12037 then
12038 Error_Msg_NE
12039 ("progenitor & must be limited interface",
12040 Error_Node, Iface_Id);
12041 end if;
12043 -- Protected interfaces can only inherit from limited, synchronized
12044 -- or protected interfaces.
12046 elsif Nkind (N) = N_Full_Type_Declaration
12047 and then Protected_Present (Type_Def)
12048 then
12049 if Limited_Present (Iface_Def)
12050 or else Synchronized_Present (Iface_Def)
12051 or else Protected_Present (Iface_Def)
12052 then
12053 null;
12055 elsif Task_Present (Iface_Def) then
12056 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12057 & "from task interface", Error_Node);
12059 else
12060 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12061 & "from non-limited interface", Error_Node);
12062 end if;
12064 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12065 -- limited and synchronized.
12067 elsif Synchronized_Present (Type_Def) then
12068 if Limited_Present (Iface_Def)
12069 or else Synchronized_Present (Iface_Def)
12070 then
12071 null;
12073 elsif Protected_Present (Iface_Def)
12074 and then Nkind (N) /= N_Private_Extension_Declaration
12075 then
12076 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12077 & "from protected interface", Error_Node);
12079 elsif Task_Present (Iface_Def)
12080 and then Nkind (N) /= N_Private_Extension_Declaration
12081 then
12082 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12083 & "from task interface", Error_Node);
12085 elsif not Is_Limited_Interface (Iface_Id) then
12086 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12087 & "from non-limited interface", Error_Node);
12088 end if;
12090 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12091 -- synchronized or task interfaces.
12093 elsif Nkind (N) = N_Full_Type_Declaration
12094 and then Task_Present (Type_Def)
12095 then
12096 if Limited_Present (Iface_Def)
12097 or else Synchronized_Present (Iface_Def)
12098 or else Task_Present (Iface_Def)
12099 then
12100 null;
12102 elsif Protected_Present (Iface_Def) then
12103 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12104 & "protected interface", Error_Node);
12106 else
12107 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12108 & "non-limited interface", Error_Node);
12109 end if;
12110 end if;
12111 end Check_Ifaces;
12113 -- Start of processing for Check_Interfaces
12115 begin
12116 if Is_Interface (Parent_Type) then
12117 if Is_Task_Interface (Parent_Type) then
12118 Is_Task := True;
12120 elsif Is_Protected_Interface (Parent_Type) then
12121 Is_Protected := True;
12122 end if;
12123 end if;
12125 if Nkind (N) = N_Private_Extension_Declaration then
12127 -- Check that progenitors are compatible with declaration
12129 Iface := First (Interface_List (Def));
12130 while Present (Iface) loop
12131 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12133 Parent_Node := Parent (Base_Type (Iface_Typ));
12134 Iface_Def := Type_Definition (Parent_Node);
12136 if not Is_Interface (Iface_Typ) then
12137 Diagnose_Interface (Iface, Iface_Typ);
12138 else
12139 Check_Ifaces (Iface_Def, Iface);
12140 end if;
12142 Next (Iface);
12143 end loop;
12145 if Is_Task and Is_Protected then
12146 Error_Msg_N
12147 ("type cannot derive from task and protected interface", N);
12148 end if;
12150 return;
12151 end if;
12153 -- Full type declaration of derived type.
12154 -- Check compatibility with parent if it is interface type
12156 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12157 and then Is_Interface (Parent_Type)
12158 then
12159 Parent_Node := Parent (Parent_Type);
12161 -- More detailed checks for interface varieties
12163 Check_Ifaces
12164 (Iface_Def => Type_Definition (Parent_Node),
12165 Error_Node => Subtype_Indication (Type_Definition (N)));
12166 end if;
12168 Iface := First (Interface_List (Def));
12169 while Present (Iface) loop
12170 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12172 Parent_Node := Parent (Base_Type (Iface_Typ));
12173 Iface_Def := Type_Definition (Parent_Node);
12175 if not Is_Interface (Iface_Typ) then
12176 Diagnose_Interface (Iface, Iface_Typ);
12178 else
12179 -- "The declaration of a specific descendant of an interface
12180 -- type freezes the interface type" RM 13.14
12182 Freeze_Before (N, Iface_Typ);
12183 Check_Ifaces (Iface_Def, Error_Node => Iface);
12184 end if;
12186 Next (Iface);
12187 end loop;
12189 if Is_Task and Is_Protected then
12190 Error_Msg_N
12191 ("type cannot derive from task and protected interface", N);
12192 end if;
12193 end Check_Interfaces;
12195 ------------------------------------
12196 -- Check_Or_Process_Discriminants --
12197 ------------------------------------
12199 -- If an incomplete or private type declaration was already given for the
12200 -- type, the discriminants may have already been processed if they were
12201 -- present on the incomplete declaration. In this case a full conformance
12202 -- check has been performed in Find_Type_Name, and we then recheck here
12203 -- some properties that can't be checked on the partial view alone.
12204 -- Otherwise we call Process_Discriminants.
12206 procedure Check_Or_Process_Discriminants
12207 (N : Node_Id;
12208 T : Entity_Id;
12209 Prev : Entity_Id := Empty)
12211 begin
12212 if Has_Discriminants (T) then
12214 -- Discriminants are already set on T if they were already present
12215 -- on the partial view. Make them visible to component declarations.
12217 declare
12218 D : Entity_Id;
12219 -- Discriminant on T (full view) referencing expr on partial view
12221 Prev_D : Entity_Id;
12222 -- Entity of corresponding discriminant on partial view
12224 New_D : Node_Id;
12225 -- Discriminant specification for full view, expression is
12226 -- the syntactic copy on full view (which has been checked for
12227 -- conformance with partial view), only used here to post error
12228 -- message.
12230 begin
12231 D := First_Discriminant (T);
12232 New_D := First (Discriminant_Specifications (N));
12233 while Present (D) loop
12234 Prev_D := Current_Entity (D);
12235 Set_Current_Entity (D);
12236 Set_Is_Immediately_Visible (D);
12237 Set_Homonym (D, Prev_D);
12239 -- Handle the case where there is an untagged partial view and
12240 -- the full view is tagged: must disallow discriminants with
12241 -- defaults, unless compiling for Ada 2012, which allows a
12242 -- limited tagged type to have defaulted discriminants (see
12243 -- AI05-0214). However, suppress error here if it was already
12244 -- reported on the default expression of the partial view.
12246 if Is_Tagged_Type (T)
12247 and then Present (Expression (Parent (D)))
12248 and then (not Is_Limited_Type (Current_Scope)
12249 or else Ada_Version < Ada_2012)
12250 and then not Error_Posted (Expression (Parent (D)))
12251 then
12252 if Ada_Version >= Ada_2012 then
12253 Error_Msg_N
12254 ("discriminants of nonlimited tagged type cannot have "
12255 & "defaults",
12256 Expression (New_D));
12257 else
12258 Error_Msg_N
12259 ("discriminants of tagged type cannot have defaults",
12260 Expression (New_D));
12261 end if;
12262 end if;
12264 -- Ada 2005 (AI-230): Access discriminant allowed in
12265 -- non-limited record types.
12267 if Ada_Version < Ada_2005 then
12269 -- This restriction gets applied to the full type here. It
12270 -- has already been applied earlier to the partial view.
12272 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12273 end if;
12275 Next_Discriminant (D);
12276 Next (New_D);
12277 end loop;
12278 end;
12280 elsif Present (Discriminant_Specifications (N)) then
12281 Process_Discriminants (N, Prev);
12282 end if;
12283 end Check_Or_Process_Discriminants;
12285 ----------------------
12286 -- Check_Real_Bound --
12287 ----------------------
12289 procedure Check_Real_Bound (Bound : Node_Id) is
12290 begin
12291 if not Is_Real_Type (Etype (Bound)) then
12292 Error_Msg_N
12293 ("bound in real type definition must be of real type", Bound);
12295 elsif not Is_OK_Static_Expression (Bound) then
12296 Flag_Non_Static_Expr
12297 ("non-static expression used for real type bound!", Bound);
12299 else
12300 return;
12301 end if;
12303 Rewrite
12304 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12305 Analyze (Bound);
12306 Resolve (Bound, Standard_Float);
12307 end Check_Real_Bound;
12309 ------------------------------
12310 -- Complete_Private_Subtype --
12311 ------------------------------
12313 procedure Complete_Private_Subtype
12314 (Priv : Entity_Id;
12315 Full : Entity_Id;
12316 Full_Base : Entity_Id;
12317 Related_Nod : Node_Id)
12319 Save_Next_Entity : Entity_Id;
12320 Save_Homonym : Entity_Id;
12322 begin
12323 -- Set semantic attributes for (implicit) private subtype completion.
12324 -- If the full type has no discriminants, then it is a copy of the
12325 -- full view of the base. Otherwise, it is a subtype of the base with
12326 -- a possible discriminant constraint. Save and restore the original
12327 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12328 -- not corrupt the entity chain.
12330 -- Note that the type of the full view is the same entity as the type
12331 -- of the partial view. In this fashion, the subtype has access to the
12332 -- correct view of the parent.
12333 -- The list below included access types, but this leads to several
12334 -- regressions. How should the base type of the full view be
12335 -- set consistently for subtypes completed by access types?
12337 Save_Next_Entity := Next_Entity (Full);
12338 Save_Homonym := Homonym (Priv);
12340 case Ekind (Full_Base) is
12341 when Class_Wide_Kind
12342 | Private_Kind
12343 | Protected_Kind
12344 | Task_Kind
12345 | E_Record_Subtype
12346 | E_Record_Type
12348 Copy_Node (Priv, Full);
12350 Set_Has_Discriminants
12351 (Full, Has_Discriminants (Full_Base));
12352 Set_Has_Unknown_Discriminants
12353 (Full, Has_Unknown_Discriminants (Full_Base));
12354 Set_First_Entity (Full, First_Entity (Full_Base));
12355 Set_Last_Entity (Full, Last_Entity (Full_Base));
12357 -- If the underlying base type is constrained, we know that the
12358 -- full view of the subtype is constrained as well (the converse
12359 -- is not necessarily true).
12361 if Is_Constrained (Full_Base) then
12362 Set_Is_Constrained (Full);
12363 end if;
12365 when others =>
12366 Copy_Node (Full_Base, Full);
12368 Set_Chars (Full, Chars (Priv));
12369 Conditional_Delay (Full, Priv);
12370 Set_Sloc (Full, Sloc (Priv));
12371 end case;
12373 Link_Entities (Full, Save_Next_Entity);
12374 Set_Homonym (Full, Save_Homonym);
12375 Set_Associated_Node_For_Itype (Full, Related_Nod);
12377 -- Set common attributes for all subtypes: kind, convention, etc.
12379 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12380 Set_Convention (Full, Convention (Full_Base));
12382 -- The Etype of the full view is inconsistent. Gigi needs to see the
12383 -- structural full view, which is what the current scheme gives: the
12384 -- Etype of the full view is the etype of the full base. However, if the
12385 -- full base is a derived type, the full view then looks like a subtype
12386 -- of the parent, not a subtype of the full base. If instead we write:
12388 -- Set_Etype (Full, Full_Base);
12390 -- then we get inconsistencies in the front-end (confusion between
12391 -- views). Several outstanding bugs are related to this ???
12393 Set_Is_First_Subtype (Full, False);
12394 Set_Scope (Full, Scope (Priv));
12395 Set_Size_Info (Full, Full_Base);
12396 Set_RM_Size (Full, RM_Size (Full_Base));
12397 Set_Is_Itype (Full);
12399 -- For the unusual case of a type with unknown discriminants whose
12400 -- completion is an array, use the proper full base.
12402 if Is_Array_Type (Full_Base)
12403 and then Has_Unknown_Discriminants (Priv)
12404 then
12405 Set_Etype (Full, Full_Base);
12406 end if;
12408 -- A subtype of a private-type-without-discriminants, whose full-view
12409 -- has discriminants with default expressions, is not constrained.
12411 if not Has_Discriminants (Priv) then
12412 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12414 if Has_Discriminants (Full_Base) then
12415 Set_Discriminant_Constraint
12416 (Full, Discriminant_Constraint (Full_Base));
12418 -- The partial view may have been indefinite, the full view
12419 -- might not be.
12421 Set_Has_Unknown_Discriminants
12422 (Full, Has_Unknown_Discriminants (Full_Base));
12423 end if;
12424 end if;
12426 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12427 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12429 -- Freeze the private subtype entity if its parent is delayed, and not
12430 -- already frozen. We skip this processing if the type is an anonymous
12431 -- subtype of a record component, or is the corresponding record of a
12432 -- protected type, since these are processed when the enclosing type
12433 -- is frozen. If the parent type is declared in a nested package then
12434 -- the freezing of the private and full views also happens later.
12436 if not Is_Type (Scope (Full)) then
12437 if Is_Itype (Priv)
12438 and then In_Same_Source_Unit (Full, Full_Base)
12439 and then Scope (Full_Base) /= Scope (Full)
12440 then
12441 Set_Has_Delayed_Freeze (Full);
12442 Set_Has_Delayed_Freeze (Priv);
12444 else
12445 Set_Has_Delayed_Freeze (Full,
12446 Has_Delayed_Freeze (Full_Base)
12447 and then not Is_Frozen (Full_Base));
12448 end if;
12449 end if;
12451 Set_Freeze_Node (Full, Empty);
12452 Set_Is_Frozen (Full, False);
12453 Set_Full_View (Priv, Full);
12455 if Has_Discriminants (Full) then
12456 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12457 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12459 if Has_Unknown_Discriminants (Full) then
12460 Set_Discriminant_Constraint (Full, No_Elist);
12461 end if;
12462 end if;
12464 if Ekind (Full_Base) = E_Record_Type
12465 and then Has_Discriminants (Full_Base)
12466 and then Has_Discriminants (Priv) -- might not, if errors
12467 and then not Has_Unknown_Discriminants (Priv)
12468 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12469 then
12470 Create_Constrained_Components
12471 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12473 -- If the full base is itself derived from private, build a congruent
12474 -- subtype of its underlying type, for use by the back end. For a
12475 -- constrained record component, the declaration cannot be placed on
12476 -- the component list, but it must nevertheless be built an analyzed, to
12477 -- supply enough information for Gigi to compute the size of component.
12479 elsif Ekind (Full_Base) in Private_Kind
12480 and then Is_Derived_Type (Full_Base)
12481 and then Has_Discriminants (Full_Base)
12482 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12483 then
12484 if not Is_Itype (Priv)
12485 and then
12486 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12487 then
12488 Build_Underlying_Full_View
12489 (Parent (Priv), Full, Etype (Full_Base));
12491 elsif Nkind (Related_Nod) = N_Component_Declaration then
12492 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12493 end if;
12495 elsif Is_Record_Type (Full_Base) then
12497 -- Show Full is simply a renaming of Full_Base
12499 Set_Cloned_Subtype (Full, Full_Base);
12500 end if;
12502 -- It is unsafe to share the bounds of a scalar type, because the Itype
12503 -- is elaborated on demand, and if a bound is nonstatic, then different
12504 -- orders of elaboration in different units will lead to different
12505 -- external symbols.
12507 if Is_Scalar_Type (Full_Base) then
12508 Set_Scalar_Range (Full,
12509 Make_Range (Sloc (Related_Nod),
12510 Low_Bound =>
12511 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12512 High_Bound =>
12513 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12515 -- This completion inherits the bounds of the full parent, but if
12516 -- the parent is an unconstrained floating point type, so is the
12517 -- completion.
12519 if Is_Floating_Point_Type (Full_Base) then
12520 Set_Includes_Infinities
12521 (Scalar_Range (Full), Has_Infinities (Full_Base));
12522 end if;
12523 end if;
12525 -- ??? It seems that a lot of fields are missing that should be copied
12526 -- from Full_Base to Full. Here are some that are introduced in a
12527 -- non-disruptive way but a cleanup is necessary.
12529 if Is_Tagged_Type (Full_Base) then
12530 Set_Is_Tagged_Type (Full);
12531 Set_Direct_Primitive_Operations
12532 (Full, Direct_Primitive_Operations (Full_Base));
12533 Set_No_Tagged_Streams_Pragma
12534 (Full, No_Tagged_Streams_Pragma (Full_Base));
12536 -- Inherit class_wide type of full_base in case the partial view was
12537 -- not tagged. Otherwise it has already been created when the private
12538 -- subtype was analyzed.
12540 if No (Class_Wide_Type (Full)) then
12541 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12542 end if;
12544 -- If this is a subtype of a protected or task type, constrain its
12545 -- corresponding record, unless this is a subtype without constraints,
12546 -- i.e. a simple renaming as with an actual subtype in an instance.
12548 elsif Is_Concurrent_Type (Full_Base) then
12549 if Has_Discriminants (Full)
12550 and then Present (Corresponding_Record_Type (Full_Base))
12551 and then
12552 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12553 then
12554 Set_Corresponding_Record_Type (Full,
12555 Constrain_Corresponding_Record
12556 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12558 else
12559 Set_Corresponding_Record_Type (Full,
12560 Corresponding_Record_Type (Full_Base));
12561 end if;
12562 end if;
12564 -- Link rep item chain, and also setting of Has_Predicates from private
12565 -- subtype to full subtype, since we will need these on the full subtype
12566 -- to create the predicate function. Note that the full subtype may
12567 -- already have rep items, inherited from the full view of the base
12568 -- type, so we must be sure not to overwrite these entries.
12570 declare
12571 Append : Boolean;
12572 Item : Node_Id;
12573 Next_Item : Node_Id;
12574 Priv_Item : Node_Id;
12576 begin
12577 Item := First_Rep_Item (Full);
12578 Priv_Item := First_Rep_Item (Priv);
12580 -- If no existing rep items on full type, we can just link directly
12581 -- to the list of items on the private type, if any exist.. Same if
12582 -- the rep items are only those inherited from the base
12584 if (No (Item)
12585 or else Nkind (Item) /= N_Aspect_Specification
12586 or else Entity (Item) = Full_Base)
12587 and then Present (First_Rep_Item (Priv))
12588 then
12589 Set_First_Rep_Item (Full, Priv_Item);
12591 -- Otherwise, search to the end of items currently linked to the full
12592 -- subtype and append the private items to the end. However, if Priv
12593 -- and Full already have the same list of rep items, then the append
12594 -- is not done, as that would create a circularity.
12596 -- The partial view may have a predicate and the rep item lists of
12597 -- both views agree when inherited from the same ancestor. In that
12598 -- case, simply propagate the list from one view to the other.
12599 -- A more complex analysis needed here ???
12601 elsif Present (Priv_Item)
12602 and then Item = Next_Rep_Item (Priv_Item)
12603 then
12604 Set_First_Rep_Item (Full, Priv_Item);
12606 elsif Item /= Priv_Item then
12607 Append := True;
12608 loop
12609 Next_Item := Next_Rep_Item (Item);
12610 exit when No (Next_Item);
12611 Item := Next_Item;
12613 -- If the private view has aspect specifications, the full view
12614 -- inherits them. Since these aspects may already have been
12615 -- attached to the full view during derivation, do not append
12616 -- them if already present.
12618 if Item = First_Rep_Item (Priv) then
12619 Append := False;
12620 exit;
12621 end if;
12622 end loop;
12624 -- And link the private type items at the end of the chain
12626 if Append then
12627 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12628 end if;
12629 end if;
12630 end;
12632 -- Make sure Has_Predicates is set on full type if it is set on the
12633 -- private type. Note that it may already be set on the full type and
12634 -- if so, we don't want to unset it. Similarly, propagate information
12635 -- about delayed aspects, because the corresponding pragmas must be
12636 -- analyzed when one of the views is frozen. This last step is needed
12637 -- in particular when the full type is a scalar type for which an
12638 -- anonymous base type is constructed.
12640 -- The predicate functions are generated either at the freeze point
12641 -- of the type or at the end of the visible part, and we must avoid
12642 -- generating them twice.
12644 if Has_Predicates (Priv) then
12645 Set_Has_Predicates (Full);
12647 if Present (Predicate_Function (Priv))
12648 and then No (Predicate_Function (Full))
12649 then
12650 Set_Predicate_Function (Full, Predicate_Function (Priv));
12651 end if;
12652 end if;
12654 if Has_Delayed_Aspects (Priv) then
12655 Set_Has_Delayed_Aspects (Full);
12656 end if;
12657 end Complete_Private_Subtype;
12659 ----------------------------
12660 -- Constant_Redeclaration --
12661 ----------------------------
12663 procedure Constant_Redeclaration
12664 (Id : Entity_Id;
12665 N : Node_Id;
12666 T : out Entity_Id)
12668 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12669 Obj_Def : constant Node_Id := Object_Definition (N);
12670 New_T : Entity_Id;
12672 procedure Check_Possible_Deferred_Completion
12673 (Prev_Id : Entity_Id;
12674 Prev_Obj_Def : Node_Id;
12675 Curr_Obj_Def : Node_Id);
12676 -- Determine whether the two object definitions describe the partial
12677 -- and the full view of a constrained deferred constant. Generate
12678 -- a subtype for the full view and verify that it statically matches
12679 -- the subtype of the partial view.
12681 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12682 -- If deferred constant is an access type initialized with an allocator,
12683 -- check whether there is an illegal recursion in the definition,
12684 -- through a default value of some record subcomponent. This is normally
12685 -- detected when generating init procs, but requires this additional
12686 -- mechanism when expansion is disabled.
12688 ----------------------------------------
12689 -- Check_Possible_Deferred_Completion --
12690 ----------------------------------------
12692 procedure Check_Possible_Deferred_Completion
12693 (Prev_Id : Entity_Id;
12694 Prev_Obj_Def : Node_Id;
12695 Curr_Obj_Def : Node_Id)
12697 begin
12698 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12699 and then Present (Constraint (Prev_Obj_Def))
12700 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12701 and then Present (Constraint (Curr_Obj_Def))
12702 then
12703 declare
12704 Loc : constant Source_Ptr := Sloc (N);
12705 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12706 Decl : constant Node_Id :=
12707 Make_Subtype_Declaration (Loc,
12708 Defining_Identifier => Def_Id,
12709 Subtype_Indication =>
12710 Relocate_Node (Curr_Obj_Def));
12712 begin
12713 Insert_Before_And_Analyze (N, Decl);
12714 Set_Etype (Id, Def_Id);
12716 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12717 Error_Msg_Sloc := Sloc (Prev_Id);
12718 Error_Msg_N ("subtype does not statically match deferred "
12719 & "declaration #", N);
12720 end if;
12721 end;
12722 end if;
12723 end Check_Possible_Deferred_Completion;
12725 ---------------------------------
12726 -- Check_Recursive_Declaration --
12727 ---------------------------------
12729 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12730 Comp : Entity_Id;
12732 begin
12733 if Is_Record_Type (Typ) then
12734 Comp := First_Component (Typ);
12735 while Present (Comp) loop
12736 if Comes_From_Source (Comp) then
12737 if Present (Expression (Parent (Comp)))
12738 and then Is_Entity_Name (Expression (Parent (Comp)))
12739 and then Entity (Expression (Parent (Comp))) = Prev
12740 then
12741 Error_Msg_Sloc := Sloc (Parent (Comp));
12742 Error_Msg_NE
12743 ("illegal circularity with declaration for & #",
12744 N, Comp);
12745 return;
12747 elsif Is_Record_Type (Etype (Comp)) then
12748 Check_Recursive_Declaration (Etype (Comp));
12749 end if;
12750 end if;
12752 Next_Component (Comp);
12753 end loop;
12754 end if;
12755 end Check_Recursive_Declaration;
12757 -- Start of processing for Constant_Redeclaration
12759 begin
12760 if Nkind (Parent (Prev)) = N_Object_Declaration then
12761 if Nkind (Object_Definition
12762 (Parent (Prev))) = N_Subtype_Indication
12763 then
12764 -- Find type of new declaration. The constraints of the two
12765 -- views must match statically, but there is no point in
12766 -- creating an itype for the full view.
12768 if Nkind (Obj_Def) = N_Subtype_Indication then
12769 Find_Type (Subtype_Mark (Obj_Def));
12770 New_T := Entity (Subtype_Mark (Obj_Def));
12772 else
12773 Find_Type (Obj_Def);
12774 New_T := Entity (Obj_Def);
12775 end if;
12777 T := Etype (Prev);
12779 else
12780 -- The full view may impose a constraint, even if the partial
12781 -- view does not, so construct the subtype.
12783 New_T := Find_Type_Of_Object (Obj_Def, N);
12784 T := New_T;
12785 end if;
12787 else
12788 -- Current declaration is illegal, diagnosed below in Enter_Name
12790 T := Empty;
12791 New_T := Any_Type;
12792 end if;
12794 -- If previous full declaration or a renaming declaration exists, or if
12795 -- a homograph is present, let Enter_Name handle it, either with an
12796 -- error or with the removal of an overridden implicit subprogram.
12797 -- The previous one is a full declaration if it has an expression
12798 -- (which in the case of an aggregate is indicated by the Init flag).
12800 if Ekind (Prev) /= E_Constant
12801 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12802 or else Present (Expression (Parent (Prev)))
12803 or else Has_Init_Expression (Parent (Prev))
12804 or else Present (Full_View (Prev))
12805 then
12806 Enter_Name (Id);
12808 -- Verify that types of both declarations match, or else that both types
12809 -- are anonymous access types whose designated subtypes statically match
12810 -- (as allowed in Ada 2005 by AI-385).
12812 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12813 and then
12814 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12815 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12816 or else Is_Access_Constant (Etype (New_T)) /=
12817 Is_Access_Constant (Etype (Prev))
12818 or else Can_Never_Be_Null (Etype (New_T)) /=
12819 Can_Never_Be_Null (Etype (Prev))
12820 or else Null_Exclusion_Present (Parent (Prev)) /=
12821 Null_Exclusion_Present (Parent (Id))
12822 or else not Subtypes_Statically_Match
12823 (Designated_Type (Etype (Prev)),
12824 Designated_Type (Etype (New_T))))
12825 then
12826 Error_Msg_Sloc := Sloc (Prev);
12827 Error_Msg_N ("type does not match declaration#", N);
12828 Set_Full_View (Prev, Id);
12829 Set_Etype (Id, Any_Type);
12831 -- A deferred constant whose type is an anonymous array is always
12832 -- illegal (unless imported). A detailed error message might be
12833 -- helpful for Ada beginners.
12835 if Nkind (Object_Definition (Parent (Prev)))
12836 = N_Constrained_Array_Definition
12837 and then Nkind (Object_Definition (N))
12838 = N_Constrained_Array_Definition
12839 then
12840 Error_Msg_N ("\each anonymous array is a distinct type", N);
12841 Error_Msg_N ("a deferred constant must have a named type",
12842 Object_Definition (Parent (Prev)));
12843 end if;
12845 elsif
12846 Null_Exclusion_Present (Parent (Prev))
12847 and then not Null_Exclusion_Present (N)
12848 then
12849 Error_Msg_Sloc := Sloc (Prev);
12850 Error_Msg_N ("null-exclusion does not match declaration#", N);
12851 Set_Full_View (Prev, Id);
12852 Set_Etype (Id, Any_Type);
12854 -- If so, process the full constant declaration
12856 else
12857 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12858 -- the deferred declaration is constrained, then the subtype defined
12859 -- by the subtype_indication in the full declaration shall match it
12860 -- statically.
12862 Check_Possible_Deferred_Completion
12863 (Prev_Id => Prev,
12864 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12865 Curr_Obj_Def => Obj_Def);
12867 Set_Full_View (Prev, Id);
12868 Set_Is_Public (Id, Is_Public (Prev));
12869 Set_Is_Internal (Id);
12870 Append_Entity (Id, Current_Scope);
12872 -- Check ALIASED present if present before (RM 7.4(7))
12874 if Is_Aliased (Prev)
12875 and then not Aliased_Present (N)
12876 then
12877 Error_Msg_Sloc := Sloc (Prev);
12878 Error_Msg_N ("ALIASED required (see declaration #)", N);
12879 end if;
12881 -- Check that placement is in private part and that the incomplete
12882 -- declaration appeared in the visible part.
12884 if Ekind (Current_Scope) = E_Package
12885 and then not In_Private_Part (Current_Scope)
12886 then
12887 Error_Msg_Sloc := Sloc (Prev);
12888 Error_Msg_N
12889 ("full constant for declaration # must be in private part", N);
12891 elsif Ekind (Current_Scope) = E_Package
12892 and then
12893 List_Containing (Parent (Prev)) /=
12894 Visible_Declarations (Package_Specification (Current_Scope))
12895 then
12896 Error_Msg_N
12897 ("deferred constant must be declared in visible part",
12898 Parent (Prev));
12899 end if;
12901 if Is_Access_Type (T)
12902 and then Nkind (Expression (N)) = N_Allocator
12903 then
12904 Check_Recursive_Declaration (Designated_Type (T));
12905 end if;
12907 -- A deferred constant is a visible entity. If type has invariants,
12908 -- verify that the initial value satisfies them. This is not done in
12909 -- GNATprove mode, as GNATprove handles invariant checks itself.
12911 if Has_Invariants (T)
12912 and then Present (Invariant_Procedure (T))
12913 and then not GNATprove_Mode
12914 then
12915 Insert_After (N,
12916 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12917 end if;
12918 end if;
12919 end Constant_Redeclaration;
12921 ----------------------
12922 -- Constrain_Access --
12923 ----------------------
12925 procedure Constrain_Access
12926 (Def_Id : in out Entity_Id;
12927 S : Node_Id;
12928 Related_Nod : Node_Id)
12930 T : constant Entity_Id := Entity (Subtype_Mark (S));
12931 Desig_Type : constant Entity_Id := Designated_Type (T);
12932 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12933 Constraint_OK : Boolean := True;
12935 begin
12936 if Is_Array_Type (Desig_Type) then
12937 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12939 elsif (Is_Record_Type (Desig_Type)
12940 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12941 and then not Is_Constrained (Desig_Type)
12942 then
12943 -- ??? The following code is a temporary bypass to ignore a
12944 -- discriminant constraint on access type if it is constraining
12945 -- the current record. Avoid creating the implicit subtype of the
12946 -- record we are currently compiling since right now, we cannot
12947 -- handle these. For now, just return the access type itself.
12949 if Desig_Type = Current_Scope
12950 and then No (Def_Id)
12951 then
12952 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12953 Def_Id := Entity (Subtype_Mark (S));
12955 -- This call added to ensure that the constraint is analyzed
12956 -- (needed for a B test). Note that we still return early from
12957 -- this procedure to avoid recursive processing. ???
12959 Constrain_Discriminated_Type
12960 (Desig_Subtype, S, Related_Nod, For_Access => True);
12961 return;
12962 end if;
12964 -- Enforce rule that the constraint is illegal if there is an
12965 -- unconstrained view of the designated type. This means that the
12966 -- partial view (either a private type declaration or a derivation
12967 -- from a private type) has no discriminants. (Defect Report
12968 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12970 -- Rule updated for Ada 2005: The private type is said to have
12971 -- a constrained partial view, given that objects of the type
12972 -- can be declared. Furthermore, the rule applies to all access
12973 -- types, unlike the rule concerning default discriminants (see
12974 -- RM 3.7.1(7/3))
12976 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12977 and then Has_Private_Declaration (Desig_Type)
12978 and then In_Open_Scopes (Scope (Desig_Type))
12979 and then Has_Discriminants (Desig_Type)
12980 then
12981 declare
12982 Pack : constant Node_Id :=
12983 Unit_Declaration_Node (Scope (Desig_Type));
12984 Decls : List_Id;
12985 Decl : Node_Id;
12987 begin
12988 if Nkind (Pack) = N_Package_Declaration then
12989 Decls := Visible_Declarations (Specification (Pack));
12990 Decl := First (Decls);
12991 while Present (Decl) loop
12992 if (Nkind (Decl) = N_Private_Type_Declaration
12993 and then Chars (Defining_Identifier (Decl)) =
12994 Chars (Desig_Type))
12996 or else
12997 (Nkind (Decl) = N_Full_Type_Declaration
12998 and then
12999 Chars (Defining_Identifier (Decl)) =
13000 Chars (Desig_Type)
13001 and then Is_Derived_Type (Desig_Type)
13002 and then
13003 Has_Private_Declaration (Etype (Desig_Type)))
13004 then
13005 if No (Discriminant_Specifications (Decl)) then
13006 Error_Msg_N
13007 ("cannot constrain access type if designated "
13008 & "type has constrained partial view", S);
13009 end if;
13011 exit;
13012 end if;
13014 Next (Decl);
13015 end loop;
13016 end if;
13017 end;
13018 end if;
13020 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
13021 For_Access => True);
13023 elsif Is_Concurrent_Type (Desig_Type)
13024 and then not Is_Constrained (Desig_Type)
13025 then
13026 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
13028 else
13029 Error_Msg_N ("invalid constraint on access type", S);
13031 -- We simply ignore an invalid constraint
13033 Desig_Subtype := Desig_Type;
13034 Constraint_OK := False;
13035 end if;
13037 if No (Def_Id) then
13038 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13039 else
13040 Set_Ekind (Def_Id, E_Access_Subtype);
13041 end if;
13043 if Constraint_OK then
13044 Set_Etype (Def_Id, Base_Type (T));
13046 if Is_Private_Type (Desig_Type) then
13047 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13048 end if;
13049 else
13050 Set_Etype (Def_Id, Any_Type);
13051 end if;
13053 Set_Size_Info (Def_Id, T);
13054 Set_Is_Constrained (Def_Id, Constraint_OK);
13055 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13056 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13057 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13059 Conditional_Delay (Def_Id, T);
13061 -- AI-363 : Subtypes of general access types whose designated types have
13062 -- default discriminants are disallowed. In instances, the rule has to
13063 -- be checked against the actual, of which T is the subtype. In a
13064 -- generic body, the rule is checked assuming that the actual type has
13065 -- defaulted discriminants.
13067 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13068 if Ekind (Base_Type (T)) = E_General_Access_Type
13069 and then Has_Defaulted_Discriminants (Desig_Type)
13070 then
13071 if Ada_Version < Ada_2005 then
13072 Error_Msg_N
13073 ("access subtype of general access type would not " &
13074 "be allowed in Ada 2005?y?", S);
13075 else
13076 Error_Msg_N
13077 ("access subtype of general access type not allowed", S);
13078 end if;
13080 Error_Msg_N ("\discriminants have defaults", S);
13082 elsif Is_Access_Type (T)
13083 and then Is_Generic_Type (Desig_Type)
13084 and then Has_Discriminants (Desig_Type)
13085 and then In_Package_Body (Current_Scope)
13086 then
13087 if Ada_Version < Ada_2005 then
13088 Error_Msg_N
13089 ("access subtype would not be allowed in generic body "
13090 & "in Ada 2005?y?", S);
13091 else
13092 Error_Msg_N
13093 ("access subtype not allowed in generic body", S);
13094 end if;
13096 Error_Msg_N
13097 ("\designated type is a discriminated formal", S);
13098 end if;
13099 end if;
13100 end Constrain_Access;
13102 ---------------------
13103 -- Constrain_Array --
13104 ---------------------
13106 procedure Constrain_Array
13107 (Def_Id : in out Entity_Id;
13108 SI : Node_Id;
13109 Related_Nod : Node_Id;
13110 Related_Id : Entity_Id;
13111 Suffix : Character)
13113 C : constant Node_Id := Constraint (SI);
13114 Number_Of_Constraints : Nat := 0;
13115 Index : Node_Id;
13116 S, T : Entity_Id;
13117 Constraint_OK : Boolean := True;
13119 begin
13120 T := Entity (Subtype_Mark (SI));
13122 if Is_Access_Type (T) then
13123 T := Designated_Type (T);
13124 end if;
13126 -- If an index constraint follows a subtype mark in a subtype indication
13127 -- then the type or subtype denoted by the subtype mark must not already
13128 -- impose an index constraint. The subtype mark must denote either an
13129 -- unconstrained array type or an access type whose designated type
13130 -- is such an array type... (RM 3.6.1)
13132 if Is_Constrained (T) then
13133 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13134 Constraint_OK := False;
13136 else
13137 S := First (Constraints (C));
13138 while Present (S) loop
13139 Number_Of_Constraints := Number_Of_Constraints + 1;
13140 Next (S);
13141 end loop;
13143 -- In either case, the index constraint must provide a discrete
13144 -- range for each index of the array type and the type of each
13145 -- discrete range must be the same as that of the corresponding
13146 -- index. (RM 3.6.1)
13148 if Number_Of_Constraints /= Number_Dimensions (T) then
13149 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13150 Constraint_OK := False;
13152 else
13153 S := First (Constraints (C));
13154 Index := First_Index (T);
13155 Analyze (Index);
13157 -- Apply constraints to each index type
13159 for J in 1 .. Number_Of_Constraints loop
13160 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13161 Next (Index);
13162 Next (S);
13163 end loop;
13165 end if;
13166 end if;
13168 if No (Def_Id) then
13169 Def_Id :=
13170 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13171 Set_Parent (Def_Id, Related_Nod);
13173 else
13174 Set_Ekind (Def_Id, E_Array_Subtype);
13175 end if;
13177 Set_Size_Info (Def_Id, (T));
13178 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13179 Set_Etype (Def_Id, Base_Type (T));
13181 if Constraint_OK then
13182 Set_First_Index (Def_Id, First (Constraints (C)));
13183 else
13184 Set_First_Index (Def_Id, First_Index (T));
13185 end if;
13187 Set_Is_Constrained (Def_Id, True);
13188 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13189 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13191 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13192 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13194 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13195 -- We need to initialize the attribute because if Def_Id is previously
13196 -- analyzed through a limited_with clause, it will have the attributes
13197 -- of an incomplete type, one of which is an Elist that overlaps the
13198 -- Packed_Array_Impl_Type field.
13200 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13202 -- Build a freeze node if parent still needs one. Also make sure that
13203 -- the Depends_On_Private status is set because the subtype will need
13204 -- reprocessing at the time the base type does, and also we must set a
13205 -- conditional delay.
13207 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13208 Conditional_Delay (Def_Id, T);
13209 end Constrain_Array;
13211 ------------------------------
13212 -- Constrain_Component_Type --
13213 ------------------------------
13215 function Constrain_Component_Type
13216 (Comp : Entity_Id;
13217 Constrained_Typ : Entity_Id;
13218 Related_Node : Node_Id;
13219 Typ : Entity_Id;
13220 Constraints : Elist_Id) return Entity_Id
13222 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13223 Compon_Type : constant Entity_Id := Etype (Comp);
13225 function Build_Constrained_Array_Type
13226 (Old_Type : Entity_Id) return Entity_Id;
13227 -- If Old_Type is an array type, one of whose indexes is constrained
13228 -- by a discriminant, build an Itype whose constraint replaces the
13229 -- discriminant with its value in the constraint.
13231 function Build_Constrained_Discriminated_Type
13232 (Old_Type : Entity_Id) return Entity_Id;
13233 -- Ditto for record components
13235 function Build_Constrained_Access_Type
13236 (Old_Type : Entity_Id) return Entity_Id;
13237 -- Ditto for access types. Makes use of previous two functions, to
13238 -- constrain designated type.
13240 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13241 -- T is an array or discriminated type, C is a list of constraints
13242 -- that apply to T. This routine builds the constrained subtype.
13244 function Is_Discriminant (Expr : Node_Id) return Boolean;
13245 -- Returns True if Expr is a discriminant
13247 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13248 -- Find the value of discriminant Discrim in Constraint
13250 -----------------------------------
13251 -- Build_Constrained_Access_Type --
13252 -----------------------------------
13254 function Build_Constrained_Access_Type
13255 (Old_Type : Entity_Id) return Entity_Id
13257 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13258 Itype : Entity_Id;
13259 Desig_Subtype : Entity_Id;
13260 Scop : Entity_Id;
13262 begin
13263 -- if the original access type was not embedded in the enclosing
13264 -- type definition, there is no need to produce a new access
13265 -- subtype. In fact every access type with an explicit constraint
13266 -- generates an itype whose scope is the enclosing record.
13268 if not Is_Type (Scope (Old_Type)) then
13269 return Old_Type;
13271 elsif Is_Array_Type (Desig_Type) then
13272 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13274 elsif Has_Discriminants (Desig_Type) then
13276 -- This may be an access type to an enclosing record type for
13277 -- which we are constructing the constrained components. Return
13278 -- the enclosing record subtype. This is not always correct,
13279 -- but avoids infinite recursion. ???
13281 Desig_Subtype := Any_Type;
13283 for J in reverse 0 .. Scope_Stack.Last loop
13284 Scop := Scope_Stack.Table (J).Entity;
13286 if Is_Type (Scop)
13287 and then Base_Type (Scop) = Base_Type (Desig_Type)
13288 then
13289 Desig_Subtype := Scop;
13290 end if;
13292 exit when not Is_Type (Scop);
13293 end loop;
13295 if Desig_Subtype = Any_Type then
13296 Desig_Subtype :=
13297 Build_Constrained_Discriminated_Type (Desig_Type);
13298 end if;
13300 else
13301 return Old_Type;
13302 end if;
13304 if Desig_Subtype /= Desig_Type then
13306 -- The Related_Node better be here or else we won't be able
13307 -- to attach new itypes to a node in the tree.
13309 pragma Assert (Present (Related_Node));
13311 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13313 Set_Etype (Itype, Base_Type (Old_Type));
13314 Set_Size_Info (Itype, (Old_Type));
13315 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13316 Set_Depends_On_Private (Itype, Has_Private_Component
13317 (Old_Type));
13318 Set_Is_Access_Constant (Itype, Is_Access_Constant
13319 (Old_Type));
13321 -- The new itype needs freezing when it depends on a not frozen
13322 -- type and the enclosing subtype needs freezing.
13324 if Has_Delayed_Freeze (Constrained_Typ)
13325 and then not Is_Frozen (Constrained_Typ)
13326 then
13327 Conditional_Delay (Itype, Base_Type (Old_Type));
13328 end if;
13330 return Itype;
13332 else
13333 return Old_Type;
13334 end if;
13335 end Build_Constrained_Access_Type;
13337 ----------------------------------
13338 -- Build_Constrained_Array_Type --
13339 ----------------------------------
13341 function Build_Constrained_Array_Type
13342 (Old_Type : Entity_Id) return Entity_Id
13344 Lo_Expr : Node_Id;
13345 Hi_Expr : Node_Id;
13346 Old_Index : Node_Id;
13347 Range_Node : Node_Id;
13348 Constr_List : List_Id;
13350 Need_To_Create_Itype : Boolean := False;
13352 begin
13353 Old_Index := First_Index (Old_Type);
13354 while Present (Old_Index) loop
13355 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13357 if Is_Discriminant (Lo_Expr)
13358 or else
13359 Is_Discriminant (Hi_Expr)
13360 then
13361 Need_To_Create_Itype := True;
13362 end if;
13364 Next_Index (Old_Index);
13365 end loop;
13367 if Need_To_Create_Itype then
13368 Constr_List := New_List;
13370 Old_Index := First_Index (Old_Type);
13371 while Present (Old_Index) loop
13372 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13374 if Is_Discriminant (Lo_Expr) then
13375 Lo_Expr := Get_Discr_Value (Lo_Expr);
13376 end if;
13378 if Is_Discriminant (Hi_Expr) then
13379 Hi_Expr := Get_Discr_Value (Hi_Expr);
13380 end if;
13382 Range_Node :=
13383 Make_Range
13384 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13386 Append (Range_Node, To => Constr_List);
13388 Next_Index (Old_Index);
13389 end loop;
13391 return Build_Subtype (Old_Type, Constr_List);
13393 else
13394 return Old_Type;
13395 end if;
13396 end Build_Constrained_Array_Type;
13398 ------------------------------------------
13399 -- Build_Constrained_Discriminated_Type --
13400 ------------------------------------------
13402 function Build_Constrained_Discriminated_Type
13403 (Old_Type : Entity_Id) return Entity_Id
13405 Expr : Node_Id;
13406 Constr_List : List_Id;
13407 Old_Constraint : Elmt_Id;
13409 Need_To_Create_Itype : Boolean := False;
13411 begin
13412 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13413 while Present (Old_Constraint) loop
13414 Expr := Node (Old_Constraint);
13416 if Is_Discriminant (Expr) then
13417 Need_To_Create_Itype := True;
13418 end if;
13420 Next_Elmt (Old_Constraint);
13421 end loop;
13423 if Need_To_Create_Itype then
13424 Constr_List := New_List;
13426 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13427 while Present (Old_Constraint) loop
13428 Expr := Node (Old_Constraint);
13430 if Is_Discriminant (Expr) then
13431 Expr := Get_Discr_Value (Expr);
13432 end if;
13434 Append (New_Copy_Tree (Expr), To => Constr_List);
13436 Next_Elmt (Old_Constraint);
13437 end loop;
13439 return Build_Subtype (Old_Type, Constr_List);
13441 else
13442 return Old_Type;
13443 end if;
13444 end Build_Constrained_Discriminated_Type;
13446 -------------------
13447 -- Build_Subtype --
13448 -------------------
13450 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13451 Indic : Node_Id;
13452 Subtyp_Decl : Node_Id;
13453 Def_Id : Entity_Id;
13454 Btyp : Entity_Id := Base_Type (T);
13456 begin
13457 -- The Related_Node better be here or else we won't be able to
13458 -- attach new itypes to a node in the tree.
13460 pragma Assert (Present (Related_Node));
13462 -- If the view of the component's type is incomplete or private
13463 -- with unknown discriminants, then the constraint must be applied
13464 -- to the full type.
13466 if Has_Unknown_Discriminants (Btyp)
13467 and then Present (Underlying_Type (Btyp))
13468 then
13469 Btyp := Underlying_Type (Btyp);
13470 end if;
13472 Indic :=
13473 Make_Subtype_Indication (Loc,
13474 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13475 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13477 Def_Id := Create_Itype (Ekind (T), Related_Node);
13479 Subtyp_Decl :=
13480 Make_Subtype_Declaration (Loc,
13481 Defining_Identifier => Def_Id,
13482 Subtype_Indication => Indic);
13484 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13486 -- Itypes must be analyzed with checks off (see package Itypes)
13488 Analyze (Subtyp_Decl, Suppress => All_Checks);
13490 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13491 Inherit_Predicate_Flags (Def_Id, T);
13493 -- Indicate where the predicate function may be found
13495 if Is_Itype (T) then
13496 if Present (Predicate_Function (Def_Id)) then
13497 null;
13499 elsif Present (Predicate_Function (T)) then
13500 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13502 else
13503 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13504 end if;
13506 elsif No (Predicate_Function (Def_Id)) then
13507 Set_Predicated_Parent (Def_Id, T);
13508 end if;
13509 end if;
13511 return Def_Id;
13512 end Build_Subtype;
13514 ---------------------
13515 -- Get_Discr_Value --
13516 ---------------------
13518 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13519 D : Entity_Id;
13520 E : Elmt_Id;
13522 begin
13523 -- The discriminant may be declared for the type, in which case we
13524 -- find it by iterating over the list of discriminants. If the
13525 -- discriminant is inherited from a parent type, it appears as the
13526 -- corresponding discriminant of the current type. This will be the
13527 -- case when constraining an inherited component whose constraint is
13528 -- given by a discriminant of the parent.
13530 D := First_Discriminant (Typ);
13531 E := First_Elmt (Constraints);
13533 while Present (D) loop
13534 if D = Entity (Discrim)
13535 or else D = CR_Discriminant (Entity (Discrim))
13536 or else Corresponding_Discriminant (D) = Entity (Discrim)
13537 then
13538 return Node (E);
13539 end if;
13541 Next_Discriminant (D);
13542 Next_Elmt (E);
13543 end loop;
13545 -- The Corresponding_Discriminant mechanism is incomplete, because
13546 -- the correspondence between new and old discriminants is not one
13547 -- to one: one new discriminant can constrain several old ones. In
13548 -- that case, scan sequentially the stored_constraint, the list of
13549 -- discriminants of the parents, and the constraints.
13551 -- Previous code checked for the present of the Stored_Constraint
13552 -- list for the derived type, but did not use it at all. Should it
13553 -- be present when the component is a discriminated task type?
13555 if Is_Derived_Type (Typ)
13556 and then Scope (Entity (Discrim)) = Etype (Typ)
13557 then
13558 D := First_Discriminant (Etype (Typ));
13559 E := First_Elmt (Constraints);
13560 while Present (D) loop
13561 if D = Entity (Discrim) then
13562 return Node (E);
13563 end if;
13565 Next_Discriminant (D);
13566 Next_Elmt (E);
13567 end loop;
13568 end if;
13570 -- Something is wrong if we did not find the value
13572 raise Program_Error;
13573 end Get_Discr_Value;
13575 ---------------------
13576 -- Is_Discriminant --
13577 ---------------------
13579 function Is_Discriminant (Expr : Node_Id) return Boolean is
13580 Discrim_Scope : Entity_Id;
13582 begin
13583 if Denotes_Discriminant (Expr) then
13584 Discrim_Scope := Scope (Entity (Expr));
13586 -- Either we have a reference to one of Typ's discriminants,
13588 pragma Assert (Discrim_Scope = Typ
13590 -- or to the discriminants of the parent type, in the case
13591 -- of a derivation of a tagged type with variants.
13593 or else Discrim_Scope = Etype (Typ)
13594 or else Full_View (Discrim_Scope) = Etype (Typ)
13596 -- or same as above for the case where the discriminants
13597 -- were declared in Typ's private view.
13599 or else (Is_Private_Type (Discrim_Scope)
13600 and then Chars (Discrim_Scope) = Chars (Typ))
13602 -- or else we are deriving from the full view and the
13603 -- discriminant is declared in the private entity.
13605 or else (Is_Private_Type (Typ)
13606 and then Chars (Discrim_Scope) = Chars (Typ))
13608 -- Or we are constrained the corresponding record of a
13609 -- synchronized type that completes a private declaration.
13611 or else (Is_Concurrent_Record_Type (Typ)
13612 and then
13613 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13615 -- or we have a class-wide type, in which case make sure the
13616 -- discriminant found belongs to the root type.
13618 or else (Is_Class_Wide_Type (Typ)
13619 and then Etype (Typ) = Discrim_Scope));
13621 return True;
13622 end if;
13624 -- In all other cases we have something wrong
13626 return False;
13627 end Is_Discriminant;
13629 -- Start of processing for Constrain_Component_Type
13631 begin
13632 if Nkind (Parent (Comp)) = N_Component_Declaration
13633 and then Comes_From_Source (Parent (Comp))
13634 and then Comes_From_Source
13635 (Subtype_Indication (Component_Definition (Parent (Comp))))
13636 and then
13637 Is_Entity_Name
13638 (Subtype_Indication (Component_Definition (Parent (Comp))))
13639 then
13640 return Compon_Type;
13642 elsif Is_Array_Type (Compon_Type) then
13643 return Build_Constrained_Array_Type (Compon_Type);
13645 elsif Has_Discriminants (Compon_Type) then
13646 return Build_Constrained_Discriminated_Type (Compon_Type);
13648 elsif Is_Access_Type (Compon_Type) then
13649 return Build_Constrained_Access_Type (Compon_Type);
13651 else
13652 return Compon_Type;
13653 end if;
13654 end Constrain_Component_Type;
13656 --------------------------
13657 -- Constrain_Concurrent --
13658 --------------------------
13660 -- For concurrent types, the associated record value type carries the same
13661 -- discriminants, so when we constrain a concurrent type, we must constrain
13662 -- the corresponding record type as well.
13664 procedure Constrain_Concurrent
13665 (Def_Id : in out Entity_Id;
13666 SI : Node_Id;
13667 Related_Nod : Node_Id;
13668 Related_Id : Entity_Id;
13669 Suffix : Character)
13671 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13672 -- case of a private subtype (needed when only doing semantic analysis).
13674 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13675 T_Val : Entity_Id;
13677 begin
13678 if Is_Access_Type (T_Ent) then
13679 T_Ent := Designated_Type (T_Ent);
13680 end if;
13682 T_Val := Corresponding_Record_Type (T_Ent);
13684 if Present (T_Val) then
13686 if No (Def_Id) then
13687 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13689 -- Elaborate itype now, as it may be used in a subsequent
13690 -- synchronized operation in another scope.
13692 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13693 Build_Itype_Reference (Def_Id, Related_Nod);
13694 end if;
13695 end if;
13697 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13698 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13700 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13701 Set_Corresponding_Record_Type (Def_Id,
13702 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13704 else
13705 -- If there is no associated record, expansion is disabled and this
13706 -- is a generic context. Create a subtype in any case, so that
13707 -- semantic analysis can proceed.
13709 if No (Def_Id) then
13710 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13711 end if;
13713 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13714 end if;
13715 end Constrain_Concurrent;
13717 ------------------------------------
13718 -- Constrain_Corresponding_Record --
13719 ------------------------------------
13721 function Constrain_Corresponding_Record
13722 (Prot_Subt : Entity_Id;
13723 Corr_Rec : Entity_Id;
13724 Related_Nod : Node_Id) return Entity_Id
13726 T_Sub : constant Entity_Id :=
13727 Create_Itype
13728 (Ekind => E_Record_Subtype,
13729 Related_Nod => Related_Nod,
13730 Related_Id => Corr_Rec,
13731 Suffix => 'C',
13732 Suffix_Index => -1);
13734 begin
13735 Set_Etype (T_Sub, Corr_Rec);
13736 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13737 Set_Is_Constrained (T_Sub, True);
13738 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13739 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13741 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13742 Set_Discriminant_Constraint
13743 (T_Sub, Discriminant_Constraint (Prot_Subt));
13744 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13745 Create_Constrained_Components
13746 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13747 end if;
13749 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13751 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13752 Conditional_Delay (T_Sub, Corr_Rec);
13754 else
13755 -- This is a component subtype: it will be frozen in the context of
13756 -- the enclosing record's init_proc, so that discriminant references
13757 -- are resolved to discriminals. (Note: we used to skip freezing
13758 -- altogether in that case, which caused errors downstream for
13759 -- components of a bit packed array type).
13761 Set_Has_Delayed_Freeze (T_Sub);
13762 end if;
13764 return T_Sub;
13765 end Constrain_Corresponding_Record;
13767 -----------------------
13768 -- Constrain_Decimal --
13769 -----------------------
13771 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13772 T : constant Entity_Id := Entity (Subtype_Mark (S));
13773 C : constant Node_Id := Constraint (S);
13774 Loc : constant Source_Ptr := Sloc (C);
13775 Range_Expr : Node_Id;
13776 Digits_Expr : Node_Id;
13777 Digits_Val : Uint;
13778 Bound_Val : Ureal;
13780 begin
13781 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13783 if Nkind (C) = N_Range_Constraint then
13784 Range_Expr := Range_Expression (C);
13785 Digits_Val := Digits_Value (T);
13787 else
13788 pragma Assert (Nkind (C) = N_Digits_Constraint);
13790 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13792 Digits_Expr := Digits_Expression (C);
13793 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13795 Check_Digits_Expression (Digits_Expr);
13796 Digits_Val := Expr_Value (Digits_Expr);
13798 if Digits_Val > Digits_Value (T) then
13799 Error_Msg_N
13800 ("digits expression is incompatible with subtype", C);
13801 Digits_Val := Digits_Value (T);
13802 end if;
13804 if Present (Range_Constraint (C)) then
13805 Range_Expr := Range_Expression (Range_Constraint (C));
13806 else
13807 Range_Expr := Empty;
13808 end if;
13809 end if;
13811 Set_Etype (Def_Id, Base_Type (T));
13812 Set_Size_Info (Def_Id, (T));
13813 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13814 Set_Delta_Value (Def_Id, Delta_Value (T));
13815 Set_Scale_Value (Def_Id, Scale_Value (T));
13816 Set_Small_Value (Def_Id, Small_Value (T));
13817 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13818 Set_Digits_Value (Def_Id, Digits_Val);
13820 -- Manufacture range from given digits value if no range present
13822 if No (Range_Expr) then
13823 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13824 Range_Expr :=
13825 Make_Range (Loc,
13826 Low_Bound =>
13827 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13828 High_Bound =>
13829 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13830 end if;
13832 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13833 Set_Discrete_RM_Size (Def_Id);
13835 -- Unconditionally delay the freeze, since we cannot set size
13836 -- information in all cases correctly until the freeze point.
13838 Set_Has_Delayed_Freeze (Def_Id);
13839 end Constrain_Decimal;
13841 ----------------------------------
13842 -- Constrain_Discriminated_Type --
13843 ----------------------------------
13845 procedure Constrain_Discriminated_Type
13846 (Def_Id : Entity_Id;
13847 S : Node_Id;
13848 Related_Nod : Node_Id;
13849 For_Access : Boolean := False)
13851 E : Entity_Id := Entity (Subtype_Mark (S));
13852 T : Entity_Id;
13854 procedure Fixup_Bad_Constraint;
13855 -- Called after finding a bad constraint, and after having posted an
13856 -- appropriate error message. The goal is to leave type Def_Id in as
13857 -- reasonable state as possible.
13859 --------------------------
13860 -- Fixup_Bad_Constraint --
13861 --------------------------
13863 procedure Fixup_Bad_Constraint is
13864 begin
13865 -- Set a reasonable Ekind for the entity, including incomplete types.
13867 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13869 -- Set Etype to the known type, to reduce chances of cascaded errors
13871 Set_Etype (Def_Id, E);
13872 Set_Error_Posted (Def_Id);
13873 end Fixup_Bad_Constraint;
13875 -- Local variables
13877 C : Node_Id;
13878 Constr : Elist_Id := New_Elmt_List;
13880 -- Start of processing for Constrain_Discriminated_Type
13882 begin
13883 C := Constraint (S);
13885 -- A discriminant constraint is only allowed in a subtype indication,
13886 -- after a subtype mark. This subtype mark must denote either a type
13887 -- with discriminants, or an access type whose designated type is a
13888 -- type with discriminants. A discriminant constraint specifies the
13889 -- values of these discriminants (RM 3.7.2(5)).
13891 T := Base_Type (Entity (Subtype_Mark (S)));
13893 if Is_Access_Type (T) then
13894 T := Designated_Type (T);
13895 end if;
13897 -- In an instance it may be necessary to retrieve the full view of a
13898 -- type with unknown discriminants, or a full view with defaulted
13899 -- discriminants. In other contexts the constraint is illegal.
13901 if In_Instance
13902 and then Is_Private_Type (T)
13903 and then Present (Full_View (T))
13904 and then
13905 (Has_Unknown_Discriminants (T)
13906 or else
13907 (not Has_Discriminants (T)
13908 and then Has_Discriminants (Full_View (T))
13909 and then Present (Discriminant_Default_Value
13910 (First_Discriminant (Full_View (T))))))
13911 then
13912 T := Full_View (T);
13913 E := Full_View (E);
13914 end if;
13916 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13917 -- generating an error for access-to-incomplete subtypes.
13919 if Ada_Version >= Ada_2005
13920 and then Ekind (T) = E_Incomplete_Type
13921 and then Nkind (Parent (S)) = N_Subtype_Declaration
13922 and then not Is_Itype (Def_Id)
13923 then
13924 -- A little sanity check: emit an error message if the type has
13925 -- discriminants to begin with. Type T may be a regular incomplete
13926 -- type or imported via a limited with clause.
13928 if Has_Discriminants (T)
13929 or else (From_Limited_With (T)
13930 and then Present (Non_Limited_View (T))
13931 and then Nkind (Parent (Non_Limited_View (T))) =
13932 N_Full_Type_Declaration
13933 and then Present (Discriminant_Specifications
13934 (Parent (Non_Limited_View (T)))))
13935 then
13936 Error_Msg_N
13937 ("(Ada 2005) incomplete subtype may not be constrained", C);
13938 else
13939 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13940 end if;
13942 Fixup_Bad_Constraint;
13943 return;
13945 -- Check that the type has visible discriminants. The type may be
13946 -- a private type with unknown discriminants whose full view has
13947 -- discriminants which are invisible.
13949 elsif not Has_Discriminants (T)
13950 or else
13951 (Has_Unknown_Discriminants (T)
13952 and then Is_Private_Type (T))
13953 then
13954 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13955 Fixup_Bad_Constraint;
13956 return;
13958 elsif Is_Constrained (E)
13959 or else (Ekind (E) = E_Class_Wide_Subtype
13960 and then Present (Discriminant_Constraint (E)))
13961 then
13962 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13963 Fixup_Bad_Constraint;
13964 return;
13965 end if;
13967 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13968 -- applies to the base type.
13970 T := Base_Type (T);
13972 Constr := Build_Discriminant_Constraints (T, S);
13974 -- If the list returned was empty we had an error in building the
13975 -- discriminant constraint. We have also already signalled an error
13976 -- in the incomplete type case
13978 if Is_Empty_Elmt_List (Constr) then
13979 Fixup_Bad_Constraint;
13980 return;
13981 end if;
13983 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13984 end Constrain_Discriminated_Type;
13986 ---------------------------
13987 -- Constrain_Enumeration --
13988 ---------------------------
13990 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13991 T : constant Entity_Id := Entity (Subtype_Mark (S));
13992 C : constant Node_Id := Constraint (S);
13994 begin
13995 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13997 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13999 Set_Etype (Def_Id, Base_Type (T));
14000 Set_Size_Info (Def_Id, (T));
14001 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14002 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14004 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14006 Set_Discrete_RM_Size (Def_Id);
14007 end Constrain_Enumeration;
14009 ----------------------
14010 -- Constrain_Float --
14011 ----------------------
14013 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
14014 T : constant Entity_Id := Entity (Subtype_Mark (S));
14015 C : Node_Id;
14016 D : Node_Id;
14017 Rais : Node_Id;
14019 begin
14020 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
14022 Set_Etype (Def_Id, Base_Type (T));
14023 Set_Size_Info (Def_Id, (T));
14024 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14026 -- Process the constraint
14028 C := Constraint (S);
14030 -- Digits constraint present
14032 if Nkind (C) = N_Digits_Constraint then
14034 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
14035 Check_Restriction (No_Obsolescent_Features, C);
14037 if Warn_On_Obsolescent_Feature then
14038 Error_Msg_N
14039 ("subtype digits constraint is an " &
14040 "obsolescent feature (RM J.3(8))?j?", C);
14041 end if;
14043 D := Digits_Expression (C);
14044 Analyze_And_Resolve (D, Any_Integer);
14045 Check_Digits_Expression (D);
14046 Set_Digits_Value (Def_Id, Expr_Value (D));
14048 -- Check that digits value is in range. Obviously we can do this
14049 -- at compile time, but it is strictly a runtime check, and of
14050 -- course there is an ACVC test that checks this.
14052 if Digits_Value (Def_Id) > Digits_Value (T) then
14053 Error_Msg_Uint_1 := Digits_Value (T);
14054 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14055 Rais :=
14056 Make_Raise_Constraint_Error (Sloc (D),
14057 Reason => CE_Range_Check_Failed);
14058 Insert_Action (Declaration_Node (Def_Id), Rais);
14059 end if;
14061 C := Range_Constraint (C);
14063 -- No digits constraint present
14065 else
14066 Set_Digits_Value (Def_Id, Digits_Value (T));
14067 end if;
14069 -- Range constraint present
14071 if Nkind (C) = N_Range_Constraint then
14072 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14074 -- No range constraint present
14076 else
14077 pragma Assert (No (C));
14078 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14079 end if;
14081 Set_Is_Constrained (Def_Id);
14082 end Constrain_Float;
14084 ---------------------
14085 -- Constrain_Index --
14086 ---------------------
14088 procedure Constrain_Index
14089 (Index : Node_Id;
14090 S : Node_Id;
14091 Related_Nod : Node_Id;
14092 Related_Id : Entity_Id;
14093 Suffix : Character;
14094 Suffix_Index : Nat)
14096 Def_Id : Entity_Id;
14097 R : Node_Id := Empty;
14098 T : constant Entity_Id := Etype (Index);
14100 begin
14101 Def_Id :=
14102 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14103 Set_Etype (Def_Id, Base_Type (T));
14105 if Nkind (S) = N_Range
14106 or else
14107 (Nkind (S) = N_Attribute_Reference
14108 and then Attribute_Name (S) = Name_Range)
14109 then
14110 -- A Range attribute will be transformed into N_Range by Resolve
14112 Analyze (S);
14113 Set_Etype (S, T);
14114 R := S;
14116 Process_Range_Expr_In_Decl (R, T);
14118 if not Error_Posted (S)
14119 and then
14120 (Nkind (S) /= N_Range
14121 or else not Covers (T, (Etype (Low_Bound (S))))
14122 or else not Covers (T, (Etype (High_Bound (S)))))
14123 then
14124 if Base_Type (T) /= Any_Type
14125 and then Etype (Low_Bound (S)) /= Any_Type
14126 and then Etype (High_Bound (S)) /= Any_Type
14127 then
14128 Error_Msg_N ("range expected", S);
14129 end if;
14130 end if;
14132 elsif Nkind (S) = N_Subtype_Indication then
14134 -- The parser has verified that this is a discrete indication
14136 Resolve_Discrete_Subtype_Indication (S, T);
14137 Bad_Predicated_Subtype_Use
14138 ("subtype& has predicate, not allowed in index constraint",
14139 S, Entity (Subtype_Mark (S)));
14141 R := Range_Expression (Constraint (S));
14143 -- Capture values of bounds and generate temporaries for them if
14144 -- needed, since checks may cause duplication of the expressions
14145 -- which must not be reevaluated.
14147 -- The forced evaluation removes side effects from expressions, which
14148 -- should occur also in GNATprove mode. Otherwise, we end up with
14149 -- unexpected insertions of actions at places where this is not
14150 -- supposed to occur, e.g. on default parameters of a call.
14152 if Expander_Active or GNATprove_Mode then
14153 Force_Evaluation
14154 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14155 Force_Evaluation
14156 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14157 end if;
14159 elsif Nkind (S) = N_Discriminant_Association then
14161 -- Syntactically valid in subtype indication
14163 Error_Msg_N ("invalid index constraint", S);
14164 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14165 return;
14167 -- Subtype_Mark case, no anonymous subtypes to construct
14169 else
14170 Analyze (S);
14172 if Is_Entity_Name (S) then
14173 if not Is_Type (Entity (S)) then
14174 Error_Msg_N ("expect subtype mark for index constraint", S);
14176 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14177 Wrong_Type (S, Base_Type (T));
14179 -- Check error of subtype with predicate in index constraint
14181 else
14182 Bad_Predicated_Subtype_Use
14183 ("subtype& has predicate, not allowed in index constraint",
14184 S, Entity (S));
14185 end if;
14187 return;
14189 else
14190 Error_Msg_N ("invalid index constraint", S);
14191 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14192 return;
14193 end if;
14194 end if;
14196 -- Complete construction of the Itype
14198 if Is_Modular_Integer_Type (T) then
14199 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14201 elsif Is_Integer_Type (T) then
14202 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14204 else
14205 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14206 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14207 Set_First_Literal (Def_Id, First_Literal (T));
14208 end if;
14210 Set_Size_Info (Def_Id, (T));
14211 Set_RM_Size (Def_Id, RM_Size (T));
14212 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14214 Set_Scalar_Range (Def_Id, R);
14216 Set_Etype (S, Def_Id);
14217 Set_Discrete_RM_Size (Def_Id);
14218 end Constrain_Index;
14220 -----------------------
14221 -- Constrain_Integer --
14222 -----------------------
14224 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14225 T : constant Entity_Id := Entity (Subtype_Mark (S));
14226 C : constant Node_Id := Constraint (S);
14228 begin
14229 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14231 if Is_Modular_Integer_Type (T) then
14232 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14233 else
14234 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14235 end if;
14237 Set_Etype (Def_Id, Base_Type (T));
14238 Set_Size_Info (Def_Id, (T));
14239 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14240 Set_Discrete_RM_Size (Def_Id);
14241 end Constrain_Integer;
14243 ------------------------------
14244 -- Constrain_Ordinary_Fixed --
14245 ------------------------------
14247 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14248 T : constant Entity_Id := Entity (Subtype_Mark (S));
14249 C : Node_Id;
14250 D : Node_Id;
14251 Rais : Node_Id;
14253 begin
14254 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14255 Set_Etype (Def_Id, Base_Type (T));
14256 Set_Size_Info (Def_Id, (T));
14257 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14258 Set_Small_Value (Def_Id, Small_Value (T));
14260 -- Process the constraint
14262 C := Constraint (S);
14264 -- Delta constraint present
14266 if Nkind (C) = N_Delta_Constraint then
14268 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14269 Check_Restriction (No_Obsolescent_Features, C);
14271 if Warn_On_Obsolescent_Feature then
14272 Error_Msg_S
14273 ("subtype delta constraint is an " &
14274 "obsolescent feature (RM J.3(7))?j?");
14275 end if;
14277 D := Delta_Expression (C);
14278 Analyze_And_Resolve (D, Any_Real);
14279 Check_Delta_Expression (D);
14280 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14282 -- Check that delta value is in range. Obviously we can do this
14283 -- at compile time, but it is strictly a runtime check, and of
14284 -- course there is an ACVC test that checks this.
14286 if Delta_Value (Def_Id) < Delta_Value (T) then
14287 Error_Msg_N ("??delta value is too small", D);
14288 Rais :=
14289 Make_Raise_Constraint_Error (Sloc (D),
14290 Reason => CE_Range_Check_Failed);
14291 Insert_Action (Declaration_Node (Def_Id), Rais);
14292 end if;
14294 C := Range_Constraint (C);
14296 -- No delta constraint present
14298 else
14299 Set_Delta_Value (Def_Id, Delta_Value (T));
14300 end if;
14302 -- Range constraint present
14304 if Nkind (C) = N_Range_Constraint then
14305 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14307 -- No range constraint present
14309 else
14310 pragma Assert (No (C));
14311 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14312 end if;
14314 Set_Discrete_RM_Size (Def_Id);
14316 -- Unconditionally delay the freeze, since we cannot set size
14317 -- information in all cases correctly until the freeze point.
14319 Set_Has_Delayed_Freeze (Def_Id);
14320 end Constrain_Ordinary_Fixed;
14322 -----------------------
14323 -- Contain_Interface --
14324 -----------------------
14326 function Contain_Interface
14327 (Iface : Entity_Id;
14328 Ifaces : Elist_Id) return Boolean
14330 Iface_Elmt : Elmt_Id;
14332 begin
14333 if Present (Ifaces) then
14334 Iface_Elmt := First_Elmt (Ifaces);
14335 while Present (Iface_Elmt) loop
14336 if Node (Iface_Elmt) = Iface then
14337 return True;
14338 end if;
14340 Next_Elmt (Iface_Elmt);
14341 end loop;
14342 end if;
14344 return False;
14345 end Contain_Interface;
14347 ---------------------------
14348 -- Convert_Scalar_Bounds --
14349 ---------------------------
14351 procedure Convert_Scalar_Bounds
14352 (N : Node_Id;
14353 Parent_Type : Entity_Id;
14354 Derived_Type : Entity_Id;
14355 Loc : Source_Ptr)
14357 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14359 Lo : Node_Id;
14360 Hi : Node_Id;
14361 Rng : Node_Id;
14363 begin
14364 -- Defend against previous errors
14366 if No (Scalar_Range (Derived_Type)) then
14367 Check_Error_Detected;
14368 return;
14369 end if;
14371 Lo := Build_Scalar_Bound
14372 (Type_Low_Bound (Derived_Type),
14373 Parent_Type, Implicit_Base);
14375 Hi := Build_Scalar_Bound
14376 (Type_High_Bound (Derived_Type),
14377 Parent_Type, Implicit_Base);
14379 Rng :=
14380 Make_Range (Loc,
14381 Low_Bound => Lo,
14382 High_Bound => Hi);
14384 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14386 Set_Parent (Rng, N);
14387 Set_Scalar_Range (Derived_Type, Rng);
14389 -- Analyze the bounds
14391 Analyze_And_Resolve (Lo, Implicit_Base);
14392 Analyze_And_Resolve (Hi, Implicit_Base);
14394 -- Analyze the range itself, except that we do not analyze it if
14395 -- the bounds are real literals, and we have a fixed-point type.
14396 -- The reason for this is that we delay setting the bounds in this
14397 -- case till we know the final Small and Size values (see circuit
14398 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14400 if Is_Fixed_Point_Type (Parent_Type)
14401 and then Nkind (Lo) = N_Real_Literal
14402 and then Nkind (Hi) = N_Real_Literal
14403 then
14404 return;
14406 -- Here we do the analysis of the range
14408 -- Note: we do this manually, since if we do a normal Analyze and
14409 -- Resolve call, there are problems with the conversions used for
14410 -- the derived type range.
14412 else
14413 Set_Etype (Rng, Implicit_Base);
14414 Set_Analyzed (Rng, True);
14415 end if;
14416 end Convert_Scalar_Bounds;
14418 -------------------
14419 -- Copy_And_Swap --
14420 -------------------
14422 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14423 begin
14424 -- Initialize new full declaration entity by copying the pertinent
14425 -- fields of the corresponding private declaration entity.
14427 -- We temporarily set Ekind to a value appropriate for a type to
14428 -- avoid assert failures in Einfo from checking for setting type
14429 -- attributes on something that is not a type. Ekind (Priv) is an
14430 -- appropriate choice, since it allowed the attributes to be set
14431 -- in the first place. This Ekind value will be modified later.
14433 Set_Ekind (Full, Ekind (Priv));
14435 -- Also set Etype temporarily to Any_Type, again, in the absence
14436 -- of errors, it will be properly reset, and if there are errors,
14437 -- then we want a value of Any_Type to remain.
14439 Set_Etype (Full, Any_Type);
14441 -- Now start copying attributes
14443 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14445 if Has_Discriminants (Full) then
14446 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14447 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14448 end if;
14450 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14451 Set_Homonym (Full, Homonym (Priv));
14452 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14453 Set_Is_Public (Full, Is_Public (Priv));
14454 Set_Is_Pure (Full, Is_Pure (Priv));
14455 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14456 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14457 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14458 Set_Has_Pragma_Unreferenced_Objects
14459 (Full, Has_Pragma_Unreferenced_Objects
14460 (Priv));
14462 Conditional_Delay (Full, Priv);
14464 if Is_Tagged_Type (Full) then
14465 Set_Direct_Primitive_Operations
14466 (Full, Direct_Primitive_Operations (Priv));
14467 Set_No_Tagged_Streams_Pragma
14468 (Full, No_Tagged_Streams_Pragma (Priv));
14470 if Is_Base_Type (Priv) then
14471 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14472 end if;
14473 end if;
14475 Set_Is_Volatile (Full, Is_Volatile (Priv));
14476 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14477 Set_Scope (Full, Scope (Priv));
14478 Set_Prev_Entity (Full, Prev_Entity (Priv));
14479 Set_Next_Entity (Full, Next_Entity (Priv));
14480 Set_First_Entity (Full, First_Entity (Priv));
14481 Set_Last_Entity (Full, Last_Entity (Priv));
14483 -- If access types have been recorded for later handling, keep them in
14484 -- the full view so that they get handled when the full view freeze
14485 -- node is expanded.
14487 if Present (Freeze_Node (Priv))
14488 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14489 then
14490 Ensure_Freeze_Node (Full);
14491 Set_Access_Types_To_Process
14492 (Freeze_Node (Full),
14493 Access_Types_To_Process (Freeze_Node (Priv)));
14494 end if;
14496 -- Swap the two entities. Now Private is the full type entity and Full
14497 -- is the private one. They will be swapped back at the end of the
14498 -- private part. This swapping ensures that the entity that is visible
14499 -- in the private part is the full declaration.
14501 Exchange_Entities (Priv, Full);
14502 Append_Entity (Full, Scope (Full));
14503 end Copy_And_Swap;
14505 -------------------------------------
14506 -- Copy_Array_Base_Type_Attributes --
14507 -------------------------------------
14509 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14510 begin
14511 Set_Component_Alignment (T1, Component_Alignment (T2));
14512 Set_Component_Type (T1, Component_Type (T2));
14513 Set_Component_Size (T1, Component_Size (T2));
14514 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14515 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14516 Propagate_Concurrent_Flags (T1, T2);
14517 Set_Is_Packed (T1, Is_Packed (T2));
14518 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14519 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14520 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14521 end Copy_Array_Base_Type_Attributes;
14523 -----------------------------------
14524 -- Copy_Array_Subtype_Attributes --
14525 -----------------------------------
14527 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14528 begin
14529 Set_Size_Info (T1, T2);
14531 Set_First_Index (T1, First_Index (T2));
14532 Set_Is_Aliased (T1, Is_Aliased (T2));
14533 Set_Is_Volatile (T1, Is_Volatile (T2));
14534 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14535 Set_Is_Constrained (T1, Is_Constrained (T2));
14536 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14537 Inherit_Rep_Item_Chain (T1, T2);
14538 Set_Convention (T1, Convention (T2));
14539 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14540 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14541 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14542 end Copy_Array_Subtype_Attributes;
14544 -----------------------------------
14545 -- Create_Constrained_Components --
14546 -----------------------------------
14548 procedure Create_Constrained_Components
14549 (Subt : Entity_Id;
14550 Decl_Node : Node_Id;
14551 Typ : Entity_Id;
14552 Constraints : Elist_Id)
14554 Loc : constant Source_Ptr := Sloc (Subt);
14555 Comp_List : constant Elist_Id := New_Elmt_List;
14556 Parent_Type : constant Entity_Id := Etype (Typ);
14557 Assoc_List : constant List_Id := New_List;
14558 Discr_Val : Elmt_Id;
14559 Errors : Boolean;
14560 New_C : Entity_Id;
14561 Old_C : Entity_Id;
14562 Is_Static : Boolean := True;
14564 procedure Collect_Fixed_Components (Typ : Entity_Id);
14565 -- Collect parent type components that do not appear in a variant part
14567 procedure Create_All_Components;
14568 -- Iterate over Comp_List to create the components of the subtype
14570 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14571 -- Creates a new component from Old_Compon, copying all the fields from
14572 -- it, including its Etype, inserts the new component in the Subt entity
14573 -- chain and returns the new component.
14575 function Is_Variant_Record (T : Entity_Id) return Boolean;
14576 -- If true, and discriminants are static, collect only components from
14577 -- variants selected by discriminant values.
14579 ------------------------------
14580 -- Collect_Fixed_Components --
14581 ------------------------------
14583 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14584 begin
14585 -- Build association list for discriminants, and find components of the
14586 -- variant part selected by the values of the discriminants.
14588 Old_C := First_Discriminant (Typ);
14589 Discr_Val := First_Elmt (Constraints);
14590 while Present (Old_C) loop
14591 Append_To (Assoc_List,
14592 Make_Component_Association (Loc,
14593 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14594 Expression => New_Copy (Node (Discr_Val))));
14596 Next_Elmt (Discr_Val);
14597 Next_Discriminant (Old_C);
14598 end loop;
14600 -- The tag and the possible parent component are unconditionally in
14601 -- the subtype.
14603 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14604 Old_C := First_Component (Typ);
14605 while Present (Old_C) loop
14606 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14607 Append_Elmt (Old_C, Comp_List);
14608 end if;
14610 Next_Component (Old_C);
14611 end loop;
14612 end if;
14613 end Collect_Fixed_Components;
14615 ---------------------------
14616 -- Create_All_Components --
14617 ---------------------------
14619 procedure Create_All_Components is
14620 Comp : Elmt_Id;
14622 begin
14623 Comp := First_Elmt (Comp_List);
14624 while Present (Comp) loop
14625 Old_C := Node (Comp);
14626 New_C := Create_Component (Old_C);
14628 Set_Etype
14629 (New_C,
14630 Constrain_Component_Type
14631 (Old_C, Subt, Decl_Node, Typ, Constraints));
14632 Set_Is_Public (New_C, Is_Public (Subt));
14634 Next_Elmt (Comp);
14635 end loop;
14636 end Create_All_Components;
14638 ----------------------
14639 -- Create_Component --
14640 ----------------------
14642 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14643 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14645 begin
14646 if Ekind (Old_Compon) = E_Discriminant
14647 and then Is_Completely_Hidden (Old_Compon)
14648 then
14649 -- This is a shadow discriminant created for a discriminant of
14650 -- the parent type, which needs to be present in the subtype.
14651 -- Give the shadow discriminant an internal name that cannot
14652 -- conflict with that of visible components.
14654 Set_Chars (New_Compon, New_Internal_Name ('C'));
14655 end if;
14657 -- Set the parent so we have a proper link for freezing etc. This is
14658 -- not a real parent pointer, since of course our parent does not own
14659 -- up to us and reference us, we are an illegitimate child of the
14660 -- original parent.
14662 Set_Parent (New_Compon, Parent (Old_Compon));
14664 -- We do not want this node marked as Comes_From_Source, since
14665 -- otherwise it would get first class status and a separate cross-
14666 -- reference line would be generated. Illegitimate children do not
14667 -- rate such recognition.
14669 Set_Comes_From_Source (New_Compon, False);
14671 -- But it is a real entity, and a birth certificate must be properly
14672 -- registered by entering it into the entity list, and setting its
14673 -- scope to the given subtype. This turns out to be useful for the
14674 -- LLVM code generator, but that scope is not used otherwise.
14676 Enter_Name (New_Compon);
14677 Set_Scope (New_Compon, Subt);
14679 return New_Compon;
14680 end Create_Component;
14682 -----------------------
14683 -- Is_Variant_Record --
14684 -----------------------
14686 function Is_Variant_Record (T : Entity_Id) return Boolean is
14687 begin
14688 return Nkind (Parent (T)) = N_Full_Type_Declaration
14689 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14690 and then Present (Component_List (Type_Definition (Parent (T))))
14691 and then
14692 Present
14693 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14694 end Is_Variant_Record;
14696 -- Start of processing for Create_Constrained_Components
14698 begin
14699 pragma Assert (Subt /= Base_Type (Subt));
14700 pragma Assert (Typ = Base_Type (Typ));
14702 Set_First_Entity (Subt, Empty);
14703 Set_Last_Entity (Subt, Empty);
14705 -- Check whether constraint is fully static, in which case we can
14706 -- optimize the list of components.
14708 Discr_Val := First_Elmt (Constraints);
14709 while Present (Discr_Val) loop
14710 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14711 Is_Static := False;
14712 exit;
14713 end if;
14715 Next_Elmt (Discr_Val);
14716 end loop;
14718 Set_Has_Static_Discriminants (Subt, Is_Static);
14720 Push_Scope (Subt);
14722 -- Inherit the discriminants of the parent type
14724 Add_Discriminants : declare
14725 Num_Disc : Nat;
14726 Num_Gird : Nat;
14728 begin
14729 Num_Disc := 0;
14730 Old_C := First_Discriminant (Typ);
14732 while Present (Old_C) loop
14733 Num_Disc := Num_Disc + 1;
14734 New_C := Create_Component (Old_C);
14735 Set_Is_Public (New_C, Is_Public (Subt));
14736 Next_Discriminant (Old_C);
14737 end loop;
14739 -- For an untagged derived subtype, the number of discriminants may
14740 -- be smaller than the number of inherited discriminants, because
14741 -- several of them may be renamed by a single new discriminant or
14742 -- constrained. In this case, add the hidden discriminants back into
14743 -- the subtype, because they need to be present if the optimizer of
14744 -- the GCC 4.x back-end decides to break apart assignments between
14745 -- objects using the parent view into member-wise assignments.
14747 Num_Gird := 0;
14749 if Is_Derived_Type (Typ)
14750 and then not Is_Tagged_Type (Typ)
14751 then
14752 Old_C := First_Stored_Discriminant (Typ);
14754 while Present (Old_C) loop
14755 Num_Gird := Num_Gird + 1;
14756 Next_Stored_Discriminant (Old_C);
14757 end loop;
14758 end if;
14760 if Num_Gird > Num_Disc then
14762 -- Find out multiple uses of new discriminants, and add hidden
14763 -- components for the extra renamed discriminants. We recognize
14764 -- multiple uses through the Corresponding_Discriminant of a
14765 -- new discriminant: if it constrains several old discriminants,
14766 -- this field points to the last one in the parent type. The
14767 -- stored discriminants of the derived type have the same name
14768 -- as those of the parent.
14770 declare
14771 Constr : Elmt_Id;
14772 New_Discr : Entity_Id;
14773 Old_Discr : Entity_Id;
14775 begin
14776 Constr := First_Elmt (Stored_Constraint (Typ));
14777 Old_Discr := First_Stored_Discriminant (Typ);
14778 while Present (Constr) loop
14779 if Is_Entity_Name (Node (Constr))
14780 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14781 then
14782 New_Discr := Entity (Node (Constr));
14784 if Chars (Corresponding_Discriminant (New_Discr)) /=
14785 Chars (Old_Discr)
14786 then
14787 -- The new discriminant has been used to rename a
14788 -- subsequent old discriminant. Introduce a shadow
14789 -- component for the current old discriminant.
14791 New_C := Create_Component (Old_Discr);
14792 Set_Original_Record_Component (New_C, Old_Discr);
14793 end if;
14795 else
14796 -- The constraint has eliminated the old discriminant.
14797 -- Introduce a shadow component.
14799 New_C := Create_Component (Old_Discr);
14800 Set_Original_Record_Component (New_C, Old_Discr);
14801 end if;
14803 Next_Elmt (Constr);
14804 Next_Stored_Discriminant (Old_Discr);
14805 end loop;
14806 end;
14807 end if;
14808 end Add_Discriminants;
14810 if Is_Static
14811 and then Is_Variant_Record (Typ)
14812 then
14813 Collect_Fixed_Components (Typ);
14815 Gather_Components (
14816 Typ,
14817 Component_List (Type_Definition (Parent (Typ))),
14818 Governed_By => Assoc_List,
14819 Into => Comp_List,
14820 Report_Errors => Errors);
14821 pragma Assert (not Errors
14822 or else Serious_Errors_Detected > 0);
14824 Create_All_Components;
14826 -- If the subtype declaration is created for a tagged type derivation
14827 -- with constraints, we retrieve the record definition of the parent
14828 -- type to select the components of the proper variant.
14830 elsif Is_Static
14831 and then Is_Tagged_Type (Typ)
14832 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14833 and then
14834 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14835 and then Is_Variant_Record (Parent_Type)
14836 then
14837 Collect_Fixed_Components (Typ);
14839 Gather_Components
14840 (Typ,
14841 Component_List (Type_Definition (Parent (Parent_Type))),
14842 Governed_By => Assoc_List,
14843 Into => Comp_List,
14844 Report_Errors => Errors);
14846 -- Note: previously there was a check at this point that no errors
14847 -- were detected. As a consequence of AI05-220 there may be an error
14848 -- if an inherited discriminant that controls a variant has a non-
14849 -- static constraint.
14851 -- If the tagged derivation has a type extension, collect all the
14852 -- new components therein.
14854 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14855 then
14856 Old_C := First_Component (Typ);
14857 while Present (Old_C) loop
14858 if Original_Record_Component (Old_C) = Old_C
14859 and then Chars (Old_C) /= Name_uTag
14860 and then Chars (Old_C) /= Name_uParent
14861 then
14862 Append_Elmt (Old_C, Comp_List);
14863 end if;
14865 Next_Component (Old_C);
14866 end loop;
14867 end if;
14869 Create_All_Components;
14871 else
14872 -- If discriminants are not static, or if this is a multi-level type
14873 -- extension, we have to include all components of the parent type.
14875 Old_C := First_Component (Typ);
14876 while Present (Old_C) loop
14877 New_C := Create_Component (Old_C);
14879 Set_Etype
14880 (New_C,
14881 Constrain_Component_Type
14882 (Old_C, Subt, Decl_Node, Typ, Constraints));
14883 Set_Is_Public (New_C, Is_Public (Subt));
14885 Next_Component (Old_C);
14886 end loop;
14887 end if;
14889 End_Scope;
14890 end Create_Constrained_Components;
14892 ------------------------------------------
14893 -- Decimal_Fixed_Point_Type_Declaration --
14894 ------------------------------------------
14896 procedure Decimal_Fixed_Point_Type_Declaration
14897 (T : Entity_Id;
14898 Def : Node_Id)
14900 Loc : constant Source_Ptr := Sloc (Def);
14901 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14902 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14903 Implicit_Base : Entity_Id;
14904 Digs_Val : Uint;
14905 Delta_Val : Ureal;
14906 Scale_Val : Uint;
14907 Bound_Val : Ureal;
14909 begin
14910 Check_SPARK_05_Restriction
14911 ("decimal fixed point type is not allowed", Def);
14912 Check_Restriction (No_Fixed_Point, Def);
14914 -- Create implicit base type
14916 Implicit_Base :=
14917 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14918 Set_Etype (Implicit_Base, Implicit_Base);
14920 -- Analyze and process delta expression
14922 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14924 Check_Delta_Expression (Delta_Expr);
14925 Delta_Val := Expr_Value_R (Delta_Expr);
14927 -- Check delta is power of 10, and determine scale value from it
14929 declare
14930 Val : Ureal;
14932 begin
14933 Scale_Val := Uint_0;
14934 Val := Delta_Val;
14936 if Val < Ureal_1 then
14937 while Val < Ureal_1 loop
14938 Val := Val * Ureal_10;
14939 Scale_Val := Scale_Val + 1;
14940 end loop;
14942 if Scale_Val > 18 then
14943 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14944 Scale_Val := UI_From_Int (+18);
14945 end if;
14947 else
14948 while Val > Ureal_1 loop
14949 Val := Val / Ureal_10;
14950 Scale_Val := Scale_Val - 1;
14951 end loop;
14953 if Scale_Val < -18 then
14954 Error_Msg_N ("scale is less than minimum value of -18", Def);
14955 Scale_Val := UI_From_Int (-18);
14956 end if;
14957 end if;
14959 if Val /= Ureal_1 then
14960 Error_Msg_N ("delta expression must be a power of 10", Def);
14961 Delta_Val := Ureal_10 ** (-Scale_Val);
14962 end if;
14963 end;
14965 -- Set delta, scale and small (small = delta for decimal type)
14967 Set_Delta_Value (Implicit_Base, Delta_Val);
14968 Set_Scale_Value (Implicit_Base, Scale_Val);
14969 Set_Small_Value (Implicit_Base, Delta_Val);
14971 -- Analyze and process digits expression
14973 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14974 Check_Digits_Expression (Digs_Expr);
14975 Digs_Val := Expr_Value (Digs_Expr);
14977 if Digs_Val > 18 then
14978 Digs_Val := UI_From_Int (+18);
14979 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14980 end if;
14982 Set_Digits_Value (Implicit_Base, Digs_Val);
14983 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14985 -- Set range of base type from digits value for now. This will be
14986 -- expanded to represent the true underlying base range by Freeze.
14988 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14990 -- Note: We leave size as zero for now, size will be set at freeze
14991 -- time. We have to do this for ordinary fixed-point, because the size
14992 -- depends on the specified small, and we might as well do the same for
14993 -- decimal fixed-point.
14995 pragma Assert (Esize (Implicit_Base) = Uint_0);
14997 -- If there are bounds given in the declaration use them as the
14998 -- bounds of the first named subtype.
15000 if Present (Real_Range_Specification (Def)) then
15001 declare
15002 RRS : constant Node_Id := Real_Range_Specification (Def);
15003 Low : constant Node_Id := Low_Bound (RRS);
15004 High : constant Node_Id := High_Bound (RRS);
15005 Low_Val : Ureal;
15006 High_Val : Ureal;
15008 begin
15009 Analyze_And_Resolve (Low, Any_Real);
15010 Analyze_And_Resolve (High, Any_Real);
15011 Check_Real_Bound (Low);
15012 Check_Real_Bound (High);
15013 Low_Val := Expr_Value_R (Low);
15014 High_Val := Expr_Value_R (High);
15016 if Low_Val < (-Bound_Val) then
15017 Error_Msg_N
15018 ("range low bound too small for digits value", Low);
15019 Low_Val := -Bound_Val;
15020 end if;
15022 if High_Val > Bound_Val then
15023 Error_Msg_N
15024 ("range high bound too large for digits value", High);
15025 High_Val := Bound_Val;
15026 end if;
15028 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15029 end;
15031 -- If no explicit range, use range that corresponds to given
15032 -- digits value. This will end up as the final range for the
15033 -- first subtype.
15035 else
15036 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
15037 end if;
15039 -- Complete entity for first subtype. The inheritance of the rep item
15040 -- chain ensures that SPARK-related pragmas are not clobbered when the
15041 -- decimal fixed point type acts as a full view of a private type.
15043 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15044 Set_Etype (T, Implicit_Base);
15045 Set_Size_Info (T, Implicit_Base);
15046 Inherit_Rep_Item_Chain (T, Implicit_Base);
15047 Set_Digits_Value (T, Digs_Val);
15048 Set_Delta_Value (T, Delta_Val);
15049 Set_Small_Value (T, Delta_Val);
15050 Set_Scale_Value (T, Scale_Val);
15051 Set_Is_Constrained (T);
15052 end Decimal_Fixed_Point_Type_Declaration;
15054 -----------------------------------
15055 -- Derive_Progenitor_Subprograms --
15056 -----------------------------------
15058 procedure Derive_Progenitor_Subprograms
15059 (Parent_Type : Entity_Id;
15060 Tagged_Type : Entity_Id)
15062 E : Entity_Id;
15063 Elmt : Elmt_Id;
15064 Iface : Entity_Id;
15065 Iface_Alias : Entity_Id;
15066 Iface_Elmt : Elmt_Id;
15067 Iface_Subp : Entity_Id;
15068 New_Subp : Entity_Id := Empty;
15069 Prim_Elmt : Elmt_Id;
15070 Subp : Entity_Id;
15071 Typ : Entity_Id;
15073 begin
15074 pragma Assert (Ada_Version >= Ada_2005
15075 and then Is_Record_Type (Tagged_Type)
15076 and then Is_Tagged_Type (Tagged_Type)
15077 and then Has_Interfaces (Tagged_Type));
15079 -- Step 1: Transfer to the full-view primitives associated with the
15080 -- partial-view that cover interface primitives. Conceptually this
15081 -- work should be done later by Process_Full_View; done here to
15082 -- simplify its implementation at later stages. It can be safely
15083 -- done here because interfaces must be visible in the partial and
15084 -- private view (RM 7.3(7.3/2)).
15086 -- Small optimization: This work is only required if the parent may
15087 -- have entities whose Alias attribute reference an interface primitive.
15088 -- Such a situation may occur if the parent is an abstract type and the
15089 -- primitive has not been yet overridden or if the parent is a generic
15090 -- formal type covering interfaces.
15092 -- If the tagged type is not abstract, it cannot have abstract
15093 -- primitives (the only entities in the list of primitives of
15094 -- non-abstract tagged types that can reference abstract primitives
15095 -- through its Alias attribute are the internal entities that have
15096 -- attribute Interface_Alias, and these entities are generated later
15097 -- by Add_Internal_Interface_Entities).
15099 if In_Private_Part (Current_Scope)
15100 and then (Is_Abstract_Type (Parent_Type)
15101 or else
15102 Is_Generic_Type (Parent_Type))
15103 then
15104 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15105 while Present (Elmt) loop
15106 Subp := Node (Elmt);
15108 -- At this stage it is not possible to have entities in the list
15109 -- of primitives that have attribute Interface_Alias.
15111 pragma Assert (No (Interface_Alias (Subp)));
15113 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15115 if Is_Interface (Typ) then
15116 E := Find_Primitive_Covering_Interface
15117 (Tagged_Type => Tagged_Type,
15118 Iface_Prim => Subp);
15120 if Present (E)
15121 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15122 then
15123 Replace_Elmt (Elmt, E);
15124 Remove_Homonym (Subp);
15125 end if;
15126 end if;
15128 Next_Elmt (Elmt);
15129 end loop;
15130 end if;
15132 -- Step 2: Add primitives of progenitors that are not implemented by
15133 -- parents of Tagged_Type.
15135 if Present (Interfaces (Base_Type (Tagged_Type))) then
15136 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15137 while Present (Iface_Elmt) loop
15138 Iface := Node (Iface_Elmt);
15140 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15141 while Present (Prim_Elmt) loop
15142 Iface_Subp := Node (Prim_Elmt);
15143 Iface_Alias := Ultimate_Alias (Iface_Subp);
15145 -- Exclude derivation of predefined primitives except those
15146 -- that come from source, or are inherited from one that comes
15147 -- from source. Required to catch declarations of equality
15148 -- operators of interfaces. For example:
15150 -- type Iface is interface;
15151 -- function "=" (Left, Right : Iface) return Boolean;
15153 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15154 or else Comes_From_Source (Iface_Alias)
15155 then
15156 E :=
15157 Find_Primitive_Covering_Interface
15158 (Tagged_Type => Tagged_Type,
15159 Iface_Prim => Iface_Subp);
15161 -- If not found we derive a new primitive leaving its alias
15162 -- attribute referencing the interface primitive.
15164 if No (E) then
15165 Derive_Subprogram
15166 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15168 -- Ada 2012 (AI05-0197): If the covering primitive's name
15169 -- differs from the name of the interface primitive then it
15170 -- is a private primitive inherited from a parent type. In
15171 -- such case, given that Tagged_Type covers the interface,
15172 -- the inherited private primitive becomes visible. For such
15173 -- purpose we add a new entity that renames the inherited
15174 -- private primitive.
15176 elsif Chars (E) /= Chars (Iface_Subp) then
15177 pragma Assert (Has_Suffix (E, 'P'));
15178 Derive_Subprogram
15179 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15180 Set_Alias (New_Subp, E);
15181 Set_Is_Abstract_Subprogram (New_Subp,
15182 Is_Abstract_Subprogram (E));
15184 -- Propagate to the full view interface entities associated
15185 -- with the partial view.
15187 elsif In_Private_Part (Current_Scope)
15188 and then Present (Alias (E))
15189 and then Alias (E) = Iface_Subp
15190 and then
15191 List_Containing (Parent (E)) /=
15192 Private_Declarations
15193 (Specification
15194 (Unit_Declaration_Node (Current_Scope)))
15195 then
15196 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15197 end if;
15198 end if;
15200 Next_Elmt (Prim_Elmt);
15201 end loop;
15203 Next_Elmt (Iface_Elmt);
15204 end loop;
15205 end if;
15206 end Derive_Progenitor_Subprograms;
15208 -----------------------
15209 -- Derive_Subprogram --
15210 -----------------------
15212 procedure Derive_Subprogram
15213 (New_Subp : out Entity_Id;
15214 Parent_Subp : Entity_Id;
15215 Derived_Type : Entity_Id;
15216 Parent_Type : Entity_Id;
15217 Actual_Subp : Entity_Id := Empty)
15219 Formal : Entity_Id;
15220 -- Formal parameter of parent primitive operation
15222 Formal_Of_Actual : Entity_Id;
15223 -- Formal parameter of actual operation, when the derivation is to
15224 -- create a renaming for a primitive operation of an actual in an
15225 -- instantiation.
15227 New_Formal : Entity_Id;
15228 -- Formal of inherited operation
15230 Visible_Subp : Entity_Id := Parent_Subp;
15232 function Is_Private_Overriding return Boolean;
15233 -- If Subp is a private overriding of a visible operation, the inherited
15234 -- operation derives from the overridden op (even though its body is the
15235 -- overriding one) and the inherited operation is visible now. See
15236 -- sem_disp to see the full details of the handling of the overridden
15237 -- subprogram, which is removed from the list of primitive operations of
15238 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15239 -- and used to diagnose abstract operations that need overriding in the
15240 -- derived type.
15242 procedure Replace_Type (Id, New_Id : Entity_Id);
15243 -- When the type is an anonymous access type, create a new access type
15244 -- designating the derived type.
15246 procedure Set_Derived_Name;
15247 -- This procedure sets the appropriate Chars name for New_Subp. This
15248 -- is normally just a copy of the parent name. An exception arises for
15249 -- type support subprograms, where the name is changed to reflect the
15250 -- name of the derived type, e.g. if type foo is derived from type bar,
15251 -- then a procedure barDA is derived with a name fooDA.
15253 ---------------------------
15254 -- Is_Private_Overriding --
15255 ---------------------------
15257 function Is_Private_Overriding return Boolean is
15258 Prev : Entity_Id;
15260 begin
15261 -- If the parent is not a dispatching operation there is no
15262 -- need to investigate overridings
15264 if not Is_Dispatching_Operation (Parent_Subp) then
15265 return False;
15266 end if;
15268 -- The visible operation that is overridden is a homonym of the
15269 -- parent subprogram. We scan the homonym chain to find the one
15270 -- whose alias is the subprogram we are deriving.
15272 Prev := Current_Entity (Parent_Subp);
15273 while Present (Prev) loop
15274 if Ekind (Prev) = Ekind (Parent_Subp)
15275 and then Alias (Prev) = Parent_Subp
15276 and then Scope (Parent_Subp) = Scope (Prev)
15277 and then not Is_Hidden (Prev)
15278 then
15279 Visible_Subp := Prev;
15280 return True;
15281 end if;
15283 Prev := Homonym (Prev);
15284 end loop;
15286 return False;
15287 end Is_Private_Overriding;
15289 ------------------
15290 -- Replace_Type --
15291 ------------------
15293 procedure Replace_Type (Id, New_Id : Entity_Id) is
15294 Id_Type : constant Entity_Id := Etype (Id);
15295 Acc_Type : Entity_Id;
15296 Par : constant Node_Id := Parent (Derived_Type);
15298 begin
15299 -- When the type is an anonymous access type, create a new access
15300 -- type designating the derived type. This itype must be elaborated
15301 -- at the point of the derivation, not on subsequent calls that may
15302 -- be out of the proper scope for Gigi, so we insert a reference to
15303 -- it after the derivation.
15305 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15306 declare
15307 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15309 begin
15310 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15311 and then Present (Full_View (Desig_Typ))
15312 and then not Is_Private_Type (Parent_Type)
15313 then
15314 Desig_Typ := Full_View (Desig_Typ);
15315 end if;
15317 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15319 -- Ada 2005 (AI-251): Handle also derivations of abstract
15320 -- interface primitives.
15322 or else (Is_Interface (Desig_Typ)
15323 and then not Is_Class_Wide_Type (Desig_Typ))
15324 then
15325 Acc_Type := New_Copy (Id_Type);
15326 Set_Etype (Acc_Type, Acc_Type);
15327 Set_Scope (Acc_Type, New_Subp);
15329 -- Set size of anonymous access type. If we have an access
15330 -- to an unconstrained array, this is a fat pointer, so it
15331 -- is sizes at twice addtress size.
15333 if Is_Array_Type (Desig_Typ)
15334 and then not Is_Constrained (Desig_Typ)
15335 then
15336 Init_Size (Acc_Type, 2 * System_Address_Size);
15338 -- Other cases use a thin pointer
15340 else
15341 Init_Size (Acc_Type, System_Address_Size);
15342 end if;
15344 -- Set remaining characterstics of anonymous access type
15346 Init_Alignment (Acc_Type);
15347 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15349 Set_Etype (New_Id, Acc_Type);
15350 Set_Scope (New_Id, New_Subp);
15352 -- Create a reference to it
15354 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15356 else
15357 Set_Etype (New_Id, Id_Type);
15358 end if;
15359 end;
15361 -- In Ada2012, a formal may have an incomplete type but the type
15362 -- derivation that inherits the primitive follows the full view.
15364 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15365 or else
15366 (Ekind (Id_Type) = E_Record_Type_With_Private
15367 and then Present (Full_View (Id_Type))
15368 and then
15369 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15370 or else
15371 (Ada_Version >= Ada_2012
15372 and then Ekind (Id_Type) = E_Incomplete_Type
15373 and then Full_View (Id_Type) = Parent_Type)
15374 then
15375 -- Constraint checks on formals are generated during expansion,
15376 -- based on the signature of the original subprogram. The bounds
15377 -- of the derived type are not relevant, and thus we can use
15378 -- the base type for the formals. However, the return type may be
15379 -- used in a context that requires that the proper static bounds
15380 -- be used (a case statement, for example) and for those cases
15381 -- we must use the derived type (first subtype), not its base.
15383 -- If the derived_type_definition has no constraints, we know that
15384 -- the derived type has the same constraints as the first subtype
15385 -- of the parent, and we can also use it rather than its base,
15386 -- which can lead to more efficient code.
15388 if Etype (Id) = Parent_Type then
15389 if Is_Scalar_Type (Parent_Type)
15390 and then
15391 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15392 then
15393 Set_Etype (New_Id, Derived_Type);
15395 elsif Nkind (Par) = N_Full_Type_Declaration
15396 and then
15397 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15398 and then
15399 Is_Entity_Name
15400 (Subtype_Indication (Type_Definition (Par)))
15401 then
15402 Set_Etype (New_Id, Derived_Type);
15404 else
15405 Set_Etype (New_Id, Base_Type (Derived_Type));
15406 end if;
15408 else
15409 Set_Etype (New_Id, Base_Type (Derived_Type));
15410 end if;
15412 else
15413 Set_Etype (New_Id, Etype (Id));
15414 end if;
15415 end Replace_Type;
15417 ----------------------
15418 -- Set_Derived_Name --
15419 ----------------------
15421 procedure Set_Derived_Name is
15422 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15423 begin
15424 if Nm = TSS_Null then
15425 Set_Chars (New_Subp, Chars (Parent_Subp));
15426 else
15427 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15428 end if;
15429 end Set_Derived_Name;
15431 -- Start of processing for Derive_Subprogram
15433 begin
15434 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15435 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15437 -- Check whether the inherited subprogram is a private operation that
15438 -- should be inherited but not yet made visible. Such subprograms can
15439 -- become visible at a later point (e.g., the private part of a public
15440 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15441 -- following predicate is true, then this is not such a private
15442 -- operation and the subprogram simply inherits the name of the parent
15443 -- subprogram. Note the special check for the names of controlled
15444 -- operations, which are currently exempted from being inherited with
15445 -- a hidden name because they must be findable for generation of
15446 -- implicit run-time calls.
15448 if not Is_Hidden (Parent_Subp)
15449 or else Is_Internal (Parent_Subp)
15450 or else Is_Private_Overriding
15451 or else Is_Internal_Name (Chars (Parent_Subp))
15452 or else (Is_Controlled (Parent_Type)
15453 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15454 Name_Finalize,
15455 Name_Initialize))
15456 then
15457 Set_Derived_Name;
15459 -- An inherited dispatching equality will be overridden by an internally
15460 -- generated one, or by an explicit one, so preserve its name and thus
15461 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15462 -- private operation it may become invisible if the full view has
15463 -- progenitors, and the dispatch table will be malformed.
15464 -- We check that the type is limited to handle the anomalous declaration
15465 -- of Limited_Controlled, which is derived from a non-limited type, and
15466 -- which is handled specially elsewhere as well.
15468 elsif Chars (Parent_Subp) = Name_Op_Eq
15469 and then Is_Dispatching_Operation (Parent_Subp)
15470 and then Etype (Parent_Subp) = Standard_Boolean
15471 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15472 and then
15473 Etype (First_Formal (Parent_Subp)) =
15474 Etype (Next_Formal (First_Formal (Parent_Subp)))
15475 then
15476 Set_Derived_Name;
15478 -- If parent is hidden, this can be a regular derivation if the
15479 -- parent is immediately visible in a non-instantiating context,
15480 -- or if we are in the private part of an instance. This test
15481 -- should still be refined ???
15483 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15484 -- operation as a non-visible operation in cases where the parent
15485 -- subprogram might not be visible now, but was visible within the
15486 -- original generic, so it would be wrong to make the inherited
15487 -- subprogram non-visible now. (Not clear if this test is fully
15488 -- correct; are there any cases where we should declare the inherited
15489 -- operation as not visible to avoid it being overridden, e.g., when
15490 -- the parent type is a generic actual with private primitives ???)
15492 -- (they should be treated the same as other private inherited
15493 -- subprograms, but it's not clear how to do this cleanly). ???
15495 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15496 and then Is_Immediately_Visible (Parent_Subp)
15497 and then not In_Instance)
15498 or else In_Instance_Not_Visible
15499 then
15500 Set_Derived_Name;
15502 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15503 -- overrides an interface primitive because interface primitives
15504 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15506 elsif Ada_Version >= Ada_2005
15507 and then Is_Dispatching_Operation (Parent_Subp)
15508 and then Present (Covered_Interface_Op (Parent_Subp))
15509 then
15510 Set_Derived_Name;
15512 -- Otherwise, the type is inheriting a private operation, so enter it
15513 -- with a special name so it can't be overridden.
15515 else
15516 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15517 end if;
15519 Set_Parent (New_Subp, Parent (Derived_Type));
15521 if Present (Actual_Subp) then
15522 Replace_Type (Actual_Subp, New_Subp);
15523 else
15524 Replace_Type (Parent_Subp, New_Subp);
15525 end if;
15527 Conditional_Delay (New_Subp, Parent_Subp);
15529 -- If we are creating a renaming for a primitive operation of an
15530 -- actual of a generic derived type, we must examine the signature
15531 -- of the actual primitive, not that of the generic formal, which for
15532 -- example may be an interface. However the name and initial value
15533 -- of the inherited operation are those of the formal primitive.
15535 Formal := First_Formal (Parent_Subp);
15537 if Present (Actual_Subp) then
15538 Formal_Of_Actual := First_Formal (Actual_Subp);
15539 else
15540 Formal_Of_Actual := Empty;
15541 end if;
15543 while Present (Formal) loop
15544 New_Formal := New_Copy (Formal);
15546 -- Normally we do not go copying parents, but in the case of
15547 -- formals, we need to link up to the declaration (which is the
15548 -- parameter specification), and it is fine to link up to the
15549 -- original formal's parameter specification in this case.
15551 Set_Parent (New_Formal, Parent (Formal));
15552 Append_Entity (New_Formal, New_Subp);
15554 if Present (Formal_Of_Actual) then
15555 Replace_Type (Formal_Of_Actual, New_Formal);
15556 Next_Formal (Formal_Of_Actual);
15557 else
15558 Replace_Type (Formal, New_Formal);
15559 end if;
15561 Next_Formal (Formal);
15562 end loop;
15564 -- If this derivation corresponds to a tagged generic actual, then
15565 -- primitive operations rename those of the actual. Otherwise the
15566 -- primitive operations rename those of the parent type, If the parent
15567 -- renames an intrinsic operator, so does the new subprogram. We except
15568 -- concatenation, which is always properly typed, and does not get
15569 -- expanded as other intrinsic operations.
15571 if No (Actual_Subp) then
15572 if Is_Intrinsic_Subprogram (Parent_Subp) then
15573 Set_Is_Intrinsic_Subprogram (New_Subp);
15575 if Present (Alias (Parent_Subp))
15576 and then Chars (Parent_Subp) /= Name_Op_Concat
15577 then
15578 Set_Alias (New_Subp, Alias (Parent_Subp));
15579 else
15580 Set_Alias (New_Subp, Parent_Subp);
15581 end if;
15583 else
15584 Set_Alias (New_Subp, Parent_Subp);
15585 end if;
15587 else
15588 Set_Alias (New_Subp, Actual_Subp);
15589 end if;
15591 -- Derived subprograms of a tagged type must inherit the convention
15592 -- of the parent subprogram (a requirement of AI-117). Derived
15593 -- subprograms of untagged types simply get convention Ada by default.
15595 -- If the derived type is a tagged generic formal type with unknown
15596 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15598 -- However, if the type is derived from a generic formal, the further
15599 -- inherited subprogram has the convention of the non-generic ancestor.
15600 -- Otherwise there would be no way to override the operation.
15601 -- (This is subject to forthcoming ARG discussions).
15603 if Is_Tagged_Type (Derived_Type) then
15604 if Is_Generic_Type (Derived_Type)
15605 and then Has_Unknown_Discriminants (Derived_Type)
15606 then
15607 Set_Convention (New_Subp, Convention_Intrinsic);
15609 else
15610 if Is_Generic_Type (Parent_Type)
15611 and then Has_Unknown_Discriminants (Parent_Type)
15612 then
15613 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15614 else
15615 Set_Convention (New_Subp, Convention (Parent_Subp));
15616 end if;
15617 end if;
15618 end if;
15620 -- Predefined controlled operations retain their name even if the parent
15621 -- is hidden (see above), but they are not primitive operations if the
15622 -- ancestor is not visible, for example if the parent is a private
15623 -- extension completed with a controlled extension. Note that a full
15624 -- type that is controlled can break privacy: the flag Is_Controlled is
15625 -- set on both views of the type.
15627 if Is_Controlled (Parent_Type)
15628 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15629 Name_Adjust,
15630 Name_Finalize)
15631 and then Is_Hidden (Parent_Subp)
15632 and then not Is_Visibly_Controlled (Parent_Type)
15633 then
15634 Set_Is_Hidden (New_Subp);
15635 end if;
15637 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15638 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15640 if Ekind (Parent_Subp) = E_Procedure then
15641 Set_Is_Valued_Procedure
15642 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15643 else
15644 Set_Has_Controlling_Result
15645 (New_Subp, Has_Controlling_Result (Parent_Subp));
15646 end if;
15648 -- No_Return must be inherited properly. If this is overridden in the
15649 -- case of a dispatching operation, then a check is made in Sem_Disp
15650 -- that the overriding operation is also No_Return (no such check is
15651 -- required for the case of non-dispatching operation.
15653 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15655 -- A derived function with a controlling result is abstract. If the
15656 -- Derived_Type is a nonabstract formal generic derived type, then
15657 -- inherited operations are not abstract: the required check is done at
15658 -- instantiation time. If the derivation is for a generic actual, the
15659 -- function is not abstract unless the actual is.
15661 if Is_Generic_Type (Derived_Type)
15662 and then not Is_Abstract_Type (Derived_Type)
15663 then
15664 null;
15666 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15667 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15669 -- A subprogram subject to pragma Extensions_Visible with value False
15670 -- requires overriding if the subprogram has at least one controlling
15671 -- OUT parameter (SPARK RM 6.1.7(6)).
15673 elsif Ada_Version >= Ada_2005
15674 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15675 or else (Is_Tagged_Type (Derived_Type)
15676 and then Etype (New_Subp) = Derived_Type
15677 and then not Is_Null_Extension (Derived_Type))
15678 or else (Is_Tagged_Type (Derived_Type)
15679 and then Ekind (Etype (New_Subp)) =
15680 E_Anonymous_Access_Type
15681 and then Designated_Type (Etype (New_Subp)) =
15682 Derived_Type
15683 and then not Is_Null_Extension (Derived_Type))
15684 or else (Comes_From_Source (Alias (New_Subp))
15685 and then Is_EVF_Procedure (Alias (New_Subp))))
15686 and then No (Actual_Subp)
15687 then
15688 if not Is_Tagged_Type (Derived_Type)
15689 or else Is_Abstract_Type (Derived_Type)
15690 or else Is_Abstract_Subprogram (Alias (New_Subp))
15691 then
15692 Set_Is_Abstract_Subprogram (New_Subp);
15693 else
15694 Set_Requires_Overriding (New_Subp);
15695 end if;
15697 elsif Ada_Version < Ada_2005
15698 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15699 or else (Is_Tagged_Type (Derived_Type)
15700 and then Etype (New_Subp) = Derived_Type
15701 and then No (Actual_Subp)))
15702 then
15703 Set_Is_Abstract_Subprogram (New_Subp);
15705 -- AI05-0097 : an inherited operation that dispatches on result is
15706 -- abstract if the derived type is abstract, even if the parent type
15707 -- is concrete and the derived type is a null extension.
15709 elsif Has_Controlling_Result (Alias (New_Subp))
15710 and then Is_Abstract_Type (Etype (New_Subp))
15711 then
15712 Set_Is_Abstract_Subprogram (New_Subp);
15714 -- Finally, if the parent type is abstract we must verify that all
15715 -- inherited operations are either non-abstract or overridden, or that
15716 -- the derived type itself is abstract (this check is performed at the
15717 -- end of a package declaration, in Check_Abstract_Overriding). A
15718 -- private overriding in the parent type will not be visible in the
15719 -- derivation if we are not in an inner package or in a child unit of
15720 -- the parent type, in which case the abstractness of the inherited
15721 -- operation is carried to the new subprogram.
15723 elsif Is_Abstract_Type (Parent_Type)
15724 and then not In_Open_Scopes (Scope (Parent_Type))
15725 and then Is_Private_Overriding
15726 and then Is_Abstract_Subprogram (Visible_Subp)
15727 then
15728 if No (Actual_Subp) then
15729 Set_Alias (New_Subp, Visible_Subp);
15730 Set_Is_Abstract_Subprogram (New_Subp, True);
15732 else
15733 -- If this is a derivation for an instance of a formal derived
15734 -- type, abstractness comes from the primitive operation of the
15735 -- actual, not from the operation inherited from the ancestor.
15737 Set_Is_Abstract_Subprogram
15738 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15739 end if;
15740 end if;
15742 New_Overloaded_Entity (New_Subp, Derived_Type);
15744 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15745 -- preconditions and the derived type is abstract, the derived operation
15746 -- is abstract as well if parent subprogram is not abstract or null.
15748 if Is_Abstract_Type (Derived_Type)
15749 and then Has_Non_Trivial_Precondition (Parent_Subp)
15750 and then Present (Interfaces (Derived_Type))
15751 then
15753 -- Add useful attributes of subprogram before the freeze point,
15754 -- in case freezing is delayed or there are previous errors.
15756 Set_Is_Dispatching_Operation (New_Subp);
15758 declare
15759 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15761 begin
15762 if Present (Iface_Prim)
15763 and then Has_Non_Trivial_Precondition (Iface_Prim)
15764 then
15765 Set_Is_Abstract_Subprogram (New_Subp);
15766 end if;
15767 end;
15768 end if;
15770 -- Check for case of a derived subprogram for the instantiation of a
15771 -- formal derived tagged type, if so mark the subprogram as dispatching
15772 -- and inherit the dispatching attributes of the actual subprogram. The
15773 -- derived subprogram is effectively renaming of the actual subprogram,
15774 -- so it needs to have the same attributes as the actual.
15776 if Present (Actual_Subp)
15777 and then Is_Dispatching_Operation (Actual_Subp)
15778 then
15779 Set_Is_Dispatching_Operation (New_Subp);
15781 if Present (DTC_Entity (Actual_Subp)) then
15782 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15783 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15784 end if;
15785 end if;
15787 -- Indicate that a derived subprogram does not require a body and that
15788 -- it does not require processing of default expressions.
15790 Set_Has_Completion (New_Subp);
15791 Set_Default_Expressions_Processed (New_Subp);
15793 if Ekind (New_Subp) = E_Function then
15794 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15795 end if;
15796 end Derive_Subprogram;
15798 ------------------------
15799 -- Derive_Subprograms --
15800 ------------------------
15802 procedure Derive_Subprograms
15803 (Parent_Type : Entity_Id;
15804 Derived_Type : Entity_Id;
15805 Generic_Actual : Entity_Id := Empty)
15807 Op_List : constant Elist_Id :=
15808 Collect_Primitive_Operations (Parent_Type);
15810 function Check_Derived_Type return Boolean;
15811 -- Check that all the entities derived from Parent_Type are found in
15812 -- the list of primitives of Derived_Type exactly in the same order.
15814 procedure Derive_Interface_Subprogram
15815 (New_Subp : out Entity_Id;
15816 Subp : Entity_Id;
15817 Actual_Subp : Entity_Id);
15818 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15819 -- (which is an interface primitive). If Generic_Actual is present then
15820 -- Actual_Subp is the actual subprogram corresponding with the generic
15821 -- subprogram Subp.
15823 ------------------------
15824 -- Check_Derived_Type --
15825 ------------------------
15827 function Check_Derived_Type return Boolean is
15828 E : Entity_Id;
15829 Elmt : Elmt_Id;
15830 List : Elist_Id;
15831 New_Subp : Entity_Id;
15832 Op_Elmt : Elmt_Id;
15833 Subp : Entity_Id;
15835 begin
15836 -- Traverse list of entities in the current scope searching for
15837 -- an incomplete type whose full-view is derived type.
15839 E := First_Entity (Scope (Derived_Type));
15840 while Present (E) and then E /= Derived_Type loop
15841 if Ekind (E) = E_Incomplete_Type
15842 and then Present (Full_View (E))
15843 and then Full_View (E) = Derived_Type
15844 then
15845 -- Disable this test if Derived_Type completes an incomplete
15846 -- type because in such case more primitives can be added
15847 -- later to the list of primitives of Derived_Type by routine
15848 -- Process_Incomplete_Dependents
15850 return True;
15851 end if;
15853 E := Next_Entity (E);
15854 end loop;
15856 List := Collect_Primitive_Operations (Derived_Type);
15857 Elmt := First_Elmt (List);
15859 Op_Elmt := First_Elmt (Op_List);
15860 while Present (Op_Elmt) loop
15861 Subp := Node (Op_Elmt);
15862 New_Subp := Node (Elmt);
15864 -- At this early stage Derived_Type has no entities with attribute
15865 -- Interface_Alias. In addition, such primitives are always
15866 -- located at the end of the list of primitives of Parent_Type.
15867 -- Therefore, if found we can safely stop processing pending
15868 -- entities.
15870 exit when Present (Interface_Alias (Subp));
15872 -- Handle hidden entities
15874 if not Is_Predefined_Dispatching_Operation (Subp)
15875 and then Is_Hidden (Subp)
15876 then
15877 if Present (New_Subp)
15878 and then Primitive_Names_Match (Subp, New_Subp)
15879 then
15880 Next_Elmt (Elmt);
15881 end if;
15883 else
15884 if not Present (New_Subp)
15885 or else Ekind (Subp) /= Ekind (New_Subp)
15886 or else not Primitive_Names_Match (Subp, New_Subp)
15887 then
15888 return False;
15889 end if;
15891 Next_Elmt (Elmt);
15892 end if;
15894 Next_Elmt (Op_Elmt);
15895 end loop;
15897 return True;
15898 end Check_Derived_Type;
15900 ---------------------------------
15901 -- Derive_Interface_Subprogram --
15902 ---------------------------------
15904 procedure Derive_Interface_Subprogram
15905 (New_Subp : out Entity_Id;
15906 Subp : Entity_Id;
15907 Actual_Subp : Entity_Id)
15909 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15910 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15912 begin
15913 pragma Assert (Is_Interface (Iface_Type));
15915 Derive_Subprogram
15916 (New_Subp => New_Subp,
15917 Parent_Subp => Iface_Subp,
15918 Derived_Type => Derived_Type,
15919 Parent_Type => Iface_Type,
15920 Actual_Subp => Actual_Subp);
15922 -- Given that this new interface entity corresponds with a primitive
15923 -- of the parent that was not overridden we must leave it associated
15924 -- with its parent primitive to ensure that it will share the same
15925 -- dispatch table slot when overridden. We must set the Alias to Subp
15926 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15927 -- (in case we inherited Subp from Iface_Type via a nonabstract
15928 -- generic formal type).
15930 if No (Actual_Subp) then
15931 Set_Alias (New_Subp, Subp);
15933 declare
15934 T : Entity_Id := Find_Dispatching_Type (Subp);
15935 begin
15936 while Etype (T) /= T loop
15937 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15938 Set_Is_Abstract_Subprogram (New_Subp, False);
15939 exit;
15940 end if;
15942 T := Etype (T);
15943 end loop;
15944 end;
15946 -- For instantiations this is not needed since the previous call to
15947 -- Derive_Subprogram leaves the entity well decorated.
15949 else
15950 pragma Assert (Alias (New_Subp) = Actual_Subp);
15951 null;
15952 end if;
15953 end Derive_Interface_Subprogram;
15955 -- Local variables
15957 Alias_Subp : Entity_Id;
15958 Act_List : Elist_Id;
15959 Act_Elmt : Elmt_Id;
15960 Act_Subp : Entity_Id := Empty;
15961 Elmt : Elmt_Id;
15962 Need_Search : Boolean := False;
15963 New_Subp : Entity_Id := Empty;
15964 Parent_Base : Entity_Id;
15965 Subp : Entity_Id;
15967 -- Start of processing for Derive_Subprograms
15969 begin
15970 if Ekind (Parent_Type) = E_Record_Type_With_Private
15971 and then Has_Discriminants (Parent_Type)
15972 and then Present (Full_View (Parent_Type))
15973 then
15974 Parent_Base := Full_View (Parent_Type);
15975 else
15976 Parent_Base := Parent_Type;
15977 end if;
15979 if Present (Generic_Actual) then
15980 Act_List := Collect_Primitive_Operations (Generic_Actual);
15981 Act_Elmt := First_Elmt (Act_List);
15982 else
15983 Act_List := No_Elist;
15984 Act_Elmt := No_Elmt;
15985 end if;
15987 -- Derive primitives inherited from the parent. Note that if the generic
15988 -- actual is present, this is not really a type derivation, it is a
15989 -- completion within an instance.
15991 -- Case 1: Derived_Type does not implement interfaces
15993 if not Is_Tagged_Type (Derived_Type)
15994 or else (not Has_Interfaces (Derived_Type)
15995 and then not (Present (Generic_Actual)
15996 and then Has_Interfaces (Generic_Actual)))
15997 then
15998 Elmt := First_Elmt (Op_List);
15999 while Present (Elmt) loop
16000 Subp := Node (Elmt);
16002 -- Literals are derived earlier in the process of building the
16003 -- derived type, and are skipped here.
16005 if Ekind (Subp) = E_Enumeration_Literal then
16006 null;
16008 -- The actual is a direct descendant and the common primitive
16009 -- operations appear in the same order.
16011 -- If the generic parent type is present, the derived type is an
16012 -- instance of a formal derived type, and within the instance its
16013 -- operations are those of the actual. We derive from the formal
16014 -- type but make the inherited operations aliases of the
16015 -- corresponding operations of the actual.
16017 else
16018 pragma Assert (No (Node (Act_Elmt))
16019 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
16020 and then
16021 Type_Conformant
16022 (Subp, Node (Act_Elmt),
16023 Skip_Controlling_Formals => True)));
16025 Derive_Subprogram
16026 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
16028 if Present (Act_Elmt) then
16029 Next_Elmt (Act_Elmt);
16030 end if;
16031 end if;
16033 Next_Elmt (Elmt);
16034 end loop;
16036 -- Case 2: Derived_Type implements interfaces
16038 else
16039 -- If the parent type has no predefined primitives we remove
16040 -- predefined primitives from the list of primitives of generic
16041 -- actual to simplify the complexity of this algorithm.
16043 if Present (Generic_Actual) then
16044 declare
16045 Has_Predefined_Primitives : Boolean := False;
16047 begin
16048 -- Check if the parent type has predefined primitives
16050 Elmt := First_Elmt (Op_List);
16051 while Present (Elmt) loop
16052 Subp := Node (Elmt);
16054 if Is_Predefined_Dispatching_Operation (Subp)
16055 and then not Comes_From_Source (Ultimate_Alias (Subp))
16056 then
16057 Has_Predefined_Primitives := True;
16058 exit;
16059 end if;
16061 Next_Elmt (Elmt);
16062 end loop;
16064 -- Remove predefined primitives of Generic_Actual. We must use
16065 -- an auxiliary list because in case of tagged types the value
16066 -- returned by Collect_Primitive_Operations is the value stored
16067 -- in its Primitive_Operations attribute (and we don't want to
16068 -- modify its current contents).
16070 if not Has_Predefined_Primitives then
16071 declare
16072 Aux_List : constant Elist_Id := New_Elmt_List;
16074 begin
16075 Elmt := First_Elmt (Act_List);
16076 while Present (Elmt) loop
16077 Subp := Node (Elmt);
16079 if not Is_Predefined_Dispatching_Operation (Subp)
16080 or else Comes_From_Source (Subp)
16081 then
16082 Append_Elmt (Subp, Aux_List);
16083 end if;
16085 Next_Elmt (Elmt);
16086 end loop;
16088 Act_List := Aux_List;
16089 end;
16090 end if;
16092 Act_Elmt := First_Elmt (Act_List);
16093 Act_Subp := Node (Act_Elmt);
16094 end;
16095 end if;
16097 -- Stage 1: If the generic actual is not present we derive the
16098 -- primitives inherited from the parent type. If the generic parent
16099 -- type is present, the derived type is an instance of a formal
16100 -- derived type, and within the instance its operations are those of
16101 -- the actual. We derive from the formal type but make the inherited
16102 -- operations aliases of the corresponding operations of the actual.
16104 Elmt := First_Elmt (Op_List);
16105 while Present (Elmt) loop
16106 Subp := Node (Elmt);
16107 Alias_Subp := Ultimate_Alias (Subp);
16109 -- Do not derive internal entities of the parent that link
16110 -- interface primitives with their covering primitive. These
16111 -- entities will be added to this type when frozen.
16113 if Present (Interface_Alias (Subp)) then
16114 goto Continue;
16115 end if;
16117 -- If the generic actual is present find the corresponding
16118 -- operation in the generic actual. If the parent type is a
16119 -- direct ancestor of the derived type then, even if it is an
16120 -- interface, the operations are inherited from the primary
16121 -- dispatch table and are in the proper order. If we detect here
16122 -- that primitives are not in the same order we traverse the list
16123 -- of primitive operations of the actual to find the one that
16124 -- implements the interface primitive.
16126 if Need_Search
16127 or else
16128 (Present (Generic_Actual)
16129 and then Present (Act_Subp)
16130 and then not
16131 (Primitive_Names_Match (Subp, Act_Subp)
16132 and then
16133 Type_Conformant (Subp, Act_Subp,
16134 Skip_Controlling_Formals => True)))
16135 then
16136 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16137 Use_Full_View => True));
16139 -- Remember that we need searching for all pending primitives
16141 Need_Search := True;
16143 -- Handle entities associated with interface primitives
16145 if Present (Alias_Subp)
16146 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16147 and then not Is_Predefined_Dispatching_Operation (Subp)
16148 then
16149 -- Search for the primitive in the homonym chain
16151 Act_Subp :=
16152 Find_Primitive_Covering_Interface
16153 (Tagged_Type => Generic_Actual,
16154 Iface_Prim => Alias_Subp);
16156 -- Previous search may not locate primitives covering
16157 -- interfaces defined in generics units or instantiations.
16158 -- (it fails if the covering primitive has formals whose
16159 -- type is also defined in generics or instantiations).
16160 -- In such case we search in the list of primitives of the
16161 -- generic actual for the internal entity that links the
16162 -- interface primitive and the covering primitive.
16164 if No (Act_Subp)
16165 and then Is_Generic_Type (Parent_Type)
16166 then
16167 -- This code has been designed to handle only generic
16168 -- formals that implement interfaces that are defined
16169 -- in a generic unit or instantiation. If this code is
16170 -- needed for other cases we must review it because
16171 -- (given that it relies on Original_Location to locate
16172 -- the primitive of Generic_Actual that covers the
16173 -- interface) it could leave linked through attribute
16174 -- Alias entities of unrelated instantiations).
16176 pragma Assert
16177 (Is_Generic_Unit
16178 (Scope (Find_Dispatching_Type (Alias_Subp)))
16179 or else
16180 Instantiation_Depth
16181 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16183 declare
16184 Iface_Prim_Loc : constant Source_Ptr :=
16185 Original_Location (Sloc (Alias_Subp));
16187 Elmt : Elmt_Id;
16188 Prim : Entity_Id;
16190 begin
16191 Elmt :=
16192 First_Elmt (Primitive_Operations (Generic_Actual));
16194 Search : while Present (Elmt) loop
16195 Prim := Node (Elmt);
16197 if Present (Interface_Alias (Prim))
16198 and then Original_Location
16199 (Sloc (Interface_Alias (Prim))) =
16200 Iface_Prim_Loc
16201 then
16202 Act_Subp := Alias (Prim);
16203 exit Search;
16204 end if;
16206 Next_Elmt (Elmt);
16207 end loop Search;
16208 end;
16209 end if;
16211 pragma Assert (Present (Act_Subp)
16212 or else Is_Abstract_Type (Generic_Actual)
16213 or else Serious_Errors_Detected > 0);
16215 -- Handle predefined primitives plus the rest of user-defined
16216 -- primitives
16218 else
16219 Act_Elmt := First_Elmt (Act_List);
16220 while Present (Act_Elmt) loop
16221 Act_Subp := Node (Act_Elmt);
16223 exit when Primitive_Names_Match (Subp, Act_Subp)
16224 and then Type_Conformant
16225 (Subp, Act_Subp,
16226 Skip_Controlling_Formals => True)
16227 and then No (Interface_Alias (Act_Subp));
16229 Next_Elmt (Act_Elmt);
16230 end loop;
16232 if No (Act_Elmt) then
16233 Act_Subp := Empty;
16234 end if;
16235 end if;
16236 end if;
16238 -- Case 1: If the parent is a limited interface then it has the
16239 -- predefined primitives of synchronized interfaces. However, the
16240 -- actual type may be a non-limited type and hence it does not
16241 -- have such primitives.
16243 if Present (Generic_Actual)
16244 and then not Present (Act_Subp)
16245 and then Is_Limited_Interface (Parent_Base)
16246 and then Is_Predefined_Interface_Primitive (Subp)
16247 then
16248 null;
16250 -- Case 2: Inherit entities associated with interfaces that were
16251 -- not covered by the parent type. We exclude here null interface
16252 -- primitives because they do not need special management.
16254 -- We also exclude interface operations that are renamings. If the
16255 -- subprogram is an explicit renaming of an interface primitive,
16256 -- it is a regular primitive operation, and the presence of its
16257 -- alias is not relevant: it has to be derived like any other
16258 -- primitive.
16260 elsif Present (Alias (Subp))
16261 and then Nkind (Unit_Declaration_Node (Subp)) /=
16262 N_Subprogram_Renaming_Declaration
16263 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16264 and then not
16265 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16266 and then Null_Present (Parent (Alias_Subp)))
16267 then
16268 -- If this is an abstract private type then we transfer the
16269 -- derivation of the interface primitive from the partial view
16270 -- to the full view. This is safe because all the interfaces
16271 -- must be visible in the partial view. Done to avoid adding
16272 -- a new interface derivation to the private part of the
16273 -- enclosing package; otherwise this new derivation would be
16274 -- decorated as hidden when the analysis of the enclosing
16275 -- package completes.
16277 if Is_Abstract_Type (Derived_Type)
16278 and then In_Private_Part (Current_Scope)
16279 and then Has_Private_Declaration (Derived_Type)
16280 then
16281 declare
16282 Partial_View : Entity_Id;
16283 Elmt : Elmt_Id;
16284 Ent : Entity_Id;
16286 begin
16287 Partial_View := First_Entity (Current_Scope);
16288 loop
16289 exit when No (Partial_View)
16290 or else (Has_Private_Declaration (Partial_View)
16291 and then
16292 Full_View (Partial_View) = Derived_Type);
16294 Next_Entity (Partial_View);
16295 end loop;
16297 -- If the partial view was not found then the source code
16298 -- has errors and the derivation is not needed.
16300 if Present (Partial_View) then
16301 Elmt :=
16302 First_Elmt (Primitive_Operations (Partial_View));
16303 while Present (Elmt) loop
16304 Ent := Node (Elmt);
16306 if Present (Alias (Ent))
16307 and then Ultimate_Alias (Ent) = Alias (Subp)
16308 then
16309 Append_Elmt
16310 (Ent, Primitive_Operations (Derived_Type));
16311 exit;
16312 end if;
16314 Next_Elmt (Elmt);
16315 end loop;
16317 -- If the interface primitive was not found in the
16318 -- partial view then this interface primitive was
16319 -- overridden. We add a derivation to activate in
16320 -- Derive_Progenitor_Subprograms the machinery to
16321 -- search for it.
16323 if No (Elmt) then
16324 Derive_Interface_Subprogram
16325 (New_Subp => New_Subp,
16326 Subp => Subp,
16327 Actual_Subp => Act_Subp);
16328 end if;
16329 end if;
16330 end;
16331 else
16332 Derive_Interface_Subprogram
16333 (New_Subp => New_Subp,
16334 Subp => Subp,
16335 Actual_Subp => Act_Subp);
16336 end if;
16338 -- Case 3: Common derivation
16340 else
16341 Derive_Subprogram
16342 (New_Subp => New_Subp,
16343 Parent_Subp => Subp,
16344 Derived_Type => Derived_Type,
16345 Parent_Type => Parent_Base,
16346 Actual_Subp => Act_Subp);
16347 end if;
16349 -- No need to update Act_Elm if we must search for the
16350 -- corresponding operation in the generic actual
16352 if not Need_Search
16353 and then Present (Act_Elmt)
16354 then
16355 Next_Elmt (Act_Elmt);
16356 Act_Subp := Node (Act_Elmt);
16357 end if;
16359 <<Continue>>
16360 Next_Elmt (Elmt);
16361 end loop;
16363 -- Inherit additional operations from progenitors. If the derived
16364 -- type is a generic actual, there are not new primitive operations
16365 -- for the type because it has those of the actual, and therefore
16366 -- nothing needs to be done. The renamings generated above are not
16367 -- primitive operations, and their purpose is simply to make the
16368 -- proper operations visible within an instantiation.
16370 if No (Generic_Actual) then
16371 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16372 end if;
16373 end if;
16375 -- Final check: Direct descendants must have their primitives in the
16376 -- same order. We exclude from this test untagged types and instances
16377 -- of formal derived types. We skip this test if we have already
16378 -- reported serious errors in the sources.
16380 pragma Assert (not Is_Tagged_Type (Derived_Type)
16381 or else Present (Generic_Actual)
16382 or else Serious_Errors_Detected > 0
16383 or else Check_Derived_Type);
16384 end Derive_Subprograms;
16386 --------------------------------
16387 -- Derived_Standard_Character --
16388 --------------------------------
16390 procedure Derived_Standard_Character
16391 (N : Node_Id;
16392 Parent_Type : Entity_Id;
16393 Derived_Type : Entity_Id)
16395 Loc : constant Source_Ptr := Sloc (N);
16396 Def : constant Node_Id := Type_Definition (N);
16397 Indic : constant Node_Id := Subtype_Indication (Def);
16398 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16399 Implicit_Base : constant Entity_Id :=
16400 Create_Itype
16401 (E_Enumeration_Type, N, Derived_Type, 'B');
16403 Lo : Node_Id;
16404 Hi : Node_Id;
16406 begin
16407 Discard_Node (Process_Subtype (Indic, N));
16409 Set_Etype (Implicit_Base, Parent_Base);
16410 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16411 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16413 Set_Is_Character_Type (Implicit_Base, True);
16414 Set_Has_Delayed_Freeze (Implicit_Base);
16416 -- The bounds of the implicit base are the bounds of the parent base.
16417 -- Note that their type is the parent base.
16419 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16420 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16422 Set_Scalar_Range (Implicit_Base,
16423 Make_Range (Loc,
16424 Low_Bound => Lo,
16425 High_Bound => Hi));
16427 Conditional_Delay (Derived_Type, Parent_Type);
16429 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16430 Set_Etype (Derived_Type, Implicit_Base);
16431 Set_Size_Info (Derived_Type, Parent_Type);
16433 if Unknown_RM_Size (Derived_Type) then
16434 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16435 end if;
16437 Set_Is_Character_Type (Derived_Type, True);
16439 if Nkind (Indic) /= N_Subtype_Indication then
16441 -- If no explicit constraint, the bounds are those
16442 -- of the parent type.
16444 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16445 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16446 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16447 end if;
16449 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16451 -- Because the implicit base is used in the conversion of the bounds, we
16452 -- have to freeze it now. This is similar to what is done for numeric
16453 -- types, and it equally suspicious, but otherwise a nonstatic bound
16454 -- will have a reference to an unfrozen type, which is rejected by Gigi
16455 -- (???). This requires specific care for definition of stream
16456 -- attributes. For details, see comments at the end of
16457 -- Build_Derived_Numeric_Type.
16459 Freeze_Before (N, Implicit_Base);
16460 end Derived_Standard_Character;
16462 ------------------------------
16463 -- Derived_Type_Declaration --
16464 ------------------------------
16466 procedure Derived_Type_Declaration
16467 (T : Entity_Id;
16468 N : Node_Id;
16469 Is_Completion : Boolean)
16471 Parent_Type : Entity_Id;
16473 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16474 -- Check whether the parent type is a generic formal, or derives
16475 -- directly or indirectly from one.
16477 ------------------------
16478 -- Comes_From_Generic --
16479 ------------------------
16481 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16482 begin
16483 if Is_Generic_Type (Typ) then
16484 return True;
16486 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16487 return True;
16489 elsif Is_Private_Type (Typ)
16490 and then Present (Full_View (Typ))
16491 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16492 then
16493 return True;
16495 elsif Is_Generic_Actual_Type (Typ) then
16496 return True;
16498 else
16499 return False;
16500 end if;
16501 end Comes_From_Generic;
16503 -- Local variables
16505 Def : constant Node_Id := Type_Definition (N);
16506 Iface_Def : Node_Id;
16507 Indic : constant Node_Id := Subtype_Indication (Def);
16508 Extension : constant Node_Id := Record_Extension_Part (Def);
16509 Parent_Node : Node_Id;
16510 Taggd : Boolean;
16512 -- Start of processing for Derived_Type_Declaration
16514 begin
16515 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16517 if SPARK_Mode = On
16518 and then Is_Tagged_Type (Parent_Type)
16519 then
16520 declare
16521 Partial_View : constant Entity_Id :=
16522 Incomplete_Or_Partial_View (Parent_Type);
16524 begin
16525 -- If the partial view was not found then the parent type is not
16526 -- a private type. Otherwise check if the partial view is a tagged
16527 -- private type.
16529 if Present (Partial_View)
16530 and then Is_Private_Type (Partial_View)
16531 and then not Is_Tagged_Type (Partial_View)
16532 then
16533 Error_Msg_NE
16534 ("cannot derive from & declared as untagged private "
16535 & "(SPARK RM 3.4(1))", N, Partial_View);
16536 end if;
16537 end;
16538 end if;
16540 -- Ada 2005 (AI-251): In case of interface derivation check that the
16541 -- parent is also an interface.
16543 if Interface_Present (Def) then
16544 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16546 if not Is_Interface (Parent_Type) then
16547 Diagnose_Interface (Indic, Parent_Type);
16549 else
16550 Parent_Node := Parent (Base_Type (Parent_Type));
16551 Iface_Def := Type_Definition (Parent_Node);
16553 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16554 -- other limited interfaces.
16556 if Limited_Present (Def) then
16557 if Limited_Present (Iface_Def) then
16558 null;
16560 elsif Protected_Present (Iface_Def) then
16561 Error_Msg_NE
16562 ("descendant of & must be declared as a protected "
16563 & "interface", N, Parent_Type);
16565 elsif Synchronized_Present (Iface_Def) then
16566 Error_Msg_NE
16567 ("descendant of & must be declared as a synchronized "
16568 & "interface", N, Parent_Type);
16570 elsif Task_Present (Iface_Def) then
16571 Error_Msg_NE
16572 ("descendant of & must be declared as a task interface",
16573 N, Parent_Type);
16575 else
16576 Error_Msg_N
16577 ("(Ada 2005) limited interface cannot inherit from "
16578 & "non-limited interface", Indic);
16579 end if;
16581 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16582 -- from non-limited or limited interfaces.
16584 elsif not Protected_Present (Def)
16585 and then not Synchronized_Present (Def)
16586 and then not Task_Present (Def)
16587 then
16588 if Limited_Present (Iface_Def) then
16589 null;
16591 elsif Protected_Present (Iface_Def) then
16592 Error_Msg_NE
16593 ("descendant of & must be declared as a protected "
16594 & "interface", N, Parent_Type);
16596 elsif Synchronized_Present (Iface_Def) then
16597 Error_Msg_NE
16598 ("descendant of & must be declared as a synchronized "
16599 & "interface", N, Parent_Type);
16601 elsif Task_Present (Iface_Def) then
16602 Error_Msg_NE
16603 ("descendant of & must be declared as a task interface",
16604 N, Parent_Type);
16605 else
16606 null;
16607 end if;
16608 end if;
16609 end if;
16610 end if;
16612 if Is_Tagged_Type (Parent_Type)
16613 and then Is_Concurrent_Type (Parent_Type)
16614 and then not Is_Interface (Parent_Type)
16615 then
16616 Error_Msg_N
16617 ("parent type of a record extension cannot be a synchronized "
16618 & "tagged type (RM 3.9.1 (3/1))", N);
16619 Set_Etype (T, Any_Type);
16620 return;
16621 end if;
16623 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16624 -- interfaces
16626 if Is_Tagged_Type (Parent_Type)
16627 and then Is_Non_Empty_List (Interface_List (Def))
16628 then
16629 declare
16630 Intf : Node_Id;
16631 T : Entity_Id;
16633 begin
16634 Intf := First (Interface_List (Def));
16635 while Present (Intf) loop
16636 T := Find_Type_Of_Subtype_Indic (Intf);
16638 if not Is_Interface (T) then
16639 Diagnose_Interface (Intf, T);
16641 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16642 -- a limited type from having a nonlimited progenitor.
16644 elsif (Limited_Present (Def)
16645 or else (not Is_Interface (Parent_Type)
16646 and then Is_Limited_Type (Parent_Type)))
16647 and then not Is_Limited_Interface (T)
16648 then
16649 Error_Msg_NE
16650 ("progenitor interface& of limited type must be limited",
16651 N, T);
16652 end if;
16654 Next (Intf);
16655 end loop;
16656 end;
16657 end if;
16659 if Parent_Type = Any_Type
16660 or else Etype (Parent_Type) = Any_Type
16661 or else (Is_Class_Wide_Type (Parent_Type)
16662 and then Etype (Parent_Type) = T)
16663 then
16664 -- If Parent_Type is undefined or illegal, make new type into a
16665 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16666 -- errors. If this is a self-definition, emit error now.
16668 if T = Parent_Type or else T = Etype (Parent_Type) then
16669 Error_Msg_N ("type cannot be used in its own definition", Indic);
16670 end if;
16672 Set_Ekind (T, Ekind (Parent_Type));
16673 Set_Etype (T, Any_Type);
16674 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16676 if Is_Tagged_Type (T)
16677 and then Is_Record_Type (T)
16678 then
16679 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16680 end if;
16682 return;
16683 end if;
16685 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16686 -- an interface is special because the list of interfaces in the full
16687 -- view can be given in any order. For example:
16689 -- type A is interface;
16690 -- type B is interface and A;
16691 -- type D is new B with private;
16692 -- private
16693 -- type D is new A and B with null record; -- 1 --
16695 -- In this case we perform the following transformation of -1-:
16697 -- type D is new B and A with null record;
16699 -- If the parent of the full-view covers the parent of the partial-view
16700 -- we have two possible cases:
16702 -- 1) They have the same parent
16703 -- 2) The parent of the full-view implements some further interfaces
16705 -- In both cases we do not need to perform the transformation. In the
16706 -- first case the source program is correct and the transformation is
16707 -- not needed; in the second case the source program does not fulfill
16708 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16709 -- later.
16711 -- This transformation not only simplifies the rest of the analysis of
16712 -- this type declaration but also simplifies the correct generation of
16713 -- the object layout to the expander.
16715 if In_Private_Part (Current_Scope)
16716 and then Is_Interface (Parent_Type)
16717 then
16718 declare
16719 Iface : Node_Id;
16720 Partial_View : Entity_Id;
16721 Partial_View_Parent : Entity_Id;
16722 New_Iface : Node_Id;
16724 begin
16725 -- Look for the associated private type declaration
16727 Partial_View := Incomplete_Or_Partial_View (T);
16729 -- If the partial view was not found then the source code has
16730 -- errors and the transformation is not needed.
16732 if Present (Partial_View) then
16733 Partial_View_Parent := Etype (Partial_View);
16735 -- If the parent of the full-view covers the parent of the
16736 -- partial-view we have nothing else to do.
16738 if Interface_Present_In_Ancestor
16739 (Parent_Type, Partial_View_Parent)
16740 then
16741 null;
16743 -- Traverse the list of interfaces of the full-view to look
16744 -- for the parent of the partial-view and perform the tree
16745 -- transformation.
16747 else
16748 Iface := First (Interface_List (Def));
16749 while Present (Iface) loop
16750 if Etype (Iface) = Etype (Partial_View) then
16751 Rewrite (Subtype_Indication (Def),
16752 New_Copy (Subtype_Indication
16753 (Parent (Partial_View))));
16755 New_Iface :=
16756 Make_Identifier (Sloc (N), Chars (Parent_Type));
16757 Append (New_Iface, Interface_List (Def));
16759 -- Analyze the transformed code
16761 Derived_Type_Declaration (T, N, Is_Completion);
16762 return;
16763 end if;
16765 Next (Iface);
16766 end loop;
16767 end if;
16768 end if;
16769 end;
16770 end if;
16772 -- Only composite types other than array types are allowed to have
16773 -- discriminants.
16775 if Present (Discriminant_Specifications (N)) then
16776 if (Is_Elementary_Type (Parent_Type)
16777 or else
16778 Is_Array_Type (Parent_Type))
16779 and then not Error_Posted (N)
16780 then
16781 Error_Msg_N
16782 ("elementary or array type cannot have discriminants",
16783 Defining_Identifier (First (Discriminant_Specifications (N))));
16785 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16786 -- only if we are not already processing a malformed syntax tree.
16788 if Is_Type (T) then
16789 Set_Has_Discriminants (T, False);
16790 end if;
16792 -- The type is allowed to have discriminants
16794 else
16795 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16796 end if;
16797 end if;
16799 -- In Ada 83, a derived type defined in a package specification cannot
16800 -- be used for further derivation until the end of its visible part.
16801 -- Note that derivation in the private part of the package is allowed.
16803 if Ada_Version = Ada_83
16804 and then Is_Derived_Type (Parent_Type)
16805 and then In_Visible_Part (Scope (Parent_Type))
16806 then
16807 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16808 Error_Msg_N
16809 ("(Ada 83): premature use of type for derivation", Indic);
16810 end if;
16811 end if;
16813 -- Check for early use of incomplete or private type
16815 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16816 Error_Msg_N ("premature derivation of incomplete type", Indic);
16817 return;
16819 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16820 and then not Comes_From_Generic (Parent_Type))
16821 or else Has_Private_Component (Parent_Type)
16822 then
16823 -- The ancestor type of a formal type can be incomplete, in which
16824 -- case only the operations of the partial view are available in the
16825 -- generic. Subsequent checks may be required when the full view is
16826 -- analyzed to verify that a derivation from a tagged type has an
16827 -- extension.
16829 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16830 null;
16832 elsif No (Underlying_Type (Parent_Type))
16833 or else Has_Private_Component (Parent_Type)
16834 then
16835 Error_Msg_N
16836 ("premature derivation of derived or private type", Indic);
16838 -- Flag the type itself as being in error, this prevents some
16839 -- nasty problems with subsequent uses of the malformed type.
16841 Set_Error_Posted (T);
16843 -- Check that within the immediate scope of an untagged partial
16844 -- view it's illegal to derive from the partial view if the
16845 -- full view is tagged. (7.3(7))
16847 -- We verify that the Parent_Type is a partial view by checking
16848 -- that it is not a Full_Type_Declaration (i.e. a private type or
16849 -- private extension declaration), to distinguish a partial view
16850 -- from a derivation from a private type which also appears as
16851 -- E_Private_Type. If the parent base type is not declared in an
16852 -- enclosing scope there is no need to check.
16854 elsif Present (Full_View (Parent_Type))
16855 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16856 and then not Is_Tagged_Type (Parent_Type)
16857 and then Is_Tagged_Type (Full_View (Parent_Type))
16858 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16859 then
16860 Error_Msg_N
16861 ("premature derivation from type with tagged full view",
16862 Indic);
16863 end if;
16864 end if;
16866 -- Check that form of derivation is appropriate
16868 Taggd := Is_Tagged_Type (Parent_Type);
16870 -- Set the parent type to the class-wide type's specific type in this
16871 -- case to prevent cascading errors
16873 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16874 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16875 Set_Etype (T, Etype (Parent_Type));
16876 return;
16877 end if;
16879 if Present (Extension) and then not Taggd then
16880 Error_Msg_N
16881 ("type derived from untagged type cannot have extension", Indic);
16883 elsif No (Extension) and then Taggd then
16885 -- If this declaration is within a private part (or body) of a
16886 -- generic instantiation then the derivation is allowed (the parent
16887 -- type can only appear tagged in this case if it's a generic actual
16888 -- type, since it would otherwise have been rejected in the analysis
16889 -- of the generic template).
16891 if not Is_Generic_Actual_Type (Parent_Type)
16892 or else In_Visible_Part (Scope (Parent_Type))
16893 then
16894 if Is_Class_Wide_Type (Parent_Type) then
16895 Error_Msg_N
16896 ("parent type must not be a class-wide type", Indic);
16898 -- Use specific type to prevent cascaded errors.
16900 Parent_Type := Etype (Parent_Type);
16902 else
16903 Error_Msg_N
16904 ("type derived from tagged type must have extension", Indic);
16905 end if;
16906 end if;
16907 end if;
16909 -- AI-443: Synchronized formal derived types require a private
16910 -- extension. There is no point in checking the ancestor type or
16911 -- the progenitors since the construct is wrong to begin with.
16913 if Ada_Version >= Ada_2005
16914 and then Is_Generic_Type (T)
16915 and then Present (Original_Node (N))
16916 then
16917 declare
16918 Decl : constant Node_Id := Original_Node (N);
16920 begin
16921 if Nkind (Decl) = N_Formal_Type_Declaration
16922 and then Nkind (Formal_Type_Definition (Decl)) =
16923 N_Formal_Derived_Type_Definition
16924 and then Synchronized_Present (Formal_Type_Definition (Decl))
16925 and then No (Extension)
16927 -- Avoid emitting a duplicate error message
16929 and then not Error_Posted (Indic)
16930 then
16931 Error_Msg_N
16932 ("synchronized derived type must have extension", N);
16933 end if;
16934 end;
16935 end if;
16937 if Null_Exclusion_Present (Def)
16938 and then not Is_Access_Type (Parent_Type)
16939 then
16940 Error_Msg_N ("null exclusion can only apply to an access type", N);
16941 end if;
16943 -- Avoid deriving parent primitives of underlying record views
16945 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16946 Derive_Subps => not Is_Underlying_Record_View (T));
16948 -- AI-419: The parent type of an explicitly limited derived type must
16949 -- be a limited type or a limited interface.
16951 if Limited_Present (Def) then
16952 Set_Is_Limited_Record (T);
16954 if Is_Interface (T) then
16955 Set_Is_Limited_Interface (T);
16956 end if;
16958 if not Is_Limited_Type (Parent_Type)
16959 and then
16960 (not Is_Interface (Parent_Type)
16961 or else not Is_Limited_Interface (Parent_Type))
16962 then
16963 -- AI05-0096: a derivation in the private part of an instance is
16964 -- legal if the generic formal is untagged limited, and the actual
16965 -- is non-limited.
16967 if Is_Generic_Actual_Type (Parent_Type)
16968 and then In_Private_Part (Current_Scope)
16969 and then
16970 not Is_Tagged_Type
16971 (Generic_Parent_Type (Parent (Parent_Type)))
16972 then
16973 null;
16975 else
16976 Error_Msg_NE
16977 ("parent type& of limited type must be limited",
16978 N, Parent_Type);
16979 end if;
16980 end if;
16981 end if;
16983 -- In SPARK, there are no derived type definitions other than type
16984 -- extensions of tagged record types.
16986 if No (Extension) then
16987 Check_SPARK_05_Restriction
16988 ("derived type is not allowed", Original_Node (N));
16989 end if;
16990 end Derived_Type_Declaration;
16992 ------------------------
16993 -- Diagnose_Interface --
16994 ------------------------
16996 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16997 begin
16998 if not Is_Interface (E) and then E /= Any_Type then
16999 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
17000 end if;
17001 end Diagnose_Interface;
17003 ----------------------------------
17004 -- Enumeration_Type_Declaration --
17005 ----------------------------------
17007 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17008 Ev : Uint;
17009 L : Node_Id;
17010 R_Node : Node_Id;
17011 B_Node : Node_Id;
17013 begin
17014 -- Create identifier node representing lower bound
17016 B_Node := New_Node (N_Identifier, Sloc (Def));
17017 L := First (Literals (Def));
17018 Set_Chars (B_Node, Chars (L));
17019 Set_Entity (B_Node, L);
17020 Set_Etype (B_Node, T);
17021 Set_Is_Static_Expression (B_Node, True);
17023 R_Node := New_Node (N_Range, Sloc (Def));
17024 Set_Low_Bound (R_Node, B_Node);
17026 Set_Ekind (T, E_Enumeration_Type);
17027 Set_First_Literal (T, L);
17028 Set_Etype (T, T);
17029 Set_Is_Constrained (T);
17031 Ev := Uint_0;
17033 -- Loop through literals of enumeration type setting pos and rep values
17034 -- except that if the Ekind is already set, then it means the literal
17035 -- was already constructed (case of a derived type declaration and we
17036 -- should not disturb the Pos and Rep values.
17038 while Present (L) loop
17039 if Ekind (L) /= E_Enumeration_Literal then
17040 Set_Ekind (L, E_Enumeration_Literal);
17041 Set_Enumeration_Pos (L, Ev);
17042 Set_Enumeration_Rep (L, Ev);
17043 Set_Is_Known_Valid (L, True);
17044 end if;
17046 Set_Etype (L, T);
17047 New_Overloaded_Entity (L);
17048 Generate_Definition (L);
17049 Set_Convention (L, Convention_Intrinsic);
17051 -- Case of character literal
17053 if Nkind (L) = N_Defining_Character_Literal then
17054 Set_Is_Character_Type (T, True);
17056 -- Check violation of No_Wide_Characters
17058 if Restriction_Check_Required (No_Wide_Characters) then
17059 Get_Name_String (Chars (L));
17061 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17062 Check_Restriction (No_Wide_Characters, L);
17063 end if;
17064 end if;
17065 end if;
17067 Ev := Ev + 1;
17068 Next (L);
17069 end loop;
17071 -- Now create a node representing upper bound
17073 B_Node := New_Node (N_Identifier, Sloc (Def));
17074 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17075 Set_Entity (B_Node, Last (Literals (Def)));
17076 Set_Etype (B_Node, T);
17077 Set_Is_Static_Expression (B_Node, True);
17079 Set_High_Bound (R_Node, B_Node);
17081 -- Initialize various fields of the type. Some of this information
17082 -- may be overwritten later through rep.clauses.
17084 Set_Scalar_Range (T, R_Node);
17085 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17086 Set_Enum_Esize (T);
17087 Set_Enum_Pos_To_Rep (T, Empty);
17089 -- Set Discard_Names if configuration pragma set, or if there is
17090 -- a parameterless pragma in the current declarative region
17092 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17093 Set_Discard_Names (T);
17094 end if;
17096 -- Process end label if there is one
17098 if Present (Def) then
17099 Process_End_Label (Def, 'e', T);
17100 end if;
17101 end Enumeration_Type_Declaration;
17103 ---------------------------------
17104 -- Expand_To_Stored_Constraint --
17105 ---------------------------------
17107 function Expand_To_Stored_Constraint
17108 (Typ : Entity_Id;
17109 Constraint : Elist_Id) return Elist_Id
17111 Explicitly_Discriminated_Type : Entity_Id;
17112 Expansion : Elist_Id;
17113 Discriminant : Entity_Id;
17115 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17116 -- Find the nearest type that actually specifies discriminants
17118 ---------------------------------
17119 -- Type_With_Explicit_Discrims --
17120 ---------------------------------
17122 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17123 Typ : constant E := Base_Type (Id);
17125 begin
17126 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17127 if Present (Full_View (Typ)) then
17128 return Type_With_Explicit_Discrims (Full_View (Typ));
17129 end if;
17131 else
17132 if Has_Discriminants (Typ) then
17133 return Typ;
17134 end if;
17135 end if;
17137 if Etype (Typ) = Typ then
17138 return Empty;
17139 elsif Has_Discriminants (Typ) then
17140 return Typ;
17141 else
17142 return Type_With_Explicit_Discrims (Etype (Typ));
17143 end if;
17145 end Type_With_Explicit_Discrims;
17147 -- Start of processing for Expand_To_Stored_Constraint
17149 begin
17150 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17151 return No_Elist;
17152 end if;
17154 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17156 if No (Explicitly_Discriminated_Type) then
17157 return No_Elist;
17158 end if;
17160 Expansion := New_Elmt_List;
17162 Discriminant :=
17163 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17164 while Present (Discriminant) loop
17165 Append_Elmt
17166 (Get_Discriminant_Value
17167 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17168 To => Expansion);
17169 Next_Stored_Discriminant (Discriminant);
17170 end loop;
17172 return Expansion;
17173 end Expand_To_Stored_Constraint;
17175 ---------------------------
17176 -- Find_Hidden_Interface --
17177 ---------------------------
17179 function Find_Hidden_Interface
17180 (Src : Elist_Id;
17181 Dest : Elist_Id) return Entity_Id
17183 Iface : Entity_Id;
17184 Iface_Elmt : Elmt_Id;
17186 begin
17187 if Present (Src) and then Present (Dest) then
17188 Iface_Elmt := First_Elmt (Src);
17189 while Present (Iface_Elmt) loop
17190 Iface := Node (Iface_Elmt);
17192 if Is_Interface (Iface)
17193 and then not Contain_Interface (Iface, Dest)
17194 then
17195 return Iface;
17196 end if;
17198 Next_Elmt (Iface_Elmt);
17199 end loop;
17200 end if;
17202 return Empty;
17203 end Find_Hidden_Interface;
17205 --------------------
17206 -- Find_Type_Name --
17207 --------------------
17209 function Find_Type_Name (N : Node_Id) return Entity_Id is
17210 Id : constant Entity_Id := Defining_Identifier (N);
17211 New_Id : Entity_Id;
17212 Prev : Entity_Id;
17213 Prev_Par : Node_Id;
17215 procedure Check_Duplicate_Aspects;
17216 -- Check that aspects specified in a completion have not been specified
17217 -- already in the partial view.
17219 procedure Tag_Mismatch;
17220 -- Diagnose a tagged partial view whose full view is untagged. We post
17221 -- the message on the full view, with a reference to the previous
17222 -- partial view. The partial view can be private or incomplete, and
17223 -- these are handled in a different manner, so we determine the position
17224 -- of the error message from the respective slocs of both.
17226 -----------------------------
17227 -- Check_Duplicate_Aspects --
17228 -----------------------------
17230 procedure Check_Duplicate_Aspects is
17231 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17232 -- Return the corresponding aspect of the partial view which matches
17233 -- the aspect id of Asp. Return Empty is no such aspect exists.
17235 -----------------------------
17236 -- Get_Partial_View_Aspect --
17237 -----------------------------
17239 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17240 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17241 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17242 Prev_Asp : Node_Id;
17244 begin
17245 if Present (Prev_Asps) then
17246 Prev_Asp := First (Prev_Asps);
17247 while Present (Prev_Asp) loop
17248 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17249 return Prev_Asp;
17250 end if;
17252 Next (Prev_Asp);
17253 end loop;
17254 end if;
17256 return Empty;
17257 end Get_Partial_View_Aspect;
17259 -- Local variables
17261 Full_Asps : constant List_Id := Aspect_Specifications (N);
17262 Full_Asp : Node_Id;
17263 Part_Asp : Node_Id;
17265 -- Start of processing for Check_Duplicate_Aspects
17267 begin
17268 if Present (Full_Asps) then
17269 Full_Asp := First (Full_Asps);
17270 while Present (Full_Asp) loop
17271 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17273 -- An aspect and its class-wide counterpart are two distinct
17274 -- aspects and may apply to both views of an entity.
17276 if Present (Part_Asp)
17277 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17278 then
17279 Error_Msg_N
17280 ("aspect already specified in private declaration",
17281 Full_Asp);
17283 Remove (Full_Asp);
17284 return;
17285 end if;
17287 if Has_Discriminants (Prev)
17288 and then not Has_Unknown_Discriminants (Prev)
17289 and then Get_Aspect_Id (Full_Asp) =
17290 Aspect_Implicit_Dereference
17291 then
17292 Error_Msg_N
17293 ("cannot specify aspect if partial view has known "
17294 & "discriminants", Full_Asp);
17295 end if;
17297 Next (Full_Asp);
17298 end loop;
17299 end if;
17300 end Check_Duplicate_Aspects;
17302 ------------------
17303 -- Tag_Mismatch --
17304 ------------------
17306 procedure Tag_Mismatch is
17307 begin
17308 if Sloc (Prev) < Sloc (Id) then
17309 if Ada_Version >= Ada_2012
17310 and then Nkind (N) = N_Private_Type_Declaration
17311 then
17312 Error_Msg_NE
17313 ("declaration of private } must be a tagged type ", Id, Prev);
17314 else
17315 Error_Msg_NE
17316 ("full declaration of } must be a tagged type ", Id, Prev);
17317 end if;
17319 else
17320 if Ada_Version >= Ada_2012
17321 and then Nkind (N) = N_Private_Type_Declaration
17322 then
17323 Error_Msg_NE
17324 ("declaration of private } must be a tagged type ", Prev, Id);
17325 else
17326 Error_Msg_NE
17327 ("full declaration of } must be a tagged type ", Prev, Id);
17328 end if;
17329 end if;
17330 end Tag_Mismatch;
17332 -- Start of processing for Find_Type_Name
17334 begin
17335 -- Find incomplete declaration, if one was given
17337 Prev := Current_Entity_In_Scope (Id);
17339 -- New type declaration
17341 if No (Prev) then
17342 Enter_Name (Id);
17343 return Id;
17345 -- Previous declaration exists
17347 else
17348 Prev_Par := Parent (Prev);
17350 -- Error if not incomplete/private case except if previous
17351 -- declaration is implicit, etc. Enter_Name will emit error if
17352 -- appropriate.
17354 if not Is_Incomplete_Or_Private_Type (Prev) then
17355 Enter_Name (Id);
17356 New_Id := Id;
17358 -- Check invalid completion of private or incomplete type
17360 elsif not Nkind_In (N, N_Full_Type_Declaration,
17361 N_Task_Type_Declaration,
17362 N_Protected_Type_Declaration)
17363 and then
17364 (Ada_Version < Ada_2012
17365 or else not Is_Incomplete_Type (Prev)
17366 or else not Nkind_In (N, N_Private_Type_Declaration,
17367 N_Private_Extension_Declaration))
17368 then
17369 -- Completion must be a full type declarations (RM 7.3(4))
17371 Error_Msg_Sloc := Sloc (Prev);
17372 Error_Msg_NE ("invalid completion of }", Id, Prev);
17374 -- Set scope of Id to avoid cascaded errors. Entity is never
17375 -- examined again, except when saving globals in generics.
17377 Set_Scope (Id, Current_Scope);
17378 New_Id := Id;
17380 -- If this is a repeated incomplete declaration, no further
17381 -- checks are possible.
17383 if Nkind (N) = N_Incomplete_Type_Declaration then
17384 return Prev;
17385 end if;
17387 -- Case of full declaration of incomplete type
17389 elsif Ekind (Prev) = E_Incomplete_Type
17390 and then (Ada_Version < Ada_2012
17391 or else No (Full_View (Prev))
17392 or else not Is_Private_Type (Full_View (Prev)))
17393 then
17394 -- Indicate that the incomplete declaration has a matching full
17395 -- declaration. The defining occurrence of the incomplete
17396 -- declaration remains the visible one, and the procedure
17397 -- Get_Full_View dereferences it whenever the type is used.
17399 if Present (Full_View (Prev)) then
17400 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17401 end if;
17403 Set_Full_View (Prev, Id);
17404 Append_Entity (Id, Current_Scope);
17405 Set_Is_Public (Id, Is_Public (Prev));
17406 Set_Is_Internal (Id);
17407 New_Id := Prev;
17409 -- If the incomplete view is tagged, a class_wide type has been
17410 -- created already. Use it for the private type as well, in order
17411 -- to prevent multiple incompatible class-wide types that may be
17412 -- created for self-referential anonymous access components.
17414 if Is_Tagged_Type (Prev)
17415 and then Present (Class_Wide_Type (Prev))
17416 then
17417 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17418 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17420 -- Type of the class-wide type is the current Id. Previously
17421 -- this was not done for private declarations because of order-
17422 -- of-elaboration issues in the back end, but gigi now handles
17423 -- this properly.
17425 Set_Etype (Class_Wide_Type (Id), Id);
17426 end if;
17428 -- Case of full declaration of private type
17430 else
17431 -- If the private type was a completion of an incomplete type then
17432 -- update Prev to reference the private type
17434 if Ada_Version >= Ada_2012
17435 and then Ekind (Prev) = E_Incomplete_Type
17436 and then Present (Full_View (Prev))
17437 and then Is_Private_Type (Full_View (Prev))
17438 then
17439 Prev := Full_View (Prev);
17440 Prev_Par := Parent (Prev);
17441 end if;
17443 if Nkind (N) = N_Full_Type_Declaration
17444 and then Nkind_In
17445 (Type_Definition (N), N_Record_Definition,
17446 N_Derived_Type_Definition)
17447 and then Interface_Present (Type_Definition (N))
17448 then
17449 Error_Msg_N
17450 ("completion of private type cannot be an interface", N);
17451 end if;
17453 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17454 if Etype (Prev) /= Prev then
17456 -- Prev is a private subtype or a derived type, and needs
17457 -- no completion.
17459 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17460 New_Id := Id;
17462 elsif Ekind (Prev) = E_Private_Type
17463 and then Nkind_In (N, N_Task_Type_Declaration,
17464 N_Protected_Type_Declaration)
17465 then
17466 Error_Msg_N
17467 ("completion of nonlimited type cannot be limited", N);
17469 elsif Ekind (Prev) = E_Record_Type_With_Private
17470 and then Nkind_In (N, N_Task_Type_Declaration,
17471 N_Protected_Type_Declaration)
17472 then
17473 if not Is_Limited_Record (Prev) then
17474 Error_Msg_N
17475 ("completion of nonlimited type cannot be limited", N);
17477 elsif No (Interface_List (N)) then
17478 Error_Msg_N
17479 ("completion of tagged private type must be tagged",
17481 end if;
17482 end if;
17484 -- Ada 2005 (AI-251): Private extension declaration of a task
17485 -- type or a protected type. This case arises when covering
17486 -- interface types.
17488 elsif Nkind_In (N, N_Task_Type_Declaration,
17489 N_Protected_Type_Declaration)
17490 then
17491 null;
17493 elsif Nkind (N) /= N_Full_Type_Declaration
17494 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17495 then
17496 Error_Msg_N
17497 ("full view of private extension must be an extension", N);
17499 elsif not (Abstract_Present (Parent (Prev)))
17500 and then Abstract_Present (Type_Definition (N))
17501 then
17502 Error_Msg_N
17503 ("full view of non-abstract extension cannot be abstract", N);
17504 end if;
17506 if not In_Private_Part (Current_Scope) then
17507 Error_Msg_N
17508 ("declaration of full view must appear in private part", N);
17509 end if;
17511 if Ada_Version >= Ada_2012 then
17512 Check_Duplicate_Aspects;
17513 end if;
17515 Copy_And_Swap (Prev, Id);
17516 Set_Has_Private_Declaration (Prev);
17517 Set_Has_Private_Declaration (Id);
17519 -- AI12-0133: Indicate whether we have a partial view with
17520 -- unknown discriminants, in which case initialization of objects
17521 -- of the type do not receive an invariant check.
17523 Set_Partial_View_Has_Unknown_Discr
17524 (Prev, Has_Unknown_Discriminants (Id));
17526 -- Preserve aspect and iterator flags that may have been set on
17527 -- the partial view.
17529 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17530 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17532 -- If no error, propagate freeze_node from private to full view.
17533 -- It may have been generated for an early operational item.
17535 if Present (Freeze_Node (Id))
17536 and then Serious_Errors_Detected = 0
17537 and then No (Full_View (Id))
17538 then
17539 Set_Freeze_Node (Prev, Freeze_Node (Id));
17540 Set_Freeze_Node (Id, Empty);
17541 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17542 end if;
17544 Set_Full_View (Id, Prev);
17545 New_Id := Prev;
17546 end if;
17548 -- Verify that full declaration conforms to partial one
17550 if Is_Incomplete_Or_Private_Type (Prev)
17551 and then Present (Discriminant_Specifications (Prev_Par))
17552 then
17553 if Present (Discriminant_Specifications (N)) then
17554 if Ekind (Prev) = E_Incomplete_Type then
17555 Check_Discriminant_Conformance (N, Prev, Prev);
17556 else
17557 Check_Discriminant_Conformance (N, Prev, Id);
17558 end if;
17560 else
17561 Error_Msg_N
17562 ("missing discriminants in full type declaration", N);
17564 -- To avoid cascaded errors on subsequent use, share the
17565 -- discriminants of the partial view.
17567 Set_Discriminant_Specifications (N,
17568 Discriminant_Specifications (Prev_Par));
17569 end if;
17570 end if;
17572 -- A prior untagged partial view can have an associated class-wide
17573 -- type due to use of the class attribute, and in this case the full
17574 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17575 -- of incomplete tagged declarations, but we check for it.
17577 if Is_Type (Prev)
17578 and then (Is_Tagged_Type (Prev)
17579 or else Present (Class_Wide_Type (Prev)))
17580 then
17581 -- Ada 2012 (AI05-0162): A private type may be the completion of
17582 -- an incomplete type.
17584 if Ada_Version >= Ada_2012
17585 and then Is_Incomplete_Type (Prev)
17586 and then Nkind_In (N, N_Private_Type_Declaration,
17587 N_Private_Extension_Declaration)
17588 then
17589 -- No need to check private extensions since they are tagged
17591 if Nkind (N) = N_Private_Type_Declaration
17592 and then not Tagged_Present (N)
17593 then
17594 Tag_Mismatch;
17595 end if;
17597 -- The full declaration is either a tagged type (including
17598 -- a synchronized type that implements interfaces) or a
17599 -- type extension, otherwise this is an error.
17601 elsif Nkind_In (N, N_Task_Type_Declaration,
17602 N_Protected_Type_Declaration)
17603 then
17604 if No (Interface_List (N)) and then not Error_Posted (N) then
17605 Tag_Mismatch;
17606 end if;
17608 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17610 -- Indicate that the previous declaration (tagged incomplete
17611 -- or private declaration) requires the same on the full one.
17613 if not Tagged_Present (Type_Definition (N)) then
17614 Tag_Mismatch;
17615 Set_Is_Tagged_Type (Id);
17616 end if;
17618 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17619 if No (Record_Extension_Part (Type_Definition (N))) then
17620 Error_Msg_NE
17621 ("full declaration of } must be a record extension",
17622 Prev, Id);
17624 -- Set some attributes to produce a usable full view
17626 Set_Is_Tagged_Type (Id);
17627 end if;
17629 else
17630 Tag_Mismatch;
17631 end if;
17632 end if;
17634 if Present (Prev)
17635 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17636 and then Present (Premature_Use (Parent (Prev)))
17637 then
17638 Error_Msg_Sloc := Sloc (N);
17639 Error_Msg_N
17640 ("\full declaration #", Premature_Use (Parent (Prev)));
17641 end if;
17643 return New_Id;
17644 end if;
17645 end Find_Type_Name;
17647 -------------------------
17648 -- Find_Type_Of_Object --
17649 -------------------------
17651 function Find_Type_Of_Object
17652 (Obj_Def : Node_Id;
17653 Related_Nod : Node_Id) return Entity_Id
17655 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17656 P : Node_Id := Parent (Obj_Def);
17657 T : Entity_Id;
17658 Nam : Name_Id;
17660 begin
17661 -- If the parent is a component_definition node we climb to the
17662 -- component_declaration node
17664 if Nkind (P) = N_Component_Definition then
17665 P := Parent (P);
17666 end if;
17668 -- Case of an anonymous array subtype
17670 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17671 N_Unconstrained_Array_Definition)
17672 then
17673 T := Empty;
17674 Array_Type_Declaration (T, Obj_Def);
17676 -- Create an explicit subtype whenever possible
17678 elsif Nkind (P) /= N_Component_Declaration
17679 and then Def_Kind = N_Subtype_Indication
17680 then
17681 -- Base name of subtype on object name, which will be unique in
17682 -- the current scope.
17684 -- If this is a duplicate declaration, return base type, to avoid
17685 -- generating duplicate anonymous types.
17687 if Error_Posted (P) then
17688 Analyze (Subtype_Mark (Obj_Def));
17689 return Entity (Subtype_Mark (Obj_Def));
17690 end if;
17692 Nam :=
17693 New_External_Name
17694 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17696 T := Make_Defining_Identifier (Sloc (P), Nam);
17698 Insert_Action (Obj_Def,
17699 Make_Subtype_Declaration (Sloc (P),
17700 Defining_Identifier => T,
17701 Subtype_Indication => Relocate_Node (Obj_Def)));
17703 -- This subtype may need freezing, and this will not be done
17704 -- automatically if the object declaration is not in declarative
17705 -- part. Since this is an object declaration, the type cannot always
17706 -- be frozen here. Deferred constants do not freeze their type
17707 -- (which often enough will be private).
17709 if Nkind (P) = N_Object_Declaration
17710 and then Constant_Present (P)
17711 and then No (Expression (P))
17712 then
17713 null;
17715 -- Here we freeze the base type of object type to catch premature use
17716 -- of discriminated private type without a full view.
17718 else
17719 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17720 end if;
17722 -- Ada 2005 AI-406: the object definition in an object declaration
17723 -- can be an access definition.
17725 elsif Def_Kind = N_Access_Definition then
17726 T := Access_Definition (Related_Nod, Obj_Def);
17728 Set_Is_Local_Anonymous_Access
17730 V => (Ada_Version < Ada_2012)
17731 or else (Nkind (P) /= N_Object_Declaration)
17732 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17734 -- Otherwise, the object definition is just a subtype_mark
17736 else
17737 T := Process_Subtype (Obj_Def, Related_Nod);
17739 -- If expansion is disabled an object definition that is an aggregate
17740 -- will not get expanded and may lead to scoping problems in the back
17741 -- end, if the object is referenced in an inner scope. In that case
17742 -- create an itype reference for the object definition now. This
17743 -- may be redundant in some cases, but harmless.
17745 if Is_Itype (T)
17746 and then Nkind (Related_Nod) = N_Object_Declaration
17747 and then ASIS_Mode
17748 then
17749 Build_Itype_Reference (T, Related_Nod);
17750 end if;
17751 end if;
17753 return T;
17754 end Find_Type_Of_Object;
17756 --------------------------------
17757 -- Find_Type_Of_Subtype_Indic --
17758 --------------------------------
17760 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17761 Typ : Entity_Id;
17763 begin
17764 -- Case of subtype mark with a constraint
17766 if Nkind (S) = N_Subtype_Indication then
17767 Find_Type (Subtype_Mark (S));
17768 Typ := Entity (Subtype_Mark (S));
17770 if not
17771 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17772 then
17773 Error_Msg_N
17774 ("incorrect constraint for this kind of type", Constraint (S));
17775 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17776 end if;
17778 -- Otherwise we have a subtype mark without a constraint
17780 elsif Error_Posted (S) then
17781 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17782 return Any_Type;
17784 else
17785 Find_Type (S);
17786 Typ := Entity (S);
17787 end if;
17789 -- Check No_Wide_Characters restriction
17791 Check_Wide_Character_Restriction (Typ, S);
17793 return Typ;
17794 end Find_Type_Of_Subtype_Indic;
17796 -------------------------------------
17797 -- Floating_Point_Type_Declaration --
17798 -------------------------------------
17800 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17801 Digs : constant Node_Id := Digits_Expression (Def);
17802 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17803 Digs_Val : Uint;
17804 Base_Typ : Entity_Id;
17805 Implicit_Base : Entity_Id;
17806 Bound : Node_Id;
17808 function Can_Derive_From (E : Entity_Id) return Boolean;
17809 -- Find if given digits value, and possibly a specified range, allows
17810 -- derivation from specified type
17812 function Find_Base_Type return Entity_Id;
17813 -- Find a predefined base type that Def can derive from, or generate
17814 -- an error and substitute Long_Long_Float if none exists.
17816 ---------------------
17817 -- Can_Derive_From --
17818 ---------------------
17820 function Can_Derive_From (E : Entity_Id) return Boolean is
17821 Spec : constant Entity_Id := Real_Range_Specification (Def);
17823 begin
17824 -- Check specified "digits" constraint
17826 if Digs_Val > Digits_Value (E) then
17827 return False;
17828 end if;
17830 -- Check for matching range, if specified
17832 if Present (Spec) then
17833 if Expr_Value_R (Type_Low_Bound (E)) >
17834 Expr_Value_R (Low_Bound (Spec))
17835 then
17836 return False;
17837 end if;
17839 if Expr_Value_R (Type_High_Bound (E)) <
17840 Expr_Value_R (High_Bound (Spec))
17841 then
17842 return False;
17843 end if;
17844 end if;
17846 return True;
17847 end Can_Derive_From;
17849 --------------------
17850 -- Find_Base_Type --
17851 --------------------
17853 function Find_Base_Type return Entity_Id is
17854 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17856 begin
17857 -- Iterate over the predefined types in order, returning the first
17858 -- one that Def can derive from.
17860 while Present (Choice) loop
17861 if Can_Derive_From (Node (Choice)) then
17862 return Node (Choice);
17863 end if;
17865 Next_Elmt (Choice);
17866 end loop;
17868 -- If we can't derive from any existing type, use Long_Long_Float
17869 -- and give appropriate message explaining the problem.
17871 if Digs_Val > Max_Digs_Val then
17872 -- It might be the case that there is a type with the requested
17873 -- range, just not the combination of digits and range.
17875 Error_Msg_N
17876 ("no predefined type has requested range and precision",
17877 Real_Range_Specification (Def));
17879 else
17880 Error_Msg_N
17881 ("range too large for any predefined type",
17882 Real_Range_Specification (Def));
17883 end if;
17885 return Standard_Long_Long_Float;
17886 end Find_Base_Type;
17888 -- Start of processing for Floating_Point_Type_Declaration
17890 begin
17891 Check_Restriction (No_Floating_Point, Def);
17893 -- Create an implicit base type
17895 Implicit_Base :=
17896 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17898 -- Analyze and verify digits value
17900 Analyze_And_Resolve (Digs, Any_Integer);
17901 Check_Digits_Expression (Digs);
17902 Digs_Val := Expr_Value (Digs);
17904 -- Process possible range spec and find correct type to derive from
17906 Process_Real_Range_Specification (Def);
17908 -- Check that requested number of digits is not too high.
17910 if Digs_Val > Max_Digs_Val then
17912 -- The check for Max_Base_Digits may be somewhat expensive, as it
17913 -- requires reading System, so only do it when necessary.
17915 declare
17916 Max_Base_Digits : constant Uint :=
17917 Expr_Value
17918 (Expression
17919 (Parent (RTE (RE_Max_Base_Digits))));
17921 begin
17922 if Digs_Val > Max_Base_Digits then
17923 Error_Msg_Uint_1 := Max_Base_Digits;
17924 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17926 elsif No (Real_Range_Specification (Def)) then
17927 Error_Msg_Uint_1 := Max_Digs_Val;
17928 Error_Msg_N ("types with more than ^ digits need range spec "
17929 & "(RM 3.5.7(6))", Digs);
17930 end if;
17931 end;
17932 end if;
17934 -- Find a suitable type to derive from or complain and use a substitute
17936 Base_Typ := Find_Base_Type;
17938 -- If there are bounds given in the declaration use them as the bounds
17939 -- of the type, otherwise use the bounds of the predefined base type
17940 -- that was chosen based on the Digits value.
17942 if Present (Real_Range_Specification (Def)) then
17943 Set_Scalar_Range (T, Real_Range_Specification (Def));
17944 Set_Is_Constrained (T);
17946 -- The bounds of this range must be converted to machine numbers
17947 -- in accordance with RM 4.9(38).
17949 Bound := Type_Low_Bound (T);
17951 if Nkind (Bound) = N_Real_Literal then
17952 Set_Realval
17953 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17954 Set_Is_Machine_Number (Bound);
17955 end if;
17957 Bound := Type_High_Bound (T);
17959 if Nkind (Bound) = N_Real_Literal then
17960 Set_Realval
17961 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17962 Set_Is_Machine_Number (Bound);
17963 end if;
17965 else
17966 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17967 end if;
17969 -- Complete definition of implicit base and declared first subtype. The
17970 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17971 -- are not clobbered when the floating point type acts as a full view of
17972 -- a private type.
17974 Set_Etype (Implicit_Base, Base_Typ);
17975 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17976 Set_Size_Info (Implicit_Base, Base_Typ);
17977 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17978 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17979 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17980 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17982 Set_Ekind (T, E_Floating_Point_Subtype);
17983 Set_Etype (T, Implicit_Base);
17984 Set_Size_Info (T, Implicit_Base);
17985 Set_RM_Size (T, RM_Size (Implicit_Base));
17986 Inherit_Rep_Item_Chain (T, Implicit_Base);
17987 Set_Digits_Value (T, Digs_Val);
17988 end Floating_Point_Type_Declaration;
17990 ----------------------------
17991 -- Get_Discriminant_Value --
17992 ----------------------------
17994 -- This is the situation:
17996 -- There is a non-derived type
17998 -- type T0 (Dx, Dy, Dz...)
18000 -- There are zero or more levels of derivation, with each derivation
18001 -- either purely inheriting the discriminants, or defining its own.
18003 -- type Ti is new Ti-1
18004 -- or
18005 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
18006 -- or
18007 -- subtype Ti is ...
18009 -- The subtype issue is avoided by the use of Original_Record_Component,
18010 -- and the fact that derived subtypes also derive the constraints.
18012 -- This chain leads back from
18014 -- Typ_For_Constraint
18016 -- Typ_For_Constraint has discriminants, and the value for each
18017 -- discriminant is given by its corresponding Elmt of Constraints.
18019 -- Discriminant is some discriminant in this hierarchy
18021 -- We need to return its value
18023 -- We do this by recursively searching each level, and looking for
18024 -- Discriminant. Once we get to the bottom, we start backing up
18025 -- returning the value for it which may in turn be a discriminant
18026 -- further up, so on the backup we continue the substitution.
18028 function Get_Discriminant_Value
18029 (Discriminant : Entity_Id;
18030 Typ_For_Constraint : Entity_Id;
18031 Constraint : Elist_Id) return Node_Id
18033 function Root_Corresponding_Discriminant
18034 (Discr : Entity_Id) return Entity_Id;
18035 -- Given a discriminant, traverse the chain of inherited discriminants
18036 -- and return the topmost discriminant.
18038 function Search_Derivation_Levels
18039 (Ti : Entity_Id;
18040 Discrim_Values : Elist_Id;
18041 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18042 -- This is the routine that performs the recursive search of levels
18043 -- as described above.
18045 -------------------------------------
18046 -- Root_Corresponding_Discriminant --
18047 -------------------------------------
18049 function Root_Corresponding_Discriminant
18050 (Discr : Entity_Id) return Entity_Id
18052 D : Entity_Id;
18054 begin
18055 D := Discr;
18056 while Present (Corresponding_Discriminant (D)) loop
18057 D := Corresponding_Discriminant (D);
18058 end loop;
18060 return D;
18061 end Root_Corresponding_Discriminant;
18063 ------------------------------
18064 -- Search_Derivation_Levels --
18065 ------------------------------
18067 function Search_Derivation_Levels
18068 (Ti : Entity_Id;
18069 Discrim_Values : Elist_Id;
18070 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18072 Assoc : Elmt_Id;
18073 Disc : Entity_Id;
18074 Result : Node_Or_Entity_Id;
18075 Result_Entity : Node_Id;
18077 begin
18078 -- If inappropriate type, return Error, this happens only in
18079 -- cascaded error situations, and we want to avoid a blow up.
18081 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18082 return Error;
18083 end if;
18085 -- Look deeper if possible. Use Stored_Constraints only for
18086 -- untagged types. For tagged types use the given constraint.
18087 -- This asymmetry needs explanation???
18089 if not Stored_Discrim_Values
18090 and then Present (Stored_Constraint (Ti))
18091 and then not Is_Tagged_Type (Ti)
18092 then
18093 Result :=
18094 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18096 else
18097 declare
18098 Td : Entity_Id := Etype (Ti);
18100 begin
18101 -- If the parent type is private, the full view may include
18102 -- renamed discriminants, and it is those stored values that
18103 -- may be needed (the partial view never has more information
18104 -- than the full view).
18106 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18107 Td := Full_View (Td);
18108 end if;
18110 if Td = Ti then
18111 Result := Discriminant;
18113 else
18114 if Present (Stored_Constraint (Ti)) then
18115 Result :=
18116 Search_Derivation_Levels
18117 (Td, Stored_Constraint (Ti), True);
18118 else
18119 Result :=
18120 Search_Derivation_Levels
18121 (Td, Discrim_Values, Stored_Discrim_Values);
18122 end if;
18123 end if;
18124 end;
18125 end if;
18127 -- Extra underlying places to search, if not found above. For
18128 -- concurrent types, the relevant discriminant appears in the
18129 -- corresponding record. For a type derived from a private type
18130 -- without discriminant, the full view inherits the discriminants
18131 -- of the full view of the parent.
18133 if Result = Discriminant then
18134 if Is_Concurrent_Type (Ti)
18135 and then Present (Corresponding_Record_Type (Ti))
18136 then
18137 Result :=
18138 Search_Derivation_Levels (
18139 Corresponding_Record_Type (Ti),
18140 Discrim_Values,
18141 Stored_Discrim_Values);
18143 elsif Is_Private_Type (Ti)
18144 and then not Has_Discriminants (Ti)
18145 and then Present (Full_View (Ti))
18146 and then Etype (Full_View (Ti)) /= Ti
18147 then
18148 Result :=
18149 Search_Derivation_Levels (
18150 Full_View (Ti),
18151 Discrim_Values,
18152 Stored_Discrim_Values);
18153 end if;
18154 end if;
18156 -- If Result is not a (reference to a) discriminant, return it,
18157 -- otherwise set Result_Entity to the discriminant.
18159 if Nkind (Result) = N_Defining_Identifier then
18160 pragma Assert (Result = Discriminant);
18161 Result_Entity := Result;
18163 else
18164 if not Denotes_Discriminant (Result) then
18165 return Result;
18166 end if;
18168 Result_Entity := Entity (Result);
18169 end if;
18171 -- See if this level of derivation actually has discriminants because
18172 -- tagged derivations can add them, hence the lower levels need not
18173 -- have any.
18175 if not Has_Discriminants (Ti) then
18176 return Result;
18177 end if;
18179 -- Scan Ti's discriminants for Result_Entity, and return its
18180 -- corresponding value, if any.
18182 Result_Entity := Original_Record_Component (Result_Entity);
18184 Assoc := First_Elmt (Discrim_Values);
18186 if Stored_Discrim_Values then
18187 Disc := First_Stored_Discriminant (Ti);
18188 else
18189 Disc := First_Discriminant (Ti);
18190 end if;
18192 while Present (Disc) loop
18194 -- If no further associations return the discriminant, value will
18195 -- be found on the second pass.
18197 if No (Assoc) then
18198 return Result;
18199 end if;
18201 if Original_Record_Component (Disc) = Result_Entity then
18202 return Node (Assoc);
18203 end if;
18205 Next_Elmt (Assoc);
18207 if Stored_Discrim_Values then
18208 Next_Stored_Discriminant (Disc);
18209 else
18210 Next_Discriminant (Disc);
18211 end if;
18212 end loop;
18214 -- Could not find it
18216 return Result;
18217 end Search_Derivation_Levels;
18219 -- Local Variables
18221 Result : Node_Or_Entity_Id;
18223 -- Start of processing for Get_Discriminant_Value
18225 begin
18226 -- ??? This routine is a gigantic mess and will be deleted. For the
18227 -- time being just test for the trivial case before calling recurse.
18229 -- We are now celebrating the 20th anniversary of this comment!
18231 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18232 declare
18233 D : Entity_Id;
18234 E : Elmt_Id;
18236 begin
18237 D := First_Discriminant (Typ_For_Constraint);
18238 E := First_Elmt (Constraint);
18239 while Present (D) loop
18240 if Chars (D) = Chars (Discriminant) then
18241 return Node (E);
18242 end if;
18244 Next_Discriminant (D);
18245 Next_Elmt (E);
18246 end loop;
18247 end;
18248 end if;
18250 Result := Search_Derivation_Levels
18251 (Typ_For_Constraint, Constraint, False);
18253 -- ??? hack to disappear when this routine is gone
18255 if Nkind (Result) = N_Defining_Identifier then
18256 declare
18257 D : Entity_Id;
18258 E : Elmt_Id;
18260 begin
18261 D := First_Discriminant (Typ_For_Constraint);
18262 E := First_Elmt (Constraint);
18263 while Present (D) loop
18264 if Root_Corresponding_Discriminant (D) = Discriminant then
18265 return Node (E);
18266 end if;
18268 Next_Discriminant (D);
18269 Next_Elmt (E);
18270 end loop;
18271 end;
18272 end if;
18274 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18275 return Result;
18276 end Get_Discriminant_Value;
18278 --------------------------
18279 -- Has_Range_Constraint --
18280 --------------------------
18282 function Has_Range_Constraint (N : Node_Id) return Boolean is
18283 C : constant Node_Id := Constraint (N);
18285 begin
18286 if Nkind (C) = N_Range_Constraint then
18287 return True;
18289 elsif Nkind (C) = N_Digits_Constraint then
18290 return
18291 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18292 or else Present (Range_Constraint (C));
18294 elsif Nkind (C) = N_Delta_Constraint then
18295 return Present (Range_Constraint (C));
18297 else
18298 return False;
18299 end if;
18300 end Has_Range_Constraint;
18302 ------------------------
18303 -- Inherit_Components --
18304 ------------------------
18306 function Inherit_Components
18307 (N : Node_Id;
18308 Parent_Base : Entity_Id;
18309 Derived_Base : Entity_Id;
18310 Is_Tagged : Boolean;
18311 Inherit_Discr : Boolean;
18312 Discs : Elist_Id) return Elist_Id
18314 Assoc_List : constant Elist_Id := New_Elmt_List;
18316 procedure Inherit_Component
18317 (Old_C : Entity_Id;
18318 Plain_Discrim : Boolean := False;
18319 Stored_Discrim : Boolean := False);
18320 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18321 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18322 -- True, Old_C is a stored discriminant. If they are both false then
18323 -- Old_C is a regular component.
18325 -----------------------
18326 -- Inherit_Component --
18327 -----------------------
18329 procedure Inherit_Component
18330 (Old_C : Entity_Id;
18331 Plain_Discrim : Boolean := False;
18332 Stored_Discrim : Boolean := False)
18334 procedure Set_Anonymous_Type (Id : Entity_Id);
18335 -- Id denotes the entity of an access discriminant or anonymous
18336 -- access component. Set the type of Id to either the same type of
18337 -- Old_C or create a new one depending on whether the parent and
18338 -- the child types are in the same scope.
18340 ------------------------
18341 -- Set_Anonymous_Type --
18342 ------------------------
18344 procedure Set_Anonymous_Type (Id : Entity_Id) is
18345 Old_Typ : constant Entity_Id := Etype (Old_C);
18347 begin
18348 if Scope (Parent_Base) = Scope (Derived_Base) then
18349 Set_Etype (Id, Old_Typ);
18351 -- The parent and the derived type are in two different scopes.
18352 -- Reuse the type of the original discriminant / component by
18353 -- copying it in order to preserve all attributes.
18355 else
18356 declare
18357 Typ : constant Entity_Id := New_Copy (Old_Typ);
18359 begin
18360 Set_Etype (Id, Typ);
18362 -- Since we do not generate component declarations for
18363 -- inherited components, associate the itype with the
18364 -- derived type.
18366 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18367 Set_Scope (Typ, Derived_Base);
18368 end;
18369 end if;
18370 end Set_Anonymous_Type;
18372 -- Local variables and constants
18374 New_C : constant Entity_Id := New_Copy (Old_C);
18376 Corr_Discrim : Entity_Id;
18377 Discrim : Entity_Id;
18379 -- Start of processing for Inherit_Component
18381 begin
18382 pragma Assert (not Is_Tagged or not Stored_Discrim);
18384 Set_Parent (New_C, Parent (Old_C));
18386 -- Regular discriminants and components must be inserted in the scope
18387 -- of the Derived_Base. Do it here.
18389 if not Stored_Discrim then
18390 Enter_Name (New_C);
18391 end if;
18393 -- For tagged types the Original_Record_Component must point to
18394 -- whatever this field was pointing to in the parent type. This has
18395 -- already been achieved by the call to New_Copy above.
18397 if not Is_Tagged then
18398 Set_Original_Record_Component (New_C, New_C);
18399 Set_Corresponding_Record_Component (New_C, Old_C);
18400 end if;
18402 -- Set the proper type of an access discriminant
18404 if Ekind (New_C) = E_Discriminant
18405 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18406 then
18407 Set_Anonymous_Type (New_C);
18408 end if;
18410 -- If we have inherited a component then see if its Etype contains
18411 -- references to Parent_Base discriminants. In this case, replace
18412 -- these references with the constraints given in Discs. We do not
18413 -- do this for the partial view of private types because this is
18414 -- not needed (only the components of the full view will be used
18415 -- for code generation) and cause problem. We also avoid this
18416 -- transformation in some error situations.
18418 if Ekind (New_C) = E_Component then
18420 -- Set the proper type of an anonymous access component
18422 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18423 Set_Anonymous_Type (New_C);
18425 elsif (Is_Private_Type (Derived_Base)
18426 and then not Is_Generic_Type (Derived_Base))
18427 or else (Is_Empty_Elmt_List (Discs)
18428 and then not Expander_Active)
18429 then
18430 Set_Etype (New_C, Etype (Old_C));
18432 else
18433 -- The current component introduces a circularity of the
18434 -- following kind:
18436 -- limited with Pack_2;
18437 -- package Pack_1 is
18438 -- type T_1 is tagged record
18439 -- Comp : access Pack_2.T_2;
18440 -- ...
18441 -- end record;
18442 -- end Pack_1;
18444 -- with Pack_1;
18445 -- package Pack_2 is
18446 -- type T_2 is new Pack_1.T_1 with ...;
18447 -- end Pack_2;
18449 Set_Etype
18450 (New_C,
18451 Constrain_Component_Type
18452 (Old_C, Derived_Base, N, Parent_Base, Discs));
18453 end if;
18454 end if;
18456 -- In derived tagged types it is illegal to reference a non
18457 -- discriminant component in the parent type. To catch this, mark
18458 -- these components with an Ekind of E_Void. This will be reset in
18459 -- Record_Type_Definition after processing the record extension of
18460 -- the derived type.
18462 -- If the declaration is a private extension, there is no further
18463 -- record extension to process, and the components retain their
18464 -- current kind, because they are visible at this point.
18466 if Is_Tagged and then Ekind (New_C) = E_Component
18467 and then Nkind (N) /= N_Private_Extension_Declaration
18468 then
18469 Set_Ekind (New_C, E_Void);
18470 end if;
18472 if Plain_Discrim then
18473 Set_Corresponding_Discriminant (New_C, Old_C);
18474 Build_Discriminal (New_C);
18476 -- If we are explicitly inheriting a stored discriminant it will be
18477 -- completely hidden.
18479 elsif Stored_Discrim then
18480 Set_Corresponding_Discriminant (New_C, Empty);
18481 Set_Discriminal (New_C, Empty);
18482 Set_Is_Completely_Hidden (New_C);
18484 -- Set the Original_Record_Component of each discriminant in the
18485 -- derived base to point to the corresponding stored that we just
18486 -- created.
18488 Discrim := First_Discriminant (Derived_Base);
18489 while Present (Discrim) loop
18490 Corr_Discrim := Corresponding_Discriminant (Discrim);
18492 -- Corr_Discrim could be missing in an error situation
18494 if Present (Corr_Discrim)
18495 and then Original_Record_Component (Corr_Discrim) = Old_C
18496 then
18497 Set_Original_Record_Component (Discrim, New_C);
18498 Set_Corresponding_Record_Component (Discrim, Empty);
18499 end if;
18501 Next_Discriminant (Discrim);
18502 end loop;
18504 Append_Entity (New_C, Derived_Base);
18505 end if;
18507 if not Is_Tagged then
18508 Append_Elmt (Old_C, Assoc_List);
18509 Append_Elmt (New_C, Assoc_List);
18510 end if;
18511 end Inherit_Component;
18513 -- Variables local to Inherit_Component
18515 Loc : constant Source_Ptr := Sloc (N);
18517 Parent_Discrim : Entity_Id;
18518 Stored_Discrim : Entity_Id;
18519 D : Entity_Id;
18520 Component : Entity_Id;
18522 -- Start of processing for Inherit_Components
18524 begin
18525 if not Is_Tagged then
18526 Append_Elmt (Parent_Base, Assoc_List);
18527 Append_Elmt (Derived_Base, Assoc_List);
18528 end if;
18530 -- Inherit parent discriminants if needed
18532 if Inherit_Discr then
18533 Parent_Discrim := First_Discriminant (Parent_Base);
18534 while Present (Parent_Discrim) loop
18535 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18536 Next_Discriminant (Parent_Discrim);
18537 end loop;
18538 end if;
18540 -- Create explicit stored discrims for untagged types when necessary
18542 if not Has_Unknown_Discriminants (Derived_Base)
18543 and then Has_Discriminants (Parent_Base)
18544 and then not Is_Tagged
18545 and then
18546 (not Inherit_Discr
18547 or else First_Discriminant (Parent_Base) /=
18548 First_Stored_Discriminant (Parent_Base))
18549 then
18550 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18551 while Present (Stored_Discrim) loop
18552 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18553 Next_Stored_Discriminant (Stored_Discrim);
18554 end loop;
18555 end if;
18557 -- See if we can apply the second transformation for derived types, as
18558 -- explained in point 6. in the comments above Build_Derived_Record_Type
18559 -- This is achieved by appending Derived_Base discriminants into Discs,
18560 -- which has the side effect of returning a non empty Discs list to the
18561 -- caller of Inherit_Components, which is what we want. This must be
18562 -- done for private derived types if there are explicit stored
18563 -- discriminants, to ensure that we can retrieve the values of the
18564 -- constraints provided in the ancestors.
18566 if Inherit_Discr
18567 and then Is_Empty_Elmt_List (Discs)
18568 and then Present (First_Discriminant (Derived_Base))
18569 and then
18570 (not Is_Private_Type (Derived_Base)
18571 or else Is_Completely_Hidden
18572 (First_Stored_Discriminant (Derived_Base))
18573 or else Is_Generic_Type (Derived_Base))
18574 then
18575 D := First_Discriminant (Derived_Base);
18576 while Present (D) loop
18577 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18578 Next_Discriminant (D);
18579 end loop;
18580 end if;
18582 -- Finally, inherit non-discriminant components unless they are not
18583 -- visible because defined or inherited from the full view of the
18584 -- parent. Don't inherit the _parent field of the parent type.
18586 Component := First_Entity (Parent_Base);
18587 while Present (Component) loop
18589 -- Ada 2005 (AI-251): Do not inherit components associated with
18590 -- secondary tags of the parent.
18592 if Ekind (Component) = E_Component
18593 and then Present (Related_Type (Component))
18594 then
18595 null;
18597 elsif Ekind (Component) /= E_Component
18598 or else Chars (Component) = Name_uParent
18599 then
18600 null;
18602 -- If the derived type is within the parent type's declarative
18603 -- region, then the components can still be inherited even though
18604 -- they aren't visible at this point. This can occur for cases
18605 -- such as within public child units where the components must
18606 -- become visible upon entering the child unit's private part.
18608 elsif not Is_Visible_Component (Component)
18609 and then not In_Open_Scopes (Scope (Parent_Base))
18610 then
18611 null;
18613 elsif Ekind_In (Derived_Base, E_Private_Type,
18614 E_Limited_Private_Type)
18615 then
18616 null;
18618 else
18619 Inherit_Component (Component);
18620 end if;
18622 Next_Entity (Component);
18623 end loop;
18625 -- For tagged derived types, inherited discriminants cannot be used in
18626 -- component declarations of the record extension part. To achieve this
18627 -- we mark the inherited discriminants as not visible.
18629 if Is_Tagged and then Inherit_Discr then
18630 D := First_Discriminant (Derived_Base);
18631 while Present (D) loop
18632 Set_Is_Immediately_Visible (D, False);
18633 Next_Discriminant (D);
18634 end loop;
18635 end if;
18637 return Assoc_List;
18638 end Inherit_Components;
18640 -----------------------------
18641 -- Inherit_Predicate_Flags --
18642 -----------------------------
18644 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18645 begin
18646 if Present (Predicate_Function (Subt)) then
18647 return;
18648 end if;
18650 Set_Has_Predicates (Subt, Has_Predicates (Par));
18651 Set_Has_Static_Predicate_Aspect
18652 (Subt, Has_Static_Predicate_Aspect (Par));
18653 Set_Has_Dynamic_Predicate_Aspect
18654 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18656 -- A named subtype does not inherit the predicate function of its
18657 -- parent but an itype declared for a loop index needs the discrete
18658 -- predicate information of its parent to execute the loop properly.
18659 -- A non-discrete type may has a static predicate (for example True)
18660 -- but has no static_discrete_predicate.
18662 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18663 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18665 if Has_Static_Predicate (Par) and then Is_Discrete_Type (Par) then
18666 Set_Static_Discrete_Predicate
18667 (Subt, Static_Discrete_Predicate (Par));
18668 end if;
18669 end if;
18670 end Inherit_Predicate_Flags;
18672 ----------------------
18673 -- Is_EVF_Procedure --
18674 ----------------------
18676 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18677 Formal : Entity_Id;
18679 begin
18680 -- Examine the formals of an Extensions_Visible False procedure looking
18681 -- for a controlling OUT parameter.
18683 if Ekind (Subp) = E_Procedure
18684 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18685 then
18686 Formal := First_Formal (Subp);
18687 while Present (Formal) loop
18688 if Ekind (Formal) = E_Out_Parameter
18689 and then Is_Controlling_Formal (Formal)
18690 then
18691 return True;
18692 end if;
18694 Next_Formal (Formal);
18695 end loop;
18696 end if;
18698 return False;
18699 end Is_EVF_Procedure;
18701 -----------------------
18702 -- Is_Null_Extension --
18703 -----------------------
18705 function Is_Null_Extension (T : Entity_Id) return Boolean is
18706 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18707 Comp_List : Node_Id;
18708 Comp : Node_Id;
18710 begin
18711 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18712 or else not Is_Tagged_Type (T)
18713 or else Nkind (Type_Definition (Type_Decl)) /=
18714 N_Derived_Type_Definition
18715 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18716 then
18717 return False;
18718 end if;
18720 Comp_List :=
18721 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18723 if Present (Discriminant_Specifications (Type_Decl)) then
18724 return False;
18726 elsif Present (Comp_List)
18727 and then Is_Non_Empty_List (Component_Items (Comp_List))
18728 then
18729 Comp := First (Component_Items (Comp_List));
18731 -- Only user-defined components are relevant. The component list
18732 -- may also contain a parent component and internal components
18733 -- corresponding to secondary tags, but these do not determine
18734 -- whether this is a null extension.
18736 while Present (Comp) loop
18737 if Comes_From_Source (Comp) then
18738 return False;
18739 end if;
18741 Next (Comp);
18742 end loop;
18744 return True;
18746 else
18747 return True;
18748 end if;
18749 end Is_Null_Extension;
18751 ------------------------------
18752 -- Is_Valid_Constraint_Kind --
18753 ------------------------------
18755 function Is_Valid_Constraint_Kind
18756 (T_Kind : Type_Kind;
18757 Constraint_Kind : Node_Kind) return Boolean
18759 begin
18760 case T_Kind is
18761 when Enumeration_Kind
18762 | Integer_Kind
18764 return Constraint_Kind = N_Range_Constraint;
18766 when Decimal_Fixed_Point_Kind =>
18767 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18768 N_Range_Constraint);
18770 when Ordinary_Fixed_Point_Kind =>
18771 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18772 N_Range_Constraint);
18774 when Float_Kind =>
18775 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18776 N_Range_Constraint);
18778 when Access_Kind
18779 | Array_Kind
18780 | Class_Wide_Kind
18781 | Concurrent_Kind
18782 | Private_Kind
18783 | E_Incomplete_Type
18784 | E_Record_Subtype
18785 | E_Record_Type
18787 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18789 when others =>
18790 return True; -- Error will be detected later
18791 end case;
18792 end Is_Valid_Constraint_Kind;
18794 --------------------------
18795 -- Is_Visible_Component --
18796 --------------------------
18798 function Is_Visible_Component
18799 (C : Entity_Id;
18800 N : Node_Id := Empty) return Boolean
18802 Original_Comp : Entity_Id := Empty;
18803 Original_Type : Entity_Id;
18804 Type_Scope : Entity_Id;
18806 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18807 -- Check whether parent type of inherited component is declared locally,
18808 -- possibly within a nested package or instance. The current scope is
18809 -- the derived record itself.
18811 -------------------
18812 -- Is_Local_Type --
18813 -------------------
18815 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18816 Scop : Entity_Id;
18818 begin
18819 Scop := Scope (Typ);
18820 while Present (Scop)
18821 and then Scop /= Standard_Standard
18822 loop
18823 if Scop = Scope (Current_Scope) then
18824 return True;
18825 end if;
18827 Scop := Scope (Scop);
18828 end loop;
18830 return False;
18831 end Is_Local_Type;
18833 -- Start of processing for Is_Visible_Component
18835 begin
18836 if Ekind_In (C, E_Component, E_Discriminant) then
18837 Original_Comp := Original_Record_Component (C);
18838 end if;
18840 if No (Original_Comp) then
18842 -- Premature usage, or previous error
18844 return False;
18846 else
18847 Original_Type := Scope (Original_Comp);
18848 Type_Scope := Scope (Base_Type (Scope (C)));
18849 end if;
18851 -- This test only concerns tagged types
18853 if not Is_Tagged_Type (Original_Type) then
18855 -- Check if this is a renamed discriminant (hidden either by the
18856 -- derived type or by some ancestor), unless we are analyzing code
18857 -- generated by the expander since it may reference such components
18858 -- (for example see the expansion of Deep_Adjust).
18860 if Ekind (C) = E_Discriminant and then Present (N) then
18861 return
18862 not Comes_From_Source (N)
18863 or else not Is_Completely_Hidden (C);
18864 else
18865 return True;
18866 end if;
18868 -- If it is _Parent or _Tag, there is no visibility issue
18870 elsif not Comes_From_Source (Original_Comp) then
18871 return True;
18873 -- Discriminants are visible unless the (private) type has unknown
18874 -- discriminants. If the discriminant reference is inserted for a
18875 -- discriminant check on a full view it is also visible.
18877 elsif Ekind (Original_Comp) = E_Discriminant
18878 and then
18879 (not Has_Unknown_Discriminants (Original_Type)
18880 or else (Present (N)
18881 and then Nkind (N) = N_Selected_Component
18882 and then Nkind (Prefix (N)) = N_Type_Conversion
18883 and then not Comes_From_Source (Prefix (N))))
18884 then
18885 return True;
18887 -- In the body of an instantiation, check the visibility of a component
18888 -- in case it has a homograph that is a primitive operation of a private
18889 -- type which was not visible in the generic unit.
18891 -- Should Is_Prefixed_Call be propagated from template to instance???
18893 elsif In_Instance_Body then
18894 if not Is_Tagged_Type (Original_Type)
18895 or else not Is_Private_Type (Original_Type)
18896 then
18897 return True;
18899 else
18900 declare
18901 Subp_Elmt : Elmt_Id;
18903 begin
18904 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18905 while Present (Subp_Elmt) loop
18907 -- The component is hidden by a primitive operation
18909 if Chars (Node (Subp_Elmt)) = Chars (C) then
18910 return False;
18911 end if;
18913 Next_Elmt (Subp_Elmt);
18914 end loop;
18916 return True;
18917 end;
18918 end if;
18920 -- If the component has been declared in an ancestor which is currently
18921 -- a private type, then it is not visible. The same applies if the
18922 -- component's containing type is not in an open scope and the original
18923 -- component's enclosing type is a visible full view of a private type
18924 -- (which can occur in cases where an attempt is being made to reference
18925 -- a component in a sibling package that is inherited from a visible
18926 -- component of a type in an ancestor package; the component in the
18927 -- sibling package should not be visible even though the component it
18928 -- inherited from is visible). This does not apply however in the case
18929 -- where the scope of the type is a private child unit, or when the
18930 -- parent comes from a local package in which the ancestor is currently
18931 -- visible. The latter suppression of visibility is needed for cases
18932 -- that are tested in B730006.
18934 elsif Is_Private_Type (Original_Type)
18935 or else
18936 (not Is_Private_Descendant (Type_Scope)
18937 and then not In_Open_Scopes (Type_Scope)
18938 and then Has_Private_Declaration (Original_Type))
18939 then
18940 -- If the type derives from an entity in a formal package, there
18941 -- are no additional visible components.
18943 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18944 N_Formal_Package_Declaration
18945 then
18946 return False;
18948 -- if we are not in the private part of the current package, there
18949 -- are no additional visible components.
18951 elsif Ekind (Scope (Current_Scope)) = E_Package
18952 and then not In_Private_Part (Scope (Current_Scope))
18953 then
18954 return False;
18955 else
18956 return
18957 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18958 and then In_Open_Scopes (Scope (Original_Type))
18959 and then Is_Local_Type (Type_Scope);
18960 end if;
18962 -- There is another weird way in which a component may be invisible when
18963 -- the private and the full view are not derived from the same ancestor.
18964 -- Here is an example :
18966 -- type A1 is tagged record F1 : integer; end record;
18967 -- type A2 is new A1 with record F2 : integer; end record;
18968 -- type T is new A1 with private;
18969 -- private
18970 -- type T is new A2 with null record;
18972 -- In this case, the full view of T inherits F1 and F2 but the private
18973 -- view inherits only F1
18975 else
18976 declare
18977 Ancestor : Entity_Id := Scope (C);
18979 begin
18980 loop
18981 if Ancestor = Original_Type then
18982 return True;
18984 -- The ancestor may have a partial view of the original type,
18985 -- but if the full view is in scope, as in a child body, the
18986 -- component is visible.
18988 elsif In_Private_Part (Scope (Original_Type))
18989 and then Full_View (Ancestor) = Original_Type
18990 then
18991 return True;
18993 elsif Ancestor = Etype (Ancestor) then
18995 -- No further ancestors to examine
18997 return False;
18998 end if;
19000 Ancestor := Etype (Ancestor);
19001 end loop;
19002 end;
19003 end if;
19004 end Is_Visible_Component;
19006 --------------------------
19007 -- Make_Class_Wide_Type --
19008 --------------------------
19010 procedure Make_Class_Wide_Type (T : Entity_Id) is
19011 CW_Type : Entity_Id;
19012 CW_Name : Name_Id;
19013 Next_E : Entity_Id;
19014 Prev_E : Entity_Id;
19016 begin
19017 if Present (Class_Wide_Type (T)) then
19019 -- The class-wide type is a partially decorated entity created for a
19020 -- unanalyzed tagged type referenced through a limited with clause.
19021 -- When the tagged type is analyzed, its class-wide type needs to be
19022 -- redecorated. Note that we reuse the entity created by Decorate_
19023 -- Tagged_Type in order to preserve all links.
19025 if Materialize_Entity (Class_Wide_Type (T)) then
19026 CW_Type := Class_Wide_Type (T);
19027 Set_Materialize_Entity (CW_Type, False);
19029 -- The class wide type can have been defined by the partial view, in
19030 -- which case everything is already done.
19032 else
19033 return;
19034 end if;
19036 -- Default case, we need to create a new class-wide type
19038 else
19039 CW_Type :=
19040 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
19041 end if;
19043 -- Inherit root type characteristics
19045 CW_Name := Chars (CW_Type);
19046 Next_E := Next_Entity (CW_Type);
19047 Prev_E := Prev_Entity (CW_Type);
19048 Copy_Node (T, CW_Type);
19049 Set_Comes_From_Source (CW_Type, False);
19050 Set_Chars (CW_Type, CW_Name);
19051 Set_Parent (CW_Type, Parent (T));
19052 Set_Prev_Entity (CW_Type, Prev_E);
19053 Set_Next_Entity (CW_Type, Next_E);
19055 -- Ensure we have a new freeze node for the class-wide type. The partial
19056 -- view may have freeze action of its own, requiring a proper freeze
19057 -- node, and the same freeze node cannot be shared between the two
19058 -- types.
19060 Set_Has_Delayed_Freeze (CW_Type);
19061 Set_Freeze_Node (CW_Type, Empty);
19063 -- Customize the class-wide type: It has no prim. op., it cannot be
19064 -- abstract, its Etype points back to the specific root type, and it
19065 -- cannot have any invariants.
19067 Set_Ekind (CW_Type, E_Class_Wide_Type);
19068 Set_Is_Tagged_Type (CW_Type, True);
19069 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19070 Set_Is_Abstract_Type (CW_Type, False);
19071 Set_Is_Constrained (CW_Type, False);
19072 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19073 Set_Default_SSO (CW_Type);
19074 Set_Has_Inheritable_Invariants (CW_Type, False);
19075 Set_Has_Inherited_Invariants (CW_Type, False);
19076 Set_Has_Own_Invariants (CW_Type, False);
19078 if Ekind (T) = E_Class_Wide_Subtype then
19079 Set_Etype (CW_Type, Etype (Base_Type (T)));
19080 else
19081 Set_Etype (CW_Type, T);
19082 end if;
19084 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19086 -- If this is the class_wide type of a constrained subtype, it does
19087 -- not have discriminants.
19089 Set_Has_Discriminants (CW_Type,
19090 Has_Discriminants (T) and then not Is_Constrained (T));
19092 Set_Has_Unknown_Discriminants (CW_Type, True);
19093 Set_Class_Wide_Type (T, CW_Type);
19094 Set_Equivalent_Type (CW_Type, Empty);
19096 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19098 Set_Class_Wide_Type (CW_Type, CW_Type);
19099 end Make_Class_Wide_Type;
19101 ----------------
19102 -- Make_Index --
19103 ----------------
19105 procedure Make_Index
19106 (N : Node_Id;
19107 Related_Nod : Node_Id;
19108 Related_Id : Entity_Id := Empty;
19109 Suffix_Index : Nat := 1;
19110 In_Iter_Schm : Boolean := False)
19112 R : Node_Id;
19113 T : Entity_Id;
19114 Def_Id : Entity_Id := Empty;
19115 Found : Boolean := False;
19117 begin
19118 -- For a discrete range used in a constrained array definition and
19119 -- defined by a range, an implicit conversion to the predefined type
19120 -- INTEGER is assumed if each bound is either a numeric literal, a named
19121 -- number, or an attribute, and the type of both bounds (prior to the
19122 -- implicit conversion) is the type universal_integer. Otherwise, both
19123 -- bounds must be of the same discrete type, other than universal
19124 -- integer; this type must be determinable independently of the
19125 -- context, but using the fact that the type must be discrete and that
19126 -- both bounds must have the same type.
19128 -- Character literals also have a universal type in the absence of
19129 -- of additional context, and are resolved to Standard_Character.
19131 if Nkind (N) = N_Range then
19133 -- The index is given by a range constraint. The bounds are known
19134 -- to be of a consistent type.
19136 if not Is_Overloaded (N) then
19137 T := Etype (N);
19139 -- For universal bounds, choose the specific predefined type
19141 if T = Universal_Integer then
19142 T := Standard_Integer;
19144 elsif T = Any_Character then
19145 Ambiguous_Character (Low_Bound (N));
19147 T := Standard_Character;
19148 end if;
19150 -- The node may be overloaded because some user-defined operators
19151 -- are available, but if a universal interpretation exists it is
19152 -- also the selected one.
19154 elsif Universal_Interpretation (N) = Universal_Integer then
19155 T := Standard_Integer;
19157 else
19158 T := Any_Type;
19160 declare
19161 Ind : Interp_Index;
19162 It : Interp;
19164 begin
19165 Get_First_Interp (N, Ind, It);
19166 while Present (It.Typ) loop
19167 if Is_Discrete_Type (It.Typ) then
19169 if Found
19170 and then not Covers (It.Typ, T)
19171 and then not Covers (T, It.Typ)
19172 then
19173 Error_Msg_N ("ambiguous bounds in discrete range", N);
19174 exit;
19175 else
19176 T := It.Typ;
19177 Found := True;
19178 end if;
19179 end if;
19181 Get_Next_Interp (Ind, It);
19182 end loop;
19184 if T = Any_Type then
19185 Error_Msg_N ("discrete type required for range", N);
19186 Set_Etype (N, Any_Type);
19187 return;
19189 elsif T = Universal_Integer then
19190 T := Standard_Integer;
19191 end if;
19192 end;
19193 end if;
19195 if not Is_Discrete_Type (T) then
19196 Error_Msg_N ("discrete type required for range", N);
19197 Set_Etype (N, Any_Type);
19198 return;
19199 end if;
19201 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19202 and then Attribute_Name (Low_Bound (N)) = Name_First
19203 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19204 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19205 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19206 then
19207 -- The type of the index will be the type of the prefix, as long
19208 -- as the upper bound is 'Last of the same type.
19210 Def_Id := Entity (Prefix (Low_Bound (N)));
19212 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19213 or else Attribute_Name (High_Bound (N)) /= Name_Last
19214 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19215 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19216 then
19217 Def_Id := Empty;
19218 end if;
19219 end if;
19221 R := N;
19222 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19224 elsif Nkind (N) = N_Subtype_Indication then
19226 -- The index is given by a subtype with a range constraint
19228 T := Base_Type (Entity (Subtype_Mark (N)));
19230 if not Is_Discrete_Type (T) then
19231 Error_Msg_N ("discrete type required for range", N);
19232 Set_Etype (N, Any_Type);
19233 return;
19234 end if;
19236 R := Range_Expression (Constraint (N));
19238 Resolve (R, T);
19239 Process_Range_Expr_In_Decl
19240 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19242 elsif Nkind (N) = N_Attribute_Reference then
19244 -- Catch beginner's error (use of attribute other than 'Range)
19246 if Attribute_Name (N) /= Name_Range then
19247 Error_Msg_N ("expect attribute ''Range", N);
19248 Set_Etype (N, Any_Type);
19249 return;
19250 end if;
19252 -- If the node denotes the range of a type mark, that is also the
19253 -- resulting type, and we do not need to create an Itype for it.
19255 if Is_Entity_Name (Prefix (N))
19256 and then Comes_From_Source (N)
19257 and then Is_Type (Entity (Prefix (N)))
19258 and then Is_Discrete_Type (Entity (Prefix (N)))
19259 then
19260 Def_Id := Entity (Prefix (N));
19261 end if;
19263 Analyze_And_Resolve (N);
19264 T := Etype (N);
19265 R := N;
19267 -- If none of the above, must be a subtype. We convert this to a
19268 -- range attribute reference because in the case of declared first
19269 -- named subtypes, the types in the range reference can be different
19270 -- from the type of the entity. A range attribute normalizes the
19271 -- reference and obtains the correct types for the bounds.
19273 -- This transformation is in the nature of an expansion, is only
19274 -- done if expansion is active. In particular, it is not done on
19275 -- formal generic types, because we need to retain the name of the
19276 -- original index for instantiation purposes.
19278 else
19279 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19280 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19281 Set_Etype (N, Any_Integer);
19282 return;
19284 else
19285 -- The type mark may be that of an incomplete type. It is only
19286 -- now that we can get the full view, previous analysis does
19287 -- not look specifically for a type mark.
19289 Set_Entity (N, Get_Full_View (Entity (N)));
19290 Set_Etype (N, Entity (N));
19291 Def_Id := Entity (N);
19293 if not Is_Discrete_Type (Def_Id) then
19294 Error_Msg_N ("discrete type required for index", N);
19295 Set_Etype (N, Any_Type);
19296 return;
19297 end if;
19298 end if;
19300 if Expander_Active then
19301 Rewrite (N,
19302 Make_Attribute_Reference (Sloc (N),
19303 Attribute_Name => Name_Range,
19304 Prefix => Relocate_Node (N)));
19306 -- The original was a subtype mark that does not freeze. This
19307 -- means that the rewritten version must not freeze either.
19309 Set_Must_Not_Freeze (N);
19310 Set_Must_Not_Freeze (Prefix (N));
19311 Analyze_And_Resolve (N);
19312 T := Etype (N);
19313 R := N;
19315 -- If expander is inactive, type is legal, nothing else to construct
19317 else
19318 return;
19319 end if;
19320 end if;
19322 if not Is_Discrete_Type (T) then
19323 Error_Msg_N ("discrete type required for range", N);
19324 Set_Etype (N, Any_Type);
19325 return;
19327 elsif T = Any_Type then
19328 Set_Etype (N, Any_Type);
19329 return;
19330 end if;
19332 -- We will now create the appropriate Itype to describe the range, but
19333 -- first a check. If we originally had a subtype, then we just label
19334 -- the range with this subtype. Not only is there no need to construct
19335 -- a new subtype, but it is wrong to do so for two reasons:
19337 -- 1. A legality concern, if we have a subtype, it must not freeze,
19338 -- and the Itype would cause freezing incorrectly
19340 -- 2. An efficiency concern, if we created an Itype, it would not be
19341 -- recognized as the same type for the purposes of eliminating
19342 -- checks in some circumstances.
19344 -- We signal this case by setting the subtype entity in Def_Id
19346 if No (Def_Id) then
19347 Def_Id :=
19348 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19349 Set_Etype (Def_Id, Base_Type (T));
19351 if Is_Signed_Integer_Type (T) then
19352 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19354 elsif Is_Modular_Integer_Type (T) then
19355 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19357 else
19358 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19359 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19360 Set_First_Literal (Def_Id, First_Literal (T));
19361 end if;
19363 Set_Size_Info (Def_Id, (T));
19364 Set_RM_Size (Def_Id, RM_Size (T));
19365 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19367 Set_Scalar_Range (Def_Id, R);
19368 Conditional_Delay (Def_Id, T);
19370 if Nkind (N) = N_Subtype_Indication then
19371 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19372 end if;
19374 -- In the subtype indication case, if the immediate parent of the
19375 -- new subtype is nonstatic, then the subtype we create is nonstatic,
19376 -- even if its bounds are static.
19378 if Nkind (N) = N_Subtype_Indication
19379 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19380 then
19381 Set_Is_Non_Static_Subtype (Def_Id);
19382 end if;
19383 end if;
19385 -- Final step is to label the index with this constructed type
19387 Set_Etype (N, Def_Id);
19388 end Make_Index;
19390 ------------------------------
19391 -- Modular_Type_Declaration --
19392 ------------------------------
19394 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19395 Mod_Expr : constant Node_Id := Expression (Def);
19396 M_Val : Uint;
19398 procedure Set_Modular_Size (Bits : Int);
19399 -- Sets RM_Size to Bits, and Esize to normal word size above this
19401 ----------------------
19402 -- Set_Modular_Size --
19403 ----------------------
19405 procedure Set_Modular_Size (Bits : Int) is
19406 begin
19407 Set_RM_Size (T, UI_From_Int (Bits));
19409 if Bits <= 8 then
19410 Init_Esize (T, 8);
19412 elsif Bits <= 16 then
19413 Init_Esize (T, 16);
19415 elsif Bits <= 32 then
19416 Init_Esize (T, 32);
19418 else
19419 Init_Esize (T, System_Max_Binary_Modulus_Power);
19420 end if;
19422 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19423 Set_Is_Known_Valid (T);
19424 end if;
19425 end Set_Modular_Size;
19427 -- Start of processing for Modular_Type_Declaration
19429 begin
19430 -- If the mod expression is (exactly) 2 * literal, where literal is
19431 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19433 if Warn_On_Suspicious_Modulus_Value
19434 and then Nkind (Mod_Expr) = N_Op_Multiply
19435 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19436 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19437 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19438 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19439 then
19440 Error_Msg_N
19441 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19442 end if;
19444 -- Proceed with analysis of mod expression
19446 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19447 Set_Etype (T, T);
19448 Set_Ekind (T, E_Modular_Integer_Type);
19449 Init_Alignment (T);
19450 Set_Is_Constrained (T);
19452 if not Is_OK_Static_Expression (Mod_Expr) then
19453 Flag_Non_Static_Expr
19454 ("non-static expression used for modular type bound!", Mod_Expr);
19455 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19456 else
19457 M_Val := Expr_Value (Mod_Expr);
19458 end if;
19460 if M_Val < 1 then
19461 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19462 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19463 end if;
19465 if M_Val > 2 ** Standard_Long_Integer_Size then
19466 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19467 end if;
19469 Set_Modulus (T, M_Val);
19471 -- Create bounds for the modular type based on the modulus given in
19472 -- the type declaration and then analyze and resolve those bounds.
19474 Set_Scalar_Range (T,
19475 Make_Range (Sloc (Mod_Expr),
19476 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19477 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19479 -- Properly analyze the literals for the range. We do this manually
19480 -- because we can't go calling Resolve, since we are resolving these
19481 -- bounds with the type, and this type is certainly not complete yet.
19483 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19484 Set_Etype (High_Bound (Scalar_Range (T)), T);
19485 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19486 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19488 -- Loop through powers of two to find number of bits required
19490 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19492 -- Binary case
19494 if M_Val = 2 ** Bits then
19495 Set_Modular_Size (Bits);
19496 return;
19498 -- Nonbinary case
19500 elsif M_Val < 2 ** Bits then
19501 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19502 Set_Non_Binary_Modulus (T);
19504 if Bits > System_Max_Nonbinary_Modulus_Power then
19505 Error_Msg_Uint_1 :=
19506 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19507 Error_Msg_F
19508 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19509 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19510 return;
19512 else
19513 -- In the nonbinary case, set size as per RM 13.3(55)
19515 Set_Modular_Size (Bits);
19516 return;
19517 end if;
19518 end if;
19520 end loop;
19522 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19523 -- so we just signal an error and set the maximum size.
19525 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19526 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19528 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19529 Init_Alignment (T);
19531 end Modular_Type_Declaration;
19533 --------------------------
19534 -- New_Concatenation_Op --
19535 --------------------------
19537 procedure New_Concatenation_Op (Typ : Entity_Id) is
19538 Loc : constant Source_Ptr := Sloc (Typ);
19539 Op : Entity_Id;
19541 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19542 -- Create abbreviated declaration for the formal of a predefined
19543 -- Operator 'Op' of type 'Typ'
19545 --------------------
19546 -- Make_Op_Formal --
19547 --------------------
19549 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19550 Formal : Entity_Id;
19551 begin
19552 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19553 Set_Etype (Formal, Typ);
19554 Set_Mechanism (Formal, Default_Mechanism);
19555 return Formal;
19556 end Make_Op_Formal;
19558 -- Start of processing for New_Concatenation_Op
19560 begin
19561 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19563 Set_Ekind (Op, E_Operator);
19564 Set_Scope (Op, Current_Scope);
19565 Set_Etype (Op, Typ);
19566 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19567 Set_Is_Immediately_Visible (Op);
19568 Set_Is_Intrinsic_Subprogram (Op);
19569 Set_Has_Completion (Op);
19570 Append_Entity (Op, Current_Scope);
19572 Set_Name_Entity_Id (Name_Op_Concat, Op);
19574 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19575 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19576 end New_Concatenation_Op;
19578 -------------------------
19579 -- OK_For_Limited_Init --
19580 -------------------------
19582 -- ???Check all calls of this, and compare the conditions under which it's
19583 -- called.
19585 function OK_For_Limited_Init
19586 (Typ : Entity_Id;
19587 Exp : Node_Id) return Boolean
19589 begin
19590 return Is_CPP_Constructor_Call (Exp)
19591 or else (Ada_Version >= Ada_2005
19592 and then not Debug_Flag_Dot_L
19593 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19594 end OK_For_Limited_Init;
19596 -------------------------------
19597 -- OK_For_Limited_Init_In_05 --
19598 -------------------------------
19600 function OK_For_Limited_Init_In_05
19601 (Typ : Entity_Id;
19602 Exp : Node_Id) return Boolean
19604 begin
19605 -- An object of a limited interface type can be initialized with any
19606 -- expression of a nonlimited descendant type. However this does not
19607 -- apply if this is a view conversion of some other expression. This
19608 -- is checked below.
19610 if Is_Class_Wide_Type (Typ)
19611 and then Is_Limited_Interface (Typ)
19612 and then not Is_Limited_Type (Etype (Exp))
19613 and then Nkind (Exp) /= N_Type_Conversion
19614 then
19615 return True;
19616 end if;
19618 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19619 -- case of limited aggregates (including extension aggregates), and
19620 -- function calls. The function call may have been given in prefixed
19621 -- notation, in which case the original node is an indexed component.
19622 -- If the function is parameterless, the original node was an explicit
19623 -- dereference. The function may also be parameterless, in which case
19624 -- the source node is just an identifier.
19626 -- A branch of a conditional expression may have been removed if the
19627 -- condition is statically known. This happens during expansion, and
19628 -- thus will not happen if previous errors were encountered. The check
19629 -- will have been performed on the chosen branch, which replaces the
19630 -- original conditional expression.
19632 if No (Exp) then
19633 return True;
19634 end if;
19636 case Nkind (Original_Node (Exp)) is
19637 when N_Aggregate
19638 | N_Extension_Aggregate
19639 | N_Function_Call
19640 | N_Op
19642 return True;
19644 when N_Identifier =>
19645 return Present (Entity (Original_Node (Exp)))
19646 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19648 when N_Qualified_Expression =>
19649 return
19650 OK_For_Limited_Init_In_05
19651 (Typ, Expression (Original_Node (Exp)));
19653 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19654 -- with a function call, the expander has rewritten the call into an
19655 -- N_Type_Conversion node to force displacement of the pointer to
19656 -- reference the component containing the secondary dispatch table.
19657 -- Otherwise a type conversion is not a legal context.
19658 -- A return statement for a build-in-place function returning a
19659 -- synchronized type also introduces an unchecked conversion.
19661 when N_Type_Conversion
19662 | N_Unchecked_Type_Conversion
19664 return not Comes_From_Source (Exp)
19665 and then
19666 OK_For_Limited_Init_In_05
19667 (Typ, Expression (Original_Node (Exp)));
19669 when N_Explicit_Dereference
19670 | N_Indexed_Component
19671 | N_Selected_Component
19673 return Nkind (Exp) = N_Function_Call;
19675 -- A use of 'Input is a function call, hence allowed. Normally the
19676 -- attribute will be changed to a call, but the attribute by itself
19677 -- can occur with -gnatc.
19679 when N_Attribute_Reference =>
19680 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19682 -- "return raise ..." is OK
19684 when N_Raise_Expression =>
19685 return True;
19687 -- For a case expression, all dependent expressions must be legal
19689 when N_Case_Expression =>
19690 declare
19691 Alt : Node_Id;
19693 begin
19694 Alt := First (Alternatives (Original_Node (Exp)));
19695 while Present (Alt) loop
19696 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19697 return False;
19698 end if;
19700 Next (Alt);
19701 end loop;
19703 return True;
19704 end;
19706 -- For an if expression, all dependent expressions must be legal
19708 when N_If_Expression =>
19709 declare
19710 Then_Expr : constant Node_Id :=
19711 Next (First (Expressions (Original_Node (Exp))));
19712 Else_Expr : constant Node_Id := Next (Then_Expr);
19713 begin
19714 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19715 and then
19716 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19717 end;
19719 when others =>
19720 return False;
19721 end case;
19722 end OK_For_Limited_Init_In_05;
19724 -------------------------------------------
19725 -- Ordinary_Fixed_Point_Type_Declaration --
19726 -------------------------------------------
19728 procedure Ordinary_Fixed_Point_Type_Declaration
19729 (T : Entity_Id;
19730 Def : Node_Id)
19732 Loc : constant Source_Ptr := Sloc (Def);
19733 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19734 RRS : constant Node_Id := Real_Range_Specification (Def);
19735 Implicit_Base : Entity_Id;
19736 Delta_Val : Ureal;
19737 Small_Val : Ureal;
19738 Low_Val : Ureal;
19739 High_Val : Ureal;
19741 begin
19742 Check_Restriction (No_Fixed_Point, Def);
19744 -- Create implicit base type
19746 Implicit_Base :=
19747 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19748 Set_Etype (Implicit_Base, Implicit_Base);
19750 -- Analyze and process delta expression
19752 Analyze_And_Resolve (Delta_Expr, Any_Real);
19754 Check_Delta_Expression (Delta_Expr);
19755 Delta_Val := Expr_Value_R (Delta_Expr);
19757 Set_Delta_Value (Implicit_Base, Delta_Val);
19759 -- Compute default small from given delta, which is the largest power
19760 -- of two that does not exceed the given delta value.
19762 declare
19763 Tmp : Ureal;
19764 Scale : Int;
19766 begin
19767 Tmp := Ureal_1;
19768 Scale := 0;
19770 if Delta_Val < Ureal_1 then
19771 while Delta_Val < Tmp loop
19772 Tmp := Tmp / Ureal_2;
19773 Scale := Scale + 1;
19774 end loop;
19776 else
19777 loop
19778 Tmp := Tmp * Ureal_2;
19779 exit when Tmp > Delta_Val;
19780 Scale := Scale - 1;
19781 end loop;
19782 end if;
19784 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19785 end;
19787 Set_Small_Value (Implicit_Base, Small_Val);
19789 -- If no range was given, set a dummy range
19791 if RRS <= Empty_Or_Error then
19792 Low_Val := -Small_Val;
19793 High_Val := Small_Val;
19795 -- Otherwise analyze and process given range
19797 else
19798 declare
19799 Low : constant Node_Id := Low_Bound (RRS);
19800 High : constant Node_Id := High_Bound (RRS);
19802 begin
19803 Analyze_And_Resolve (Low, Any_Real);
19804 Analyze_And_Resolve (High, Any_Real);
19805 Check_Real_Bound (Low);
19806 Check_Real_Bound (High);
19808 -- Obtain and set the range
19810 Low_Val := Expr_Value_R (Low);
19811 High_Val := Expr_Value_R (High);
19813 if Low_Val > High_Val then
19814 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19815 end if;
19816 end;
19817 end if;
19819 -- The range for both the implicit base and the declared first subtype
19820 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19821 -- set a temporary range in place. Note that the bounds of the base
19822 -- type will be widened to be symmetrical and to fill the available
19823 -- bits when the type is frozen.
19825 -- We could do this with all discrete types, and probably should, but
19826 -- we absolutely have to do it for fixed-point, since the end-points
19827 -- of the range and the size are determined by the small value, which
19828 -- could be reset before the freeze point.
19830 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19831 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19833 -- Complete definition of first subtype. The inheritance of the rep item
19834 -- chain ensures that SPARK-related pragmas are not clobbered when the
19835 -- ordinary fixed point type acts as a full view of a private type.
19837 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19838 Set_Etype (T, Implicit_Base);
19839 Init_Size_Align (T);
19840 Inherit_Rep_Item_Chain (T, Implicit_Base);
19841 Set_Small_Value (T, Small_Val);
19842 Set_Delta_Value (T, Delta_Val);
19843 Set_Is_Constrained (T);
19844 end Ordinary_Fixed_Point_Type_Declaration;
19846 ----------------------------------
19847 -- Preanalyze_Assert_Expression --
19848 ----------------------------------
19850 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19851 begin
19852 In_Assertion_Expr := In_Assertion_Expr + 1;
19853 Preanalyze_Spec_Expression (N, T);
19854 In_Assertion_Expr := In_Assertion_Expr - 1;
19855 end Preanalyze_Assert_Expression;
19857 -----------------------------------
19858 -- Preanalyze_Default_Expression --
19859 -----------------------------------
19861 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19862 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19863 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19865 begin
19866 In_Default_Expr := True;
19867 In_Spec_Expression := True;
19869 Preanalyze_With_Freezing_And_Resolve (N, T);
19871 In_Default_Expr := Save_In_Default_Expr;
19872 In_Spec_Expression := Save_In_Spec_Expression;
19873 end Preanalyze_Default_Expression;
19875 --------------------------------
19876 -- Preanalyze_Spec_Expression --
19877 --------------------------------
19879 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19880 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19881 begin
19882 In_Spec_Expression := True;
19883 Preanalyze_And_Resolve (N, T);
19884 In_Spec_Expression := Save_In_Spec_Expression;
19885 end Preanalyze_Spec_Expression;
19887 ----------------------------------------
19888 -- Prepare_Private_Subtype_Completion --
19889 ----------------------------------------
19891 procedure Prepare_Private_Subtype_Completion
19892 (Id : Entity_Id;
19893 Related_Nod : Node_Id)
19895 Id_B : constant Entity_Id := Base_Type (Id);
19896 Full_B : Entity_Id := Full_View (Id_B);
19897 Full : Entity_Id;
19899 begin
19900 if Present (Full_B) then
19902 -- Get to the underlying full view if necessary
19904 if Is_Private_Type (Full_B)
19905 and then Present (Underlying_Full_View (Full_B))
19906 then
19907 Full_B := Underlying_Full_View (Full_B);
19908 end if;
19910 -- The Base_Type is already completed, we can complete the subtype
19911 -- now. We have to create a new entity with the same name, Thus we
19912 -- can't use Create_Itype.
19914 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19915 Set_Is_Itype (Full);
19916 Set_Associated_Node_For_Itype (Full, Related_Nod);
19917 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19918 end if;
19920 -- The parent subtype may be private, but the base might not, in some
19921 -- nested instances. In that case, the subtype does not need to be
19922 -- exchanged. It would still be nice to make private subtypes and their
19923 -- bases consistent at all times ???
19925 if Is_Private_Type (Id_B) then
19926 Append_Elmt (Id, Private_Dependents (Id_B));
19927 end if;
19928 end Prepare_Private_Subtype_Completion;
19930 ---------------------------
19931 -- Process_Discriminants --
19932 ---------------------------
19934 procedure Process_Discriminants
19935 (N : Node_Id;
19936 Prev : Entity_Id := Empty)
19938 Elist : constant Elist_Id := New_Elmt_List;
19939 Id : Node_Id;
19940 Discr : Node_Id;
19941 Discr_Number : Uint;
19942 Discr_Type : Entity_Id;
19943 Default_Present : Boolean := False;
19944 Default_Not_Present : Boolean := False;
19946 begin
19947 -- A composite type other than an array type can have discriminants.
19948 -- On entry, the current scope is the composite type.
19950 -- The discriminants are initially entered into the scope of the type
19951 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19952 -- use, as explained at the end of this procedure.
19954 Discr := First (Discriminant_Specifications (N));
19955 while Present (Discr) loop
19956 Enter_Name (Defining_Identifier (Discr));
19958 -- For navigation purposes we add a reference to the discriminant
19959 -- in the entity for the type. If the current declaration is a
19960 -- completion, place references on the partial view. Otherwise the
19961 -- type is the current scope.
19963 if Present (Prev) then
19965 -- The references go on the partial view, if present. If the
19966 -- partial view has discriminants, the references have been
19967 -- generated already.
19969 if not Has_Discriminants (Prev) then
19970 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19971 end if;
19972 else
19973 Generate_Reference
19974 (Current_Scope, Defining_Identifier (Discr), 'd');
19975 end if;
19977 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19978 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19980 -- Ada 2005 (AI-254)
19982 if Present (Access_To_Subprogram_Definition
19983 (Discriminant_Type (Discr)))
19984 and then Protected_Present (Access_To_Subprogram_Definition
19985 (Discriminant_Type (Discr)))
19986 then
19987 Discr_Type :=
19988 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19989 end if;
19991 else
19992 Find_Type (Discriminant_Type (Discr));
19993 Discr_Type := Etype (Discriminant_Type (Discr));
19995 if Error_Posted (Discriminant_Type (Discr)) then
19996 Discr_Type := Any_Type;
19997 end if;
19998 end if;
20000 -- Handling of discriminants that are access types
20002 if Is_Access_Type (Discr_Type) then
20004 -- Ada 2005 (AI-230): Access discriminant allowed in non-
20005 -- limited record types
20007 if Ada_Version < Ada_2005 then
20008 Check_Access_Discriminant_Requires_Limited
20009 (Discr, Discriminant_Type (Discr));
20010 end if;
20012 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
20013 Error_Msg_N
20014 ("(Ada 83) access discriminant not allowed", Discr);
20015 end if;
20017 -- If not access type, must be a discrete type
20019 elsif not Is_Discrete_Type (Discr_Type) then
20020 Error_Msg_N
20021 ("discriminants must have a discrete or access type",
20022 Discriminant_Type (Discr));
20023 end if;
20025 Set_Etype (Defining_Identifier (Discr), Discr_Type);
20027 -- If a discriminant specification includes the assignment compound
20028 -- delimiter followed by an expression, the expression is the default
20029 -- expression of the discriminant; the default expression must be of
20030 -- the type of the discriminant. (RM 3.7.1) Since this expression is
20031 -- a default expression, we do the special preanalysis, since this
20032 -- expression does not freeze (see section "Handling of Default and
20033 -- Per-Object Expressions" in spec of package Sem).
20035 if Present (Expression (Discr)) then
20036 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
20038 -- Legaity checks
20040 if Nkind (N) = N_Formal_Type_Declaration then
20041 Error_Msg_N
20042 ("discriminant defaults not allowed for formal type",
20043 Expression (Discr));
20045 -- Flag an error for a tagged type with defaulted discriminants,
20046 -- excluding limited tagged types when compiling for Ada 2012
20047 -- (see AI05-0214).
20049 elsif Is_Tagged_Type (Current_Scope)
20050 and then (not Is_Limited_Type (Current_Scope)
20051 or else Ada_Version < Ada_2012)
20052 and then Comes_From_Source (N)
20053 then
20054 -- Note: see similar test in Check_Or_Process_Discriminants, to
20055 -- handle the (illegal) case of the completion of an untagged
20056 -- view with discriminants with defaults by a tagged full view.
20057 -- We skip the check if Discr does not come from source, to
20058 -- account for the case of an untagged derived type providing
20059 -- defaults for a renamed discriminant from a private untagged
20060 -- ancestor with a tagged full view (ACATS B460006).
20062 if Ada_Version >= Ada_2012 then
20063 Error_Msg_N
20064 ("discriminants of nonlimited tagged type cannot have"
20065 & " defaults",
20066 Expression (Discr));
20067 else
20068 Error_Msg_N
20069 ("discriminants of tagged type cannot have defaults",
20070 Expression (Discr));
20071 end if;
20073 else
20074 Default_Present := True;
20075 Append_Elmt (Expression (Discr), Elist);
20077 -- Tag the defining identifiers for the discriminants with
20078 -- their corresponding default expressions from the tree.
20080 Set_Discriminant_Default_Value
20081 (Defining_Identifier (Discr), Expression (Discr));
20082 end if;
20084 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20085 -- gets set unless we can be sure that no range check is required.
20087 if (GNATprove_Mode or not Expander_Active)
20088 and then not
20089 Is_In_Range
20090 (Expression (Discr), Discr_Type, Assume_Valid => True)
20091 then
20092 Set_Do_Range_Check (Expression (Discr));
20093 end if;
20095 -- No default discriminant value given
20097 else
20098 Default_Not_Present := True;
20099 end if;
20101 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20102 -- Discr_Type but with the null-exclusion attribute
20104 if Ada_Version >= Ada_2005 then
20106 -- Ada 2005 (AI-231): Static checks
20108 if Can_Never_Be_Null (Discr_Type) then
20109 Null_Exclusion_Static_Checks (Discr);
20111 elsif Is_Access_Type (Discr_Type)
20112 and then Null_Exclusion_Present (Discr)
20114 -- No need to check itypes because in their case this check
20115 -- was done at their point of creation
20117 and then not Is_Itype (Discr_Type)
20118 then
20119 if Can_Never_Be_Null (Discr_Type) then
20120 Error_Msg_NE
20121 ("`NOT NULL` not allowed (& already excludes null)",
20122 Discr,
20123 Discr_Type);
20124 end if;
20126 Set_Etype (Defining_Identifier (Discr),
20127 Create_Null_Excluding_Itype
20128 (T => Discr_Type,
20129 Related_Nod => Discr));
20131 -- Check for improper null exclusion if the type is otherwise
20132 -- legal for a discriminant.
20134 elsif Null_Exclusion_Present (Discr)
20135 and then Is_Discrete_Type (Discr_Type)
20136 then
20137 Error_Msg_N
20138 ("null exclusion can only apply to an access type", Discr);
20139 end if;
20141 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20142 -- can't have defaults. Synchronized types, or types that are
20143 -- explicitly limited are fine, but special tests apply to derived
20144 -- types in generics: in a generic body we have to assume the
20145 -- worst, and therefore defaults are not allowed if the parent is
20146 -- a generic formal private type (see ACATS B370001).
20148 if Is_Access_Type (Discr_Type) and then Default_Present then
20149 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20150 or else Is_Limited_Record (Current_Scope)
20151 or else Is_Concurrent_Type (Current_Scope)
20152 or else Is_Concurrent_Record_Type (Current_Scope)
20153 or else Ekind (Current_Scope) = E_Limited_Private_Type
20154 then
20155 if not Is_Derived_Type (Current_Scope)
20156 or else not Is_Generic_Type (Etype (Current_Scope))
20157 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20158 or else Limited_Present
20159 (Type_Definition (Parent (Current_Scope)))
20160 then
20161 null;
20163 else
20164 Error_Msg_N
20165 ("access discriminants of nonlimited types cannot "
20166 & "have defaults", Expression (Discr));
20167 end if;
20169 elsif Present (Expression (Discr)) then
20170 Error_Msg_N
20171 ("(Ada 2005) access discriminants of nonlimited types "
20172 & "cannot have defaults", Expression (Discr));
20173 end if;
20174 end if;
20175 end if;
20177 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)).
20178 -- This check is relevant only when SPARK_Mode is on as it is not a
20179 -- standard Ada legality rule.
20181 if SPARK_Mode = On
20182 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20183 then
20184 Error_Msg_N ("discriminant cannot be volatile", Discr);
20185 end if;
20187 Next (Discr);
20188 end loop;
20190 -- An element list consisting of the default expressions of the
20191 -- discriminants is constructed in the above loop and used to set
20192 -- the Discriminant_Constraint attribute for the type. If an object
20193 -- is declared of this (record or task) type without any explicit
20194 -- discriminant constraint given, this element list will form the
20195 -- actual parameters for the corresponding initialization procedure
20196 -- for the type.
20198 Set_Discriminant_Constraint (Current_Scope, Elist);
20199 Set_Stored_Constraint (Current_Scope, No_Elist);
20201 -- Default expressions must be provided either for all or for none
20202 -- of the discriminants of a discriminant part. (RM 3.7.1)
20204 if Default_Present and then Default_Not_Present then
20205 Error_Msg_N
20206 ("incomplete specification of defaults for discriminants", N);
20207 end if;
20209 -- The use of the name of a discriminant is not allowed in default
20210 -- expressions of a discriminant part if the specification of the
20211 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20213 -- To detect this, the discriminant names are entered initially with an
20214 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20215 -- attempt to use a void entity (for example in an expression that is
20216 -- type-checked) produces the error message: premature usage. Now after
20217 -- completing the semantic analysis of the discriminant part, we can set
20218 -- the Ekind of all the discriminants appropriately.
20220 Discr := First (Discriminant_Specifications (N));
20221 Discr_Number := Uint_1;
20222 while Present (Discr) loop
20223 Id := Defining_Identifier (Discr);
20224 Set_Ekind (Id, E_Discriminant);
20225 Init_Component_Location (Id);
20226 Init_Esize (Id);
20227 Set_Discriminant_Number (Id, Discr_Number);
20229 -- Make sure this is always set, even in illegal programs
20231 Set_Corresponding_Discriminant (Id, Empty);
20233 -- Initialize the Original_Record_Component to the entity itself.
20234 -- Inherit_Components will propagate the right value to
20235 -- discriminants in derived record types.
20237 Set_Original_Record_Component (Id, Id);
20239 -- Create the discriminal for the discriminant
20241 Build_Discriminal (Id);
20243 Next (Discr);
20244 Discr_Number := Discr_Number + 1;
20245 end loop;
20247 Set_Has_Discriminants (Current_Scope);
20248 end Process_Discriminants;
20250 -----------------------
20251 -- Process_Full_View --
20252 -----------------------
20254 -- WARNING: This routine manages Ghost regions. Return statements must be
20255 -- replaced by gotos which jump to the end of the routine and restore the
20256 -- Ghost mode.
20258 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20259 procedure Collect_Implemented_Interfaces
20260 (Typ : Entity_Id;
20261 Ifaces : Elist_Id);
20262 -- Ada 2005: Gather all the interfaces that Typ directly or
20263 -- inherently implements. Duplicate entries are not added to
20264 -- the list Ifaces.
20266 ------------------------------------
20267 -- Collect_Implemented_Interfaces --
20268 ------------------------------------
20270 procedure Collect_Implemented_Interfaces
20271 (Typ : Entity_Id;
20272 Ifaces : Elist_Id)
20274 Iface : Entity_Id;
20275 Iface_Elmt : Elmt_Id;
20277 begin
20278 -- Abstract interfaces are only associated with tagged record types
20280 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20281 return;
20282 end if;
20284 -- Recursively climb to the ancestors
20286 if Etype (Typ) /= Typ
20288 -- Protect the frontend against wrong cyclic declarations like:
20290 -- type B is new A with private;
20291 -- type C is new A with private;
20292 -- private
20293 -- type B is new C with null record;
20294 -- type C is new B with null record;
20296 and then Etype (Typ) /= Priv_T
20297 and then Etype (Typ) /= Full_T
20298 then
20299 -- Keep separate the management of private type declarations
20301 if Ekind (Typ) = E_Record_Type_With_Private then
20303 -- Handle the following illegal usage:
20304 -- type Private_Type is tagged private;
20305 -- private
20306 -- type Private_Type is new Type_Implementing_Iface;
20308 if Present (Full_View (Typ))
20309 and then Etype (Typ) /= Full_View (Typ)
20310 then
20311 if Is_Interface (Etype (Typ)) then
20312 Append_Unique_Elmt (Etype (Typ), Ifaces);
20313 end if;
20315 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20316 end if;
20318 -- Non-private types
20320 else
20321 if Is_Interface (Etype (Typ)) then
20322 Append_Unique_Elmt (Etype (Typ), Ifaces);
20323 end if;
20325 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20326 end if;
20327 end if;
20329 -- Handle entities in the list of abstract interfaces
20331 if Present (Interfaces (Typ)) then
20332 Iface_Elmt := First_Elmt (Interfaces (Typ));
20333 while Present (Iface_Elmt) loop
20334 Iface := Node (Iface_Elmt);
20336 pragma Assert (Is_Interface (Iface));
20338 if not Contain_Interface (Iface, Ifaces) then
20339 Append_Elmt (Iface, Ifaces);
20340 Collect_Implemented_Interfaces (Iface, Ifaces);
20341 end if;
20343 Next_Elmt (Iface_Elmt);
20344 end loop;
20345 end if;
20346 end Collect_Implemented_Interfaces;
20348 -- Local variables
20350 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20351 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20352 -- Save the Ghost-related attributes to restore on exit
20354 Full_Indic : Node_Id;
20355 Full_Parent : Entity_Id;
20356 Priv_Parent : Entity_Id;
20358 -- Start of processing for Process_Full_View
20360 begin
20361 Mark_And_Set_Ghost_Completion (N, Priv_T);
20363 -- First some sanity checks that must be done after semantic
20364 -- decoration of the full view and thus cannot be placed with other
20365 -- similar checks in Find_Type_Name
20367 if not Is_Limited_Type (Priv_T)
20368 and then (Is_Limited_Type (Full_T)
20369 or else Is_Limited_Composite (Full_T))
20370 then
20371 if In_Instance then
20372 null;
20373 else
20374 Error_Msg_N
20375 ("completion of nonlimited type cannot be limited", Full_T);
20376 Explain_Limited_Type (Full_T, Full_T);
20377 end if;
20379 elsif Is_Abstract_Type (Full_T)
20380 and then not Is_Abstract_Type (Priv_T)
20381 then
20382 Error_Msg_N
20383 ("completion of nonabstract type cannot be abstract", Full_T);
20385 elsif Is_Tagged_Type (Priv_T)
20386 and then Is_Limited_Type (Priv_T)
20387 and then not Is_Limited_Type (Full_T)
20388 then
20389 -- If pragma CPP_Class was applied to the private declaration
20390 -- propagate the limitedness to the full-view
20392 if Is_CPP_Class (Priv_T) then
20393 Set_Is_Limited_Record (Full_T);
20395 -- GNAT allow its own definition of Limited_Controlled to disobey
20396 -- this rule in order in ease the implementation. This test is safe
20397 -- because Root_Controlled is defined in a child of System that
20398 -- normal programs are not supposed to use.
20400 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20401 Set_Is_Limited_Composite (Full_T);
20402 else
20403 Error_Msg_N
20404 ("completion of limited tagged type must be limited", Full_T);
20405 end if;
20407 elsif Is_Generic_Type (Priv_T) then
20408 Error_Msg_N ("generic type cannot have a completion", Full_T);
20409 end if;
20411 -- Check that ancestor interfaces of private and full views are
20412 -- consistent. We omit this check for synchronized types because
20413 -- they are performed on the corresponding record type when frozen.
20415 if Ada_Version >= Ada_2005
20416 and then Is_Tagged_Type (Priv_T)
20417 and then Is_Tagged_Type (Full_T)
20418 and then not Is_Concurrent_Type (Full_T)
20419 then
20420 declare
20421 Iface : Entity_Id;
20422 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20423 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20425 begin
20426 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20427 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20429 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20430 -- an interface type if and only if the full type is descendant
20431 -- of the interface type (AARM 7.3 (7.3/2)).
20433 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20435 if Present (Iface) then
20436 Error_Msg_NE
20437 ("interface in partial view& not implemented by full type "
20438 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20439 end if;
20441 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20443 if Present (Iface) then
20444 Error_Msg_NE
20445 ("interface & not implemented by partial view "
20446 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20447 end if;
20448 end;
20449 end if;
20451 if Is_Tagged_Type (Priv_T)
20452 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20453 and then Is_Derived_Type (Full_T)
20454 then
20455 Priv_Parent := Etype (Priv_T);
20457 -- The full view of a private extension may have been transformed
20458 -- into an unconstrained derived type declaration and a subtype
20459 -- declaration (see build_derived_record_type for details).
20461 if Nkind (N) = N_Subtype_Declaration then
20462 Full_Indic := Subtype_Indication (N);
20463 Full_Parent := Etype (Base_Type (Full_T));
20464 else
20465 Full_Indic := Subtype_Indication (Type_Definition (N));
20466 Full_Parent := Etype (Full_T);
20467 end if;
20469 -- Check that the parent type of the full type is a descendant of
20470 -- the ancestor subtype given in the private extension. If either
20471 -- entity has an Etype equal to Any_Type then we had some previous
20472 -- error situation [7.3(8)].
20474 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20475 goto Leave;
20477 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20478 -- any order. Therefore we don't have to check that its parent must
20479 -- be a descendant of the parent of the private type declaration.
20481 elsif Is_Interface (Priv_Parent)
20482 and then Is_Interface (Full_Parent)
20483 then
20484 null;
20486 -- Ada 2005 (AI-251): If the parent of the private type declaration
20487 -- is an interface there is no need to check that it is an ancestor
20488 -- of the associated full type declaration. The required tests for
20489 -- this case are performed by Build_Derived_Record_Type.
20491 elsif not Is_Interface (Base_Type (Priv_Parent))
20492 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20493 then
20494 Error_Msg_N
20495 ("parent of full type must descend from parent of private "
20496 & "extension", Full_Indic);
20498 -- First check a formal restriction, and then proceed with checking
20499 -- Ada rules. Since the formal restriction is not a serious error, we
20500 -- don't prevent further error detection for this check, hence the
20501 -- ELSE.
20503 else
20504 -- In formal mode, when completing a private extension the type
20505 -- named in the private part must be exactly the same as that
20506 -- named in the visible part.
20508 if Priv_Parent /= Full_Parent then
20509 Error_Msg_Name_1 := Chars (Priv_Parent);
20510 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20511 end if;
20513 -- Check the rules of 7.3(10): if the private extension inherits
20514 -- known discriminants, then the full type must also inherit those
20515 -- discriminants from the same (ancestor) type, and the parent
20516 -- subtype of the full type must be constrained if and only if
20517 -- the ancestor subtype of the private extension is constrained.
20519 if No (Discriminant_Specifications (Parent (Priv_T)))
20520 and then not Has_Unknown_Discriminants (Priv_T)
20521 and then Has_Discriminants (Base_Type (Priv_Parent))
20522 then
20523 declare
20524 Priv_Indic : constant Node_Id :=
20525 Subtype_Indication (Parent (Priv_T));
20527 Priv_Constr : constant Boolean :=
20528 Is_Constrained (Priv_Parent)
20529 or else
20530 Nkind (Priv_Indic) = N_Subtype_Indication
20531 or else
20532 Is_Constrained (Entity (Priv_Indic));
20534 Full_Constr : constant Boolean :=
20535 Is_Constrained (Full_Parent)
20536 or else
20537 Nkind (Full_Indic) = N_Subtype_Indication
20538 or else
20539 Is_Constrained (Entity (Full_Indic));
20541 Priv_Discr : Entity_Id;
20542 Full_Discr : Entity_Id;
20544 begin
20545 Priv_Discr := First_Discriminant (Priv_Parent);
20546 Full_Discr := First_Discriminant (Full_Parent);
20547 while Present (Priv_Discr) and then Present (Full_Discr) loop
20548 if Original_Record_Component (Priv_Discr) =
20549 Original_Record_Component (Full_Discr)
20550 or else
20551 Corresponding_Discriminant (Priv_Discr) =
20552 Corresponding_Discriminant (Full_Discr)
20553 then
20554 null;
20555 else
20556 exit;
20557 end if;
20559 Next_Discriminant (Priv_Discr);
20560 Next_Discriminant (Full_Discr);
20561 end loop;
20563 if Present (Priv_Discr) or else Present (Full_Discr) then
20564 Error_Msg_N
20565 ("full view must inherit discriminants of the parent "
20566 & "type used in the private extension", Full_Indic);
20568 elsif Priv_Constr and then not Full_Constr then
20569 Error_Msg_N
20570 ("parent subtype of full type must be constrained",
20571 Full_Indic);
20573 elsif Full_Constr and then not Priv_Constr then
20574 Error_Msg_N
20575 ("parent subtype of full type must be unconstrained",
20576 Full_Indic);
20577 end if;
20578 end;
20580 -- Check the rules of 7.3(12): if a partial view has neither
20581 -- known or unknown discriminants, then the full type
20582 -- declaration shall define a definite subtype.
20584 elsif not Has_Unknown_Discriminants (Priv_T)
20585 and then not Has_Discriminants (Priv_T)
20586 and then not Is_Constrained (Full_T)
20587 then
20588 Error_Msg_N
20589 ("full view must define a constrained type if partial view "
20590 & "has no discriminants", Full_T);
20591 end if;
20593 -- ??????? Do we implement the following properly ?????
20594 -- If the ancestor subtype of a private extension has constrained
20595 -- discriminants, then the parent subtype of the full view shall
20596 -- impose a statically matching constraint on those discriminants
20597 -- [7.3(13)].
20598 end if;
20600 else
20601 -- For untagged types, verify that a type without discriminants is
20602 -- not completed with an unconstrained type. A separate error message
20603 -- is produced if the full type has defaulted discriminants.
20605 if Is_Definite_Subtype (Priv_T)
20606 and then not Is_Definite_Subtype (Full_T)
20607 then
20608 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20609 Error_Msg_NE
20610 ("full view of& not compatible with declaration#",
20611 Full_T, Priv_T);
20613 if not Is_Tagged_Type (Full_T) then
20614 Error_Msg_N
20615 ("\one is constrained, the other unconstrained", Full_T);
20616 end if;
20617 end if;
20618 end if;
20620 -- AI-419: verify that the use of "limited" is consistent
20622 declare
20623 Orig_Decl : constant Node_Id := Original_Node (N);
20625 begin
20626 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20627 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20628 and then Nkind
20629 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20630 then
20631 if not Limited_Present (Parent (Priv_T))
20632 and then not Synchronized_Present (Parent (Priv_T))
20633 and then Limited_Present (Type_Definition (Orig_Decl))
20634 then
20635 Error_Msg_N
20636 ("full view of non-limited extension cannot be limited", N);
20638 -- Conversely, if the partial view carries the limited keyword,
20639 -- the full view must as well, even if it may be redundant.
20641 elsif Limited_Present (Parent (Priv_T))
20642 and then not Limited_Present (Type_Definition (Orig_Decl))
20643 then
20644 Error_Msg_N
20645 ("full view of limited extension must be explicitly limited",
20647 end if;
20648 end if;
20649 end;
20651 -- Ada 2005 (AI-443): A synchronized private extension must be
20652 -- completed by a task or protected type.
20654 if Ada_Version >= Ada_2005
20655 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20656 and then Synchronized_Present (Parent (Priv_T))
20657 and then not Is_Concurrent_Type (Full_T)
20658 then
20659 Error_Msg_N ("full view of synchronized extension must " &
20660 "be synchronized type", N);
20661 end if;
20663 -- Ada 2005 AI-363: if the full view has discriminants with
20664 -- defaults, it is illegal to declare constrained access subtypes
20665 -- whose designated type is the current type. This allows objects
20666 -- of the type that are declared in the heap to be unconstrained.
20668 if not Has_Unknown_Discriminants (Priv_T)
20669 and then not Has_Discriminants (Priv_T)
20670 and then Has_Discriminants (Full_T)
20671 and then
20672 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20673 then
20674 Set_Has_Constrained_Partial_View (Full_T);
20675 Set_Has_Constrained_Partial_View (Priv_T);
20676 end if;
20678 -- Create a full declaration for all its subtypes recorded in
20679 -- Private_Dependents and swap them similarly to the base type. These
20680 -- are subtypes that have been define before the full declaration of
20681 -- the private type. We also swap the entry in Private_Dependents list
20682 -- so we can properly restore the private view on exit from the scope.
20684 declare
20685 Priv_Elmt : Elmt_Id;
20686 Priv_Scop : Entity_Id;
20687 Priv : Entity_Id;
20688 Full : Entity_Id;
20690 begin
20691 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20692 while Present (Priv_Elmt) loop
20693 Priv := Node (Priv_Elmt);
20694 Priv_Scop := Scope (Priv);
20696 if Ekind_In (Priv, E_Private_Subtype,
20697 E_Limited_Private_Subtype,
20698 E_Record_Subtype_With_Private)
20699 then
20700 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20701 Set_Is_Itype (Full);
20702 Set_Parent (Full, Parent (Priv));
20703 Set_Associated_Node_For_Itype (Full, N);
20705 -- Now we need to complete the private subtype, but since the
20706 -- base type has already been swapped, we must also swap the
20707 -- subtypes (and thus, reverse the arguments in the call to
20708 -- Complete_Private_Subtype). Also note that we may need to
20709 -- re-establish the scope of the private subtype.
20711 Copy_And_Swap (Priv, Full);
20713 if not In_Open_Scopes (Priv_Scop) then
20714 Push_Scope (Priv_Scop);
20716 else
20717 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20719 Priv_Scop := Empty;
20720 end if;
20722 Complete_Private_Subtype (Full, Priv, Full_T, N);
20724 if Present (Priv_Scop) then
20725 Pop_Scope;
20726 end if;
20728 Replace_Elmt (Priv_Elmt, Full);
20729 end if;
20731 Next_Elmt (Priv_Elmt);
20732 end loop;
20733 end;
20735 -- If the private view was tagged, copy the new primitive operations
20736 -- from the private view to the full view.
20738 if Is_Tagged_Type (Full_T) then
20739 declare
20740 Disp_Typ : Entity_Id;
20741 Full_List : Elist_Id;
20742 Prim : Entity_Id;
20743 Prim_Elmt : Elmt_Id;
20744 Priv_List : Elist_Id;
20746 function Contains
20747 (E : Entity_Id;
20748 L : Elist_Id) return Boolean;
20749 -- Determine whether list L contains element E
20751 --------------
20752 -- Contains --
20753 --------------
20755 function Contains
20756 (E : Entity_Id;
20757 L : Elist_Id) return Boolean
20759 List_Elmt : Elmt_Id;
20761 begin
20762 List_Elmt := First_Elmt (L);
20763 while Present (List_Elmt) loop
20764 if Node (List_Elmt) = E then
20765 return True;
20766 end if;
20768 Next_Elmt (List_Elmt);
20769 end loop;
20771 return False;
20772 end Contains;
20774 -- Start of processing
20776 begin
20777 if Is_Tagged_Type (Priv_T) then
20778 Priv_List := Primitive_Operations (Priv_T);
20779 Prim_Elmt := First_Elmt (Priv_List);
20781 -- In the case of a concurrent type completing a private tagged
20782 -- type, primitives may have been declared in between the two
20783 -- views. These subprograms need to be wrapped the same way
20784 -- entries and protected procedures are handled because they
20785 -- cannot be directly shared by the two views.
20787 if Is_Concurrent_Type (Full_T) then
20788 declare
20789 Conc_Typ : constant Entity_Id :=
20790 Corresponding_Record_Type (Full_T);
20791 Curr_Nod : Node_Id := Parent (Conc_Typ);
20792 Wrap_Spec : Node_Id;
20794 begin
20795 while Present (Prim_Elmt) loop
20796 Prim := Node (Prim_Elmt);
20798 if Comes_From_Source (Prim)
20799 and then not Is_Abstract_Subprogram (Prim)
20800 then
20801 Wrap_Spec :=
20802 Make_Subprogram_Declaration (Sloc (Prim),
20803 Specification =>
20804 Build_Wrapper_Spec
20805 (Subp_Id => Prim,
20806 Obj_Typ => Conc_Typ,
20807 Formals =>
20808 Parameter_Specifications
20809 (Parent (Prim))));
20811 Insert_After (Curr_Nod, Wrap_Spec);
20812 Curr_Nod := Wrap_Spec;
20814 Analyze (Wrap_Spec);
20816 -- Remove the wrapper from visibility to avoid
20817 -- spurious conflict with the wrapped entity.
20819 Set_Is_Immediately_Visible
20820 (Defining_Entity (Specification (Wrap_Spec)),
20821 False);
20822 end if;
20824 Next_Elmt (Prim_Elmt);
20825 end loop;
20827 goto Leave;
20828 end;
20830 -- For non-concurrent types, transfer explicit primitives, but
20831 -- omit those inherited from the parent of the private view
20832 -- since they will be re-inherited later on.
20834 else
20835 Full_List := Primitive_Operations (Full_T);
20836 while Present (Prim_Elmt) loop
20837 Prim := Node (Prim_Elmt);
20839 if Comes_From_Source (Prim)
20840 and then not Contains (Prim, Full_List)
20841 then
20842 Append_Elmt (Prim, Full_List);
20843 end if;
20845 Next_Elmt (Prim_Elmt);
20846 end loop;
20847 end if;
20849 -- Untagged private view
20851 else
20852 Full_List := Primitive_Operations (Full_T);
20854 -- In this case the partial view is untagged, so here we locate
20855 -- all of the earlier primitives that need to be treated as
20856 -- dispatching (those that appear between the two views). Note
20857 -- that these additional operations must all be new operations
20858 -- (any earlier operations that override inherited operations
20859 -- of the full view will already have been inserted in the
20860 -- primitives list, marked by Check_Operation_From_Private_View
20861 -- as dispatching. Note that implicit "/=" operators are
20862 -- excluded from being added to the primitives list since they
20863 -- shouldn't be treated as dispatching (tagged "/=" is handled
20864 -- specially).
20866 Prim := Next_Entity (Full_T);
20867 while Present (Prim) and then Prim /= Priv_T loop
20868 if Ekind_In (Prim, E_Procedure, E_Function) then
20869 Disp_Typ := Find_Dispatching_Type (Prim);
20871 if Disp_Typ = Full_T
20872 and then (Chars (Prim) /= Name_Op_Ne
20873 or else Comes_From_Source (Prim))
20874 then
20875 Check_Controlling_Formals (Full_T, Prim);
20877 if Is_Suitable_Primitive (Prim)
20878 and then not Is_Dispatching_Operation (Prim)
20879 then
20880 Append_Elmt (Prim, Full_List);
20881 Set_Is_Dispatching_Operation (Prim);
20882 Set_DT_Position_Value (Prim, No_Uint);
20883 end if;
20885 elsif Is_Dispatching_Operation (Prim)
20886 and then Disp_Typ /= Full_T
20887 then
20888 -- Verify that it is not otherwise controlled by a
20889 -- formal or a return value of type T.
20891 Check_Controlling_Formals (Disp_Typ, Prim);
20892 end if;
20893 end if;
20895 Next_Entity (Prim);
20896 end loop;
20897 end if;
20899 -- For the tagged case, the two views can share the same primitive
20900 -- operations list and the same class-wide type. Update attributes
20901 -- of the class-wide type which depend on the full declaration.
20903 if Is_Tagged_Type (Priv_T) then
20904 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20905 Set_Class_Wide_Type
20906 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20908 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20909 end if;
20910 end;
20911 end if;
20913 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20915 if Known_To_Have_Preelab_Init (Priv_T) then
20917 -- Case where there is a pragma Preelaborable_Initialization. We
20918 -- always allow this in predefined units, which is cheating a bit,
20919 -- but it means we don't have to struggle to meet the requirements in
20920 -- the RM for having Preelaborable Initialization. Otherwise we
20921 -- require that the type meets the RM rules. But we can't check that
20922 -- yet, because of the rule about overriding Initialize, so we simply
20923 -- set a flag that will be checked at freeze time.
20925 if not In_Predefined_Unit (Full_T) then
20926 Set_Must_Have_Preelab_Init (Full_T);
20927 end if;
20928 end if;
20930 -- If pragma CPP_Class was applied to the private type declaration,
20931 -- propagate it now to the full type declaration.
20933 if Is_CPP_Class (Priv_T) then
20934 Set_Is_CPP_Class (Full_T);
20935 Set_Convention (Full_T, Convention_CPP);
20937 -- Check that components of imported CPP types do not have default
20938 -- expressions.
20940 Check_CPP_Type_Has_No_Defaults (Full_T);
20941 end if;
20943 -- If the private view has user specified stream attributes, then so has
20944 -- the full view.
20946 -- Why the test, how could these flags be already set in Full_T ???
20948 if Has_Specified_Stream_Read (Priv_T) then
20949 Set_Has_Specified_Stream_Read (Full_T);
20950 end if;
20952 if Has_Specified_Stream_Write (Priv_T) then
20953 Set_Has_Specified_Stream_Write (Full_T);
20954 end if;
20956 if Has_Specified_Stream_Input (Priv_T) then
20957 Set_Has_Specified_Stream_Input (Full_T);
20958 end if;
20960 if Has_Specified_Stream_Output (Priv_T) then
20961 Set_Has_Specified_Stream_Output (Full_T);
20962 end if;
20964 -- Propagate Default_Initial_Condition-related attributes from the
20965 -- partial view to the full view and its base type.
20967 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20968 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20970 -- Propagate invariant-related attributes from the partial view to the
20971 -- full view and its base type.
20973 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20974 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20976 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20977 -- in the full view without advertising the inheritance in the partial
20978 -- view. This can only occur when the partial view has no parent type
20979 -- and the full view has an interface as a parent. Any other scenarios
20980 -- are illegal because implemented interfaces must match between the
20981 -- two views.
20983 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20984 declare
20985 Full_Par : constant Entity_Id := Etype (Full_T);
20986 Priv_Par : constant Entity_Id := Etype (Priv_T);
20988 begin
20989 if not Is_Interface (Priv_Par)
20990 and then Is_Interface (Full_Par)
20991 and then Has_Inheritable_Invariants (Full_Par)
20992 then
20993 Error_Msg_N
20994 ("hidden inheritance of class-wide type invariants not "
20995 & "allowed", N);
20996 end if;
20997 end;
20998 end if;
21000 -- Propagate predicates to full type, and predicate function if already
21001 -- defined. It is not clear that this can actually happen? the partial
21002 -- view cannot be frozen yet, and the predicate function has not been
21003 -- built. Still it is a cheap check and seems safer to make it.
21005 if Has_Predicates (Priv_T) then
21006 Set_Has_Predicates (Full_T);
21008 if Present (Predicate_Function (Priv_T)) then
21009 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
21010 end if;
21011 end if;
21013 <<Leave>>
21014 Restore_Ghost_Region (Saved_GM, Saved_IGR);
21015 end Process_Full_View;
21017 -----------------------------------
21018 -- Process_Incomplete_Dependents --
21019 -----------------------------------
21021 procedure Process_Incomplete_Dependents
21022 (N : Node_Id;
21023 Full_T : Entity_Id;
21024 Inc_T : Entity_Id)
21026 Inc_Elmt : Elmt_Id;
21027 Priv_Dep : Entity_Id;
21028 New_Subt : Entity_Id;
21030 Disc_Constraint : Elist_Id;
21032 begin
21033 if No (Private_Dependents (Inc_T)) then
21034 return;
21035 end if;
21037 -- Itypes that may be generated by the completion of an incomplete
21038 -- subtype are not used by the back-end and not attached to the tree.
21039 -- They are created only for constraint-checking purposes.
21041 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
21042 while Present (Inc_Elmt) loop
21043 Priv_Dep := Node (Inc_Elmt);
21045 if Ekind (Priv_Dep) = E_Subprogram_Type then
21047 -- An Access_To_Subprogram type may have a return type or a
21048 -- parameter type that is incomplete. Replace with the full view.
21050 if Etype (Priv_Dep) = Inc_T then
21051 Set_Etype (Priv_Dep, Full_T);
21052 end if;
21054 declare
21055 Formal : Entity_Id;
21057 begin
21058 Formal := First_Formal (Priv_Dep);
21059 while Present (Formal) loop
21060 if Etype (Formal) = Inc_T then
21061 Set_Etype (Formal, Full_T);
21062 end if;
21064 Next_Formal (Formal);
21065 end loop;
21066 end;
21068 elsif Is_Overloadable (Priv_Dep) then
21070 -- If a subprogram in the incomplete dependents list is primitive
21071 -- for a tagged full type then mark it as a dispatching operation,
21072 -- check whether it overrides an inherited subprogram, and check
21073 -- restrictions on its controlling formals. Note that a protected
21074 -- operation is never dispatching: only its wrapper operation
21075 -- (which has convention Ada) is.
21077 if Is_Tagged_Type (Full_T)
21078 and then Is_Primitive (Priv_Dep)
21079 and then Convention (Priv_Dep) /= Convention_Protected
21080 then
21081 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21082 Set_Is_Dispatching_Operation (Priv_Dep);
21083 Check_Controlling_Formals (Full_T, Priv_Dep);
21084 end if;
21086 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21088 -- Can happen during processing of a body before the completion
21089 -- of a TA type. Ignore, because spec is also on dependent list.
21091 return;
21093 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21094 -- corresponding subtype of the full view.
21096 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21097 and then Comes_From_Source (Priv_Dep)
21098 then
21099 Set_Subtype_Indication
21100 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21101 Set_Etype (Priv_Dep, Full_T);
21102 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21103 Set_Analyzed (Parent (Priv_Dep), False);
21105 -- Reanalyze the declaration, suppressing the call to Enter_Name
21106 -- to avoid duplicate names.
21108 Analyze_Subtype_Declaration
21109 (N => Parent (Priv_Dep),
21110 Skip => True);
21112 -- Dependent is a subtype
21114 else
21115 -- We build a new subtype indication using the full view of the
21116 -- incomplete parent. The discriminant constraints have been
21117 -- elaborated already at the point of the subtype declaration.
21119 New_Subt := Create_Itype (E_Void, N);
21121 if Has_Discriminants (Full_T) then
21122 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21123 else
21124 Disc_Constraint := No_Elist;
21125 end if;
21127 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21128 Set_Full_View (Priv_Dep, New_Subt);
21129 end if;
21131 Next_Elmt (Inc_Elmt);
21132 end loop;
21133 end Process_Incomplete_Dependents;
21135 --------------------------------
21136 -- Process_Range_Expr_In_Decl --
21137 --------------------------------
21139 procedure Process_Range_Expr_In_Decl
21140 (R : Node_Id;
21141 T : Entity_Id;
21142 Subtyp : Entity_Id := Empty;
21143 Check_List : List_Id := Empty_List;
21144 R_Check_Off : Boolean := False;
21145 In_Iter_Schm : Boolean := False)
21147 Lo, Hi : Node_Id;
21148 R_Checks : Check_Result;
21149 Insert_Node : Node_Id;
21150 Def_Id : Entity_Id;
21152 begin
21153 Analyze_And_Resolve (R, Base_Type (T));
21155 if Nkind (R) = N_Range then
21157 -- In SPARK, all ranges should be static, with the exception of the
21158 -- discrete type definition of a loop parameter specification.
21160 if not In_Iter_Schm
21161 and then not Is_OK_Static_Range (R)
21162 then
21163 Check_SPARK_05_Restriction ("range should be static", R);
21164 end if;
21166 Lo := Low_Bound (R);
21167 Hi := High_Bound (R);
21169 -- Validity checks on the range of a quantified expression are
21170 -- delayed until the construct is transformed into a loop.
21172 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21173 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21174 then
21175 null;
21177 -- We need to ensure validity of the bounds here, because if we
21178 -- go ahead and do the expansion, then the expanded code will get
21179 -- analyzed with range checks suppressed and we miss the check.
21181 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21182 -- the temporaries generated by routine Remove_Side_Effects by means
21183 -- of validity checks must use the same names. When a range appears
21184 -- in the parent of a generic, the range is processed with checks
21185 -- disabled as part of the generic context and with checks enabled
21186 -- for code generation purposes. This leads to link issues as the
21187 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21188 -- template sees the temporaries generated by Remove_Side_Effects.
21190 else
21191 Validity_Check_Range (R, Subtyp);
21192 end if;
21194 -- If there were errors in the declaration, try and patch up some
21195 -- common mistakes in the bounds. The cases handled are literals
21196 -- which are Integer where the expected type is Real and vice versa.
21197 -- These corrections allow the compilation process to proceed further
21198 -- along since some basic assumptions of the format of the bounds
21199 -- are guaranteed.
21201 if Etype (R) = Any_Type then
21202 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21203 Rewrite (Lo,
21204 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21206 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21207 Rewrite (Hi,
21208 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21210 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21211 Rewrite (Lo,
21212 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21214 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21215 Rewrite (Hi,
21216 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21217 end if;
21219 Set_Etype (Lo, T);
21220 Set_Etype (Hi, T);
21221 end if;
21223 -- If the bounds of the range have been mistakenly given as string
21224 -- literals (perhaps in place of character literals), then an error
21225 -- has already been reported, but we rewrite the string literal as a
21226 -- bound of the range's type to avoid blowups in later processing
21227 -- that looks at static values.
21229 if Nkind (Lo) = N_String_Literal then
21230 Rewrite (Lo,
21231 Make_Attribute_Reference (Sloc (Lo),
21232 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21233 Attribute_Name => Name_First));
21234 Analyze_And_Resolve (Lo);
21235 end if;
21237 if Nkind (Hi) = N_String_Literal then
21238 Rewrite (Hi,
21239 Make_Attribute_Reference (Sloc (Hi),
21240 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21241 Attribute_Name => Name_First));
21242 Analyze_And_Resolve (Hi);
21243 end if;
21245 -- If bounds aren't scalar at this point then exit, avoiding
21246 -- problems with further processing of the range in this procedure.
21248 if not Is_Scalar_Type (Etype (Lo)) then
21249 return;
21250 end if;
21252 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21253 -- then range of the base type. Here we check whether the bounds
21254 -- are in the range of the subtype itself. Note that if the bounds
21255 -- represent the null range the Constraint_Error exception should
21256 -- not be raised.
21258 -- ??? The following code should be cleaned up as follows
21260 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21261 -- is done in the call to Range_Check (R, T); below
21263 -- 2. The use of R_Check_Off should be investigated and possibly
21264 -- removed, this would clean up things a bit.
21266 if Is_Null_Range (Lo, Hi) then
21267 null;
21269 else
21270 -- Capture values of bounds and generate temporaries for them
21271 -- if needed, before applying checks, since checks may cause
21272 -- duplication of the expression without forcing evaluation.
21274 -- The forced evaluation removes side effects from expressions,
21275 -- which should occur also in GNATprove mode. Otherwise, we end up
21276 -- with unexpected insertions of actions at places where this is
21277 -- not supposed to occur, e.g. on default parameters of a call.
21279 if Expander_Active or GNATprove_Mode then
21281 -- Call Force_Evaluation to create declarations as needed to
21282 -- deal with side effects, and also create typ_FIRST/LAST
21283 -- entities for bounds if we have a subtype name.
21285 -- Note: we do this transformation even if expansion is not
21286 -- active if we are in GNATprove_Mode since the transformation
21287 -- is in general required to ensure that the resulting tree has
21288 -- proper Ada semantics.
21290 Force_Evaluation
21291 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21292 Force_Evaluation
21293 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21294 end if;
21296 -- We use a flag here instead of suppressing checks on the type
21297 -- because the type we check against isn't necessarily the place
21298 -- where we put the check.
21300 if not R_Check_Off then
21301 R_Checks := Get_Range_Checks (R, T);
21303 -- Look up tree to find an appropriate insertion point. We
21304 -- can't just use insert_actions because later processing
21305 -- depends on the insertion node. Prior to Ada 2012 the
21306 -- insertion point could only be a declaration or a loop, but
21307 -- quantified expressions can appear within any context in an
21308 -- expression, and the insertion point can be any statement,
21309 -- pragma, or declaration.
21311 Insert_Node := Parent (R);
21312 while Present (Insert_Node) loop
21313 exit when
21314 Nkind (Insert_Node) in N_Declaration
21315 and then
21316 not Nkind_In
21317 (Insert_Node, N_Component_Declaration,
21318 N_Loop_Parameter_Specification,
21319 N_Function_Specification,
21320 N_Procedure_Specification);
21322 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21323 or else Nkind (Insert_Node) in
21324 N_Statement_Other_Than_Procedure_Call
21325 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21326 N_Pragma);
21328 Insert_Node := Parent (Insert_Node);
21329 end loop;
21331 -- Why would Type_Decl not be present??? Without this test,
21332 -- short regression tests fail.
21334 if Present (Insert_Node) then
21336 -- Case of loop statement. Verify that the range is part
21337 -- of the subtype indication of the iteration scheme.
21339 if Nkind (Insert_Node) = N_Loop_Statement then
21340 declare
21341 Indic : Node_Id;
21343 begin
21344 Indic := Parent (R);
21345 while Present (Indic)
21346 and then Nkind (Indic) /= N_Subtype_Indication
21347 loop
21348 Indic := Parent (Indic);
21349 end loop;
21351 if Present (Indic) then
21352 Def_Id := Etype (Subtype_Mark (Indic));
21354 Insert_Range_Checks
21355 (R_Checks,
21356 Insert_Node,
21357 Def_Id,
21358 Sloc (Insert_Node),
21360 Do_Before => True);
21361 end if;
21362 end;
21364 -- Insertion before a declaration. If the declaration
21365 -- includes discriminants, the list of applicable checks
21366 -- is given by the caller.
21368 elsif Nkind (Insert_Node) in N_Declaration then
21369 Def_Id := Defining_Identifier (Insert_Node);
21371 if (Ekind (Def_Id) = E_Record_Type
21372 and then Depends_On_Discriminant (R))
21373 or else
21374 (Ekind (Def_Id) = E_Protected_Type
21375 and then Has_Discriminants (Def_Id))
21376 then
21377 Append_Range_Checks
21378 (R_Checks,
21379 Check_List, Def_Id, Sloc (Insert_Node), R);
21381 else
21382 Insert_Range_Checks
21383 (R_Checks,
21384 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21386 end if;
21388 -- Insertion before a statement. Range appears in the
21389 -- context of a quantified expression. Insertion will
21390 -- take place when expression is expanded.
21392 else
21393 null;
21394 end if;
21395 end if;
21396 end if;
21397 end if;
21399 -- Case of other than an explicit N_Range node
21401 -- The forced evaluation removes side effects from expressions, which
21402 -- should occur also in GNATprove mode. Otherwise, we end up with
21403 -- unexpected insertions of actions at places where this is not
21404 -- supposed to occur, e.g. on default parameters of a call.
21406 elsif Expander_Active or GNATprove_Mode then
21407 Get_Index_Bounds (R, Lo, Hi);
21408 Force_Evaluation (Lo);
21409 Force_Evaluation (Hi);
21410 end if;
21411 end Process_Range_Expr_In_Decl;
21413 --------------------------------------
21414 -- Process_Real_Range_Specification --
21415 --------------------------------------
21417 procedure Process_Real_Range_Specification (Def : Node_Id) is
21418 Spec : constant Node_Id := Real_Range_Specification (Def);
21419 Lo : Node_Id;
21420 Hi : Node_Id;
21421 Err : Boolean := False;
21423 procedure Analyze_Bound (N : Node_Id);
21424 -- Analyze and check one bound
21426 -------------------
21427 -- Analyze_Bound --
21428 -------------------
21430 procedure Analyze_Bound (N : Node_Id) is
21431 begin
21432 Analyze_And_Resolve (N, Any_Real);
21434 if not Is_OK_Static_Expression (N) then
21435 Flag_Non_Static_Expr
21436 ("bound in real type definition is not static!", N);
21437 Err := True;
21438 end if;
21439 end Analyze_Bound;
21441 -- Start of processing for Process_Real_Range_Specification
21443 begin
21444 if Present (Spec) then
21445 Lo := Low_Bound (Spec);
21446 Hi := High_Bound (Spec);
21447 Analyze_Bound (Lo);
21448 Analyze_Bound (Hi);
21450 -- If error, clear away junk range specification
21452 if Err then
21453 Set_Real_Range_Specification (Def, Empty);
21454 end if;
21455 end if;
21456 end Process_Real_Range_Specification;
21458 ---------------------
21459 -- Process_Subtype --
21460 ---------------------
21462 function Process_Subtype
21463 (S : Node_Id;
21464 Related_Nod : Node_Id;
21465 Related_Id : Entity_Id := Empty;
21466 Suffix : Character := ' ') return Entity_Id
21468 P : Node_Id;
21469 Def_Id : Entity_Id;
21470 Error_Node : Node_Id;
21471 Full_View_Id : Entity_Id;
21472 Subtype_Mark_Id : Entity_Id;
21474 May_Have_Null_Exclusion : Boolean;
21476 procedure Check_Incomplete (T : Node_Id);
21477 -- Called to verify that an incomplete type is not used prematurely
21479 ----------------------
21480 -- Check_Incomplete --
21481 ----------------------
21483 procedure Check_Incomplete (T : Node_Id) is
21484 begin
21485 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21487 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21488 and then
21489 not (Ada_Version >= Ada_2005
21490 and then
21491 (Nkind (Parent (T)) = N_Subtype_Declaration
21492 or else (Nkind (Parent (T)) = N_Subtype_Indication
21493 and then Nkind (Parent (Parent (T))) =
21494 N_Subtype_Declaration)))
21495 then
21496 Error_Msg_N ("invalid use of type before its full declaration", T);
21497 end if;
21498 end Check_Incomplete;
21500 -- Start of processing for Process_Subtype
21502 begin
21503 -- Case of no constraints present
21505 if Nkind (S) /= N_Subtype_Indication then
21506 Find_Type (S);
21508 -- No way to proceed if the subtype indication is malformed. This
21509 -- will happen for example when the subtype indication in an object
21510 -- declaration is missing altogether and the expression is analyzed
21511 -- as if it were that indication.
21513 if not Is_Entity_Name (S) then
21514 return Any_Type;
21515 end if;
21517 Check_Incomplete (S);
21518 P := Parent (S);
21520 -- Ada 2005 (AI-231): Static check
21522 if Ada_Version >= Ada_2005
21523 and then Present (P)
21524 and then Null_Exclusion_Present (P)
21525 and then Nkind (P) /= N_Access_To_Object_Definition
21526 and then not Is_Access_Type (Entity (S))
21527 then
21528 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21529 end if;
21531 -- The following is ugly, can't we have a range or even a flag???
21533 May_Have_Null_Exclusion :=
21534 Nkind_In (P, N_Access_Definition,
21535 N_Access_Function_Definition,
21536 N_Access_Procedure_Definition,
21537 N_Access_To_Object_Definition,
21538 N_Allocator,
21539 N_Component_Definition)
21540 or else
21541 Nkind_In (P, N_Derived_Type_Definition,
21542 N_Discriminant_Specification,
21543 N_Formal_Object_Declaration,
21544 N_Object_Declaration,
21545 N_Object_Renaming_Declaration,
21546 N_Parameter_Specification,
21547 N_Subtype_Declaration);
21549 -- Create an Itype that is a duplicate of Entity (S) but with the
21550 -- null-exclusion attribute.
21552 if May_Have_Null_Exclusion
21553 and then Is_Access_Type (Entity (S))
21554 and then Null_Exclusion_Present (P)
21556 -- No need to check the case of an access to object definition.
21557 -- It is correct to define double not-null pointers.
21559 -- Example:
21560 -- type Not_Null_Int_Ptr is not null access Integer;
21561 -- type Acc is not null access Not_Null_Int_Ptr;
21563 and then Nkind (P) /= N_Access_To_Object_Definition
21564 then
21565 if Can_Never_Be_Null (Entity (S)) then
21566 case Nkind (Related_Nod) is
21567 when N_Full_Type_Declaration =>
21568 if Nkind (Type_Definition (Related_Nod))
21569 in N_Array_Type_Definition
21570 then
21571 Error_Node :=
21572 Subtype_Indication
21573 (Component_Definition
21574 (Type_Definition (Related_Nod)));
21575 else
21576 Error_Node :=
21577 Subtype_Indication (Type_Definition (Related_Nod));
21578 end if;
21580 when N_Subtype_Declaration =>
21581 Error_Node := Subtype_Indication (Related_Nod);
21583 when N_Object_Declaration =>
21584 Error_Node := Object_Definition (Related_Nod);
21586 when N_Component_Declaration =>
21587 Error_Node :=
21588 Subtype_Indication (Component_Definition (Related_Nod));
21590 when N_Allocator =>
21591 Error_Node := Expression (Related_Nod);
21593 when others =>
21594 pragma Assert (False);
21595 Error_Node := Related_Nod;
21596 end case;
21598 Error_Msg_NE
21599 ("`NOT NULL` not allowed (& already excludes null)",
21600 Error_Node,
21601 Entity (S));
21602 end if;
21604 Set_Etype (S,
21605 Create_Null_Excluding_Itype
21606 (T => Entity (S),
21607 Related_Nod => P));
21608 Set_Entity (S, Etype (S));
21609 end if;
21611 return Entity (S);
21613 -- Case of constraint present, so that we have an N_Subtype_Indication
21614 -- node (this node is created only if constraints are present).
21616 else
21617 Find_Type (Subtype_Mark (S));
21619 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21620 and then not
21621 (Nkind (Parent (S)) = N_Subtype_Declaration
21622 and then Is_Itype (Defining_Identifier (Parent (S))))
21623 then
21624 Check_Incomplete (Subtype_Mark (S));
21625 end if;
21627 P := Parent (S);
21628 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21630 -- Explicit subtype declaration case
21632 if Nkind (P) = N_Subtype_Declaration then
21633 Def_Id := Defining_Identifier (P);
21635 -- Explicit derived type definition case
21637 elsif Nkind (P) = N_Derived_Type_Definition then
21638 Def_Id := Defining_Identifier (Parent (P));
21640 -- Implicit case, the Def_Id must be created as an implicit type.
21641 -- The one exception arises in the case of concurrent types, array
21642 -- and access types, where other subsidiary implicit types may be
21643 -- created and must appear before the main implicit type. In these
21644 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21645 -- has not yet been called to create Def_Id.
21647 else
21648 if Is_Array_Type (Subtype_Mark_Id)
21649 or else Is_Concurrent_Type (Subtype_Mark_Id)
21650 or else Is_Access_Type (Subtype_Mark_Id)
21651 then
21652 Def_Id := Empty;
21654 -- For the other cases, we create a new unattached Itype,
21655 -- and set the indication to ensure it gets attached later.
21657 else
21658 Def_Id :=
21659 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21660 end if;
21661 end if;
21663 -- If the kind of constraint is invalid for this kind of type,
21664 -- then give an error, and then pretend no constraint was given.
21666 if not Is_Valid_Constraint_Kind
21667 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21668 then
21669 Error_Msg_N
21670 ("incorrect constraint for this kind of type", Constraint (S));
21672 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21674 -- Set Ekind of orphan itype, to prevent cascaded errors
21676 if Present (Def_Id) then
21677 Set_Ekind (Def_Id, Ekind (Any_Type));
21678 end if;
21680 -- Make recursive call, having got rid of the bogus constraint
21682 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21683 end if;
21685 -- Remaining processing depends on type. Select on Base_Type kind to
21686 -- ensure getting to the concrete type kind in the case of a private
21687 -- subtype (needed when only doing semantic analysis).
21689 case Ekind (Base_Type (Subtype_Mark_Id)) is
21690 when Access_Kind =>
21692 -- If this is a constraint on a class-wide type, discard it.
21693 -- There is currently no way to express a partial discriminant
21694 -- constraint on a type with unknown discriminants. This is
21695 -- a pathology that the ACATS wisely decides not to test.
21697 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21698 if Comes_From_Source (S) then
21699 Error_Msg_N
21700 ("constraint on class-wide type ignored??",
21701 Constraint (S));
21702 end if;
21704 if Nkind (P) = N_Subtype_Declaration then
21705 Set_Subtype_Indication (P,
21706 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21707 end if;
21709 return Subtype_Mark_Id;
21710 end if;
21712 Constrain_Access (Def_Id, S, Related_Nod);
21714 if Expander_Active
21715 and then Is_Itype (Designated_Type (Def_Id))
21716 and then Nkind (Related_Nod) = N_Subtype_Declaration
21717 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21718 then
21719 Build_Itype_Reference
21720 (Designated_Type (Def_Id), Related_Nod);
21721 end if;
21723 when Array_Kind =>
21724 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21726 when Decimal_Fixed_Point_Kind =>
21727 Constrain_Decimal (Def_Id, S);
21729 when Enumeration_Kind =>
21730 Constrain_Enumeration (Def_Id, S);
21732 when Ordinary_Fixed_Point_Kind =>
21733 Constrain_Ordinary_Fixed (Def_Id, S);
21735 when Float_Kind =>
21736 Constrain_Float (Def_Id, S);
21738 when Integer_Kind =>
21739 Constrain_Integer (Def_Id, S);
21741 when Class_Wide_Kind
21742 | E_Incomplete_Type
21743 | E_Record_Subtype
21744 | E_Record_Type
21746 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21748 if Ekind (Def_Id) = E_Incomplete_Type then
21749 Set_Private_Dependents (Def_Id, New_Elmt_List);
21750 end if;
21752 when Private_Kind =>
21754 -- A private type with unknown discriminants may be completed
21755 -- by an unconstrained array type.
21757 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21758 and then Present (Full_View (Subtype_Mark_Id))
21759 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21760 then
21761 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21763 -- ... but more commonly is completed by a discriminated record
21764 -- type.
21766 else
21767 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21768 end if;
21770 -- The base type may be private but Def_Id may be a full view
21771 -- in an instance.
21773 if Is_Private_Type (Def_Id) then
21774 Set_Private_Dependents (Def_Id, New_Elmt_List);
21775 end if;
21777 -- In case of an invalid constraint prevent further processing
21778 -- since the type constructed is missing expected fields.
21780 if Etype (Def_Id) = Any_Type then
21781 return Def_Id;
21782 end if;
21784 -- If the full view is that of a task with discriminants,
21785 -- we must constrain both the concurrent type and its
21786 -- corresponding record type. Otherwise we will just propagate
21787 -- the constraint to the full view, if available.
21789 if Present (Full_View (Subtype_Mark_Id))
21790 and then Has_Discriminants (Subtype_Mark_Id)
21791 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21792 then
21793 Full_View_Id :=
21794 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21796 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21797 Constrain_Concurrent (Full_View_Id, S,
21798 Related_Nod, Related_Id, Suffix);
21799 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21800 Set_Full_View (Def_Id, Full_View_Id);
21802 -- Introduce an explicit reference to the private subtype,
21803 -- to prevent scope anomalies in gigi if first use appears
21804 -- in a nested context, e.g. a later function body.
21805 -- Should this be generated in other contexts than a full
21806 -- type declaration?
21808 if Is_Itype (Def_Id)
21809 and then
21810 Nkind (Parent (P)) = N_Full_Type_Declaration
21811 then
21812 Build_Itype_Reference (Def_Id, Parent (P));
21813 end if;
21815 else
21816 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21817 end if;
21819 when Concurrent_Kind =>
21820 Constrain_Concurrent (Def_Id, S,
21821 Related_Nod, Related_Id, Suffix);
21823 when others =>
21824 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21825 end case;
21827 -- Size, Alignment, Representation aspects and Convention are always
21828 -- inherited from the base type.
21830 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21831 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21832 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21834 -- The anonymous subtype created for the subtype indication
21835 -- inherits the predicates of the parent.
21837 if Has_Predicates (Subtype_Mark_Id) then
21838 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21840 -- Indicate where the predicate function may be found
21842 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21843 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21844 end if;
21845 end if;
21847 return Def_Id;
21848 end if;
21849 end Process_Subtype;
21851 -----------------------------
21852 -- Record_Type_Declaration --
21853 -----------------------------
21855 procedure Record_Type_Declaration
21856 (T : Entity_Id;
21857 N : Node_Id;
21858 Prev : Entity_Id)
21860 Def : constant Node_Id := Type_Definition (N);
21861 Is_Tagged : Boolean;
21862 Tag_Comp : Entity_Id;
21864 begin
21865 -- These flags must be initialized before calling Process_Discriminants
21866 -- because this routine makes use of them.
21868 Set_Ekind (T, E_Record_Type);
21869 Set_Etype (T, T);
21870 Init_Size_Align (T);
21871 Set_Interfaces (T, No_Elist);
21872 Set_Stored_Constraint (T, No_Elist);
21873 Set_Default_SSO (T);
21874 Set_No_Reordering (T, No_Component_Reordering);
21876 -- Normal case
21878 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21879 if Limited_Present (Def) then
21880 Check_SPARK_05_Restriction ("limited is not allowed", N);
21881 end if;
21883 if Abstract_Present (Def) then
21884 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21885 end if;
21887 -- The flag Is_Tagged_Type might have already been set by
21888 -- Find_Type_Name if it detected an error for declaration T. This
21889 -- arises in the case of private tagged types where the full view
21890 -- omits the word tagged.
21892 Is_Tagged :=
21893 Tagged_Present (Def)
21894 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21896 Set_Is_Limited_Record (T, Limited_Present (Def));
21898 if Is_Tagged then
21899 Set_Is_Tagged_Type (T, True);
21900 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21901 end if;
21903 -- Type is abstract if full declaration carries keyword, or if
21904 -- previous partial view did.
21906 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21907 or else Abstract_Present (Def));
21909 else
21910 Check_SPARK_05_Restriction ("interface is not allowed", N);
21912 Is_Tagged := True;
21913 Analyze_Interface_Declaration (T, Def);
21915 if Present (Discriminant_Specifications (N)) then
21916 Error_Msg_N
21917 ("interface types cannot have discriminants",
21918 Defining_Identifier
21919 (First (Discriminant_Specifications (N))));
21920 end if;
21921 end if;
21923 -- First pass: if there are self-referential access components,
21924 -- create the required anonymous access type declarations, and if
21925 -- need be an incomplete type declaration for T itself.
21927 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21929 if Ada_Version >= Ada_2005
21930 and then Present (Interface_List (Def))
21931 then
21932 Check_Interfaces (N, Def);
21934 declare
21935 Ifaces_List : Elist_Id;
21937 begin
21938 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21939 -- already in the parents.
21941 Collect_Interfaces
21942 (T => T,
21943 Ifaces_List => Ifaces_List,
21944 Exclude_Parents => True);
21946 Set_Interfaces (T, Ifaces_List);
21947 end;
21948 end if;
21950 -- Records constitute a scope for the component declarations within.
21951 -- The scope is created prior to the processing of these declarations.
21952 -- Discriminants are processed first, so that they are visible when
21953 -- processing the other components. The Ekind of the record type itself
21954 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21956 -- Enter record scope
21958 Push_Scope (T);
21960 -- If an incomplete or private type declaration was already given for
21961 -- the type, then this scope already exists, and the discriminants have
21962 -- been declared within. We must verify that the full declaration
21963 -- matches the incomplete one.
21965 Check_Or_Process_Discriminants (N, T, Prev);
21967 Set_Is_Constrained (T, not Has_Discriminants (T));
21968 Set_Has_Delayed_Freeze (T, True);
21970 -- For tagged types add a manually analyzed component corresponding
21971 -- to the component _tag, the corresponding piece of tree will be
21972 -- expanded as part of the freezing actions if it is not a CPP_Class.
21974 if Is_Tagged then
21976 -- Do not add the tag unless we are in expansion mode
21978 if Expander_Active then
21979 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21980 Enter_Name (Tag_Comp);
21982 Set_Ekind (Tag_Comp, E_Component);
21983 Set_Is_Tag (Tag_Comp);
21984 Set_Is_Aliased (Tag_Comp);
21985 Set_Etype (Tag_Comp, RTE (RE_Tag));
21986 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21987 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21988 Init_Component_Location (Tag_Comp);
21990 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21991 -- implemented interfaces.
21993 if Has_Interfaces (T) then
21994 Add_Interface_Tag_Components (N, T);
21995 end if;
21996 end if;
21998 Make_Class_Wide_Type (T);
21999 Set_Direct_Primitive_Operations (T, New_Elmt_List);
22000 end if;
22002 -- We must suppress range checks when processing record components in
22003 -- the presence of discriminants, since we don't want spurious checks to
22004 -- be generated during their analysis, but Suppress_Range_Checks flags
22005 -- must be reset the after processing the record definition.
22007 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
22008 -- couldn't we just use the normal range check suppression method here.
22009 -- That would seem cleaner ???
22011 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
22012 Set_Kill_Range_Checks (T, True);
22013 Record_Type_Definition (Def, Prev);
22014 Set_Kill_Range_Checks (T, False);
22015 else
22016 Record_Type_Definition (Def, Prev);
22017 end if;
22019 -- Exit from record scope
22021 End_Scope;
22023 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
22024 -- the implemented interfaces and associate them an aliased entity.
22026 if Is_Tagged
22027 and then not Is_Empty_List (Interface_List (Def))
22028 then
22029 Derive_Progenitor_Subprograms (T, T);
22030 end if;
22032 Check_Function_Writable_Actuals (N);
22033 end Record_Type_Declaration;
22035 ----------------------------
22036 -- Record_Type_Definition --
22037 ----------------------------
22039 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
22040 Component : Entity_Id;
22041 Ctrl_Components : Boolean := False;
22042 Final_Storage_Only : Boolean;
22043 T : Entity_Id;
22045 begin
22046 if Ekind (Prev_T) = E_Incomplete_Type then
22047 T := Full_View (Prev_T);
22048 else
22049 T := Prev_T;
22050 end if;
22052 -- In SPARK, tagged types and type extensions may only be declared in
22053 -- the specification of library unit packages.
22055 if Present (Def) and then Is_Tagged_Type (T) then
22056 declare
22057 Typ : Node_Id;
22058 Ctxt : Node_Id;
22060 begin
22061 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22062 Typ := Parent (Def);
22063 else
22064 pragma Assert
22065 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22066 Typ := Parent (Parent (Def));
22067 end if;
22069 Ctxt := Parent (Typ);
22071 if Nkind (Ctxt) = N_Package_Body
22072 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22073 then
22074 Check_SPARK_05_Restriction
22075 ("type should be defined in package specification", Typ);
22077 elsif Nkind (Ctxt) /= N_Package_Specification
22078 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22079 then
22080 Check_SPARK_05_Restriction
22081 ("type should be defined in library unit package", Typ);
22082 end if;
22083 end;
22084 end if;
22086 Final_Storage_Only := not Is_Controlled (T);
22088 -- Ada 2005: Check whether an explicit Limited is present in a derived
22089 -- type declaration.
22091 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22092 and then Limited_Present (Parent (Def))
22093 then
22094 Set_Is_Limited_Record (T);
22095 end if;
22097 -- If the component list of a record type is defined by the reserved
22098 -- word null and there is no discriminant part, then the record type has
22099 -- no components and all records of the type are null records (RM 3.7)
22100 -- This procedure is also called to process the extension part of a
22101 -- record extension, in which case the current scope may have inherited
22102 -- components.
22104 if No (Def)
22105 or else No (Component_List (Def))
22106 or else Null_Present (Component_List (Def))
22107 then
22108 if not Is_Tagged_Type (T) then
22109 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22110 end if;
22112 else
22113 Analyze_Declarations (Component_Items (Component_List (Def)));
22115 if Present (Variant_Part (Component_List (Def))) then
22116 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22117 Analyze (Variant_Part (Component_List (Def)));
22118 end if;
22119 end if;
22121 -- After completing the semantic analysis of the record definition,
22122 -- record components, both new and inherited, are accessible. Set their
22123 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22124 -- whose Ekind may be void.
22126 Component := First_Entity (Current_Scope);
22127 while Present (Component) loop
22128 if Ekind (Component) = E_Void
22129 and then not Is_Itype (Component)
22130 then
22131 Set_Ekind (Component, E_Component);
22132 Init_Component_Location (Component);
22133 end if;
22135 Propagate_Concurrent_Flags (T, Etype (Component));
22137 if Ekind (Component) /= E_Component then
22138 null;
22140 -- Do not set Has_Controlled_Component on a class-wide equivalent
22141 -- type. See Make_CW_Equivalent_Type.
22143 elsif not Is_Class_Wide_Equivalent_Type (T)
22144 and then (Has_Controlled_Component (Etype (Component))
22145 or else (Chars (Component) /= Name_uParent
22146 and then Is_Controlled (Etype (Component))))
22147 then
22148 Set_Has_Controlled_Component (T, True);
22149 Final_Storage_Only :=
22150 Final_Storage_Only
22151 and then Finalize_Storage_Only (Etype (Component));
22152 Ctrl_Components := True;
22153 end if;
22155 Next_Entity (Component);
22156 end loop;
22158 -- A Type is Finalize_Storage_Only only if all its controlled components
22159 -- are also.
22161 if Ctrl_Components then
22162 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22163 end if;
22165 -- Place reference to end record on the proper entity, which may
22166 -- be a partial view.
22168 if Present (Def) then
22169 Process_End_Label (Def, 'e', Prev_T);
22170 end if;
22171 end Record_Type_Definition;
22173 ------------------------
22174 -- Replace_Components --
22175 ------------------------
22177 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22178 function Process (N : Node_Id) return Traverse_Result;
22180 -------------
22181 -- Process --
22182 -------------
22184 function Process (N : Node_Id) return Traverse_Result is
22185 Comp : Entity_Id;
22187 begin
22188 if Nkind (N) = N_Discriminant_Specification then
22189 Comp := First_Discriminant (Typ);
22190 while Present (Comp) loop
22191 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22192 Set_Defining_Identifier (N, Comp);
22193 exit;
22194 end if;
22196 Next_Discriminant (Comp);
22197 end loop;
22199 elsif Nkind (N) = N_Variant_Part then
22200 Comp := First_Discriminant (Typ);
22201 while Present (Comp) loop
22202 if Chars (Comp) = Chars (Name (N)) then
22203 Set_Entity (Name (N), Comp);
22204 exit;
22205 end if;
22207 Next_Discriminant (Comp);
22208 end loop;
22210 elsif Nkind (N) = N_Component_Declaration then
22211 Comp := First_Component (Typ);
22212 while Present (Comp) loop
22213 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22214 Set_Defining_Identifier (N, Comp);
22215 exit;
22216 end if;
22218 Next_Component (Comp);
22219 end loop;
22220 end if;
22222 return OK;
22223 end Process;
22225 procedure Replace is new Traverse_Proc (Process);
22227 -- Start of processing for Replace_Components
22229 begin
22230 Replace (Decl);
22231 end Replace_Components;
22233 -------------------------------
22234 -- Set_Completion_Referenced --
22235 -------------------------------
22237 procedure Set_Completion_Referenced (E : Entity_Id) is
22238 begin
22239 -- If in main unit, mark entity that is a completion as referenced,
22240 -- warnings go on the partial view when needed.
22242 if In_Extended_Main_Source_Unit (E) then
22243 Set_Referenced (E);
22244 end if;
22245 end Set_Completion_Referenced;
22247 ---------------------
22248 -- Set_Default_SSO --
22249 ---------------------
22251 procedure Set_Default_SSO (T : Entity_Id) is
22252 begin
22253 case Opt.Default_SSO is
22254 when ' ' =>
22255 null;
22256 when 'L' =>
22257 Set_SSO_Set_Low_By_Default (T, True);
22258 when 'H' =>
22259 Set_SSO_Set_High_By_Default (T, True);
22260 when others =>
22261 raise Program_Error;
22262 end case;
22263 end Set_Default_SSO;
22265 ---------------------
22266 -- Set_Fixed_Range --
22267 ---------------------
22269 -- The range for fixed-point types is complicated by the fact that we
22270 -- do not know the exact end points at the time of the declaration. This
22271 -- is true for three reasons:
22273 -- A size clause may affect the fudging of the end-points.
22274 -- A small clause may affect the values of the end-points.
22275 -- We try to include the end-points if it does not affect the size.
22277 -- This means that the actual end-points must be established at the
22278 -- point when the type is frozen. Meanwhile, we first narrow the range
22279 -- as permitted (so that it will fit if necessary in a small specified
22280 -- size), and then build a range subtree with these narrowed bounds.
22281 -- Set_Fixed_Range constructs the range from real literal values, and
22282 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22284 -- The parent of this range is set to point to the entity so that it is
22285 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22286 -- other scalar types, which are just pointers to the range in the
22287 -- original tree, this would otherwise be an orphan).
22289 -- The tree is left unanalyzed. When the type is frozen, the processing
22290 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22291 -- analyzed, and uses this as an indication that it should complete
22292 -- work on the range (it will know the final small and size values).
22294 procedure Set_Fixed_Range
22295 (E : Entity_Id;
22296 Loc : Source_Ptr;
22297 Lo : Ureal;
22298 Hi : Ureal)
22300 S : constant Node_Id :=
22301 Make_Range (Loc,
22302 Low_Bound => Make_Real_Literal (Loc, Lo),
22303 High_Bound => Make_Real_Literal (Loc, Hi));
22304 begin
22305 Set_Scalar_Range (E, S);
22306 Set_Parent (S, E);
22308 -- Before the freeze point, the bounds of a fixed point are universal
22309 -- and carry the corresponding type.
22311 Set_Etype (Low_Bound (S), Universal_Real);
22312 Set_Etype (High_Bound (S), Universal_Real);
22313 end Set_Fixed_Range;
22315 ----------------------------------
22316 -- Set_Scalar_Range_For_Subtype --
22317 ----------------------------------
22319 procedure Set_Scalar_Range_For_Subtype
22320 (Def_Id : Entity_Id;
22321 R : Node_Id;
22322 Subt : Entity_Id)
22324 Kind : constant Entity_Kind := Ekind (Def_Id);
22326 begin
22327 -- Defend against previous error
22329 if Nkind (R) = N_Error then
22330 return;
22331 end if;
22333 Set_Scalar_Range (Def_Id, R);
22335 -- We need to link the range into the tree before resolving it so
22336 -- that types that are referenced, including importantly the subtype
22337 -- itself, are properly frozen (Freeze_Expression requires that the
22338 -- expression be properly linked into the tree). Of course if it is
22339 -- already linked in, then we do not disturb the current link.
22341 if No (Parent (R)) then
22342 Set_Parent (R, Def_Id);
22343 end if;
22345 -- Reset the kind of the subtype during analysis of the range, to
22346 -- catch possible premature use in the bounds themselves.
22348 Set_Ekind (Def_Id, E_Void);
22349 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22350 Set_Ekind (Def_Id, Kind);
22351 end Set_Scalar_Range_For_Subtype;
22353 --------------------------------------------------------
22354 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22355 --------------------------------------------------------
22357 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22358 (E : Entity_Id)
22360 begin
22361 -- Make sure set if encountered during Expand_To_Stored_Constraint
22363 Set_Stored_Constraint (E, No_Elist);
22365 -- Give it the right value
22367 if Is_Constrained (E) and then Has_Discriminants (E) then
22368 Set_Stored_Constraint (E,
22369 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22370 end if;
22371 end Set_Stored_Constraint_From_Discriminant_Constraint;
22373 -------------------------------------
22374 -- Signed_Integer_Type_Declaration --
22375 -------------------------------------
22377 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22378 Implicit_Base : Entity_Id;
22379 Base_Typ : Entity_Id;
22380 Lo_Val : Uint;
22381 Hi_Val : Uint;
22382 Errs : Boolean := False;
22383 Lo : Node_Id;
22384 Hi : Node_Id;
22386 function Can_Derive_From (E : Entity_Id) return Boolean;
22387 -- Determine whether given bounds allow derivation from specified type
22389 procedure Check_Bound (Expr : Node_Id);
22390 -- Check bound to make sure it is integral and static. If not, post
22391 -- appropriate error message and set Errs flag
22393 ---------------------
22394 -- Can_Derive_From --
22395 ---------------------
22397 -- Note we check both bounds against both end values, to deal with
22398 -- strange types like ones with a range of 0 .. -12341234.
22400 function Can_Derive_From (E : Entity_Id) return Boolean is
22401 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22402 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22403 begin
22404 return Lo <= Lo_Val and then Lo_Val <= Hi
22405 and then
22406 Lo <= Hi_Val and then Hi_Val <= Hi;
22407 end Can_Derive_From;
22409 -----------------
22410 -- Check_Bound --
22411 -----------------
22413 procedure Check_Bound (Expr : Node_Id) is
22414 begin
22415 -- If a range constraint is used as an integer type definition, each
22416 -- bound of the range must be defined by a static expression of some
22417 -- integer type, but the two bounds need not have the same integer
22418 -- type (Negative bounds are allowed.) (RM 3.5.4)
22420 if not Is_Integer_Type (Etype (Expr)) then
22421 Error_Msg_N
22422 ("integer type definition bounds must be of integer type", Expr);
22423 Errs := True;
22425 elsif not Is_OK_Static_Expression (Expr) then
22426 Flag_Non_Static_Expr
22427 ("non-static expression used for integer type bound!", Expr);
22428 Errs := True;
22430 -- The bounds are folded into literals, and we set their type to be
22431 -- universal, to avoid typing difficulties: we cannot set the type
22432 -- of the literal to the new type, because this would be a forward
22433 -- reference for the back end, and if the original type is user-
22434 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22436 else
22437 if Is_Entity_Name (Expr) then
22438 Fold_Uint (Expr, Expr_Value (Expr), True);
22439 end if;
22441 Set_Etype (Expr, Universal_Integer);
22442 end if;
22443 end Check_Bound;
22445 -- Start of processing for Signed_Integer_Type_Declaration
22447 begin
22448 -- Create an anonymous base type
22450 Implicit_Base :=
22451 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22453 -- Analyze and check the bounds, they can be of any integer type
22455 Lo := Low_Bound (Def);
22456 Hi := High_Bound (Def);
22458 -- Arbitrarily use Integer as the type if either bound had an error
22460 if Hi = Error or else Lo = Error then
22461 Base_Typ := Any_Integer;
22462 Set_Error_Posted (T, True);
22464 -- Here both bounds are OK expressions
22466 else
22467 Analyze_And_Resolve (Lo, Any_Integer);
22468 Analyze_And_Resolve (Hi, Any_Integer);
22470 Check_Bound (Lo);
22471 Check_Bound (Hi);
22473 if Errs then
22474 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22475 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22476 end if;
22478 -- Find type to derive from
22480 Lo_Val := Expr_Value (Lo);
22481 Hi_Val := Expr_Value (Hi);
22483 if Can_Derive_From (Standard_Short_Short_Integer) then
22484 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22486 elsif Can_Derive_From (Standard_Short_Integer) then
22487 Base_Typ := Base_Type (Standard_Short_Integer);
22489 elsif Can_Derive_From (Standard_Integer) then
22490 Base_Typ := Base_Type (Standard_Integer);
22492 elsif Can_Derive_From (Standard_Long_Integer) then
22493 Base_Typ := Base_Type (Standard_Long_Integer);
22495 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22496 Check_Restriction (No_Long_Long_Integers, Def);
22497 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22499 else
22500 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22501 Error_Msg_N ("integer type definition bounds out of range", Def);
22502 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22503 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22504 end if;
22505 end if;
22507 -- Complete both implicit base and declared first subtype entities. The
22508 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22509 -- are not clobbered when the signed integer type acts as a full view of
22510 -- a private type.
22512 Set_Etype (Implicit_Base, Base_Typ);
22513 Set_Size_Info (Implicit_Base, Base_Typ);
22514 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22515 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22516 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22518 Set_Ekind (T, E_Signed_Integer_Subtype);
22519 Set_Etype (T, Implicit_Base);
22520 Set_Size_Info (T, Implicit_Base);
22521 Inherit_Rep_Item_Chain (T, Implicit_Base);
22522 Set_Scalar_Range (T, Def);
22523 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22524 Set_Is_Constrained (T);
22525 end Signed_Integer_Type_Declaration;
22527 end Sem_Ch3;