2003-05-31 Bud Davis <bdavis9659@comcast.net>
[official-gcc.git] / gcc / ada / sem_attr.adb
blobca6b3ea0204ffde8e3c9186663d0add12b204676
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
29 with Atree; use Atree;
30 with Checks; use Checks;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Expander; use Expander;
37 with Freeze; use Freeze;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch6; use Sem_Ch6;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Dist; use Sem_Dist;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Res; use Sem_Res;
52 with Sem_Type; use Sem_Type;
53 with Sem_Util; use Sem_Util;
54 with Stand; use Stand;
55 with Sinfo; use Sinfo;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Stand;
59 with Stringt; use Stringt;
60 with Targparm; use Targparm;
61 with Ttypes; use Ttypes;
62 with Ttypef; use Ttypef;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
65 with Urealp; use Urealp;
66 with Widechar; use Widechar;
68 package body Sem_Attr is
70 True_Value : constant Uint := Uint_1;
71 False_Value : constant Uint := Uint_0;
72 -- Synonyms to be used when these constants are used as Boolean values
74 Bad_Attribute : exception;
75 -- Exception raised if an error is detected during attribute processing,
76 -- used so that we can abandon the processing so we don't run into
77 -- trouble with cascaded errors.
79 -- The following array is the list of attributes defined in the Ada 83 RM
81 Attribute_83 : Attribute_Class_Array := Attribute_Class_Array'(
82 Attribute_Address |
83 Attribute_Aft |
84 Attribute_Alignment |
85 Attribute_Base |
86 Attribute_Callable |
87 Attribute_Constrained |
88 Attribute_Count |
89 Attribute_Delta |
90 Attribute_Digits |
91 Attribute_Emax |
92 Attribute_Epsilon |
93 Attribute_First |
94 Attribute_First_Bit |
95 Attribute_Fore |
96 Attribute_Image |
97 Attribute_Large |
98 Attribute_Last |
99 Attribute_Last_Bit |
100 Attribute_Leading_Part |
101 Attribute_Length |
102 Attribute_Machine_Emax |
103 Attribute_Machine_Emin |
104 Attribute_Machine_Mantissa |
105 Attribute_Machine_Overflows |
106 Attribute_Machine_Radix |
107 Attribute_Machine_Rounds |
108 Attribute_Mantissa |
109 Attribute_Pos |
110 Attribute_Position |
111 Attribute_Pred |
112 Attribute_Range |
113 Attribute_Safe_Emax |
114 Attribute_Safe_Large |
115 Attribute_Safe_Small |
116 Attribute_Size |
117 Attribute_Small |
118 Attribute_Storage_Size |
119 Attribute_Succ |
120 Attribute_Terminated |
121 Attribute_Val |
122 Attribute_Value |
123 Attribute_Width => True,
124 others => False);
126 -----------------------
127 -- Local_Subprograms --
128 -----------------------
130 procedure Eval_Attribute (N : Node_Id);
131 -- Performs compile time evaluation of attributes where possible, leaving
132 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
133 -- set, and replacing the node with a literal node if the value can be
134 -- computed at compile time. All static attribute references are folded,
135 -- as well as a number of cases of non-static attributes that can always
136 -- be computed at compile time (e.g. floating-point model attributes that
137 -- are applied to non-static subtypes). Of course in such cases, the
138 -- Is_Static_Expression flag will not be set on the resulting literal.
139 -- Note that the only required action of this procedure is to catch the
140 -- static expression cases as described in the RM. Folding of other cases
141 -- is done where convenient, but some additional non-static folding is in
142 -- N_Expand_Attribute_Reference in cases where this is more convenient.
144 function Is_Anonymous_Tagged_Base
145 (Anon : Entity_Id;
146 Typ : Entity_Id)
147 return Boolean;
148 -- For derived tagged types that constrain parent discriminants we build
149 -- an anonymous unconstrained base type. We need to recognize the relation
150 -- between the two when analyzing an access attribute for a constrained
151 -- component, before the full declaration for Typ has been analyzed, and
152 -- where therefore the prefix of the attribute does not match the enclosing
153 -- scope.
155 -----------------------
156 -- Analyze_Attribute --
157 -----------------------
159 procedure Analyze_Attribute (N : Node_Id) is
160 Loc : constant Source_Ptr := Sloc (N);
161 Aname : constant Name_Id := Attribute_Name (N);
162 P : constant Node_Id := Prefix (N);
163 Exprs : constant List_Id := Expressions (N);
164 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
165 E1 : Node_Id;
166 E2 : Node_Id;
168 P_Type : Entity_Id;
169 -- Type of prefix after analysis
171 P_Base_Type : Entity_Id;
172 -- Base type of prefix after analysis
174 P_Root_Type : Entity_Id;
175 -- Root type of prefix after analysis
177 Unanalyzed : Node_Id;
179 -----------------------
180 -- Local Subprograms --
181 -----------------------
183 procedure Access_Attribute;
184 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
185 -- Internally, Id distinguishes which of the three cases is involved.
187 procedure Check_Array_Or_Scalar_Type;
188 -- Common procedure used by First, Last, Range attribute to check
189 -- that the prefix is a constrained array or scalar type, or a name
190 -- of an array object, and that an argument appears only if appropriate
191 -- (i.e. only in the array case).
193 procedure Check_Array_Type;
194 -- Common semantic checks for all array attributes. Checks that the
195 -- prefix is a constrained array type or the name of an array object.
196 -- The error message for non-arrays is specialized appropriately.
198 procedure Check_Asm_Attribute;
199 -- Common semantic checks for Asm_Input and Asm_Output attributes
201 procedure Check_Component;
202 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
203 -- Position. Checks prefix is an appropriate selected component.
205 procedure Check_Decimal_Fixed_Point_Type;
206 -- Check that prefix of attribute N is a decimal fixed-point type
208 procedure Check_Dereference;
209 -- If the prefix of attribute is an object of an access type, then
210 -- introduce an explicit deference, and adjust P_Type accordingly.
212 procedure Check_Discrete_Type;
213 -- Verify that prefix of attribute N is a discrete type
215 procedure Check_E0;
216 -- Check that no attribute arguments are present
218 procedure Check_Either_E0_Or_E1;
219 -- Check that there are zero or one attribute arguments present
221 procedure Check_E1;
222 -- Check that exactly one attribute argument is present
224 procedure Check_E2;
225 -- Check that two attribute arguments are present
227 procedure Check_Enum_Image;
228 -- If the prefix type is an enumeration type, set all its literals
229 -- as referenced, since the image function could possibly end up
230 -- referencing any of the literals indirectly.
232 procedure Check_Fixed_Point_Type;
233 -- Verify that prefix of attribute N is a fixed type
235 procedure Check_Fixed_Point_Type_0;
236 -- Verify that prefix of attribute N is a fixed type and that
237 -- no attribute expressions are present
239 procedure Check_Floating_Point_Type;
240 -- Verify that prefix of attribute N is a float type
242 procedure Check_Floating_Point_Type_0;
243 -- Verify that prefix of attribute N is a float type and that
244 -- no attribute expressions are present
246 procedure Check_Floating_Point_Type_1;
247 -- Verify that prefix of attribute N is a float type and that
248 -- exactly one attribute expression is present
250 procedure Check_Floating_Point_Type_2;
251 -- Verify that prefix of attribute N is a float type and that
252 -- two attribute expressions are present
254 procedure Legal_Formal_Attribute;
255 -- Common processing for attributes Definite, and Has_Discriminants
257 procedure Check_Integer_Type;
258 -- Verify that prefix of attribute N is an integer type
260 procedure Check_Library_Unit;
261 -- Verify that prefix of attribute N is a library unit
263 procedure Check_Not_Incomplete_Type;
264 -- Check that P (the prefix of the attribute) is not an incomplete
265 -- type or a private type for which no full view has been given.
267 procedure Check_Object_Reference (P : Node_Id);
268 -- Check that P (the prefix of the attribute) is an object reference
270 procedure Check_Program_Unit;
271 -- Verify that prefix of attribute N is a program unit
273 procedure Check_Real_Type;
274 -- Verify that prefix of attribute N is fixed or float type
276 procedure Check_Scalar_Type;
277 -- Verify that prefix of attribute N is a scalar type
279 procedure Check_Standard_Prefix;
280 -- Verify that prefix of attribute N is package Standard
282 procedure Check_Stream_Attribute (Nam : Name_Id);
283 -- Validity checking for stream attribute. Nam is the name of the
284 -- corresponding possible defined attribute function (e.g. for the
285 -- Read attribute, Nam will be Name_uRead).
287 procedure Check_Task_Prefix;
288 -- Verify that prefix of attribute N is a task or task type
290 procedure Check_Type;
291 -- Verify that the prefix of attribute N is a type
293 procedure Check_Unit_Name (Nod : Node_Id);
294 -- Check that Nod is of the form of a library unit name, i.e that
295 -- it is an identifier, or a selected component whose prefix is
296 -- itself of the form of a library unit name. Note that this is
297 -- quite different from Check_Program_Unit, since it only checks
298 -- the syntactic form of the name, not the semantic identity. This
299 -- is because it is used with attributes (Elab_Body, Elab_Spec, and
300 -- UET_Address) which can refer to non-visible unit.
302 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
303 pragma No_Return (Error_Attr);
304 -- Posts error using Error_Msg_N at given node, sets type of attribute
305 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
306 -- semantic processing. The message typically contains a % insertion
307 -- character which is replaced by the attribute name.
309 procedure Standard_Attribute (Val : Int);
310 -- Used to process attributes whose prefix is package Standard which
311 -- yield values of type Universal_Integer. The attribute reference
312 -- node is rewritten with an integer literal of the given value.
314 procedure Unexpected_Argument (En : Node_Id);
315 -- Signal unexpected attribute argument (En is the argument)
317 procedure Validate_Non_Static_Attribute_Function_Call;
318 -- Called when processing an attribute that is a function call to a
319 -- non-static function, i.e. an attribute function that either takes
320 -- non-scalar arguments or returns a non-scalar result. Verifies that
321 -- such a call does not appear in a preelaborable context.
323 ----------------------
324 -- Access_Attribute --
325 ----------------------
327 procedure Access_Attribute is
328 Acc_Type : Entity_Id;
330 Scop : Entity_Id;
331 Typ : Entity_Id;
333 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
334 -- Build an access-to-object type whose designated type is DT,
335 -- and whose Ekind is appropriate to the attribute type. The
336 -- type that is constructed is returned as the result.
338 procedure Build_Access_Subprogram_Type (P : Node_Id);
339 -- Build an access to subprogram whose designated type is
340 -- the type of the prefix. If prefix is overloaded, so it the
341 -- node itself. The result is stored in Acc_Type.
343 ------------------------------
344 -- Build_Access_Object_Type --
345 ------------------------------
347 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
348 Typ : Entity_Id;
350 begin
351 if Aname = Name_Unrestricted_Access then
352 Typ :=
353 New_Internal_Entity
354 (E_Allocator_Type, Current_Scope, Loc, 'A');
355 else
356 Typ :=
357 New_Internal_Entity
358 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
359 end if;
361 Set_Etype (Typ, Typ);
362 Init_Size_Align (Typ);
363 Set_Is_Itype (Typ);
364 Set_Associated_Node_For_Itype (Typ, N);
365 Set_Directly_Designated_Type (Typ, DT);
366 return Typ;
367 end Build_Access_Object_Type;
369 ----------------------------------
370 -- Build_Access_Subprogram_Type --
371 ----------------------------------
373 procedure Build_Access_Subprogram_Type (P : Node_Id) is
374 Index : Interp_Index;
375 It : Interp;
377 function Get_Kind (E : Entity_Id) return Entity_Kind;
378 -- Distinguish between access to regular and protected
379 -- subprograms.
381 function Get_Kind (E : Entity_Id) return Entity_Kind is
382 begin
383 if Convention (E) = Convention_Protected then
384 return E_Access_Protected_Subprogram_Type;
385 else
386 return E_Access_Subprogram_Type;
387 end if;
388 end Get_Kind;
390 -- Start of processing for Build_Access_Subprogram_Type
392 begin
393 if not Is_Overloaded (P) then
394 Acc_Type :=
395 New_Internal_Entity
396 (Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
397 Set_Etype (Acc_Type, Acc_Type);
398 Set_Directly_Designated_Type (Acc_Type, Entity (P));
399 Set_Etype (N, Acc_Type);
401 else
402 Get_First_Interp (P, Index, It);
403 Set_Etype (N, Any_Type);
405 while Present (It.Nam) loop
407 if not Is_Intrinsic_Subprogram (It.Nam) then
408 Acc_Type :=
409 New_Internal_Entity
410 (Get_Kind (It.Nam), Current_Scope, Loc, 'A');
411 Set_Etype (Acc_Type, Acc_Type);
412 Set_Directly_Designated_Type (Acc_Type, It.Nam);
413 Add_One_Interp (N, Acc_Type, Acc_Type);
414 end if;
416 Get_Next_Interp (Index, It);
417 end loop;
419 if Etype (N) = Any_Type then
420 Error_Attr ("prefix of % attribute cannot be intrinsic", P);
421 end if;
422 end if;
423 end Build_Access_Subprogram_Type;
425 -- Start of processing for Access_Attribute
427 begin
428 Check_E0;
430 if Nkind (P) = N_Character_Literal then
431 Error_Attr
432 ("prefix of % attribute cannot be enumeration literal", P);
434 -- In the case of an access to subprogram, use the name of the
435 -- subprogram itself as the designated type. Type-checking in
436 -- this case compares the signatures of the designated types.
438 elsif Is_Entity_Name (P)
439 and then Is_Overloadable (Entity (P))
440 then
441 if not Is_Library_Level_Entity (Entity (P)) then
442 Check_Restriction (No_Implicit_Dynamic_Code, P);
443 end if;
445 Build_Access_Subprogram_Type (P);
446 return;
448 -- Component is an operation of a protected type.
450 elsif (Nkind (P) = N_Selected_Component
451 and then Is_Overloadable (Entity (Selector_Name (P))))
452 then
453 if Ekind (Entity (Selector_Name (P))) = E_Entry then
454 Error_Attr ("prefix of % attribute must be subprogram", P);
455 end if;
457 Build_Access_Subprogram_Type (Selector_Name (P));
458 return;
459 end if;
461 -- Deal with incorrect reference to a type, but note that some
462 -- accesses are allowed (references to the current type instance).
464 if Is_Entity_Name (P) then
465 Scop := Current_Scope;
466 Typ := Entity (P);
468 if Is_Type (Typ) then
470 -- OK if we are within the scope of a limited type
471 -- let's mark the component as having per object constraint
473 if Is_Anonymous_Tagged_Base (Scop, Typ) then
474 Typ := Scop;
475 Set_Entity (P, Typ);
476 Set_Etype (P, Typ);
477 end if;
479 if Typ = Scop then
480 declare
481 Q : Node_Id := Parent (N);
483 begin
484 while Present (Q)
485 and then Nkind (Q) /= N_Component_Declaration
486 loop
487 Q := Parent (Q);
488 end loop;
489 if Present (Q) then
490 Set_Has_Per_Object_Constraint (
491 Defining_Identifier (Q), True);
492 end if;
493 end;
495 if Nkind (P) = N_Expanded_Name then
496 Error_Msg_N
497 ("current instance prefix must be a direct name", P);
498 end if;
500 -- If a current instance attribute appears within a
501 -- a component constraint it must appear alone; other
502 -- contexts (default expressions, within a task body)
503 -- are not subject to this restriction.
505 if not In_Default_Expression
506 and then not Has_Completion (Scop)
507 and then
508 Nkind (Parent (N)) /= N_Discriminant_Association
509 and then
510 Nkind (Parent (N)) /= N_Index_Or_Discriminant_Constraint
511 then
512 Error_Msg_N
513 ("current instance attribute must appear alone", N);
514 end if;
516 -- OK if we are in initialization procedure for the type
517 -- in question, in which case the reference to the type
518 -- is rewritten as a reference to the current object.
520 elsif Ekind (Scop) = E_Procedure
521 and then Chars (Scop) = Name_uInit_Proc
522 and then Etype (First_Formal (Scop)) = Typ
523 then
524 Rewrite (N,
525 Make_Attribute_Reference (Loc,
526 Prefix => Make_Identifier (Loc, Name_uInit),
527 Attribute_Name => Name_Unrestricted_Access));
528 Analyze (N);
529 return;
531 -- OK if a task type, this test needs sharpening up ???
533 elsif Is_Task_Type (Typ) then
534 null;
536 -- Otherwise we have an error case
538 else
539 Error_Attr ("% attribute cannot be applied to type", P);
540 return;
541 end if;
542 end if;
543 end if;
545 -- If we fall through, we have a normal access to object case.
546 -- Unrestricted_Access is legal wherever an allocator would be
547 -- legal, so its Etype is set to E_Allocator. The expected type
548 -- of the other attributes is a general access type, and therefore
549 -- we label them with E_Access_Attribute_Type.
551 if not Is_Overloaded (P) then
552 Acc_Type := Build_Access_Object_Type (P_Type);
553 Set_Etype (N, Acc_Type);
554 else
555 declare
556 Index : Interp_Index;
557 It : Interp;
559 begin
560 Set_Etype (N, Any_Type);
561 Get_First_Interp (P, Index, It);
563 while Present (It.Typ) loop
564 Acc_Type := Build_Access_Object_Type (It.Typ);
565 Add_One_Interp (N, Acc_Type, Acc_Type);
566 Get_Next_Interp (Index, It);
567 end loop;
568 end;
569 end if;
571 -- Check for aliased view unless unrestricted case. We allow
572 -- a nonaliased prefix when within an instance because the
573 -- prefix may have been a tagged formal object, which is
574 -- defined to be aliased even when the actual might not be
575 -- (other instance cases will have been caught in the generic).
577 if Aname /= Name_Unrestricted_Access
578 and then not Is_Aliased_View (P)
579 and then not In_Instance
580 then
581 Error_Attr ("prefix of % attribute must be aliased", P);
582 end if;
584 end Access_Attribute;
586 --------------------------------
587 -- Check_Array_Or_Scalar_Type --
588 --------------------------------
590 procedure Check_Array_Or_Scalar_Type is
591 Index : Entity_Id;
593 D : Int;
594 -- Dimension number for array attributes.
596 begin
597 -- Case of string literal or string literal subtype. These cases
598 -- cannot arise from legal Ada code, but the expander is allowed
599 -- to generate them. They require special handling because string
600 -- literal subtypes do not have standard bounds (the whole idea
601 -- of these subtypes is to avoid having to generate the bounds)
603 if Ekind (P_Type) = E_String_Literal_Subtype then
604 Set_Etype (N, Etype (First_Index (P_Base_Type)));
605 return;
607 -- Scalar types
609 elsif Is_Scalar_Type (P_Type) then
610 Check_Type;
612 if Present (E1) then
613 Error_Attr ("invalid argument in % attribute", E1);
614 else
615 Set_Etype (N, P_Base_Type);
616 return;
617 end if;
619 -- The following is a special test to allow 'First to apply to
620 -- private scalar types if the attribute comes from generated
621 -- code. This occurs in the case of Normalize_Scalars code.
623 elsif Is_Private_Type (P_Type)
624 and then Present (Full_View (P_Type))
625 and then Is_Scalar_Type (Full_View (P_Type))
626 and then not Comes_From_Source (N)
627 then
628 Set_Etype (N, Implementation_Base_Type (P_Type));
630 -- Array types other than string literal subtypes handled above
632 else
633 Check_Array_Type;
635 -- We know prefix is an array type, or the name of an array
636 -- object, and that the expression, if present, is static
637 -- and within the range of the dimensions of the type.
639 if Is_Array_Type (P_Type) then
640 Index := First_Index (P_Base_Type);
642 else pragma Assert (Is_Access_Type (P_Type));
643 Index := First_Index (Base_Type (Designated_Type (P_Type)));
644 end if;
646 if No (E1) then
648 -- First dimension assumed
650 Set_Etype (N, Base_Type (Etype (Index)));
652 else
653 D := UI_To_Int (Intval (E1));
655 for J in 1 .. D - 1 loop
656 Next_Index (Index);
657 end loop;
659 Set_Etype (N, Base_Type (Etype (Index)));
660 Set_Etype (E1, Standard_Integer);
661 end if;
662 end if;
663 end Check_Array_Or_Scalar_Type;
665 ----------------------
666 -- Check_Array_Type --
667 ----------------------
669 procedure Check_Array_Type is
670 D : Int;
671 -- Dimension number for array attributes.
673 begin
674 -- If the type is a string literal type, then this must be generated
675 -- internally, and no further check is required on its legality.
677 if Ekind (P_Type) = E_String_Literal_Subtype then
678 return;
680 -- If the type is a composite, it is an illegal aggregate, no point
681 -- in going on.
683 elsif P_Type = Any_Composite then
684 raise Bad_Attribute;
685 end if;
687 -- Normal case of array type or subtype
689 Check_Either_E0_Or_E1;
691 if Is_Array_Type (P_Type) then
692 if not Is_Constrained (P_Type)
693 and then Is_Entity_Name (P)
694 and then Is_Type (Entity (P))
695 then
696 -- Note: we do not call Error_Attr here, since we prefer to
697 -- continue, using the relevant index type of the array,
698 -- even though it is unconstrained. This gives better error
699 -- recovery behavior.
701 Error_Msg_Name_1 := Aname;
702 Error_Msg_N
703 ("prefix for % attribute must be constrained array", P);
704 end if;
706 D := Number_Dimensions (P_Type);
708 elsif Is_Access_Type (P_Type)
709 and then Is_Array_Type (Designated_Type (P_Type))
710 then
711 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
712 Error_Attr ("prefix of % attribute cannot be access type", P);
713 end if;
715 D := Number_Dimensions (Designated_Type (P_Type));
717 -- If there is an implicit dereference, then we must freeze
718 -- the designated type of the access type, since the type of
719 -- the referenced array is this type (see AI95-00106).
721 Freeze_Before (N, Designated_Type (P_Type));
723 else
724 if Is_Private_Type (P_Type) then
725 Error_Attr
726 ("prefix for % attribute may not be private type", P);
728 elsif Attr_Id = Attribute_First
729 or else
730 Attr_Id = Attribute_Last
731 then
732 Error_Attr ("invalid prefix for % attribute", P);
734 else
735 Error_Attr ("prefix for % attribute must be array", P);
736 end if;
737 end if;
739 if Present (E1) then
740 Resolve (E1, Any_Integer);
741 Set_Etype (E1, Standard_Integer);
743 if not Is_Static_Expression (E1)
744 or else Raises_Constraint_Error (E1)
745 then
746 Error_Attr ("expression for dimension must be static", E1);
748 elsif UI_To_Int (Expr_Value (E1)) > D
749 or else UI_To_Int (Expr_Value (E1)) < 1
750 then
751 Error_Attr ("invalid dimension number for array type", E1);
752 end if;
753 end if;
754 end Check_Array_Type;
756 -------------------------
757 -- Check_Asm_Attribute --
758 -------------------------
760 procedure Check_Asm_Attribute is
761 begin
762 Check_Type;
763 Check_E2;
765 -- Check first argument is static string expression
767 Analyze_And_Resolve (E1, Standard_String);
769 if Etype (E1) = Any_Type then
770 return;
772 elsif not Is_OK_Static_Expression (E1) then
773 Error_Attr
774 ("constraint argument must be static string expression", E1);
775 end if;
777 -- Check second argument is right type
779 Analyze_And_Resolve (E2, Entity (P));
781 -- Note: that is all we need to do, we don't need to check
782 -- that it appears in a correct context. The Ada type system
783 -- will do that for us.
785 end Check_Asm_Attribute;
787 ---------------------
788 -- Check_Component --
789 ---------------------
791 procedure Check_Component is
792 begin
793 Check_E0;
795 if Nkind (P) /= N_Selected_Component
796 or else
797 (Ekind (Entity (Selector_Name (P))) /= E_Component
798 and then
799 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
800 then
801 Error_Attr
802 ("prefix for % attribute must be selected component", P);
803 end if;
804 end Check_Component;
806 ------------------------------------
807 -- Check_Decimal_Fixed_Point_Type --
808 ------------------------------------
810 procedure Check_Decimal_Fixed_Point_Type is
811 begin
812 Check_Type;
814 if not Is_Decimal_Fixed_Point_Type (P_Type) then
815 Error_Attr
816 ("prefix of % attribute must be decimal type", P);
817 end if;
818 end Check_Decimal_Fixed_Point_Type;
820 -----------------------
821 -- Check_Dereference --
822 -----------------------
824 procedure Check_Dereference is
825 begin
826 if Is_Object_Reference (P)
827 and then Is_Access_Type (P_Type)
828 then
829 Rewrite (P,
830 Make_Explicit_Dereference (Sloc (P),
831 Prefix => Relocate_Node (P)));
833 Analyze_And_Resolve (P);
834 P_Type := Etype (P);
836 if P_Type = Any_Type then
837 raise Bad_Attribute;
838 end if;
840 P_Base_Type := Base_Type (P_Type);
841 P_Root_Type := Root_Type (P_Base_Type);
842 end if;
843 end Check_Dereference;
845 -------------------------
846 -- Check_Discrete_Type --
847 -------------------------
849 procedure Check_Discrete_Type is
850 begin
851 Check_Type;
853 if not Is_Discrete_Type (P_Type) then
854 Error_Attr ("prefix of % attribute must be discrete type", P);
855 end if;
856 end Check_Discrete_Type;
858 --------------
859 -- Check_E0 --
860 --------------
862 procedure Check_E0 is
863 begin
864 if Present (E1) then
865 Unexpected_Argument (E1);
866 end if;
867 end Check_E0;
869 --------------
870 -- Check_E1 --
871 --------------
873 procedure Check_E1 is
874 begin
875 Check_Either_E0_Or_E1;
877 if No (E1) then
879 -- Special-case attributes that are functions and that appear as
880 -- the prefix of another attribute. Error is posted on parent.
882 if Nkind (Parent (N)) = N_Attribute_Reference
883 and then (Attribute_Name (Parent (N)) = Name_Address
884 or else
885 Attribute_Name (Parent (N)) = Name_Code_Address
886 or else
887 Attribute_Name (Parent (N)) = Name_Access)
888 then
889 Error_Msg_Name_1 := Attribute_Name (Parent (N));
890 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
891 Set_Etype (Parent (N), Any_Type);
892 Set_Entity (Parent (N), Any_Type);
893 raise Bad_Attribute;
895 else
896 Error_Attr ("missing argument for % attribute", N);
897 end if;
898 end if;
899 end Check_E1;
901 --------------
902 -- Check_E2 --
903 --------------
905 procedure Check_E2 is
906 begin
907 if No (E1) then
908 Error_Attr ("missing arguments for % attribute (2 required)", N);
909 elsif No (E2) then
910 Error_Attr ("missing argument for % attribute (2 required)", N);
911 end if;
912 end Check_E2;
914 ---------------------------
915 -- Check_Either_E0_Or_E1 --
916 ---------------------------
918 procedure Check_Either_E0_Or_E1 is
919 begin
920 if Present (E2) then
921 Unexpected_Argument (E2);
922 end if;
923 end Check_Either_E0_Or_E1;
925 ----------------------
926 -- Check_Enum_Image --
927 ----------------------
929 procedure Check_Enum_Image is
930 Lit : Entity_Id;
932 begin
933 if Is_Enumeration_Type (P_Base_Type) then
934 Lit := First_Literal (P_Base_Type);
935 while Present (Lit) loop
936 Set_Referenced (Lit);
937 Next_Literal (Lit);
938 end loop;
939 end if;
940 end Check_Enum_Image;
942 ----------------------------
943 -- Check_Fixed_Point_Type --
944 ----------------------------
946 procedure Check_Fixed_Point_Type is
947 begin
948 Check_Type;
950 if not Is_Fixed_Point_Type (P_Type) then
951 Error_Attr ("prefix of % attribute must be fixed point type", P);
952 end if;
953 end Check_Fixed_Point_Type;
955 ------------------------------
956 -- Check_Fixed_Point_Type_0 --
957 ------------------------------
959 procedure Check_Fixed_Point_Type_0 is
960 begin
961 Check_Fixed_Point_Type;
962 Check_E0;
963 end Check_Fixed_Point_Type_0;
965 -------------------------------
966 -- Check_Floating_Point_Type --
967 -------------------------------
969 procedure Check_Floating_Point_Type is
970 begin
971 Check_Type;
973 if not Is_Floating_Point_Type (P_Type) then
974 Error_Attr ("prefix of % attribute must be float type", P);
975 end if;
976 end Check_Floating_Point_Type;
978 ---------------------------------
979 -- Check_Floating_Point_Type_0 --
980 ---------------------------------
982 procedure Check_Floating_Point_Type_0 is
983 begin
984 Check_Floating_Point_Type;
985 Check_E0;
986 end Check_Floating_Point_Type_0;
988 ---------------------------------
989 -- Check_Floating_Point_Type_1 --
990 ---------------------------------
992 procedure Check_Floating_Point_Type_1 is
993 begin
994 Check_Floating_Point_Type;
995 Check_E1;
996 end Check_Floating_Point_Type_1;
998 ---------------------------------
999 -- Check_Floating_Point_Type_2 --
1000 ---------------------------------
1002 procedure Check_Floating_Point_Type_2 is
1003 begin
1004 Check_Floating_Point_Type;
1005 Check_E2;
1006 end Check_Floating_Point_Type_2;
1008 ------------------------
1009 -- Check_Integer_Type --
1010 ------------------------
1012 procedure Check_Integer_Type is
1013 begin
1014 Check_Type;
1016 if not Is_Integer_Type (P_Type) then
1017 Error_Attr ("prefix of % attribute must be integer type", P);
1018 end if;
1019 end Check_Integer_Type;
1021 ------------------------
1022 -- Check_Library_Unit --
1023 ------------------------
1025 procedure Check_Library_Unit is
1026 begin
1027 if not Is_Compilation_Unit (Entity (P)) then
1028 Error_Attr ("prefix of % attribute must be library unit", P);
1029 end if;
1030 end Check_Library_Unit;
1032 -------------------------------
1033 -- Check_Not_Incomplete_Type --
1034 -------------------------------
1036 procedure Check_Not_Incomplete_Type is
1037 begin
1038 if not Is_Entity_Name (P)
1039 or else not Is_Type (Entity (P))
1040 or else In_Default_Expression
1041 then
1042 return;
1044 else
1045 Check_Fully_Declared (P_Type, P);
1046 end if;
1047 end Check_Not_Incomplete_Type;
1049 ----------------------------
1050 -- Check_Object_Reference --
1051 ----------------------------
1053 procedure Check_Object_Reference (P : Node_Id) is
1054 Rtyp : Entity_Id;
1056 begin
1057 -- If we need an object, and we have a prefix that is the name of
1058 -- a function entity, convert it into a function call.
1060 if Is_Entity_Name (P)
1061 and then Ekind (Entity (P)) = E_Function
1062 then
1063 Rtyp := Etype (Entity (P));
1065 Rewrite (P,
1066 Make_Function_Call (Sloc (P),
1067 Name => Relocate_Node (P)));
1069 Analyze_And_Resolve (P, Rtyp);
1071 -- Otherwise we must have an object reference
1073 elsif not Is_Object_Reference (P) then
1074 Error_Attr ("prefix of % attribute must be object", P);
1075 end if;
1076 end Check_Object_Reference;
1078 ------------------------
1079 -- Check_Program_Unit --
1080 ------------------------
1082 procedure Check_Program_Unit is
1083 begin
1084 if Is_Entity_Name (P) then
1085 declare
1086 K : constant Entity_Kind := Ekind (Entity (P));
1087 T : constant Entity_Id := Etype (Entity (P));
1089 begin
1090 if K in Subprogram_Kind
1091 or else K in Task_Kind
1092 or else K in Protected_Kind
1093 or else K = E_Package
1094 or else K in Generic_Unit_Kind
1095 or else (K = E_Variable
1096 and then
1097 (Is_Task_Type (T)
1098 or else
1099 Is_Protected_Type (T)))
1100 then
1101 return;
1102 end if;
1103 end;
1104 end if;
1106 Error_Attr ("prefix of % attribute must be program unit", P);
1107 end Check_Program_Unit;
1109 ---------------------
1110 -- Check_Real_Type --
1111 ---------------------
1113 procedure Check_Real_Type is
1114 begin
1115 Check_Type;
1117 if not Is_Real_Type (P_Type) then
1118 Error_Attr ("prefix of % attribute must be real type", P);
1119 end if;
1120 end Check_Real_Type;
1122 -----------------------
1123 -- Check_Scalar_Type --
1124 -----------------------
1126 procedure Check_Scalar_Type is
1127 begin
1128 Check_Type;
1130 if not Is_Scalar_Type (P_Type) then
1131 Error_Attr ("prefix of % attribute must be scalar type", P);
1132 end if;
1133 end Check_Scalar_Type;
1135 ---------------------------
1136 -- Check_Standard_Prefix --
1137 ---------------------------
1139 procedure Check_Standard_Prefix is
1140 begin
1141 Check_E0;
1143 if Nkind (P) /= N_Identifier
1144 or else Chars (P) /= Name_Standard
1145 then
1146 Error_Attr ("only allowed prefix for % attribute is Standard", P);
1147 end if;
1149 end Check_Standard_Prefix;
1151 ----------------------------
1152 -- Check_Stream_Attribute --
1153 ----------------------------
1155 procedure Check_Stream_Attribute (Nam : Name_Id) is
1156 Etyp : Entity_Id;
1157 Btyp : Entity_Id;
1159 begin
1160 Validate_Non_Static_Attribute_Function_Call;
1162 -- With the exception of 'Input, Stream attributes are procedures,
1163 -- and can only appear at the position of procedure calls. We check
1164 -- for this here, before they are rewritten, to give a more precise
1165 -- diagnostic.
1167 if Nam = Name_uInput then
1168 null;
1170 elsif Is_List_Member (N)
1171 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1172 and then Nkind (Parent (N)) /= N_Aggregate
1173 then
1174 null;
1176 else
1177 Error_Attr
1178 ("invalid context for attribute %, which is a procedure", N);
1179 end if;
1181 Check_Type;
1182 Btyp := Implementation_Base_Type (P_Type);
1184 -- Stream attributes not allowed on limited types unless the
1185 -- special OK_For_Stream flag is set.
1187 if Is_Limited_Type (P_Type)
1188 and then Comes_From_Source (N)
1189 and then not Present (TSS (Btyp, Nam))
1190 and then No (Get_Rep_Pragma (Btyp, Name_Stream_Convert))
1191 then
1192 -- Special case the message if we are compiling the stub version
1193 -- of a remote operation. One error on the type is sufficient.
1195 if (Is_Remote_Types (Current_Scope)
1196 or else Is_Remote_Call_Interface (Current_Scope))
1197 and then not Error_Posted (Btyp)
1198 then
1199 Error_Msg_Node_2 := Current_Scope;
1200 Error_Msg_NE
1201 ("limited type& used in& has no stream attributes", P, Btyp);
1202 Set_Error_Posted (Btyp);
1204 elsif not Error_Posted (Btyp) then
1205 Error_Msg_NE
1206 ("limited type& has no stream attributes", P, Btyp);
1207 end if;
1208 end if;
1210 -- Here we must check that the first argument is an access type
1211 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
1213 Analyze_And_Resolve (E1);
1214 Etyp := Etype (E1);
1216 -- Note: the double call to Root_Type here is needed because the
1217 -- root type of a class-wide type is the corresponding type (e.g.
1218 -- X for X'Class, and we really want to go to the root.
1220 if not Is_Access_Type (Etyp)
1221 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
1222 RTE (RE_Root_Stream_Type)
1223 then
1224 Error_Attr
1225 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
1226 end if;
1228 -- Check that the second argument is of the right type if there is
1229 -- one (the Input attribute has only one argument so this is skipped)
1231 if Present (E2) then
1232 Analyze (E2);
1234 if Nam = Name_uRead
1235 and then not Is_OK_Variable_For_Out_Formal (E2)
1236 then
1237 Error_Attr
1238 ("second argument of % attribute must be a variable", E2);
1239 end if;
1241 Resolve (E2, P_Type);
1242 end if;
1243 end Check_Stream_Attribute;
1245 -----------------------
1246 -- Check_Task_Prefix --
1247 -----------------------
1249 procedure Check_Task_Prefix is
1250 begin
1251 Analyze (P);
1253 if Is_Task_Type (Etype (P))
1254 or else (Is_Access_Type (Etype (P))
1255 and then Is_Task_Type (Designated_Type (Etype (P))))
1256 then
1257 Resolve (P, Etype (P));
1258 else
1259 Error_Attr ("prefix of % attribute must be a task", P);
1260 end if;
1261 end Check_Task_Prefix;
1263 ----------------
1264 -- Check_Type --
1265 ----------------
1267 -- The possibilities are an entity name denoting a type, or an
1268 -- attribute reference that denotes a type (Base or Class). If
1269 -- the type is incomplete, replace it with its full view.
1271 procedure Check_Type is
1272 begin
1273 if not Is_Entity_Name (P)
1274 or else not Is_Type (Entity (P))
1275 then
1276 Error_Attr ("prefix of % attribute must be a type", P);
1278 elsif Ekind (Entity (P)) = E_Incomplete_Type
1279 and then Present (Full_View (Entity (P)))
1280 then
1281 P_Type := Full_View (Entity (P));
1282 Set_Entity (P, P_Type);
1283 end if;
1284 end Check_Type;
1286 ---------------------
1287 -- Check_Unit_Name --
1288 ---------------------
1290 procedure Check_Unit_Name (Nod : Node_Id) is
1291 begin
1292 if Nkind (Nod) = N_Identifier then
1293 return;
1295 elsif Nkind (Nod) = N_Selected_Component then
1296 Check_Unit_Name (Prefix (Nod));
1298 if Nkind (Selector_Name (Nod)) = N_Identifier then
1299 return;
1300 end if;
1301 end if;
1303 Error_Attr ("argument for % attribute must be unit name", P);
1304 end Check_Unit_Name;
1306 ----------------
1307 -- Error_Attr --
1308 ----------------
1310 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
1311 begin
1312 Error_Msg_Name_1 := Aname;
1313 Error_Msg_N (Msg, Error_Node);
1314 Set_Etype (N, Any_Type);
1315 Set_Entity (N, Any_Type);
1316 raise Bad_Attribute;
1317 end Error_Attr;
1319 ----------------------------
1320 -- Legal_Formal_Attribute --
1321 ----------------------------
1323 procedure Legal_Formal_Attribute is
1324 begin
1325 Check_E0;
1327 if not Is_Entity_Name (P)
1328 or else not Is_Type (Entity (P))
1329 then
1330 Error_Attr ("prefix of % attribute must be generic type", N);
1332 elsif Is_Generic_Actual_Type (Entity (P))
1333 or In_Instance
1334 then
1335 null;
1337 elsif Is_Generic_Type (Entity (P)) then
1338 if not Is_Indefinite_Subtype (Entity (P)) then
1339 Error_Attr
1340 ("prefix of % attribute must be indefinite generic type", N);
1341 end if;
1343 else
1344 Error_Attr
1345 ("prefix of % attribute must be indefinite generic type", N);
1346 end if;
1348 Set_Etype (N, Standard_Boolean);
1349 end Legal_Formal_Attribute;
1351 ------------------------
1352 -- Standard_Attribute --
1353 ------------------------
1355 procedure Standard_Attribute (Val : Int) is
1356 begin
1357 Check_Standard_Prefix;
1358 Rewrite (N,
1359 Make_Integer_Literal (Loc, Val));
1360 Analyze (N);
1361 end Standard_Attribute;
1363 -------------------------
1364 -- Unexpected Argument --
1365 -------------------------
1367 procedure Unexpected_Argument (En : Node_Id) is
1368 begin
1369 Error_Attr ("unexpected argument for % attribute", En);
1370 end Unexpected_Argument;
1372 -------------------------------------------------
1373 -- Validate_Non_Static_Attribute_Function_Call --
1374 -------------------------------------------------
1376 -- This function should be moved to Sem_Dist ???
1378 procedure Validate_Non_Static_Attribute_Function_Call is
1379 begin
1380 if In_Preelaborated_Unit
1381 and then not In_Subprogram_Or_Concurrent_Unit
1382 then
1383 Error_Msg_N ("non-static function call in preelaborated unit", N);
1384 end if;
1385 end Validate_Non_Static_Attribute_Function_Call;
1387 -----------------------------------------------
1388 -- Start of Processing for Analyze_Attribute --
1389 -----------------------------------------------
1391 begin
1392 -- Immediate return if unrecognized attribute (already diagnosed
1393 -- by parser, so there is nothing more that we need to do)
1395 if not Is_Attribute_Name (Aname) then
1396 raise Bad_Attribute;
1397 end if;
1399 -- Deal with Ada 83 and Features issues
1401 if not Attribute_83 (Attr_Id) then
1402 if Ada_83 and then Comes_From_Source (N) then
1403 Error_Msg_Name_1 := Aname;
1404 Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
1405 end if;
1407 if Attribute_Impl_Def (Attr_Id) then
1408 Check_Restriction (No_Implementation_Attributes, N);
1409 end if;
1410 end if;
1412 -- Remote access to subprogram type access attribute reference needs
1413 -- unanalyzed copy for tree transformation. The analyzed copy is used
1414 -- for its semantic information (whether prefix is a remote subprogram
1415 -- name), the unanalyzed copy is used to construct new subtree rooted
1416 -- with N_aggregate which represents a fat pointer aggregate.
1418 if Aname = Name_Access then
1419 Unanalyzed := Copy_Separate_Tree (N);
1420 end if;
1422 -- Analyze prefix and exit if error in analysis. If the prefix is an
1423 -- incomplete type, use full view if available. A special case is
1424 -- that we never analyze the prefix of an Elab_Body or Elab_Spec
1425 -- or UET_Address attribute.
1427 if Aname /= Name_Elab_Body
1428 and then
1429 Aname /= Name_Elab_Spec
1430 and then
1431 Aname /= Name_UET_Address
1432 then
1433 Analyze (P);
1434 P_Type := Etype (P);
1436 if Is_Entity_Name (P)
1437 and then Present (Entity (P))
1438 and then Is_Type (Entity (P))
1439 and then Ekind (Entity (P)) = E_Incomplete_Type
1440 then
1441 P_Type := Get_Full_View (P_Type);
1442 Set_Entity (P, P_Type);
1443 Set_Etype (P, P_Type);
1444 end if;
1446 if P_Type = Any_Type then
1447 raise Bad_Attribute;
1448 end if;
1450 P_Base_Type := Base_Type (P_Type);
1451 P_Root_Type := Root_Type (P_Base_Type);
1452 end if;
1454 -- Analyze expressions that may be present, exiting if an error occurs
1456 if No (Exprs) then
1457 E1 := Empty;
1458 E2 := Empty;
1460 else
1461 E1 := First (Exprs);
1462 Analyze (E1);
1464 -- Check for missing or bad expression (result of previous error)
1466 if No (E1) or else Etype (E1) = Any_Type then
1467 raise Bad_Attribute;
1468 end if;
1470 E2 := Next (E1);
1472 if Present (E2) then
1473 Analyze (E2);
1475 if Etype (E2) = Any_Type then
1476 raise Bad_Attribute;
1477 end if;
1479 if Present (Next (E2)) then
1480 Unexpected_Argument (Next (E2));
1481 end if;
1482 end if;
1483 end if;
1485 if Is_Overloaded (P)
1486 and then Aname /= Name_Access
1487 and then Aname /= Name_Address
1488 and then Aname /= Name_Code_Address
1489 and then Aname /= Name_Count
1490 and then Aname /= Name_Unchecked_Access
1491 then
1492 Error_Attr ("ambiguous prefix for % attribute", P);
1493 end if;
1495 -- Remaining processing depends on attribute
1497 case Attr_Id is
1499 ------------------
1500 -- Abort_Signal --
1501 ------------------
1503 when Attribute_Abort_Signal =>
1504 Check_Standard_Prefix;
1505 Rewrite (N,
1506 New_Reference_To (Stand.Abort_Signal, Loc));
1507 Analyze (N);
1509 ------------
1510 -- Access --
1511 ------------
1513 when Attribute_Access =>
1514 Access_Attribute;
1516 -------------
1517 -- Address --
1518 -------------
1520 when Attribute_Address =>
1521 Check_E0;
1523 -- Check for some junk cases, where we have to allow the address
1524 -- attribute but it does not make much sense, so at least for now
1525 -- just replace with Null_Address.
1527 -- We also do this if the prefix is a reference to the AST_Entry
1528 -- attribute. If expansion is active, the attribute will be
1529 -- replaced by a function call, and address will work fine and
1530 -- get the proper value, but if expansion is not active, then
1531 -- the check here allows proper semantic analysis of the reference.
1533 -- An Address attribute created by expansion is legal even when it
1534 -- applies to other entity-denoting expressions.
1536 if (Is_Entity_Name (P)) then
1537 if Is_Subprogram (Entity (P)) then
1538 if not Is_Library_Level_Entity (Entity (P)) then
1539 Check_Restriction (No_Implicit_Dynamic_Code, P);
1540 end if;
1542 Set_Address_Taken (Entity (P));
1544 elsif Is_Object (Entity (P))
1545 or else Ekind (Entity (P)) = E_Label
1546 then
1547 Set_Address_Taken (Entity (P));
1549 elsif (Is_Concurrent_Type (Etype (Entity (P)))
1550 and then Etype (Entity (P)) = Base_Type (Entity (P)))
1551 or else Ekind (Entity (P)) = E_Package
1552 or else Is_Generic_Unit (Entity (P))
1553 then
1554 Rewrite (N,
1555 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1557 else
1558 Error_Attr ("invalid prefix for % attribute", P);
1559 end if;
1561 elsif Nkind (P) = N_Attribute_Reference
1562 and then Attribute_Name (P) = Name_AST_Entry
1563 then
1564 Rewrite (N,
1565 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1567 elsif Is_Object_Reference (P) then
1568 null;
1570 elsif Nkind (P) = N_Selected_Component
1571 and then Is_Subprogram (Entity (Selector_Name (P)))
1572 then
1573 null;
1575 elsif not Comes_From_Source (N) then
1576 null;
1578 else
1579 Error_Attr ("invalid prefix for % attribute", P);
1580 end if;
1582 Set_Etype (N, RTE (RE_Address));
1584 ------------------
1585 -- Address_Size --
1586 ------------------
1588 when Attribute_Address_Size =>
1589 Standard_Attribute (System_Address_Size);
1591 --------------
1592 -- Adjacent --
1593 --------------
1595 when Attribute_Adjacent =>
1596 Check_Floating_Point_Type_2;
1597 Set_Etype (N, P_Base_Type);
1598 Resolve (E1, P_Base_Type);
1599 Resolve (E2, P_Base_Type);
1601 ---------
1602 -- Aft --
1603 ---------
1605 when Attribute_Aft =>
1606 Check_Fixed_Point_Type_0;
1607 Set_Etype (N, Universal_Integer);
1609 ---------------
1610 -- Alignment --
1611 ---------------
1613 when Attribute_Alignment =>
1615 -- Don't we need more checking here, cf Size ???
1617 Check_E0;
1618 Check_Not_Incomplete_Type;
1619 Set_Etype (N, Universal_Integer);
1621 ---------------
1622 -- Asm_Input --
1623 ---------------
1625 when Attribute_Asm_Input =>
1626 Check_Asm_Attribute;
1627 Set_Etype (N, RTE (RE_Asm_Input_Operand));
1629 ----------------
1630 -- Asm_Output --
1631 ----------------
1633 when Attribute_Asm_Output =>
1634 Check_Asm_Attribute;
1636 if Etype (E2) = Any_Type then
1637 return;
1639 elsif Aname = Name_Asm_Output then
1640 if not Is_Variable (E2) then
1641 Error_Attr
1642 ("second argument for Asm_Output is not variable", E2);
1643 end if;
1644 end if;
1646 Note_Possible_Modification (E2);
1647 Set_Etype (N, RTE (RE_Asm_Output_Operand));
1649 ---------------
1650 -- AST_Entry --
1651 ---------------
1653 when Attribute_AST_Entry => AST_Entry : declare
1654 Ent : Entity_Id;
1655 Pref : Node_Id;
1656 Ptyp : Entity_Id;
1658 Indexed : Boolean;
1659 -- Indicates if entry family index is present. Note the coding
1660 -- here handles the entry family case, but in fact it cannot be
1661 -- executed currently, because pragma AST_Entry does not permit
1662 -- the specification of an entry family.
1664 procedure Bad_AST_Entry;
1665 -- Signal a bad AST_Entry pragma
1667 function OK_Entry (E : Entity_Id) return Boolean;
1668 -- Checks that E is of an appropriate entity kind for an entry
1669 -- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
1670 -- is set True for the entry family case). In the True case,
1671 -- makes sure that Is_AST_Entry is set on the entry.
1673 procedure Bad_AST_Entry is
1674 begin
1675 Error_Attr ("prefix for % attribute must be task entry", P);
1676 end Bad_AST_Entry;
1678 function OK_Entry (E : Entity_Id) return Boolean is
1679 Result : Boolean;
1681 begin
1682 if Indexed then
1683 Result := (Ekind (E) = E_Entry_Family);
1684 else
1685 Result := (Ekind (E) = E_Entry);
1686 end if;
1688 if Result then
1689 if not Is_AST_Entry (E) then
1690 Error_Msg_Name_2 := Aname;
1691 Error_Attr
1692 ("% attribute requires previous % pragma", P);
1693 end if;
1694 end if;
1696 return Result;
1697 end OK_Entry;
1699 -- Start of processing for AST_Entry
1701 begin
1702 Check_VMS (N);
1703 Check_E0;
1705 -- Deal with entry family case
1707 if Nkind (P) = N_Indexed_Component then
1708 Pref := Prefix (P);
1709 Indexed := True;
1710 else
1711 Pref := P;
1712 Indexed := False;
1713 end if;
1715 Ptyp := Etype (Pref);
1717 if Ptyp = Any_Type or else Error_Posted (Pref) then
1718 return;
1719 end if;
1721 -- If the prefix is a selected component whose prefix is of an
1722 -- access type, then introduce an explicit dereference.
1724 if Nkind (Pref) = N_Selected_Component
1725 and then Is_Access_Type (Ptyp)
1726 then
1727 Rewrite (Pref,
1728 Make_Explicit_Dereference (Sloc (Pref),
1729 Relocate_Node (Pref)));
1730 Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
1731 end if;
1733 -- Prefix can be of the form a.b, where a is a task object
1734 -- and b is one of the entries of the corresponding task type.
1736 if Nkind (Pref) = N_Selected_Component
1737 and then OK_Entry (Entity (Selector_Name (Pref)))
1738 and then Is_Object_Reference (Prefix (Pref))
1739 and then Is_Task_Type (Etype (Prefix (Pref)))
1740 then
1741 null;
1743 -- Otherwise the prefix must be an entry of a containing task,
1744 -- or of a variable of the enclosing task type.
1746 else
1747 if Nkind (Pref) = N_Identifier
1748 or else Nkind (Pref) = N_Expanded_Name
1749 then
1750 Ent := Entity (Pref);
1752 if not OK_Entry (Ent)
1753 or else not In_Open_Scopes (Scope (Ent))
1754 then
1755 Bad_AST_Entry;
1756 end if;
1758 else
1759 Bad_AST_Entry;
1760 end if;
1761 end if;
1763 Set_Etype (N, RTE (RE_AST_Handler));
1764 end AST_Entry;
1766 ----------
1767 -- Base --
1768 ----------
1770 when Attribute_Base => Base : declare
1771 Typ : Entity_Id;
1773 begin
1774 Check_Either_E0_Or_E1;
1775 Find_Type (P);
1776 Typ := Entity (P);
1778 if Sloc (Typ) = Standard_Location
1779 and then Base_Type (Typ) = Typ
1780 and then Warn_On_Redundant_Constructs
1781 then
1782 Error_Msg_NE
1783 ("?redudant attribute, & is its own base type", N, Typ);
1784 end if;
1786 Set_Etype (N, Base_Type (Entity (P)));
1788 -- If we have an expression present, then really this is a conversion
1789 -- and the tree must be reformed. Note that this is one of the cases
1790 -- in which we do a replace rather than a rewrite, because the
1791 -- original tree is junk.
1793 if Present (E1) then
1794 Replace (N,
1795 Make_Type_Conversion (Loc,
1796 Subtype_Mark =>
1797 Make_Attribute_Reference (Loc,
1798 Prefix => Prefix (N),
1799 Attribute_Name => Name_Base),
1800 Expression => Relocate_Node (E1)));
1802 -- E1 may be overloaded, and its interpretations preserved.
1804 Save_Interps (E1, Expression (N));
1805 Analyze (N);
1807 -- For other cases, set the proper type as the entity of the
1808 -- attribute reference, and then rewrite the node to be an
1809 -- occurrence of the referenced base type. This way, no one
1810 -- else in the compiler has to worry about the base attribute.
1812 else
1813 Set_Entity (N, Base_Type (Entity (P)));
1814 Rewrite (N,
1815 New_Reference_To (Entity (N), Loc));
1816 Analyze (N);
1817 end if;
1818 end Base;
1820 ---------
1821 -- Bit --
1822 ---------
1824 when Attribute_Bit => Bit :
1825 begin
1826 Check_E0;
1828 if not Is_Object_Reference (P) then
1829 Error_Attr ("prefix for % attribute must be object", P);
1831 -- What about the access object cases ???
1833 else
1834 null;
1835 end if;
1837 Set_Etype (N, Universal_Integer);
1838 end Bit;
1840 ---------------
1841 -- Bit_Order --
1842 ---------------
1844 when Attribute_Bit_Order => Bit_Order :
1845 begin
1846 Check_E0;
1847 Check_Type;
1849 if not Is_Record_Type (P_Type) then
1850 Error_Attr ("prefix of % attribute must be record type", P);
1851 end if;
1853 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
1854 Rewrite (N,
1855 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
1856 else
1857 Rewrite (N,
1858 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
1859 end if;
1861 Set_Etype (N, RTE (RE_Bit_Order));
1862 Resolve (N, Etype (N));
1864 -- Reset incorrect indication of staticness
1866 Set_Is_Static_Expression (N, False);
1867 end Bit_Order;
1869 ------------------
1870 -- Bit_Position --
1871 ------------------
1873 -- Note: in generated code, we can have a Bit_Position attribute
1874 -- applied to a (naked) record component (i.e. the prefix is an
1875 -- identifier that references an E_Component or E_Discriminant
1876 -- entity directly, and this is interpreted as expected by Gigi.
1877 -- The following code will not tolerate such usage, but when the
1878 -- expander creates this special case, it marks it as analyzed
1879 -- immediately and sets an appropriate type.
1881 when Attribute_Bit_Position =>
1883 if Comes_From_Source (N) then
1884 Check_Component;
1885 end if;
1887 Set_Etype (N, Universal_Integer);
1889 ------------------
1890 -- Body_Version --
1891 ------------------
1893 when Attribute_Body_Version =>
1894 Check_E0;
1895 Check_Program_Unit;
1896 Set_Etype (N, RTE (RE_Version_String));
1898 --------------
1899 -- Callable --
1900 --------------
1902 when Attribute_Callable =>
1903 Check_E0;
1904 Set_Etype (N, Standard_Boolean);
1905 Check_Task_Prefix;
1907 ------------
1908 -- Caller --
1909 ------------
1911 when Attribute_Caller => Caller : declare
1912 Ent : Entity_Id;
1913 S : Entity_Id;
1915 begin
1916 Check_E0;
1918 if Nkind (P) = N_Identifier
1919 or else Nkind (P) = N_Expanded_Name
1920 then
1921 Ent := Entity (P);
1923 if not Is_Entry (Ent) then
1924 Error_Attr ("invalid entry name", N);
1925 end if;
1927 else
1928 Error_Attr ("invalid entry name", N);
1929 return;
1930 end if;
1932 for J in reverse 0 .. Scope_Stack.Last loop
1933 S := Scope_Stack.Table (J).Entity;
1935 if S = Scope (Ent) then
1936 Error_Attr ("Caller must appear in matching accept or body", N);
1937 elsif S = Ent then
1938 exit;
1939 end if;
1940 end loop;
1942 Set_Etype (N, RTE (RO_AT_Task_ID));
1943 end Caller;
1945 -------------
1946 -- Ceiling --
1947 -------------
1949 when Attribute_Ceiling =>
1950 Check_Floating_Point_Type_1;
1951 Set_Etype (N, P_Base_Type);
1952 Resolve (E1, P_Base_Type);
1954 -----------
1955 -- Class --
1956 -----------
1958 when Attribute_Class => Class : declare
1959 begin
1960 Check_Restriction (No_Dispatch, N);
1961 Check_Either_E0_Or_E1;
1963 -- If we have an expression present, then really this is a conversion
1964 -- and the tree must be reformed into a proper conversion. This is a
1965 -- Replace rather than a Rewrite, because the original tree is junk.
1966 -- If expression is overloaded, propagate interpretations to new one.
1968 if Present (E1) then
1969 Replace (N,
1970 Make_Type_Conversion (Loc,
1971 Subtype_Mark =>
1972 Make_Attribute_Reference (Loc,
1973 Prefix => Prefix (N),
1974 Attribute_Name => Name_Class),
1975 Expression => Relocate_Node (E1)));
1977 Save_Interps (E1, Expression (N));
1978 Analyze (N);
1980 -- Otherwise we just need to find the proper type
1982 else
1983 Find_Type (N);
1984 end if;
1986 end Class;
1988 ------------------
1989 -- Code_Address --
1990 ------------------
1992 when Attribute_Code_Address =>
1993 Check_E0;
1995 if Nkind (P) = N_Attribute_Reference
1996 and then (Attribute_Name (P) = Name_Elab_Body
1997 or else
1998 Attribute_Name (P) = Name_Elab_Spec)
1999 then
2000 null;
2002 elsif not Is_Entity_Name (P)
2003 or else (Ekind (Entity (P)) /= E_Function
2004 and then
2005 Ekind (Entity (P)) /= E_Procedure)
2006 then
2007 Error_Attr ("invalid prefix for % attribute", P);
2008 Set_Address_Taken (Entity (P));
2009 end if;
2011 Set_Etype (N, RTE (RE_Address));
2013 --------------------
2014 -- Component_Size --
2015 --------------------
2017 when Attribute_Component_Size =>
2018 Check_E0;
2019 Set_Etype (N, Universal_Integer);
2021 -- Note: unlike other array attributes, unconstrained arrays are OK
2023 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
2024 null;
2025 else
2026 Check_Array_Type;
2027 end if;
2029 -------------
2030 -- Compose --
2031 -------------
2033 when Attribute_Compose =>
2034 Check_Floating_Point_Type_2;
2035 Set_Etype (N, P_Base_Type);
2036 Resolve (E1, P_Base_Type);
2037 Resolve (E2, Any_Integer);
2039 -----------------
2040 -- Constrained --
2041 -----------------
2043 when Attribute_Constrained =>
2044 Check_E0;
2045 Set_Etype (N, Standard_Boolean);
2047 -- Case from RM J.4(2) of constrained applied to private type
2049 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
2051 -- If we are within an instance, the attribute must be legal
2052 -- because it was valid in the generic unit.
2054 if In_Instance then
2055 return;
2057 -- For sure OK if we have a real private type itself, but must
2058 -- be completed, cannot apply Constrained to incomplete type.
2060 elsif Is_Private_Type (Entity (P)) then
2061 Check_Not_Incomplete_Type;
2062 return;
2063 end if;
2065 else
2066 Check_Object_Reference (P);
2068 -- If N does not come from source, then we allow the
2069 -- the attribute prefix to be of a private type whose
2070 -- full type has discriminants. This occurs in cases
2071 -- involving expanded calls to stream attributes.
2073 if not Comes_From_Source (N) then
2074 P_Type := Underlying_Type (P_Type);
2075 end if;
2077 -- Must have discriminants or be an access type designating
2078 -- a type with discriminants. If it is a classwide type is
2079 -- has unknown discriminants.
2081 if Has_Discriminants (P_Type)
2082 or else Has_Unknown_Discriminants (P_Type)
2083 or else
2084 (Is_Access_Type (P_Type)
2085 and then Has_Discriminants (Designated_Type (P_Type)))
2086 then
2087 return;
2089 -- Also allow an object of a generic type if extensions allowed
2090 -- and allow this for any type at all.
2092 elsif (Is_Generic_Type (P_Type)
2093 or else Is_Generic_Actual_Type (P_Type))
2094 and then Extensions_Allowed
2095 then
2096 return;
2097 end if;
2098 end if;
2100 -- Fall through if bad prefix
2102 Error_Attr
2103 ("prefix of % attribute must be object of discriminated type", P);
2105 ---------------
2106 -- Copy_Sign --
2107 ---------------
2109 when Attribute_Copy_Sign =>
2110 Check_Floating_Point_Type_2;
2111 Set_Etype (N, P_Base_Type);
2112 Resolve (E1, P_Base_Type);
2113 Resolve (E2, P_Base_Type);
2115 -----------
2116 -- Count --
2117 -----------
2119 when Attribute_Count => Count :
2120 declare
2121 Ent : Entity_Id;
2122 S : Entity_Id;
2123 Tsk : Entity_Id;
2125 begin
2126 Check_E0;
2128 if Nkind (P) = N_Identifier
2129 or else Nkind (P) = N_Expanded_Name
2130 then
2131 Ent := Entity (P);
2133 if Ekind (Ent) /= E_Entry then
2134 Error_Attr ("invalid entry name", N);
2135 end if;
2137 elsif Nkind (P) = N_Indexed_Component then
2138 if not Is_Entity_Name (Prefix (P))
2139 or else No (Entity (Prefix (P)))
2140 or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
2141 then
2142 if Nkind (Prefix (P)) = N_Selected_Component
2143 and then Present (Entity (Selector_Name (Prefix (P))))
2144 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
2145 E_Entry_Family
2146 then
2147 Error_Attr
2148 ("attribute % must apply to entry of current task", P);
2150 else
2151 Error_Attr ("invalid entry family name", P);
2152 end if;
2153 return;
2155 else
2156 Ent := Entity (Prefix (P));
2157 end if;
2159 elsif Nkind (P) = N_Selected_Component
2160 and then Present (Entity (Selector_Name (P)))
2161 and then Ekind (Entity (Selector_Name (P))) = E_Entry
2162 then
2163 Error_Attr
2164 ("attribute % must apply to entry of current task", P);
2166 else
2167 Error_Attr ("invalid entry name", N);
2168 return;
2169 end if;
2171 for J in reverse 0 .. Scope_Stack.Last loop
2172 S := Scope_Stack.Table (J).Entity;
2174 if S = Scope (Ent) then
2175 if Nkind (P) = N_Expanded_Name then
2176 Tsk := Entity (Prefix (P));
2178 -- The prefix denotes either the task type, or else a
2179 -- single task whose task type is being analyzed.
2181 if (Is_Type (Tsk)
2182 and then Tsk = S)
2184 or else (not Is_Type (Tsk)
2185 and then Etype (Tsk) = S
2186 and then not (Comes_From_Source (S)))
2187 then
2188 null;
2189 else
2190 Error_Attr
2191 ("Attribute % must apply to entry of current task", N);
2192 end if;
2193 end if;
2195 exit;
2197 elsif Ekind (Scope (Ent)) in Task_Kind
2198 and then Ekind (S) /= E_Loop
2199 and then Ekind (S) /= E_Block
2200 and then Ekind (S) /= E_Entry
2201 and then Ekind (S) /= E_Entry_Family
2202 then
2203 Error_Attr ("Attribute % cannot appear in inner unit", N);
2205 elsif Ekind (Scope (Ent)) = E_Protected_Type
2206 and then not Has_Completion (Scope (Ent))
2207 then
2208 Error_Attr ("attribute % can only be used inside body", N);
2209 end if;
2210 end loop;
2212 if Is_Overloaded (P) then
2213 declare
2214 Index : Interp_Index;
2215 It : Interp;
2217 begin
2218 Get_First_Interp (P, Index, It);
2220 while Present (It.Nam) loop
2221 if It.Nam = Ent then
2222 null;
2224 elsif Scope (It.Nam) = Scope (Ent) then
2225 Error_Attr ("ambiguous entry name", N);
2227 else
2228 -- For now make this into a warning. Will become an
2229 -- error after the 3.15 release.
2231 Error_Msg_N
2232 ("ambiguous name, resolved to entry?", N);
2233 Error_Msg_N
2234 ("\(this will become an error in a later release)?", N);
2235 end if;
2237 Get_Next_Interp (Index, It);
2238 end loop;
2239 end;
2240 end if;
2242 Set_Etype (N, Universal_Integer);
2243 end Count;
2245 -----------------------
2246 -- Default_Bit_Order --
2247 -----------------------
2249 when Attribute_Default_Bit_Order => Default_Bit_Order :
2250 begin
2251 Check_Standard_Prefix;
2252 Check_E0;
2254 if Bytes_Big_Endian then
2255 Rewrite (N,
2256 Make_Integer_Literal (Loc, False_Value));
2257 else
2258 Rewrite (N,
2259 Make_Integer_Literal (Loc, True_Value));
2260 end if;
2262 Set_Etype (N, Universal_Integer);
2263 Set_Is_Static_Expression (N);
2264 end Default_Bit_Order;
2266 --------------
2267 -- Definite --
2268 --------------
2270 when Attribute_Definite =>
2271 Legal_Formal_Attribute;
2273 -----------
2274 -- Delta --
2275 -----------
2277 when Attribute_Delta =>
2278 Check_Fixed_Point_Type_0;
2279 Set_Etype (N, Universal_Real);
2281 ------------
2282 -- Denorm --
2283 ------------
2285 when Attribute_Denorm =>
2286 Check_Floating_Point_Type_0;
2287 Set_Etype (N, Standard_Boolean);
2289 ------------
2290 -- Digits --
2291 ------------
2293 when Attribute_Digits =>
2294 Check_E0;
2295 Check_Type;
2297 if not Is_Floating_Point_Type (P_Type)
2298 and then not Is_Decimal_Fixed_Point_Type (P_Type)
2299 then
2300 Error_Attr
2301 ("prefix of % attribute must be float or decimal type", P);
2302 end if;
2304 Set_Etype (N, Universal_Integer);
2306 ---------------
2307 -- Elab_Body --
2308 ---------------
2310 -- Also handles processing for Elab_Spec
2312 when Attribute_Elab_Body | Attribute_Elab_Spec =>
2313 Check_E0;
2314 Check_Unit_Name (P);
2315 Set_Etype (N, Standard_Void_Type);
2317 -- We have to manually call the expander in this case to get
2318 -- the necessary expansion (normally attributes that return
2319 -- entities are not expanded).
2321 Expand (N);
2323 ---------------
2324 -- Elab_Spec --
2325 ---------------
2327 -- Shares processing with Elab_Body
2329 ----------------
2330 -- Elaborated --
2331 ----------------
2333 when Attribute_Elaborated =>
2334 Check_E0;
2335 Check_Library_Unit;
2336 Set_Etype (N, Standard_Boolean);
2338 ----------
2339 -- Emax --
2340 ----------
2342 when Attribute_Emax =>
2343 Check_Floating_Point_Type_0;
2344 Set_Etype (N, Universal_Integer);
2346 --------------
2347 -- Enum_Rep --
2348 --------------
2350 when Attribute_Enum_Rep => Enum_Rep : declare
2351 begin
2352 if Present (E1) then
2353 Check_E1;
2354 Check_Discrete_Type;
2355 Resolve (E1, P_Base_Type);
2357 else
2358 if not Is_Entity_Name (P)
2359 or else (not Is_Object (Entity (P))
2360 and then
2361 Ekind (Entity (P)) /= E_Enumeration_Literal)
2362 then
2363 Error_Attr
2364 ("prefix of %attribute must be " &
2365 "discrete type/object or enum literal", P);
2366 end if;
2367 end if;
2369 Set_Etype (N, Universal_Integer);
2370 end Enum_Rep;
2372 -------------
2373 -- Epsilon --
2374 -------------
2376 when Attribute_Epsilon =>
2377 Check_Floating_Point_Type_0;
2378 Set_Etype (N, Universal_Real);
2380 --------------
2381 -- Exponent --
2382 --------------
2384 when Attribute_Exponent =>
2385 Check_Floating_Point_Type_1;
2386 Set_Etype (N, Universal_Integer);
2387 Resolve (E1, P_Base_Type);
2389 ------------------
2390 -- External_Tag --
2391 ------------------
2393 when Attribute_External_Tag =>
2394 Check_E0;
2395 Check_Type;
2397 Set_Etype (N, Standard_String);
2399 if not Is_Tagged_Type (P_Type) then
2400 Error_Attr ("prefix of % attribute must be tagged", P);
2401 end if;
2403 -----------
2404 -- First --
2405 -----------
2407 when Attribute_First =>
2408 Check_Array_Or_Scalar_Type;
2410 ---------------
2411 -- First_Bit --
2412 ---------------
2414 when Attribute_First_Bit =>
2415 Check_Component;
2416 Set_Etype (N, Universal_Integer);
2418 -----------------
2419 -- Fixed_Value --
2420 -----------------
2422 when Attribute_Fixed_Value =>
2423 Check_E1;
2424 Check_Fixed_Point_Type;
2425 Resolve (E1, Any_Integer);
2426 Set_Etype (N, P_Base_Type);
2428 -----------
2429 -- Floor --
2430 -----------
2432 when Attribute_Floor =>
2433 Check_Floating_Point_Type_1;
2434 Set_Etype (N, P_Base_Type);
2435 Resolve (E1, P_Base_Type);
2437 ----------
2438 -- Fore --
2439 ----------
2441 when Attribute_Fore =>
2442 Check_Fixed_Point_Type_0;
2443 Set_Etype (N, Universal_Integer);
2445 --------------
2446 -- Fraction --
2447 --------------
2449 when Attribute_Fraction =>
2450 Check_Floating_Point_Type_1;
2451 Set_Etype (N, P_Base_Type);
2452 Resolve (E1, P_Base_Type);
2454 -----------------------
2455 -- Has_Discriminants --
2456 -----------------------
2458 when Attribute_Has_Discriminants =>
2459 Legal_Formal_Attribute;
2461 --------------
2462 -- Identity --
2463 --------------
2465 when Attribute_Identity =>
2466 Check_E0;
2467 Analyze (P);
2469 if Etype (P) = Standard_Exception_Type then
2470 Set_Etype (N, RTE (RE_Exception_Id));
2472 elsif Is_Task_Type (Etype (P))
2473 or else (Is_Access_Type (Etype (P))
2474 and then Is_Task_Type (Designated_Type (Etype (P))))
2475 then
2476 Resolve (P, Etype (P));
2477 Set_Etype (N, RTE (RO_AT_Task_ID));
2479 else
2480 Error_Attr ("prefix of % attribute must be a task or an "
2481 & "exception", P);
2482 end if;
2484 -----------
2485 -- Image --
2486 -----------
2488 when Attribute_Image => Image :
2489 begin
2490 Set_Etype (N, Standard_String);
2491 Check_Scalar_Type;
2493 if Is_Real_Type (P_Type) then
2494 if Ada_83 and then Comes_From_Source (N) then
2495 Error_Msg_Name_1 := Aname;
2496 Error_Msg_N
2497 ("(Ada 83) % attribute not allowed for real types", N);
2498 end if;
2499 end if;
2501 if Is_Enumeration_Type (P_Type) then
2502 Check_Restriction (No_Enumeration_Maps, N);
2503 end if;
2505 Check_E1;
2506 Resolve (E1, P_Base_Type);
2507 Check_Enum_Image;
2508 Validate_Non_Static_Attribute_Function_Call;
2509 end Image;
2511 ---------
2512 -- Img --
2513 ---------
2515 when Attribute_Img => Img :
2516 begin
2517 Set_Etype (N, Standard_String);
2519 if not Is_Scalar_Type (P_Type)
2520 or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
2521 then
2522 Error_Attr
2523 ("prefix of % attribute must be scalar object name", N);
2524 end if;
2526 Check_Enum_Image;
2527 end Img;
2529 -----------
2530 -- Input --
2531 -----------
2533 when Attribute_Input =>
2534 Check_E1;
2535 Check_Stream_Attribute (Name_uInput);
2536 Disallow_In_No_Run_Time_Mode (N);
2537 Set_Etype (N, P_Base_Type);
2539 -------------------
2540 -- Integer_Value --
2541 -------------------
2543 when Attribute_Integer_Value =>
2544 Check_E1;
2545 Check_Integer_Type;
2546 Resolve (E1, Any_Fixed);
2547 Set_Etype (N, P_Base_Type);
2549 -----------
2550 -- Large --
2551 -----------
2553 when Attribute_Large =>
2554 Check_E0;
2555 Check_Real_Type;
2556 Set_Etype (N, Universal_Real);
2558 ----------
2559 -- Last --
2560 ----------
2562 when Attribute_Last =>
2563 Check_Array_Or_Scalar_Type;
2565 --------------
2566 -- Last_Bit --
2567 --------------
2569 when Attribute_Last_Bit =>
2570 Check_Component;
2571 Set_Etype (N, Universal_Integer);
2573 ------------------
2574 -- Leading_Part --
2575 ------------------
2577 when Attribute_Leading_Part =>
2578 Check_Floating_Point_Type_2;
2579 Set_Etype (N, P_Base_Type);
2580 Resolve (E1, P_Base_Type);
2581 Resolve (E2, Any_Integer);
2583 ------------
2584 -- Length --
2585 ------------
2587 when Attribute_Length =>
2588 Check_Array_Type;
2589 Set_Etype (N, Universal_Integer);
2591 -------------
2592 -- Machine --
2593 -------------
2595 when Attribute_Machine =>
2596 Check_Floating_Point_Type_1;
2597 Set_Etype (N, P_Base_Type);
2598 Resolve (E1, P_Base_Type);
2600 ------------------
2601 -- Machine_Emax --
2602 ------------------
2604 when Attribute_Machine_Emax =>
2605 Check_Floating_Point_Type_0;
2606 Set_Etype (N, Universal_Integer);
2608 ------------------
2609 -- Machine_Emin --
2610 ------------------
2612 when Attribute_Machine_Emin =>
2613 Check_Floating_Point_Type_0;
2614 Set_Etype (N, Universal_Integer);
2616 ----------------------
2617 -- Machine_Mantissa --
2618 ----------------------
2620 when Attribute_Machine_Mantissa =>
2621 Check_Floating_Point_Type_0;
2622 Set_Etype (N, Universal_Integer);
2624 -----------------------
2625 -- Machine_Overflows --
2626 -----------------------
2628 when Attribute_Machine_Overflows =>
2629 Check_Real_Type;
2630 Check_E0;
2631 Set_Etype (N, Standard_Boolean);
2633 -------------------
2634 -- Machine_Radix --
2635 -------------------
2637 when Attribute_Machine_Radix =>
2638 Check_Real_Type;
2639 Check_E0;
2640 Set_Etype (N, Universal_Integer);
2642 --------------------
2643 -- Machine_Rounds --
2644 --------------------
2646 when Attribute_Machine_Rounds =>
2647 Check_Real_Type;
2648 Check_E0;
2649 Set_Etype (N, Standard_Boolean);
2651 ------------------
2652 -- Machine_Size --
2653 ------------------
2655 when Attribute_Machine_Size =>
2656 Check_E0;
2657 Check_Type;
2658 Check_Not_Incomplete_Type;
2659 Set_Etype (N, Universal_Integer);
2661 --------------
2662 -- Mantissa --
2663 --------------
2665 when Attribute_Mantissa =>
2666 Check_E0;
2667 Check_Real_Type;
2668 Set_Etype (N, Universal_Integer);
2670 ---------
2671 -- Max --
2672 ---------
2674 when Attribute_Max =>
2675 Check_E2;
2676 Check_Scalar_Type;
2677 Resolve (E1, P_Base_Type);
2678 Resolve (E2, P_Base_Type);
2679 Set_Etype (N, P_Base_Type);
2681 ----------------------------------
2682 -- Max_Size_In_Storage_Elements --
2683 ----------------------------------
2685 when Attribute_Max_Size_In_Storage_Elements =>
2686 Check_E0;
2687 Check_Type;
2688 Check_Not_Incomplete_Type;
2689 Set_Etype (N, Universal_Integer);
2691 -----------------------
2692 -- Maximum_Alignment --
2693 -----------------------
2695 when Attribute_Maximum_Alignment =>
2696 Standard_Attribute (Ttypes.Maximum_Alignment);
2698 --------------------
2699 -- Mechanism_Code --
2700 --------------------
2702 when Attribute_Mechanism_Code =>
2704 if not Is_Entity_Name (P)
2705 or else not Is_Subprogram (Entity (P))
2706 then
2707 Error_Attr ("prefix of % attribute must be subprogram", P);
2708 end if;
2710 Check_Either_E0_Or_E1;
2712 if Present (E1) then
2713 Resolve (E1, Any_Integer);
2714 Set_Etype (E1, Standard_Integer);
2716 if not Is_Static_Expression (E1) then
2717 Error_Attr
2718 ("expression for parameter number must be static", E1);
2720 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
2721 or else UI_To_Int (Intval (E1)) < 0
2722 then
2723 Error_Attr ("invalid parameter number for %attribute", E1);
2724 end if;
2725 end if;
2727 Set_Etype (N, Universal_Integer);
2729 ---------
2730 -- Min --
2731 ---------
2733 when Attribute_Min =>
2734 Check_E2;
2735 Check_Scalar_Type;
2736 Resolve (E1, P_Base_Type);
2737 Resolve (E2, P_Base_Type);
2738 Set_Etype (N, P_Base_Type);
2740 -----------
2741 -- Model --
2742 -----------
2744 when Attribute_Model =>
2745 Check_Floating_Point_Type_1;
2746 Set_Etype (N, P_Base_Type);
2747 Resolve (E1, P_Base_Type);
2749 ----------------
2750 -- Model_Emin --
2751 ----------------
2753 when Attribute_Model_Emin =>
2754 Check_Floating_Point_Type_0;
2755 Set_Etype (N, Universal_Integer);
2757 -------------------
2758 -- Model_Epsilon --
2759 -------------------
2761 when Attribute_Model_Epsilon =>
2762 Check_Floating_Point_Type_0;
2763 Set_Etype (N, Universal_Real);
2765 --------------------
2766 -- Model_Mantissa --
2767 --------------------
2769 when Attribute_Model_Mantissa =>
2770 Check_Floating_Point_Type_0;
2771 Set_Etype (N, Universal_Integer);
2773 -----------------
2774 -- Model_Small --
2775 -----------------
2777 when Attribute_Model_Small =>
2778 Check_Floating_Point_Type_0;
2779 Set_Etype (N, Universal_Real);
2781 -------------
2782 -- Modulus --
2783 -------------
2785 when Attribute_Modulus =>
2786 Check_E0;
2787 Check_Type;
2789 if not Is_Modular_Integer_Type (P_Type) then
2790 Error_Attr ("prefix of % attribute must be modular type", P);
2791 end if;
2793 Set_Etype (N, Universal_Integer);
2795 --------------------
2796 -- Null_Parameter --
2797 --------------------
2799 when Attribute_Null_Parameter => Null_Parameter : declare
2800 Parnt : constant Node_Id := Parent (N);
2801 GParnt : constant Node_Id := Parent (Parnt);
2803 procedure Bad_Null_Parameter (Msg : String);
2804 -- Used if bad Null parameter attribute node is found. Issues
2805 -- given error message, and also sets the type to Any_Type to
2806 -- avoid blowups later on from dealing with a junk node.
2808 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
2809 -- Called to check that Proc_Ent is imported subprogram
2811 ------------------------
2812 -- Bad_Null_Parameter --
2813 ------------------------
2815 procedure Bad_Null_Parameter (Msg : String) is
2816 begin
2817 Error_Msg_N (Msg, N);
2818 Set_Etype (N, Any_Type);
2819 end Bad_Null_Parameter;
2821 ----------------------
2822 -- Must_Be_Imported --
2823 ----------------------
2825 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
2826 Pent : Entity_Id := Proc_Ent;
2828 begin
2829 while Present (Alias (Pent)) loop
2830 Pent := Alias (Pent);
2831 end loop;
2833 -- Ignore check if procedure not frozen yet (we will get
2834 -- another chance when the default parameter is reanalyzed)
2836 if not Is_Frozen (Pent) then
2837 return;
2839 elsif not Is_Imported (Pent) then
2840 Bad_Null_Parameter
2841 ("Null_Parameter can only be used with imported subprogram");
2843 else
2844 return;
2845 end if;
2846 end Must_Be_Imported;
2848 -- Start of processing for Null_Parameter
2850 begin
2851 Check_Type;
2852 Check_E0;
2853 Set_Etype (N, P_Type);
2855 -- Case of attribute used as default expression
2857 if Nkind (Parnt) = N_Parameter_Specification then
2858 Must_Be_Imported (Defining_Entity (GParnt));
2860 -- Case of attribute used as actual for subprogram (positional)
2862 elsif (Nkind (Parnt) = N_Procedure_Call_Statement
2863 or else
2864 Nkind (Parnt) = N_Function_Call)
2865 and then Is_Entity_Name (Name (Parnt))
2866 then
2867 Must_Be_Imported (Entity (Name (Parnt)));
2869 -- Case of attribute used as actual for subprogram (named)
2871 elsif Nkind (Parnt) = N_Parameter_Association
2872 and then (Nkind (GParnt) = N_Procedure_Call_Statement
2873 or else
2874 Nkind (GParnt) = N_Function_Call)
2875 and then Is_Entity_Name (Name (GParnt))
2876 then
2877 Must_Be_Imported (Entity (Name (GParnt)));
2879 -- Not an allowed case
2881 else
2882 Bad_Null_Parameter
2883 ("Null_Parameter must be actual or default parameter");
2884 end if;
2886 end Null_Parameter;
2888 -----------------
2889 -- Object_Size --
2890 -----------------
2892 when Attribute_Object_Size =>
2893 Check_E0;
2894 Check_Type;
2895 Check_Not_Incomplete_Type;
2896 Set_Etype (N, Universal_Integer);
2898 ------------
2899 -- Output --
2900 ------------
2902 when Attribute_Output =>
2903 Check_E2;
2904 Check_Stream_Attribute (Name_uInput);
2905 Set_Etype (N, Standard_Void_Type);
2906 Disallow_In_No_Run_Time_Mode (N);
2907 Resolve (N, Standard_Void_Type);
2909 ------------------
2910 -- Partition_ID --
2911 ------------------
2913 when Attribute_Partition_ID =>
2914 Check_E0;
2916 if P_Type /= Any_Type then
2917 if not Is_Library_Level_Entity (Entity (P)) then
2918 Error_Attr
2919 ("prefix of % attribute must be library-level entity", P);
2921 -- The defining entity of prefix should not be declared inside
2922 -- a Pure unit. RM E.1(8).
2923 -- The Is_Pure flag has been set during declaration.
2925 elsif Is_Entity_Name (P)
2926 and then Is_Pure (Entity (P))
2927 then
2928 Error_Attr
2929 ("prefix of % attribute must not be declared pure", P);
2930 end if;
2931 end if;
2933 Set_Etype (N, Universal_Integer);
2935 -------------------------
2936 -- Passed_By_Reference --
2937 -------------------------
2939 when Attribute_Passed_By_Reference =>
2940 Check_E0;
2941 Check_Type;
2942 Set_Etype (N, Standard_Boolean);
2944 ---------
2945 -- Pos --
2946 ---------
2948 when Attribute_Pos =>
2949 Check_Discrete_Type;
2950 Check_E1;
2951 Resolve (E1, P_Base_Type);
2952 Set_Etype (N, Universal_Integer);
2954 --------------
2955 -- Position --
2956 --------------
2958 when Attribute_Position =>
2959 Check_Component;
2960 Set_Etype (N, Universal_Integer);
2962 ----------
2963 -- Pred --
2964 ----------
2966 when Attribute_Pred =>
2967 Check_Scalar_Type;
2968 Check_E1;
2969 Resolve (E1, P_Base_Type);
2970 Set_Etype (N, P_Base_Type);
2972 -- Nothing to do for real type case
2974 if Is_Real_Type (P_Type) then
2975 null;
2977 -- If not modular type, test for overflow check required
2979 else
2980 if not Is_Modular_Integer_Type (P_Type)
2981 and then not Range_Checks_Suppressed (P_Base_Type)
2982 then
2983 Enable_Range_Check (E1);
2984 end if;
2985 end if;
2987 -----------
2988 -- Range --
2989 -----------
2991 when Attribute_Range =>
2992 Check_Array_Or_Scalar_Type;
2994 if Ada_83
2995 and then Is_Scalar_Type (P_Type)
2996 and then Comes_From_Source (N)
2997 then
2998 Error_Attr
2999 ("(Ada 83) % attribute not allowed for scalar type", P);
3000 end if;
3002 ------------------
3003 -- Range_Length --
3004 ------------------
3006 when Attribute_Range_Length =>
3007 Check_Discrete_Type;
3008 Set_Etype (N, Universal_Integer);
3010 ----------
3011 -- Read --
3012 ----------
3014 when Attribute_Read =>
3015 Check_E2;
3016 Check_Stream_Attribute (Name_uRead);
3017 Set_Etype (N, Standard_Void_Type);
3018 Resolve (N, Standard_Void_Type);
3019 Disallow_In_No_Run_Time_Mode (N);
3020 Note_Possible_Modification (E2);
3022 ---------------
3023 -- Remainder --
3024 ---------------
3026 when Attribute_Remainder =>
3027 Check_Floating_Point_Type_2;
3028 Set_Etype (N, P_Base_Type);
3029 Resolve (E1, P_Base_Type);
3030 Resolve (E2, P_Base_Type);
3032 -----------
3033 -- Round --
3034 -----------
3036 when Attribute_Round =>
3037 Check_E1;
3038 Check_Decimal_Fixed_Point_Type;
3039 Set_Etype (N, P_Base_Type);
3041 -- Because the context is universal_real (3.5.10(12)) it is a legal
3042 -- context for a universal fixed expression. This is the only
3043 -- attribute whose functional description involves U_R.
3045 if Etype (E1) = Universal_Fixed then
3046 declare
3047 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3048 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
3049 Expression => Relocate_Node (E1));
3051 begin
3052 Rewrite (E1, Conv);
3053 Analyze (E1);
3054 end;
3055 end if;
3057 Resolve (E1, Any_Real);
3059 --------------
3060 -- Rounding --
3061 --------------
3063 when Attribute_Rounding =>
3064 Check_Floating_Point_Type_1;
3065 Set_Etype (N, P_Base_Type);
3066 Resolve (E1, P_Base_Type);
3068 ---------------
3069 -- Safe_Emax --
3070 ---------------
3072 when Attribute_Safe_Emax =>
3073 Check_Floating_Point_Type_0;
3074 Set_Etype (N, Universal_Integer);
3076 ----------------
3077 -- Safe_First --
3078 ----------------
3080 when Attribute_Safe_First =>
3081 Check_Floating_Point_Type_0;
3082 Set_Etype (N, Universal_Real);
3084 ----------------
3085 -- Safe_Large --
3086 ----------------
3088 when Attribute_Safe_Large =>
3089 Check_E0;
3090 Check_Real_Type;
3091 Set_Etype (N, Universal_Real);
3093 ---------------
3094 -- Safe_Last --
3095 ---------------
3097 when Attribute_Safe_Last =>
3098 Check_Floating_Point_Type_0;
3099 Set_Etype (N, Universal_Real);
3101 ----------------
3102 -- Safe_Small --
3103 ----------------
3105 when Attribute_Safe_Small =>
3106 Check_E0;
3107 Check_Real_Type;
3108 Set_Etype (N, Universal_Real);
3110 -----------
3111 -- Scale --
3112 -----------
3114 when Attribute_Scale =>
3115 Check_E0;
3116 Check_Decimal_Fixed_Point_Type;
3117 Set_Etype (N, Universal_Integer);
3119 -------------
3120 -- Scaling --
3121 -------------
3123 when Attribute_Scaling =>
3124 Check_Floating_Point_Type_2;
3125 Set_Etype (N, P_Base_Type);
3126 Resolve (E1, P_Base_Type);
3128 ------------------
3129 -- Signed_Zeros --
3130 ------------------
3132 when Attribute_Signed_Zeros =>
3133 Check_Floating_Point_Type_0;
3134 Set_Etype (N, Standard_Boolean);
3136 ----------
3137 -- Size --
3138 ----------
3140 when Attribute_Size | Attribute_VADS_Size =>
3141 Check_E0;
3143 if Is_Object_Reference (P)
3144 or else (Is_Entity_Name (P)
3145 and then Ekind (Entity (P)) = E_Function)
3146 then
3147 Check_Object_Reference (P);
3149 elsif Is_Entity_Name (P)
3150 and then Is_Type (Entity (P))
3151 then
3152 null;
3154 elsif Nkind (P) = N_Type_Conversion
3155 and then not Comes_From_Source (P)
3156 then
3157 null;
3159 else
3160 Error_Attr ("invalid prefix for % attribute", P);
3161 end if;
3163 Check_Not_Incomplete_Type;
3164 Set_Etype (N, Universal_Integer);
3166 -----------
3167 -- Small --
3168 -----------
3170 when Attribute_Small =>
3171 Check_E0;
3172 Check_Real_Type;
3173 Set_Etype (N, Universal_Real);
3175 ------------------
3176 -- Storage_Pool --
3177 ------------------
3179 when Attribute_Storage_Pool =>
3180 if Is_Access_Type (P_Type) then
3181 Check_E0;
3183 -- Set appropriate entity
3185 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
3186 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
3187 else
3188 Set_Entity (N, RTE (RE_Global_Pool_Object));
3189 end if;
3191 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
3193 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3194 -- Storage_Pool since this attribute is not defined for such
3195 -- types (RM E.2.3(22)).
3197 Validate_Remote_Access_To_Class_Wide_Type (N);
3199 else
3200 Error_Attr ("prefix of % attribute must be access type", P);
3201 end if;
3203 ------------------
3204 -- Storage_Size --
3205 ------------------
3207 when Attribute_Storage_Size =>
3209 if Is_Task_Type (P_Type) then
3210 Check_E0;
3211 Set_Etype (N, Universal_Integer);
3213 elsif Is_Access_Type (P_Type) then
3214 if Is_Entity_Name (P)
3215 and then Is_Type (Entity (P))
3216 then
3217 Check_E0;
3218 Check_Type;
3219 Set_Etype (N, Universal_Integer);
3221 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3222 -- Storage_Size since this attribute is not defined for
3223 -- such types (RM E.2.3(22)).
3225 Validate_Remote_Access_To_Class_Wide_Type (N);
3227 -- The prefix is allowed to be an implicit dereference
3228 -- of an access value designating a task.
3230 else
3231 Check_E0;
3232 Check_Task_Prefix;
3233 Set_Etype (N, Universal_Integer);
3234 end if;
3236 else
3237 Error_Attr
3238 ("prefix of % attribute must be access or task type", P);
3239 end if;
3241 ------------------
3242 -- Storage_Unit --
3243 ------------------
3245 when Attribute_Storage_Unit =>
3246 Standard_Attribute (Ttypes.System_Storage_Unit);
3248 ----------
3249 -- Succ --
3250 ----------
3252 when Attribute_Succ =>
3253 Check_Scalar_Type;
3254 Check_E1;
3255 Resolve (E1, P_Base_Type);
3256 Set_Etype (N, P_Base_Type);
3258 -- Nothing to do for real type case
3260 if Is_Real_Type (P_Type) then
3261 null;
3263 -- If not modular type, test for overflow check required.
3265 else
3266 if not Is_Modular_Integer_Type (P_Type)
3267 and then not Range_Checks_Suppressed (P_Base_Type)
3268 then
3269 Enable_Range_Check (E1);
3270 end if;
3271 end if;
3273 ---------
3274 -- Tag --
3275 ---------
3277 when Attribute_Tag =>
3278 Check_E0;
3279 Check_Dereference;
3281 if not Is_Tagged_Type (P_Type) then
3282 Error_Attr ("prefix of % attribute must be tagged", P);
3284 -- Next test does not apply to generated code
3285 -- why not, and what does the illegal reference mean???
3287 elsif Is_Object_Reference (P)
3288 and then not Is_Class_Wide_Type (P_Type)
3289 and then Comes_From_Source (N)
3290 then
3291 Error_Attr
3292 ("% attribute can only be applied to objects of class-wide type",
3294 end if;
3296 Set_Etype (N, RTE (RE_Tag));
3298 ----------------
3299 -- Terminated --
3300 ----------------
3302 when Attribute_Terminated =>
3303 Check_E0;
3304 Set_Etype (N, Standard_Boolean);
3305 Check_Task_Prefix;
3307 ----------------
3308 -- To_Address --
3309 ----------------
3311 when Attribute_To_Address =>
3312 Check_E1;
3313 Analyze (P);
3315 if Nkind (P) /= N_Identifier
3316 or else Chars (P) /= Name_System
3317 then
3318 Error_Attr ("prefix of %attribute must be System", P);
3319 end if;
3321 Generate_Reference (RTE (RE_Address), P);
3322 Analyze_And_Resolve (E1, Any_Integer);
3323 Set_Etype (N, RTE (RE_Address));
3325 ----------------
3326 -- Truncation --
3327 ----------------
3329 when Attribute_Truncation =>
3330 Check_Floating_Point_Type_1;
3331 Resolve (E1, P_Base_Type);
3332 Set_Etype (N, P_Base_Type);
3334 ----------------
3335 -- Type_Class --
3336 ----------------
3338 when Attribute_Type_Class =>
3339 Check_E0;
3340 Check_Type;
3341 Check_Not_Incomplete_Type;
3342 Set_Etype (N, RTE (RE_Type_Class));
3344 -----------------
3345 -- UET_Address --
3346 -----------------
3348 when Attribute_UET_Address =>
3349 Check_E0;
3350 Check_Unit_Name (P);
3351 Set_Etype (N, RTE (RE_Address));
3353 -----------------------
3354 -- Unbiased_Rounding --
3355 -----------------------
3357 when Attribute_Unbiased_Rounding =>
3358 Check_Floating_Point_Type_1;
3359 Set_Etype (N, P_Base_Type);
3360 Resolve (E1, P_Base_Type);
3362 ----------------------
3363 -- Unchecked_Access --
3364 ----------------------
3366 when Attribute_Unchecked_Access =>
3367 if Comes_From_Source (N) then
3368 Check_Restriction (No_Unchecked_Access, N);
3369 end if;
3371 Access_Attribute;
3373 ------------------------------
3374 -- Universal_Literal_String --
3375 ------------------------------
3377 -- This is a GNAT specific attribute whose prefix must be a named
3378 -- number where the expression is either a single numeric literal,
3379 -- or a numeric literal immediately preceded by a minus sign. The
3380 -- result is equivalent to a string literal containing the text of
3381 -- the literal as it appeared in the source program with a possible
3382 -- leading minus sign.
3384 when Attribute_Universal_Literal_String => Universal_Literal_String :
3385 begin
3386 Check_E0;
3388 if not Is_Entity_Name (P)
3389 or else Ekind (Entity (P)) not in Named_Kind
3390 then
3391 Error_Attr ("prefix for % attribute must be named number", P);
3393 else
3394 declare
3395 Expr : Node_Id;
3396 Negative : Boolean;
3397 S : Source_Ptr;
3398 Src : Source_Buffer_Ptr;
3400 begin
3401 Expr := Original_Node (Expression (Parent (Entity (P))));
3403 if Nkind (Expr) = N_Op_Minus then
3404 Negative := True;
3405 Expr := Original_Node (Right_Opnd (Expr));
3406 else
3407 Negative := False;
3408 end if;
3410 if Nkind (Expr) /= N_Integer_Literal
3411 and then Nkind (Expr) /= N_Real_Literal
3412 then
3413 Error_Attr
3414 ("named number for % attribute must be simple literal", N);
3415 end if;
3417 -- Build string literal corresponding to source literal text
3419 Start_String;
3421 if Negative then
3422 Store_String_Char (Get_Char_Code ('-'));
3423 end if;
3425 S := Sloc (Expr);
3426 Src := Source_Text (Get_Source_File_Index (S));
3428 while Src (S) /= ';' and then Src (S) /= ' ' loop
3429 Store_String_Char (Get_Char_Code (Src (S)));
3430 S := S + 1;
3431 end loop;
3433 -- Now we rewrite the attribute with the string literal
3435 Rewrite (N,
3436 Make_String_Literal (Loc, End_String));
3437 Analyze (N);
3438 end;
3439 end if;
3440 end Universal_Literal_String;
3442 -------------------------
3443 -- Unrestricted_Access --
3444 -------------------------
3446 -- This is a GNAT specific attribute which is like Access except that
3447 -- all scope checks and checks for aliased views are omitted.
3449 when Attribute_Unrestricted_Access =>
3450 if Comes_From_Source (N) then
3451 Check_Restriction (No_Unchecked_Access, N);
3452 end if;
3454 if Is_Entity_Name (P) then
3455 Set_Address_Taken (Entity (P));
3456 end if;
3458 Access_Attribute;
3460 ---------
3461 -- Val --
3462 ---------
3464 when Attribute_Val => Val : declare
3465 begin
3466 Check_E1;
3467 Check_Discrete_Type;
3468 Resolve (E1, Any_Integer);
3469 Set_Etype (N, P_Base_Type);
3471 -- Note, we need a range check in general, but we wait for the
3472 -- Resolve call to do this, since we want to let Eval_Attribute
3473 -- have a chance to find an static illegality first!
3474 end Val;
3476 -----------
3477 -- Valid --
3478 -----------
3480 when Attribute_Valid =>
3481 Check_E0;
3483 -- Ignore check for object if we have a 'Valid reference generated
3484 -- by the expanded code, since in some cases valid checks can occur
3485 -- on items that are names, but are not objects (e.g. attributes).
3487 if Comes_From_Source (N) then
3488 Check_Object_Reference (P);
3489 end if;
3491 if not Is_Scalar_Type (P_Type) then
3492 Error_Attr ("object for % attribute must be of scalar type", P);
3493 end if;
3495 Set_Etype (N, Standard_Boolean);
3497 -----------
3498 -- Value --
3499 -----------
3501 when Attribute_Value => Value :
3502 begin
3503 Check_E1;
3504 Check_Scalar_Type;
3506 if Is_Enumeration_Type (P_Type) then
3507 Check_Restriction (No_Enumeration_Maps, N);
3508 end if;
3510 -- Set Etype before resolving expression because expansion
3511 -- of expression may require enclosing type.
3513 Set_Etype (N, P_Type);
3514 Validate_Non_Static_Attribute_Function_Call;
3515 end Value;
3517 ----------------
3518 -- Value_Size --
3519 ----------------
3521 when Attribute_Value_Size =>
3522 Check_E0;
3523 Check_Type;
3524 Check_Not_Incomplete_Type;
3525 Set_Etype (N, Universal_Integer);
3527 -------------
3528 -- Version --
3529 -------------
3531 when Attribute_Version =>
3532 Check_E0;
3533 Check_Program_Unit;
3534 Set_Etype (N, RTE (RE_Version_String));
3536 ------------------
3537 -- Wchar_T_Size --
3538 ------------------
3540 when Attribute_Wchar_T_Size =>
3541 Standard_Attribute (Interfaces_Wchar_T_Size);
3543 ----------------
3544 -- Wide_Image --
3545 ----------------
3547 when Attribute_Wide_Image => Wide_Image :
3548 begin
3549 Check_Scalar_Type;
3550 Set_Etype (N, Standard_Wide_String);
3551 Check_E1;
3552 Resolve (E1, P_Base_Type);
3553 Validate_Non_Static_Attribute_Function_Call;
3554 end Wide_Image;
3556 ----------------
3557 -- Wide_Value --
3558 ----------------
3560 when Attribute_Wide_Value => Wide_Value :
3561 begin
3562 Check_E1;
3563 Check_Scalar_Type;
3565 -- Set Etype before resolving expression because expansion
3566 -- of expression may require enclosing type.
3568 Set_Etype (N, P_Type);
3569 Validate_Non_Static_Attribute_Function_Call;
3570 end Wide_Value;
3572 ----------------
3573 -- Wide_Width --
3574 ----------------
3576 when Attribute_Wide_Width =>
3577 Check_E0;
3578 Check_Scalar_Type;
3579 Set_Etype (N, Universal_Integer);
3581 -----------
3582 -- Width --
3583 -----------
3585 when Attribute_Width =>
3586 Check_E0;
3587 Check_Scalar_Type;
3588 Set_Etype (N, Universal_Integer);
3590 ---------------
3591 -- Word_Size --
3592 ---------------
3594 when Attribute_Word_Size =>
3595 Standard_Attribute (System_Word_Size);
3597 -----------
3598 -- Write --
3599 -----------
3601 when Attribute_Write =>
3602 Check_E2;
3603 Check_Stream_Attribute (Name_uWrite);
3604 Set_Etype (N, Standard_Void_Type);
3605 Disallow_In_No_Run_Time_Mode (N);
3606 Resolve (N, Standard_Void_Type);
3608 end case;
3610 -- All errors raise Bad_Attribute, so that we get out before any further
3611 -- damage occurs when an error is detected (for example, if we check for
3612 -- one attribute expression, and the check succeeds, we want to be able
3613 -- to proceed securely assuming that an expression is in fact present.
3615 exception
3616 when Bad_Attribute =>
3617 Set_Etype (N, Any_Type);
3618 return;
3620 end Analyze_Attribute;
3622 --------------------
3623 -- Eval_Attribute --
3624 --------------------
3626 procedure Eval_Attribute (N : Node_Id) is
3627 Loc : constant Source_Ptr := Sloc (N);
3628 Aname : constant Name_Id := Attribute_Name (N);
3629 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
3630 P : constant Node_Id := Prefix (N);
3632 C_Type : constant Entity_Id := Etype (N);
3633 -- The type imposed by the context.
3635 E1 : Node_Id;
3636 -- First expression, or Empty if none
3638 E2 : Node_Id;
3639 -- Second expression, or Empty if none
3641 P_Entity : Entity_Id;
3642 -- Entity denoted by prefix
3644 P_Type : Entity_Id;
3645 -- The type of the prefix
3647 P_Base_Type : Entity_Id;
3648 -- The base type of the prefix type
3650 P_Root_Type : Entity_Id;
3651 -- The root type of the prefix type
3653 Static : Boolean;
3654 -- True if prefix type is static
3656 Lo_Bound, Hi_Bound : Node_Id;
3657 -- Expressions for low and high bounds of type or array index referenced
3658 -- by First, Last, or Length attribute for array, set by Set_Bounds.
3660 CE_Node : Node_Id;
3661 -- Constraint error node used if we have an attribute reference has
3662 -- an argument that raises a constraint error. In this case we replace
3663 -- the attribute with a raise constraint_error node. This is important
3664 -- processing, since otherwise gigi might see an attribute which it is
3665 -- unprepared to deal with.
3667 function Aft_Value return Nat;
3668 -- Computes Aft value for current attribute prefix (used by Aft itself
3669 -- and also by Width for computing the Width of a fixed point type).
3671 procedure Check_Expressions;
3672 -- In case where the attribute is not foldable, the expressions, if
3673 -- any, of the attribute, are in a non-static context. This procedure
3674 -- performs the required additional checks.
3676 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
3677 -- This procedure is called when the attribute N has a non-static
3678 -- but compile time known value given by Val. It includes the
3679 -- necessary checks for out of range values.
3681 procedure Float_Attribute_Universal_Integer
3682 (IEEES_Val : Int;
3683 IEEEL_Val : Int;
3684 IEEEX_Val : Int;
3685 VAXFF_Val : Int;
3686 VAXDF_Val : Int;
3687 VAXGF_Val : Int);
3688 -- This procedure evaluates a float attribute with no arguments that
3689 -- returns a universal integer result. The parameters give the values
3690 -- for the possible floating-point root types. See ttypef for details.
3691 -- The prefix type is a float type (and is thus not a generic type).
3693 procedure Float_Attribute_Universal_Real
3694 (IEEES_Val : String;
3695 IEEEL_Val : String;
3696 IEEEX_Val : String;
3697 VAXFF_Val : String;
3698 VAXDF_Val : String;
3699 VAXGF_Val : String);
3700 -- This procedure evaluates a float attribute with no arguments that
3701 -- returns a universal real result. The parameters give the values
3702 -- required for the possible floating-point root types in string
3703 -- format as real literals with a possible leading minus sign.
3704 -- The prefix type is a float type (and is thus not a generic type).
3706 function Fore_Value return Nat;
3707 -- Computes the Fore value for the current attribute prefix, which is
3708 -- known to be a static fixed-point type. Used by Fore and Width.
3710 function Mantissa return Uint;
3711 -- Returns the Mantissa value for the prefix type
3713 procedure Set_Bounds;
3714 -- Used for First, Last and Length attributes applied to an array or
3715 -- array subtype. Sets the variables Index_Lo and Index_Hi to the low
3716 -- and high bound expressions for the index referenced by the attribute
3717 -- designator (i.e. the first index if no expression is present, and
3718 -- the N'th index if the value N is present as an expression). Also
3719 -- used for First and Last of scalar types.
3721 ---------------
3722 -- Aft_Value --
3723 ---------------
3725 function Aft_Value return Nat is
3726 Result : Nat;
3727 Delta_Val : Ureal;
3729 begin
3730 Result := 1;
3731 Delta_Val := Delta_Value (P_Type);
3733 while Delta_Val < Ureal_Tenth loop
3734 Delta_Val := Delta_Val * Ureal_10;
3735 Result := Result + 1;
3736 end loop;
3738 return Result;
3739 end Aft_Value;
3741 -----------------------
3742 -- Check_Expressions --
3743 -----------------------
3745 procedure Check_Expressions is
3746 E : Node_Id := E1;
3748 begin
3749 while Present (E) loop
3750 Check_Non_Static_Context (E);
3751 Next (E);
3752 end loop;
3753 end Check_Expressions;
3755 ----------------------------------
3756 -- Compile_Time_Known_Attribute --
3757 ----------------------------------
3759 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
3760 T : constant Entity_Id := Etype (N);
3762 begin
3763 Fold_Uint (N, Val);
3764 Set_Is_Static_Expression (N, False);
3766 -- Check that result is in bounds of the type if it is static
3768 if Is_In_Range (N, T) then
3769 null;
3771 elsif Is_Out_Of_Range (N, T) then
3772 Apply_Compile_Time_Constraint_Error
3773 (N, "value not in range of}?", CE_Range_Check_Failed);
3775 elsif not Range_Checks_Suppressed (T) then
3776 Enable_Range_Check (N);
3778 else
3779 Set_Do_Range_Check (N, False);
3780 end if;
3781 end Compile_Time_Known_Attribute;
3783 ---------------------------------------
3784 -- Float_Attribute_Universal_Integer --
3785 ---------------------------------------
3787 procedure Float_Attribute_Universal_Integer
3788 (IEEES_Val : Int;
3789 IEEEL_Val : Int;
3790 IEEEX_Val : Int;
3791 VAXFF_Val : Int;
3792 VAXDF_Val : Int;
3793 VAXGF_Val : Int)
3795 Val : Int;
3796 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
3798 begin
3799 if not Vax_Float (P_Base_Type) then
3800 if Digs = IEEES_Digits then
3801 Val := IEEES_Val;
3802 elsif Digs = IEEEL_Digits then
3803 Val := IEEEL_Val;
3804 else pragma Assert (Digs = IEEEX_Digits);
3805 Val := IEEEX_Val;
3806 end if;
3808 else
3809 if Digs = VAXFF_Digits then
3810 Val := VAXFF_Val;
3811 elsif Digs = VAXDF_Digits then
3812 Val := VAXDF_Val;
3813 else pragma Assert (Digs = VAXGF_Digits);
3814 Val := VAXGF_Val;
3815 end if;
3816 end if;
3818 Fold_Uint (N, UI_From_Int (Val));
3819 end Float_Attribute_Universal_Integer;
3821 ------------------------------------
3822 -- Float_Attribute_Universal_Real --
3823 ------------------------------------
3825 procedure Float_Attribute_Universal_Real
3826 (IEEES_Val : String;
3827 IEEEL_Val : String;
3828 IEEEX_Val : String;
3829 VAXFF_Val : String;
3830 VAXDF_Val : String;
3831 VAXGF_Val : String)
3833 Val : Node_Id;
3834 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
3836 begin
3837 if not Vax_Float (P_Base_Type) then
3838 if Digs = IEEES_Digits then
3839 Val := Real_Convert (IEEES_Val);
3840 elsif Digs = IEEEL_Digits then
3841 Val := Real_Convert (IEEEL_Val);
3842 else pragma Assert (Digs = IEEEX_Digits);
3843 Val := Real_Convert (IEEEX_Val);
3844 end if;
3846 else
3847 if Digs = VAXFF_Digits then
3848 Val := Real_Convert (VAXFF_Val);
3849 elsif Digs = VAXDF_Digits then
3850 Val := Real_Convert (VAXDF_Val);
3851 else pragma Assert (Digs = VAXGF_Digits);
3852 Val := Real_Convert (VAXGF_Val);
3853 end if;
3854 end if;
3856 Set_Sloc (Val, Loc);
3857 Rewrite (N, Val);
3858 Analyze_And_Resolve (N, C_Type);
3859 end Float_Attribute_Universal_Real;
3861 ----------------
3862 -- Fore_Value --
3863 ----------------
3865 -- Note that the Fore calculation is based on the actual values
3866 -- of the bounds, and does not take into account possible rounding.
3868 function Fore_Value return Nat is
3869 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
3870 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
3871 Small : constant Ureal := Small_Value (P_Type);
3872 Lo_Real : constant Ureal := Lo * Small;
3873 Hi_Real : constant Ureal := Hi * Small;
3874 T : Ureal;
3875 R : Nat;
3877 begin
3878 -- Bounds are given in terms of small units, so first compute
3879 -- proper values as reals.
3881 T := UR_Max (abs Lo_Real, abs Hi_Real);
3882 R := 2;
3884 -- Loop to compute proper value if more than one digit required
3886 while T >= Ureal_10 loop
3887 R := R + 1;
3888 T := T / Ureal_10;
3889 end loop;
3891 return R;
3892 end Fore_Value;
3894 --------------
3895 -- Mantissa --
3896 --------------
3898 -- Table of mantissa values accessed by function Computed using
3899 -- the relation:
3901 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
3903 -- where D is T'Digits (RM83 3.5.7)
3905 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
3906 1 => 5,
3907 2 => 8,
3908 3 => 11,
3909 4 => 15,
3910 5 => 18,
3911 6 => 21,
3912 7 => 25,
3913 8 => 28,
3914 9 => 31,
3915 10 => 35,
3916 11 => 38,
3917 12 => 41,
3918 13 => 45,
3919 14 => 48,
3920 15 => 51,
3921 16 => 55,
3922 17 => 58,
3923 18 => 61,
3924 19 => 65,
3925 20 => 68,
3926 21 => 71,
3927 22 => 75,
3928 23 => 78,
3929 24 => 81,
3930 25 => 85,
3931 26 => 88,
3932 27 => 91,
3933 28 => 95,
3934 29 => 98,
3935 30 => 101,
3936 31 => 104,
3937 32 => 108,
3938 33 => 111,
3939 34 => 114,
3940 35 => 118,
3941 36 => 121,
3942 37 => 124,
3943 38 => 128,
3944 39 => 131,
3945 40 => 134);
3947 function Mantissa return Uint is
3948 begin
3949 return
3950 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
3951 end Mantissa;
3953 ----------------
3954 -- Set_Bounds --
3955 ----------------
3957 procedure Set_Bounds is
3958 Ndim : Nat;
3959 Indx : Node_Id;
3960 Ityp : Entity_Id;
3962 begin
3963 -- For a string literal subtype, we have to construct the bounds.
3964 -- Valid Ada code never applies attributes to string literals, but
3965 -- it is convenient to allow the expander to generate attribute
3966 -- references of this type (e.g. First and Last applied to a string
3967 -- literal).
3969 -- Note that the whole point of the E_String_Literal_Subtype is to
3970 -- avoid this construction of bounds, but the cases in which we
3971 -- have to materialize them are rare enough that we don't worry!
3973 -- The low bound is simply the low bound of the base type. The
3974 -- high bound is computed from the length of the string and this
3975 -- low bound.
3977 if Ekind (P_Type) = E_String_Literal_Subtype then
3978 Lo_Bound :=
3979 Type_Low_Bound (Etype (First_Index (Base_Type (P_Type))));
3981 Hi_Bound :=
3982 Make_Integer_Literal (Sloc (P),
3983 Intval =>
3984 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
3986 Set_Parent (Hi_Bound, P);
3987 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
3988 return;
3990 -- For non-array case, just get bounds of scalar type
3992 elsif Is_Scalar_Type (P_Type) then
3993 Ityp := P_Type;
3995 if Is_Fixed_Point_Type (P_Type)
3996 and then not Is_Frozen (Base_Type (P_Type))
3997 and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
3998 and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
3999 then
4000 Freeze_Fixed_Point_Type (Base_Type (P_Type));
4001 end if;
4003 -- For array case, get type of proper index
4005 else
4006 if No (E1) then
4007 Ndim := 1;
4008 else
4009 Ndim := UI_To_Int (Expr_Value (E1));
4010 end if;
4012 Indx := First_Index (P_Type);
4013 for J in 1 .. Ndim - 1 loop
4014 Next_Index (Indx);
4015 end loop;
4017 -- If no index type, get out (some other error occurred, and
4018 -- we don't have enough information to complete the job!)
4020 if No (Indx) then
4021 Lo_Bound := Error;
4022 Hi_Bound := Error;
4023 return;
4024 end if;
4026 Ityp := Etype (Indx);
4027 end if;
4029 -- A discrete range in an index constraint is allowed to be a
4030 -- subtype indication. This is syntactically a pain, but should
4031 -- not propagate to the entity for the corresponding index subtype.
4032 -- After checking that the subtype indication is legal, the range
4033 -- of the subtype indication should be transfered to the entity.
4034 -- The attributes for the bounds should remain the simple retrievals
4035 -- that they are now.
4037 Lo_Bound := Type_Low_Bound (Ityp);
4038 Hi_Bound := Type_High_Bound (Ityp);
4040 end Set_Bounds;
4042 -- Start of processing for Eval_Attribute
4044 begin
4045 -- Acquire first two expressions (at the moment, no attributes
4046 -- take more than two expressions in any case).
4048 if Present (Expressions (N)) then
4049 E1 := First (Expressions (N));
4050 E2 := Next (E1);
4051 else
4052 E1 := Empty;
4053 E2 := Empty;
4054 end if;
4056 -- Special processing for cases where the prefix is an object
4058 if Is_Object_Reference (P) then
4060 -- For Component_Size, the prefix is an array object, and we apply
4061 -- the attribute to the type of the object. This is allowed for
4062 -- both unconstrained and constrained arrays, since the bounds
4063 -- have no influence on the value of this attribute.
4065 if Id = Attribute_Component_Size then
4066 P_Entity := Etype (P);
4068 -- For First and Last, the prefix is an array object, and we apply
4069 -- the attribute to the type of the array, but we need a constrained
4070 -- type for this, so we use the actual subtype if available.
4072 elsif Id = Attribute_First
4073 or else
4074 Id = Attribute_Last
4075 or else
4076 Id = Attribute_Length
4077 then
4078 declare
4079 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
4081 begin
4082 if Present (AS) then
4083 P_Entity := AS;
4085 -- If no actual subtype, cannot fold
4087 else
4088 Check_Expressions;
4089 return;
4090 end if;
4091 end;
4093 -- For Size, give size of object if available, otherwise we
4094 -- cannot fold Size.
4096 elsif Id = Attribute_Size then
4098 if Is_Entity_Name (P)
4099 and then Known_Esize (Entity (P))
4100 then
4101 Compile_Time_Known_Attribute (N, Esize (Entity (P)));
4102 return;
4104 else
4105 Check_Expressions;
4106 return;
4107 end if;
4109 -- For Alignment, give size of object if available, otherwise we
4110 -- cannot fold Alignment.
4112 elsif Id = Attribute_Alignment then
4114 if Is_Entity_Name (P)
4115 and then Known_Alignment (Entity (P))
4116 then
4117 Fold_Uint (N, Alignment (Entity (P)));
4118 Set_Is_Static_Expression (N, False);
4119 return;
4121 else
4122 Check_Expressions;
4123 return;
4124 end if;
4126 -- No other attributes for objects are folded
4128 else
4129 Check_Expressions;
4130 return;
4131 end if;
4133 -- Cases where P is not an object. Cannot do anything if P is
4134 -- not the name of an entity.
4136 elsif not Is_Entity_Name (P) then
4137 Check_Expressions;
4138 return;
4140 -- Otherwise get prefix entity
4142 else
4143 P_Entity := Entity (P);
4144 end if;
4146 -- At this stage P_Entity is the entity to which the attribute
4147 -- is to be applied. This is usually simply the entity of the
4148 -- prefix, except in some cases of attributes for objects, where
4149 -- as described above, we apply the attribute to the object type.
4151 -- First foldable possibility is a scalar or array type (RM 4.9(7))
4152 -- that is not generic (generic types are eliminated by RM 4.9(25)).
4153 -- Note we allow non-static non-generic types at this stage as further
4154 -- described below.
4156 if Is_Type (P_Entity)
4157 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
4158 and then (not Is_Generic_Type (P_Entity))
4159 then
4160 P_Type := P_Entity;
4162 -- Second foldable possibility is an array object (RM 4.9(8))
4164 elsif (Ekind (P_Entity) = E_Variable
4165 or else
4166 Ekind (P_Entity) = E_Constant)
4167 and then Is_Array_Type (Etype (P_Entity))
4168 and then (not Is_Generic_Type (Etype (P_Entity)))
4169 then
4170 P_Type := Etype (P_Entity);
4172 -- If the entity is an array constant with an unconstrained
4173 -- nominal subtype then get the type from the initial value.
4174 -- If the value has been expanded into assignments, the expression
4175 -- is not present and the attribute reference remains dynamic.
4176 -- We could do better here and retrieve the type ???
4178 if Ekind (P_Entity) = E_Constant
4179 and then not Is_Constrained (P_Type)
4180 then
4181 if No (Constant_Value (P_Entity)) then
4182 return;
4183 else
4184 P_Type := Etype (Constant_Value (P_Entity));
4185 end if;
4186 end if;
4188 -- Definite must be folded if the prefix is not a generic type,
4189 -- that is to say if we are within an instantiation. Same processing
4190 -- applies to the GNAT attributes Has_Discriminants and Type_Class
4192 elsif (Id = Attribute_Definite
4193 or else
4194 Id = Attribute_Has_Discriminants
4195 or else
4196 Id = Attribute_Type_Class)
4197 and then not Is_Generic_Type (P_Entity)
4198 then
4199 P_Type := P_Entity;
4201 -- We can fold 'Size applied to a type if the size is known
4202 -- (as happens for a size from an attribute definition clause).
4203 -- At this stage, this can happen only for types (e.g. record
4204 -- types) for which the size is always non-static. We exclude
4205 -- generic types from consideration (since they have bogus
4206 -- sizes set within templates).
4208 elsif Id = Attribute_Size
4209 and then Is_Type (P_Entity)
4210 and then (not Is_Generic_Type (P_Entity))
4211 and then Known_Static_RM_Size (P_Entity)
4212 then
4213 Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
4214 return;
4216 -- No other cases are foldable (they certainly aren't static, and at
4217 -- the moment we don't try to fold any cases other than the two above)
4219 else
4220 Check_Expressions;
4221 return;
4222 end if;
4224 -- If either attribute or the prefix is Any_Type, then propagate
4225 -- Any_Type to the result and don't do anything else at all.
4227 if P_Type = Any_Type
4228 or else (Present (E1) and then Etype (E1) = Any_Type)
4229 or else (Present (E2) and then Etype (E2) = Any_Type)
4230 then
4231 Set_Etype (N, Any_Type);
4232 return;
4233 end if;
4235 -- Scalar subtype case. We have not yet enforced the static requirement
4236 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
4237 -- of non-static attribute references (e.g. S'Digits for a non-static
4238 -- floating-point type, which we can compute at compile time).
4240 -- Note: this folding of non-static attributes is not simply a case of
4241 -- optimization. For many of the attributes affected, Gigi cannot handle
4242 -- the attribute and depends on the front end having folded them away.
4244 -- Note: although we don't require staticness at this stage, we do set
4245 -- the Static variable to record the staticness, for easy reference by
4246 -- those attributes where it matters (e.g. Succ and Pred), and also to
4247 -- be used to ensure that non-static folded things are not marked as
4248 -- being static (a check that is done right at the end).
4250 P_Root_Type := Root_Type (P_Type);
4251 P_Base_Type := Base_Type (P_Type);
4253 -- If the root type or base type is generic, then we cannot fold. This
4254 -- test is needed because subtypes of generic types are not always
4255 -- marked as being generic themselves (which seems odd???)
4257 if Is_Generic_Type (P_Root_Type)
4258 or else Is_Generic_Type (P_Base_Type)
4259 then
4260 return;
4261 end if;
4263 if Is_Scalar_Type (P_Type) then
4264 Static := Is_OK_Static_Subtype (P_Type);
4266 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
4267 -- since we can't do anything with unconstrained arrays. In addition,
4268 -- only the First, Last and Length attributes are possibly static.
4269 -- In addition Component_Size is possibly foldable, even though it
4270 -- can never be static.
4272 -- Definite, Has_Discriminants and Type_Class are again exceptions,
4273 -- because they apply as well to unconstrained types.
4275 elsif Id = Attribute_Definite
4276 or else
4277 Id = Attribute_Has_Discriminants
4278 or else
4279 Id = Attribute_Type_Class
4280 then
4281 Static := False;
4283 else
4284 if not Is_Constrained (P_Type)
4285 or else (Id /= Attribute_Component_Size and then
4286 Id /= Attribute_First and then
4287 Id /= Attribute_Last and then
4288 Id /= Attribute_Length)
4289 then
4290 Check_Expressions;
4291 return;
4292 end if;
4294 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
4295 -- scalar case, we hold off on enforcing staticness, since there are
4296 -- cases which we can fold at compile time even though they are not
4297 -- static (e.g. 'Length applied to a static index, even though other
4298 -- non-static indexes make the array type non-static). This is only
4299 -- ab optimization, but it falls out essentially free, so why not.
4300 -- Again we compute the variable Static for easy reference later
4301 -- (note that no array attributes are static in Ada 83).
4303 Static := Ada_95;
4305 declare
4306 N : Node_Id;
4308 begin
4309 N := First_Index (P_Type);
4310 while Present (N) loop
4311 Static := Static and Is_Static_Subtype (Etype (N));
4312 Next_Index (N);
4313 end loop;
4314 end;
4315 end if;
4317 -- Check any expressions that are present. Note that these expressions,
4318 -- depending on the particular attribute type, are either part of the
4319 -- attribute designator, or they are arguments in a case where the
4320 -- attribute reference returns a function. In the latter case, the
4321 -- rule in (RM 4.9(22)) applies and in particular requires the type
4322 -- of the expressions to be scalar in order for the attribute to be
4323 -- considered to be static.
4325 declare
4326 E : Node_Id;
4328 begin
4329 E := E1;
4330 while Present (E) loop
4332 -- If expression is not static, then the attribute reference
4333 -- certainly is neither foldable nor static, so we can quit
4334 -- after calling Apply_Range_Check for 'Pos attributes.
4336 -- We can also quit if the expression is not of a scalar type
4337 -- as noted above.
4339 if not Is_Static_Expression (E)
4340 or else not Is_Scalar_Type (Etype (E))
4341 then
4342 if Id = Attribute_Pos then
4343 if Is_Integer_Type (Etype (E)) then
4344 Apply_Range_Check (E, Etype (N));
4345 end if;
4346 end if;
4348 Check_Expressions;
4349 return;
4351 -- If the expression raises a constraint error, then so does
4352 -- the attribute reference. We keep going in this case because
4353 -- we are still interested in whether the attribute reference
4354 -- is static even if it is not static.
4356 elsif Raises_Constraint_Error (E) then
4357 Set_Raises_Constraint_Error (N);
4358 end if;
4360 Next (E);
4361 end loop;
4363 if Raises_Constraint_Error (Prefix (N)) then
4364 return;
4365 end if;
4366 end;
4368 -- Deal with the case of a static attribute reference that raises
4369 -- constraint error. The Raises_Constraint_Error flag will already
4370 -- have been set, and the Static flag shows whether the attribute
4371 -- reference is static. In any case we certainly can't fold such an
4372 -- attribute reference.
4374 -- Note that the rewriting of the attribute node with the constraint
4375 -- error node is essential in this case, because otherwise Gigi might
4376 -- blow up on one of the attributes it never expects to see.
4378 -- The constraint_error node must have the type imposed by the context,
4379 -- to avoid spurious errors in the enclosing expression.
4381 if Raises_Constraint_Error (N) then
4382 CE_Node :=
4383 Make_Raise_Constraint_Error (Sloc (N),
4384 Reason => CE_Range_Check_Failed);
4385 Set_Etype (CE_Node, Etype (N));
4386 Set_Raises_Constraint_Error (CE_Node);
4387 Check_Expressions;
4388 Rewrite (N, Relocate_Node (CE_Node));
4389 Set_Is_Static_Expression (N, Static);
4390 return;
4391 end if;
4393 -- At this point we have a potentially foldable attribute reference.
4394 -- If Static is set, then the attribute reference definitely obeys
4395 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
4396 -- folded. If Static is not set, then the attribute may or may not
4397 -- be foldable, and the individual attribute processing routines
4398 -- test Static as required in cases where it makes a difference.
4400 case Id is
4402 --------------
4403 -- Adjacent --
4404 --------------
4406 when Attribute_Adjacent =>
4407 if Static then
4408 Fold_Ureal (N,
4409 Eval_Fat.Adjacent
4410 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
4411 end if;
4413 ---------
4414 -- Aft --
4415 ---------
4417 when Attribute_Aft =>
4418 Fold_Uint (N, UI_From_Int (Aft_Value));
4420 ---------------
4421 -- Alignment --
4422 ---------------
4424 when Attribute_Alignment => Alignment_Block : declare
4425 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
4427 begin
4428 -- Fold if alignment is set and not otherwise
4430 if Known_Alignment (P_TypeA) then
4431 Fold_Uint (N, Alignment (P_TypeA));
4432 end if;
4433 end Alignment_Block;
4435 ---------------
4436 -- AST_Entry --
4437 ---------------
4439 -- Can only be folded in No_Ast_Handler case
4441 when Attribute_AST_Entry =>
4442 if not Is_AST_Entry (P_Entity) then
4443 Rewrite (N,
4444 New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
4445 else
4446 null;
4447 end if;
4449 ---------
4450 -- Bit --
4451 ---------
4453 -- Bit can never be folded
4455 when Attribute_Bit =>
4456 null;
4458 ------------------
4459 -- Body_Version --
4460 ------------------
4462 -- Body_version can never be static
4464 when Attribute_Body_Version =>
4465 null;
4467 -------------
4468 -- Ceiling --
4469 -------------
4471 when Attribute_Ceiling =>
4472 if Static then
4473 Fold_Ureal (N,
4474 Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)));
4475 end if;
4477 --------------------
4478 -- Component_Size --
4479 --------------------
4481 when Attribute_Component_Size =>
4482 if Component_Size (P_Type) /= 0 then
4483 Fold_Uint (N, Component_Size (P_Type));
4484 end if;
4486 -------------
4487 -- Compose --
4488 -------------
4490 when Attribute_Compose =>
4491 if Static then
4492 Fold_Ureal (N,
4493 Eval_Fat.Compose
4494 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
4495 end if;
4497 -----------------
4498 -- Constrained --
4499 -----------------
4501 -- Constrained is never folded for now, there may be cases that
4502 -- could be handled at compile time. to be looked at later.
4504 when Attribute_Constrained =>
4505 null;
4507 ---------------
4508 -- Copy_Sign --
4509 ---------------
4511 when Attribute_Copy_Sign =>
4512 if Static then
4513 Fold_Ureal (N,
4514 Eval_Fat.Copy_Sign
4515 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
4516 end if;
4518 -----------
4519 -- Delta --
4520 -----------
4522 when Attribute_Delta =>
4523 Fold_Ureal (N, Delta_Value (P_Type));
4525 --------------
4526 -- Definite --
4527 --------------
4529 when Attribute_Definite =>
4530 declare
4531 Result : Node_Id;
4533 begin
4534 if Is_Indefinite_Subtype (P_Entity) then
4535 Result := New_Occurrence_Of (Standard_False, Loc);
4536 else
4537 Result := New_Occurrence_Of (Standard_True, Loc);
4538 end if;
4540 Rewrite (N, Result);
4541 Analyze_And_Resolve (N, Standard_Boolean);
4542 end;
4544 ------------
4545 -- Denorm --
4546 ------------
4548 when Attribute_Denorm =>
4549 Fold_Uint
4550 (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)));
4552 ------------
4553 -- Digits --
4554 ------------
4556 when Attribute_Digits =>
4557 Fold_Uint (N, Digits_Value (P_Type));
4559 ----------
4560 -- Emax --
4561 ----------
4563 when Attribute_Emax =>
4565 -- Ada 83 attribute is defined as (RM83 3.5.8)
4567 -- T'Emax = 4 * T'Mantissa
4569 Fold_Uint (N, 4 * Mantissa);
4571 --------------
4572 -- Enum_Rep --
4573 --------------
4575 when Attribute_Enum_Rep =>
4576 if Static then
4578 -- For an enumeration type with a non-standard representation
4579 -- use the Enumeration_Rep field of the proper constant. Note
4580 -- that this would not work for types Character/Wide_Character,
4581 -- since no real entities are created for the enumeration
4582 -- literals, but that does not matter since these two types
4583 -- do not have non-standard representations anyway.
4585 if Is_Enumeration_Type (P_Type)
4586 and then Has_Non_Standard_Rep (P_Type)
4587 then
4588 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)));
4590 -- For enumeration types with standard representations and all
4591 -- other cases (i.e. all integer and modular types), Enum_Rep
4592 -- is equivalent to Pos.
4594 else
4595 Fold_Uint (N, Expr_Value (E1));
4596 end if;
4597 end if;
4599 -------------
4600 -- Epsilon --
4601 -------------
4603 when Attribute_Epsilon =>
4605 -- Ada 83 attribute is defined as (RM83 3.5.8)
4607 -- T'Epsilon = 2.0**(1 - T'Mantissa)
4609 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa));
4611 --------------
4612 -- Exponent --
4613 --------------
4615 when Attribute_Exponent =>
4616 if Static then
4617 Fold_Uint (N,
4618 Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)));
4619 end if;
4621 -----------
4622 -- First --
4623 -----------
4625 when Attribute_First => First_Attr :
4626 begin
4627 Set_Bounds;
4629 if Compile_Time_Known_Value (Lo_Bound) then
4630 if Is_Real_Type (P_Type) then
4631 Fold_Ureal (N, Expr_Value_R (Lo_Bound));
4632 else
4633 Fold_Uint (N, Expr_Value (Lo_Bound));
4634 end if;
4635 end if;
4636 end First_Attr;
4638 -----------------
4639 -- Fixed_Value --
4640 -----------------
4642 when Attribute_Fixed_Value =>
4643 null;
4645 -----------
4646 -- Floor --
4647 -----------
4649 when Attribute_Floor =>
4650 if Static then
4651 Fold_Ureal (N,
4652 Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)));
4653 end if;
4655 ----------
4656 -- Fore --
4657 ----------
4659 when Attribute_Fore =>
4660 if Static then
4661 Fold_Uint (N, UI_From_Int (Fore_Value));
4662 end if;
4664 --------------
4665 -- Fraction --
4666 --------------
4668 when Attribute_Fraction =>
4669 if Static then
4670 Fold_Ureal (N,
4671 Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)));
4672 end if;
4674 -----------------------
4675 -- Has_Discriminants --
4676 -----------------------
4678 when Attribute_Has_Discriminants =>
4679 declare
4680 Result : Node_Id;
4682 begin
4683 if Has_Discriminants (P_Entity) then
4684 Result := New_Occurrence_Of (Standard_True, Loc);
4685 else
4686 Result := New_Occurrence_Of (Standard_False, Loc);
4687 end if;
4689 Rewrite (N, Result);
4690 Analyze_And_Resolve (N, Standard_Boolean);
4691 end;
4693 --------------
4694 -- Identity --
4695 --------------
4697 when Attribute_Identity =>
4698 null;
4700 -----------
4701 -- Image --
4702 -----------
4704 -- Image is a scalar attribute, but is never static, because it is
4705 -- not a static function (having a non-scalar argument (RM 4.9(22))
4707 when Attribute_Image =>
4708 null;
4710 ---------
4711 -- Img --
4712 ---------
4714 -- Img is a scalar attribute, but is never static, because it is
4715 -- not a static function (having a non-scalar argument (RM 4.9(22))
4717 when Attribute_Img =>
4718 null;
4720 -------------------
4721 -- Integer_Value --
4722 -------------------
4724 when Attribute_Integer_Value =>
4725 null;
4727 -----------
4728 -- Large --
4729 -----------
4731 when Attribute_Large =>
4733 -- For fixed-point, we use the identity:
4735 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
4737 if Is_Fixed_Point_Type (P_Type) then
4738 Rewrite (N,
4739 Make_Op_Multiply (Loc,
4740 Left_Opnd =>
4741 Make_Op_Subtract (Loc,
4742 Left_Opnd =>
4743 Make_Op_Expon (Loc,
4744 Left_Opnd =>
4745 Make_Real_Literal (Loc, Ureal_2),
4746 Right_Opnd =>
4747 Make_Attribute_Reference (Loc,
4748 Prefix => P,
4749 Attribute_Name => Name_Mantissa)),
4750 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
4752 Right_Opnd =>
4753 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
4755 Analyze_And_Resolve (N, C_Type);
4757 -- Floating-point (Ada 83 compatibility)
4759 else
4760 -- Ada 83 attribute is defined as (RM83 3.5.8)
4762 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
4764 -- where
4766 -- T'Emax = 4 * T'Mantissa
4768 Fold_Ureal (N,
4769 Ureal_2 ** (4 * Mantissa) *
4770 (Ureal_1 - Ureal_2 ** (-Mantissa)));
4771 end if;
4773 ----------
4774 -- Last --
4775 ----------
4777 when Attribute_Last => Last :
4778 begin
4779 Set_Bounds;
4781 if Compile_Time_Known_Value (Hi_Bound) then
4782 if Is_Real_Type (P_Type) then
4783 Fold_Ureal (N, Expr_Value_R (Hi_Bound));
4784 else
4785 Fold_Uint (N, Expr_Value (Hi_Bound));
4786 end if;
4787 end if;
4788 end Last;
4790 ------------------
4791 -- Leading_Part --
4792 ------------------
4794 when Attribute_Leading_Part =>
4795 if Static then
4796 Fold_Ureal (N,
4797 Eval_Fat.Leading_Part
4798 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
4799 end if;
4801 ------------
4802 -- Length --
4803 ------------
4805 when Attribute_Length => Length :
4806 begin
4807 Set_Bounds;
4809 if Compile_Time_Known_Value (Lo_Bound)
4810 and then Compile_Time_Known_Value (Hi_Bound)
4811 then
4812 Fold_Uint (N,
4813 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))));
4814 end if;
4815 end Length;
4817 -------------
4818 -- Machine --
4819 -------------
4821 when Attribute_Machine =>
4822 if Static then
4823 Fold_Ureal (N,
4824 Eval_Fat.Machine (P_Root_Type, Expr_Value_R (E1),
4825 Eval_Fat.Round));
4826 end if;
4828 ------------------
4829 -- Machine_Emax --
4830 ------------------
4832 when Attribute_Machine_Emax =>
4833 Float_Attribute_Universal_Integer (
4834 IEEES_Machine_Emax,
4835 IEEEL_Machine_Emax,
4836 IEEEX_Machine_Emax,
4837 VAXFF_Machine_Emax,
4838 VAXDF_Machine_Emax,
4839 VAXGF_Machine_Emax);
4841 ------------------
4842 -- Machine_Emin --
4843 ------------------
4845 when Attribute_Machine_Emin =>
4846 Float_Attribute_Universal_Integer (
4847 IEEES_Machine_Emin,
4848 IEEEL_Machine_Emin,
4849 IEEEX_Machine_Emin,
4850 VAXFF_Machine_Emin,
4851 VAXDF_Machine_Emin,
4852 VAXGF_Machine_Emin);
4854 ----------------------
4855 -- Machine_Mantissa --
4856 ----------------------
4858 when Attribute_Machine_Mantissa =>
4859 Float_Attribute_Universal_Integer (
4860 IEEES_Machine_Mantissa,
4861 IEEEL_Machine_Mantissa,
4862 IEEEX_Machine_Mantissa,
4863 VAXFF_Machine_Mantissa,
4864 VAXDF_Machine_Mantissa,
4865 VAXGF_Machine_Mantissa);
4867 -----------------------
4868 -- Machine_Overflows --
4869 -----------------------
4871 when Attribute_Machine_Overflows =>
4873 -- Always true for fixed-point
4875 if Is_Fixed_Point_Type (P_Type) then
4876 Fold_Uint (N, True_Value);
4878 -- Floating point case
4880 else
4881 Fold_Uint
4882 (N, UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)));
4883 end if;
4885 -------------------
4886 -- Machine_Radix --
4887 -------------------
4889 when Attribute_Machine_Radix =>
4890 if Is_Fixed_Point_Type (P_Type) then
4891 if Is_Decimal_Fixed_Point_Type (P_Type)
4892 and then Machine_Radix_10 (P_Type)
4893 then
4894 Fold_Uint (N, Uint_10);
4895 else
4896 Fold_Uint (N, Uint_2);
4897 end if;
4899 -- All floating-point type always have radix 2
4901 else
4902 Fold_Uint (N, Uint_2);
4903 end if;
4905 --------------------
4906 -- Machine_Rounds --
4907 --------------------
4909 when Attribute_Machine_Rounds =>
4911 -- Always False for fixed-point
4913 if Is_Fixed_Point_Type (P_Type) then
4914 Fold_Uint (N, False_Value);
4916 -- Else yield proper floating-point result
4918 else
4919 Fold_Uint
4920 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)));
4921 end if;
4923 ------------------
4924 -- Machine_Size --
4925 ------------------
4927 -- Note: Machine_Size is identical to Object_Size
4929 when Attribute_Machine_Size => Machine_Size : declare
4930 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
4932 begin
4933 if Known_Esize (P_TypeA) then
4934 Fold_Uint (N, Esize (P_TypeA));
4935 end if;
4936 end Machine_Size;
4938 --------------
4939 -- Mantissa --
4940 --------------
4942 when Attribute_Mantissa =>
4944 -- Fixed-point mantissa
4946 if Is_Fixed_Point_Type (P_Type) then
4948 -- Compile time foldable case
4950 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
4951 and then
4952 Compile_Time_Known_Value (Type_High_Bound (P_Type))
4953 then
4954 -- The calculation of the obsolete Ada 83 attribute Mantissa
4955 -- is annoying, because of AI00143, quoted here:
4957 -- !question 84-01-10
4959 -- Consider the model numbers for F:
4961 -- type F is delta 1.0 range -7.0 .. 8.0;
4963 -- The wording requires that F'MANTISSA be the SMALLEST
4964 -- integer number for which each bound of the specified
4965 -- range is either a model number or lies at most small
4966 -- distant from a model number. This means F'MANTISSA
4967 -- is required to be 3 since the range -7.0 .. 7.0 fits
4968 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
4969 -- number, namely, 7. Is this analysis correct? Note that
4970 -- this implies the upper bound of the range is not
4971 -- represented as a model number.
4973 -- !response 84-03-17
4975 -- The analysis is correct. The upper and lower bounds for
4976 -- a fixed point type can lie outside the range of model
4977 -- numbers.
4979 declare
4980 Siz : Uint;
4981 LBound : Ureal;
4982 UBound : Ureal;
4983 Bound : Ureal;
4984 Max_Man : Uint;
4986 begin
4987 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
4988 UBound := Expr_Value_R (Type_High_Bound (P_Type));
4989 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
4990 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
4992 -- If the Bound is exactly a model number, i.e. a multiple
4993 -- of Small, then we back it off by one to get the integer
4994 -- value that must be representable.
4996 if Small_Value (P_Type) * Max_Man = Bound then
4997 Max_Man := Max_Man - 1;
4998 end if;
5000 -- Now find corresponding size = Mantissa value
5002 Siz := Uint_0;
5003 while 2 ** Siz < Max_Man loop
5004 Siz := Siz + 1;
5005 end loop;
5007 Fold_Uint (N, Siz);
5008 end;
5010 else
5011 -- The case of dynamic bounds cannot be evaluated at compile
5012 -- time. Instead we use a runtime routine (see Exp_Attr).
5014 null;
5015 end if;
5017 -- Floating-point Mantissa
5019 else
5020 Fold_Uint (N, Mantissa);
5021 end if;
5023 ---------
5024 -- Max --
5025 ---------
5027 when Attribute_Max => Max :
5028 begin
5029 if Is_Real_Type (P_Type) then
5030 Fold_Ureal (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)));
5031 else
5032 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)));
5033 end if;
5034 end Max;
5036 ----------------------------------
5037 -- Max_Size_In_Storage_Elements --
5038 ----------------------------------
5040 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
5041 -- Storage_Unit boundary. We can fold any cases for which the size
5042 -- is known by the front end.
5044 when Attribute_Max_Size_In_Storage_Elements =>
5045 if Known_Esize (P_Type) then
5046 Fold_Uint (N,
5047 (Esize (P_Type) + System_Storage_Unit - 1) /
5048 System_Storage_Unit);
5049 end if;
5051 --------------------
5052 -- Mechanism_Code --
5053 --------------------
5055 when Attribute_Mechanism_Code =>
5056 declare
5057 Val : Int;
5058 Formal : Entity_Id;
5059 Mech : Mechanism_Type;
5061 begin
5062 if No (E1) then
5063 Mech := Mechanism (P_Entity);
5065 else
5066 Val := UI_To_Int (Expr_Value (E1));
5068 Formal := First_Formal (P_Entity);
5069 for J in 1 .. Val - 1 loop
5070 Next_Formal (Formal);
5071 end loop;
5072 Mech := Mechanism (Formal);
5073 end if;
5075 if Mech < 0 then
5076 Fold_Uint (N, UI_From_Int (Int (-Mech)));
5077 end if;
5078 end;
5080 ---------
5081 -- Min --
5082 ---------
5084 when Attribute_Min => Min :
5085 begin
5086 if Is_Real_Type (P_Type) then
5087 Fold_Ureal (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)));
5088 else
5089 Fold_Uint (N, UI_Min (Expr_Value (E1), Expr_Value (E2)));
5090 end if;
5091 end Min;
5093 -----------
5094 -- Model --
5095 -----------
5097 when Attribute_Model =>
5098 if Static then
5099 Fold_Ureal (N,
5100 Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)));
5101 end if;
5103 ----------------
5104 -- Model_Emin --
5105 ----------------
5107 when Attribute_Model_Emin =>
5108 Float_Attribute_Universal_Integer (
5109 IEEES_Model_Emin,
5110 IEEEL_Model_Emin,
5111 IEEEX_Model_Emin,
5112 VAXFF_Model_Emin,
5113 VAXDF_Model_Emin,
5114 VAXGF_Model_Emin);
5116 -------------------
5117 -- Model_Epsilon --
5118 -------------------
5120 when Attribute_Model_Epsilon =>
5121 Float_Attribute_Universal_Real (
5122 IEEES_Model_Epsilon'Universal_Literal_String,
5123 IEEEL_Model_Epsilon'Universal_Literal_String,
5124 IEEEX_Model_Epsilon'Universal_Literal_String,
5125 VAXFF_Model_Epsilon'Universal_Literal_String,
5126 VAXDF_Model_Epsilon'Universal_Literal_String,
5127 VAXGF_Model_Epsilon'Universal_Literal_String);
5129 --------------------
5130 -- Model_Mantissa --
5131 --------------------
5133 when Attribute_Model_Mantissa =>
5134 Float_Attribute_Universal_Integer (
5135 IEEES_Model_Mantissa,
5136 IEEEL_Model_Mantissa,
5137 IEEEX_Model_Mantissa,
5138 VAXFF_Model_Mantissa,
5139 VAXDF_Model_Mantissa,
5140 VAXGF_Model_Mantissa);
5142 -----------------
5143 -- Model_Small --
5144 -----------------
5146 when Attribute_Model_Small =>
5147 Float_Attribute_Universal_Real (
5148 IEEES_Model_Small'Universal_Literal_String,
5149 IEEEL_Model_Small'Universal_Literal_String,
5150 IEEEX_Model_Small'Universal_Literal_String,
5151 VAXFF_Model_Small'Universal_Literal_String,
5152 VAXDF_Model_Small'Universal_Literal_String,
5153 VAXGF_Model_Small'Universal_Literal_String);
5155 -------------
5156 -- Modulus --
5157 -------------
5159 when Attribute_Modulus =>
5160 Fold_Uint (N, Modulus (P_Type));
5162 --------------------
5163 -- Null_Parameter --
5164 --------------------
5166 -- Cannot fold, we know the value sort of, but the whole point is
5167 -- that there is no way to talk about this imaginary value except
5168 -- by using the attribute, so we leave it the way it is.
5170 when Attribute_Null_Parameter =>
5171 null;
5173 -----------------
5174 -- Object_Size --
5175 -----------------
5177 -- The Object_Size attribute for a type returns the Esize of the
5178 -- type and can be folded if this value is known.
5180 when Attribute_Object_Size => Object_Size : declare
5181 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5183 begin
5184 if Known_Esize (P_TypeA) then
5185 Fold_Uint (N, Esize (P_TypeA));
5186 end if;
5187 end Object_Size;
5189 -------------------------
5190 -- Passed_By_Reference --
5191 -------------------------
5193 -- Scalar types are never passed by reference
5195 when Attribute_Passed_By_Reference =>
5196 Fold_Uint (N, False_Value);
5198 ---------
5199 -- Pos --
5200 ---------
5202 when Attribute_Pos =>
5203 Fold_Uint (N, Expr_Value (E1));
5205 ----------
5206 -- Pred --
5207 ----------
5209 when Attribute_Pred => Pred :
5210 begin
5211 if Static then
5213 -- Floating-point case. For now, do not fold this, since we
5214 -- don't know how to do it right (see fixed bug 3512-001 ???)
5216 if Is_Floating_Point_Type (P_Type) then
5217 Fold_Ureal (N,
5218 Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)));
5220 -- Fixed-point case
5222 elsif Is_Fixed_Point_Type (P_Type) then
5223 Fold_Ureal (N,
5224 Expr_Value_R (E1) - Small_Value (P_Type));
5226 -- Modular integer case (wraps)
5228 elsif Is_Modular_Integer_Type (P_Type) then
5229 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type));
5231 -- Other scalar cases
5233 else
5234 pragma Assert (Is_Scalar_Type (P_Type));
5236 if Is_Enumeration_Type (P_Type)
5237 and then Expr_Value (E1) =
5238 Expr_Value (Type_Low_Bound (P_Base_Type))
5239 then
5240 Apply_Compile_Time_Constraint_Error
5241 (N, "Pred of type''First", CE_Overflow_Check_Failed);
5242 Check_Expressions;
5243 return;
5244 end if;
5246 Fold_Uint (N, Expr_Value (E1) - 1);
5247 end if;
5248 end if;
5249 end Pred;
5251 -----------
5252 -- Range --
5253 -----------
5255 -- No processing required, because by this stage, Range has been
5256 -- replaced by First .. Last, so this branch can never be taken.
5258 when Attribute_Range =>
5259 raise Program_Error;
5261 ------------------
5262 -- Range_Length --
5263 ------------------
5265 when Attribute_Range_Length =>
5266 Set_Bounds;
5268 if Compile_Time_Known_Value (Hi_Bound)
5269 and then Compile_Time_Known_Value (Lo_Bound)
5270 then
5271 Fold_Uint (N,
5272 UI_Max
5273 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1));
5274 end if;
5276 ---------------
5277 -- Remainder --
5278 ---------------
5280 when Attribute_Remainder =>
5281 if Static then
5282 Fold_Ureal (N,
5283 Eval_Fat.Remainder
5284 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)));
5285 end if;
5287 -----------
5288 -- Round --
5289 -----------
5291 when Attribute_Round => Round :
5292 declare
5293 Sr : Ureal;
5294 Si : Uint;
5296 begin
5297 if Static then
5298 -- First we get the (exact result) in units of small
5300 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
5302 -- Now round that exactly to an integer
5304 Si := UR_To_Uint (Sr);
5306 -- Finally the result is obtained by converting back to real
5308 Fold_Ureal (N, Si * Small_Value (C_Type));
5309 end if;
5310 end Round;
5312 --------------
5313 -- Rounding --
5314 --------------
5316 when Attribute_Rounding =>
5317 if Static then
5318 Fold_Ureal (N,
5319 Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)));
5320 end if;
5322 ---------------
5323 -- Safe_Emax --
5324 ---------------
5326 when Attribute_Safe_Emax =>
5327 Float_Attribute_Universal_Integer (
5328 IEEES_Safe_Emax,
5329 IEEEL_Safe_Emax,
5330 IEEEX_Safe_Emax,
5331 VAXFF_Safe_Emax,
5332 VAXDF_Safe_Emax,
5333 VAXGF_Safe_Emax);
5335 ----------------
5336 -- Safe_First --
5337 ----------------
5339 when Attribute_Safe_First =>
5340 Float_Attribute_Universal_Real (
5341 IEEES_Safe_First'Universal_Literal_String,
5342 IEEEL_Safe_First'Universal_Literal_String,
5343 IEEEX_Safe_First'Universal_Literal_String,
5344 VAXFF_Safe_First'Universal_Literal_String,
5345 VAXDF_Safe_First'Universal_Literal_String,
5346 VAXGF_Safe_First'Universal_Literal_String);
5348 ----------------
5349 -- Safe_Large --
5350 ----------------
5352 when Attribute_Safe_Large =>
5353 if Is_Fixed_Point_Type (P_Type) then
5354 Fold_Ureal (N, Expr_Value_R (Type_High_Bound (P_Base_Type)));
5355 else
5356 Float_Attribute_Universal_Real (
5357 IEEES_Safe_Large'Universal_Literal_String,
5358 IEEEL_Safe_Large'Universal_Literal_String,
5359 IEEEX_Safe_Large'Universal_Literal_String,
5360 VAXFF_Safe_Large'Universal_Literal_String,
5361 VAXDF_Safe_Large'Universal_Literal_String,
5362 VAXGF_Safe_Large'Universal_Literal_String);
5363 end if;
5365 ---------------
5366 -- Safe_Last --
5367 ---------------
5369 when Attribute_Safe_Last =>
5370 Float_Attribute_Universal_Real (
5371 IEEES_Safe_Last'Universal_Literal_String,
5372 IEEEL_Safe_Last'Universal_Literal_String,
5373 IEEEX_Safe_Last'Universal_Literal_String,
5374 VAXFF_Safe_Last'Universal_Literal_String,
5375 VAXDF_Safe_Last'Universal_Literal_String,
5376 VAXGF_Safe_Last'Universal_Literal_String);
5378 ----------------
5379 -- Safe_Small --
5380 ----------------
5382 when Attribute_Safe_Small =>
5384 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
5385 -- for fixed-point, since is the same as Small, but we implement
5386 -- it for backwards compatibility.
5388 if Is_Fixed_Point_Type (P_Type) then
5389 Fold_Ureal (N, Small_Value (P_Type));
5391 -- Ada 83 Safe_Small for floating-point cases
5393 else
5394 Float_Attribute_Universal_Real (
5395 IEEES_Safe_Small'Universal_Literal_String,
5396 IEEEL_Safe_Small'Universal_Literal_String,
5397 IEEEX_Safe_Small'Universal_Literal_String,
5398 VAXFF_Safe_Small'Universal_Literal_String,
5399 VAXDF_Safe_Small'Universal_Literal_String,
5400 VAXGF_Safe_Small'Universal_Literal_String);
5401 end if;
5403 -----------
5404 -- Scale --
5405 -----------
5407 when Attribute_Scale =>
5408 Fold_Uint (N, Scale_Value (P_Type));
5410 -------------
5411 -- Scaling --
5412 -------------
5414 when Attribute_Scaling =>
5415 if Static then
5416 Fold_Ureal (N,
5417 Eval_Fat.Scaling
5418 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)));
5419 end if;
5421 ------------------
5422 -- Signed_Zeros --
5423 ------------------
5425 when Attribute_Signed_Zeros =>
5426 Fold_Uint
5427 (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)));
5429 ----------
5430 -- Size --
5431 ----------
5433 -- Size attribute returns the RM size. All scalar types can be folded,
5434 -- as well as any types for which the size is known by the front end,
5435 -- including any type for which a size attribute is specified.
5437 when Attribute_Size | Attribute_VADS_Size => Size : declare
5438 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5440 begin
5441 if RM_Size (P_TypeA) /= Uint_0 then
5443 -- VADS_Size case
5445 if (Id = Attribute_VADS_Size or else Use_VADS_Size) then
5447 declare
5448 S : constant Node_Id := Size_Clause (P_TypeA);
5450 begin
5451 -- If a size clause applies, then use the size from it.
5452 -- This is one of the rare cases where we can use the
5453 -- Size_Clause field for a subtype when Has_Size_Clause
5454 -- is False. Consider:
5456 -- type x is range 1 .. 64;
5457 -- for x'size use 12;
5458 -- subtype y is x range 0 .. 3;
5460 -- Here y has a size clause inherited from x, but normally
5461 -- it does not apply, and y'size is 2. However, y'VADS_Size
5462 -- is indeed 12 and not 2.
5464 if Present (S)
5465 and then Is_OK_Static_Expression (Expression (S))
5466 then
5467 Fold_Uint (N, Expr_Value (Expression (S)));
5469 -- If no size is specified, then we simply use the object
5470 -- size in the VADS_Size case (e.g. Natural'Size is equal
5471 -- to Integer'Size, not one less).
5473 else
5474 Fold_Uint (N, Esize (P_TypeA));
5475 end if;
5476 end;
5478 -- Normal case (Size) in which case we want the RM_Size
5480 else
5481 Fold_Uint (N, RM_Size (P_TypeA));
5482 end if;
5483 end if;
5484 end Size;
5486 -----------
5487 -- Small --
5488 -----------
5490 when Attribute_Small =>
5492 -- The floating-point case is present only for Ada 83 compatibility.
5493 -- Note that strictly this is an illegal addition, since we are
5494 -- extending an Ada 95 defined attribute, but we anticipate an
5495 -- ARG ruling that will permit this.
5497 if Is_Floating_Point_Type (P_Type) then
5499 -- Ada 83 attribute is defined as (RM83 3.5.8)
5501 -- T'Small = 2.0**(-T'Emax - 1)
5503 -- where
5505 -- T'Emax = 4 * T'Mantissa
5507 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1));
5509 -- Normal Ada 95 fixed-point case
5511 else
5512 Fold_Ureal (N, Small_Value (P_Type));
5513 end if;
5515 ----------
5516 -- Succ --
5517 ----------
5519 when Attribute_Succ => Succ :
5520 begin
5521 if Static then
5523 -- Floating-point case. For now, do not fold this, since we
5524 -- don't know how to do it right (see fixed bug 3512-001 ???)
5526 if Is_Floating_Point_Type (P_Type) then
5527 Fold_Ureal (N,
5528 Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)));
5530 -- Fixed-point case
5532 elsif Is_Fixed_Point_Type (P_Type) then
5533 Fold_Ureal (N,
5534 Expr_Value_R (E1) + Small_Value (P_Type));
5536 -- Modular integer case (wraps)
5538 elsif Is_Modular_Integer_Type (P_Type) then
5539 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type));
5541 -- Other scalar cases
5543 else
5544 pragma Assert (Is_Scalar_Type (P_Type));
5546 if Is_Enumeration_Type (P_Type)
5547 and then Expr_Value (E1) =
5548 Expr_Value (Type_High_Bound (P_Base_Type))
5549 then
5550 Apply_Compile_Time_Constraint_Error
5551 (N, "Succ of type''Last", CE_Overflow_Check_Failed);
5552 Check_Expressions;
5553 return;
5554 else
5555 Fold_Uint (N, Expr_Value (E1) + 1);
5556 end if;
5557 end if;
5558 end if;
5559 end Succ;
5561 ----------------
5562 -- Truncation --
5563 ----------------
5565 when Attribute_Truncation =>
5566 if Static then
5567 Fold_Ureal (N,
5568 Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)));
5569 end if;
5571 ----------------
5572 -- Type_Class --
5573 ----------------
5575 when Attribute_Type_Class => Type_Class : declare
5576 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
5577 Id : RE_Id;
5579 begin
5580 if Is_RTE (P_Root_Type, RE_Address) then
5581 Id := RE_Type_Class_Address;
5583 elsif Is_Enumeration_Type (Typ) then
5584 Id := RE_Type_Class_Enumeration;
5586 elsif Is_Integer_Type (Typ) then
5587 Id := RE_Type_Class_Integer;
5589 elsif Is_Fixed_Point_Type (Typ) then
5590 Id := RE_Type_Class_Fixed_Point;
5592 elsif Is_Floating_Point_Type (Typ) then
5593 Id := RE_Type_Class_Floating_Point;
5595 elsif Is_Array_Type (Typ) then
5596 Id := RE_Type_Class_Array;
5598 elsif Is_Record_Type (Typ) then
5599 Id := RE_Type_Class_Record;
5601 elsif Is_Access_Type (Typ) then
5602 Id := RE_Type_Class_Access;
5604 elsif Is_Enumeration_Type (Typ) then
5605 Id := RE_Type_Class_Enumeration;
5607 elsif Is_Task_Type (Typ) then
5608 Id := RE_Type_Class_Task;
5610 -- We treat protected types like task types. It would make more
5611 -- sense to have another enumeration value, but after all the
5612 -- whole point of this feature is to be exactly DEC compatible,
5613 -- and changing the type Type_Clas would not meet this requirement.
5615 elsif Is_Protected_Type (Typ) then
5616 Id := RE_Type_Class_Task;
5618 -- Not clear if there are any other possibilities, but if there
5619 -- are, then we will treat them as the address case.
5621 else
5622 Id := RE_Type_Class_Address;
5623 end if;
5625 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
5627 end Type_Class;
5629 -----------------------
5630 -- Unbiased_Rounding --
5631 -----------------------
5633 when Attribute_Unbiased_Rounding =>
5634 if Static then
5635 Fold_Ureal (N,
5636 Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)));
5637 end if;
5639 ---------------
5640 -- VADS_Size --
5641 ---------------
5643 -- Processing is shared with Size
5645 ---------
5646 -- Val --
5647 ---------
5649 when Attribute_Val => Val :
5650 begin
5651 if Static then
5652 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
5653 or else
5654 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
5655 then
5656 Apply_Compile_Time_Constraint_Error
5657 (N, "Val expression out of range", CE_Range_Check_Failed);
5658 Check_Expressions;
5659 return;
5660 else
5661 Fold_Uint (N, Expr_Value (E1));
5662 end if;
5663 end if;
5664 end Val;
5666 ----------------
5667 -- Value_Size --
5668 ----------------
5670 -- The Value_Size attribute for a type returns the RM size of the
5671 -- type. This an always be folded for scalar types, and can also
5672 -- be folded for non-scalar types if the size is set.
5674 when Attribute_Value_Size => Value_Size : declare
5675 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5677 begin
5678 if RM_Size (P_TypeA) /= Uint_0 then
5679 Fold_Uint (N, RM_Size (P_TypeA));
5680 end if;
5682 end Value_Size;
5684 -------------
5685 -- Version --
5686 -------------
5688 -- Version can never be static
5690 when Attribute_Version =>
5691 null;
5693 ----------------
5694 -- Wide_Image --
5695 ----------------
5697 -- Wide_Image is a scalar attribute, but is never static, because it
5698 -- is not a static function (having a non-scalar argument (RM 4.9(22))
5700 when Attribute_Wide_Image =>
5701 null;
5703 ----------------
5704 -- Wide_Width --
5705 ----------------
5707 -- Processing for Wide_Width is combined with Width
5709 -----------
5710 -- Width --
5711 -----------
5713 -- This processing also handles the case of Wide_Width
5715 when Attribute_Width | Attribute_Wide_Width => Width :
5716 begin
5717 if Static then
5719 -- Floating-point types
5721 if Is_Floating_Point_Type (P_Type) then
5723 -- Width is zero for a null range (RM 3.5 (38))
5725 if Expr_Value_R (Type_High_Bound (P_Type)) <
5726 Expr_Value_R (Type_Low_Bound (P_Type))
5727 then
5728 Fold_Uint (N, Uint_0);
5730 else
5731 -- For floating-point, we have +N.dddE+nnn where length
5732 -- of ddd is determined by type'Digits - 1, but is one
5733 -- if Digits is one (RM 3.5 (33)).
5735 -- nnn is set to 2 for Short_Float and Float (32 bit
5736 -- floats), and 3 for Long_Float and Long_Long_Float.
5737 -- This is not quite right, but is good enough.
5739 declare
5740 Len : Int :=
5741 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
5743 begin
5744 if Esize (P_Type) <= 32 then
5745 Len := Len + 6;
5746 else
5747 Len := Len + 7;
5748 end if;
5750 Fold_Uint (N, UI_From_Int (Len));
5751 end;
5752 end if;
5754 -- Fixed-point types
5756 elsif Is_Fixed_Point_Type (P_Type) then
5758 -- Width is zero for a null range (RM 3.5 (38))
5760 if Expr_Value (Type_High_Bound (P_Type)) <
5761 Expr_Value (Type_Low_Bound (P_Type))
5762 then
5763 Fold_Uint (N, Uint_0);
5765 -- The non-null case depends on the specific real type
5767 else
5768 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
5770 Fold_Uint (N, UI_From_Int (Fore_Value + 1 + Aft_Value));
5771 end if;
5773 -- Discrete types
5775 else
5776 declare
5777 R : constant Entity_Id := Root_Type (P_Type);
5778 Lo : constant Uint :=
5779 Expr_Value (Type_Low_Bound (P_Type));
5780 Hi : constant Uint :=
5781 Expr_Value (Type_High_Bound (P_Type));
5782 W : Nat;
5783 Wt : Nat;
5784 T : Uint;
5785 L : Node_Id;
5786 C : Character;
5788 begin
5789 -- Empty ranges
5791 if Lo > Hi then
5792 W := 0;
5794 -- Width for types derived from Standard.Character
5795 -- and Standard.Wide_Character.
5797 elsif R = Standard_Character
5798 or else R = Standard_Wide_Character
5799 then
5800 W := 0;
5802 -- Set W larger if needed
5804 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
5806 -- Assume all wide-character escape sequences are
5807 -- same length, so we can quit when we reach one.
5809 if J > 255 then
5810 if Id = Attribute_Wide_Width then
5811 W := Int'Max (W, 3);
5812 exit;
5813 else
5814 W := Int'Max (W, Length_Wide);
5815 exit;
5816 end if;
5818 else
5819 C := Character'Val (J);
5821 -- Test for all cases where Character'Image
5822 -- yields an image that is longer than three
5823 -- characters. First the cases of Reserved_xxx
5824 -- names (length = 12).
5826 case C is
5827 when Reserved_128 | Reserved_129 |
5828 Reserved_132 | Reserved_153
5830 => Wt := 12;
5832 when BS | HT | LF | VT | FF | CR |
5833 SO | SI | EM | FS | GS | RS |
5834 US | RI | MW | ST | PM
5836 => Wt := 2;
5838 when NUL | SOH | STX | ETX | EOT |
5839 ENQ | ACK | BEL | DLE | DC1 |
5840 DC2 | DC3 | DC4 | NAK | SYN |
5841 ETB | CAN | SUB | ESC | DEL |
5842 BPH | NBH | NEL | SSA | ESA |
5843 HTS | HTJ | VTS | PLD | PLU |
5844 SS2 | SS3 | DCS | PU1 | PU2 |
5845 STS | CCH | SPA | EPA | SOS |
5846 SCI | CSI | OSC | APC
5848 => Wt := 3;
5850 when Space .. Tilde |
5851 No_Break_Space .. LC_Y_Diaeresis
5853 => Wt := 3;
5855 end case;
5857 W := Int'Max (W, Wt);
5858 end if;
5859 end loop;
5861 -- Width for types derived from Standard.Boolean
5863 elsif R = Standard_Boolean then
5864 if Lo = 0 then
5865 W := 5; -- FALSE
5866 else
5867 W := 4; -- TRUE
5868 end if;
5870 -- Width for integer types
5872 elsif Is_Integer_Type (P_Type) then
5873 T := UI_Max (abs Lo, abs Hi);
5875 W := 2;
5876 while T >= 10 loop
5877 W := W + 1;
5878 T := T / 10;
5879 end loop;
5881 -- Only remaining possibility is user declared enum type
5883 else
5884 pragma Assert (Is_Enumeration_Type (P_Type));
5886 W := 0;
5887 L := First_Literal (P_Type);
5889 while Present (L) loop
5891 -- Only pay attention to in range characters
5893 if Lo <= Enumeration_Pos (L)
5894 and then Enumeration_Pos (L) <= Hi
5895 then
5896 -- For Width case, use decoded name
5898 if Id = Attribute_Width then
5899 Get_Decoded_Name_String (Chars (L));
5900 Wt := Nat (Name_Len);
5902 -- For Wide_Width, use encoded name, and then
5903 -- adjust for the encoding.
5905 else
5906 Get_Name_String (Chars (L));
5908 -- Character literals are always of length 3
5910 if Name_Buffer (1) = 'Q' then
5911 Wt := 3;
5913 -- Otherwise loop to adjust for upper/wide chars
5915 else
5916 Wt := Nat (Name_Len);
5918 for J in 1 .. Name_Len loop
5919 if Name_Buffer (J) = 'U' then
5920 Wt := Wt - 2;
5921 elsif Name_Buffer (J) = 'W' then
5922 Wt := Wt - 4;
5923 end if;
5924 end loop;
5925 end if;
5926 end if;
5928 W := Int'Max (W, Wt);
5929 end if;
5931 Next_Literal (L);
5932 end loop;
5933 end if;
5935 Fold_Uint (N, UI_From_Int (W));
5936 end;
5937 end if;
5938 end if;
5939 end Width;
5941 -- The following attributes can never be folded, and furthermore we
5942 -- should not even have entered the case statement for any of these.
5943 -- Note that in some cases, the values have already been folded as
5944 -- a result of the processing in Analyze_Attribute.
5946 when Attribute_Abort_Signal |
5947 Attribute_Access |
5948 Attribute_Address |
5949 Attribute_Address_Size |
5950 Attribute_Asm_Input |
5951 Attribute_Asm_Output |
5952 Attribute_Base |
5953 Attribute_Bit_Order |
5954 Attribute_Bit_Position |
5955 Attribute_Callable |
5956 Attribute_Caller |
5957 Attribute_Class |
5958 Attribute_Code_Address |
5959 Attribute_Count |
5960 Attribute_Default_Bit_Order |
5961 Attribute_Elaborated |
5962 Attribute_Elab_Body |
5963 Attribute_Elab_Spec |
5964 Attribute_External_Tag |
5965 Attribute_First_Bit |
5966 Attribute_Input |
5967 Attribute_Last_Bit |
5968 Attribute_Maximum_Alignment |
5969 Attribute_Output |
5970 Attribute_Partition_ID |
5971 Attribute_Position |
5972 Attribute_Read |
5973 Attribute_Storage_Pool |
5974 Attribute_Storage_Size |
5975 Attribute_Storage_Unit |
5976 Attribute_Tag |
5977 Attribute_Terminated |
5978 Attribute_To_Address |
5979 Attribute_UET_Address |
5980 Attribute_Unchecked_Access |
5981 Attribute_Universal_Literal_String |
5982 Attribute_Unrestricted_Access |
5983 Attribute_Valid |
5984 Attribute_Value |
5985 Attribute_Wchar_T_Size |
5986 Attribute_Wide_Value |
5987 Attribute_Word_Size |
5988 Attribute_Write =>
5990 raise Program_Error;
5992 end case;
5994 -- At the end of the case, one more check. If we did a static evaluation
5995 -- so that the result is now a literal, then set Is_Static_Expression
5996 -- in the constant only if the prefix type is a static subtype. For
5997 -- non-static subtypes, the folding is still OK, but not static.
5999 if Nkind (N) = N_Integer_Literal
6000 or else Nkind (N) = N_Real_Literal
6001 or else Nkind (N) = N_Character_Literal
6002 or else Nkind (N) = N_String_Literal
6003 or else (Is_Entity_Name (N)
6004 and then Ekind (Entity (N)) = E_Enumeration_Literal)
6005 then
6006 Set_Is_Static_Expression (N, Static);
6008 -- If this is still an attribute reference, then it has not been folded
6009 -- and that means that its expressions are in a non-static context.
6011 elsif Nkind (N) = N_Attribute_Reference then
6012 Check_Expressions;
6014 -- Note: the else case not covered here are odd cases where the
6015 -- processing has transformed the attribute into something other
6016 -- than a constant. Nothing more to do in such cases.
6018 else
6019 null;
6020 end if;
6022 end Eval_Attribute;
6024 ------------------------------
6025 -- Is_Anonymous_Tagged_Base --
6026 ------------------------------
6028 function Is_Anonymous_Tagged_Base
6029 (Anon : Entity_Id;
6030 Typ : Entity_Id)
6031 return Boolean
6033 begin
6034 return
6035 Anon = Current_Scope
6036 and then Is_Itype (Anon)
6037 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
6038 end Is_Anonymous_Tagged_Base;
6040 -----------------------
6041 -- Resolve_Attribute --
6042 -----------------------
6044 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
6045 Loc : constant Source_Ptr := Sloc (N);
6046 P : constant Node_Id := Prefix (N);
6047 Aname : constant Name_Id := Attribute_Name (N);
6048 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
6049 Index : Interp_Index;
6050 It : Interp;
6051 Btyp : Entity_Id := Base_Type (Typ);
6052 Nom_Subt : Entity_Id;
6054 begin
6055 -- If error during analysis, no point in continuing, except for
6056 -- array types, where we get better recovery by using unconstrained
6057 -- indices than nothing at all (see Check_Array_Type).
6059 if Error_Posted (N)
6060 and then Attr_Id /= Attribute_First
6061 and then Attr_Id /= Attribute_Last
6062 and then Attr_Id /= Attribute_Length
6063 and then Attr_Id /= Attribute_Range
6064 then
6065 return;
6066 end if;
6068 -- If attribute was universal type, reset to actual type
6070 if Etype (N) = Universal_Integer
6071 or else Etype (N) = Universal_Real
6072 then
6073 Set_Etype (N, Typ);
6074 end if;
6076 -- Remaining processing depends on attribute
6078 case Attr_Id is
6080 ------------
6081 -- Access --
6082 ------------
6084 -- For access attributes, if the prefix denotes an entity, it is
6085 -- interpreted as a name, never as a call. It may be overloaded,
6086 -- in which case resolution uses the profile of the context type.
6087 -- Otherwise prefix must be resolved.
6089 when Attribute_Access
6090 | Attribute_Unchecked_Access
6091 | Attribute_Unrestricted_Access =>
6093 if Is_Variable (P) then
6094 Note_Possible_Modification (P);
6095 end if;
6097 if Is_Entity_Name (P) then
6099 if Is_Overloaded (P) then
6100 Get_First_Interp (P, Index, It);
6102 while Present (It.Nam) loop
6104 if Type_Conformant (Designated_Type (Typ), It.Nam) then
6105 Set_Entity (P, It.Nam);
6107 -- The prefix is definitely NOT overloaded anymore
6108 -- at this point, so we reset the Is_Overloaded
6109 -- flag to avoid any confusion when reanalyzing
6110 -- the node.
6112 Set_Is_Overloaded (P, False);
6113 Generate_Reference (Entity (P), P);
6114 exit;
6115 end if;
6117 Get_Next_Interp (Index, It);
6118 end loop;
6120 -- If it is a subprogram name or a type, there is nothing
6121 -- to resolve.
6123 elsif not Is_Overloadable (Entity (P))
6124 and then not Is_Type (Entity (P))
6125 then
6126 Resolve (P, Etype (P));
6127 end if;
6129 if not Is_Entity_Name (P) then
6130 null;
6132 elsif Is_Abstract (Entity (P))
6133 and then Is_Overloadable (Entity (P))
6134 then
6135 Error_Msg_Name_1 := Aname;
6136 Error_Msg_N ("prefix of % attribute cannot be abstract", P);
6137 Set_Etype (N, Any_Type);
6139 elsif Convention (Entity (P)) = Convention_Intrinsic then
6140 Error_Msg_Name_1 := Aname;
6142 if Ekind (Entity (P)) = E_Enumeration_Literal then
6143 Error_Msg_N
6144 ("prefix of % attribute cannot be enumeration literal",
6146 else
6147 Error_Msg_N
6148 ("prefix of % attribute cannot be intrinsic", P);
6149 end if;
6151 Set_Etype (N, Any_Type);
6152 end if;
6154 -- Assignments, return statements, components of aggregates,
6155 -- generic instantiations will require convention checks if
6156 -- the type is an access to subprogram. Given that there will
6157 -- also be accessibility checks on those, this is where the
6158 -- checks can eventually be centralized ???
6160 if Ekind (Btyp) = E_Access_Subprogram_Type then
6161 if Convention (Btyp) /= Convention (Entity (P)) then
6162 Error_Msg_N
6163 ("subprogram has invalid convention for context", P);
6165 else
6166 Check_Subtype_Conformant
6167 (New_Id => Entity (P),
6168 Old_Id => Designated_Type (Btyp),
6169 Err_Loc => P);
6170 end if;
6172 if Attr_Id = Attribute_Unchecked_Access then
6173 Error_Msg_Name_1 := Aname;
6174 Error_Msg_N
6175 ("attribute% cannot be applied to a subprogram", P);
6177 elsif Aname = Name_Unrestricted_Access then
6178 null; -- Nothing to check
6180 -- Check the static accessibility rule of 3.10.2(32)
6182 elsif Attr_Id = Attribute_Access
6183 and then Subprogram_Access_Level (Entity (P))
6184 > Type_Access_Level (Btyp)
6185 then
6186 if not In_Instance_Body then
6187 Error_Msg_N
6188 ("subprogram must not be deeper than access type",
6190 else
6191 Warn_On_Instance := True;
6192 Error_Msg_N
6193 ("subprogram must not be deeper than access type?",
6195 Error_Msg_N
6196 ("Constraint_Error will be raised ?", P);
6197 Set_Raises_Constraint_Error (N);
6198 Warn_On_Instance := False;
6199 end if;
6201 -- Check the restriction of 3.10.2(32) that disallows
6202 -- the type of the access attribute to be declared
6203 -- outside a generic body when the attribute occurs
6204 -- within that generic body.
6206 elsif Enclosing_Generic_Body (Entity (P))
6207 /= Enclosing_Generic_Body (Btyp)
6208 then
6209 Error_Msg_N
6210 ("access type must not be outside generic body", P);
6211 end if;
6212 end if;
6214 -- if this is a renaming, an inherited operation, or a
6215 -- subprogram instance, use the original entity.
6217 if Is_Entity_Name (P)
6218 and then Is_Overloadable (Entity (P))
6219 and then Present (Alias (Entity (P)))
6220 then
6221 Rewrite (P,
6222 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
6223 end if;
6225 elsif Nkind (P) = N_Selected_Component
6226 and then Is_Overloadable (Entity (Selector_Name (P)))
6227 then
6228 -- Protected operation. If operation is overloaded, must
6229 -- disambiguate. Prefix that denotes protected object itself
6230 -- is resolved with its own type.
6232 if Attr_Id = Attribute_Unchecked_Access then
6233 Error_Msg_Name_1 := Aname;
6234 Error_Msg_N
6235 ("attribute% cannot be applied to protected operation", P);
6236 end if;
6238 Resolve (Prefix (P), Etype (Prefix (P)));
6239 Generate_Reference (Entity (Selector_Name (P)), P);
6241 elsif Is_Overloaded (P) then
6243 -- Use the designated type of the context to disambiguate.
6244 declare
6245 Index : Interp_Index;
6246 It : Interp;
6247 begin
6248 Get_First_Interp (P, Index, It);
6250 while Present (It.Typ) loop
6251 if Covers (Designated_Type (Typ), It.Typ) then
6252 Resolve (P, It.Typ);
6253 exit;
6254 end if;
6256 Get_Next_Interp (Index, It);
6257 end loop;
6258 end;
6259 else
6260 Resolve (P, Etype (P));
6261 end if;
6263 -- X'Access is illegal if X denotes a constant and the access
6264 -- type is access-to-variable. Same for 'Unchecked_Access.
6265 -- The rule does not apply to 'Unrestricted_Access.
6267 if not (Ekind (Btyp) = E_Access_Subprogram_Type
6268 or else (Is_Record_Type (Btyp) and then
6269 Present (Corresponding_Remote_Type (Btyp)))
6270 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6271 or else Is_Access_Constant (Btyp)
6272 or else Is_Variable (P)
6273 or else Attr_Id = Attribute_Unrestricted_Access)
6274 then
6275 if Comes_From_Source (N) then
6276 Error_Msg_N ("access-to-variable designates constant", P);
6277 end if;
6278 end if;
6280 if (Attr_Id = Attribute_Access
6281 or else
6282 Attr_Id = Attribute_Unchecked_Access)
6283 and then (Ekind (Btyp) = E_General_Access_Type
6284 or else Ekind (Btyp) = E_Anonymous_Access_Type)
6285 then
6286 if Is_Dependent_Component_Of_Mutable_Object (P) then
6287 Error_Msg_N
6288 ("illegal attribute for discriminant-dependent component",
6290 end if;
6292 -- Check the static matching rule of 3.10.2(27). The
6293 -- nominal subtype of the prefix must statically
6294 -- match the designated type.
6296 Nom_Subt := Etype (P);
6298 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
6299 Nom_Subt := Etype (Nom_Subt);
6300 end if;
6302 if Is_Tagged_Type (Designated_Type (Typ)) then
6304 -- If the attribute is in the context of an access
6305 -- parameter, then the prefix is allowed to be of
6306 -- the class-wide type (by AI-127).
6308 if Ekind (Typ) = E_Anonymous_Access_Type then
6309 if not Covers (Designated_Type (Typ), Nom_Subt)
6310 and then not Covers (Nom_Subt, Designated_Type (Typ))
6311 then
6312 declare
6313 Desig : Entity_Id;
6315 begin
6316 Desig := Designated_Type (Typ);
6318 if Is_Class_Wide_Type (Desig) then
6319 Desig := Etype (Desig);
6320 end if;
6322 if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
6323 null;
6325 else
6326 Error_Msg_NE
6327 ("type of prefix: & not compatible",
6328 P, Nom_Subt);
6329 Error_Msg_NE
6330 ("\with &, the expected designated type",
6331 P, Designated_Type (Typ));
6332 end if;
6333 end;
6334 end if;
6336 elsif not Covers (Designated_Type (Typ), Nom_Subt)
6337 or else
6338 (not Is_Class_Wide_Type (Designated_Type (Typ))
6339 and then Is_Class_Wide_Type (Nom_Subt))
6340 then
6341 Error_Msg_NE
6342 ("type of prefix: & is not covered", P, Nom_Subt);
6343 Error_Msg_NE
6344 ("\by &, the expected designated type" &
6345 " ('R'M 3.10.2 (27))", P, Designated_Type (Typ));
6346 end if;
6348 if Is_Class_Wide_Type (Designated_Type (Typ))
6349 and then Has_Discriminants (Etype (Designated_Type (Typ)))
6350 and then Is_Constrained (Etype (Designated_Type (Typ)))
6351 and then Designated_Type (Typ) /= Nom_Subt
6352 then
6353 Apply_Discriminant_Check
6354 (N, Etype (Designated_Type (Typ)));
6355 end if;
6357 elsif not Subtypes_Statically_Match
6358 (Designated_Type (Typ), Nom_Subt)
6359 and then
6360 not (Has_Discriminants (Designated_Type (Typ))
6361 and then not Is_Constrained (Designated_Type (Typ)))
6362 then
6363 Error_Msg_N
6364 ("object subtype must statically match "
6365 & "designated subtype", P);
6367 if Is_Entity_Name (P)
6368 and then Is_Array_Type (Designated_Type (Typ))
6369 then
6371 declare
6372 D : constant Node_Id := Declaration_Node (Entity (P));
6374 begin
6375 Error_Msg_N ("aliased object has explicit bounds?",
6377 Error_Msg_N ("\declare without bounds"
6378 & " (and with explicit initialization)?", D);
6379 Error_Msg_N ("\for use with unconstrained access?", D);
6380 end;
6381 end if;
6382 end if;
6384 -- Check the static accessibility rule of 3.10.2(28).
6385 -- Note that this check is not performed for the
6386 -- case of an anonymous access type, since the access
6387 -- attribute is always legal in such a context.
6389 if Attr_Id /= Attribute_Unchecked_Access
6390 and then Object_Access_Level (P) > Type_Access_Level (Btyp)
6391 and then Ekind (Btyp) = E_General_Access_Type
6392 then
6393 -- In an instance, this is a runtime check, but one we
6394 -- know will fail, so generate an appropriate warning.
6396 if In_Instance_Body then
6397 Error_Msg_N
6398 ("?non-local pointer cannot point to local object", P);
6399 Error_Msg_N
6400 ("?Program_Error will be raised at run time", P);
6401 Rewrite (N,
6402 Make_Raise_Program_Error (Loc,
6403 Reason => PE_Accessibility_Check_Failed));
6404 Set_Etype (N, Typ);
6405 return;
6407 else
6408 Error_Msg_N
6409 ("non-local pointer cannot point to local object", P);
6411 if Is_Record_Type (Current_Scope)
6412 and then (Nkind (Parent (N)) =
6413 N_Discriminant_Association
6414 or else
6415 Nkind (Parent (N)) =
6416 N_Index_Or_Discriminant_Constraint)
6417 then
6418 declare
6419 Indic : Node_Id := Parent (Parent (N));
6421 begin
6422 while Present (Indic)
6423 and then Nkind (Indic) /= N_Subtype_Indication
6424 loop
6425 Indic := Parent (Indic);
6426 end loop;
6428 if Present (Indic) then
6429 Error_Msg_NE
6430 ("\use an access definition for" &
6431 " the access discriminant of&", N,
6432 Entity (Subtype_Mark (Indic)));
6433 end if;
6434 end;
6435 end if;
6436 end if;
6437 end if;
6438 end if;
6440 if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6441 and then Is_Entity_Name (P)
6442 and then not Is_Protected_Type (Scope (Entity (P)))
6443 then
6444 Error_Msg_N ("context requires a protected subprogram", P);
6446 elsif Ekind (Btyp) = E_Access_Subprogram_Type
6447 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
6448 then
6449 Error_Msg_N ("context requires a non-protected subprogram", P);
6450 end if;
6452 -- The context cannot be a pool-specific type, but this is a
6453 -- legality rule, not a resolution rule, so it must be checked
6454 -- separately, after possibly disambiguation (see AI-245).
6456 if Ekind (Btyp) = E_Access_Type
6457 and then Attr_Id /= Attribute_Unrestricted_Access
6458 then
6459 Wrong_Type (N, Typ);
6460 end if;
6462 Set_Etype (N, Typ);
6464 -- Check for incorrect atomic/volatile reference (RM C.6(12))
6466 if Attr_Id /= Attribute_Unrestricted_Access then
6467 if Is_Atomic_Object (P)
6468 and then not Is_Atomic (Designated_Type (Typ))
6469 then
6470 Error_Msg_N
6471 ("access to atomic object cannot yield access-to-" &
6472 "non-atomic type", P);
6474 elsif Is_Volatile_Object (P)
6475 and then not Is_Volatile (Designated_Type (Typ))
6476 then
6477 Error_Msg_N
6478 ("access to volatile object cannot yield access-to-" &
6479 "non-volatile type", P);
6480 end if;
6481 end if;
6483 -------------
6484 -- Address --
6485 -------------
6487 -- Deal with resolving the type for Address attribute, overloading
6488 -- is not permitted here, since there is no context to resolve it.
6490 when Attribute_Address | Attribute_Code_Address =>
6492 -- To be safe, assume that if the address of a variable is taken,
6493 -- it may be modified via this address, so note modification.
6495 if Is_Variable (P) then
6496 Note_Possible_Modification (P);
6497 end if;
6499 if Nkind (P) in N_Subexpr
6500 and then Is_Overloaded (P)
6501 then
6502 Get_First_Interp (P, Index, It);
6503 Get_Next_Interp (Index, It);
6505 if Present (It.Nam) then
6506 Error_Msg_Name_1 := Aname;
6507 Error_Msg_N
6508 ("prefix of % attribute cannot be overloaded", N);
6509 return;
6510 end if;
6511 end if;
6513 if not Is_Entity_Name (P)
6514 or else not Is_Overloadable (Entity (P))
6515 then
6516 if not Is_Task_Type (Etype (P))
6517 or else Nkind (P) = N_Explicit_Dereference
6518 then
6519 Resolve (P, Etype (P));
6520 end if;
6521 end if;
6523 -- If this is the name of a derived subprogram, or that of a
6524 -- generic actual, the address is that of the original entity.
6526 if Is_Entity_Name (P)
6527 and then Is_Overloadable (Entity (P))
6528 and then Present (Alias (Entity (P)))
6529 then
6530 Rewrite (P,
6531 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
6532 end if;
6534 ---------------
6535 -- AST_Entry --
6536 ---------------
6538 -- Prefix of the AST_Entry attribute is an entry name which must
6539 -- not be resolved, since this is definitely not an entry call.
6541 when Attribute_AST_Entry =>
6542 null;
6544 ------------------
6545 -- Body_Version --
6546 ------------------
6548 -- Prefix of Body_Version attribute can be a subprogram name which
6549 -- must not be resolved, since this is not a call.
6551 when Attribute_Body_Version =>
6552 null;
6554 ------------
6555 -- Caller --
6556 ------------
6558 -- Prefix of Caller attribute is an entry name which must not
6559 -- be resolved, since this is definitely not an entry call.
6561 when Attribute_Caller =>
6562 null;
6564 ------------------
6565 -- Code_Address --
6566 ------------------
6568 -- Shares processing with Address attribute
6570 -----------
6571 -- Count --
6572 -----------
6574 -- Prefix of the Count attribute is an entry name which must not
6575 -- be resolved, since this is definitely not an entry call.
6577 when Attribute_Count =>
6578 null;
6580 ----------------
6581 -- Elaborated --
6582 ----------------
6584 -- Prefix of the Elaborated attribute is a subprogram name which
6585 -- must not be resolved, since this is definitely not a call. Note
6586 -- that it is a library unit, so it cannot be overloaded here.
6588 when Attribute_Elaborated =>
6589 null;
6591 --------------------
6592 -- Mechanism_Code --
6593 --------------------
6595 -- Prefix of the Mechanism_Code attribute is a function name
6596 -- which must not be resolved. Should we check for overloaded ???
6598 when Attribute_Mechanism_Code =>
6599 null;
6601 ------------------
6602 -- Partition_ID --
6603 ------------------
6605 -- Most processing is done in sem_dist, after determining the
6606 -- context type. Node is rewritten as a conversion to a runtime call.
6608 when Attribute_Partition_ID =>
6609 Process_Partition_Id (N);
6610 return;
6612 -----------
6613 -- Range --
6614 -----------
6616 -- We replace the Range attribute node with a range expression
6617 -- whose bounds are the 'First and 'Last attributes applied to the
6618 -- same prefix. The reason that we do this transformation here
6619 -- instead of in the expander is that it simplifies other parts of
6620 -- the semantic analysis which assume that the Range has been
6621 -- replaced; thus it must be done even when in semantic-only mode
6622 -- (note that the RM specifically mentions this equivalence, we
6623 -- take care that the prefix is only evaluated once).
6625 when Attribute_Range => Range_Attribute :
6626 declare
6627 LB : Node_Id;
6628 HB : Node_Id;
6630 function Check_Discriminated_Prival
6631 (N : Node_Id)
6632 return Node_Id;
6633 -- The range of a private component constrained by a
6634 -- discriminant is rewritten to make the discriminant
6635 -- explicit. This solves some complex visibility problems
6636 -- related to the use of privals.
6638 function Check_Discriminated_Prival
6639 (N : Node_Id)
6640 return Node_Id
6642 begin
6643 if Is_Entity_Name (N)
6644 and then Ekind (Entity (N)) = E_In_Parameter
6645 and then not Within_Init_Proc
6646 then
6647 return Make_Identifier (Sloc (N), Chars (Entity (N)));
6648 else
6649 return Duplicate_Subexpr (N);
6650 end if;
6651 end Check_Discriminated_Prival;
6653 -- Start of processing for Range_Attribute
6655 begin
6656 if not Is_Entity_Name (P)
6657 or else not Is_Type (Entity (P))
6658 then
6659 Resolve (P, Etype (P));
6660 end if;
6662 -- Check whether prefix is (renaming of) private component
6663 -- of protected type.
6665 if Is_Entity_Name (P)
6666 and then Comes_From_Source (N)
6667 and then Is_Array_Type (Etype (P))
6668 and then Number_Dimensions (Etype (P)) = 1
6669 and then (Ekind (Scope (Entity (P))) = E_Protected_Type
6670 or else
6671 Ekind (Scope (Scope (Entity (P)))) =
6672 E_Protected_Type)
6673 then
6674 LB := Check_Discriminated_Prival (
6675 Type_Low_Bound (Etype (First_Index (Etype (P)))));
6677 HB := Check_Discriminated_Prival (
6678 Type_High_Bound (Etype (First_Index (Etype (P)))));
6680 else
6681 HB :=
6682 Make_Attribute_Reference (Loc,
6683 Prefix => Duplicate_Subexpr (P),
6684 Attribute_Name => Name_Last,
6685 Expressions => Expressions (N));
6687 LB :=
6688 Make_Attribute_Reference (Loc,
6689 Prefix => P,
6690 Attribute_Name => Name_First,
6691 Expressions => Expressions (N));
6692 end if;
6694 -- If the original was marked as Must_Not_Freeze (see code
6695 -- in Sem_Ch3.Make_Index), then make sure the rewriting
6696 -- does not freeze either.
6698 if Must_Not_Freeze (N) then
6699 Set_Must_Not_Freeze (HB);
6700 Set_Must_Not_Freeze (LB);
6701 Set_Must_Not_Freeze (Prefix (HB));
6702 Set_Must_Not_Freeze (Prefix (LB));
6703 end if;
6705 if Raises_Constraint_Error (Prefix (N)) then
6707 -- Preserve Sloc of prefix in the new bounds, so that
6708 -- the posted warning can be removed if we are within
6709 -- unreachable code.
6711 Set_Sloc (LB, Sloc (Prefix (N)));
6712 Set_Sloc (HB, Sloc (Prefix (N)));
6713 end if;
6715 Rewrite (N, Make_Range (Loc, LB, HB));
6716 Analyze_And_Resolve (N, Typ);
6718 -- Normally after resolving attribute nodes, Eval_Attribute
6719 -- is called to do any possible static evaluation of the node.
6720 -- However, here since the Range attribute has just been
6721 -- transformed into a range expression it is no longer an
6722 -- attribute node and therefore the call needs to be avoided
6723 -- and is accomplished by simply returning from the procedure.
6725 return;
6726 end Range_Attribute;
6728 -----------------
6729 -- UET_Address --
6730 -----------------
6732 -- Prefix must not be resolved in this case, since it is not a
6733 -- real entity reference. No action of any kind is require!
6735 when Attribute_UET_Address =>
6736 return;
6738 ----------------------
6739 -- Unchecked_Access --
6740 ----------------------
6742 -- Processing is shared with Access
6744 -------------------------
6745 -- Unrestricted_Access --
6746 -------------------------
6748 -- Processing is shared with Access
6750 ---------
6751 -- Val --
6752 ---------
6754 -- Apply range check. Note that we did not do this during the
6755 -- analysis phase, since we wanted Eval_Attribute to have a
6756 -- chance at finding an illegal out of range value.
6758 when Attribute_Val =>
6760 -- Note that we do our own Eval_Attribute call here rather than
6761 -- use the common one, because we need to do processing after
6762 -- the call, as per above comment.
6764 Eval_Attribute (N);
6766 -- Eval_Attribute may replace the node with a raise CE, or
6767 -- fold it to a constant. Obviously we only apply a scalar
6768 -- range check if this did not happen!
6770 if Nkind (N) = N_Attribute_Reference
6771 and then Attribute_Name (N) = Name_Val
6772 then
6773 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
6774 end if;
6776 return;
6778 -------------
6779 -- Version --
6780 -------------
6782 -- Prefix of Version attribute can be a subprogram name which
6783 -- must not be resolved, since this is not a call.
6785 when Attribute_Version =>
6786 null;
6788 ----------------------
6789 -- Other Attributes --
6790 ----------------------
6792 -- For other attributes, resolve prefix unless it is a type. If
6793 -- the attribute reference itself is a type name ('Base and 'Class)
6794 -- then this is only legal within a task or protected record.
6796 when others =>
6797 if not Is_Entity_Name (P)
6798 or else not Is_Type (Entity (P))
6799 then
6800 Resolve (P, Etype (P));
6801 end if;
6803 -- If the attribute reference itself is a type name ('Base,
6804 -- 'Class) then this is only legal within a task or protected
6805 -- record. What is this all about ???
6807 if Is_Entity_Name (N)
6808 and then Is_Type (Entity (N))
6809 then
6810 if Is_Concurrent_Type (Entity (N))
6811 and then In_Open_Scopes (Entity (P))
6812 then
6813 null;
6814 else
6815 Error_Msg_N
6816 ("invalid use of subtype name in expression or call", N);
6817 end if;
6818 end if;
6820 -- For attributes whose argument may be a string, complete
6821 -- resolution of argument now. This avoids premature expansion
6822 -- (and the creation of transient scopes) before the attribute
6823 -- reference is resolved.
6825 case Attr_Id is
6826 when Attribute_Value =>
6827 Resolve (First (Expressions (N)), Standard_String);
6829 when Attribute_Wide_Value =>
6830 Resolve (First (Expressions (N)), Standard_Wide_String);
6832 when others => null;
6833 end case;
6834 end case;
6836 -- Normally the Freezing is done by Resolve but sometimes the Prefix
6837 -- is not resolved, in which case the freezing must be done now.
6839 Freeze_Expression (P);
6841 -- Finally perform static evaluation on the attribute reference
6843 Eval_Attribute (N);
6845 end Resolve_Attribute;
6847 end Sem_Attr;