pr88074.c: Require c99_runtime.
[official-gcc.git] / gcc / ada / sem_aggr.adb
blobd03af55b85bb6f28d7b7d145148f803f3a993f7a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Itypes; use Itypes;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nmake; use Nmake;
43 with Nlists; use Nlists;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch3; use Sem_Ch3;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Dim; use Sem_Dim;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sem_Type; use Sem_Type;
58 with Sem_Warn; use Sem_Warn;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Stringt; use Stringt;
62 with Stand; use Stand;
63 with Style; use Style;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Uintp; use Uintp;
68 package body Sem_Aggr is
70 type Case_Bounds is record
71 Lo : Node_Id;
72 -- Low bound of choice. Once we sort the Case_Table, then entries
73 -- will be in order of ascending Choice_Lo values.
75 Hi : Node_Id;
76 -- High Bound of choice. The sort does not pay any attention to the
77 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
79 Highest : Uint;
80 -- If there are duplicates or missing entries, then in the sorted
81 -- table, this records the highest value among Choice_Hi values
82 -- seen so far, including this entry.
84 Choice : Node_Id;
85 -- The node of the choice
86 end record;
88 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
89 -- Table type used by Check_Case_Choices procedure. Entry zero is not
90 -- used (reserved for the sort). Real entries start at one.
92 -----------------------
93 -- Local Subprograms --
94 -----------------------
96 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
97 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
98 -- simple insertion sort is used since the choices in a case statement will
99 -- usually be in near sorted order.
101 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
102 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
103 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
104 -- the array case (the component type of the array will be used) or an
105 -- E_Component/E_Discriminant entity in the record case, in which case the
106 -- type of the component will be used for the test. If Typ is any other
107 -- kind of entity, the call is ignored. Expr is the component node in the
108 -- aggregate which is known to have a null value. A warning message will be
109 -- issued if the component is null excluding.
111 -- It would be better to pass the proper type for Typ ???
113 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
114 -- Check that Expr is either not limited or else is one of the cases of
115 -- expressions allowed for a limited component association (namely, an
116 -- aggregate, function call, or <> notation). Report error for violations.
117 -- Expression is also OK in an instance or inlining context, because we
118 -- have already preanalyzed and it is known to be type correct.
120 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
121 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
122 -- at Level are qualified. If Level = 0, this applies to Expr directly.
123 -- Only issue errors in formal verification mode.
125 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
126 -- Return True of Expr is an aggregate not contained directly in another
127 -- aggregate.
129 ------------------------------------------------------
130 -- Subprograms used for RECORD AGGREGATE Processing --
131 ------------------------------------------------------
133 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
134 -- This procedure performs all the semantic checks required for record
135 -- aggregates. Note that for aggregates analysis and resolution go
136 -- hand in hand. Aggregate analysis has been delayed up to here and
137 -- it is done while resolving the aggregate.
139 -- N is the N_Aggregate node.
140 -- Typ is the record type for the aggregate resolution
142 -- While performing the semantic checks, this procedure builds a new
143 -- Component_Association_List where each record field appears alone in a
144 -- Component_Choice_List along with its corresponding expression. The
145 -- record fields in the Component_Association_List appear in the same order
146 -- in which they appear in the record type Typ.
148 -- Once this new Component_Association_List is built and all the semantic
149 -- checks performed, the original aggregate subtree is replaced with the
150 -- new named record aggregate just built. Note that subtree substitution is
151 -- performed with Rewrite so as to be able to retrieve the original
152 -- aggregate.
154 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
155 -- yields the aggregate format expected by Gigi. Typically, this kind of
156 -- tree manipulations are done in the expander. However, because the
157 -- semantic checks that need to be performed on record aggregates really go
158 -- hand in hand with the record aggregate normalization, the aggregate
159 -- subtree transformation is performed during resolution rather than
160 -- expansion. Had we decided otherwise we would have had to duplicate most
161 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
162 -- however, that all the expansion concerning aggregates for tagged records
163 -- is done in Expand_Record_Aggregate.
165 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
167 -- 1. Make sure that the record type against which the record aggregate
168 -- has to be resolved is not abstract. Furthermore if the type is a
169 -- null aggregate make sure the input aggregate N is also null.
171 -- 2. Verify that the structure of the aggregate is that of a record
172 -- aggregate. Specifically, look for component associations and ensure
173 -- that each choice list only has identifiers or the N_Others_Choice
174 -- node. Also make sure that if present, the N_Others_Choice occurs
175 -- last and by itself.
177 -- 3. If Typ contains discriminants, the values for each discriminant is
178 -- looked for. If the record type Typ has variants, we check that the
179 -- expressions corresponding to each discriminant ruling the (possibly
180 -- nested) variant parts of Typ, are static. This allows us to determine
181 -- the variant parts to which the rest of the aggregate must conform.
182 -- The names of discriminants with their values are saved in a new
183 -- association list, New_Assoc_List which is later augmented with the
184 -- names and values of the remaining components in the record type.
186 -- During this phase we also make sure that every discriminant is
187 -- assigned exactly one value. Note that when several values for a given
188 -- discriminant are found, semantic processing continues looking for
189 -- further errors. In this case it's the first discriminant value found
190 -- which we will be recorded.
192 -- IMPORTANT NOTE: For derived tagged types this procedure expects
193 -- First_Discriminant and Next_Discriminant to give the correct list
194 -- of discriminants, in the correct order.
196 -- 4. After all the discriminant values have been gathered, we can set the
197 -- Etype of the record aggregate. If Typ contains no discriminants this
198 -- is straightforward: the Etype of N is just Typ, otherwise a new
199 -- implicit constrained subtype of Typ is built to be the Etype of N.
201 -- 5. Gather the remaining record components according to the discriminant
202 -- values. This involves recursively traversing the record type
203 -- structure to see what variants are selected by the given discriminant
204 -- values. This processing is a little more convoluted if Typ is a
205 -- derived tagged types since we need to retrieve the record structure
206 -- of all the ancestors of Typ.
208 -- 6. After gathering the record components we look for their values in the
209 -- record aggregate and emit appropriate error messages should we not
210 -- find such values or should they be duplicated.
212 -- 7. We then make sure no illegal component names appear in the record
213 -- aggregate and make sure that the type of the record components
214 -- appearing in a same choice list is the same. Finally we ensure that
215 -- the others choice, if present, is used to provide the value of at
216 -- least a record component.
218 -- 8. The original aggregate node is replaced with the new named aggregate
219 -- built in steps 3 through 6, as explained earlier.
221 -- Given the complexity of record aggregate resolution, the primary goal of
222 -- this routine is clarity and simplicity rather than execution and storage
223 -- efficiency. If there are only positional components in the aggregate the
224 -- running time is linear. If there are associations the running time is
225 -- still linear as long as the order of the associations is not too far off
226 -- the order of the components in the record type. If this is not the case
227 -- the running time is at worst quadratic in the size of the association
228 -- list.
230 procedure Check_Misspelled_Component
231 (Elements : Elist_Id;
232 Component : Node_Id);
233 -- Give possible misspelling diagnostic if Component is likely to be a
234 -- misspelling of one of the components of the Assoc_List. This is called
235 -- by Resolve_Aggr_Expr after producing an invalid component error message.
237 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
238 -- An optimization: determine whether a discriminated subtype has a static
239 -- constraint, and contains array components whose length is also static,
240 -- either because they are constrained by the discriminant, or because the
241 -- original component bounds are static.
243 -----------------------------------------------------
244 -- Subprograms used for ARRAY AGGREGATE Processing --
245 -----------------------------------------------------
247 function Resolve_Array_Aggregate
248 (N : Node_Id;
249 Index : Node_Id;
250 Index_Constr : Node_Id;
251 Component_Typ : Entity_Id;
252 Others_Allowed : Boolean) return Boolean;
253 -- This procedure performs the semantic checks for an array aggregate.
254 -- True is returned if the aggregate resolution succeeds.
256 -- The procedure works by recursively checking each nested aggregate.
257 -- Specifically, after checking a sub-aggregate nested at the i-th level
258 -- we recursively check all the subaggregates at the i+1-st level (if any).
259 -- Note that for aggregates analysis and resolution go hand in hand.
260 -- Aggregate analysis has been delayed up to here and it is done while
261 -- resolving the aggregate.
263 -- N is the current N_Aggregate node to be checked.
265 -- Index is the index node corresponding to the array sub-aggregate that
266 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
267 -- corresponding index type (or subtype).
269 -- Index_Constr is the node giving the applicable index constraint if
270 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
271 -- contexts [...] that can be used to determine the bounds of the array
272 -- value specified by the aggregate". If Others_Allowed below is False
273 -- there is no applicable index constraint and this node is set to Index.
275 -- Component_Typ is the array component type.
277 -- Others_Allowed indicates whether an others choice is allowed
278 -- in the context where the top-level aggregate appeared.
280 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
282 -- 1. Make sure that the others choice, if present, is by itself and
283 -- appears last in the sub-aggregate. Check that we do not have
284 -- positional and named components in the array sub-aggregate (unless
285 -- the named association is an others choice). Finally if an others
286 -- choice is present, make sure it is allowed in the aggregate context.
288 -- 2. If the array sub-aggregate contains discrete_choices:
290 -- (A) Verify their validity. Specifically verify that:
292 -- (a) If a null range is present it must be the only possible
293 -- choice in the array aggregate.
295 -- (b) Ditto for a non static range.
297 -- (c) Ditto for a non static expression.
299 -- In addition this step analyzes and resolves each discrete_choice,
300 -- making sure that its type is the type of the corresponding Index.
301 -- If we are not at the lowest array aggregate level (in the case of
302 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
303 -- recursively on each component expression. Otherwise, resolve the
304 -- bottom level component expressions against the expected component
305 -- type ONLY IF the component corresponds to a single discrete choice
306 -- which is not an others choice (to see why read the DELAYED
307 -- COMPONENT RESOLUTION below).
309 -- (B) Determine the bounds of the sub-aggregate and lowest and
310 -- highest choice values.
312 -- 3. For positional aggregates:
314 -- (A) Loop over the component expressions either recursively invoking
315 -- Resolve_Array_Aggregate on each of these for multi-dimensional
316 -- array aggregates or resolving the bottom level component
317 -- expressions against the expected component type.
319 -- (B) Determine the bounds of the positional sub-aggregates.
321 -- 4. Try to determine statically whether the evaluation of the array
322 -- sub-aggregate raises Constraint_Error. If yes emit proper
323 -- warnings. The precise checks are the following:
325 -- (A) Check that the index range defined by aggregate bounds is
326 -- compatible with corresponding index subtype.
327 -- We also check against the base type. In fact it could be that
328 -- Low/High bounds of the base type are static whereas those of
329 -- the index subtype are not. Thus if we can statically catch
330 -- a problem with respect to the base type we are guaranteed
331 -- that the same problem will arise with the index subtype
333 -- (B) If we are dealing with a named aggregate containing an others
334 -- choice and at least one discrete choice then make sure the range
335 -- specified by the discrete choices does not overflow the
336 -- aggregate bounds. We also check against the index type and base
337 -- type bounds for the same reasons given in (A).
339 -- (C) If we are dealing with a positional aggregate with an others
340 -- choice make sure the number of positional elements specified
341 -- does not overflow the aggregate bounds. We also check against
342 -- the index type and base type bounds as mentioned in (A).
344 -- Finally construct an N_Range node giving the sub-aggregate bounds.
345 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
346 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
347 -- to build the appropriate aggregate subtype. Aggregate_Bounds
348 -- information is needed during expansion.
350 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
351 -- expressions in an array aggregate may call Duplicate_Subexpr or some
352 -- other routine that inserts code just outside the outermost aggregate.
353 -- If the array aggregate contains discrete choices or an others choice,
354 -- this may be wrong. Consider for instance the following example.
356 -- type Rec is record
357 -- V : Integer := 0;
358 -- end record;
360 -- type Acc_Rec is access Rec;
361 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
363 -- Then the transformation of "new Rec" that occurs during resolution
364 -- entails the following code modifications
366 -- P7b : constant Acc_Rec := new Rec;
367 -- RecIP (P7b.all);
368 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
370 -- This code transformation is clearly wrong, since we need to call
371 -- "new Rec" for each of the 3 array elements. To avoid this problem we
372 -- delay resolution of the components of non positional array aggregates
373 -- to the expansion phase. As an optimization, if the discrete choice
374 -- specifies a single value we do not delay resolution.
376 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
377 -- This routine returns the type or subtype of an array aggregate.
379 -- N is the array aggregate node whose type we return.
381 -- Typ is the context type in which N occurs.
383 -- This routine creates an implicit array subtype whose bounds are
384 -- those defined by the aggregate. When this routine is invoked
385 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
386 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
387 -- sub-aggregate bounds. When building the aggregate itype, this function
388 -- traverses the array aggregate N collecting such Aggregate_Bounds and
389 -- constructs the proper array aggregate itype.
391 -- Note that in the case of multidimensional aggregates each inner
392 -- sub-aggregate corresponding to a given array dimension, may provide a
393 -- different bounds. If it is possible to determine statically that
394 -- some sub-aggregates corresponding to the same index do not have the
395 -- same bounds, then a warning is emitted. If such check is not possible
396 -- statically (because some sub-aggregate bounds are dynamic expressions)
397 -- then this job is left to the expander. In all cases the particular
398 -- bounds that this function will chose for a given dimension is the first
399 -- N_Range node for a sub-aggregate corresponding to that dimension.
401 -- Note that the Raises_Constraint_Error flag of an array aggregate
402 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
403 -- is set in Resolve_Array_Aggregate but the aggregate is not
404 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
405 -- first construct the proper itype for the aggregate (Gigi needs
406 -- this). After constructing the proper itype we will eventually replace
407 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
408 -- Of course in cases such as:
410 -- type Arr is array (integer range <>) of Integer;
411 -- A : Arr := (positive range -1 .. 2 => 0);
413 -- The bounds of the aggregate itype are cooked up to look reasonable
414 -- (in this particular case the bounds will be 1 .. 2).
416 procedure Make_String_Into_Aggregate (N : Node_Id);
417 -- A string literal can appear in a context in which a one dimensional
418 -- array of characters is expected. This procedure simply rewrites the
419 -- string as an aggregate, prior to resolution.
421 ---------------------------------
422 -- Delta aggregate processing --
423 ---------------------------------
425 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
426 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
428 ------------------------
429 -- Array_Aggr_Subtype --
430 ------------------------
432 function Array_Aggr_Subtype
433 (N : Node_Id;
434 Typ : Entity_Id) return Entity_Id
436 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
437 -- Number of aggregate index dimensions
439 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
440 -- Constrained N_Range of each index dimension in our aggregate itype
442 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
443 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
444 -- Low and High bounds for each index dimension in our aggregate itype
446 Is_Fully_Positional : Boolean := True;
448 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
449 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
450 -- to (sub-)aggregate N. This procedure collects and removes the side
451 -- effects of the constrained N_Range nodes corresponding to each index
452 -- dimension of our aggregate itype. These N_Range nodes are collected
453 -- in Aggr_Range above.
455 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
456 -- bounds of each index dimension. If, when collecting, two bounds
457 -- corresponding to the same dimension are static and found to differ,
458 -- then emit a warning, and mark N as raising Constraint_Error.
460 -------------------------
461 -- Collect_Aggr_Bounds --
462 -------------------------
464 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
465 This_Range : constant Node_Id := Aggregate_Bounds (N);
466 -- The aggregate range node of this specific sub-aggregate
468 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
469 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
470 -- The aggregate bounds of this specific sub-aggregate
472 Assoc : Node_Id;
473 Expr : Node_Id;
475 begin
476 Remove_Side_Effects (This_Low, Variable_Ref => True);
477 Remove_Side_Effects (This_High, Variable_Ref => True);
479 -- Collect the first N_Range for a given dimension that you find.
480 -- For a given dimension they must be all equal anyway.
482 if No (Aggr_Range (Dim)) then
483 Aggr_Low (Dim) := This_Low;
484 Aggr_High (Dim) := This_High;
485 Aggr_Range (Dim) := This_Range;
487 else
488 if Compile_Time_Known_Value (This_Low) then
489 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
490 Aggr_Low (Dim) := This_Low;
492 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
493 Set_Raises_Constraint_Error (N);
494 Error_Msg_Warn := SPARK_Mode /= On;
495 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
496 Error_Msg_N ("\Constraint_Error [<<", N);
497 end if;
498 end if;
500 if Compile_Time_Known_Value (This_High) then
501 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
502 Aggr_High (Dim) := This_High;
504 elsif
505 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
506 then
507 Set_Raises_Constraint_Error (N);
508 Error_Msg_Warn := SPARK_Mode /= On;
509 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
510 Error_Msg_N ("\Constraint_Error [<<", N);
511 end if;
512 end if;
513 end if;
515 if Dim < Aggr_Dimension then
517 -- Process positional components
519 if Present (Expressions (N)) then
520 Expr := First (Expressions (N));
521 while Present (Expr) loop
522 Collect_Aggr_Bounds (Expr, Dim + 1);
523 Next (Expr);
524 end loop;
525 end if;
527 -- Process component associations
529 if Present (Component_Associations (N)) then
530 Is_Fully_Positional := False;
532 Assoc := First (Component_Associations (N));
533 while Present (Assoc) loop
534 Expr := Expression (Assoc);
535 Collect_Aggr_Bounds (Expr, Dim + 1);
536 Next (Assoc);
537 end loop;
538 end if;
539 end if;
540 end Collect_Aggr_Bounds;
542 -- Array_Aggr_Subtype variables
544 Itype : Entity_Id;
545 -- The final itype of the overall aggregate
547 Index_Constraints : constant List_Id := New_List;
548 -- The list of index constraints of the aggregate itype
550 -- Start of processing for Array_Aggr_Subtype
552 begin
553 -- Make sure that the list of index constraints is properly attached to
554 -- the tree, and then collect the aggregate bounds.
556 Set_Parent (Index_Constraints, N);
557 Collect_Aggr_Bounds (N, 1);
559 -- Build the list of constrained indexes of our aggregate itype
561 for J in 1 .. Aggr_Dimension loop
562 Create_Index : declare
563 Index_Base : constant Entity_Id :=
564 Base_Type (Etype (Aggr_Range (J)));
565 Index_Typ : Entity_Id;
567 begin
568 -- Construct the Index subtype, and associate it with the range
569 -- construct that generates it.
571 Index_Typ :=
572 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
574 Set_Etype (Index_Typ, Index_Base);
576 if Is_Character_Type (Index_Base) then
577 Set_Is_Character_Type (Index_Typ);
578 end if;
580 Set_Size_Info (Index_Typ, (Index_Base));
581 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
582 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
583 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
585 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
586 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
587 end if;
589 Set_Etype (Aggr_Range (J), Index_Typ);
591 Append (Aggr_Range (J), To => Index_Constraints);
592 end Create_Index;
593 end loop;
595 -- Now build the Itype
597 Itype := Create_Itype (E_Array_Subtype, N);
599 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
600 Set_Convention (Itype, Convention (Typ));
601 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
602 Set_Etype (Itype, Base_Type (Typ));
603 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
604 Set_Is_Aliased (Itype, Is_Aliased (Typ));
605 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
607 Copy_Suppress_Status (Index_Check, Typ, Itype);
608 Copy_Suppress_Status (Length_Check, Typ, Itype);
610 Set_First_Index (Itype, First (Index_Constraints));
611 Set_Is_Constrained (Itype, True);
612 Set_Is_Internal (Itype, True);
614 if Has_Predicates (Typ) then
615 Set_Has_Predicates (Itype);
617 if Present (Predicate_Function (Typ)) then
618 Set_Predicate_Function (Itype, Predicate_Function (Typ));
619 else
620 Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
621 end if;
622 end if;
624 -- A simple optimization: purely positional aggregates of static
625 -- components should be passed to gigi unexpanded whenever possible, and
626 -- regardless of the staticness of the bounds themselves. Subsequent
627 -- checks in exp_aggr verify that type is not packed, etc.
629 Set_Size_Known_At_Compile_Time
630 (Itype,
631 Is_Fully_Positional
632 and then Comes_From_Source (N)
633 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
635 -- We always need a freeze node for a packed array subtype, so that we
636 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
637 -- expansion is disabled, the packed array subtype is not built, and we
638 -- must not generate a freeze node for the type, or else it will appear
639 -- incomplete to gigi.
641 if Is_Packed (Itype)
642 and then not In_Spec_Expression
643 and then Expander_Active
644 then
645 Freeze_Itype (Itype, N);
646 end if;
648 return Itype;
649 end Array_Aggr_Subtype;
651 --------------------------------
652 -- Check_Misspelled_Component --
653 --------------------------------
655 procedure Check_Misspelled_Component
656 (Elements : Elist_Id;
657 Component : Node_Id)
659 Max_Suggestions : constant := 2;
661 Nr_Of_Suggestions : Natural := 0;
662 Suggestion_1 : Entity_Id := Empty;
663 Suggestion_2 : Entity_Id := Empty;
664 Component_Elmt : Elmt_Id;
666 begin
667 -- All the components of List are matched against Component and a count
668 -- is maintained of possible misspellings. When at the end of the
669 -- analysis there are one or two (not more) possible misspellings,
670 -- these misspellings will be suggested as possible corrections.
672 Component_Elmt := First_Elmt (Elements);
673 while Nr_Of_Suggestions <= Max_Suggestions
674 and then Present (Component_Elmt)
675 loop
676 if Is_Bad_Spelling_Of
677 (Chars (Node (Component_Elmt)),
678 Chars (Component))
679 then
680 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
682 case Nr_Of_Suggestions is
683 when 1 => Suggestion_1 := Node (Component_Elmt);
684 when 2 => Suggestion_2 := Node (Component_Elmt);
685 when others => null;
686 end case;
687 end if;
689 Next_Elmt (Component_Elmt);
690 end loop;
692 -- Report at most two suggestions
694 if Nr_Of_Suggestions = 1 then
695 Error_Msg_NE -- CODEFIX
696 ("\possible misspelling of&", Component, Suggestion_1);
698 elsif Nr_Of_Suggestions = 2 then
699 Error_Msg_Node_2 := Suggestion_2;
700 Error_Msg_NE -- CODEFIX
701 ("\possible misspelling of& or&", Component, Suggestion_1);
702 end if;
703 end Check_Misspelled_Component;
705 ----------------------------------------
706 -- Check_Expr_OK_In_Limited_Aggregate --
707 ----------------------------------------
709 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
710 begin
711 if Is_Limited_Type (Etype (Expr))
712 and then Comes_From_Source (Expr)
713 then
714 if In_Instance_Body or else In_Inlined_Body then
715 null;
717 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
718 Error_Msg_N
719 ("initialization not allowed for limited types", Expr);
720 Explain_Limited_Type (Etype (Expr), Expr);
721 end if;
722 end if;
723 end Check_Expr_OK_In_Limited_Aggregate;
725 -------------------------------
726 -- Check_Qualified_Aggregate --
727 -------------------------------
729 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
730 Comp_Expr : Node_Id;
731 Comp_Assn : Node_Id;
733 begin
734 if Level = 0 then
735 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
736 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
737 end if;
739 else
740 Comp_Expr := First (Expressions (Expr));
741 while Present (Comp_Expr) loop
742 if Nkind (Comp_Expr) = N_Aggregate then
743 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
744 end if;
746 Comp_Expr := Next (Comp_Expr);
747 end loop;
749 Comp_Assn := First (Component_Associations (Expr));
750 while Present (Comp_Assn) loop
751 Comp_Expr := Expression (Comp_Assn);
753 if Nkind (Comp_Expr) = N_Aggregate then
754 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
755 end if;
757 Comp_Assn := Next (Comp_Assn);
758 end loop;
759 end if;
760 end Check_Qualified_Aggregate;
762 ----------------------------------------
763 -- Check_Static_Discriminated_Subtype --
764 ----------------------------------------
766 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
767 Disc : constant Entity_Id := First_Discriminant (T);
768 Comp : Entity_Id;
769 Ind : Entity_Id;
771 begin
772 if Has_Record_Rep_Clause (T) then
773 return;
775 elsif Present (Next_Discriminant (Disc)) then
776 return;
778 elsif Nkind (V) /= N_Integer_Literal then
779 return;
780 end if;
782 Comp := First_Component (T);
783 while Present (Comp) loop
784 if Is_Scalar_Type (Etype (Comp)) then
785 null;
787 elsif Is_Private_Type (Etype (Comp))
788 and then Present (Full_View (Etype (Comp)))
789 and then Is_Scalar_Type (Full_View (Etype (Comp)))
790 then
791 null;
793 elsif Is_Array_Type (Etype (Comp)) then
794 if Is_Bit_Packed_Array (Etype (Comp)) then
795 return;
796 end if;
798 Ind := First_Index (Etype (Comp));
799 while Present (Ind) loop
800 if Nkind (Ind) /= N_Range
801 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
802 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
803 then
804 return;
805 end if;
807 Next_Index (Ind);
808 end loop;
810 else
811 return;
812 end if;
814 Next_Component (Comp);
815 end loop;
817 -- On exit, all components have statically known sizes
819 Set_Size_Known_At_Compile_Time (T);
820 end Check_Static_Discriminated_Subtype;
822 -------------------------
823 -- Is_Others_Aggregate --
824 -------------------------
826 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
827 begin
828 return No (Expressions (Aggr))
829 and then
830 Nkind (First (Choice_List (First (Component_Associations (Aggr))))) =
831 N_Others_Choice;
832 end Is_Others_Aggregate;
834 ----------------------------
835 -- Is_Top_Level_Aggregate --
836 ----------------------------
838 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
839 begin
840 return Nkind (Parent (Expr)) /= N_Aggregate
841 and then (Nkind (Parent (Expr)) /= N_Component_Association
842 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
843 end Is_Top_Level_Aggregate;
845 --------------------------------
846 -- Make_String_Into_Aggregate --
847 --------------------------------
849 procedure Make_String_Into_Aggregate (N : Node_Id) is
850 Exprs : constant List_Id := New_List;
851 Loc : constant Source_Ptr := Sloc (N);
852 Str : constant String_Id := Strval (N);
853 Strlen : constant Nat := String_Length (Str);
854 C : Char_Code;
855 C_Node : Node_Id;
856 New_N : Node_Id;
857 P : Source_Ptr;
859 begin
860 P := Loc + 1;
861 for J in 1 .. Strlen loop
862 C := Get_String_Char (Str, J);
863 Set_Character_Literal_Name (C);
865 C_Node :=
866 Make_Character_Literal (P,
867 Chars => Name_Find,
868 Char_Literal_Value => UI_From_CC (C));
869 Set_Etype (C_Node, Any_Character);
870 Append_To (Exprs, C_Node);
872 P := P + 1;
873 -- Something special for wide strings???
874 end loop;
876 New_N := Make_Aggregate (Loc, Expressions => Exprs);
877 Set_Analyzed (New_N);
878 Set_Etype (New_N, Any_Composite);
880 Rewrite (N, New_N);
881 end Make_String_Into_Aggregate;
883 -----------------------
884 -- Resolve_Aggregate --
885 -----------------------
887 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
888 Loc : constant Source_Ptr := Sloc (N);
889 Pkind : constant Node_Kind := Nkind (Parent (N));
891 Aggr_Subtyp : Entity_Id;
892 -- The actual aggregate subtype. This is not necessarily the same as Typ
893 -- which is the subtype of the context in which the aggregate was found.
895 begin
896 -- Ignore junk empty aggregate resulting from parser error
898 if No (Expressions (N))
899 and then No (Component_Associations (N))
900 and then not Null_Record_Present (N)
901 then
902 return;
903 end if;
905 -- If the aggregate has box-initialized components, its type must be
906 -- frozen so that initialization procedures can properly be called
907 -- in the resolution that follows. The replacement of boxes with
908 -- initialization calls is properly an expansion activity but it must
909 -- be done during resolution.
911 if Expander_Active
912 and then Present (Component_Associations (N))
913 then
914 declare
915 Comp : Node_Id;
917 begin
918 Comp := First (Component_Associations (N));
919 while Present (Comp) loop
920 if Box_Present (Comp) then
921 Insert_Actions (N, Freeze_Entity (Typ, N));
922 exit;
923 end if;
925 Next (Comp);
926 end loop;
927 end;
928 end if;
930 -- An unqualified aggregate is restricted in SPARK to:
932 -- An aggregate item inside an aggregate for a multi-dimensional array
934 -- An expression being assigned to an unconstrained array, but only if
935 -- the aggregate specifies a value for OTHERS only.
937 if Nkind (Parent (N)) = N_Qualified_Expression then
938 if Is_Array_Type (Typ) then
939 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
940 else
941 Check_Qualified_Aggregate (1, N);
942 end if;
943 else
944 if Is_Array_Type (Typ)
945 and then Nkind (Parent (N)) = N_Assignment_Statement
946 and then not Is_Constrained (Etype (Name (Parent (N))))
947 then
948 if not Is_Others_Aggregate (N) then
949 Check_SPARK_05_Restriction
950 ("array aggregate should have only OTHERS", N);
951 end if;
953 elsif Is_Top_Level_Aggregate (N) then
954 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
956 -- The legality of this unqualified aggregate is checked by calling
957 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
958 -- unless one of these already causes an error to be issued.
960 else
961 null;
962 end if;
963 end if;
965 -- Check for aggregates not allowed in configurable run-time mode.
966 -- We allow all cases of aggregates that do not come from source, since
967 -- these are all assumed to be small (e.g. bounds of a string literal).
968 -- We also allow aggregates of types we know to be small.
970 if not Support_Aggregates_On_Target
971 and then Comes_From_Source (N)
972 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
973 then
974 Error_Msg_CRT ("aggregate", N);
975 end if;
977 -- Ada 2005 (AI-287): Limited aggregates allowed
979 -- In an instance, ignore aggregate subcomponents tnat may be limited,
980 -- because they originate in view conflicts. If the original aggregate
981 -- is legal and the actuals are legal, the aggregate itself is legal.
983 if Is_Limited_Type (Typ)
984 and then Ada_Version < Ada_2005
985 and then not In_Instance
986 then
987 Error_Msg_N ("aggregate type cannot be limited", N);
988 Explain_Limited_Type (Typ, N);
990 elsif Is_Class_Wide_Type (Typ) then
991 Error_Msg_N ("type of aggregate cannot be class-wide", N);
993 elsif Typ = Any_String
994 or else Typ = Any_Composite
995 then
996 Error_Msg_N ("no unique type for aggregate", N);
997 Set_Etype (N, Any_Composite);
999 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
1000 Error_Msg_N ("null record forbidden in array aggregate", N);
1002 elsif Is_Record_Type (Typ) then
1003 Resolve_Record_Aggregate (N, Typ);
1005 elsif Is_Array_Type (Typ) then
1007 -- First a special test, for the case of a positional aggregate of
1008 -- characters which can be replaced by a string literal.
1010 -- Do not perform this transformation if this was a string literal
1011 -- to start with, whose components needed constraint checks, or if
1012 -- the component type is non-static, because it will require those
1013 -- checks and be transformed back into an aggregate. If the index
1014 -- type is not Integer the aggregate may represent a user-defined
1015 -- string type but the context might need the original type so we
1016 -- do not perform the transformation at this point.
1018 if Number_Dimensions (Typ) = 1
1019 and then Is_Standard_Character_Type (Component_Type (Typ))
1020 and then No (Component_Associations (N))
1021 and then not Is_Limited_Composite (Typ)
1022 and then not Is_Private_Composite (Typ)
1023 and then not Is_Bit_Packed_Array (Typ)
1024 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1025 and then Is_OK_Static_Subtype (Component_Type (Typ))
1026 and then Base_Type (Etype (First_Index (Typ))) =
1027 Base_Type (Standard_Integer)
1028 then
1029 declare
1030 Expr : Node_Id;
1032 begin
1033 Expr := First (Expressions (N));
1034 while Present (Expr) loop
1035 exit when Nkind (Expr) /= N_Character_Literal;
1036 Next (Expr);
1037 end loop;
1039 if No (Expr) then
1040 Start_String;
1042 Expr := First (Expressions (N));
1043 while Present (Expr) loop
1044 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1045 Next (Expr);
1046 end loop;
1048 Rewrite (N, Make_String_Literal (Loc, End_String));
1050 Analyze_And_Resolve (N, Typ);
1051 return;
1052 end if;
1053 end;
1054 end if;
1056 -- Here if we have a real aggregate to deal with
1058 Array_Aggregate : declare
1059 Aggr_Resolved : Boolean;
1061 Aggr_Typ : constant Entity_Id := Etype (Typ);
1062 -- This is the unconstrained array type, which is the type against
1063 -- which the aggregate is to be resolved. Typ itself is the array
1064 -- type of the context which may not be the same subtype as the
1065 -- subtype for the final aggregate.
1067 begin
1068 -- In the following we determine whether an OTHERS choice is
1069 -- allowed inside the array aggregate. The test checks the context
1070 -- in which the array aggregate occurs. If the context does not
1071 -- permit it, or the aggregate type is unconstrained, an OTHERS
1072 -- choice is not allowed (except that it is always allowed on the
1073 -- right-hand side of an assignment statement; in this case the
1074 -- constrainedness of the type doesn't matter).
1076 -- If expansion is disabled (generic context, or semantics-only
1077 -- mode) actual subtypes cannot be constructed, and the type of an
1078 -- object may be its unconstrained nominal type. However, if the
1079 -- context is an assignment, we assume that OTHERS is allowed,
1080 -- because the target of the assignment will have a constrained
1081 -- subtype when fully compiled. Ditto if the context is an
1082 -- initialization procedure where a component may have a predicate
1083 -- function that carries the base type.
1085 -- Note that there is no node for Explicit_Actual_Parameter.
1086 -- To test for this context we therefore have to test for node
1087 -- N_Parameter_Association which itself appears only if there is a
1088 -- formal parameter. Consequently we also need to test for
1089 -- N_Procedure_Call_Statement or N_Function_Call.
1091 -- The context may be an N_Reference node, created by expansion.
1092 -- Legality of the others clause was established in the source,
1093 -- so the context is legal.
1095 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1097 if Pkind = N_Assignment_Statement
1098 or else Inside_Init_Proc
1099 or else (Is_Constrained (Typ)
1100 and then
1101 (Pkind = N_Parameter_Association or else
1102 Pkind = N_Function_Call or else
1103 Pkind = N_Procedure_Call_Statement or else
1104 Pkind = N_Generic_Association or else
1105 Pkind = N_Formal_Object_Declaration or else
1106 Pkind = N_Simple_Return_Statement or else
1107 Pkind = N_Object_Declaration or else
1108 Pkind = N_Component_Declaration or else
1109 Pkind = N_Parameter_Specification or else
1110 Pkind = N_Qualified_Expression or else
1111 Pkind = N_Reference or else
1112 Pkind = N_Aggregate or else
1113 Pkind = N_Extension_Aggregate or else
1114 Pkind = N_Component_Association))
1115 then
1116 Aggr_Resolved :=
1117 Resolve_Array_Aggregate
1119 Index => First_Index (Aggr_Typ),
1120 Index_Constr => First_Index (Typ),
1121 Component_Typ => Component_Type (Typ),
1122 Others_Allowed => True);
1123 else
1124 Aggr_Resolved :=
1125 Resolve_Array_Aggregate
1127 Index => First_Index (Aggr_Typ),
1128 Index_Constr => First_Index (Aggr_Typ),
1129 Component_Typ => Component_Type (Typ),
1130 Others_Allowed => False);
1131 end if;
1133 if not Aggr_Resolved then
1135 -- A parenthesized expression may have been intended as an
1136 -- aggregate, leading to a type error when analyzing the
1137 -- component. This can also happen for a nested component
1138 -- (see Analyze_Aggr_Expr).
1140 if Paren_Count (N) > 0 then
1141 Error_Msg_N
1142 ("positional aggregate cannot have one component", N);
1143 end if;
1145 Aggr_Subtyp := Any_Composite;
1147 else
1148 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1149 end if;
1151 Set_Etype (N, Aggr_Subtyp);
1152 end Array_Aggregate;
1154 elsif Is_Private_Type (Typ)
1155 and then Present (Full_View (Typ))
1156 and then (In_Inlined_Body or In_Instance_Body)
1157 and then Is_Composite_Type (Full_View (Typ))
1158 then
1159 Resolve (N, Full_View (Typ));
1161 else
1162 Error_Msg_N ("illegal context for aggregate", N);
1163 end if;
1165 -- If we can determine statically that the evaluation of the aggregate
1166 -- raises Constraint_Error, then replace the aggregate with an
1167 -- N_Raise_Constraint_Error node, but set the Etype to the right
1168 -- aggregate subtype. Gigi needs this.
1170 if Raises_Constraint_Error (N) then
1171 Aggr_Subtyp := Etype (N);
1172 Rewrite (N,
1173 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1174 Set_Raises_Constraint_Error (N);
1175 Set_Etype (N, Aggr_Subtyp);
1176 Set_Analyzed (N);
1177 end if;
1179 Check_Function_Writable_Actuals (N);
1180 end Resolve_Aggregate;
1182 -----------------------------
1183 -- Resolve_Array_Aggregate --
1184 -----------------------------
1186 function Resolve_Array_Aggregate
1187 (N : Node_Id;
1188 Index : Node_Id;
1189 Index_Constr : Node_Id;
1190 Component_Typ : Entity_Id;
1191 Others_Allowed : Boolean) return Boolean
1193 Loc : constant Source_Ptr := Sloc (N);
1195 Failure : constant Boolean := False;
1196 Success : constant Boolean := True;
1198 Index_Typ : constant Entity_Id := Etype (Index);
1199 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1200 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1201 -- The type of the index corresponding to the array sub-aggregate along
1202 -- with its low and upper bounds.
1204 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1205 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1206 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1207 -- Ditto for the base type
1209 Others_Present : Boolean := False;
1211 Nb_Choices : Nat := 0;
1212 -- Contains the overall number of named choices in this sub-aggregate
1214 function Add (Val : Uint; To : Node_Id) return Node_Id;
1215 -- Creates a new expression node where Val is added to expression To.
1216 -- Tries to constant fold whenever possible. To must be an already
1217 -- analyzed expression.
1219 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1220 -- Checks that AH (the upper bound of an array aggregate) is less than
1221 -- or equal to BH (the upper bound of the index base type). If the check
1222 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1223 -- set, and AH is replaced with a duplicate of BH.
1225 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1226 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1227 -- warning if not and sets the Raises_Constraint_Error flag in N.
1229 procedure Check_Length (L, H : Node_Id; Len : Uint);
1230 -- Checks that range L .. H contains at least Len elements. Emits a
1231 -- warning if not and sets the Raises_Constraint_Error flag in N.
1233 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1234 -- Returns True if range L .. H is dynamic or null
1236 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1237 -- Given expression node From, this routine sets OK to False if it
1238 -- cannot statically evaluate From. Otherwise it stores this static
1239 -- value into Value.
1241 function Resolve_Aggr_Expr
1242 (Expr : Node_Id;
1243 Single_Elmt : Boolean) return Boolean;
1244 -- Resolves aggregate expression Expr. Returns False if resolution
1245 -- fails. If Single_Elmt is set to False, the expression Expr may be
1246 -- used to initialize several array aggregate elements (this can happen
1247 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1248 -- In this event we do not resolve Expr unless expansion is disabled.
1249 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1251 -- NOTE: In the case of "... => <>", we pass the in the
1252 -- N_Component_Association node as Expr, since there is no Expression in
1253 -- that case, and we need a Sloc for the error message.
1255 procedure Resolve_Iterated_Component_Association
1256 (N : Node_Id;
1257 Index_Typ : Entity_Id);
1258 -- For AI12-061
1260 ---------
1261 -- Add --
1262 ---------
1264 function Add (Val : Uint; To : Node_Id) return Node_Id is
1265 Expr_Pos : Node_Id;
1266 Expr : Node_Id;
1267 To_Pos : Node_Id;
1269 begin
1270 if Raises_Constraint_Error (To) then
1271 return To;
1272 end if;
1274 -- First test if we can do constant folding
1276 if Compile_Time_Known_Value (To)
1277 or else Nkind (To) = N_Integer_Literal
1278 then
1279 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1280 Set_Is_Static_Expression (Expr_Pos);
1281 Set_Etype (Expr_Pos, Etype (To));
1282 Set_Analyzed (Expr_Pos, Analyzed (To));
1284 if not Is_Enumeration_Type (Index_Typ) then
1285 Expr := Expr_Pos;
1287 -- If we are dealing with enumeration return
1288 -- Index_Typ'Val (Expr_Pos)
1290 else
1291 Expr :=
1292 Make_Attribute_Reference
1293 (Loc,
1294 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1295 Attribute_Name => Name_Val,
1296 Expressions => New_List (Expr_Pos));
1297 end if;
1299 return Expr;
1300 end if;
1302 -- If we are here no constant folding possible
1304 if not Is_Enumeration_Type (Index_Base) then
1305 Expr :=
1306 Make_Op_Add (Loc,
1307 Left_Opnd => Duplicate_Subexpr (To),
1308 Right_Opnd => Make_Integer_Literal (Loc, Val));
1310 -- If we are dealing with enumeration return
1311 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1313 else
1314 To_Pos :=
1315 Make_Attribute_Reference
1316 (Loc,
1317 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1318 Attribute_Name => Name_Pos,
1319 Expressions => New_List (Duplicate_Subexpr (To)));
1321 Expr_Pos :=
1322 Make_Op_Add (Loc,
1323 Left_Opnd => To_Pos,
1324 Right_Opnd => Make_Integer_Literal (Loc, Val));
1326 Expr :=
1327 Make_Attribute_Reference
1328 (Loc,
1329 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1330 Attribute_Name => Name_Val,
1331 Expressions => New_List (Expr_Pos));
1333 -- If the index type has a non standard representation, the
1334 -- attributes 'Val and 'Pos expand into function calls and the
1335 -- resulting expression is considered non-safe for reevaluation
1336 -- by the backend. Relocate it into a constant temporary in order
1337 -- to make it safe for reevaluation.
1339 if Has_Non_Standard_Rep (Etype (N)) then
1340 declare
1341 Def_Id : Entity_Id;
1343 begin
1344 Def_Id := Make_Temporary (Loc, 'R', Expr);
1345 Set_Etype (Def_Id, Index_Typ);
1346 Insert_Action (N,
1347 Make_Object_Declaration (Loc,
1348 Defining_Identifier => Def_Id,
1349 Object_Definition =>
1350 New_Occurrence_Of (Index_Typ, Loc),
1351 Constant_Present => True,
1352 Expression => Relocate_Node (Expr)));
1354 Expr := New_Occurrence_Of (Def_Id, Loc);
1355 end;
1356 end if;
1357 end if;
1359 return Expr;
1360 end Add;
1362 -----------------
1363 -- Check_Bound --
1364 -----------------
1366 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1367 Val_BH : Uint;
1368 Val_AH : Uint;
1370 OK_BH : Boolean;
1371 OK_AH : Boolean;
1373 begin
1374 Get (Value => Val_BH, From => BH, OK => OK_BH);
1375 Get (Value => Val_AH, From => AH, OK => OK_AH);
1377 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1378 Set_Raises_Constraint_Error (N);
1379 Error_Msg_Warn := SPARK_Mode /= On;
1380 Error_Msg_N ("upper bound out of range<<", AH);
1381 Error_Msg_N ("\Constraint_Error [<<", AH);
1383 -- You need to set AH to BH or else in the case of enumerations
1384 -- indexes we will not be able to resolve the aggregate bounds.
1386 AH := Duplicate_Subexpr (BH);
1387 end if;
1388 end Check_Bound;
1390 ------------------
1391 -- Check_Bounds --
1392 ------------------
1394 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1395 Val_L : Uint;
1396 Val_H : Uint;
1397 Val_AL : Uint;
1398 Val_AH : Uint;
1400 OK_L : Boolean;
1401 OK_H : Boolean;
1403 OK_AL : Boolean;
1404 OK_AH : Boolean;
1405 pragma Warnings (Off, OK_AL);
1406 pragma Warnings (Off, OK_AH);
1408 begin
1409 if Raises_Constraint_Error (N)
1410 or else Dynamic_Or_Null_Range (AL, AH)
1411 then
1412 return;
1413 end if;
1415 Get (Value => Val_L, From => L, OK => OK_L);
1416 Get (Value => Val_H, From => H, OK => OK_H);
1418 Get (Value => Val_AL, From => AL, OK => OK_AL);
1419 Get (Value => Val_AH, From => AH, OK => OK_AH);
1421 if OK_L and then Val_L > Val_AL then
1422 Set_Raises_Constraint_Error (N);
1423 Error_Msg_Warn := SPARK_Mode /= On;
1424 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1425 Error_Msg_N ("\Constraint_Error [<<", N);
1426 end if;
1428 if OK_H and then Val_H < Val_AH then
1429 Set_Raises_Constraint_Error (N);
1430 Error_Msg_Warn := SPARK_Mode /= On;
1431 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1432 Error_Msg_N ("\Constraint_Error [<<", N);
1433 end if;
1434 end Check_Bounds;
1436 ------------------
1437 -- Check_Length --
1438 ------------------
1440 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1441 Val_L : Uint;
1442 Val_H : Uint;
1444 OK_L : Boolean;
1445 OK_H : Boolean;
1447 Range_Len : Uint;
1449 begin
1450 if Raises_Constraint_Error (N) then
1451 return;
1452 end if;
1454 Get (Value => Val_L, From => L, OK => OK_L);
1455 Get (Value => Val_H, From => H, OK => OK_H);
1457 if not OK_L or else not OK_H then
1458 return;
1459 end if;
1461 -- If null range length is zero
1463 if Val_L > Val_H then
1464 Range_Len := Uint_0;
1465 else
1466 Range_Len := Val_H - Val_L + 1;
1467 end if;
1469 if Range_Len < Len then
1470 Set_Raises_Constraint_Error (N);
1471 Error_Msg_Warn := SPARK_Mode /= On;
1472 Error_Msg_N ("too many elements<<", N);
1473 Error_Msg_N ("\Constraint_Error [<<", N);
1474 end if;
1475 end Check_Length;
1477 ---------------------------
1478 -- Dynamic_Or_Null_Range --
1479 ---------------------------
1481 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1482 Val_L : Uint;
1483 Val_H : Uint;
1485 OK_L : Boolean;
1486 OK_H : Boolean;
1488 begin
1489 Get (Value => Val_L, From => L, OK => OK_L);
1490 Get (Value => Val_H, From => H, OK => OK_H);
1492 return not OK_L or else not OK_H
1493 or else not Is_OK_Static_Expression (L)
1494 or else not Is_OK_Static_Expression (H)
1495 or else Val_L > Val_H;
1496 end Dynamic_Or_Null_Range;
1498 ---------
1499 -- Get --
1500 ---------
1502 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1503 begin
1504 OK := True;
1506 if Compile_Time_Known_Value (From) then
1507 Value := Expr_Value (From);
1509 -- If expression From is something like Some_Type'Val (10) then
1510 -- Value = 10.
1512 elsif Nkind (From) = N_Attribute_Reference
1513 and then Attribute_Name (From) = Name_Val
1514 and then Compile_Time_Known_Value (First (Expressions (From)))
1515 then
1516 Value := Expr_Value (First (Expressions (From)));
1517 else
1518 Value := Uint_0;
1519 OK := False;
1520 end if;
1521 end Get;
1523 -----------------------
1524 -- Resolve_Aggr_Expr --
1525 -----------------------
1527 function Resolve_Aggr_Expr
1528 (Expr : Node_Id;
1529 Single_Elmt : Boolean) return Boolean
1531 Nxt_Ind : constant Node_Id := Next_Index (Index);
1532 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1533 -- Index is the current index corresponding to the expression
1535 Resolution_OK : Boolean := True;
1536 -- Set to False if resolution of the expression failed
1538 begin
1539 -- Defend against previous errors
1541 if Nkind (Expr) = N_Error
1542 or else Error_Posted (Expr)
1543 then
1544 return True;
1545 end if;
1547 -- If the array type against which we are resolving the aggregate
1548 -- has several dimensions, the expressions nested inside the
1549 -- aggregate must be further aggregates (or strings).
1551 if Present (Nxt_Ind) then
1552 if Nkind (Expr) /= N_Aggregate then
1554 -- A string literal can appear where a one-dimensional array
1555 -- of characters is expected. If the literal looks like an
1556 -- operator, it is still an operator symbol, which will be
1557 -- transformed into a string when analyzed.
1559 if Is_Character_Type (Component_Typ)
1560 and then No (Next_Index (Nxt_Ind))
1561 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1562 then
1563 -- A string literal used in a multidimensional array
1564 -- aggregate in place of the final one-dimensional
1565 -- aggregate must not be enclosed in parentheses.
1567 if Paren_Count (Expr) /= 0 then
1568 Error_Msg_N ("no parenthesis allowed here", Expr);
1569 end if;
1571 Make_String_Into_Aggregate (Expr);
1573 else
1574 Error_Msg_N ("nested array aggregate expected", Expr);
1576 -- If the expression is parenthesized, this may be
1577 -- a missing component association for a 1-aggregate.
1579 if Paren_Count (Expr) > 0 then
1580 Error_Msg_N
1581 ("\if single-component aggregate is intended, "
1582 & "write e.g. (1 ='> ...)", Expr);
1583 end if;
1585 return Failure;
1586 end if;
1587 end if;
1589 -- If it's "... => <>", nothing to resolve
1591 if Nkind (Expr) = N_Component_Association then
1592 pragma Assert (Box_Present (Expr));
1593 return Success;
1594 end if;
1596 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1597 -- Required to check the null-exclusion attribute (if present).
1598 -- This value may be overridden later on.
1600 Set_Etype (Expr, Etype (N));
1602 Resolution_OK := Resolve_Array_Aggregate
1603 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1605 else
1606 -- If it's "... => <>", nothing to resolve
1608 if Nkind (Expr) = N_Component_Association then
1609 pragma Assert (Box_Present (Expr));
1610 return Success;
1611 end if;
1613 -- Do not resolve the expressions of discrete or others choices
1614 -- unless the expression covers a single component, or the
1615 -- expander is inactive.
1617 -- In SPARK mode, expressions that can perform side effects will
1618 -- be recognized by the gnat2why back-end, and the whole
1619 -- subprogram will be ignored. So semantic analysis can be
1620 -- performed safely.
1622 if Single_Elmt
1623 or else not Expander_Active
1624 or else In_Spec_Expression
1625 then
1626 Analyze_And_Resolve (Expr, Component_Typ);
1627 Check_Expr_OK_In_Limited_Aggregate (Expr);
1628 Check_Non_Static_Context (Expr);
1629 Aggregate_Constraint_Checks (Expr, Component_Typ);
1630 Check_Unset_Reference (Expr);
1631 end if;
1632 end if;
1634 -- If an aggregate component has a type with predicates, an explicit
1635 -- predicate check must be applied, as for an assignment statement,
1636 -- because the aggegate might not be expanded into individual
1637 -- component assignments. If the expression covers several components
1638 -- the analysis and the predicate check take place later.
1640 if Has_Predicates (Component_Typ)
1641 and then Analyzed (Expr)
1642 then
1643 Apply_Predicate_Check (Expr, Component_Typ);
1644 end if;
1646 if Raises_Constraint_Error (Expr)
1647 and then Nkind (Parent (Expr)) /= N_Component_Association
1648 then
1649 Set_Raises_Constraint_Error (N);
1650 end if;
1652 -- If the expression has been marked as requiring a range check,
1653 -- then generate it here. It's a bit odd to be generating such
1654 -- checks in the analyzer, but harmless since Generate_Range_Check
1655 -- does nothing (other than making sure Do_Range_Check is set) if
1656 -- the expander is not active.
1658 if Do_Range_Check (Expr) then
1659 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1660 end if;
1662 return Resolution_OK;
1663 end Resolve_Aggr_Expr;
1665 --------------------------------------------
1666 -- Resolve_Iterated_Component_Association --
1667 --------------------------------------------
1669 procedure Resolve_Iterated_Component_Association
1670 (N : Node_Id;
1671 Index_Typ : Entity_Id)
1673 Loc : constant Source_Ptr := Sloc (N);
1675 Choice : Node_Id;
1676 Dummy : Boolean;
1677 Ent : Entity_Id;
1678 Expr : Node_Id;
1679 Id : Entity_Id;
1681 begin
1682 Choice := First (Discrete_Choices (N));
1684 while Present (Choice) loop
1685 if Nkind (Choice) = N_Others_Choice then
1686 Others_Present := True;
1688 else
1689 Analyze (Choice);
1691 -- Choice can be a subtype name, a range, or an expression
1693 if Is_Entity_Name (Choice)
1694 and then Is_Type (Entity (Choice))
1695 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1696 then
1697 null;
1699 else
1700 Analyze_And_Resolve (Choice, Index_Typ);
1701 end if;
1702 end if;
1704 Next (Choice);
1705 end loop;
1707 -- Create a scope in which to introduce an index, which is usually
1708 -- visible in the expression for the component, and needed for its
1709 -- analysis.
1711 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1712 Set_Etype (Ent, Standard_Void_Type);
1713 Set_Parent (Ent, Parent (N));
1714 Push_Scope (Ent);
1715 Id :=
1716 Make_Defining_Identifier (Loc,
1717 Chars => Chars (Defining_Identifier (N)));
1719 -- Insert and decorate the index variable in the current scope.
1720 -- The expression has to be analyzed once the index variable is
1721 -- directly visible. Mark the variable as referenced to prevent
1722 -- spurious warnings, given that subsequent uses of its name in the
1723 -- expression will reference the internal (synonym) loop variable.
1725 Enter_Name (Id);
1726 Set_Etype (Id, Index_Typ);
1727 Set_Ekind (Id, E_Variable);
1728 Set_Scope (Id, Ent);
1729 Set_Referenced (Id);
1731 -- Analyze a copy of the expression, to verify legality. We use
1732 -- a copy because the expression will be analyzed anew when the
1733 -- enclosing aggregate is expanded, and the construct is rewritten
1734 -- as a loop with a new index variable.
1736 Expr := New_Copy_Tree (Expression (N));
1737 Dummy := Resolve_Aggr_Expr (Expr, False);
1739 -- An iterated_component_association may appear in a nested
1740 -- aggregate for a multidimensional structure: preserve the bounds
1741 -- computed for the expression, as well as the anonymous array
1742 -- type generated for it; both are needed during array expansion.
1743 -- This does not work for more than two levels of nesting. ???
1745 if Nkind (Expr) = N_Aggregate then
1746 Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1747 Set_Etype (Expression (N), Etype (Expr));
1748 end if;
1750 End_Scope;
1751 end Resolve_Iterated_Component_Association;
1753 -- Local variables
1755 Assoc : Node_Id;
1756 Choice : Node_Id;
1757 Expr : Node_Id;
1758 Discard : Node_Id;
1760 Aggr_Low : Node_Id := Empty;
1761 Aggr_High : Node_Id := Empty;
1762 -- The actual low and high bounds of this sub-aggregate
1764 Case_Table_Size : Nat;
1765 -- Contains the size of the case table needed to sort aggregate choices
1767 Choices_Low : Node_Id := Empty;
1768 Choices_High : Node_Id := Empty;
1769 -- The lowest and highest discrete choices values for a named aggregate
1771 Delete_Choice : Boolean;
1772 -- Used when replacing a subtype choice with predicate by a list
1774 Nb_Elements : Uint := Uint_0;
1775 -- The number of elements in a positional aggregate
1777 Nb_Discrete_Choices : Nat := 0;
1778 -- The overall number of discrete choices (not counting others choice)
1780 -- Start of processing for Resolve_Array_Aggregate
1782 begin
1783 -- Ignore junk empty aggregate resulting from parser error
1785 if No (Expressions (N))
1786 and then No (Component_Associations (N))
1787 and then not Null_Record_Present (N)
1788 then
1789 return False;
1790 end if;
1792 -- STEP 1: make sure the aggregate is correctly formatted
1794 if Present (Component_Associations (N)) then
1795 Assoc := First (Component_Associations (N));
1796 while Present (Assoc) loop
1797 if Nkind (Assoc) = N_Iterated_Component_Association then
1798 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1799 end if;
1801 Choice := First (Choice_List (Assoc));
1802 Delete_Choice := False;
1803 while Present (Choice) loop
1804 if Nkind (Choice) = N_Others_Choice then
1805 Others_Present := True;
1807 if Choice /= First (Choice_List (Assoc))
1808 or else Present (Next (Choice))
1809 then
1810 Error_Msg_N
1811 ("OTHERS must appear alone in a choice list", Choice);
1812 return Failure;
1813 end if;
1815 if Present (Next (Assoc)) then
1816 Error_Msg_N
1817 ("OTHERS must appear last in an aggregate", Choice);
1818 return Failure;
1819 end if;
1821 if Ada_Version = Ada_83
1822 and then Assoc /= First (Component_Associations (N))
1823 and then Nkind_In (Parent (N), N_Assignment_Statement,
1824 N_Object_Declaration)
1825 then
1826 Error_Msg_N
1827 ("(Ada 83) illegal context for OTHERS choice", N);
1828 end if;
1830 elsif Is_Entity_Name (Choice) then
1831 Analyze (Choice);
1833 declare
1834 E : constant Entity_Id := Entity (Choice);
1835 New_Cs : List_Id;
1836 P : Node_Id;
1837 C : Node_Id;
1839 begin
1840 if Is_Type (E) and then Has_Predicates (E) then
1841 Freeze_Before (N, E);
1843 if Has_Dynamic_Predicate_Aspect (E) then
1844 Error_Msg_NE
1845 ("subtype& has dynamic predicate, not allowed "
1846 & "in aggregate choice", Choice, E);
1848 elsif not Is_OK_Static_Subtype (E) then
1849 Error_Msg_NE
1850 ("non-static subtype& has predicate, not allowed "
1851 & "in aggregate choice", Choice, E);
1852 end if;
1854 -- If the subtype has a static predicate, replace the
1855 -- original choice with the list of individual values
1856 -- covered by the predicate. Do not perform this
1857 -- transformation if we need to preserve the source
1858 -- for ASIS use.
1859 -- This should be deferred to expansion time ???
1861 if Present (Static_Discrete_Predicate (E))
1862 and then not ASIS_Mode
1863 then
1864 Delete_Choice := True;
1866 New_Cs := New_List;
1867 P := First (Static_Discrete_Predicate (E));
1868 while Present (P) loop
1869 C := New_Copy (P);
1870 Set_Sloc (C, Sloc (Choice));
1871 Append_To (New_Cs, C);
1872 Next (P);
1873 end loop;
1875 Insert_List_After (Choice, New_Cs);
1876 end if;
1877 end if;
1878 end;
1879 end if;
1881 Nb_Choices := Nb_Choices + 1;
1883 declare
1884 C : constant Node_Id := Choice;
1886 begin
1887 Next (Choice);
1889 if Delete_Choice then
1890 Remove (C);
1891 Nb_Choices := Nb_Choices - 1;
1892 Delete_Choice := False;
1893 end if;
1894 end;
1895 end loop;
1897 Next (Assoc);
1898 end loop;
1899 end if;
1901 -- At this point we know that the others choice, if present, is by
1902 -- itself and appears last in the aggregate. Check if we have mixed
1903 -- positional and discrete associations (other than the others choice).
1905 if Present (Expressions (N))
1906 and then (Nb_Choices > 1
1907 or else (Nb_Choices = 1 and then not Others_Present))
1908 then
1909 Error_Msg_N
1910 ("named association cannot follow positional association",
1911 First (Choice_List (First (Component_Associations (N)))));
1912 return Failure;
1913 end if;
1915 -- Test for the validity of an others choice if present
1917 if Others_Present and then not Others_Allowed then
1918 Error_Msg_N
1919 ("OTHERS choice not allowed here",
1920 First (Choices (First (Component_Associations (N)))));
1921 return Failure;
1922 end if;
1924 -- Protect against cascaded errors
1926 if Etype (Index_Typ) = Any_Type then
1927 return Failure;
1928 end if;
1930 -- STEP 2: Process named components
1932 if No (Expressions (N)) then
1933 if Others_Present then
1934 Case_Table_Size := Nb_Choices - 1;
1935 else
1936 Case_Table_Size := Nb_Choices;
1937 end if;
1939 Step_2 : declare
1940 function Empty_Range (A : Node_Id) return Boolean;
1941 -- If an association covers an empty range, some warnings on the
1942 -- expression of the association can be disabled.
1944 -----------------
1945 -- Empty_Range --
1946 -----------------
1948 function Empty_Range (A : Node_Id) return Boolean is
1949 R : constant Node_Id := First (Choices (A));
1950 begin
1951 return No (Next (R))
1952 and then Nkind (R) = N_Range
1953 and then Compile_Time_Compare
1954 (Low_Bound (R), High_Bound (R), False) = GT;
1955 end Empty_Range;
1957 -- Local variables
1959 Low : Node_Id;
1960 High : Node_Id;
1961 -- Denote the lowest and highest values in an aggregate choice
1963 S_Low : Node_Id := Empty;
1964 S_High : Node_Id := Empty;
1965 -- if a choice in an aggregate is a subtype indication these
1966 -- denote the lowest and highest values of the subtype
1968 Table : Case_Table_Type (0 .. Case_Table_Size);
1969 -- Used to sort all the different choice values. Entry zero is
1970 -- reserved for sorting purposes.
1972 Single_Choice : Boolean;
1973 -- Set to true every time there is a single discrete choice in a
1974 -- discrete association
1976 Prev_Nb_Discrete_Choices : Nat;
1977 -- Used to keep track of the number of discrete choices in the
1978 -- current association.
1980 Errors_Posted_On_Choices : Boolean := False;
1981 -- Keeps track of whether any choices have semantic errors
1983 -- Start of processing for Step_2
1985 begin
1986 -- STEP 2 (A): Check discrete choices validity
1988 Assoc := First (Component_Associations (N));
1989 while Present (Assoc) loop
1990 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1991 Choice := First (Choice_List (Assoc));
1993 loop
1994 Analyze (Choice);
1996 if Nkind (Choice) = N_Others_Choice then
1997 Single_Choice := False;
1998 exit;
2000 -- Test for subtype mark without constraint
2002 elsif Is_Entity_Name (Choice) and then
2003 Is_Type (Entity (Choice))
2004 then
2005 if Base_Type (Entity (Choice)) /= Index_Base then
2006 Error_Msg_N
2007 ("invalid subtype mark in aggregate choice",
2008 Choice);
2009 return Failure;
2010 end if;
2012 -- Case of subtype indication
2014 elsif Nkind (Choice) = N_Subtype_Indication then
2015 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
2017 if Has_Dynamic_Predicate_Aspect
2018 (Entity (Subtype_Mark (Choice)))
2019 then
2020 Error_Msg_NE
2021 ("subtype& has dynamic predicate, "
2022 & "not allowed in aggregate choice",
2023 Choice, Entity (Subtype_Mark (Choice)));
2024 end if;
2026 -- Does the subtype indication evaluation raise CE?
2028 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
2029 Get_Index_Bounds (Choice, Low, High);
2030 Check_Bounds (S_Low, S_High, Low, High);
2032 -- Case of range or expression
2034 else
2035 Resolve (Choice, Index_Base);
2036 Check_Unset_Reference (Choice);
2037 Check_Non_Static_Context (Choice);
2039 -- If semantic errors were posted on the choice, then
2040 -- record that for possible early return from later
2041 -- processing (see handling of enumeration choices).
2043 if Error_Posted (Choice) then
2044 Errors_Posted_On_Choices := True;
2045 end if;
2047 -- Do not range check a choice. This check is redundant
2048 -- since this test is already done when we check that the
2049 -- bounds of the array aggregate are within range.
2051 Set_Do_Range_Check (Choice, False);
2053 -- In SPARK, the choice must be static
2055 if not (Is_OK_Static_Expression (Choice)
2056 or else (Nkind (Choice) = N_Range
2057 and then Is_OK_Static_Range (Choice)))
2058 then
2059 Check_SPARK_05_Restriction
2060 ("choice should be static", Choice);
2061 end if;
2062 end if;
2064 -- If we could not resolve the discrete choice stop here
2066 if Etype (Choice) = Any_Type then
2067 return Failure;
2069 -- If the discrete choice raises CE get its original bounds
2071 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2072 Set_Raises_Constraint_Error (N);
2073 Get_Index_Bounds (Original_Node (Choice), Low, High);
2075 -- Otherwise get its bounds as usual
2077 else
2078 Get_Index_Bounds (Choice, Low, High);
2079 end if;
2081 if (Dynamic_Or_Null_Range (Low, High)
2082 or else (Nkind (Choice) = N_Subtype_Indication
2083 and then
2084 Dynamic_Or_Null_Range (S_Low, S_High)))
2085 and then Nb_Choices /= 1
2086 then
2087 Error_Msg_N
2088 ("dynamic or empty choice in aggregate "
2089 & "must be the only choice", Choice);
2090 return Failure;
2091 end if;
2093 if not (All_Composite_Constraints_Static (Low)
2094 and then All_Composite_Constraints_Static (High)
2095 and then All_Composite_Constraints_Static (S_Low)
2096 and then All_Composite_Constraints_Static (S_High))
2097 then
2098 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2099 end if;
2101 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2102 Table (Nb_Discrete_Choices).Lo := Low;
2103 Table (Nb_Discrete_Choices).Hi := High;
2104 Table (Nb_Discrete_Choices).Choice := Choice;
2106 Next (Choice);
2108 if No (Choice) then
2110 -- Check if we have a single discrete choice and whether
2111 -- this discrete choice specifies a single value.
2113 Single_Choice :=
2114 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2115 and then (Low = High);
2117 exit;
2118 end if;
2119 end loop;
2121 -- Ada 2005 (AI-231)
2123 if Ada_Version >= Ada_2005
2124 and then Known_Null (Expression (Assoc))
2125 and then not Empty_Range (Assoc)
2126 then
2127 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2128 end if;
2130 -- Ada 2005 (AI-287): In case of default initialized component
2131 -- we delay the resolution to the expansion phase.
2133 if Box_Present (Assoc) then
2135 -- Ada 2005 (AI-287): In case of default initialization of a
2136 -- component the expander will generate calls to the
2137 -- corresponding initialization subprogram. We need to call
2138 -- Resolve_Aggr_Expr to check the rules about
2139 -- dimensionality.
2141 if not Resolve_Aggr_Expr
2142 (Assoc, Single_Elmt => Single_Choice)
2143 then
2144 return Failure;
2145 end if;
2147 elsif Nkind (Assoc) = N_Iterated_Component_Association then
2148 null; -- handled above, in a loop context.
2150 elsif not Resolve_Aggr_Expr
2151 (Expression (Assoc), Single_Elmt => Single_Choice)
2152 then
2153 return Failure;
2155 -- Check incorrect use of dynamically tagged expression
2157 -- We differentiate here two cases because the expression may
2158 -- not be decorated. For example, the analysis and resolution
2159 -- of the expression associated with the others choice will be
2160 -- done later with the full aggregate. In such case we
2161 -- duplicate the expression tree to analyze the copy and
2162 -- perform the required check.
2164 elsif not Present (Etype (Expression (Assoc))) then
2165 declare
2166 Save_Analysis : constant Boolean := Full_Analysis;
2167 Expr : constant Node_Id :=
2168 New_Copy_Tree (Expression (Assoc));
2170 begin
2171 Expander_Mode_Save_And_Set (False);
2172 Full_Analysis := False;
2174 -- Analyze the expression, making sure it is properly
2175 -- attached to the tree before we do the analysis.
2177 Set_Parent (Expr, Parent (Expression (Assoc)));
2178 Analyze (Expr);
2180 -- Compute its dimensions now, rather than at the end of
2181 -- resolution, because in the case of multidimensional
2182 -- aggregates subsequent expansion may lead to spurious
2183 -- errors.
2185 Check_Expression_Dimensions (Expr, Component_Typ);
2187 -- If the expression is a literal, propagate this info
2188 -- to the expression in the association, to enable some
2189 -- optimizations downstream.
2191 if Is_Entity_Name (Expr)
2192 and then Present (Entity (Expr))
2193 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2194 then
2195 Analyze_And_Resolve
2196 (Expression (Assoc), Component_Typ);
2197 end if;
2199 Full_Analysis := Save_Analysis;
2200 Expander_Mode_Restore;
2202 if Is_Tagged_Type (Etype (Expr)) then
2203 Check_Dynamically_Tagged_Expression
2204 (Expr => Expr,
2205 Typ => Component_Type (Etype (N)),
2206 Related_Nod => N);
2207 end if;
2208 end;
2210 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2211 Check_Dynamically_Tagged_Expression
2212 (Expr => Expression (Assoc),
2213 Typ => Component_Type (Etype (N)),
2214 Related_Nod => N);
2215 end if;
2217 Next (Assoc);
2218 end loop;
2220 -- If aggregate contains more than one choice then these must be
2221 -- static. Check for duplicate and missing values.
2223 -- Note: there is duplicated code here wrt Check_Choice_Set in
2224 -- the body of Sem_Case, and it is possible we could just reuse
2225 -- that procedure. To be checked ???
2227 if Nb_Discrete_Choices > 1 then
2228 Check_Choices : declare
2229 Choice : Node_Id;
2230 -- Location of choice for messages
2232 Hi_Val : Uint;
2233 Lo_Val : Uint;
2234 -- High end of one range and Low end of the next. Should be
2235 -- contiguous if there is no hole in the list of values.
2237 Lo_Dup : Uint;
2238 Hi_Dup : Uint;
2239 -- End points of duplicated range
2241 Missing_Or_Duplicates : Boolean := False;
2242 -- Set True if missing or duplicate choices found
2244 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2245 -- Output continuation message with a representation of the
2246 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2247 -- choice node where the message is to be posted.
2249 ------------------------
2250 -- Output_Bad_Choices --
2251 ------------------------
2253 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2254 begin
2255 -- Enumeration type case
2257 if Is_Enumeration_Type (Index_Typ) then
2258 Error_Msg_Name_1 :=
2259 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2260 Error_Msg_Name_2 :=
2261 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2263 if Lo = Hi then
2264 Error_Msg_N ("\\ %!", C);
2265 else
2266 Error_Msg_N ("\\ % .. %!", C);
2267 end if;
2269 -- Integer types case
2271 else
2272 Error_Msg_Uint_1 := Lo;
2273 Error_Msg_Uint_2 := Hi;
2275 if Lo = Hi then
2276 Error_Msg_N ("\\ ^!", C);
2277 else
2278 Error_Msg_N ("\\ ^ .. ^!", C);
2279 end if;
2280 end if;
2281 end Output_Bad_Choices;
2283 -- Start of processing for Check_Choices
2285 begin
2286 Sort_Case_Table (Table);
2288 -- First we do a quick linear loop to find out if we have
2289 -- any duplicates or missing entries (usually we have a
2290 -- legal aggregate, so this will get us out quickly).
2292 for J in 1 .. Nb_Discrete_Choices - 1 loop
2293 Hi_Val := Expr_Value (Table (J).Hi);
2294 Lo_Val := Expr_Value (Table (J + 1).Lo);
2296 if Lo_Val <= Hi_Val
2297 or else (Lo_Val > Hi_Val + 1
2298 and then not Others_Present)
2299 then
2300 Missing_Or_Duplicates := True;
2301 exit;
2302 end if;
2303 end loop;
2305 -- If we have missing or duplicate entries, first fill in
2306 -- the Highest entries to make life easier in the following
2307 -- loops to detect bad entries.
2309 if Missing_Or_Duplicates then
2310 Table (1).Highest := Expr_Value (Table (1).Hi);
2312 for J in 2 .. Nb_Discrete_Choices loop
2313 Table (J).Highest :=
2314 UI_Max
2315 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2316 end loop;
2318 -- Loop through table entries to find duplicate indexes
2320 for J in 2 .. Nb_Discrete_Choices loop
2321 Lo_Val := Expr_Value (Table (J).Lo);
2322 Hi_Val := Expr_Value (Table (J).Hi);
2324 -- Case where we have duplicates (the lower bound of
2325 -- this choice is less than or equal to the highest
2326 -- high bound found so far).
2328 if Lo_Val <= Table (J - 1).Highest then
2330 -- We move backwards looking for duplicates. We can
2331 -- abandon this loop as soon as we reach a choice
2332 -- highest value that is less than Lo_Val.
2334 for K in reverse 1 .. J - 1 loop
2335 exit when Table (K).Highest < Lo_Val;
2337 -- Here we may have duplicates between entries
2338 -- for K and J. Get range of duplicates.
2340 Lo_Dup :=
2341 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2342 Hi_Dup :=
2343 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2345 -- Nothing to do if duplicate range is null
2347 if Lo_Dup > Hi_Dup then
2348 null;
2350 -- Otherwise place proper message. Because
2351 -- of the missing expansion of subtypes with
2352 -- predicates in ASIS mode, do not report
2353 -- spurious overlap errors.
2355 elsif ASIS_Mode
2356 and then
2357 ((Is_Type (Entity (Table (J).Choice))
2358 and then Has_Predicates
2359 (Entity (Table (J).Choice)))
2360 or else
2361 (Is_Type (Entity (Table (K).Choice))
2362 and then Has_Predicates
2363 (Entity (Table (K).Choice))))
2364 then
2365 null;
2367 else
2368 -- We place message on later choice, with a
2369 -- line reference to the earlier choice.
2371 if Sloc (Table (J).Choice) <
2372 Sloc (Table (K).Choice)
2373 then
2374 Choice := Table (K).Choice;
2375 Error_Msg_Sloc := Sloc (Table (J).Choice);
2376 else
2377 Choice := Table (J).Choice;
2378 Error_Msg_Sloc := Sloc (Table (K).Choice);
2379 end if;
2381 if Lo_Dup = Hi_Dup then
2382 Error_Msg_N
2383 ("index value in array aggregate "
2384 & "duplicates the one given#!", Choice);
2385 else
2386 Error_Msg_N
2387 ("index values in array aggregate "
2388 & "duplicate those given#!", Choice);
2389 end if;
2391 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2392 end if;
2393 end loop;
2394 end if;
2395 end loop;
2397 -- Loop through entries in table to find missing indexes.
2398 -- Not needed if others, since missing impossible.
2400 if not Others_Present then
2401 for J in 2 .. Nb_Discrete_Choices loop
2402 Lo_Val := Expr_Value (Table (J).Lo);
2403 Hi_Val := Table (J - 1).Highest;
2405 if Lo_Val > Hi_Val + 1 then
2407 declare
2408 Error_Node : Node_Id;
2410 begin
2411 -- If the choice is the bound of a range in
2412 -- a subtype indication, it is not in the
2413 -- source lists for the aggregate itself, so
2414 -- post the error on the aggregate. Otherwise
2415 -- post it on choice itself.
2417 Choice := Table (J).Choice;
2419 if Is_List_Member (Choice) then
2420 Error_Node := Choice;
2421 else
2422 Error_Node := N;
2423 end if;
2425 if Hi_Val + 1 = Lo_Val - 1 then
2426 Error_Msg_N
2427 ("missing index value "
2428 & "in array aggregate!", Error_Node);
2429 else
2430 Error_Msg_N
2431 ("missing index values "
2432 & "in array aggregate!", Error_Node);
2433 end if;
2435 Output_Bad_Choices
2436 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2437 end;
2438 end if;
2439 end loop;
2440 end if;
2442 -- If either missing or duplicate values, return failure
2444 Set_Etype (N, Any_Composite);
2445 return Failure;
2446 end if;
2447 end Check_Choices;
2448 end if;
2450 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2452 if Nb_Discrete_Choices > 0 then
2453 Choices_Low := Table (1).Lo;
2454 Choices_High := Table (Nb_Discrete_Choices).Hi;
2455 end if;
2457 -- If Others is present, then bounds of aggregate come from the
2458 -- index constraint (not the choices in the aggregate itself).
2460 if Others_Present then
2461 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2463 -- Abandon processing if either bound is already signalled as
2464 -- an error (prevents junk cascaded messages and blow ups).
2466 if Nkind (Aggr_Low) = N_Error
2467 or else
2468 Nkind (Aggr_High) = N_Error
2469 then
2470 return False;
2471 end if;
2473 -- No others clause present
2475 else
2476 -- Special processing if others allowed and not present. This
2477 -- means that the bounds of the aggregate come from the index
2478 -- constraint (and the length must match).
2480 if Others_Allowed then
2481 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2483 -- Abandon processing if either bound is already signalled
2484 -- as an error (stop junk cascaded messages and blow ups).
2486 if Nkind (Aggr_Low) = N_Error
2487 or else
2488 Nkind (Aggr_High) = N_Error
2489 then
2490 return False;
2491 end if;
2493 -- If others allowed, and no others present, then the array
2494 -- should cover all index values. If it does not, we will
2495 -- get a length check warning, but there is two cases where
2496 -- an additional warning is useful:
2498 -- If we have no positional components, and the length is
2499 -- wrong (which we can tell by others being allowed with
2500 -- missing components), and the index type is an enumeration
2501 -- type, then issue appropriate warnings about these missing
2502 -- components. They are only warnings, since the aggregate
2503 -- is fine, it's just the wrong length. We skip this check
2504 -- for standard character types (since there are no literals
2505 -- and it is too much trouble to concoct them), and also if
2506 -- any of the bounds have values that are not known at
2507 -- compile time.
2509 -- Another case warranting a warning is when the length
2510 -- is right, but as above we have an index type that is
2511 -- an enumeration, and the bounds do not match. This is a
2512 -- case where dubious sliding is allowed and we generate a
2513 -- warning that the bounds do not match.
2515 if No (Expressions (N))
2516 and then Nkind (Index) = N_Range
2517 and then Is_Enumeration_Type (Etype (Index))
2518 and then not Is_Standard_Character_Type (Etype (Index))
2519 and then Compile_Time_Known_Value (Aggr_Low)
2520 and then Compile_Time_Known_Value (Aggr_High)
2521 and then Compile_Time_Known_Value (Choices_Low)
2522 and then Compile_Time_Known_Value (Choices_High)
2523 then
2524 -- If any of the expressions or range bounds in choices
2525 -- have semantic errors, then do not attempt further
2526 -- resolution, to prevent cascaded errors.
2528 if Errors_Posted_On_Choices then
2529 return Failure;
2530 end if;
2532 declare
2533 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2534 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2535 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2536 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2538 Ent : Entity_Id;
2540 begin
2541 -- Warning case 1, missing values at start/end. Only
2542 -- do the check if the number of entries is too small.
2544 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2546 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2547 then
2548 Error_Msg_N
2549 ("missing index value(s) in array aggregate??",
2552 -- Output missing value(s) at start
2554 if Chars (ALo) /= Chars (CLo) then
2555 Ent := Prev (CLo);
2557 if Chars (ALo) = Chars (Ent) then
2558 Error_Msg_Name_1 := Chars (ALo);
2559 Error_Msg_N ("\ %??", N);
2560 else
2561 Error_Msg_Name_1 := Chars (ALo);
2562 Error_Msg_Name_2 := Chars (Ent);
2563 Error_Msg_N ("\ % .. %??", N);
2564 end if;
2565 end if;
2567 -- Output missing value(s) at end
2569 if Chars (AHi) /= Chars (CHi) then
2570 Ent := Next (CHi);
2572 if Chars (AHi) = Chars (Ent) then
2573 Error_Msg_Name_1 := Chars (Ent);
2574 Error_Msg_N ("\ %??", N);
2575 else
2576 Error_Msg_Name_1 := Chars (Ent);
2577 Error_Msg_Name_2 := Chars (AHi);
2578 Error_Msg_N ("\ % .. %??", N);
2579 end if;
2580 end if;
2582 -- Warning case 2, dubious sliding. The First_Subtype
2583 -- test distinguishes between a constrained type where
2584 -- sliding is not allowed (so we will get a warning
2585 -- later that Constraint_Error will be raised), and
2586 -- the unconstrained case where sliding is permitted.
2588 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2590 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2591 and then Chars (ALo) /= Chars (CLo)
2592 and then
2593 not Is_Constrained (First_Subtype (Etype (N)))
2594 then
2595 Error_Msg_N
2596 ("bounds of aggregate do not match target??", N);
2597 end if;
2598 end;
2599 end if;
2600 end if;
2602 -- If no others, aggregate bounds come from aggregate
2604 Aggr_Low := Choices_Low;
2605 Aggr_High := Choices_High;
2606 end if;
2607 end Step_2;
2609 -- STEP 3: Process positional components
2611 else
2612 -- STEP 3 (A): Process positional elements
2614 Expr := First (Expressions (N));
2615 Nb_Elements := Uint_0;
2616 while Present (Expr) loop
2617 Nb_Elements := Nb_Elements + 1;
2619 -- Ada 2005 (AI-231)
2621 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2622 Check_Can_Never_Be_Null (Etype (N), Expr);
2623 end if;
2625 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2626 return Failure;
2627 end if;
2629 -- Check incorrect use of dynamically tagged expression
2631 if Is_Tagged_Type (Etype (Expr)) then
2632 Check_Dynamically_Tagged_Expression
2633 (Expr => Expr,
2634 Typ => Component_Type (Etype (N)),
2635 Related_Nod => N);
2636 end if;
2638 Next (Expr);
2639 end loop;
2641 if Others_Present then
2642 Assoc := Last (Component_Associations (N));
2644 -- Ada 2005 (AI-231)
2646 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2647 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2648 end if;
2650 -- Ada 2005 (AI-287): In case of default initialized component,
2651 -- we delay the resolution to the expansion phase.
2653 if Box_Present (Assoc) then
2655 -- Ada 2005 (AI-287): In case of default initialization of a
2656 -- component the expander will generate calls to the
2657 -- corresponding initialization subprogram. We need to call
2658 -- Resolve_Aggr_Expr to check the rules about
2659 -- dimensionality.
2661 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2662 return Failure;
2663 end if;
2665 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2666 Single_Elmt => False)
2667 then
2668 return Failure;
2670 -- Check incorrect use of dynamically tagged expression. The
2671 -- expression of the others choice has not been resolved yet.
2672 -- In order to diagnose the semantic error we create a duplicate
2673 -- tree to analyze it and perform the check.
2675 else
2676 declare
2677 Save_Analysis : constant Boolean := Full_Analysis;
2678 Expr : constant Node_Id :=
2679 New_Copy_Tree (Expression (Assoc));
2681 begin
2682 Expander_Mode_Save_And_Set (False);
2683 Full_Analysis := False;
2684 Analyze (Expr);
2685 Full_Analysis := Save_Analysis;
2686 Expander_Mode_Restore;
2688 if Is_Tagged_Type (Etype (Expr)) then
2689 Check_Dynamically_Tagged_Expression
2690 (Expr => Expr,
2691 Typ => Component_Type (Etype (N)),
2692 Related_Nod => N);
2693 end if;
2694 end;
2695 end if;
2696 end if;
2698 -- STEP 3 (B): Compute the aggregate bounds
2700 if Others_Present then
2701 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2703 else
2704 if Others_Allowed then
2705 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2706 else
2707 Aggr_Low := Index_Typ_Low;
2708 end if;
2710 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2711 Check_Bound (Index_Base_High, Aggr_High);
2712 end if;
2713 end if;
2715 -- STEP 4: Perform static aggregate checks and save the bounds
2717 -- Check (A)
2719 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2720 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2722 -- Check (B)
2724 if Others_Present and then Nb_Discrete_Choices > 0 then
2725 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2726 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2727 Choices_Low, Choices_High);
2728 Check_Bounds (Index_Base_Low, Index_Base_High,
2729 Choices_Low, Choices_High);
2731 -- Check (C)
2733 elsif Others_Present and then Nb_Elements > 0 then
2734 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2735 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2736 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2737 end if;
2739 if Raises_Constraint_Error (Aggr_Low)
2740 or else Raises_Constraint_Error (Aggr_High)
2741 then
2742 Set_Raises_Constraint_Error (N);
2743 end if;
2745 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2747 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2748 -- since the addition node returned by Add is not yet analyzed. Attach
2749 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2750 -- analyzed when it is a literal bound whose type must be properly set.
2752 if Others_Present or else Nb_Discrete_Choices > 0 then
2753 Aggr_High := Duplicate_Subexpr (Aggr_High);
2755 if Etype (Aggr_High) = Universal_Integer then
2756 Set_Analyzed (Aggr_High, False);
2757 end if;
2758 end if;
2760 -- If the aggregate already has bounds attached to it, it means this is
2761 -- a positional aggregate created as an optimization by
2762 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2763 -- bounds.
2765 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2766 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2767 Aggr_High := High_Bound (Aggregate_Bounds (N));
2768 end if;
2770 Set_Aggregate_Bounds
2771 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2773 -- The bounds may contain expressions that must be inserted upwards.
2774 -- Attach them fully to the tree. After analysis, remove side effects
2775 -- from upper bound, if still needed.
2777 Set_Parent (Aggregate_Bounds (N), N);
2778 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2779 Check_Unset_Reference (Aggregate_Bounds (N));
2781 if not Others_Present and then Nb_Discrete_Choices = 0 then
2782 Set_High_Bound
2783 (Aggregate_Bounds (N),
2784 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2785 end if;
2787 -- Check the dimensions of each component in the array aggregate
2789 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2791 return Success;
2792 end Resolve_Array_Aggregate;
2794 -----------------------------
2795 -- Resolve_Delta_Aggregate --
2796 -----------------------------
2798 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2799 Base : constant Node_Id := Expression (N);
2801 begin
2802 if not Is_Composite_Type (Typ) then
2803 Error_Msg_N ("not a composite type", N);
2804 end if;
2806 Analyze_And_Resolve (Base, Typ);
2808 if Is_Array_Type (Typ) then
2809 Resolve_Delta_Array_Aggregate (N, Typ);
2810 else
2811 Resolve_Delta_Record_Aggregate (N, Typ);
2812 end if;
2814 Set_Etype (N, Typ);
2815 end Resolve_Delta_Aggregate;
2817 -----------------------------------
2818 -- Resolve_Delta_Array_Aggregate --
2819 -----------------------------------
2821 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
2822 Deltas : constant List_Id := Component_Associations (N);
2824 Assoc : Node_Id;
2825 Choice : Node_Id;
2826 Index_Type : Entity_Id;
2828 begin
2829 Index_Type := Etype (First_Index (Typ));
2831 Assoc := First (Deltas);
2832 while Present (Assoc) loop
2833 if Nkind (Assoc) = N_Iterated_Component_Association then
2834 Choice := First (Choice_List (Assoc));
2835 while Present (Choice) loop
2836 if Nkind (Choice) = N_Others_Choice then
2837 Error_Msg_N
2838 ("others not allowed in delta aggregate", Choice);
2840 else
2841 Analyze_And_Resolve (Choice, Index_Type);
2842 end if;
2844 Next (Choice);
2845 end loop;
2847 declare
2848 Id : constant Entity_Id := Defining_Identifier (Assoc);
2849 Ent : constant Entity_Id :=
2850 New_Internal_Entity
2851 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2853 begin
2854 Set_Etype (Ent, Standard_Void_Type);
2855 Set_Parent (Ent, Assoc);
2857 if No (Scope (Id)) then
2858 Enter_Name (Id);
2859 Set_Etype (Id, Index_Type);
2860 Set_Ekind (Id, E_Variable);
2861 Set_Scope (Id, Ent);
2862 end if;
2864 Push_Scope (Ent);
2865 Analyze_And_Resolve
2866 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2867 End_Scope;
2868 end;
2870 else
2871 Choice := First (Choice_List (Assoc));
2872 while Present (Choice) loop
2873 if Nkind (Choice) = N_Others_Choice then
2874 Error_Msg_N
2875 ("others not allowed in delta aggregate", Choice);
2877 else
2878 Analyze (Choice);
2880 if Is_Entity_Name (Choice)
2881 and then Is_Type (Entity (Choice))
2882 then
2883 -- Choice covers a range of values
2885 if Base_Type (Entity (Choice)) /=
2886 Base_Type (Index_Type)
2887 then
2888 Error_Msg_NE
2889 ("choice does mat match index type of",
2890 Choice, Typ);
2891 end if;
2892 else
2893 Resolve (Choice, Index_Type);
2894 end if;
2895 end if;
2897 Next (Choice);
2898 end loop;
2900 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2901 end if;
2903 Next (Assoc);
2904 end loop;
2905 end Resolve_Delta_Array_Aggregate;
2907 ------------------------------------
2908 -- Resolve_Delta_Record_Aggregate --
2909 ------------------------------------
2911 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2913 -- Variables used to verify that discriminant-dependent components
2914 -- appear in the same variant.
2916 Comp_Ref : Entity_Id := Empty; -- init to avoid warning
2917 Variant : Node_Id;
2919 procedure Check_Variant (Id : Entity_Id);
2920 -- If a given component of the delta aggregate appears in a variant
2921 -- part, verify that it is within the same variant as that of previous
2922 -- specified variant components of the delta.
2924 function Get_Component_Type (Nam : Node_Id) return Entity_Id;
2925 -- Locate component with a given name and return its type. If none found
2926 -- report error.
2928 function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
2929 -- Determine whether variant V1 is within variant V2
2931 function Variant_Depth (N : Node_Id) return Integer;
2932 -- Determine the distance of a variant to the enclosing type
2933 -- declaration.
2935 --------------------
2936 -- Check_Variant --
2937 --------------------
2939 procedure Check_Variant (Id : Entity_Id) is
2940 Comp : Entity_Id;
2941 Comp_Variant : Node_Id;
2943 begin
2944 if not Has_Discriminants (Typ) then
2945 return;
2946 end if;
2948 Comp := First_Entity (Typ);
2949 while Present (Comp) loop
2950 exit when Chars (Comp) = Chars (Id);
2951 Next_Component (Comp);
2952 end loop;
2954 -- Find the variant, if any, whose component list includes the
2955 -- component declaration.
2957 Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
2958 if Nkind (Comp_Variant) = N_Variant then
2959 if No (Variant) then
2960 Variant := Comp_Variant;
2961 Comp_Ref := Comp;
2963 elsif Variant /= Comp_Variant then
2964 declare
2965 D1 : constant Integer := Variant_Depth (Variant);
2966 D2 : constant Integer := Variant_Depth (Comp_Variant);
2968 begin
2969 if D1 = D2
2970 or else
2971 (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
2972 or else
2973 (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
2974 then
2975 pragma Assert (Present (Comp_Ref));
2976 Error_Msg_Node_2 := Comp_Ref;
2977 Error_Msg_NE
2978 ("& and & appear in different variants", Id, Comp);
2980 -- Otherwise retain the deeper variant for subsequent tests
2982 elsif D2 > D1 then
2983 Variant := Comp_Variant;
2984 end if;
2985 end;
2986 end if;
2987 end if;
2988 end Check_Variant;
2990 ------------------------
2991 -- Get_Component_Type --
2992 ------------------------
2994 function Get_Component_Type (Nam : Node_Id) return Entity_Id is
2995 Comp : Entity_Id;
2997 begin
2998 Comp := First_Entity (Typ);
2999 while Present (Comp) loop
3000 if Chars (Comp) = Chars (Nam) then
3001 if Ekind (Comp) = E_Discriminant then
3002 Error_Msg_N ("delta cannot apply to discriminant", Nam);
3003 end if;
3005 return Etype (Comp);
3006 end if;
3008 Comp := Next_Entity (Comp);
3009 end loop;
3011 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
3012 return Any_Type;
3013 end Get_Component_Type;
3015 ---------------
3016 -- Nested_In --
3017 ---------------
3019 function Nested_In (V1, V2 : Node_Id) return Boolean is
3020 Par : Node_Id;
3022 begin
3023 Par := Parent (V1);
3024 while Nkind (Par) /= N_Full_Type_Declaration loop
3025 if Par = V2 then
3026 return True;
3027 end if;
3029 Par := Parent (Par);
3030 end loop;
3032 return False;
3033 end Nested_In;
3035 -------------------
3036 -- Variant_Depth --
3037 -------------------
3039 function Variant_Depth (N : Node_Id) return Integer is
3040 Depth : Integer;
3041 Par : Node_Id;
3043 begin
3044 Depth := 0;
3045 Par := Parent (N);
3046 while Nkind (Par) /= N_Full_Type_Declaration loop
3047 Depth := Depth + 1;
3048 Par := Parent (Par);
3049 end loop;
3051 return Depth;
3052 end Variant_Depth;
3054 -- Local variables
3056 Deltas : constant List_Id := Component_Associations (N);
3058 Assoc : Node_Id;
3059 Choice : Node_Id;
3060 Comp_Type : Entity_Id := Empty; -- init to avoid warning
3062 -- Start of processing for Resolve_Delta_Record_Aggregate
3064 begin
3065 Variant := Empty;
3067 Assoc := First (Deltas);
3068 while Present (Assoc) loop
3069 Choice := First (Choice_List (Assoc));
3070 while Present (Choice) loop
3071 Comp_Type := Get_Component_Type (Choice);
3073 if Comp_Type /= Any_Type then
3074 Check_Variant (Choice);
3075 end if;
3077 Next (Choice);
3078 end loop;
3080 pragma Assert (Present (Comp_Type));
3081 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
3082 Next (Assoc);
3083 end loop;
3084 end Resolve_Delta_Record_Aggregate;
3086 ---------------------------------
3087 -- Resolve_Extension_Aggregate --
3088 ---------------------------------
3090 -- There are two cases to consider:
3092 -- a) If the ancestor part is a type mark, the components needed are the
3093 -- difference between the components of the expected type and the
3094 -- components of the given type mark.
3096 -- b) If the ancestor part is an expression, it must be unambiguous, and
3097 -- once we have its type we can also compute the needed components as in
3098 -- the previous case. In both cases, if the ancestor type is not the
3099 -- immediate ancestor, we have to build this ancestor recursively.
3101 -- In both cases, discriminants of the ancestor type do not play a role in
3102 -- the resolution of the needed components, because inherited discriminants
3103 -- cannot be used in a type extension. As a result we can compute
3104 -- independently the list of components of the ancestor type and of the
3105 -- expected type.
3107 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3108 A : constant Node_Id := Ancestor_Part (N);
3109 A_Type : Entity_Id;
3110 I : Interp_Index;
3111 It : Interp;
3113 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3114 -- If the type is limited, verify that the ancestor part is a legal
3115 -- expression (aggregate or function call, including 'Input)) that does
3116 -- not require a copy, as specified in 7.5(2).
3118 function Valid_Ancestor_Type return Boolean;
3119 -- Verify that the type of the ancestor part is a non-private ancestor
3120 -- of the expected type, which must be a type extension.
3122 procedure Transform_BIP_Assignment (Typ : Entity_Id);
3123 -- For an extension aggregate whose ancestor part is a build-in-place
3124 -- call returning a nonlimited type, this is used to transform the
3125 -- assignment to the ancestor part to use a temp.
3127 ----------------------------
3128 -- Valid_Limited_Ancestor --
3129 ----------------------------
3131 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3132 begin
3133 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3134 return True;
3136 -- The ancestor must be a call or an aggregate, but a call may
3137 -- have been expanded into a temporary, so check original node.
3139 elsif Nkind_In (Anc, N_Aggregate,
3140 N_Extension_Aggregate,
3141 N_Function_Call)
3142 then
3143 return True;
3145 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3146 return True;
3148 elsif Nkind (Anc) = N_Attribute_Reference
3149 and then Attribute_Name (Anc) = Name_Input
3150 then
3151 return True;
3153 elsif Nkind (Anc) = N_Qualified_Expression then
3154 return Valid_Limited_Ancestor (Expression (Anc));
3156 else
3157 return False;
3158 end if;
3159 end Valid_Limited_Ancestor;
3161 -------------------------
3162 -- Valid_Ancestor_Type --
3163 -------------------------
3165 function Valid_Ancestor_Type return Boolean is
3166 Imm_Type : Entity_Id;
3168 begin
3169 Imm_Type := Base_Type (Typ);
3170 while Is_Derived_Type (Imm_Type) loop
3171 if Etype (Imm_Type) = Base_Type (A_Type) then
3172 return True;
3174 -- The base type of the parent type may appear as a private
3175 -- extension if it is declared as such in a parent unit of the
3176 -- current one. For consistency of the subsequent analysis use
3177 -- the partial view for the ancestor part.
3179 elsif Is_Private_Type (Etype (Imm_Type))
3180 and then Present (Full_View (Etype (Imm_Type)))
3181 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3182 then
3183 A_Type := Etype (Imm_Type);
3184 return True;
3186 -- The parent type may be a private extension. The aggregate is
3187 -- legal if the type of the aggregate is an extension of it that
3188 -- is not a private extension.
3190 elsif Is_Private_Type (A_Type)
3191 and then not Is_Private_Type (Imm_Type)
3192 and then Present (Full_View (A_Type))
3193 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3194 then
3195 return True;
3197 else
3198 Imm_Type := Etype (Base_Type (Imm_Type));
3199 end if;
3200 end loop;
3202 -- If previous loop did not find a proper ancestor, report error
3204 Error_Msg_NE ("expect ancestor type of &", A, Typ);
3205 return False;
3206 end Valid_Ancestor_Type;
3208 ------------------------------
3209 -- Transform_BIP_Assignment --
3210 ------------------------------
3212 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3213 Loc : constant Source_Ptr := Sloc (N);
3214 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
3215 Obj_Decl : constant Node_Id :=
3216 Make_Object_Declaration (Loc,
3217 Defining_Identifier => Def_Id,
3218 Constant_Present => True,
3219 Object_Definition => New_Occurrence_Of (Typ, Loc),
3220 Expression => A,
3221 Has_Init_Expression => True);
3222 begin
3223 Set_Etype (Def_Id, Typ);
3224 Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3225 Insert_Action (N, Obj_Decl);
3226 end Transform_BIP_Assignment;
3228 -- Start of processing for Resolve_Extension_Aggregate
3230 begin
3231 -- Analyze the ancestor part and account for the case where it is a
3232 -- parameterless function call.
3234 Analyze (A);
3235 Check_Parameterless_Call (A);
3237 -- In SPARK, the ancestor part cannot be a type mark
3239 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3240 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
3242 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3243 -- must not have unknown discriminants.
3245 if Has_Unknown_Discriminants (Root_Type (Typ)) then
3246 Error_Msg_NE
3247 ("aggregate not available for type& whose ancestor "
3248 & "has unknown discriminants", N, Typ);
3249 end if;
3250 end if;
3252 if not Is_Tagged_Type (Typ) then
3253 Error_Msg_N ("type of extension aggregate must be tagged", N);
3254 return;
3256 elsif Is_Limited_Type (Typ) then
3258 -- Ada 2005 (AI-287): Limited aggregates are allowed
3260 if Ada_Version < Ada_2005 then
3261 Error_Msg_N ("aggregate type cannot be limited", N);
3262 Explain_Limited_Type (Typ, N);
3263 return;
3265 elsif Valid_Limited_Ancestor (A) then
3266 null;
3268 else
3269 Error_Msg_N
3270 ("limited ancestor part must be aggregate or function call", A);
3271 end if;
3273 elsif Is_Class_Wide_Type (Typ) then
3274 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3275 return;
3276 end if;
3278 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3279 A_Type := Get_Full_View (Entity (A));
3281 if Valid_Ancestor_Type then
3282 Set_Entity (A, A_Type);
3283 Set_Etype (A, A_Type);
3285 Validate_Ancestor_Part (N);
3286 Resolve_Record_Aggregate (N, Typ);
3287 end if;
3289 elsif Nkind (A) /= N_Aggregate then
3290 if Is_Overloaded (A) then
3291 A_Type := Any_Type;
3293 Get_First_Interp (A, I, It);
3294 while Present (It.Typ) loop
3296 -- Consider limited interpretations if Ada 2005 or higher
3298 if Is_Tagged_Type (It.Typ)
3299 and then (Ada_Version >= Ada_2005
3300 or else not Is_Limited_Type (It.Typ))
3301 then
3302 if A_Type /= Any_Type then
3303 Error_Msg_N ("cannot resolve expression", A);
3304 return;
3305 else
3306 A_Type := It.Typ;
3307 end if;
3308 end if;
3310 Get_Next_Interp (I, It);
3311 end loop;
3313 if A_Type = Any_Type then
3314 if Ada_Version >= Ada_2005 then
3315 Error_Msg_N
3316 ("ancestor part must be of a tagged type", A);
3317 else
3318 Error_Msg_N
3319 ("ancestor part must be of a nonlimited tagged type", A);
3320 end if;
3322 return;
3323 end if;
3325 else
3326 A_Type := Etype (A);
3327 end if;
3329 if Valid_Ancestor_Type then
3330 Resolve (A, A_Type);
3331 Check_Unset_Reference (A);
3332 Check_Non_Static_Context (A);
3334 -- The aggregate is illegal if the ancestor expression is a call
3335 -- to a function with a limited unconstrained result, unless the
3336 -- type of the aggregate is a null extension. This restriction
3337 -- was added in AI05-67 to simplify implementation.
3339 if Nkind (A) = N_Function_Call
3340 and then Is_Limited_Type (A_Type)
3341 and then not Is_Null_Extension (Typ)
3342 and then not Is_Constrained (A_Type)
3343 then
3344 Error_Msg_N
3345 ("type of limited ancestor part must be constrained", A);
3347 -- Reject the use of CPP constructors that leave objects partially
3348 -- initialized. For example:
3350 -- type CPP_Root is tagged limited record ...
3351 -- pragma Import (CPP, CPP_Root);
3353 -- type CPP_DT is new CPP_Root and Iface ...
3354 -- pragma Import (CPP, CPP_DT);
3356 -- type Ada_DT is new CPP_DT with ...
3358 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3360 -- Using the constructor of CPP_Root the slots of the dispatch
3361 -- table of CPP_DT cannot be set, and the secondary tag of
3362 -- CPP_DT is unknown.
3364 elsif Nkind (A) = N_Function_Call
3365 and then Is_CPP_Constructor_Call (A)
3366 and then Enclosing_CPP_Parent (Typ) /= A_Type
3367 then
3368 Error_Msg_NE
3369 ("??must use 'C'P'P constructor for type &", A,
3370 Enclosing_CPP_Parent (Typ));
3372 -- The following call is not needed if the previous warning
3373 -- is promoted to an error.
3375 Resolve_Record_Aggregate (N, Typ);
3377 elsif Is_Class_Wide_Type (Etype (A))
3378 and then Nkind (Original_Node (A)) = N_Function_Call
3379 then
3380 -- If the ancestor part is a dispatching call, it appears
3381 -- statically to be a legal ancestor, but it yields any member
3382 -- of the class, and it is not possible to determine whether
3383 -- it is an ancestor of the extension aggregate (much less
3384 -- which ancestor). It is not possible to determine the
3385 -- components of the extension part.
3387 -- This check implements AI-306, which in fact was motivated by
3388 -- an AdaCore query to the ARG after this test was added.
3390 Error_Msg_N ("ancestor part must be statically tagged", A);
3391 else
3392 -- We are using the build-in-place protocol, but we can't build
3393 -- in place, because we need to call the function before
3394 -- allocating the aggregate. Could do better for null
3395 -- extensions, and maybe for nondiscriminated types.
3396 -- This is wrong for limited, but those were wrong already.
3398 if not Is_Limited_View (A_Type)
3399 and then Is_Build_In_Place_Function_Call (A)
3400 then
3401 Transform_BIP_Assignment (A_Type);
3402 end if;
3404 Resolve_Record_Aggregate (N, Typ);
3405 end if;
3406 end if;
3408 else
3409 Error_Msg_N ("no unique type for this aggregate", A);
3410 end if;
3412 Check_Function_Writable_Actuals (N);
3413 end Resolve_Extension_Aggregate;
3415 ------------------------------
3416 -- Resolve_Record_Aggregate --
3417 ------------------------------
3419 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3420 New_Assoc_List : constant List_Id := New_List;
3421 -- New_Assoc_List is the newly built list of N_Component_Association
3422 -- nodes.
3424 Others_Etype : Entity_Id := Empty;
3425 -- This variable is used to save the Etype of the last record component
3426 -- that takes its value from the others choice. Its purpose is:
3428 -- (a) make sure the others choice is useful
3430 -- (b) make sure the type of all the components whose value is
3431 -- subsumed by the others choice are the same.
3433 -- This variable is updated as a side effect of function Get_Value.
3435 Box_Node : Node_Id := Empty;
3436 Is_Box_Present : Boolean := False;
3437 Others_Box : Integer := 0;
3438 -- Ada 2005 (AI-287): Variables used in case of default initialization
3439 -- to provide a functionality similar to Others_Etype. Box_Present
3440 -- indicates that the component takes its default initialization;
3441 -- Others_Box counts the number of components of the current aggregate
3442 -- (which may be a sub-aggregate of a larger one) that are default-
3443 -- initialized. A value of One indicates that an others_box is present.
3444 -- Any larger value indicates that the others_box is not redundant.
3445 -- These variables, similar to Others_Etype, are also updated as a side
3446 -- effect of function Get_Value. Box_Node is used to place a warning on
3447 -- a redundant others_box.
3449 procedure Add_Association
3450 (Component : Entity_Id;
3451 Expr : Node_Id;
3452 Assoc_List : List_Id;
3453 Is_Box_Present : Boolean := False);
3454 -- Builds a new N_Component_Association node which associates Component
3455 -- to expression Expr and adds it to the association list being built,
3456 -- either New_Assoc_List, or the association being built for an inner
3457 -- aggregate.
3459 procedure Add_Discriminant_Values
3460 (New_Aggr : Node_Id;
3461 Assoc_List : List_Id);
3462 -- The constraint to a component may be given by a discriminant of the
3463 -- enclosing type, in which case we have to retrieve its value, which is
3464 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3465 -- associations of the current type or of some enclosing record.
3467 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3468 -- If aggregate N is a regular aggregate this routine will return True.
3469 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3470 -- a discriminant whose value may already have been specified by N's
3471 -- ancestor part. This routine checks whether this is indeed the case
3472 -- and if so returns False, signaling that no value for Input_Discr
3473 -- should appear in N's aggregate part. Also, in this case, the routine
3474 -- appends to New_Assoc_List the discriminant value specified in the
3475 -- ancestor part.
3477 -- If the aggregate is in a context with expansion delayed, it will be
3478 -- reanalyzed. The inherited discriminant values must not be reinserted
3479 -- in the component list to prevent spurious errors, but they must be
3480 -- present on first analysis to build the proper subtype indications.
3481 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3483 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3484 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3485 -- derived from private view Typ. Whether the aggregate is legal depends
3486 -- on the current visibility of the type as well as that of the parent
3487 -- of the ancestor.
3489 function Get_Value
3490 (Compon : Node_Id;
3491 From : List_Id;
3492 Consider_Others_Choice : Boolean := False) return Node_Id;
3493 -- Given a record component stored in parameter Compon, this function
3494 -- returns its value as it appears in the list From, which is a list
3495 -- of N_Component_Association nodes.
3497 -- If no component association has a choice for the searched component,
3498 -- the value provided by the others choice is returned, if there is one,
3499 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3500 -- returned. If there is more than one component association giving a
3501 -- value for the searched record component, an error message is emitted
3502 -- and the first found value is returned.
3504 -- If Consider_Others_Choice is set and the returned expression comes
3505 -- from the others choice, then Others_Etype is set as a side effect.
3506 -- An error message is emitted if the components taking their value from
3507 -- the others choice do not have same type.
3509 procedure Propagate_Discriminants
3510 (Aggr : Node_Id;
3511 Assoc_List : List_Id);
3512 -- Nested components may themselves be discriminated types constrained
3513 -- by outer discriminants, whose values must be captured before the
3514 -- aggregate is expanded into assignments.
3516 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3517 -- Analyzes and resolves expression Expr against the Etype of the
3518 -- Component. This routine also applies all appropriate checks to Expr.
3519 -- It finally saves a Expr in the newly created association list that
3520 -- will be attached to the final record aggregate. Note that if the
3521 -- Parent pointer of Expr is not set then Expr was produced with a
3522 -- New_Copy_Tree or some such.
3524 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3525 -- Rewrite a range node Rge when its bounds refer to non-stored
3526 -- discriminants from Root_Type, to replace them with the stored
3527 -- discriminant values. This is required in GNATprove mode, and is
3528 -- adopted in all modes to avoid special-casing GNATprove mode.
3530 ---------------------
3531 -- Add_Association --
3532 ---------------------
3534 procedure Add_Association
3535 (Component : Entity_Id;
3536 Expr : Node_Id;
3537 Assoc_List : List_Id;
3538 Is_Box_Present : Boolean := False)
3540 Choice_List : constant List_Id := New_List;
3541 Loc : Source_Ptr;
3543 begin
3544 -- If this is a box association the expression is missing, so use the
3545 -- Sloc of the aggregate itself for the new association.
3547 if Present (Expr) then
3548 Loc := Sloc (Expr);
3549 else
3550 Loc := Sloc (N);
3551 end if;
3553 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3555 Append_To (Assoc_List,
3556 Make_Component_Association (Loc,
3557 Choices => Choice_List,
3558 Expression => Expr,
3559 Box_Present => Is_Box_Present));
3560 end Add_Association;
3562 -----------------------------
3563 -- Add_Discriminant_Values --
3564 -----------------------------
3566 procedure Add_Discriminant_Values
3567 (New_Aggr : Node_Id;
3568 Assoc_List : List_Id)
3570 Assoc : Node_Id;
3571 Discr : Entity_Id;
3572 Discr_Elmt : Elmt_Id;
3573 Discr_Val : Node_Id;
3574 Val : Entity_Id;
3576 begin
3577 Discr := First_Discriminant (Etype (New_Aggr));
3578 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3579 while Present (Discr_Elmt) loop
3580 Discr_Val := Node (Discr_Elmt);
3582 -- If the constraint is given by a discriminant then it is a
3583 -- discriminant of an enclosing record, and its value has already
3584 -- been placed in the association list.
3586 if Is_Entity_Name (Discr_Val)
3587 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3588 then
3589 Val := Entity (Discr_Val);
3591 Assoc := First (Assoc_List);
3592 while Present (Assoc) loop
3593 if Present (Entity (First (Choices (Assoc))))
3594 and then Entity (First (Choices (Assoc))) = Val
3595 then
3596 Discr_Val := Expression (Assoc);
3597 exit;
3598 end if;
3600 Next (Assoc);
3601 end loop;
3602 end if;
3604 Add_Association
3605 (Discr, New_Copy_Tree (Discr_Val),
3606 Component_Associations (New_Aggr));
3608 -- If the discriminant constraint is a current instance, mark the
3609 -- current aggregate so that the self-reference can be expanded
3610 -- later. The constraint may refer to the subtype of aggregate, so
3611 -- use base type for comparison.
3613 if Nkind (Discr_Val) = N_Attribute_Reference
3614 and then Is_Entity_Name (Prefix (Discr_Val))
3615 and then Is_Type (Entity (Prefix (Discr_Val)))
3616 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3617 then
3618 Set_Has_Self_Reference (N);
3619 end if;
3621 Next_Elmt (Discr_Elmt);
3622 Next_Discriminant (Discr);
3623 end loop;
3624 end Add_Discriminant_Values;
3626 --------------------------
3627 -- Discriminant_Present --
3628 --------------------------
3630 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3631 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3633 Ancestor_Is_Subtyp : Boolean;
3635 Loc : Source_Ptr;
3637 Ancestor : Node_Id;
3638 Ancestor_Typ : Entity_Id;
3639 Comp_Assoc : Node_Id;
3640 Discr : Entity_Id;
3641 Discr_Expr : Node_Id;
3642 Discr_Val : Elmt_Id := No_Elmt;
3643 Orig_Discr : Entity_Id;
3645 begin
3646 if Regular_Aggr then
3647 return True;
3648 end if;
3650 -- Check whether inherited discriminant values have already been
3651 -- inserted in the aggregate. This will be the case if we are
3652 -- re-analyzing an aggregate whose expansion was delayed.
3654 if Present (Component_Associations (N)) then
3655 Comp_Assoc := First (Component_Associations (N));
3656 while Present (Comp_Assoc) loop
3657 if Inherited_Discriminant (Comp_Assoc) then
3658 return True;
3659 end if;
3661 Next (Comp_Assoc);
3662 end loop;
3663 end if;
3665 Ancestor := Ancestor_Part (N);
3666 Ancestor_Typ := Etype (Ancestor);
3667 Loc := Sloc (Ancestor);
3669 -- For a private type with unknown discriminants, use the underlying
3670 -- record view if it is available.
3672 if Has_Unknown_Discriminants (Ancestor_Typ)
3673 and then Present (Full_View (Ancestor_Typ))
3674 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3675 then
3676 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3677 end if;
3679 Ancestor_Is_Subtyp :=
3680 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3682 -- If the ancestor part has no discriminants clearly N's aggregate
3683 -- part must provide a value for Discr.
3685 if not Has_Discriminants (Ancestor_Typ) then
3686 return True;
3688 -- If the ancestor part is an unconstrained subtype mark then the
3689 -- Discr must be present in N's aggregate part.
3691 elsif Ancestor_Is_Subtyp
3692 and then not Is_Constrained (Entity (Ancestor))
3693 then
3694 return True;
3695 end if;
3697 -- Now look to see if Discr was specified in the ancestor part
3699 if Ancestor_Is_Subtyp then
3700 Discr_Val :=
3701 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3702 end if;
3704 Orig_Discr := Original_Record_Component (Input_Discr);
3706 Discr := First_Discriminant (Ancestor_Typ);
3707 while Present (Discr) loop
3709 -- If Ancestor has already specified Disc value then insert its
3710 -- value in the final aggregate.
3712 if Original_Record_Component (Discr) = Orig_Discr then
3713 if Ancestor_Is_Subtyp then
3714 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3715 else
3716 Discr_Expr :=
3717 Make_Selected_Component (Loc,
3718 Prefix => Duplicate_Subexpr (Ancestor),
3719 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3720 end if;
3722 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3723 Set_Inherited_Discriminant (Last (New_Assoc_List));
3724 return False;
3725 end if;
3727 Next_Discriminant (Discr);
3729 if Ancestor_Is_Subtyp then
3730 Next_Elmt (Discr_Val);
3731 end if;
3732 end loop;
3734 return True;
3735 end Discriminant_Present;
3737 ---------------------------
3738 -- Find_Private_Ancestor --
3739 ---------------------------
3741 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3742 Par : Entity_Id;
3744 begin
3745 Par := Typ;
3746 loop
3747 if Has_Private_Ancestor (Par)
3748 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3749 then
3750 return Par;
3752 elsif not Is_Derived_Type (Par) then
3753 return Empty;
3755 else
3756 Par := Etype (Base_Type (Par));
3757 end if;
3758 end loop;
3759 end Find_Private_Ancestor;
3761 ---------------
3762 -- Get_Value --
3763 ---------------
3765 function Get_Value
3766 (Compon : Node_Id;
3767 From : List_Id;
3768 Consider_Others_Choice : Boolean := False) return Node_Id
3770 Typ : constant Entity_Id := Etype (Compon);
3771 Assoc : Node_Id;
3772 Expr : Node_Id := Empty;
3773 Selector_Name : Node_Id;
3775 begin
3776 Is_Box_Present := False;
3778 if No (From) then
3779 return Empty;
3780 end if;
3782 Assoc := First (From);
3783 while Present (Assoc) loop
3784 Selector_Name := First (Choices (Assoc));
3785 while Present (Selector_Name) loop
3786 if Nkind (Selector_Name) = N_Others_Choice then
3787 if Consider_Others_Choice and then No (Expr) then
3789 -- We need to duplicate the expression for each
3790 -- successive component covered by the others choice.
3791 -- This is redundant if the others_choice covers only
3792 -- one component (small optimization possible???), but
3793 -- indispensable otherwise, because each one must be
3794 -- expanded individually to preserve side effects.
3796 -- Ada 2005 (AI-287): In case of default initialization
3797 -- of components, we duplicate the corresponding default
3798 -- expression (from the record type declaration). The
3799 -- copy must carry the sloc of the association (not the
3800 -- original expression) to prevent spurious elaboration
3801 -- checks when the default includes function calls.
3803 if Box_Present (Assoc) then
3804 Others_Box := Others_Box + 1;
3805 Is_Box_Present := True;
3807 if Expander_Active then
3808 return
3809 New_Copy_Tree_And_Copy_Dimensions
3810 (Expression (Parent (Compon)),
3811 New_Sloc => Sloc (Assoc));
3812 else
3813 return Expression (Parent (Compon));
3814 end if;
3816 else
3817 if Present (Others_Etype)
3818 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3819 then
3820 -- If the components are of an anonymous access
3821 -- type they are distinct, but this is legal in
3822 -- Ada 2012 as long as designated types match.
3824 if (Ekind (Typ) = E_Anonymous_Access_Type
3825 or else Ekind (Typ) =
3826 E_Anonymous_Access_Subprogram_Type)
3827 and then Designated_Type (Typ) =
3828 Designated_Type (Others_Etype)
3829 then
3830 null;
3831 else
3832 Error_Msg_N
3833 ("components in OTHERS choice must have same "
3834 & "type", Selector_Name);
3835 end if;
3836 end if;
3838 Others_Etype := Typ;
3840 -- Copy the expression so that it is resolved
3841 -- independently for each component, This is needed
3842 -- for accessibility checks on compoents of anonymous
3843 -- access types, even in compile_only mode.
3845 if not Inside_A_Generic then
3847 -- In ASIS mode, preanalyze the expression in an
3848 -- others association before making copies for
3849 -- separate resolution and accessibility checks.
3850 -- This ensures that the type of the expression is
3851 -- available to ASIS in all cases, in particular if
3852 -- the expression is itself an aggregate.
3854 if ASIS_Mode then
3855 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3856 end if;
3858 return
3859 New_Copy_Tree_And_Copy_Dimensions
3860 (Expression (Assoc));
3862 else
3863 return Expression (Assoc);
3864 end if;
3865 end if;
3866 end if;
3868 elsif Chars (Compon) = Chars (Selector_Name) then
3869 if No (Expr) then
3871 -- Ada 2005 (AI-231)
3873 if Ada_Version >= Ada_2005
3874 and then Known_Null (Expression (Assoc))
3875 then
3876 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3877 end if;
3879 -- We need to duplicate the expression when several
3880 -- components are grouped together with a "|" choice.
3881 -- For instance "filed1 | filed2 => Expr"
3883 -- Ada 2005 (AI-287)
3885 if Box_Present (Assoc) then
3886 Is_Box_Present := True;
3888 -- Duplicate the default expression of the component
3889 -- from the record type declaration, so a new copy
3890 -- can be attached to the association.
3892 -- Note that we always copy the default expression,
3893 -- even when the association has a single choice, in
3894 -- order to create a proper association for the
3895 -- expanded aggregate.
3897 -- Component may have no default, in which case the
3898 -- expression is empty and the component is default-
3899 -- initialized, but an association for the component
3900 -- exists, and it is not covered by an others clause.
3902 -- Scalar and private types have no initialization
3903 -- procedure, so they remain uninitialized. If the
3904 -- target of the aggregate is a constant this
3905 -- deserves a warning.
3907 if No (Expression (Parent (Compon)))
3908 and then not Has_Non_Null_Base_Init_Proc (Typ)
3909 and then not Has_Aspect (Typ, Aspect_Default_Value)
3910 and then not Is_Concurrent_Type (Typ)
3911 and then Nkind (Parent (N)) = N_Object_Declaration
3912 and then Constant_Present (Parent (N))
3913 then
3914 Error_Msg_Node_2 := Typ;
3915 Error_Msg_NE
3916 ("component&? of type& is uninitialized",
3917 Assoc, Selector_Name);
3919 -- An additional reminder if the component type
3920 -- is a generic formal.
3922 if Is_Generic_Type (Base_Type (Typ)) then
3923 Error_Msg_NE
3924 ("\instance should provide actual type with "
3925 & "initialization for&", Assoc, Typ);
3926 end if;
3927 end if;
3929 return
3930 New_Copy_Tree_And_Copy_Dimensions
3931 (Expression (Parent (Compon)));
3933 else
3934 if Present (Next (Selector_Name)) then
3935 Expr := New_Copy_Tree_And_Copy_Dimensions
3936 (Expression (Assoc));
3937 else
3938 Expr := Expression (Assoc);
3939 end if;
3940 end if;
3942 Generate_Reference (Compon, Selector_Name, 'm');
3944 else
3945 Error_Msg_NE
3946 ("more than one value supplied for &",
3947 Selector_Name, Compon);
3949 end if;
3950 end if;
3952 Next (Selector_Name);
3953 end loop;
3955 Next (Assoc);
3956 end loop;
3958 return Expr;
3959 end Get_Value;
3961 -----------------------------
3962 -- Propagate_Discriminants --
3963 -----------------------------
3965 procedure Propagate_Discriminants
3966 (Aggr : Node_Id;
3967 Assoc_List : List_Id)
3969 Loc : constant Source_Ptr := Sloc (N);
3971 Needs_Box : Boolean := False;
3973 procedure Process_Component (Comp : Entity_Id);
3974 -- Add one component with a box association to the inner aggregate,
3975 -- and recurse if component is itself composite.
3977 -----------------------
3978 -- Process_Component --
3979 -----------------------
3981 procedure Process_Component (Comp : Entity_Id) is
3982 T : constant Entity_Id := Etype (Comp);
3983 New_Aggr : Node_Id;
3985 begin
3986 if Is_Record_Type (T) and then Has_Discriminants (T) then
3987 New_Aggr := Make_Aggregate (Loc, New_List, New_List);
3988 Set_Etype (New_Aggr, T);
3990 Add_Association
3991 (Comp, New_Aggr, Component_Associations (Aggr));
3993 -- Collect discriminant values and recurse
3995 Add_Discriminant_Values (New_Aggr, Assoc_List);
3996 Propagate_Discriminants (New_Aggr, Assoc_List);
3998 else
3999 Needs_Box := True;
4000 end if;
4001 end Process_Component;
4003 -- Local variables
4005 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
4006 Components : constant Elist_Id := New_Elmt_List;
4007 Def_Node : constant Node_Id :=
4008 Type_Definition (Declaration_Node (Aggr_Type));
4010 Comp : Node_Id;
4011 Comp_Elmt : Elmt_Id;
4012 Errors : Boolean;
4014 -- Start of processing for Propagate_Discriminants
4016 begin
4017 -- The component type may be a variant type. Collect the components
4018 -- that are ruled by the known values of the discriminants. Their
4019 -- values have already been inserted into the component list of the
4020 -- current aggregate.
4022 if Nkind (Def_Node) = N_Record_Definition
4023 and then Present (Component_List (Def_Node))
4024 and then Present (Variant_Part (Component_List (Def_Node)))
4025 then
4026 Gather_Components (Aggr_Type,
4027 Component_List (Def_Node),
4028 Governed_By => Component_Associations (Aggr),
4029 Into => Components,
4030 Report_Errors => Errors);
4032 Comp_Elmt := First_Elmt (Components);
4033 while Present (Comp_Elmt) loop
4034 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
4035 Process_Component (Node (Comp_Elmt));
4036 end if;
4038 Next_Elmt (Comp_Elmt);
4039 end loop;
4041 -- No variant part, iterate over all components
4043 else
4044 Comp := First_Component (Etype (Aggr));
4045 while Present (Comp) loop
4046 Process_Component (Comp);
4047 Next_Component (Comp);
4048 end loop;
4049 end if;
4051 if Needs_Box then
4052 Append_To (Component_Associations (Aggr),
4053 Make_Component_Association (Loc,
4054 Choices => New_List (Make_Others_Choice (Loc)),
4055 Expression => Empty,
4056 Box_Present => True));
4057 end if;
4058 end Propagate_Discriminants;
4060 -----------------------
4061 -- Resolve_Aggr_Expr --
4062 -----------------------
4064 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
4065 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
4066 -- If the expression is an aggregate (possibly qualified) then its
4067 -- expansion is delayed until the enclosing aggregate is expanded
4068 -- into assignments. In that case, do not generate checks on the
4069 -- expression, because they will be generated later, and will other-
4070 -- wise force a copy (to remove side effects) that would leave a
4071 -- dynamic-sized aggregate in the code, something that gigi cannot
4072 -- handle.
4074 ---------------------------
4075 -- Has_Expansion_Delayed --
4076 ---------------------------
4078 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
4079 begin
4080 return
4081 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
4082 and then Present (Etype (Expr))
4083 and then Is_Record_Type (Etype (Expr))
4084 and then Expansion_Delayed (Expr))
4085 or else
4086 (Nkind (Expr) = N_Qualified_Expression
4087 and then Has_Expansion_Delayed (Expression (Expr)));
4088 end Has_Expansion_Delayed;
4090 -- Local variables
4092 Expr_Type : Entity_Id := Empty;
4093 New_C : Entity_Id := Component;
4094 New_Expr : Node_Id;
4096 Relocate : Boolean;
4097 -- Set to True if the resolved Expr node needs to be relocated when
4098 -- attached to the newly created association list. This node need not
4099 -- be relocated if its parent pointer is not set. In fact in this
4100 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
4101 -- True then we have analyzed the expression node in the original
4102 -- aggregate and hence it needs to be relocated when moved over to
4103 -- the new association list.
4105 -- Start of processing for Resolve_Aggr_Expr
4107 begin
4108 -- If the type of the component is elementary or the type of the
4109 -- aggregate does not contain discriminants, use the type of the
4110 -- component to resolve Expr.
4112 if Is_Elementary_Type (Etype (Component))
4113 or else not Has_Discriminants (Etype (N))
4114 then
4115 Expr_Type := Etype (Component);
4117 -- Otherwise we have to pick up the new type of the component from
4118 -- the new constrained subtype of the aggregate. In fact components
4119 -- which are of a composite type might be constrained by a
4120 -- discriminant, and we want to resolve Expr against the subtype were
4121 -- all discriminant occurrences are replaced with their actual value.
4123 else
4124 New_C := First_Component (Etype (N));
4125 while Present (New_C) loop
4126 if Chars (New_C) = Chars (Component) then
4127 Expr_Type := Etype (New_C);
4128 exit;
4129 end if;
4131 Next_Component (New_C);
4132 end loop;
4134 pragma Assert (Present (Expr_Type));
4136 -- For each range in an array type where a discriminant has been
4137 -- replaced with the constraint, check that this range is within
4138 -- the range of the base type. This checks is done in the init
4139 -- proc for regular objects, but has to be done here for
4140 -- aggregates since no init proc is called for them.
4142 if Is_Array_Type (Expr_Type) then
4143 declare
4144 Index : Node_Id;
4145 -- Range of the current constrained index in the array
4147 Orig_Index : Node_Id := First_Index (Etype (Component));
4148 -- Range corresponding to the range Index above in the
4149 -- original unconstrained record type. The bounds of this
4150 -- range may be governed by discriminants.
4152 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4153 -- Range corresponding to the range Index above for the
4154 -- unconstrained array type. This range is needed to apply
4155 -- range checks.
4157 begin
4158 Index := First_Index (Expr_Type);
4159 while Present (Index) loop
4160 if Depends_On_Discriminant (Orig_Index) then
4161 Apply_Range_Check (Index, Etype (Unconstr_Index));
4162 end if;
4164 Next_Index (Index);
4165 Next_Index (Orig_Index);
4166 Next_Index (Unconstr_Index);
4167 end loop;
4168 end;
4169 end if;
4170 end if;
4172 -- If the Parent pointer of Expr is not set, Expr is an expression
4173 -- duplicated by New_Tree_Copy (this happens for record aggregates
4174 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4175 -- Such a duplicated expression must be attached to the tree
4176 -- before analysis and resolution to enforce the rule that a tree
4177 -- fragment should never be analyzed or resolved unless it is
4178 -- attached to the current compilation unit.
4180 if No (Parent (Expr)) then
4181 Set_Parent (Expr, N);
4182 Relocate := False;
4183 else
4184 Relocate := True;
4185 end if;
4187 Analyze_And_Resolve (Expr, Expr_Type);
4188 Check_Expr_OK_In_Limited_Aggregate (Expr);
4189 Check_Non_Static_Context (Expr);
4190 Check_Unset_Reference (Expr);
4192 -- Check wrong use of class-wide types
4194 if Is_Class_Wide_Type (Etype (Expr)) then
4195 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4196 end if;
4198 if not Has_Expansion_Delayed (Expr) then
4199 Aggregate_Constraint_Checks (Expr, Expr_Type);
4200 end if;
4202 -- If an aggregate component has a type with predicates, an explicit
4203 -- predicate check must be applied, as for an assignment statement,
4204 -- because the aggegate might not be expanded into individual
4205 -- component assignments.
4207 if Has_Predicates (Expr_Type)
4208 and then Analyzed (Expr)
4209 then
4210 Apply_Predicate_Check (Expr, Expr_Type);
4211 end if;
4213 if Raises_Constraint_Error (Expr) then
4214 Set_Raises_Constraint_Error (N);
4215 end if;
4217 -- If the expression has been marked as requiring a range check, then
4218 -- generate it here. It's a bit odd to be generating such checks in
4219 -- the analyzer, but harmless since Generate_Range_Check does nothing
4220 -- (other than making sure Do_Range_Check is set) if the expander is
4221 -- not active.
4223 if Do_Range_Check (Expr) then
4224 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4225 end if;
4227 -- Add association Component => Expr if the caller requests it
4229 if Relocate then
4230 New_Expr := Relocate_Node (Expr);
4232 -- Since New_Expr is not gonna be analyzed later on, we need to
4233 -- propagate here the dimensions form Expr to New_Expr.
4235 Copy_Dimensions (Expr, New_Expr);
4237 else
4238 New_Expr := Expr;
4239 end if;
4241 Add_Association (New_C, New_Expr, New_Assoc_List);
4242 end Resolve_Aggr_Expr;
4244 -------------------
4245 -- Rewrite_Range --
4246 -------------------
4248 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4249 procedure Rewrite_Bound
4250 (Bound : Node_Id;
4251 Disc : Entity_Id;
4252 Expr_Disc : Node_Id);
4253 -- Rewrite a bound of the range Bound, when it is equal to the
4254 -- non-stored discriminant Disc, into the stored discriminant
4255 -- value Expr_Disc.
4257 -------------------
4258 -- Rewrite_Bound --
4259 -------------------
4261 procedure Rewrite_Bound
4262 (Bound : Node_Id;
4263 Disc : Entity_Id;
4264 Expr_Disc : Node_Id)
4266 begin
4267 if Nkind (Bound) = N_Identifier
4268 and then Entity (Bound) = Disc
4269 then
4270 Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4271 end if;
4272 end Rewrite_Bound;
4274 -- Local variables
4276 Low, High : Node_Id;
4277 Disc : Entity_Id;
4278 Expr_Disc : Elmt_Id;
4280 -- Start of processing for Rewrite_Range
4282 begin
4283 if Has_Discriminants (Root_Type)
4284 and then Nkind (Rge) = N_Range
4285 then
4286 Low := Low_Bound (Rge);
4287 High := High_Bound (Rge);
4289 Disc := First_Discriminant (Root_Type);
4290 Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4291 while Present (Disc) loop
4292 Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4293 Rewrite_Bound (High, Disc, Node (Expr_Disc));
4294 Next_Discriminant (Disc);
4295 Next_Elmt (Expr_Disc);
4296 end loop;
4297 end if;
4298 end Rewrite_Range;
4300 -- Local variables
4302 Components : constant Elist_Id := New_Elmt_List;
4303 -- Components is the list of the record components whose value must be
4304 -- provided in the aggregate. This list does include discriminants.
4306 Component : Entity_Id;
4307 Component_Elmt : Elmt_Id;
4308 Expr : Node_Id;
4309 Positional_Expr : Node_Id;
4311 -- Start of processing for Resolve_Record_Aggregate
4313 begin
4314 -- A record aggregate is restricted in SPARK:
4316 -- Each named association can have only a single choice.
4317 -- OTHERS cannot be used.
4318 -- Positional and named associations cannot be mixed.
4320 if Present (Component_Associations (N))
4321 and then Present (First (Component_Associations (N)))
4322 then
4323 if Present (Expressions (N)) then
4324 Check_SPARK_05_Restriction
4325 ("named association cannot follow positional one",
4326 First (Choices (First (Component_Associations (N)))));
4327 end if;
4329 declare
4330 Assoc : Node_Id;
4332 begin
4333 Assoc := First (Component_Associations (N));
4334 while Present (Assoc) loop
4335 if Nkind (Assoc) = N_Iterated_Component_Association then
4336 Error_Msg_N
4337 ("iterated component association can only appear in an "
4338 & "array aggregate", N);
4339 raise Unrecoverable_Error;
4341 else
4342 if List_Length (Choices (Assoc)) > 1 then
4343 Check_SPARK_05_Restriction
4344 ("component association in record aggregate must "
4345 & "contain a single choice", Assoc);
4346 end if;
4348 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4349 Check_SPARK_05_Restriction
4350 ("record aggregate cannot contain OTHERS", Assoc);
4351 end if;
4352 end if;
4354 Assoc := Next (Assoc);
4355 end loop;
4356 end;
4357 end if;
4359 -- We may end up calling Duplicate_Subexpr on expressions that are
4360 -- attached to New_Assoc_List. For this reason we need to attach it
4361 -- to the tree by setting its parent pointer to N. This parent point
4362 -- will change in STEP 8 below.
4364 Set_Parent (New_Assoc_List, N);
4366 -- STEP 1: abstract type and null record verification
4368 if Is_Abstract_Type (Typ) then
4369 Error_Msg_N ("type of aggregate cannot be abstract", N);
4370 end if;
4372 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4373 Set_Etype (N, Typ);
4374 return;
4376 elsif Present (First_Entity (Typ))
4377 and then Null_Record_Present (N)
4378 and then not Is_Tagged_Type (Typ)
4379 then
4380 Error_Msg_N ("record aggregate cannot be null", N);
4381 return;
4383 -- If the type has no components, then the aggregate should either
4384 -- have "null record", or in Ada 2005 it could instead have a single
4385 -- component association given by "others => <>". For Ada 95 we flag an
4386 -- error at this point, but for Ada 2005 we proceed with checking the
4387 -- associations below, which will catch the case where it's not an
4388 -- aggregate with "others => <>". Note that the legality of a <>
4389 -- aggregate for a null record type was established by AI05-016.
4391 elsif No (First_Entity (Typ))
4392 and then Ada_Version < Ada_2005
4393 then
4394 Error_Msg_N ("record aggregate must be null", N);
4395 return;
4396 end if;
4398 -- STEP 2: Verify aggregate structure
4400 Step_2 : declare
4401 Assoc : Node_Id;
4402 Bad_Aggregate : Boolean := False;
4403 Selector_Name : Node_Id;
4405 begin
4406 if Present (Component_Associations (N)) then
4407 Assoc := First (Component_Associations (N));
4408 else
4409 Assoc := Empty;
4410 end if;
4412 while Present (Assoc) loop
4413 Selector_Name := First (Choices (Assoc));
4414 while Present (Selector_Name) loop
4415 if Nkind (Selector_Name) = N_Identifier then
4416 null;
4418 elsif Nkind (Selector_Name) = N_Others_Choice then
4419 if Selector_Name /= First (Choices (Assoc))
4420 or else Present (Next (Selector_Name))
4421 then
4422 Error_Msg_N
4423 ("OTHERS must appear alone in a choice list",
4424 Selector_Name);
4425 return;
4427 elsif Present (Next (Assoc)) then
4428 Error_Msg_N
4429 ("OTHERS must appear last in an aggregate",
4430 Selector_Name);
4431 return;
4433 -- (Ada 2005): If this is an association with a box,
4434 -- indicate that the association need not represent
4435 -- any component.
4437 elsif Box_Present (Assoc) then
4438 Others_Box := 1;
4439 Box_Node := Assoc;
4440 end if;
4442 else
4443 Error_Msg_N
4444 ("selector name should be identifier or OTHERS",
4445 Selector_Name);
4446 Bad_Aggregate := True;
4447 end if;
4449 Next (Selector_Name);
4450 end loop;
4452 Next (Assoc);
4453 end loop;
4455 if Bad_Aggregate then
4456 return;
4457 end if;
4458 end Step_2;
4460 -- STEP 3: Find discriminant Values
4462 Step_3 : declare
4463 Discrim : Entity_Id;
4464 Missing_Discriminants : Boolean := False;
4466 begin
4467 if Present (Expressions (N)) then
4468 Positional_Expr := First (Expressions (N));
4469 else
4470 Positional_Expr := Empty;
4471 end if;
4473 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4474 -- must not have unknown discriminants.
4476 if Is_Derived_Type (Typ)
4477 and then Has_Unknown_Discriminants (Root_Type (Typ))
4478 and then Nkind (N) /= N_Extension_Aggregate
4479 then
4480 Error_Msg_NE
4481 ("aggregate not available for type& whose ancestor "
4482 & "has unknown discriminants ", N, Typ);
4483 end if;
4485 if Has_Unknown_Discriminants (Typ)
4486 and then Present (Underlying_Record_View (Typ))
4487 then
4488 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4489 elsif Has_Discriminants (Typ) then
4490 Discrim := First_Discriminant (Typ);
4491 else
4492 Discrim := Empty;
4493 end if;
4495 -- First find the discriminant values in the positional components
4497 while Present (Discrim) and then Present (Positional_Expr) loop
4498 if Discriminant_Present (Discrim) then
4499 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4501 -- Ada 2005 (AI-231)
4503 if Ada_Version >= Ada_2005
4504 and then Known_Null (Positional_Expr)
4505 then
4506 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4507 end if;
4509 Next (Positional_Expr);
4510 end if;
4512 if Present (Get_Value (Discrim, Component_Associations (N))) then
4513 Error_Msg_NE
4514 ("more than one value supplied for discriminant&",
4515 N, Discrim);
4516 end if;
4518 Next_Discriminant (Discrim);
4519 end loop;
4521 -- Find remaining discriminant values if any among named components
4523 while Present (Discrim) loop
4524 Expr := Get_Value (Discrim, Component_Associations (N), True);
4526 if not Discriminant_Present (Discrim) then
4527 if Present (Expr) then
4528 Error_Msg_NE
4529 ("more than one value supplied for discriminant &",
4530 N, Discrim);
4531 end if;
4533 elsif No (Expr) then
4534 Error_Msg_NE
4535 ("no value supplied for discriminant &", N, Discrim);
4536 Missing_Discriminants := True;
4538 else
4539 Resolve_Aggr_Expr (Expr, Discrim);
4540 end if;
4542 Next_Discriminant (Discrim);
4543 end loop;
4545 if Missing_Discriminants then
4546 return;
4547 end if;
4549 -- At this point and until the beginning of STEP 6, New_Assoc_List
4550 -- contains only the discriminants and their values.
4552 end Step_3;
4554 -- STEP 4: Set the Etype of the record aggregate
4556 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4557 -- routine should really be exported in sem_util or some such and used
4558 -- in sem_ch3 and here rather than have a copy of the code which is a
4559 -- maintenance nightmare.
4561 -- ??? Performance WARNING. The current implementation creates a new
4562 -- itype for all aggregates whose base type is discriminated. This means
4563 -- that for record aggregates nested inside an array aggregate we will
4564 -- create a new itype for each record aggregate if the array component
4565 -- type has discriminants. For large aggregates this may be a problem.
4566 -- What should be done in this case is to reuse itypes as much as
4567 -- possible.
4569 if Has_Discriminants (Typ)
4570 or else (Has_Unknown_Discriminants (Typ)
4571 and then Present (Underlying_Record_View (Typ)))
4572 then
4573 Build_Constrained_Itype : declare
4574 Constrs : constant List_Id := New_List;
4575 Loc : constant Source_Ptr := Sloc (N);
4576 Def_Id : Entity_Id;
4577 Indic : Node_Id;
4578 New_Assoc : Node_Id;
4579 Subtyp_Decl : Node_Id;
4581 begin
4582 New_Assoc := First (New_Assoc_List);
4583 while Present (New_Assoc) loop
4584 Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
4585 Next (New_Assoc);
4586 end loop;
4588 if Has_Unknown_Discriminants (Typ)
4589 and then Present (Underlying_Record_View (Typ))
4590 then
4591 Indic :=
4592 Make_Subtype_Indication (Loc,
4593 Subtype_Mark =>
4594 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
4595 Constraint =>
4596 Make_Index_Or_Discriminant_Constraint (Loc,
4597 Constraints => Constrs));
4598 else
4599 Indic :=
4600 Make_Subtype_Indication (Loc,
4601 Subtype_Mark =>
4602 New_Occurrence_Of (Base_Type (Typ), Loc),
4603 Constraint =>
4604 Make_Index_Or_Discriminant_Constraint (Loc,
4605 Constraints => Constrs));
4606 end if;
4608 Def_Id := Create_Itype (Ekind (Typ), N);
4610 Subtyp_Decl :=
4611 Make_Subtype_Declaration (Loc,
4612 Defining_Identifier => Def_Id,
4613 Subtype_Indication => Indic);
4614 Set_Parent (Subtyp_Decl, Parent (N));
4616 -- Itypes must be analyzed with checks off (see itypes.ads)
4618 Analyze (Subtyp_Decl, Suppress => All_Checks);
4620 Set_Etype (N, Def_Id);
4621 Check_Static_Discriminated_Subtype
4622 (Def_Id, Expression (First (New_Assoc_List)));
4623 end Build_Constrained_Itype;
4625 else
4626 Set_Etype (N, Typ);
4627 end if;
4629 -- STEP 5: Get remaining components according to discriminant values
4631 Step_5 : declare
4632 Dnode : Node_Id;
4633 Errors_Found : Boolean := False;
4634 Record_Def : Node_Id;
4635 Parent_Typ : Entity_Id;
4636 Parent_Typ_List : Elist_Id;
4637 Parent_Elmt : Elmt_Id;
4638 Root_Typ : Entity_Id;
4640 begin
4641 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4642 Parent_Typ_List := New_Elmt_List;
4644 -- If this is an extension aggregate, the component list must
4645 -- include all components that are not in the given ancestor type.
4646 -- Otherwise, the component list must include components of all
4647 -- ancestors, starting with the root.
4649 if Nkind (N) = N_Extension_Aggregate then
4650 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4652 else
4653 -- AI05-0115: check legality of aggregate for type with a
4654 -- private ancestor.
4656 Root_Typ := Root_Type (Typ);
4657 if Has_Private_Ancestor (Typ) then
4658 declare
4659 Ancestor : constant Entity_Id :=
4660 Find_Private_Ancestor (Typ);
4661 Ancestor_Unit : constant Entity_Id :=
4662 Cunit_Entity
4663 (Get_Source_Unit (Ancestor));
4664 Parent_Unit : constant Entity_Id :=
4665 Cunit_Entity (Get_Source_Unit
4666 (Base_Type (Etype (Ancestor))));
4667 begin
4668 -- Check whether we are in a scope that has full view
4669 -- over the private ancestor and its parent. This can
4670 -- only happen if the derivation takes place in a child
4671 -- unit of the unit that declares the parent, and we are
4672 -- in the private part or body of that child unit, else
4673 -- the aggregate is illegal.
4675 if Is_Child_Unit (Ancestor_Unit)
4676 and then Scope (Ancestor_Unit) = Parent_Unit
4677 and then In_Open_Scopes (Scope (Ancestor))
4678 and then
4679 (In_Private_Part (Scope (Ancestor))
4680 or else In_Package_Body (Scope (Ancestor)))
4681 then
4682 null;
4684 else
4685 Error_Msg_NE
4686 ("type of aggregate has private ancestor&!",
4687 N, Root_Typ);
4688 Error_Msg_N ("must use extension aggregate!", N);
4689 return;
4690 end if;
4691 end;
4692 end if;
4694 Dnode := Declaration_Node (Base_Type (Root_Typ));
4696 -- If we don't get a full declaration, then we have some error
4697 -- which will get signalled later so skip this part. Otherwise
4698 -- gather components of root that apply to the aggregate type.
4699 -- We use the base type in case there is an applicable stored
4700 -- constraint that renames the discriminants of the root.
4702 if Nkind (Dnode) = N_Full_Type_Declaration then
4703 Record_Def := Type_Definition (Dnode);
4704 Gather_Components
4705 (Base_Type (Typ),
4706 Component_List (Record_Def),
4707 Governed_By => New_Assoc_List,
4708 Into => Components,
4709 Report_Errors => Errors_Found);
4711 if Errors_Found then
4712 Error_Msg_N
4713 ("discriminant controlling variant part is not static",
4715 return;
4716 end if;
4717 end if;
4718 end if;
4720 Parent_Typ := Base_Type (Typ);
4721 while Parent_Typ /= Root_Typ loop
4722 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4723 Parent_Typ := Etype (Parent_Typ);
4725 if Nkind (Parent (Base_Type (Parent_Typ))) =
4726 N_Private_Type_Declaration
4727 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4728 N_Private_Extension_Declaration
4729 then
4730 if Nkind (N) /= N_Extension_Aggregate then
4731 Error_Msg_NE
4732 ("type of aggregate has private ancestor&!",
4733 N, Parent_Typ);
4734 Error_Msg_N ("must use extension aggregate!", N);
4735 return;
4737 elsif Parent_Typ /= Root_Typ then
4738 Error_Msg_NE
4739 ("ancestor part of aggregate must be private type&",
4740 Ancestor_Part (N), Parent_Typ);
4741 return;
4742 end if;
4744 -- The current view of ancestor part may be a private type,
4745 -- while the context type is always non-private.
4747 elsif Is_Private_Type (Root_Typ)
4748 and then Present (Full_View (Root_Typ))
4749 and then Nkind (N) = N_Extension_Aggregate
4750 then
4751 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4752 end if;
4753 end loop;
4755 -- Now collect components from all other ancestors, beginning
4756 -- with the current type. If the type has unknown discriminants
4757 -- use the component list of the Underlying_Record_View, which
4758 -- needs to be used for the subsequent expansion of the aggregate
4759 -- into assignments.
4761 Parent_Elmt := First_Elmt (Parent_Typ_List);
4762 while Present (Parent_Elmt) loop
4763 Parent_Typ := Node (Parent_Elmt);
4765 if Has_Unknown_Discriminants (Parent_Typ)
4766 and then Present (Underlying_Record_View (Typ))
4767 then
4768 Parent_Typ := Underlying_Record_View (Parent_Typ);
4769 end if;
4771 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4772 Gather_Components (Empty,
4773 Component_List (Record_Extension_Part (Record_Def)),
4774 Governed_By => New_Assoc_List,
4775 Into => Components,
4776 Report_Errors => Errors_Found);
4778 Next_Elmt (Parent_Elmt);
4779 end loop;
4781 -- Typ is not a derived tagged type
4783 else
4784 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4786 if Null_Present (Record_Def) then
4787 null;
4789 elsif not Has_Unknown_Discriminants (Typ) then
4790 Gather_Components
4791 (Base_Type (Typ),
4792 Component_List (Record_Def),
4793 Governed_By => New_Assoc_List,
4794 Into => Components,
4795 Report_Errors => Errors_Found);
4797 else
4798 Gather_Components
4799 (Base_Type (Underlying_Record_View (Typ)),
4800 Component_List (Record_Def),
4801 Governed_By => New_Assoc_List,
4802 Into => Components,
4803 Report_Errors => Errors_Found);
4804 end if;
4805 end if;
4807 if Errors_Found then
4808 return;
4809 end if;
4810 end Step_5;
4812 -- STEP 6: Find component Values
4814 Component := Empty;
4815 Component_Elmt := First_Elmt (Components);
4817 -- First scan the remaining positional associations in the aggregate.
4818 -- Remember that at this point Positional_Expr contains the current
4819 -- positional association if any is left after looking for discriminant
4820 -- values in step 3.
4822 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4823 Component := Node (Component_Elmt);
4824 Resolve_Aggr_Expr (Positional_Expr, Component);
4826 -- Ada 2005 (AI-231)
4828 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4829 Check_Can_Never_Be_Null (Component, Positional_Expr);
4830 end if;
4832 if Present (Get_Value (Component, Component_Associations (N))) then
4833 Error_Msg_NE
4834 ("more than one value supplied for Component &", N, Component);
4835 end if;
4837 Next (Positional_Expr);
4838 Next_Elmt (Component_Elmt);
4839 end loop;
4841 if Present (Positional_Expr) then
4842 Error_Msg_N
4843 ("too many components for record aggregate", Positional_Expr);
4844 end if;
4846 -- Now scan for the named arguments of the aggregate
4848 while Present (Component_Elmt) loop
4849 Component := Node (Component_Elmt);
4850 Expr := Get_Value (Component, Component_Associations (N), True);
4852 -- Note: The previous call to Get_Value sets the value of the
4853 -- variable Is_Box_Present.
4855 -- Ada 2005 (AI-287): Handle components with default initialization.
4856 -- Note: This feature was originally added to Ada 2005 for limited
4857 -- but it was finally allowed with any type.
4859 if Is_Box_Present then
4860 Check_Box_Component : declare
4861 Ctyp : constant Entity_Id := Etype (Component);
4863 begin
4864 -- If there is a default expression for the aggregate, copy
4865 -- it into a new association. This copy must modify the scopes
4866 -- of internal types that may be attached to the expression
4867 -- (e.g. index subtypes of arrays) because in general the type
4868 -- declaration and the aggregate appear in different scopes,
4869 -- and the backend requires the scope of the type to match the
4870 -- point at which it is elaborated.
4872 -- If the component has an initialization procedure (IP) we
4873 -- pass the component to the expander, which will generate
4874 -- the call to such IP.
4876 -- If the component has discriminants, their values must
4877 -- be taken from their subtype. This is indispensable for
4878 -- constraints that are given by the current instance of an
4879 -- enclosing type, to allow the expansion of the aggregate to
4880 -- replace the reference to the current instance by the target
4881 -- object of the aggregate.
4883 if Present (Parent (Component))
4884 and then Nkind (Parent (Component)) = N_Component_Declaration
4885 and then Present (Expression (Parent (Component)))
4886 then
4887 Expr :=
4888 New_Copy_Tree_And_Copy_Dimensions
4889 (Expression (Parent (Component)),
4890 New_Scope => Current_Scope,
4891 New_Sloc => Sloc (N));
4893 -- As the type of the copied default expression may refer
4894 -- to discriminants of the record type declaration, these
4895 -- non-stored discriminants need to be rewritten into stored
4896 -- discriminant values for the aggregate. This is required
4897 -- in GNATprove mode, and is adopted in all modes to avoid
4898 -- special-casing GNATprove mode.
4900 if Is_Array_Type (Etype (Expr)) then
4901 declare
4902 Rec_Typ : constant Entity_Id := Scope (Component);
4903 -- Root record type whose discriminants may be used as
4904 -- bounds in range nodes.
4906 Index : Node_Id;
4908 begin
4909 -- Rewrite the range nodes occurring in the indexes
4910 -- and their types.
4912 Index := First_Index (Etype (Expr));
4913 while Present (Index) loop
4914 Rewrite_Range (Rec_Typ, Index);
4915 Rewrite_Range
4916 (Rec_Typ, Scalar_Range (Etype (Index)));
4918 Next_Index (Index);
4919 end loop;
4921 -- Rewrite the range nodes occurring as aggregate
4922 -- bounds.
4924 if Nkind (Expr) = N_Aggregate
4925 and then Present (Aggregate_Bounds (Expr))
4926 then
4927 Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
4928 end if;
4929 end;
4930 end if;
4932 Add_Association
4933 (Component => Component,
4934 Expr => Expr,
4935 Assoc_List => New_Assoc_List);
4936 Set_Has_Self_Reference (N);
4938 -- A box-defaulted access component gets the value null. Also
4939 -- included are components of private types whose underlying
4940 -- type is an access type. In either case set the type of the
4941 -- literal, for subsequent use in semantic checks.
4943 elsif Present (Underlying_Type (Ctyp))
4944 and then Is_Access_Type (Underlying_Type (Ctyp))
4945 then
4946 -- If the component's type is private with an access type as
4947 -- its underlying type then we have to create an unchecked
4948 -- conversion to satisfy type checking.
4950 if Is_Private_Type (Ctyp) then
4951 declare
4952 Qual_Null : constant Node_Id :=
4953 Make_Qualified_Expression (Sloc (N),
4954 Subtype_Mark =>
4955 New_Occurrence_Of
4956 (Underlying_Type (Ctyp), Sloc (N)),
4957 Expression => Make_Null (Sloc (N)));
4959 Convert_Null : constant Node_Id :=
4960 Unchecked_Convert_To
4961 (Ctyp, Qual_Null);
4963 begin
4964 Analyze_And_Resolve (Convert_Null, Ctyp);
4965 Add_Association
4966 (Component => Component,
4967 Expr => Convert_Null,
4968 Assoc_List => New_Assoc_List);
4969 end;
4971 -- Otherwise the component type is non-private
4973 else
4974 Expr := Make_Null (Sloc (N));
4975 Set_Etype (Expr, Ctyp);
4977 Add_Association
4978 (Component => Component,
4979 Expr => Expr,
4980 Assoc_List => New_Assoc_List);
4981 end if;
4983 -- Ada 2012: If component is scalar with default value, use it
4985 elsif Is_Scalar_Type (Ctyp)
4986 and then Has_Default_Aspect (Ctyp)
4987 then
4988 Add_Association
4989 (Component => Component,
4990 Expr =>
4991 Default_Aspect_Value
4992 (First_Subtype (Underlying_Type (Ctyp))),
4993 Assoc_List => New_Assoc_List);
4995 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4996 or else not Expander_Active
4997 then
4998 if Is_Record_Type (Ctyp)
4999 and then Has_Discriminants (Ctyp)
5000 and then not Is_Private_Type (Ctyp)
5001 then
5002 -- We build a partially initialized aggregate with the
5003 -- values of the discriminants and box initialization
5004 -- for the rest, if other components are present.
5006 -- The type of the aggregate is the known subtype of
5007 -- the component. The capture of discriminants must be
5008 -- recursive because subcomponents may be constrained
5009 -- (transitively) by discriminants of enclosing types.
5010 -- For a private type with discriminants, a call to the
5011 -- initialization procedure will be generated, and no
5012 -- subaggregate is needed.
5014 Capture_Discriminants : declare
5015 Loc : constant Source_Ptr := Sloc (N);
5016 Expr : Node_Id;
5018 begin
5019 Expr := Make_Aggregate (Loc, New_List, New_List);
5020 Set_Etype (Expr, Ctyp);
5022 -- If the enclosing type has discriminants, they have
5023 -- been collected in the aggregate earlier, and they
5024 -- may appear as constraints of subcomponents.
5026 -- Similarly if this component has discriminants, they
5027 -- might in turn be propagated to their components.
5029 if Has_Discriminants (Typ) then
5030 Add_Discriminant_Values (Expr, New_Assoc_List);
5031 Propagate_Discriminants (Expr, New_Assoc_List);
5033 elsif Has_Discriminants (Ctyp) then
5034 Add_Discriminant_Values
5035 (Expr, Component_Associations (Expr));
5036 Propagate_Discriminants
5037 (Expr, Component_Associations (Expr));
5039 else
5040 declare
5041 Comp : Entity_Id;
5043 begin
5044 -- If the type has additional components, create
5045 -- an OTHERS box association for them.
5047 Comp := First_Component (Ctyp);
5048 while Present (Comp) loop
5049 if Ekind (Comp) = E_Component then
5050 if not Is_Record_Type (Etype (Comp)) then
5051 Append_To
5052 (Component_Associations (Expr),
5053 Make_Component_Association (Loc,
5054 Choices =>
5055 New_List (
5056 Make_Others_Choice (Loc)),
5057 Expression => Empty,
5058 Box_Present => True));
5059 end if;
5061 exit;
5062 end if;
5064 Next_Component (Comp);
5065 end loop;
5066 end;
5067 end if;
5069 Add_Association
5070 (Component => Component,
5071 Expr => Expr,
5072 Assoc_List => New_Assoc_List);
5073 end Capture_Discriminants;
5075 -- Otherwise the component type is not a record, or it has
5076 -- not discriminants, or it is private.
5078 else
5079 Add_Association
5080 (Component => Component,
5081 Expr => Empty,
5082 Assoc_List => New_Assoc_List,
5083 Is_Box_Present => True);
5084 end if;
5086 -- Otherwise we only need to resolve the expression if the
5087 -- component has partially initialized values (required to
5088 -- expand the corresponding assignments and run-time checks).
5090 elsif Present (Expr)
5091 and then Is_Partially_Initialized_Type (Ctyp)
5092 then
5093 Resolve_Aggr_Expr (Expr, Component);
5094 end if;
5095 end Check_Box_Component;
5097 elsif No (Expr) then
5099 -- Ignore hidden components associated with the position of the
5100 -- interface tags: these are initialized dynamically.
5102 if not Present (Related_Type (Component)) then
5103 Error_Msg_NE
5104 ("no value supplied for component &!", N, Component);
5105 end if;
5107 else
5108 Resolve_Aggr_Expr (Expr, Component);
5109 end if;
5111 Next_Elmt (Component_Elmt);
5112 end loop;
5114 -- STEP 7: check for invalid components + check type in choice list
5116 Step_7 : declare
5117 Assoc : Node_Id;
5118 New_Assoc : Node_Id;
5120 Selectr : Node_Id;
5121 -- Selector name
5123 Typech : Entity_Id;
5124 -- Type of first component in choice list
5126 begin
5127 if Present (Component_Associations (N)) then
5128 Assoc := First (Component_Associations (N));
5129 else
5130 Assoc := Empty;
5131 end if;
5133 Verification : while Present (Assoc) loop
5134 Selectr := First (Choices (Assoc));
5135 Typech := Empty;
5137 if Nkind (Selectr) = N_Others_Choice then
5139 -- Ada 2005 (AI-287): others choice may have expression or box
5141 if No (Others_Etype) and then Others_Box = 0 then
5142 Error_Msg_N
5143 ("OTHERS must represent at least one component", Selectr);
5145 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
5146 Error_Msg_N ("others choice is redundant?", Box_Node);
5147 Error_Msg_N
5148 ("\previous choices cover all components?", Box_Node);
5149 end if;
5151 exit Verification;
5152 end if;
5154 while Present (Selectr) loop
5155 New_Assoc := First (New_Assoc_List);
5156 while Present (New_Assoc) loop
5157 Component := First (Choices (New_Assoc));
5159 if Chars (Selectr) = Chars (Component) then
5160 if Style_Check then
5161 Check_Identifier (Selectr, Entity (Component));
5162 end if;
5164 exit;
5165 end if;
5167 Next (New_Assoc);
5168 end loop;
5170 -- If no association, this is not a legal component of the type
5171 -- in question, unless its association is provided with a box.
5173 if No (New_Assoc) then
5174 if Box_Present (Parent (Selectr)) then
5176 -- This may still be a bogus component with a box. Scan
5177 -- list of components to verify that a component with
5178 -- that name exists.
5180 declare
5181 C : Entity_Id;
5183 begin
5184 C := First_Component (Typ);
5185 while Present (C) loop
5186 if Chars (C) = Chars (Selectr) then
5188 -- If the context is an extension aggregate,
5189 -- the component must not be inherited from
5190 -- the ancestor part of the aggregate.
5192 if Nkind (N) /= N_Extension_Aggregate
5193 or else
5194 Scope (Original_Record_Component (C)) /=
5195 Etype (Ancestor_Part (N))
5196 then
5197 exit;
5198 end if;
5199 end if;
5201 Next_Component (C);
5202 end loop;
5204 if No (C) then
5205 Error_Msg_Node_2 := Typ;
5206 Error_Msg_N ("& is not a component of}", Selectr);
5207 end if;
5208 end;
5210 elsif Chars (Selectr) /= Name_uTag
5211 and then Chars (Selectr) /= Name_uParent
5212 then
5213 if not Has_Discriminants (Typ) then
5214 Error_Msg_Node_2 := Typ;
5215 Error_Msg_N ("& is not a component of}", Selectr);
5216 else
5217 Error_Msg_N
5218 ("& is not a component of the aggregate subtype",
5219 Selectr);
5220 end if;
5222 Check_Misspelled_Component (Components, Selectr);
5223 end if;
5225 elsif No (Typech) then
5226 Typech := Base_Type (Etype (Component));
5228 -- AI05-0199: In Ada 2012, several components of anonymous
5229 -- access types can appear in a choice list, as long as the
5230 -- designated types match.
5232 elsif Typech /= Base_Type (Etype (Component)) then
5233 if Ada_Version >= Ada_2012
5234 and then Ekind (Typech) = E_Anonymous_Access_Type
5235 and then
5236 Ekind (Etype (Component)) = E_Anonymous_Access_Type
5237 and then Base_Type (Designated_Type (Typech)) =
5238 Base_Type (Designated_Type (Etype (Component)))
5239 and then
5240 Subtypes_Statically_Match (Typech, (Etype (Component)))
5241 then
5242 null;
5244 elsif not Box_Present (Parent (Selectr)) then
5245 Error_Msg_N
5246 ("components in choice list must have same type",
5247 Selectr);
5248 end if;
5249 end if;
5251 Next (Selectr);
5252 end loop;
5254 Next (Assoc);
5255 end loop Verification;
5256 end Step_7;
5258 -- STEP 8: replace the original aggregate
5260 Step_8 : declare
5261 New_Aggregate : constant Node_Id := New_Copy (N);
5263 begin
5264 Set_Expressions (New_Aggregate, No_List);
5265 Set_Etype (New_Aggregate, Etype (N));
5266 Set_Component_Associations (New_Aggregate, New_Assoc_List);
5267 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
5269 Rewrite (N, New_Aggregate);
5270 end Step_8;
5272 -- Check the dimensions of the components in the record aggregate
5274 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5275 end Resolve_Record_Aggregate;
5277 -----------------------------
5278 -- Check_Can_Never_Be_Null --
5279 -----------------------------
5281 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5282 Comp_Typ : Entity_Id;
5284 begin
5285 pragma Assert
5286 (Ada_Version >= Ada_2005
5287 and then Present (Expr)
5288 and then Known_Null (Expr));
5290 case Ekind (Typ) is
5291 when E_Array_Type =>
5292 Comp_Typ := Component_Type (Typ);
5294 when E_Component
5295 | E_Discriminant
5297 Comp_Typ := Etype (Typ);
5299 when others =>
5300 return;
5301 end case;
5303 if Can_Never_Be_Null (Comp_Typ) then
5305 -- Here we know we have a constraint error. Note that we do not use
5306 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
5307 -- seem the more natural approach. That's because in some cases the
5308 -- components are rewritten, and the replacement would be missed.
5309 -- We do not mark the whole aggregate as raising a constraint error,
5310 -- because the association may be a null array range.
5312 Error_Msg_N
5313 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
5314 Error_Msg_N
5315 ("\Constraint_Error will be raised at run time??", Expr);
5317 Rewrite (Expr,
5318 Make_Raise_Constraint_Error
5319 (Sloc (Expr), Reason => CE_Access_Check_Failed));
5320 Set_Etype (Expr, Comp_Typ);
5321 Set_Analyzed (Expr);
5322 end if;
5323 end Check_Can_Never_Be_Null;
5325 ---------------------
5326 -- Sort_Case_Table --
5327 ---------------------
5329 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5330 U : constant Int := Case_Table'Last;
5331 K : Int;
5332 J : Int;
5333 T : Case_Bounds;
5335 begin
5336 K := 1;
5337 while K < U loop
5338 T := Case_Table (K + 1);
5340 J := K + 1;
5341 while J > 1
5342 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5343 loop
5344 Case_Table (J) := Case_Table (J - 1);
5345 J := J - 1;
5346 end loop;
5348 Case_Table (J) := T;
5349 K := K + 1;
5350 end loop;
5351 end Sort_Case_Table;
5353 end Sem_Aggr;