Update version
[official-gcc.git] / gcc / real.c
blob087f10367c8d7909989a7e2146e07f257c1b8ab0
1 /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF,
2 and support for XFmode IEEE extended real floating point arithmetic.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000 Free Software Foundation, Inc.
5 Contributed by Stephen L. Moshier (moshier@world.std.com).
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "tree.h"
27 #include "toplev.h"
28 #include "tm_p.h"
30 /* To enable support of XFmode extended real floating point, define
31 LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h).
33 To support cross compilation between IEEE, VAX and IBM floating
34 point formats, define REAL_ARITHMETIC in the tm.h file.
36 In either case the machine files (tm.h) must not contain any code
37 that tries to use host floating point arithmetic to convert
38 REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf,
39 etc. In cross-compile situations a REAL_VALUE_TYPE may not
40 be intelligible to the host computer's native arithmetic.
42 The emulator defaults to the host's floating point format so that
43 its decimal conversion functions can be used if desired (see
44 real.h).
46 The first part of this file interfaces gcc to a floating point
47 arithmetic suite that was not written with gcc in mind. Avoid
48 changing the low-level arithmetic routines unless you have suitable
49 test programs available. A special version of the PARANOIA floating
50 point arithmetic tester, modified for this purpose, can be found on
51 usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of
52 XFmode and TFmode transcendental functions, can be obtained by ftp from
53 netlib.att.com: netlib/cephes. */
55 /* Type of computer arithmetic.
56 Only one of DEC, IBM, IEEE, C4X, or UNK should get defined.
58 `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically
59 to big-endian IEEE floating-point data structure. This definition
60 should work in SFmode `float' type and DFmode `double' type on
61 virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE
62 has been defined to be 96, then IEEE also invokes the particular
63 XFmode (`long double' type) data structure used by the Motorola
64 680x0 series processors.
66 `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to
67 little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE
68 has been defined to be 96, then IEEE also invokes the particular
69 XFmode `long double' data structure used by the Intel 80x86 series
70 processors.
72 `DEC' refers specifically to the Digital Equipment Corp PDP-11
73 and VAX floating point data structure. This model currently
74 supports no type wider than DFmode.
76 `IBM' refers specifically to the IBM System/370 and compatible
77 floating point data structure. This model currently supports
78 no type wider than DFmode. The IBM conversions were contributed by
79 frank@atom.ansto.gov.au (Frank Crawford).
81 `C4X' refers specifically to the floating point format used on
82 Texas Instruments TMS320C3x and TMS320C4x digital signal
83 processors. This supports QFmode (32-bit float, double) and HFmode
84 (40-bit long double) where BITS_PER_BYTE is 32. Unlike IEEE
85 floats, C4x floats are not rounded to be even. The C4x conversions
86 were contributed by m.hayes@elec.canterbury.ac.nz (Michael Hayes) and
87 Haj.Ten.Brugge@net.HCC.nl (Herman ten Brugge).
89 If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it)
90 then `long double' and `double' are both implemented, but they
91 both mean DFmode. In this case, the software floating-point
92 support available here is activated by writing
93 #define REAL_ARITHMETIC
94 in tm.h.
96 The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support
97 and may deactivate XFmode since `long double' is used to refer
98 to both modes. Defining INTEL_EXTENDED_IEEE_FORMAT at the same
99 time enables 80387-style 80-bit floats in a 128-bit padded
100 image, as seen on IA-64.
102 The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN,
103 contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>,
104 separate the floating point unit's endian-ness from that of
105 the integer addressing. This permits one to define a big-endian
106 FPU on a little-endian machine (e.g., ARM). An extension to
107 BYTES_BIG_ENDIAN may be required for some machines in the future.
108 These optional macros may be defined in tm.h. In real.h, they
109 default to WORDS_BIG_ENDIAN, etc., so there is no need to define
110 them for any normal host or target machine on which the floats
111 and the integers have the same endian-ness. */
114 /* The following converts gcc macros into the ones used by this file. */
116 /* REAL_ARITHMETIC defined means that macros in real.h are
117 defined to call emulator functions. */
118 #ifdef REAL_ARITHMETIC
120 #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
121 /* PDP-11, Pro350, VAX: */
122 #define DEC 1
123 #else /* it's not VAX */
124 #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
125 /* IBM System/370 style */
126 #define IBM 1
127 #else /* it's also not an IBM */
128 #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
129 /* TMS320C3x/C4x style */
130 #define C4X 1
131 #else /* it's also not a C4X */
132 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
133 #define IEEE
134 #else /* it's not IEEE either */
135 /* UNKnown arithmetic. We don't support this and can't go on. */
136 unknown arithmetic type
137 #define UNK 1
138 #endif /* not IEEE */
139 #endif /* not C4X */
140 #endif /* not IBM */
141 #endif /* not VAX */
143 #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN
145 #else
146 /* REAL_ARITHMETIC not defined means that the *host's* data
147 structure will be used. It may differ by endian-ness from the
148 target machine's structure and will get its ends swapped
149 accordingly (but not here). Probably only the decimal <-> binary
150 functions in this file will actually be used in this case. */
152 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
153 #define DEC 1
154 #else /* it's not VAX */
155 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
156 /* IBM System/370 style */
157 #define IBM 1
158 #else /* it's also not an IBM */
159 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
160 #define IEEE
161 #else /* it's not IEEE either */
162 unknown arithmetic type
163 #define UNK 1
164 #endif /* not IEEE */
165 #endif /* not IBM */
166 #endif /* not VAX */
168 #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN
170 #endif /* REAL_ARITHMETIC not defined */
172 /* Define INFINITY for support of infinity.
173 Define NANS for support of Not-a-Number's (NaN's). */
174 #if !defined(DEC) && !defined(IBM) && !defined(C4X)
175 #define INFINITY
176 #define NANS
177 #endif
179 /* Support of NaNs requires support of infinity. */
180 #ifdef NANS
181 #ifndef INFINITY
182 #define INFINITY
183 #endif
184 #endif
186 /* Find a host integer type that is at least 16 bits wide,
187 and another type at least twice whatever that size is. */
189 #if HOST_BITS_PER_CHAR >= 16
190 #define EMUSHORT char
191 #define EMUSHORT_SIZE HOST_BITS_PER_CHAR
192 #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR)
193 #else
194 #if HOST_BITS_PER_SHORT >= 16
195 #define EMUSHORT short
196 #define EMUSHORT_SIZE HOST_BITS_PER_SHORT
197 #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT)
198 #else
199 #if HOST_BITS_PER_INT >= 16
200 #define EMUSHORT int
201 #define EMUSHORT_SIZE HOST_BITS_PER_INT
202 #define EMULONG_SIZE (2 * HOST_BITS_PER_INT)
203 #else
204 #if HOST_BITS_PER_LONG >= 16
205 #define EMUSHORT long
206 #define EMUSHORT_SIZE HOST_BITS_PER_LONG
207 #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG)
208 #else
209 /* You will have to modify this program to have a smaller unit size. */
210 #define EMU_NON_COMPILE
211 #endif
212 #endif
213 #endif
214 #endif
216 #if HOST_BITS_PER_SHORT >= EMULONG_SIZE
217 #define EMULONG short
218 #else
219 #if HOST_BITS_PER_INT >= EMULONG_SIZE
220 #define EMULONG int
221 #else
222 #if HOST_BITS_PER_LONG >= EMULONG_SIZE
223 #define EMULONG long
224 #else
225 #if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE
226 #define EMULONG long long int
227 #else
228 /* You will have to modify this program to have a smaller unit size. */
229 #define EMU_NON_COMPILE
230 #endif
231 #endif
232 #endif
233 #endif
236 /* The host interface doesn't work if no 16-bit size exists. */
237 #if EMUSHORT_SIZE != 16
238 #define EMU_NON_COMPILE
239 #endif
241 /* OK to continue compilation. */
242 #ifndef EMU_NON_COMPILE
244 /* Construct macros to translate between REAL_VALUE_TYPE and e type.
245 In GET_REAL and PUT_REAL, r and e are pointers.
246 A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations
247 in memory, with no holes. */
249 #if MAX_LONG_DOUBLE_TYPE_SIZE == 96 || \
250 (defined(INTEL_EXTENDED_IEEE_FORMAT) && MAX_LONG_DOUBLE_TYPE_SIZE == 128)
251 /* Number of 16 bit words in external e type format */
252 # define NE 6
253 # define MAXDECEXP 4932
254 # define MINDECEXP -4956
255 # define GET_REAL(r,e) memcpy ((char *)(e), (char *)(r), 2*NE)
256 # define PUT_REAL(e,r) \
257 do { \
258 memcpy ((char *)(r), (char *)(e), 2*NE); \
259 if (2*NE < sizeof(*r)) \
260 memset ((char *)(r) + 2*NE, 0, sizeof(*r) - 2*NE); \
261 } while (0)
262 # else /* no XFmode */
263 # if MAX_LONG_DOUBLE_TYPE_SIZE == 128
264 # define NE 10
265 # define MAXDECEXP 4932
266 # define MINDECEXP -4977
267 # define GET_REAL(r,e) memcpy ((char *)(e), (char *)(r), 2*NE)
268 # define PUT_REAL(e,r) \
269 do { \
270 memcpy ((char *)(r), (char *)(e), 2*NE); \
271 if (2*NE < sizeof(*r)) \
272 memset ((char *)(r) + 2*NE, 0, sizeof(*r) - 2*NE); \
273 } while (0)
274 #else
275 #define NE 6
276 #define MAXDECEXP 4932
277 #define MINDECEXP -4956
278 #ifdef REAL_ARITHMETIC
279 /* Emulator uses target format internally
280 but host stores it in host endian-ness. */
282 #define GET_REAL(r,e) \
283 do { \
284 if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \
285 e53toe ((unsigned EMUSHORT *) (r), (e)); \
286 else \
288 unsigned EMUSHORT w[4]; \
289 memcpy (&w[3], ((EMUSHORT *) r), sizeof (EMUSHORT)); \
290 memcpy (&w[2], ((EMUSHORT *) r) + 1, sizeof (EMUSHORT)); \
291 memcpy (&w[1], ((EMUSHORT *) r) + 2, sizeof (EMUSHORT)); \
292 memcpy (&w[0], ((EMUSHORT *) r) + 3, sizeof (EMUSHORT)); \
293 e53toe (w, (e)); \
295 } while (0)
297 #define PUT_REAL(e,r) \
298 do { \
299 if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \
300 etoe53 ((e), (unsigned EMUSHORT *) (r)); \
301 else \
303 unsigned EMUSHORT w[4]; \
304 etoe53 ((e), w); \
305 memcpy (((EMUSHORT *) r), &w[3], sizeof (EMUSHORT)); \
306 memcpy (((EMUSHORT *) r) + 1, &w[2], sizeof (EMUSHORT)); \
307 memcpy (((EMUSHORT *) r) + 2, &w[1], sizeof (EMUSHORT)); \
308 memcpy (((EMUSHORT *) r) + 3, &w[0], sizeof (EMUSHORT)); \
310 } while (0)
312 #else /* not REAL_ARITHMETIC */
314 /* emulator uses host format */
315 #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e))
316 #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r))
318 #endif /* not REAL_ARITHMETIC */
319 #endif /* not TFmode */
320 #endif /* not XFmode */
323 /* Number of 16 bit words in internal format */
324 #define NI (NE+3)
326 /* Array offset to exponent */
327 #define E 1
329 /* Array offset to high guard word */
330 #define M 2
332 /* Number of bits of precision */
333 #define NBITS ((NI-4)*16)
335 /* Maximum number of decimal digits in ASCII conversion
336 * = NBITS*log10(2)
338 #define NDEC (NBITS*8/27)
340 /* The exponent of 1.0 */
341 #define EXONE (0x3fff)
343 #if defined(HOST_EBCDIC)
344 /* bit 8 is significant in EBCDIC */
345 #define CHARMASK 0xff
346 #else
347 #define CHARMASK 0x7f
348 #endif
350 extern int extra_warnings;
351 extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[];
352 extern unsigned EMUSHORT elog2[], esqrt2[];
354 static void endian PARAMS ((unsigned EMUSHORT *, long *,
355 enum machine_mode));
356 static void eclear PARAMS ((unsigned EMUSHORT *));
357 static void emov PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
358 #if 0
359 static void eabs PARAMS ((unsigned EMUSHORT *));
360 #endif
361 static void eneg PARAMS ((unsigned EMUSHORT *));
362 static int eisneg PARAMS ((unsigned EMUSHORT *));
363 static int eisinf PARAMS ((unsigned EMUSHORT *));
364 static int eisnan PARAMS ((unsigned EMUSHORT *));
365 static void einfin PARAMS ((unsigned EMUSHORT *));
366 #ifdef NANS
367 static void enan PARAMS ((unsigned EMUSHORT *, int));
368 static void einan PARAMS ((unsigned EMUSHORT *));
369 static int eiisnan PARAMS ((unsigned EMUSHORT *));
370 static int eiisneg PARAMS ((unsigned EMUSHORT *));
371 static void make_nan PARAMS ((unsigned EMUSHORT *, int, enum machine_mode));
372 #endif
373 static void emovi PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
374 static void emovo PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
375 static void ecleaz PARAMS ((unsigned EMUSHORT *));
376 static void ecleazs PARAMS ((unsigned EMUSHORT *));
377 static void emovz PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
378 #if 0
379 static void eiinfin PARAMS ((unsigned EMUSHORT *));
380 #endif
381 #ifdef INFINITY
382 static int eiisinf PARAMS ((unsigned EMUSHORT *));
383 #endif
384 static int ecmpm PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
385 static void eshdn1 PARAMS ((unsigned EMUSHORT *));
386 static void eshup1 PARAMS ((unsigned EMUSHORT *));
387 static void eshdn8 PARAMS ((unsigned EMUSHORT *));
388 static void eshup8 PARAMS ((unsigned EMUSHORT *));
389 static void eshup6 PARAMS ((unsigned EMUSHORT *));
390 static void eshdn6 PARAMS ((unsigned EMUSHORT *));
391 static void eaddm PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));\f
392 static void esubm PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
393 static void m16m PARAMS ((unsigned int, unsigned short *,
394 unsigned short *));
395 static int edivm PARAMS ((unsigned short *, unsigned short *));
396 static int emulm PARAMS ((unsigned short *, unsigned short *));
397 static void emdnorm PARAMS ((unsigned EMUSHORT *, int, int, EMULONG, int));
398 static void esub PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
399 unsigned EMUSHORT *));
400 static void eadd PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
401 unsigned EMUSHORT *));
402 static void eadd1 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
403 unsigned EMUSHORT *));
404 static void ediv PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
405 unsigned EMUSHORT *));
406 static void emul PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
407 unsigned EMUSHORT *));
408 static void e53toe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
409 static void e64toe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
410 #ifndef INTEL_EXTENDED_IEEE_FORMAT
411 static void e113toe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
412 #endif
413 static void e24toe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
414 static void etoe113 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
415 static void toe113 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
416 static void etoe64 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
417 static void toe64 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
418 static void etoe53 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
419 static void toe53 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
420 static void etoe24 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
421 static void toe24 PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
422 static int ecmp PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
423 #if 0
424 static void eround PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
425 #endif
426 static void ltoe PARAMS ((HOST_WIDE_INT *, unsigned EMUSHORT *));
427 static void ultoe PARAMS ((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *));
428 static void eifrac PARAMS ((unsigned EMUSHORT *, HOST_WIDE_INT *,
429 unsigned EMUSHORT *));
430 static void euifrac PARAMS ((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *,
431 unsigned EMUSHORT *));
432 static int eshift PARAMS ((unsigned EMUSHORT *, int));
433 static int enormlz PARAMS ((unsigned EMUSHORT *));
434 #if 0
435 static void e24toasc PARAMS ((unsigned EMUSHORT *, char *, int));
436 static void e53toasc PARAMS ((unsigned EMUSHORT *, char *, int));
437 static void e64toasc PARAMS ((unsigned EMUSHORT *, char *, int));
438 static void e113toasc PARAMS ((unsigned EMUSHORT *, char *, int));
439 #endif /* 0 */
440 static void etoasc PARAMS ((unsigned EMUSHORT *, char *, int));
441 static void asctoe24 PARAMS ((const char *, unsigned EMUSHORT *));
442 static void asctoe53 PARAMS ((const char *, unsigned EMUSHORT *));
443 static void asctoe64 PARAMS ((const char *, unsigned EMUSHORT *));
444 #ifndef INTEL_EXTENDED_IEEE_FORMAT
445 static void asctoe113 PARAMS ((const char *, unsigned EMUSHORT *));
446 #endif
447 static void asctoe PARAMS ((const char *, unsigned EMUSHORT *));
448 static void asctoeg PARAMS ((const char *, unsigned EMUSHORT *, int));
449 static void efloor PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
450 #if 0
451 static void efrexp PARAMS ((unsigned EMUSHORT *, int *,
452 unsigned EMUSHORT *));
453 #endif
454 static void eldexp PARAMS ((unsigned EMUSHORT *, int, unsigned EMUSHORT *));
455 #if 0
456 static void eremain PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
457 unsigned EMUSHORT *));
458 #endif
459 static void eiremain PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
460 static void mtherr PARAMS ((const char *, int));
461 #ifdef DEC
462 static void dectoe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
463 static void etodec PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
464 static void todec PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
465 #endif
466 #ifdef IBM
467 static void ibmtoe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
468 enum machine_mode));
469 static void etoibm PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
470 enum machine_mode));
471 static void toibm PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
472 enum machine_mode));
473 #endif
474 #ifdef C4X
475 static void c4xtoe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
476 enum machine_mode));
477 static void etoc4x PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
478 enum machine_mode));
479 static void toc4x PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *,
480 enum machine_mode));
481 #endif
482 #if 0
483 static void uditoe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
484 static void ditoe PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
485 static void etoudi PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
486 static void etodi PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
487 static void esqrt PARAMS ((unsigned EMUSHORT *, unsigned EMUSHORT *));
488 #endif
490 /* Copy 32-bit numbers obtained from array containing 16-bit numbers,
491 swapping ends if required, into output array of longs. The
492 result is normally passed to fprintf by the ASM_OUTPUT_ macros. */
494 static void
495 endian (e, x, mode)
496 unsigned EMUSHORT e[];
497 long x[];
498 enum machine_mode mode;
500 unsigned long th, t;
502 if (REAL_WORDS_BIG_ENDIAN)
504 switch (mode)
506 case TFmode:
507 #ifndef INTEL_EXTENDED_IEEE_FORMAT
508 /* Swap halfwords in the fourth long. */
509 th = (unsigned long) e[6] & 0xffff;
510 t = (unsigned long) e[7] & 0xffff;
511 t |= th << 16;
512 x[3] = (long) t;
513 #endif
515 case XFmode:
516 /* Swap halfwords in the third long. */
517 th = (unsigned long) e[4] & 0xffff;
518 t = (unsigned long) e[5] & 0xffff;
519 t |= th << 16;
520 x[2] = (long) t;
521 /* fall into the double case */
523 case DFmode:
524 /* Swap halfwords in the second word. */
525 th = (unsigned long) e[2] & 0xffff;
526 t = (unsigned long) e[3] & 0xffff;
527 t |= th << 16;
528 x[1] = (long) t;
529 /* fall into the float case */
531 case SFmode:
532 case HFmode:
533 /* Swap halfwords in the first word. */
534 th = (unsigned long) e[0] & 0xffff;
535 t = (unsigned long) e[1] & 0xffff;
536 t |= th << 16;
537 x[0] = (long) t;
538 break;
540 default:
541 abort ();
544 else
546 /* Pack the output array without swapping. */
548 switch (mode)
550 case TFmode:
551 #ifndef INTEL_EXTENDED_IEEE_FORMAT
552 /* Pack the fourth long. */
553 th = (unsigned long) e[7] & 0xffff;
554 t = (unsigned long) e[6] & 0xffff;
555 t |= th << 16;
556 x[3] = (long) t;
557 #endif
559 case XFmode:
560 /* Pack the third long.
561 Each element of the input REAL_VALUE_TYPE array has 16 useful bits
562 in it. */
563 th = (unsigned long) e[5] & 0xffff;
564 t = (unsigned long) e[4] & 0xffff;
565 t |= th << 16;
566 x[2] = (long) t;
567 /* fall into the double case */
569 case DFmode:
570 /* Pack the second long */
571 th = (unsigned long) e[3] & 0xffff;
572 t = (unsigned long) e[2] & 0xffff;
573 t |= th << 16;
574 x[1] = (long) t;
575 /* fall into the float case */
577 case SFmode:
578 case HFmode:
579 /* Pack the first long */
580 th = (unsigned long) e[1] & 0xffff;
581 t = (unsigned long) e[0] & 0xffff;
582 t |= th << 16;
583 x[0] = (long) t;
584 break;
586 default:
587 abort ();
593 /* This is the implementation of the REAL_ARITHMETIC macro. */
595 void
596 earith (value, icode, r1, r2)
597 REAL_VALUE_TYPE *value;
598 int icode;
599 REAL_VALUE_TYPE *r1;
600 REAL_VALUE_TYPE *r2;
602 unsigned EMUSHORT d1[NE], d2[NE], v[NE];
603 enum tree_code code;
605 GET_REAL (r1, d1);
606 GET_REAL (r2, d2);
607 #ifdef NANS
608 /* Return NaN input back to the caller. */
609 if (eisnan (d1))
611 PUT_REAL (d1, value);
612 return;
614 if (eisnan (d2))
616 PUT_REAL (d2, value);
617 return;
619 #endif
620 code = (enum tree_code) icode;
621 switch (code)
623 case PLUS_EXPR:
624 eadd (d2, d1, v);
625 break;
627 case MINUS_EXPR:
628 esub (d2, d1, v); /* d1 - d2 */
629 break;
631 case MULT_EXPR:
632 emul (d2, d1, v);
633 break;
635 case RDIV_EXPR:
636 #ifndef REAL_INFINITY
637 if (ecmp (d2, ezero) == 0)
639 #ifdef NANS
640 enan (v, eisneg (d1) ^ eisneg (d2));
641 break;
642 #else
643 abort ();
644 #endif
646 #endif
647 ediv (d2, d1, v); /* d1/d2 */
648 break;
650 case MIN_EXPR: /* min (d1,d2) */
651 if (ecmp (d1, d2) < 0)
652 emov (d1, v);
653 else
654 emov (d2, v);
655 break;
657 case MAX_EXPR: /* max (d1,d2) */
658 if (ecmp (d1, d2) > 0)
659 emov (d1, v);
660 else
661 emov (d2, v);
662 break;
663 default:
664 emov (ezero, v);
665 break;
667 PUT_REAL (v, value);
671 /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT.
672 implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */
674 REAL_VALUE_TYPE
675 etrunci (x)
676 REAL_VALUE_TYPE x;
678 unsigned EMUSHORT f[NE], g[NE];
679 REAL_VALUE_TYPE r;
680 HOST_WIDE_INT l;
682 GET_REAL (&x, g);
683 #ifdef NANS
684 if (eisnan (g))
685 return (x);
686 #endif
687 eifrac (g, &l, f);
688 ltoe (&l, g);
689 PUT_REAL (g, &r);
690 return (r);
694 /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT;
695 implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */
697 REAL_VALUE_TYPE
698 etruncui (x)
699 REAL_VALUE_TYPE x;
701 unsigned EMUSHORT f[NE], g[NE];
702 REAL_VALUE_TYPE r;
703 unsigned HOST_WIDE_INT l;
705 GET_REAL (&x, g);
706 #ifdef NANS
707 if (eisnan (g))
708 return (x);
709 #endif
710 euifrac (g, &l, f);
711 ultoe (&l, g);
712 PUT_REAL (g, &r);
713 return (r);
717 /* This is the REAL_VALUE_ATOF function. It converts a decimal or hexadecimal
718 string to binary, rounding off as indicated by the machine_mode argument.
719 Then it promotes the rounded value to REAL_VALUE_TYPE. */
721 REAL_VALUE_TYPE
722 ereal_atof (s, t)
723 const char *s;
724 enum machine_mode t;
726 unsigned EMUSHORT tem[NE], e[NE];
727 REAL_VALUE_TYPE r;
729 switch (t)
731 #ifdef C4X
732 case QFmode:
733 case HFmode:
734 asctoe53 (s, tem);
735 e53toe (tem, e);
736 break;
737 #else
738 case HFmode:
739 #endif
741 case SFmode:
742 asctoe24 (s, tem);
743 e24toe (tem, e);
744 break;
746 case DFmode:
747 asctoe53 (s, tem);
748 e53toe (tem, e);
749 break;
751 case TFmode:
752 #ifndef INTEL_EXTENDED_IEEE_FORMAT
753 asctoe113 (s, tem);
754 e113toe (tem, e);
755 break;
756 #endif
757 /* FALLTHRU */
759 case XFmode:
760 asctoe64 (s, tem);
761 e64toe (tem, e);
762 break;
764 default:
765 asctoe (s, e);
767 PUT_REAL (e, &r);
768 return (r);
772 /* Expansion of REAL_NEGATE. */
774 REAL_VALUE_TYPE
775 ereal_negate (x)
776 REAL_VALUE_TYPE x;
778 unsigned EMUSHORT e[NE];
779 REAL_VALUE_TYPE r;
781 GET_REAL (&x, e);
782 eneg (e);
783 PUT_REAL (e, &r);
784 return (r);
788 /* Round real toward zero to HOST_WIDE_INT;
789 implements REAL_VALUE_FIX (x). */
791 HOST_WIDE_INT
792 efixi (x)
793 REAL_VALUE_TYPE x;
795 unsigned EMUSHORT f[NE], g[NE];
796 HOST_WIDE_INT l;
798 GET_REAL (&x, f);
799 #ifdef NANS
800 if (eisnan (f))
802 warning ("conversion from NaN to int");
803 return (-1);
805 #endif
806 eifrac (f, &l, g);
807 return l;
810 /* Round real toward zero to unsigned HOST_WIDE_INT
811 implements REAL_VALUE_UNSIGNED_FIX (x).
812 Negative input returns zero. */
814 unsigned HOST_WIDE_INT
815 efixui (x)
816 REAL_VALUE_TYPE x;
818 unsigned EMUSHORT f[NE], g[NE];
819 unsigned HOST_WIDE_INT l;
821 GET_REAL (&x, f);
822 #ifdef NANS
823 if (eisnan (f))
825 warning ("conversion from NaN to unsigned int");
826 return (-1);
828 #endif
829 euifrac (f, &l, g);
830 return l;
834 /* REAL_VALUE_FROM_INT macro. */
836 void
837 ereal_from_int (d, i, j, mode)
838 REAL_VALUE_TYPE *d;
839 HOST_WIDE_INT i, j;
840 enum machine_mode mode;
842 unsigned EMUSHORT df[NE], dg[NE];
843 HOST_WIDE_INT low, high;
844 int sign;
846 if (GET_MODE_CLASS (mode) != MODE_FLOAT)
847 abort ();
848 sign = 0;
849 low = i;
850 if ((high = j) < 0)
852 sign = 1;
853 /* complement and add 1 */
854 high = ~high;
855 if (low)
856 low = -low;
857 else
858 high += 1;
860 eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
861 ultoe ((unsigned HOST_WIDE_INT *) &high, dg);
862 emul (dg, df, dg);
863 ultoe ((unsigned HOST_WIDE_INT *) &low, df);
864 eadd (df, dg, dg);
865 if (sign)
866 eneg (dg);
868 /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
869 Avoid double-rounding errors later by rounding off now from the
870 extra-wide internal format to the requested precision. */
871 switch (GET_MODE_BITSIZE (mode))
873 case 32:
874 etoe24 (dg, df);
875 e24toe (df, dg);
876 break;
878 case 64:
879 etoe53 (dg, df);
880 e53toe (df, dg);
881 break;
883 case 96:
884 etoe64 (dg, df);
885 e64toe (df, dg);
886 break;
888 case 128:
889 #ifndef INTEL_EXTENDED_IEEE_FORMAT
890 etoe113 (dg, df);
891 e113toe (df, dg);
892 #else
893 etoe64 (dg, df);
894 e64toe (df, dg);
895 #endif
896 break;
898 default:
899 abort ();
902 PUT_REAL (dg, d);
906 /* REAL_VALUE_FROM_UNSIGNED_INT macro. */
908 void
909 ereal_from_uint (d, i, j, mode)
910 REAL_VALUE_TYPE *d;
911 unsigned HOST_WIDE_INT i, j;
912 enum machine_mode mode;
914 unsigned EMUSHORT df[NE], dg[NE];
915 unsigned HOST_WIDE_INT low, high;
917 if (GET_MODE_CLASS (mode) != MODE_FLOAT)
918 abort ();
919 low = i;
920 high = j;
921 eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
922 ultoe (&high, dg);
923 emul (dg, df, dg);
924 ultoe (&low, df);
925 eadd (df, dg, dg);
927 /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
928 Avoid double-rounding errors later by rounding off now from the
929 extra-wide internal format to the requested precision. */
930 switch (GET_MODE_BITSIZE (mode))
932 case 32:
933 etoe24 (dg, df);
934 e24toe (df, dg);
935 break;
937 case 64:
938 etoe53 (dg, df);
939 e53toe (df, dg);
940 break;
942 case 96:
943 etoe64 (dg, df);
944 e64toe (df, dg);
945 break;
947 case 128:
948 #ifndef INTEL_EXTENDED_IEEE_FORMAT
949 etoe113 (dg, df);
950 e113toe (df, dg);
951 #else
952 etoe64 (dg, df);
953 e64toe (df, dg);
954 #endif
955 break;
957 default:
958 abort ();
961 PUT_REAL (dg, d);
965 /* REAL_VALUE_TO_INT macro. */
967 void
968 ereal_to_int (low, high, rr)
969 HOST_WIDE_INT *low, *high;
970 REAL_VALUE_TYPE rr;
972 unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE];
973 int s;
975 GET_REAL (&rr, d);
976 #ifdef NANS
977 if (eisnan (d))
979 warning ("conversion from NaN to int");
980 *low = -1;
981 *high = -1;
982 return;
984 #endif
985 /* convert positive value */
986 s = 0;
987 if (eisneg (d))
989 eneg (d);
990 s = 1;
992 eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
993 ediv (df, d, dg); /* dg = d / 2^32 is the high word */
994 euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh);
995 emul (df, dh, dg); /* fractional part is the low word */
996 euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh);
997 if (s)
999 /* complement and add 1 */
1000 *high = ~(*high);
1001 if (*low)
1002 *low = -(*low);
1003 else
1004 *high += 1;
1009 /* REAL_VALUE_LDEXP macro. */
1011 REAL_VALUE_TYPE
1012 ereal_ldexp (x, n)
1013 REAL_VALUE_TYPE x;
1014 int n;
1016 unsigned EMUSHORT e[NE], y[NE];
1017 REAL_VALUE_TYPE r;
1019 GET_REAL (&x, e);
1020 #ifdef NANS
1021 if (eisnan (e))
1022 return (x);
1023 #endif
1024 eldexp (e, n, y);
1025 PUT_REAL (y, &r);
1026 return (r);
1029 /* These routines are conditionally compiled because functions
1030 of the same names may be defined in fold-const.c. */
1032 #ifdef REAL_ARITHMETIC
1034 /* Check for infinity in a REAL_VALUE_TYPE. */
1037 target_isinf (x)
1038 REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
1040 #ifdef INFINITY
1041 unsigned EMUSHORT e[NE];
1043 GET_REAL (&x, e);
1044 return (eisinf (e));
1045 #else
1046 return 0;
1047 #endif
1050 /* Check whether a REAL_VALUE_TYPE item is a NaN. */
1053 target_isnan (x)
1054 REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
1056 #ifdef NANS
1057 unsigned EMUSHORT e[NE];
1059 GET_REAL (&x, e);
1060 return (eisnan (e));
1061 #else
1062 return (0);
1063 #endif
1067 /* Check for a negative REAL_VALUE_TYPE number.
1068 This just checks the sign bit, so that -0 counts as negative. */
1071 target_negative (x)
1072 REAL_VALUE_TYPE x;
1074 return ereal_isneg (x);
1077 /* Expansion of REAL_VALUE_TRUNCATE.
1078 The result is in floating point, rounded to nearest or even. */
1080 REAL_VALUE_TYPE
1081 real_value_truncate (mode, arg)
1082 enum machine_mode mode;
1083 REAL_VALUE_TYPE arg;
1085 unsigned EMUSHORT e[NE], t[NE];
1086 REAL_VALUE_TYPE r;
1088 GET_REAL (&arg, e);
1089 #ifdef NANS
1090 if (eisnan (e))
1091 return (arg);
1092 #endif
1093 eclear (t);
1094 switch (mode)
1096 case TFmode:
1097 #ifndef INTEL_EXTENDED_IEEE_FORMAT
1098 etoe113 (e, t);
1099 e113toe (t, t);
1100 break;
1101 #endif
1102 /* FALLTHRU */
1104 case XFmode:
1105 etoe64 (e, t);
1106 e64toe (t, t);
1107 break;
1109 case DFmode:
1110 etoe53 (e, t);
1111 e53toe (t, t);
1112 break;
1114 case SFmode:
1115 #ifndef C4X
1116 case HFmode:
1117 #endif
1118 etoe24 (e, t);
1119 e24toe (t, t);
1120 break;
1122 #ifdef C4X
1123 case HFmode:
1124 case QFmode:
1125 etoe53 (e, t);
1126 e53toe (t, t);
1127 break;
1128 #endif
1130 case SImode:
1131 r = etrunci (arg);
1132 return (r);
1134 /* If an unsupported type was requested, presume that
1135 the machine files know something useful to do with
1136 the unmodified value. */
1138 default:
1139 return (arg);
1141 PUT_REAL (t, &r);
1142 return (r);
1145 /* Try to change R into its exact multiplicative inverse in machine mode
1146 MODE. Return nonzero function value if successful. */
1149 exact_real_inverse (mode, r)
1150 enum machine_mode mode;
1151 REAL_VALUE_TYPE *r;
1153 unsigned EMUSHORT e[NE], einv[NE];
1154 REAL_VALUE_TYPE rinv;
1155 int i;
1157 GET_REAL (r, e);
1159 /* Test for input in range. Don't transform IEEE special values. */
1160 if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0))
1161 return 0;
1163 /* Test for a power of 2: all significand bits zero except the MSB.
1164 We are assuming the target has binary (or hex) arithmetic. */
1165 if (e[NE - 2] != 0x8000)
1166 return 0;
1168 for (i = 0; i < NE - 2; i++)
1170 if (e[i] != 0)
1171 return 0;
1174 /* Compute the inverse and truncate it to the required mode. */
1175 ediv (e, eone, einv);
1176 PUT_REAL (einv, &rinv);
1177 rinv = real_value_truncate (mode, rinv);
1179 #ifdef CHECK_FLOAT_VALUE
1180 /* This check is not redundant. It may, for example, flush
1181 a supposedly IEEE denormal value to zero. */
1182 i = 0;
1183 if (CHECK_FLOAT_VALUE (mode, rinv, i))
1184 return 0;
1185 #endif
1186 GET_REAL (&rinv, einv);
1188 /* Check the bits again, because the truncation might have
1189 generated an arbitrary saturation value on overflow. */
1190 if (einv[NE - 2] != 0x8000)
1191 return 0;
1193 for (i = 0; i < NE - 2; i++)
1195 if (einv[i] != 0)
1196 return 0;
1199 /* Fail if the computed inverse is out of range. */
1200 if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0))
1201 return 0;
1203 /* Output the reciprocal and return success flag. */
1204 PUT_REAL (einv, r);
1205 return 1;
1207 #endif /* REAL_ARITHMETIC defined */
1209 /* Used for debugging--print the value of R in human-readable format
1210 on stderr. */
1212 void
1213 debug_real (r)
1214 REAL_VALUE_TYPE r;
1216 char dstr[30];
1218 REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr);
1219 fprintf (stderr, "%s", dstr);
1223 /* The following routines convert REAL_VALUE_TYPE to the various floating
1224 point formats that are meaningful to supported computers.
1226 The results are returned in 32-bit pieces, each piece stored in a `long'.
1227 This is so they can be printed by statements like
1229 fprintf (file, "%lx, %lx", L[0], L[1]);
1231 that will work on both narrow- and wide-word host computers. */
1233 /* Convert R to a 128-bit long double precision value. The output array L
1234 contains four 32-bit pieces of the result, in the order they would appear
1235 in memory. */
1237 void
1238 etartdouble (r, l)
1239 REAL_VALUE_TYPE r;
1240 long l[];
1242 unsigned EMUSHORT e[NE];
1244 GET_REAL (&r, e);
1245 etoe113 (e, e);
1246 endian (e, l, TFmode);
1249 /* Convert R to a double extended precision value. The output array L
1250 contains three 32-bit pieces of the result, in the order they would
1251 appear in memory. */
1253 void
1254 etarldouble (r, l)
1255 REAL_VALUE_TYPE r;
1256 long l[];
1258 unsigned EMUSHORT e[NE];
1260 GET_REAL (&r, e);
1261 etoe64 (e, e);
1262 endian (e, l, XFmode);
1265 /* Convert R to a double precision value. The output array L contains two
1266 32-bit pieces of the result, in the order they would appear in memory. */
1268 void
1269 etardouble (r, l)
1270 REAL_VALUE_TYPE r;
1271 long l[];
1273 unsigned EMUSHORT e[NE];
1275 GET_REAL (&r, e);
1276 etoe53 (e, e);
1277 endian (e, l, DFmode);
1280 /* Convert R to a single precision float value stored in the least-significant
1281 bits of a `long'. */
1283 long
1284 etarsingle (r)
1285 REAL_VALUE_TYPE r;
1287 unsigned EMUSHORT e[NE];
1288 long l;
1290 GET_REAL (&r, e);
1291 etoe24 (e, e);
1292 endian (e, &l, SFmode);
1293 return ((long) l);
1296 /* Convert X to a decimal ASCII string S for output to an assembly
1297 language file. Note, there is no standard way to spell infinity or
1298 a NaN, so these values may require special treatment in the tm.h
1299 macros. */
1301 void
1302 ereal_to_decimal (x, s)
1303 REAL_VALUE_TYPE x;
1304 char *s;
1306 unsigned EMUSHORT e[NE];
1308 GET_REAL (&x, e);
1309 etoasc (e, s, 20);
1312 /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y,
1313 or -2 if either is a NaN. */
1316 ereal_cmp (x, y)
1317 REAL_VALUE_TYPE x, y;
1319 unsigned EMUSHORT ex[NE], ey[NE];
1321 GET_REAL (&x, ex);
1322 GET_REAL (&y, ey);
1323 return (ecmp (ex, ey));
1326 /* Return 1 if the sign bit of X is set, else return 0. */
1329 ereal_isneg (x)
1330 REAL_VALUE_TYPE x;
1332 unsigned EMUSHORT ex[NE];
1334 GET_REAL (&x, ex);
1335 return (eisneg (ex));
1338 /* End of REAL_ARITHMETIC interface */
1341 Extended precision IEEE binary floating point arithmetic routines
1343 Numbers are stored in C language as arrays of 16-bit unsigned
1344 short integers. The arguments of the routines are pointers to
1345 the arrays.
1347 External e type data structure, similar to Intel 8087 chip
1348 temporary real format but possibly with a larger significand:
1350 NE-1 significand words (least significant word first,
1351 most significant bit is normally set)
1352 exponent (value = EXONE for 1.0,
1353 top bit is the sign)
1356 Internal exploded e-type data structure of a number (a "word" is 16 bits):
1358 ei[0] sign word (0 for positive, 0xffff for negative)
1359 ei[1] biased exponent (value = EXONE for the number 1.0)
1360 ei[2] high guard word (always zero after normalization)
1361 ei[3]
1362 to ei[NI-2] significand (NI-4 significand words,
1363 most significant word first,
1364 most significant bit is set)
1365 ei[NI-1] low guard word (0x8000 bit is rounding place)
1369 Routines for external format e-type numbers
1371 asctoe (string, e) ASCII string to extended double e type
1372 asctoe64 (string, &d) ASCII string to long double
1373 asctoe53 (string, &d) ASCII string to double
1374 asctoe24 (string, &f) ASCII string to single
1375 asctoeg (string, e, prec) ASCII string to specified precision
1376 e24toe (&f, e) IEEE single precision to e type
1377 e53toe (&d, e) IEEE double precision to e type
1378 e64toe (&d, e) IEEE long double precision to e type
1379 e113toe (&d, e) 128-bit long double precision to e type
1380 #if 0
1381 eabs (e) absolute value
1382 #endif
1383 eadd (a, b, c) c = b + a
1384 eclear (e) e = 0
1385 ecmp (a, b) Returns 1 if a > b, 0 if a == b,
1386 -1 if a < b, -2 if either a or b is a NaN.
1387 ediv (a, b, c) c = b / a
1388 efloor (a, b) truncate to integer, toward -infinity
1389 efrexp (a, exp, s) extract exponent and significand
1390 eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction
1391 euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction
1392 einfin (e) set e to infinity, leaving its sign alone
1393 eldexp (a, n, b) multiply by 2**n
1394 emov (a, b) b = a
1395 emul (a, b, c) c = b * a
1396 eneg (e) e = -e
1397 #if 0
1398 eround (a, b) b = nearest integer value to a
1399 #endif
1400 esub (a, b, c) c = b - a
1401 #if 0
1402 e24toasc (&f, str, n) single to ASCII string, n digits after decimal
1403 e53toasc (&d, str, n) double to ASCII string, n digits after decimal
1404 e64toasc (&d, str, n) 80-bit long double to ASCII string
1405 e113toasc (&d, str, n) 128-bit long double to ASCII string
1406 #endif
1407 etoasc (e, str, n) e to ASCII string, n digits after decimal
1408 etoe24 (e, &f) convert e type to IEEE single precision
1409 etoe53 (e, &d) convert e type to IEEE double precision
1410 etoe64 (e, &d) convert e type to IEEE long double precision
1411 ltoe (&l, e) HOST_WIDE_INT to e type
1412 ultoe (&l, e) unsigned HOST_WIDE_INT to e type
1413 eisneg (e) 1 if sign bit of e != 0, else 0
1414 eisinf (e) 1 if e has maximum exponent (non-IEEE)
1415 or is infinite (IEEE)
1416 eisnan (e) 1 if e is a NaN
1419 Routines for internal format exploded e-type numbers
1421 eaddm (ai, bi) add significands, bi = bi + ai
1422 ecleaz (ei) ei = 0
1423 ecleazs (ei) set ei = 0 but leave its sign alone
1424 ecmpm (ai, bi) compare significands, return 1, 0, or -1
1425 edivm (ai, bi) divide significands, bi = bi / ai
1426 emdnorm (ai,l,s,exp) normalize and round off
1427 emovi (a, ai) convert external a to internal ai
1428 emovo (ai, a) convert internal ai to external a
1429 emovz (ai, bi) bi = ai, low guard word of bi = 0
1430 emulm (ai, bi) multiply significands, bi = bi * ai
1431 enormlz (ei) left-justify the significand
1432 eshdn1 (ai) shift significand and guards down 1 bit
1433 eshdn8 (ai) shift down 8 bits
1434 eshdn6 (ai) shift down 16 bits
1435 eshift (ai, n) shift ai n bits up (or down if n < 0)
1436 eshup1 (ai) shift significand and guards up 1 bit
1437 eshup8 (ai) shift up 8 bits
1438 eshup6 (ai) shift up 16 bits
1439 esubm (ai, bi) subtract significands, bi = bi - ai
1440 eiisinf (ai) 1 if infinite
1441 eiisnan (ai) 1 if a NaN
1442 eiisneg (ai) 1 if sign bit of ai != 0, else 0
1443 einan (ai) set ai = NaN
1444 #if 0
1445 eiinfin (ai) set ai = infinity
1446 #endif
1448 The result is always normalized and rounded to NI-4 word precision
1449 after each arithmetic operation.
1451 Exception flags are NOT fully supported.
1453 Signaling NaN's are NOT supported; they are treated the same
1454 as quiet NaN's.
1456 Define INFINITY for support of infinity; otherwise a
1457 saturation arithmetic is implemented.
1459 Define NANS for support of Not-a-Number items; otherwise the
1460 arithmetic will never produce a NaN output, and might be confused
1461 by a NaN input.
1462 If NaN's are supported, the output of `ecmp (a,b)' is -2 if
1463 either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)'
1464 may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than'
1465 if in doubt.
1467 Denormals are always supported here where appropriate (e.g., not
1468 for conversion to DEC numbers). */
1470 /* Definitions for error codes that are passed to the common error handling
1471 routine mtherr.
1473 For Digital Equipment PDP-11 and VAX computers, certain
1474 IBM systems, and others that use numbers with a 56-bit
1475 significand, the symbol DEC should be defined. In this
1476 mode, most floating point constants are given as arrays
1477 of octal integers to eliminate decimal to binary conversion
1478 errors that might be introduced by the compiler.
1480 For computers, such as IBM PC, that follow the IEEE
1481 Standard for Binary Floating Point Arithmetic (ANSI/IEEE
1482 Std 754-1985), the symbol IEEE should be defined.
1483 These numbers have 53-bit significands. In this mode, constants
1484 are provided as arrays of hexadecimal 16 bit integers.
1485 The endian-ness of generated values is controlled by
1486 REAL_WORDS_BIG_ENDIAN.
1488 To accommodate other types of computer arithmetic, all
1489 constants are also provided in a normal decimal radix
1490 which one can hope are correctly converted to a suitable
1491 format by the available C language compiler. To invoke
1492 this mode, the symbol UNK is defined.
1494 An important difference among these modes is a predefined
1495 set of machine arithmetic constants for each. The numbers
1496 MACHEP (the machine roundoff error), MAXNUM (largest number
1497 represented), and several other parameters are preset by
1498 the configuration symbol. Check the file const.c to
1499 ensure that these values are correct for your computer.
1501 For ANSI C compatibility, define ANSIC equal to 1. Currently
1502 this affects only the atan2 function and others that use it. */
1504 /* Constant definitions for math error conditions. */
1506 #define DOMAIN 1 /* argument domain error */
1507 #define SING 2 /* argument singularity */
1508 #define OVERFLOW 3 /* overflow range error */
1509 #define UNDERFLOW 4 /* underflow range error */
1510 #define TLOSS 5 /* total loss of precision */
1511 #define PLOSS 6 /* partial loss of precision */
1512 #define INVALID 7 /* NaN-producing operation */
1514 /* e type constants used by high precision check routines */
1516 #if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && !defined(INTEL_EXTENDED_IEEE_FORMAT)
1517 /* 0.0 */
1518 unsigned EMUSHORT ezero[NE] =
1519 {0x0000, 0x0000, 0x0000, 0x0000,
1520 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,};
1521 extern unsigned EMUSHORT ezero[];
1523 /* 5.0E-1 */
1524 unsigned EMUSHORT ehalf[NE] =
1525 {0x0000, 0x0000, 0x0000, 0x0000,
1526 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,};
1527 extern unsigned EMUSHORT ehalf[];
1529 /* 1.0E0 */
1530 unsigned EMUSHORT eone[NE] =
1531 {0x0000, 0x0000, 0x0000, 0x0000,
1532 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
1533 extern unsigned EMUSHORT eone[];
1535 /* 2.0E0 */
1536 unsigned EMUSHORT etwo[NE] =
1537 {0x0000, 0x0000, 0x0000, 0x0000,
1538 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,};
1539 extern unsigned EMUSHORT etwo[];
1541 /* 3.2E1 */
1542 unsigned EMUSHORT e32[NE] =
1543 {0x0000, 0x0000, 0x0000, 0x0000,
1544 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,};
1545 extern unsigned EMUSHORT e32[];
1547 /* 6.93147180559945309417232121458176568075500134360255E-1 */
1548 unsigned EMUSHORT elog2[NE] =
1549 {0x40f3, 0xf6af, 0x03f2, 0xb398,
1550 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
1551 extern unsigned EMUSHORT elog2[];
1553 /* 1.41421356237309504880168872420969807856967187537695E0 */
1554 unsigned EMUSHORT esqrt2[NE] =
1555 {0x1d6f, 0xbe9f, 0x754a, 0x89b3,
1556 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
1557 extern unsigned EMUSHORT esqrt2[];
1559 /* 3.14159265358979323846264338327950288419716939937511E0 */
1560 unsigned EMUSHORT epi[NE] =
1561 {0x2902, 0x1cd1, 0x80dc, 0x628b,
1562 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
1563 extern unsigned EMUSHORT epi[];
1565 #else
1566 /* LONG_DOUBLE_TYPE_SIZE is other than 128 */
1567 unsigned EMUSHORT ezero[NE] =
1568 {0, 0000000, 0000000, 0000000, 0000000, 0000000,};
1569 unsigned EMUSHORT ehalf[NE] =
1570 {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,};
1571 unsigned EMUSHORT eone[NE] =
1572 {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,};
1573 unsigned EMUSHORT etwo[NE] =
1574 {0, 0000000, 0000000, 0000000, 0100000, 0040000,};
1575 unsigned EMUSHORT e32[NE] =
1576 {0, 0000000, 0000000, 0000000, 0100000, 0040004,};
1577 unsigned EMUSHORT elog2[NE] =
1578 {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
1579 unsigned EMUSHORT esqrt2[NE] =
1580 {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
1581 unsigned EMUSHORT epi[NE] =
1582 {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
1583 #endif
1585 /* Control register for rounding precision.
1586 This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */
1588 int rndprc = NBITS;
1589 extern int rndprc;
1591 /* Clear out entire e-type number X. */
1593 static void
1594 eclear (x)
1595 register unsigned EMUSHORT *x;
1597 register int i;
1599 for (i = 0; i < NE; i++)
1600 *x++ = 0;
1603 /* Move e-type number from A to B. */
1605 static void
1606 emov (a, b)
1607 register unsigned EMUSHORT *a, *b;
1609 register int i;
1611 for (i = 0; i < NE; i++)
1612 *b++ = *a++;
1616 #if 0
1617 /* Absolute value of e-type X. */
1619 static void
1620 eabs (x)
1621 unsigned EMUSHORT x[];
1623 /* sign is top bit of last word of external format */
1624 x[NE - 1] &= 0x7fff;
1626 #endif /* 0 */
1628 /* Negate the e-type number X. */
1630 static void
1631 eneg (x)
1632 unsigned EMUSHORT x[];
1635 x[NE - 1] ^= 0x8000; /* Toggle the sign bit */
1638 /* Return 1 if sign bit of e-type number X is nonzero, else zero. */
1640 static int
1641 eisneg (x)
1642 unsigned EMUSHORT x[];
1645 if (x[NE - 1] & 0x8000)
1646 return (1);
1647 else
1648 return (0);
1651 /* Return 1 if e-type number X is infinity, else return zero. */
1653 static int
1654 eisinf (x)
1655 unsigned EMUSHORT x[];
1658 #ifdef NANS
1659 if (eisnan (x))
1660 return (0);
1661 #endif
1662 if ((x[NE - 1] & 0x7fff) == 0x7fff)
1663 return (1);
1664 else
1665 return (0);
1668 /* Check if e-type number is not a number. The bit pattern is one that we
1669 defined, so we know for sure how to detect it. */
1671 static int
1672 eisnan (x)
1673 unsigned EMUSHORT x[] ATTRIBUTE_UNUSED;
1675 #ifdef NANS
1676 int i;
1678 /* NaN has maximum exponent */
1679 if ((x[NE - 1] & 0x7fff) != 0x7fff)
1680 return (0);
1681 /* ... and non-zero significand field. */
1682 for (i = 0; i < NE - 1; i++)
1684 if (*x++ != 0)
1685 return (1);
1687 #endif
1689 return (0);
1692 /* Fill e-type number X with infinity pattern (IEEE)
1693 or largest possible number (non-IEEE). */
1695 static void
1696 einfin (x)
1697 register unsigned EMUSHORT *x;
1699 register int i;
1701 #ifdef INFINITY
1702 for (i = 0; i < NE - 1; i++)
1703 *x++ = 0;
1704 *x |= 32767;
1705 #else
1706 for (i = 0; i < NE - 1; i++)
1707 *x++ = 0xffff;
1708 *x |= 32766;
1709 if (rndprc < NBITS)
1711 if (rndprc == 113)
1713 *(x - 9) = 0;
1714 *(x - 8) = 0;
1716 if (rndprc == 64)
1718 *(x - 5) = 0;
1720 if (rndprc == 53)
1722 *(x - 4) = 0xf800;
1724 else
1726 *(x - 4) = 0;
1727 *(x - 3) = 0;
1728 *(x - 2) = 0xff00;
1731 #endif
1734 /* Output an e-type NaN.
1735 This generates Intel's quiet NaN pattern for extended real.
1736 The exponent is 7fff, the leading mantissa word is c000. */
1738 #ifdef NANS
1739 static void
1740 enan (x, sign)
1741 register unsigned EMUSHORT *x;
1742 int sign;
1744 register int i;
1746 for (i = 0; i < NE - 2; i++)
1747 *x++ = 0;
1748 *x++ = 0xc000;
1749 *x = (sign << 15) | 0x7fff;
1751 #endif /* NANS */
1753 /* Move in an e-type number A, converting it to exploded e-type B. */
1755 static void
1756 emovi (a, b)
1757 unsigned EMUSHORT *a, *b;
1759 register unsigned EMUSHORT *p, *q;
1760 int i;
1762 q = b;
1763 p = a + (NE - 1); /* point to last word of external number */
1764 /* get the sign bit */
1765 if (*p & 0x8000)
1766 *q++ = 0xffff;
1767 else
1768 *q++ = 0;
1769 /* get the exponent */
1770 *q = *p--;
1771 *q++ &= 0x7fff; /* delete the sign bit */
1772 #ifdef INFINITY
1773 if ((*(q - 1) & 0x7fff) == 0x7fff)
1775 #ifdef NANS
1776 if (eisnan (a))
1778 *q++ = 0;
1779 for (i = 3; i < NI; i++)
1780 *q++ = *p--;
1781 return;
1783 #endif
1785 for (i = 2; i < NI; i++)
1786 *q++ = 0;
1787 return;
1789 #endif
1791 /* clear high guard word */
1792 *q++ = 0;
1793 /* move in the significand */
1794 for (i = 0; i < NE - 1; i++)
1795 *q++ = *p--;
1796 /* clear low guard word */
1797 *q = 0;
1800 /* Move out exploded e-type number A, converting it to e type B. */
1802 static void
1803 emovo (a, b)
1804 unsigned EMUSHORT *a, *b;
1806 register unsigned EMUSHORT *p, *q;
1807 unsigned EMUSHORT i;
1808 int j;
1810 p = a;
1811 q = b + (NE - 1); /* point to output exponent */
1812 /* combine sign and exponent */
1813 i = *p++;
1814 if (i)
1815 *q-- = *p++ | 0x8000;
1816 else
1817 *q-- = *p++;
1818 #ifdef INFINITY
1819 if (*(p - 1) == 0x7fff)
1821 #ifdef NANS
1822 if (eiisnan (a))
1824 enan (b, eiisneg (a));
1825 return;
1827 #endif
1828 einfin (b);
1829 return;
1831 #endif
1832 /* skip over guard word */
1833 ++p;
1834 /* move the significand */
1835 for (j = 0; j < NE - 1; j++)
1836 *q-- = *p++;
1839 /* Clear out exploded e-type number XI. */
1841 static void
1842 ecleaz (xi)
1843 register unsigned EMUSHORT *xi;
1845 register int i;
1847 for (i = 0; i < NI; i++)
1848 *xi++ = 0;
1851 /* Clear out exploded e-type XI, but don't touch the sign. */
1853 static void
1854 ecleazs (xi)
1855 register unsigned EMUSHORT *xi;
1857 register int i;
1859 ++xi;
1860 for (i = 0; i < NI - 1; i++)
1861 *xi++ = 0;
1864 /* Move exploded e-type number from A to B. */
1866 static void
1867 emovz (a, b)
1868 register unsigned EMUSHORT *a, *b;
1870 register int i;
1872 for (i = 0; i < NI - 1; i++)
1873 *b++ = *a++;
1874 /* clear low guard word */
1875 *b = 0;
1878 /* Generate exploded e-type NaN.
1879 The explicit pattern for this is maximum exponent and
1880 top two significant bits set. */
1882 #ifdef NANS
1883 static void
1884 einan (x)
1885 unsigned EMUSHORT x[];
1888 ecleaz (x);
1889 x[E] = 0x7fff;
1890 x[M + 1] = 0xc000;
1892 #endif /* NANS */
1894 /* Return nonzero if exploded e-type X is a NaN. */
1896 #ifdef NANS
1897 static int
1898 eiisnan (x)
1899 unsigned EMUSHORT x[];
1901 int i;
1903 if ((x[E] & 0x7fff) == 0x7fff)
1905 for (i = M + 1; i < NI; i++)
1907 if (x[i] != 0)
1908 return (1);
1911 return (0);
1913 #endif /* NANS */
1915 /* Return nonzero if sign of exploded e-type X is nonzero. */
1917 #ifdef NANS
1918 static int
1919 eiisneg (x)
1920 unsigned EMUSHORT x[];
1923 return x[0] != 0;
1925 #endif /* NANS */
1927 #if 0
1928 /* Fill exploded e-type X with infinity pattern.
1929 This has maximum exponent and significand all zeros. */
1931 static void
1932 eiinfin (x)
1933 unsigned EMUSHORT x[];
1936 ecleaz (x);
1937 x[E] = 0x7fff;
1939 #endif /* 0 */
1941 /* Return nonzero if exploded e-type X is infinite. */
1943 #ifdef INFINITY
1944 static int
1945 eiisinf (x)
1946 unsigned EMUSHORT x[];
1949 #ifdef NANS
1950 if (eiisnan (x))
1951 return (0);
1952 #endif
1953 if ((x[E] & 0x7fff) == 0x7fff)
1954 return (1);
1955 return (0);
1957 #endif /* INFINITY */
1959 /* Compare significands of numbers in internal exploded e-type format.
1960 Guard words are included in the comparison.
1962 Returns +1 if a > b
1963 0 if a == b
1964 -1 if a < b */
1966 static int
1967 ecmpm (a, b)
1968 register unsigned EMUSHORT *a, *b;
1970 int i;
1972 a += M; /* skip up to significand area */
1973 b += M;
1974 for (i = M; i < NI; i++)
1976 if (*a++ != *b++)
1977 goto difrnt;
1979 return (0);
1981 difrnt:
1982 if (*(--a) > *(--b))
1983 return (1);
1984 else
1985 return (-1);
1988 /* Shift significand of exploded e-type X down by 1 bit. */
1990 static void
1991 eshdn1 (x)
1992 register unsigned EMUSHORT *x;
1994 register unsigned EMUSHORT bits;
1995 int i;
1997 x += M; /* point to significand area */
1999 bits = 0;
2000 for (i = M; i < NI; i++)
2002 if (*x & 1)
2003 bits |= 1;
2004 *x >>= 1;
2005 if (bits & 2)
2006 *x |= 0x8000;
2007 bits <<= 1;
2008 ++x;
2012 /* Shift significand of exploded e-type X up by 1 bit. */
2014 static void
2015 eshup1 (x)
2016 register unsigned EMUSHORT *x;
2018 register unsigned EMUSHORT bits;
2019 int i;
2021 x += NI - 1;
2022 bits = 0;
2024 for (i = M; i < NI; i++)
2026 if (*x & 0x8000)
2027 bits |= 1;
2028 *x <<= 1;
2029 if (bits & 2)
2030 *x |= 1;
2031 bits <<= 1;
2032 --x;
2037 /* Shift significand of exploded e-type X down by 8 bits. */
2039 static void
2040 eshdn8 (x)
2041 register unsigned EMUSHORT *x;
2043 register unsigned EMUSHORT newbyt, oldbyt;
2044 int i;
2046 x += M;
2047 oldbyt = 0;
2048 for (i = M; i < NI; i++)
2050 newbyt = *x << 8;
2051 *x >>= 8;
2052 *x |= oldbyt;
2053 oldbyt = newbyt;
2054 ++x;
2058 /* Shift significand of exploded e-type X up by 8 bits. */
2060 static void
2061 eshup8 (x)
2062 register unsigned EMUSHORT *x;
2064 int i;
2065 register unsigned EMUSHORT newbyt, oldbyt;
2067 x += NI - 1;
2068 oldbyt = 0;
2070 for (i = M; i < NI; i++)
2072 newbyt = *x >> 8;
2073 *x <<= 8;
2074 *x |= oldbyt;
2075 oldbyt = newbyt;
2076 --x;
2080 /* Shift significand of exploded e-type X up by 16 bits. */
2082 static void
2083 eshup6 (x)
2084 register unsigned EMUSHORT *x;
2086 int i;
2087 register unsigned EMUSHORT *p;
2089 p = x + M;
2090 x += M + 1;
2092 for (i = M; i < NI - 1; i++)
2093 *p++ = *x++;
2095 *p = 0;
2098 /* Shift significand of exploded e-type X down by 16 bits. */
2100 static void
2101 eshdn6 (x)
2102 register unsigned EMUSHORT *x;
2104 int i;
2105 register unsigned EMUSHORT *p;
2107 x += NI - 1;
2108 p = x + 1;
2110 for (i = M; i < NI - 1; i++)
2111 *(--p) = *(--x);
2113 *(--p) = 0;
2116 /* Add significands of exploded e-type X and Y. X + Y replaces Y. */
2118 static void
2119 eaddm (x, y)
2120 unsigned EMUSHORT *x, *y;
2122 register unsigned EMULONG a;
2123 int i;
2124 unsigned int carry;
2126 x += NI - 1;
2127 y += NI - 1;
2128 carry = 0;
2129 for (i = M; i < NI; i++)
2131 a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry;
2132 if (a & 0x10000)
2133 carry = 1;
2134 else
2135 carry = 0;
2136 *y = (unsigned EMUSHORT) a;
2137 --x;
2138 --y;
2142 /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */
2144 static void
2145 esubm (x, y)
2146 unsigned EMUSHORT *x, *y;
2148 unsigned EMULONG a;
2149 int i;
2150 unsigned int carry;
2152 x += NI - 1;
2153 y += NI - 1;
2154 carry = 0;
2155 for (i = M; i < NI; i++)
2157 a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry;
2158 if (a & 0x10000)
2159 carry = 1;
2160 else
2161 carry = 0;
2162 *y = (unsigned EMUSHORT) a;
2163 --x;
2164 --y;
2169 static unsigned EMUSHORT equot[NI];
2172 #if 0
2173 /* Radix 2 shift-and-add versions of multiply and divide */
2176 /* Divide significands */
2179 edivm (den, num)
2180 unsigned EMUSHORT den[], num[];
2182 int i;
2183 register unsigned EMUSHORT *p, *q;
2184 unsigned EMUSHORT j;
2186 p = &equot[0];
2187 *p++ = num[0];
2188 *p++ = num[1];
2190 for (i = M; i < NI; i++)
2192 *p++ = 0;
2195 /* Use faster compare and subtraction if denominator has only 15 bits of
2196 significance. */
2198 p = &den[M + 2];
2199 if (*p++ == 0)
2201 for (i = M + 3; i < NI; i++)
2203 if (*p++ != 0)
2204 goto fulldiv;
2206 if ((den[M + 1] & 1) != 0)
2207 goto fulldiv;
2208 eshdn1 (num);
2209 eshdn1 (den);
2211 p = &den[M + 1];
2212 q = &num[M + 1];
2214 for (i = 0; i < NBITS + 2; i++)
2216 if (*p <= *q)
2218 *q -= *p;
2219 j = 1;
2221 else
2223 j = 0;
2225 eshup1 (equot);
2226 equot[NI - 2] |= j;
2227 eshup1 (num);
2229 goto divdon;
2232 /* The number of quotient bits to calculate is NBITS + 1 scaling guard
2233 bit + 1 roundoff bit. */
2235 fulldiv:
2237 p = &equot[NI - 2];
2238 for (i = 0; i < NBITS + 2; i++)
2240 if (ecmpm (den, num) <= 0)
2242 esubm (den, num);
2243 j = 1; /* quotient bit = 1 */
2245 else
2246 j = 0;
2247 eshup1 (equot);
2248 *p |= j;
2249 eshup1 (num);
2252 divdon:
2254 eshdn1 (equot);
2255 eshdn1 (equot);
2257 /* test for nonzero remainder after roundoff bit */
2258 p = &num[M];
2259 j = 0;
2260 for (i = M; i < NI; i++)
2262 j |= *p++;
2264 if (j)
2265 j = 1;
2268 for (i = 0; i < NI; i++)
2269 num[i] = equot[i];
2270 return ((int) j);
2274 /* Multiply significands */
2277 emulm (a, b)
2278 unsigned EMUSHORT a[], b[];
2280 unsigned EMUSHORT *p, *q;
2281 int i, j, k;
2283 equot[0] = b[0];
2284 equot[1] = b[1];
2285 for (i = M; i < NI; i++)
2286 equot[i] = 0;
2288 p = &a[NI - 2];
2289 k = NBITS;
2290 while (*p == 0) /* significand is not supposed to be zero */
2292 eshdn6 (a);
2293 k -= 16;
2295 if ((*p & 0xff) == 0)
2297 eshdn8 (a);
2298 k -= 8;
2301 q = &equot[NI - 1];
2302 j = 0;
2303 for (i = 0; i < k; i++)
2305 if (*p & 1)
2306 eaddm (b, equot);
2307 /* remember if there were any nonzero bits shifted out */
2308 if (*q & 1)
2309 j |= 1;
2310 eshdn1 (a);
2311 eshdn1 (equot);
2314 for (i = 0; i < NI; i++)
2315 b[i] = equot[i];
2317 /* return flag for lost nonzero bits */
2318 return (j);
2321 #else
2323 /* Radix 65536 versions of multiply and divide. */
2325 /* Multiply significand of e-type number B
2326 by 16-bit quantity A, return e-type result to C. */
2328 static void
2329 m16m (a, b, c)
2330 unsigned int a;
2331 unsigned EMUSHORT b[], c[];
2333 register unsigned EMUSHORT *pp;
2334 register unsigned EMULONG carry;
2335 unsigned EMUSHORT *ps;
2336 unsigned EMUSHORT p[NI];
2337 unsigned EMULONG aa, m;
2338 int i;
2340 aa = a;
2341 pp = &p[NI-2];
2342 *pp++ = 0;
2343 *pp = 0;
2344 ps = &b[NI-1];
2346 for (i=M+1; i<NI; i++)
2348 if (*ps == 0)
2350 --ps;
2351 --pp;
2352 *(pp-1) = 0;
2354 else
2356 m = (unsigned EMULONG) aa * *ps--;
2357 carry = (m & 0xffff) + *pp;
2358 *pp-- = (unsigned EMUSHORT)carry;
2359 carry = (carry >> 16) + (m >> 16) + *pp;
2360 *pp = (unsigned EMUSHORT)carry;
2361 *(pp-1) = carry >> 16;
2364 for (i=M; i<NI; i++)
2365 c[i] = p[i];
2368 /* Divide significands of exploded e-types NUM / DEN. Neither the
2369 numerator NUM nor the denominator DEN is permitted to have its high guard
2370 word nonzero. */
2372 static int
2373 edivm (den, num)
2374 unsigned EMUSHORT den[], num[];
2376 int i;
2377 register unsigned EMUSHORT *p;
2378 unsigned EMULONG tnum;
2379 unsigned EMUSHORT j, tdenm, tquot;
2380 unsigned EMUSHORT tprod[NI+1];
2382 p = &equot[0];
2383 *p++ = num[0];
2384 *p++ = num[1];
2386 for (i=M; i<NI; i++)
2388 *p++ = 0;
2390 eshdn1 (num);
2391 tdenm = den[M+1];
2392 for (i=M; i<NI; i++)
2394 /* Find trial quotient digit (the radix is 65536). */
2395 tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1];
2397 /* Do not execute the divide instruction if it will overflow. */
2398 if ((tdenm * (unsigned long)0xffff) < tnum)
2399 tquot = 0xffff;
2400 else
2401 tquot = tnum / tdenm;
2402 /* Multiply denominator by trial quotient digit. */
2403 m16m ((unsigned int)tquot, den, tprod);
2404 /* The quotient digit may have been overestimated. */
2405 if (ecmpm (tprod, num) > 0)
2407 tquot -= 1;
2408 esubm (den, tprod);
2409 if (ecmpm (tprod, num) > 0)
2411 tquot -= 1;
2412 esubm (den, tprod);
2415 esubm (tprod, num);
2416 equot[i] = tquot;
2417 eshup6(num);
2419 /* test for nonzero remainder after roundoff bit */
2420 p = &num[M];
2421 j = 0;
2422 for (i=M; i<NI; i++)
2424 j |= *p++;
2426 if (j)
2427 j = 1;
2429 for (i=0; i<NI; i++)
2430 num[i] = equot[i];
2432 return ((int)j);
2435 /* Multiply significands of exploded e-type A and B, result in B. */
2437 static int
2438 emulm (a, b)
2439 unsigned EMUSHORT a[], b[];
2441 unsigned EMUSHORT *p, *q;
2442 unsigned EMUSHORT pprod[NI];
2443 unsigned EMUSHORT j;
2444 int i;
2446 equot[0] = b[0];
2447 equot[1] = b[1];
2448 for (i=M; i<NI; i++)
2449 equot[i] = 0;
2451 j = 0;
2452 p = &a[NI-1];
2453 q = &equot[NI-1];
2454 for (i=M+1; i<NI; i++)
2456 if (*p == 0)
2458 --p;
2460 else
2462 m16m ((unsigned int) *p--, b, pprod);
2463 eaddm(pprod, equot);
2465 j |= *q;
2466 eshdn6(equot);
2469 for (i=0; i<NI; i++)
2470 b[i] = equot[i];
2472 /* return flag for lost nonzero bits */
2473 return ((int)j);
2475 #endif
2478 /* Normalize and round off.
2480 The internal format number to be rounded is S.
2481 Input LOST is 0 if the value is exact. This is the so-called sticky bit.
2483 Input SUBFLG indicates whether the number was obtained
2484 by a subtraction operation. In that case if LOST is nonzero
2485 then the number is slightly smaller than indicated.
2487 Input EXP is the biased exponent, which may be negative.
2488 the exponent field of S is ignored but is replaced by
2489 EXP as adjusted by normalization and rounding.
2491 Input RCNTRL is the rounding control. If it is nonzero, the
2492 returned value will be rounded to RNDPRC bits.
2494 For future reference: In order for emdnorm to round off denormal
2495 significands at the right point, the input exponent must be
2496 adjusted to be the actual value it would have after conversion to
2497 the final floating point type. This adjustment has been
2498 implemented for all type conversions (etoe53, etc.) and decimal
2499 conversions, but not for the arithmetic functions (eadd, etc.).
2500 Data types having standard 15-bit exponents are not affected by
2501 this, but SFmode and DFmode are affected. For example, ediv with
2502 rndprc = 24 will not round correctly to 24-bit precision if the
2503 result is denormal. */
2505 static int rlast = -1;
2506 static int rw = 0;
2507 static unsigned EMUSHORT rmsk = 0;
2508 static unsigned EMUSHORT rmbit = 0;
2509 static unsigned EMUSHORT rebit = 0;
2510 static int re = 0;
2511 static unsigned EMUSHORT rbit[NI];
2513 static void
2514 emdnorm (s, lost, subflg, exp, rcntrl)
2515 unsigned EMUSHORT s[];
2516 int lost;
2517 int subflg;
2518 EMULONG exp;
2519 int rcntrl;
2521 int i, j;
2522 unsigned EMUSHORT r;
2524 /* Normalize */
2525 j = enormlz (s);
2527 /* a blank significand could mean either zero or infinity. */
2528 #ifndef INFINITY
2529 if (j > NBITS)
2531 ecleazs (s);
2532 return;
2534 #endif
2535 exp -= j;
2536 #ifndef INFINITY
2537 if (exp >= 32767L)
2538 goto overf;
2539 #else
2540 if ((j > NBITS) && (exp < 32767))
2542 ecleazs (s);
2543 return;
2545 #endif
2546 if (exp < 0L)
2548 if (exp > (EMULONG) (-NBITS - 1))
2550 j = (int) exp;
2551 i = eshift (s, j);
2552 if (i)
2553 lost = 1;
2555 else
2557 ecleazs (s);
2558 return;
2561 /* Round off, unless told not to by rcntrl. */
2562 if (rcntrl == 0)
2563 goto mdfin;
2564 /* Set up rounding parameters if the control register changed. */
2565 if (rndprc != rlast)
2567 ecleaz (rbit);
2568 switch (rndprc)
2570 default:
2571 case NBITS:
2572 rw = NI - 1; /* low guard word */
2573 rmsk = 0xffff;
2574 rmbit = 0x8000;
2575 re = rw - 1;
2576 rebit = 1;
2577 break;
2579 case 113:
2580 rw = 10;
2581 rmsk = 0x7fff;
2582 rmbit = 0x4000;
2583 rebit = 0x8000;
2584 re = rw;
2585 break;
2587 case 64:
2588 rw = 7;
2589 rmsk = 0xffff;
2590 rmbit = 0x8000;
2591 re = rw - 1;
2592 rebit = 1;
2593 break;
2595 /* For DEC or IBM arithmetic */
2596 case 56:
2597 rw = 6;
2598 rmsk = 0xff;
2599 rmbit = 0x80;
2600 rebit = 0x100;
2601 re = rw;
2602 break;
2604 case 53:
2605 rw = 6;
2606 rmsk = 0x7ff;
2607 rmbit = 0x0400;
2608 rebit = 0x800;
2609 re = rw;
2610 break;
2612 /* For C4x arithmetic */
2613 case 32:
2614 rw = 5;
2615 rmsk = 0xffff;
2616 rmbit = 0x8000;
2617 rebit = 1;
2618 re = rw - 1;
2619 break;
2621 case 24:
2622 rw = 4;
2623 rmsk = 0xff;
2624 rmbit = 0x80;
2625 rebit = 0x100;
2626 re = rw;
2627 break;
2629 rbit[re] = rebit;
2630 rlast = rndprc;
2633 /* Shift down 1 temporarily if the data structure has an implied
2634 most significant bit and the number is denormal.
2635 Intel long double denormals also lose one bit of precision. */
2636 if ((exp <= 0) && (rndprc != NBITS)
2637 && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
2639 lost |= s[NI - 1] & 1;
2640 eshdn1 (s);
2642 /* Clear out all bits below the rounding bit,
2643 remembering in r if any were nonzero. */
2644 r = s[rw] & rmsk;
2645 if (rndprc < NBITS)
2647 i = rw + 1;
2648 while (i < NI)
2650 if (s[i])
2651 r |= 1;
2652 s[i] = 0;
2653 ++i;
2656 s[rw] &= ~rmsk;
2657 if ((r & rmbit) != 0)
2659 #ifndef C4X
2660 if (r == rmbit)
2662 if (lost == 0)
2663 { /* round to even */
2664 if ((s[re] & rebit) == 0)
2665 goto mddone;
2667 else
2669 if (subflg != 0)
2670 goto mddone;
2673 #endif
2674 eaddm (rbit, s);
2676 mddone:
2677 /* Undo the temporary shift for denormal values. */
2678 if ((exp <= 0) && (rndprc != NBITS)
2679 && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
2681 eshup1 (s);
2683 if (s[2] != 0)
2684 { /* overflow on roundoff */
2685 eshdn1 (s);
2686 exp += 1;
2688 mdfin:
2689 s[NI - 1] = 0;
2690 if (exp >= 32767L)
2692 #ifndef INFINITY
2693 overf:
2694 #endif
2695 #ifdef INFINITY
2696 s[1] = 32767;
2697 for (i = 2; i < NI - 1; i++)
2698 s[i] = 0;
2699 if (extra_warnings)
2700 warning ("floating point overflow");
2701 #else
2702 s[1] = 32766;
2703 s[2] = 0;
2704 for (i = M + 1; i < NI - 1; i++)
2705 s[i] = 0xffff;
2706 s[NI - 1] = 0;
2707 if ((rndprc < 64) || (rndprc == 113))
2709 s[rw] &= ~rmsk;
2710 if (rndprc == 24)
2712 s[5] = 0;
2713 s[6] = 0;
2716 #endif
2717 return;
2719 if (exp < 0)
2720 s[1] = 0;
2721 else
2722 s[1] = (unsigned EMUSHORT) exp;
2725 /* Subtract. C = B - A, all e type numbers. */
2727 static int subflg = 0;
2729 static void
2730 esub (a, b, c)
2731 unsigned EMUSHORT *a, *b, *c;
2734 #ifdef NANS
2735 if (eisnan (a))
2737 emov (a, c);
2738 return;
2740 if (eisnan (b))
2742 emov (b, c);
2743 return;
2745 /* Infinity minus infinity is a NaN.
2746 Test for subtracting infinities of the same sign. */
2747 if (eisinf (a) && eisinf (b)
2748 && ((eisneg (a) ^ eisneg (b)) == 0))
2750 mtherr ("esub", INVALID);
2751 enan (c, 0);
2752 return;
2754 #endif
2755 subflg = 1;
2756 eadd1 (a, b, c);
2759 /* Add. C = A + B, all e type. */
2761 static void
2762 eadd (a, b, c)
2763 unsigned EMUSHORT *a, *b, *c;
2766 #ifdef NANS
2767 /* NaN plus anything is a NaN. */
2768 if (eisnan (a))
2770 emov (a, c);
2771 return;
2773 if (eisnan (b))
2775 emov (b, c);
2776 return;
2778 /* Infinity minus infinity is a NaN.
2779 Test for adding infinities of opposite signs. */
2780 if (eisinf (a) && eisinf (b)
2781 && ((eisneg (a) ^ eisneg (b)) != 0))
2783 mtherr ("esub", INVALID);
2784 enan (c, 0);
2785 return;
2787 #endif
2788 subflg = 0;
2789 eadd1 (a, b, c);
2792 /* Arithmetic common to both addition and subtraction. */
2794 static void
2795 eadd1 (a, b, c)
2796 unsigned EMUSHORT *a, *b, *c;
2798 unsigned EMUSHORT ai[NI], bi[NI], ci[NI];
2799 int i, lost, j, k;
2800 EMULONG lt, lta, ltb;
2802 #ifdef INFINITY
2803 if (eisinf (a))
2805 emov (a, c);
2806 if (subflg)
2807 eneg (c);
2808 return;
2810 if (eisinf (b))
2812 emov (b, c);
2813 return;
2815 #endif
2816 emovi (a, ai);
2817 emovi (b, bi);
2818 if (subflg)
2819 ai[0] = ~ai[0];
2821 /* compare exponents */
2822 lta = ai[E];
2823 ltb = bi[E];
2824 lt = lta - ltb;
2825 if (lt > 0L)
2826 { /* put the larger number in bi */
2827 emovz (bi, ci);
2828 emovz (ai, bi);
2829 emovz (ci, ai);
2830 ltb = bi[E];
2831 lt = -lt;
2833 lost = 0;
2834 if (lt != 0L)
2836 if (lt < (EMULONG) (-NBITS - 1))
2837 goto done; /* answer same as larger addend */
2838 k = (int) lt;
2839 lost = eshift (ai, k); /* shift the smaller number down */
2841 else
2843 /* exponents were the same, so must compare significands */
2844 i = ecmpm (ai, bi);
2845 if (i == 0)
2846 { /* the numbers are identical in magnitude */
2847 /* if different signs, result is zero */
2848 if (ai[0] != bi[0])
2850 eclear (c);
2851 return;
2853 /* if same sign, result is double */
2854 /* double denormalized tiny number */
2855 if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0))
2857 eshup1 (bi);
2858 goto done;
2860 /* add 1 to exponent unless both are zero! */
2861 for (j = 1; j < NI - 1; j++)
2863 if (bi[j] != 0)
2865 ltb += 1;
2866 if (ltb >= 0x7fff)
2868 eclear (c);
2869 if (ai[0] != 0)
2870 eneg (c);
2871 einfin (c);
2872 return;
2874 break;
2877 bi[E] = (unsigned EMUSHORT) ltb;
2878 goto done;
2880 if (i > 0)
2881 { /* put the larger number in bi */
2882 emovz (bi, ci);
2883 emovz (ai, bi);
2884 emovz (ci, ai);
2887 if (ai[0] == bi[0])
2889 eaddm (ai, bi);
2890 subflg = 0;
2892 else
2894 esubm (ai, bi);
2895 subflg = 1;
2897 emdnorm (bi, lost, subflg, ltb, 64);
2899 done:
2900 emovo (bi, c);
2903 /* Divide: C = B/A, all e type. */
2905 static void
2906 ediv (a, b, c)
2907 unsigned EMUSHORT *a, *b, *c;
2909 unsigned EMUSHORT ai[NI], bi[NI];
2910 int i, sign;
2911 EMULONG lt, lta, ltb;
2913 /* IEEE says if result is not a NaN, the sign is "-" if and only if
2914 operands have opposite signs -- but flush -0 to 0 later if not IEEE. */
2915 sign = eisneg(a) ^ eisneg(b);
2917 #ifdef NANS
2918 /* Return any NaN input. */
2919 if (eisnan (a))
2921 emov (a, c);
2922 return;
2924 if (eisnan (b))
2926 emov (b, c);
2927 return;
2929 /* Zero over zero, or infinity over infinity, is a NaN. */
2930 if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0))
2931 || (eisinf (a) && eisinf (b)))
2933 mtherr ("ediv", INVALID);
2934 enan (c, sign);
2935 return;
2937 #endif
2938 /* Infinity over anything else is infinity. */
2939 #ifdef INFINITY
2940 if (eisinf (b))
2942 einfin (c);
2943 goto divsign;
2945 /* Anything else over infinity is zero. */
2946 if (eisinf (a))
2948 eclear (c);
2949 goto divsign;
2951 #endif
2952 emovi (a, ai);
2953 emovi (b, bi);
2954 lta = ai[E];
2955 ltb = bi[E];
2956 if (bi[E] == 0)
2957 { /* See if numerator is zero. */
2958 for (i = 1; i < NI - 1; i++)
2960 if (bi[i] != 0)
2962 ltb -= enormlz (bi);
2963 goto dnzro1;
2966 eclear (c);
2967 goto divsign;
2969 dnzro1:
2971 if (ai[E] == 0)
2972 { /* possible divide by zero */
2973 for (i = 1; i < NI - 1; i++)
2975 if (ai[i] != 0)
2977 lta -= enormlz (ai);
2978 goto dnzro2;
2981 /* Divide by zero is not an invalid operation.
2982 It is a divide-by-zero operation! */
2983 einfin (c);
2984 mtherr ("ediv", SING);
2985 goto divsign;
2987 dnzro2:
2989 i = edivm (ai, bi);
2990 /* calculate exponent */
2991 lt = ltb - lta + EXONE;
2992 emdnorm (bi, i, 0, lt, 64);
2993 emovo (bi, c);
2995 divsign:
2997 if (sign
2998 #ifndef IEEE
2999 && (ecmp (c, ezero) != 0)
3000 #endif
3002 *(c+(NE-1)) |= 0x8000;
3003 else
3004 *(c+(NE-1)) &= ~0x8000;
3007 /* Multiply e-types A and B, return e-type product C. */
3009 static void
3010 emul (a, b, c)
3011 unsigned EMUSHORT *a, *b, *c;
3013 unsigned EMUSHORT ai[NI], bi[NI];
3014 int i, j, sign;
3015 EMULONG lt, lta, ltb;
3017 /* IEEE says if result is not a NaN, the sign is "-" if and only if
3018 operands have opposite signs -- but flush -0 to 0 later if not IEEE. */
3019 sign = eisneg(a) ^ eisneg(b);
3021 #ifdef NANS
3022 /* NaN times anything is the same NaN. */
3023 if (eisnan (a))
3025 emov (a, c);
3026 return;
3028 if (eisnan (b))
3030 emov (b, c);
3031 return;
3033 /* Zero times infinity is a NaN. */
3034 if ((eisinf (a) && (ecmp (b, ezero) == 0))
3035 || (eisinf (b) && (ecmp (a, ezero) == 0)))
3037 mtherr ("emul", INVALID);
3038 enan (c, sign);
3039 return;
3041 #endif
3042 /* Infinity times anything else is infinity. */
3043 #ifdef INFINITY
3044 if (eisinf (a) || eisinf (b))
3046 einfin (c);
3047 goto mulsign;
3049 #endif
3050 emovi (a, ai);
3051 emovi (b, bi);
3052 lta = ai[E];
3053 ltb = bi[E];
3054 if (ai[E] == 0)
3056 for (i = 1; i < NI - 1; i++)
3058 if (ai[i] != 0)
3060 lta -= enormlz (ai);
3061 goto mnzer1;
3064 eclear (c);
3065 goto mulsign;
3067 mnzer1:
3069 if (bi[E] == 0)
3071 for (i = 1; i < NI - 1; i++)
3073 if (bi[i] != 0)
3075 ltb -= enormlz (bi);
3076 goto mnzer2;
3079 eclear (c);
3080 goto mulsign;
3082 mnzer2:
3084 /* Multiply significands */
3085 j = emulm (ai, bi);
3086 /* calculate exponent */
3087 lt = lta + ltb - (EXONE - 1);
3088 emdnorm (bi, j, 0, lt, 64);
3089 emovo (bi, c);
3091 mulsign:
3093 if (sign
3094 #ifndef IEEE
3095 && (ecmp (c, ezero) != 0)
3096 #endif
3098 *(c+(NE-1)) |= 0x8000;
3099 else
3100 *(c+(NE-1)) &= ~0x8000;
3103 /* Convert double precision PE to e-type Y. */
3105 static void
3106 e53toe (pe, y)
3107 unsigned EMUSHORT *pe, *y;
3109 #ifdef DEC
3111 dectoe (pe, y);
3113 #else
3114 #ifdef IBM
3116 ibmtoe (pe, y, DFmode);
3118 #else
3119 #ifdef C4X
3121 c4xtoe (pe, y, HFmode);
3123 #else
3124 register unsigned EMUSHORT r;
3125 register unsigned EMUSHORT *e, *p;
3126 unsigned EMUSHORT yy[NI];
3127 int denorm, k;
3129 e = pe;
3130 denorm = 0; /* flag if denormalized number */
3131 ecleaz (yy);
3132 if (! REAL_WORDS_BIG_ENDIAN)
3133 e += 3;
3134 r = *e;
3135 yy[0] = 0;
3136 if (r & 0x8000)
3137 yy[0] = 0xffff;
3138 yy[M] = (r & 0x0f) | 0x10;
3139 r &= ~0x800f; /* strip sign and 4 significand bits */
3140 #ifdef INFINITY
3141 if (r == 0x7ff0)
3143 #ifdef NANS
3144 if (! REAL_WORDS_BIG_ENDIAN)
3146 if (((pe[3] & 0xf) != 0) || (pe[2] != 0)
3147 || (pe[1] != 0) || (pe[0] != 0))
3149 enan (y, yy[0] != 0);
3150 return;
3153 else
3155 if (((pe[0] & 0xf) != 0) || (pe[1] != 0)
3156 || (pe[2] != 0) || (pe[3] != 0))
3158 enan (y, yy[0] != 0);
3159 return;
3162 #endif /* NANS */
3163 eclear (y);
3164 einfin (y);
3165 if (yy[0])
3166 eneg (y);
3167 return;
3169 #endif /* INFINITY */
3170 r >>= 4;
3171 /* If zero exponent, then the significand is denormalized.
3172 So take back the understood high significand bit. */
3174 if (r == 0)
3176 denorm = 1;
3177 yy[M] &= ~0x10;
3179 r += EXONE - 01777;
3180 yy[E] = r;
3181 p = &yy[M + 1];
3182 #ifdef IEEE
3183 if (! REAL_WORDS_BIG_ENDIAN)
3185 *p++ = *(--e);
3186 *p++ = *(--e);
3187 *p++ = *(--e);
3189 else
3191 ++e;
3192 *p++ = *e++;
3193 *p++ = *e++;
3194 *p++ = *e++;
3196 #endif
3197 eshift (yy, -5);
3198 if (denorm)
3200 /* If zero exponent, then normalize the significand. */
3201 if ((k = enormlz (yy)) > NBITS)
3202 ecleazs (yy);
3203 else
3204 yy[E] -= (unsigned EMUSHORT) (k - 1);
3206 emovo (yy, y);
3207 #endif /* not C4X */
3208 #endif /* not IBM */
3209 #endif /* not DEC */
3212 /* Convert double extended precision float PE to e type Y. */
3214 static void
3215 e64toe (pe, y)
3216 unsigned EMUSHORT *pe, *y;
3218 unsigned EMUSHORT yy[NI];
3219 unsigned EMUSHORT *e, *p, *q;
3220 int i;
3222 e = pe;
3223 p = yy;
3224 for (i = 0; i < NE - 5; i++)
3225 *p++ = 0;
3226 /* This precision is not ordinarily supported on DEC or IBM. */
3227 #ifdef DEC
3228 for (i = 0; i < 5; i++)
3229 *p++ = *e++;
3230 #endif
3231 #ifdef IBM
3232 p = &yy[0] + (NE - 1);
3233 *p-- = *e++;
3234 ++e;
3235 for (i = 0; i < 5; i++)
3236 *p-- = *e++;
3237 #endif
3238 #ifdef IEEE
3239 if (! REAL_WORDS_BIG_ENDIAN)
3241 for (i = 0; i < 5; i++)
3242 *p++ = *e++;
3244 /* For denormal long double Intel format, shift significand up one
3245 -- but only if the top significand bit is zero. A top bit of 1
3246 is "pseudodenormal" when the exponent is zero. */
3247 if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
3249 unsigned EMUSHORT temp[NI];
3251 emovi(yy, temp);
3252 eshup1(temp);
3253 emovo(temp,y);
3254 return;
3257 else
3259 p = &yy[0] + (NE - 1);
3260 #ifdef ARM_EXTENDED_IEEE_FORMAT
3261 /* For ARMs, the exponent is in the lowest 15 bits of the word. */
3262 *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff);
3263 e += 2;
3264 #else
3265 *p-- = *e++;
3266 ++e;
3267 #endif
3268 for (i = 0; i < 4; i++)
3269 *p-- = *e++;
3271 #endif
3272 #ifdef INFINITY
3273 /* Point to the exponent field and check max exponent cases. */
3274 p = &yy[NE - 1];
3275 if ((*p & 0x7fff) == 0x7fff)
3277 #ifdef NANS
3278 if (! REAL_WORDS_BIG_ENDIAN)
3280 for (i = 0; i < 4; i++)
3282 if ((i != 3 && pe[i] != 0)
3283 /* Anything but 0x8000 here, including 0, is a NaN. */
3284 || (i == 3 && pe[i] != 0x8000))
3286 enan (y, (*p & 0x8000) != 0);
3287 return;
3291 else
3293 #ifdef ARM_EXTENDED_IEEE_FORMAT
3294 for (i = 2; i <= 5; i++)
3296 if (pe[i] != 0)
3298 enan (y, (*p & 0x8000) != 0);
3299 return;
3302 #else /* not ARM */
3303 /* In Motorola extended precision format, the most significant
3304 bit of an infinity mantissa could be either 1 or 0. It is
3305 the lower order bits that tell whether the value is a NaN. */
3306 if ((pe[2] & 0x7fff) != 0)
3307 goto bigend_nan;
3309 for (i = 3; i <= 5; i++)
3311 if (pe[i] != 0)
3313 bigend_nan:
3314 enan (y, (*p & 0x8000) != 0);
3315 return;
3318 #endif /* not ARM */
3320 #endif /* NANS */
3321 eclear (y);
3322 einfin (y);
3323 if (*p & 0x8000)
3324 eneg (y);
3325 return;
3327 #endif /* INFINITY */
3328 p = yy;
3329 q = y;
3330 for (i = 0; i < NE; i++)
3331 *q++ = *p++;
3334 #ifndef INTEL_EXTENDED_IEEE_FORMAT
3335 /* Convert 128-bit long double precision float PE to e type Y. */
3337 static void
3338 e113toe (pe, y)
3339 unsigned EMUSHORT *pe, *y;
3341 register unsigned EMUSHORT r;
3342 unsigned EMUSHORT *e, *p;
3343 unsigned EMUSHORT yy[NI];
3344 int denorm, i;
3346 e = pe;
3347 denorm = 0;
3348 ecleaz (yy);
3349 #ifdef IEEE
3350 if (! REAL_WORDS_BIG_ENDIAN)
3351 e += 7;
3352 #endif
3353 r = *e;
3354 yy[0] = 0;
3355 if (r & 0x8000)
3356 yy[0] = 0xffff;
3357 r &= 0x7fff;
3358 #ifdef INFINITY
3359 if (r == 0x7fff)
3361 #ifdef NANS
3362 if (! REAL_WORDS_BIG_ENDIAN)
3364 for (i = 0; i < 7; i++)
3366 if (pe[i] != 0)
3368 enan (y, yy[0] != 0);
3369 return;
3373 else
3375 for (i = 1; i < 8; i++)
3377 if (pe[i] != 0)
3379 enan (y, yy[0] != 0);
3380 return;
3384 #endif /* NANS */
3385 eclear (y);
3386 einfin (y);
3387 if (yy[0])
3388 eneg (y);
3389 return;
3391 #endif /* INFINITY */
3392 yy[E] = r;
3393 p = &yy[M + 1];
3394 #ifdef IEEE
3395 if (! REAL_WORDS_BIG_ENDIAN)
3397 for (i = 0; i < 7; i++)
3398 *p++ = *(--e);
3400 else
3402 ++e;
3403 for (i = 0; i < 7; i++)
3404 *p++ = *e++;
3406 #endif
3407 /* If denormal, remove the implied bit; else shift down 1. */
3408 if (r == 0)
3410 yy[M] = 0;
3412 else
3414 yy[M] = 1;
3415 eshift (yy, -1);
3417 emovo (yy, y);
3419 #endif
3421 /* Convert single precision float PE to e type Y. */
3423 static void
3424 e24toe (pe, y)
3425 unsigned EMUSHORT *pe, *y;
3427 #ifdef IBM
3429 ibmtoe (pe, y, SFmode);
3431 #else
3433 #ifdef C4X
3435 c4xtoe (pe, y, QFmode);
3437 #else
3439 register unsigned EMUSHORT r;
3440 register unsigned EMUSHORT *e, *p;
3441 unsigned EMUSHORT yy[NI];
3442 int denorm, k;
3444 e = pe;
3445 denorm = 0; /* flag if denormalized number */
3446 ecleaz (yy);
3447 #ifdef IEEE
3448 if (! REAL_WORDS_BIG_ENDIAN)
3449 e += 1;
3450 #endif
3451 #ifdef DEC
3452 e += 1;
3453 #endif
3454 r = *e;
3455 yy[0] = 0;
3456 if (r & 0x8000)
3457 yy[0] = 0xffff;
3458 yy[M] = (r & 0x7f) | 0200;
3459 r &= ~0x807f; /* strip sign and 7 significand bits */
3460 #ifdef INFINITY
3461 if (r == 0x7f80)
3463 #ifdef NANS
3464 if (REAL_WORDS_BIG_ENDIAN)
3466 if (((pe[0] & 0x7f) != 0) || (pe[1] != 0))
3468 enan (y, yy[0] != 0);
3469 return;
3472 else
3474 if (((pe[1] & 0x7f) != 0) || (pe[0] != 0))
3476 enan (y, yy[0] != 0);
3477 return;
3480 #endif /* NANS */
3481 eclear (y);
3482 einfin (y);
3483 if (yy[0])
3484 eneg (y);
3485 return;
3487 #endif /* INFINITY */
3488 r >>= 7;
3489 /* If zero exponent, then the significand is denormalized.
3490 So take back the understood high significand bit. */
3491 if (r == 0)
3493 denorm = 1;
3494 yy[M] &= ~0200;
3496 r += EXONE - 0177;
3497 yy[E] = r;
3498 p = &yy[M + 1];
3499 #ifdef DEC
3500 *p++ = *(--e);
3501 #endif
3502 #ifdef IEEE
3503 if (! REAL_WORDS_BIG_ENDIAN)
3504 *p++ = *(--e);
3505 else
3507 ++e;
3508 *p++ = *e++;
3510 #endif
3511 eshift (yy, -8);
3512 if (denorm)
3513 { /* if zero exponent, then normalize the significand */
3514 if ((k = enormlz (yy)) > NBITS)
3515 ecleazs (yy);
3516 else
3517 yy[E] -= (unsigned EMUSHORT) (k - 1);
3519 emovo (yy, y);
3520 #endif /* not C4X */
3521 #endif /* not IBM */
3524 /* Convert e-type X to IEEE 128-bit long double format E. */
3526 static void
3527 etoe113 (x, e)
3528 unsigned EMUSHORT *x, *e;
3530 unsigned EMUSHORT xi[NI];
3531 EMULONG exp;
3532 int rndsav;
3534 #ifdef NANS
3535 if (eisnan (x))
3537 make_nan (e, eisneg (x), TFmode);
3538 return;
3540 #endif
3541 emovi (x, xi);
3542 exp = (EMULONG) xi[E];
3543 #ifdef INFINITY
3544 if (eisinf (x))
3545 goto nonorm;
3546 #endif
3547 /* round off to nearest or even */
3548 rndsav = rndprc;
3549 rndprc = 113;
3550 emdnorm (xi, 0, 0, exp, 64);
3551 rndprc = rndsav;
3552 #ifdef INFINITY
3553 nonorm:
3554 #endif
3555 toe113 (xi, e);
3558 /* Convert exploded e-type X, that has already been rounded to
3559 113-bit precision, to IEEE 128-bit long double format Y. */
3561 static void
3562 toe113 (a, b)
3563 unsigned EMUSHORT *a, *b;
3565 register unsigned EMUSHORT *p, *q;
3566 unsigned EMUSHORT i;
3568 #ifdef NANS
3569 if (eiisnan (a))
3571 make_nan (b, eiisneg (a), TFmode);
3572 return;
3574 #endif
3575 p = a;
3576 if (REAL_WORDS_BIG_ENDIAN)
3577 q = b;
3578 else
3579 q = b + 7; /* point to output exponent */
3581 /* If not denormal, delete the implied bit. */
3582 if (a[E] != 0)
3584 eshup1 (a);
3586 /* combine sign and exponent */
3587 i = *p++;
3588 if (REAL_WORDS_BIG_ENDIAN)
3590 if (i)
3591 *q++ = *p++ | 0x8000;
3592 else
3593 *q++ = *p++;
3595 else
3597 if (i)
3598 *q-- = *p++ | 0x8000;
3599 else
3600 *q-- = *p++;
3602 /* skip over guard word */
3603 ++p;
3604 /* move the significand */
3605 if (REAL_WORDS_BIG_ENDIAN)
3607 for (i = 0; i < 7; i++)
3608 *q++ = *p++;
3610 else
3612 for (i = 0; i < 7; i++)
3613 *q-- = *p++;
3617 /* Convert e-type X to IEEE double extended format E. */
3619 static void
3620 etoe64 (x, e)
3621 unsigned EMUSHORT *x, *e;
3623 unsigned EMUSHORT xi[NI];
3624 EMULONG exp;
3625 int rndsav;
3627 #ifdef NANS
3628 if (eisnan (x))
3630 make_nan (e, eisneg (x), XFmode);
3631 return;
3633 #endif
3634 emovi (x, xi);
3635 /* adjust exponent for offset */
3636 exp = (EMULONG) xi[E];
3637 #ifdef INFINITY
3638 if (eisinf (x))
3639 goto nonorm;
3640 #endif
3641 /* round off to nearest or even */
3642 rndsav = rndprc;
3643 rndprc = 64;
3644 emdnorm (xi, 0, 0, exp, 64);
3645 rndprc = rndsav;
3646 #ifdef INFINITY
3647 nonorm:
3648 #endif
3649 toe64 (xi, e);
3652 /* Convert exploded e-type X, that has already been rounded to
3653 64-bit precision, to IEEE double extended format Y. */
3655 static void
3656 toe64 (a, b)
3657 unsigned EMUSHORT *a, *b;
3659 register unsigned EMUSHORT *p, *q;
3660 unsigned EMUSHORT i;
3662 #ifdef NANS
3663 if (eiisnan (a))
3665 make_nan (b, eiisneg (a), XFmode);
3666 return;
3668 #endif
3669 /* Shift denormal long double Intel format significand down one bit. */
3670 if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN)
3671 eshdn1 (a);
3672 p = a;
3673 #ifdef IBM
3674 q = b;
3675 #endif
3676 #ifdef DEC
3677 q = b + 4;
3678 #endif
3679 #ifdef IEEE
3680 if (REAL_WORDS_BIG_ENDIAN)
3681 q = b;
3682 else
3684 q = b + 4; /* point to output exponent */
3685 /* Clear the last two bytes of 12-byte Intel format. q is pointing
3686 into an array of size 6 (e.g. x[NE]), so the last two bytes are
3687 always there, and there are never more bytes, even when we are using
3688 INTEL_EXTENDED_IEEE_FORMAT. */
3689 *(q+1) = 0;
3691 #endif
3693 /* combine sign and exponent */
3694 i = *p++;
3695 #ifdef IBM
3696 if (i)
3697 *q++ = *p++ | 0x8000;
3698 else
3699 *q++ = *p++;
3700 *q++ = 0;
3701 #endif
3702 #ifdef DEC
3703 if (i)
3704 *q-- = *p++ | 0x8000;
3705 else
3706 *q-- = *p++;
3707 #endif
3708 #ifdef IEEE
3709 if (REAL_WORDS_BIG_ENDIAN)
3711 #ifdef ARM_EXTENDED_IEEE_FORMAT
3712 /* The exponent is in the lowest 15 bits of the first word. */
3713 *q++ = i ? 0x8000 : 0;
3714 *q++ = *p++;
3715 #else
3716 if (i)
3717 *q++ = *p++ | 0x8000;
3718 else
3719 *q++ = *p++;
3720 *q++ = 0;
3721 #endif
3723 else
3725 if (i)
3726 *q-- = *p++ | 0x8000;
3727 else
3728 *q-- = *p++;
3730 #endif
3731 /* skip over guard word */
3732 ++p;
3733 /* move the significand */
3734 #ifdef IBM
3735 for (i = 0; i < 4; i++)
3736 *q++ = *p++;
3737 #endif
3738 #ifdef DEC
3739 for (i = 0; i < 4; i++)
3740 *q-- = *p++;
3741 #endif
3742 #ifdef IEEE
3743 if (REAL_WORDS_BIG_ENDIAN)
3745 for (i = 0; i < 4; i++)
3746 *q++ = *p++;
3748 else
3750 #ifdef INFINITY
3751 if (eiisinf (a))
3753 /* Intel long double infinity significand. */
3754 *q-- = 0x8000;
3755 *q-- = 0;
3756 *q-- = 0;
3757 *q = 0;
3758 return;
3760 #endif
3761 for (i = 0; i < 4; i++)
3762 *q-- = *p++;
3764 #endif
3767 /* e type to double precision. */
3769 #ifdef DEC
3770 /* Convert e-type X to DEC-format double E. */
3772 static void
3773 etoe53 (x, e)
3774 unsigned EMUSHORT *x, *e;
3776 etodec (x, e); /* see etodec.c */
3779 /* Convert exploded e-type X, that has already been rounded to
3780 56-bit double precision, to DEC double Y. */
3782 static void
3783 toe53 (x, y)
3784 unsigned EMUSHORT *x, *y;
3786 todec (x, y);
3789 #else
3790 #ifdef IBM
3791 /* Convert e-type X to IBM 370-format double E. */
3793 static void
3794 etoe53 (x, e)
3795 unsigned EMUSHORT *x, *e;
3797 etoibm (x, e, DFmode);
3800 /* Convert exploded e-type X, that has already been rounded to
3801 56-bit precision, to IBM 370 double Y. */
3803 static void
3804 toe53 (x, y)
3805 unsigned EMUSHORT *x, *y;
3807 toibm (x, y, DFmode);
3810 #else /* it's neither DEC nor IBM */
3811 #ifdef C4X
3812 /* Convert e-type X to C4X-format long double E. */
3814 static void
3815 etoe53 (x, e)
3816 unsigned EMUSHORT *x, *e;
3818 etoc4x (x, e, HFmode);
3821 /* Convert exploded e-type X, that has already been rounded to
3822 56-bit precision, to IBM 370 double Y. */
3824 static void
3825 toe53 (x, y)
3826 unsigned EMUSHORT *x, *y;
3828 toc4x (x, y, HFmode);
3831 #else /* it's neither DEC nor IBM nor C4X */
3833 /* Convert e-type X to IEEE double E. */
3835 static void
3836 etoe53 (x, e)
3837 unsigned EMUSHORT *x, *e;
3839 unsigned EMUSHORT xi[NI];
3840 EMULONG exp;
3841 int rndsav;
3843 #ifdef NANS
3844 if (eisnan (x))
3846 make_nan (e, eisneg (x), DFmode);
3847 return;
3849 #endif
3850 emovi (x, xi);
3851 /* adjust exponent for offsets */
3852 exp = (EMULONG) xi[E] - (EXONE - 0x3ff);
3853 #ifdef INFINITY
3854 if (eisinf (x))
3855 goto nonorm;
3856 #endif
3857 /* round off to nearest or even */
3858 rndsav = rndprc;
3859 rndprc = 53;
3860 emdnorm (xi, 0, 0, exp, 64);
3861 rndprc = rndsav;
3862 #ifdef INFINITY
3863 nonorm:
3864 #endif
3865 toe53 (xi, e);
3868 /* Convert exploded e-type X, that has already been rounded to
3869 53-bit precision, to IEEE double Y. */
3871 static void
3872 toe53 (x, y)
3873 unsigned EMUSHORT *x, *y;
3875 unsigned EMUSHORT i;
3876 unsigned EMUSHORT *p;
3878 #ifdef NANS
3879 if (eiisnan (x))
3881 make_nan (y, eiisneg (x), DFmode);
3882 return;
3884 #endif
3885 p = &x[0];
3886 #ifdef IEEE
3887 if (! REAL_WORDS_BIG_ENDIAN)
3888 y += 3;
3889 #endif
3890 *y = 0; /* output high order */
3891 if (*p++)
3892 *y = 0x8000; /* output sign bit */
3894 i = *p++;
3895 if (i >= (unsigned int) 2047)
3897 /* Saturate at largest number less than infinity. */
3898 #ifdef INFINITY
3899 *y |= 0x7ff0;
3900 if (! REAL_WORDS_BIG_ENDIAN)
3902 *(--y) = 0;
3903 *(--y) = 0;
3904 *(--y) = 0;
3906 else
3908 ++y;
3909 *y++ = 0;
3910 *y++ = 0;
3911 *y++ = 0;
3913 #else
3914 *y |= (unsigned EMUSHORT) 0x7fef;
3915 if (! REAL_WORDS_BIG_ENDIAN)
3917 *(--y) = 0xffff;
3918 *(--y) = 0xffff;
3919 *(--y) = 0xffff;
3921 else
3923 ++y;
3924 *y++ = 0xffff;
3925 *y++ = 0xffff;
3926 *y++ = 0xffff;
3928 #endif
3929 return;
3931 if (i == 0)
3933 eshift (x, 4);
3935 else
3937 i <<= 4;
3938 eshift (x, 5);
3940 i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */
3941 *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */
3942 if (! REAL_WORDS_BIG_ENDIAN)
3944 *(--y) = *p++;
3945 *(--y) = *p++;
3946 *(--y) = *p;
3948 else
3950 ++y;
3951 *y++ = *p++;
3952 *y++ = *p++;
3953 *y++ = *p++;
3957 #endif /* not C4X */
3958 #endif /* not IBM */
3959 #endif /* not DEC */
3963 /* e type to single precision. */
3965 #ifdef IBM
3966 /* Convert e-type X to IBM 370 float E. */
3968 static void
3969 etoe24 (x, e)
3970 unsigned EMUSHORT *x, *e;
3972 etoibm (x, e, SFmode);
3975 /* Convert exploded e-type X, that has already been rounded to
3976 float precision, to IBM 370 float Y. */
3978 static void
3979 toe24 (x, y)
3980 unsigned EMUSHORT *x, *y;
3982 toibm (x, y, SFmode);
3985 #else
3987 #ifdef C4X
3988 /* Convert e-type X to C4X float E. */
3990 static void
3991 etoe24 (x, e)
3992 unsigned EMUSHORT *x, *e;
3994 etoc4x (x, e, QFmode);
3997 /* Convert exploded e-type X, that has already been rounded to
3998 float precision, to IBM 370 float Y. */
4000 static void
4001 toe24 (x, y)
4002 unsigned EMUSHORT *x, *y;
4004 toc4x (x, y, QFmode);
4007 #else
4009 /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */
4011 static void
4012 etoe24 (x, e)
4013 unsigned EMUSHORT *x, *e;
4015 EMULONG exp;
4016 unsigned EMUSHORT xi[NI];
4017 int rndsav;
4019 #ifdef NANS
4020 if (eisnan (x))
4022 make_nan (e, eisneg (x), SFmode);
4023 return;
4025 #endif
4026 emovi (x, xi);
4027 /* adjust exponent for offsets */
4028 exp = (EMULONG) xi[E] - (EXONE - 0177);
4029 #ifdef INFINITY
4030 if (eisinf (x))
4031 goto nonorm;
4032 #endif
4033 /* round off to nearest or even */
4034 rndsav = rndprc;
4035 rndprc = 24;
4036 emdnorm (xi, 0, 0, exp, 64);
4037 rndprc = rndsav;
4038 #ifdef INFINITY
4039 nonorm:
4040 #endif
4041 toe24 (xi, e);
4044 /* Convert exploded e-type X, that has already been rounded to
4045 float precision, to IEEE float Y. */
4047 static void
4048 toe24 (x, y)
4049 unsigned EMUSHORT *x, *y;
4051 unsigned EMUSHORT i;
4052 unsigned EMUSHORT *p;
4054 #ifdef NANS
4055 if (eiisnan (x))
4057 make_nan (y, eiisneg (x), SFmode);
4058 return;
4060 #endif
4061 p = &x[0];
4062 #ifdef IEEE
4063 if (! REAL_WORDS_BIG_ENDIAN)
4064 y += 1;
4065 #endif
4066 #ifdef DEC
4067 y += 1;
4068 #endif
4069 *y = 0; /* output high order */
4070 if (*p++)
4071 *y = 0x8000; /* output sign bit */
4073 i = *p++;
4074 /* Handle overflow cases. */
4075 if (i >= 255)
4077 #ifdef INFINITY
4078 *y |= (unsigned EMUSHORT) 0x7f80;
4079 #ifdef DEC
4080 *(--y) = 0;
4081 #endif
4082 #ifdef IEEE
4083 if (! REAL_WORDS_BIG_ENDIAN)
4084 *(--y) = 0;
4085 else
4087 ++y;
4088 *y = 0;
4090 #endif
4091 #else /* no INFINITY */
4092 *y |= (unsigned EMUSHORT) 0x7f7f;
4093 #ifdef DEC
4094 *(--y) = 0xffff;
4095 #endif
4096 #ifdef IEEE
4097 if (! REAL_WORDS_BIG_ENDIAN)
4098 *(--y) = 0xffff;
4099 else
4101 ++y;
4102 *y = 0xffff;
4104 #endif
4105 #ifdef ERANGE
4106 errno = ERANGE;
4107 #endif
4108 #endif /* no INFINITY */
4109 return;
4111 if (i == 0)
4113 eshift (x, 7);
4115 else
4117 i <<= 7;
4118 eshift (x, 8);
4120 i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */
4121 /* High order output already has sign bit set. */
4122 *y |= i;
4123 #ifdef DEC
4124 *(--y) = *p;
4125 #endif
4126 #ifdef IEEE
4127 if (! REAL_WORDS_BIG_ENDIAN)
4128 *(--y) = *p;
4129 else
4131 ++y;
4132 *y = *p;
4134 #endif
4136 #endif /* not C4X */
4137 #endif /* not IBM */
4139 /* Compare two e type numbers.
4140 Return +1 if a > b
4141 0 if a == b
4142 -1 if a < b
4143 -2 if either a or b is a NaN. */
4145 static int
4146 ecmp (a, b)
4147 unsigned EMUSHORT *a, *b;
4149 unsigned EMUSHORT ai[NI], bi[NI];
4150 register unsigned EMUSHORT *p, *q;
4151 register int i;
4152 int msign;
4154 #ifdef NANS
4155 if (eisnan (a) || eisnan (b))
4156 return (-2);
4157 #endif
4158 emovi (a, ai);
4159 p = ai;
4160 emovi (b, bi);
4161 q = bi;
4163 if (*p != *q)
4164 { /* the signs are different */
4165 /* -0 equals + 0 */
4166 for (i = 1; i < NI - 1; i++)
4168 if (ai[i] != 0)
4169 goto nzro;
4170 if (bi[i] != 0)
4171 goto nzro;
4173 return (0);
4174 nzro:
4175 if (*p == 0)
4176 return (1);
4177 else
4178 return (-1);
4180 /* both are the same sign */
4181 if (*p == 0)
4182 msign = 1;
4183 else
4184 msign = -1;
4185 i = NI - 1;
4188 if (*p++ != *q++)
4190 goto diff;
4193 while (--i > 0);
4195 return (0); /* equality */
4197 diff:
4199 if (*(--p) > *(--q))
4200 return (msign); /* p is bigger */
4201 else
4202 return (-msign); /* p is littler */
4205 #if 0
4206 /* Find e-type nearest integer to X, as floor (X + 0.5). */
4208 static void
4209 eround (x, y)
4210 unsigned EMUSHORT *x, *y;
4212 eadd (ehalf, x, y);
4213 efloor (y, y);
4215 #endif /* 0 */
4217 /* Convert HOST_WIDE_INT LP to e type Y. */
4219 static void
4220 ltoe (lp, y)
4221 HOST_WIDE_INT *lp;
4222 unsigned EMUSHORT *y;
4224 unsigned EMUSHORT yi[NI];
4225 unsigned HOST_WIDE_INT ll;
4226 int k;
4228 ecleaz (yi);
4229 if (*lp < 0)
4231 /* make it positive */
4232 ll = (unsigned HOST_WIDE_INT) (-(*lp));
4233 yi[0] = 0xffff; /* put correct sign in the e type number */
4235 else
4237 ll = (unsigned HOST_WIDE_INT) (*lp);
4239 /* move the long integer to yi significand area */
4240 #if HOST_BITS_PER_WIDE_INT == 64
4241 yi[M] = (unsigned EMUSHORT) (ll >> 48);
4242 yi[M + 1] = (unsigned EMUSHORT) (ll >> 32);
4243 yi[M + 2] = (unsigned EMUSHORT) (ll >> 16);
4244 yi[M + 3] = (unsigned EMUSHORT) ll;
4245 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
4246 #else
4247 yi[M] = (unsigned EMUSHORT) (ll >> 16);
4248 yi[M + 1] = (unsigned EMUSHORT) ll;
4249 yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */
4250 #endif
4252 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
4253 ecleaz (yi); /* it was zero */
4254 else
4255 yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
4256 emovo (yi, y); /* output the answer */
4259 /* Convert unsigned HOST_WIDE_INT LP to e type Y. */
4261 static void
4262 ultoe (lp, y)
4263 unsigned HOST_WIDE_INT *lp;
4264 unsigned EMUSHORT *y;
4266 unsigned EMUSHORT yi[NI];
4267 unsigned HOST_WIDE_INT ll;
4268 int k;
4270 ecleaz (yi);
4271 ll = *lp;
4273 /* move the long integer to ayi significand area */
4274 #if HOST_BITS_PER_WIDE_INT == 64
4275 yi[M] = (unsigned EMUSHORT) (ll >> 48);
4276 yi[M + 1] = (unsigned EMUSHORT) (ll >> 32);
4277 yi[M + 2] = (unsigned EMUSHORT) (ll >> 16);
4278 yi[M + 3] = (unsigned EMUSHORT) ll;
4279 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
4280 #else
4281 yi[M] = (unsigned EMUSHORT) (ll >> 16);
4282 yi[M + 1] = (unsigned EMUSHORT) ll;
4283 yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */
4284 #endif
4286 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
4287 ecleaz (yi); /* it was zero */
4288 else
4289 yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */
4290 emovo (yi, y); /* output the answer */
4294 /* Find signed HOST_WIDE_INT integer I and floating point fractional
4295 part FRAC of e-type (packed internal format) floating point input X.
4296 The integer output I has the sign of the input, except that
4297 positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC.
4298 The output e-type fraction FRAC is the positive fractional
4299 part of abs (X). */
4301 static void
4302 eifrac (x, i, frac)
4303 unsigned EMUSHORT *x;
4304 HOST_WIDE_INT *i;
4305 unsigned EMUSHORT *frac;
4307 unsigned EMUSHORT xi[NI];
4308 int j, k;
4309 unsigned HOST_WIDE_INT ll;
4311 emovi (x, xi);
4312 k = (int) xi[E] - (EXONE - 1);
4313 if (k <= 0)
4315 /* if exponent <= 0, integer = 0 and real output is fraction */
4316 *i = 0L;
4317 emovo (xi, frac);
4318 return;
4320 if (k > (HOST_BITS_PER_WIDE_INT - 1))
4322 /* long integer overflow: output large integer
4323 and correct fraction */
4324 if (xi[0])
4325 *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1);
4326 else
4328 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4329 /* In this case, let it overflow and convert as if unsigned. */
4330 euifrac (x, &ll, frac);
4331 *i = (HOST_WIDE_INT) ll;
4332 return;
4333 #else
4334 /* In other cases, return the largest positive integer. */
4335 *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1;
4336 #endif
4338 eshift (xi, k);
4339 if (extra_warnings)
4340 warning ("overflow on truncation to integer");
4342 else if (k > 16)
4344 /* Shift more than 16 bits: first shift up k-16 mod 16,
4345 then shift up by 16's. */
4346 j = k - ((k >> 4) << 4);
4347 eshift (xi, j);
4348 ll = xi[M];
4349 k -= j;
4352 eshup6 (xi);
4353 ll = (ll << 16) | xi[M];
4355 while ((k -= 16) > 0);
4356 *i = ll;
4357 if (xi[0])
4358 *i = -(*i);
4360 else
4362 /* shift not more than 16 bits */
4363 eshift (xi, k);
4364 *i = (HOST_WIDE_INT) xi[M] & 0xffff;
4365 if (xi[0])
4366 *i = -(*i);
4368 xi[0] = 0;
4369 xi[E] = EXONE - 1;
4370 xi[M] = 0;
4371 if ((k = enormlz (xi)) > NBITS)
4372 ecleaz (xi);
4373 else
4374 xi[E] -= (unsigned EMUSHORT) k;
4376 emovo (xi, frac);
4380 /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part
4381 FRAC of e-type X. A negative input yields integer output = 0 but
4382 correct fraction. */
4384 static void
4385 euifrac (x, i, frac)
4386 unsigned EMUSHORT *x;
4387 unsigned HOST_WIDE_INT *i;
4388 unsigned EMUSHORT *frac;
4390 unsigned HOST_WIDE_INT ll;
4391 unsigned EMUSHORT xi[NI];
4392 int j, k;
4394 emovi (x, xi);
4395 k = (int) xi[E] - (EXONE - 1);
4396 if (k <= 0)
4398 /* if exponent <= 0, integer = 0 and argument is fraction */
4399 *i = 0L;
4400 emovo (xi, frac);
4401 return;
4403 if (k > HOST_BITS_PER_WIDE_INT)
4405 /* Long integer overflow: output large integer
4406 and correct fraction.
4407 Note, the BSD microvax compiler says that ~(0UL)
4408 is a syntax error. */
4409 *i = ~(0L);
4410 eshift (xi, k);
4411 if (extra_warnings)
4412 warning ("overflow on truncation to unsigned integer");
4414 else if (k > 16)
4416 /* Shift more than 16 bits: first shift up k-16 mod 16,
4417 then shift up by 16's. */
4418 j = k - ((k >> 4) << 4);
4419 eshift (xi, j);
4420 ll = xi[M];
4421 k -= j;
4424 eshup6 (xi);
4425 ll = (ll << 16) | xi[M];
4427 while ((k -= 16) > 0);
4428 *i = ll;
4430 else
4432 /* shift not more than 16 bits */
4433 eshift (xi, k);
4434 *i = (HOST_WIDE_INT) xi[M] & 0xffff;
4437 if (xi[0]) /* A negative value yields unsigned integer 0. */
4438 *i = 0L;
4440 xi[0] = 0;
4441 xi[E] = EXONE - 1;
4442 xi[M] = 0;
4443 if ((k = enormlz (xi)) > NBITS)
4444 ecleaz (xi);
4445 else
4446 xi[E] -= (unsigned EMUSHORT) k;
4448 emovo (xi, frac);
4451 /* Shift the significand of exploded e-type X up or down by SC bits. */
4453 static int
4454 eshift (x, sc)
4455 unsigned EMUSHORT *x;
4456 int sc;
4458 unsigned EMUSHORT lost;
4459 unsigned EMUSHORT *p;
4461 if (sc == 0)
4462 return (0);
4464 lost = 0;
4465 p = x + NI - 1;
4467 if (sc < 0)
4469 sc = -sc;
4470 while (sc >= 16)
4472 lost |= *p; /* remember lost bits */
4473 eshdn6 (x);
4474 sc -= 16;
4477 while (sc >= 8)
4479 lost |= *p & 0xff;
4480 eshdn8 (x);
4481 sc -= 8;
4484 while (sc > 0)
4486 lost |= *p & 1;
4487 eshdn1 (x);
4488 sc -= 1;
4491 else
4493 while (sc >= 16)
4495 eshup6 (x);
4496 sc -= 16;
4499 while (sc >= 8)
4501 eshup8 (x);
4502 sc -= 8;
4505 while (sc > 0)
4507 eshup1 (x);
4508 sc -= 1;
4511 if (lost)
4512 lost = 1;
4513 return ((int) lost);
4516 /* Shift normalize the significand area of exploded e-type X.
4517 Return the shift count (up = positive). */
4519 static int
4520 enormlz (x)
4521 unsigned EMUSHORT x[];
4523 register unsigned EMUSHORT *p;
4524 int sc;
4526 sc = 0;
4527 p = &x[M];
4528 if (*p != 0)
4529 goto normdn;
4530 ++p;
4531 if (*p & 0x8000)
4532 return (0); /* already normalized */
4533 while (*p == 0)
4535 eshup6 (x);
4536 sc += 16;
4538 /* With guard word, there are NBITS+16 bits available.
4539 Return true if all are zero. */
4540 if (sc > NBITS)
4541 return (sc);
4543 /* see if high byte is zero */
4544 while ((*p & 0xff00) == 0)
4546 eshup8 (x);
4547 sc += 8;
4549 /* now shift 1 bit at a time */
4550 while ((*p & 0x8000) == 0)
4552 eshup1 (x);
4553 sc += 1;
4554 if (sc > NBITS)
4556 mtherr ("enormlz", UNDERFLOW);
4557 return (sc);
4560 return (sc);
4562 /* Normalize by shifting down out of the high guard word
4563 of the significand */
4564 normdn:
4566 if (*p & 0xff00)
4568 eshdn8 (x);
4569 sc -= 8;
4571 while (*p != 0)
4573 eshdn1 (x);
4574 sc -= 1;
4576 if (sc < -NBITS)
4578 mtherr ("enormlz", OVERFLOW);
4579 return (sc);
4582 return (sc);
4585 /* Powers of ten used in decimal <-> binary conversions. */
4587 #define NTEN 12
4588 #define MAXP 4096
4590 #if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && !defined(INTEL_EXTENDED_IEEE_FORMAT)
4591 static unsigned EMUSHORT etens[NTEN + 1][NE] =
4593 {0x6576, 0x4a92, 0x804a, 0x153f,
4594 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */
4595 {0x6a32, 0xce52, 0x329a, 0x28ce,
4596 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */
4597 {0x526c, 0x50ce, 0xf18b, 0x3d28,
4598 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
4599 {0x9c66, 0x58f8, 0xbc50, 0x5c54,
4600 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
4601 {0x851e, 0xeab7, 0x98fe, 0x901b,
4602 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
4603 {0x0235, 0x0137, 0x36b1, 0x336c,
4604 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
4605 {0x50f8, 0x25fb, 0xc76b, 0x6b71,
4606 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
4607 {0x0000, 0x0000, 0x0000, 0x0000,
4608 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
4609 {0x0000, 0x0000, 0x0000, 0x0000,
4610 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
4611 {0x0000, 0x0000, 0x0000, 0x0000,
4612 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
4613 {0x0000, 0x0000, 0x0000, 0x0000,
4614 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
4615 {0x0000, 0x0000, 0x0000, 0x0000,
4616 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
4617 {0x0000, 0x0000, 0x0000, 0x0000,
4618 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */
4621 static unsigned EMUSHORT emtens[NTEN + 1][NE] =
4623 {0x2030, 0xcffc, 0xa1c3, 0x8123,
4624 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */
4625 {0x8264, 0xd2cb, 0xf2ea, 0x12d4,
4626 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */
4627 {0xf53f, 0xf698, 0x6bd3, 0x0158,
4628 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
4629 {0xe731, 0x04d4, 0xe3f2, 0xd332,
4630 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
4631 {0xa23e, 0x5308, 0xfefb, 0x1155,
4632 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
4633 {0xe26d, 0xdbde, 0xd05d, 0xb3f6,
4634 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
4635 {0x2a20, 0x6224, 0x47b3, 0x98d7,
4636 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
4637 {0x0b5b, 0x4af2, 0xa581, 0x18ed,
4638 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
4639 {0xbf71, 0xa9b3, 0x7989, 0xbe68,
4640 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
4641 {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
4642 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
4643 {0xc155, 0xa4a8, 0x404e, 0x6113,
4644 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
4645 {0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
4646 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
4647 {0xcccd, 0xcccc, 0xcccc, 0xcccc,
4648 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */
4650 #else
4651 /* LONG_DOUBLE_TYPE_SIZE is other than 128 */
4652 static unsigned EMUSHORT etens[NTEN + 1][NE] =
4654 {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */
4655 {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */
4656 {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
4657 {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
4658 {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
4659 {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
4660 {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
4661 {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
4662 {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
4663 {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
4664 {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
4665 {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
4666 {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */
4669 static unsigned EMUSHORT emtens[NTEN + 1][NE] =
4671 {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */
4672 {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */
4673 {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
4674 {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
4675 {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
4676 {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
4677 {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
4678 {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
4679 {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
4680 {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
4681 {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
4682 {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
4683 {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */
4685 #endif
4687 #if 0
4688 /* Convert float value X to ASCII string STRING with NDIG digits after
4689 the decimal point. */
4691 static void
4692 e24toasc (x, string, ndigs)
4693 unsigned EMUSHORT x[];
4694 char *string;
4695 int ndigs;
4697 unsigned EMUSHORT w[NI];
4699 e24toe (x, w);
4700 etoasc (w, string, ndigs);
4703 /* Convert double value X to ASCII string STRING with NDIG digits after
4704 the decimal point. */
4706 static void
4707 e53toasc (x, string, ndigs)
4708 unsigned EMUSHORT x[];
4709 char *string;
4710 int ndigs;
4712 unsigned EMUSHORT w[NI];
4714 e53toe (x, w);
4715 etoasc (w, string, ndigs);
4718 /* Convert double extended value X to ASCII string STRING with NDIG digits
4719 after the decimal point. */
4721 static void
4722 e64toasc (x, string, ndigs)
4723 unsigned EMUSHORT x[];
4724 char *string;
4725 int ndigs;
4727 unsigned EMUSHORT w[NI];
4729 e64toe (x, w);
4730 etoasc (w, string, ndigs);
4733 /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
4734 after the decimal point. */
4736 static void
4737 e113toasc (x, string, ndigs)
4738 unsigned EMUSHORT x[];
4739 char *string;
4740 int ndigs;
4742 unsigned EMUSHORT w[NI];
4744 e113toe (x, w);
4745 etoasc (w, string, ndigs);
4747 #endif /* 0 */
4749 /* Convert e-type X to ASCII string STRING with NDIGS digits after
4750 the decimal point. */
4752 static char wstring[80]; /* working storage for ASCII output */
4754 static void
4755 etoasc (x, string, ndigs)
4756 unsigned EMUSHORT x[];
4757 char *string;
4758 int ndigs;
4760 EMUSHORT digit;
4761 unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI];
4762 unsigned EMUSHORT *p, *r, *ten;
4763 unsigned EMUSHORT sign;
4764 int i, j, k, expon, rndsav;
4765 char *s, *ss;
4766 unsigned EMUSHORT m;
4769 rndsav = rndprc;
4770 ss = string;
4771 s = wstring;
4772 *ss = '\0';
4773 *s = '\0';
4774 #ifdef NANS
4775 if (eisnan (x))
4777 sprintf (wstring, " NaN ");
4778 goto bxit;
4780 #endif
4781 rndprc = NBITS; /* set to full precision */
4782 emov (x, y); /* retain external format */
4783 if (y[NE - 1] & 0x8000)
4785 sign = 0xffff;
4786 y[NE - 1] &= 0x7fff;
4788 else
4790 sign = 0;
4792 expon = 0;
4793 ten = &etens[NTEN][0];
4794 emov (eone, t);
4795 /* Test for zero exponent */
4796 if (y[NE - 1] == 0)
4798 for (k = 0; k < NE - 1; k++)
4800 if (y[k] != 0)
4801 goto tnzro; /* denormalized number */
4803 goto isone; /* valid all zeros */
4805 tnzro:
4807 /* Test for infinity. */
4808 if (y[NE - 1] == 0x7fff)
4810 if (sign)
4811 sprintf (wstring, " -Infinity ");
4812 else
4813 sprintf (wstring, " Infinity ");
4814 goto bxit;
4817 /* Test for exponent nonzero but significand denormalized.
4818 * This is an error condition.
4820 if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0))
4822 mtherr ("etoasc", DOMAIN);
4823 sprintf (wstring, "NaN");
4824 goto bxit;
4827 /* Compare to 1.0 */
4828 i = ecmp (eone, y);
4829 if (i == 0)
4830 goto isone;
4832 if (i == -2)
4833 abort ();
4835 if (i < 0)
4836 { /* Number is greater than 1 */
4837 /* Convert significand to an integer and strip trailing decimal zeros. */
4838 emov (y, u);
4839 u[NE - 1] = EXONE + NBITS - 1;
4841 p = &etens[NTEN - 4][0];
4842 m = 16;
4845 ediv (p, u, t);
4846 efloor (t, w);
4847 for (j = 0; j < NE - 1; j++)
4849 if (t[j] != w[j])
4850 goto noint;
4852 emov (t, u);
4853 expon += (int) m;
4854 noint:
4855 p += NE;
4856 m >>= 1;
4858 while (m != 0);
4860 /* Rescale from integer significand */
4861 u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1);
4862 emov (u, y);
4863 /* Find power of 10 */
4864 emov (eone, t);
4865 m = MAXP;
4866 p = &etens[0][0];
4867 /* An unordered compare result shouldn't happen here. */
4868 while (ecmp (ten, u) <= 0)
4870 if (ecmp (p, u) <= 0)
4872 ediv (p, u, u);
4873 emul (p, t, t);
4874 expon += (int) m;
4876 m >>= 1;
4877 if (m == 0)
4878 break;
4879 p += NE;
4882 else
4883 { /* Number is less than 1.0 */
4884 /* Pad significand with trailing decimal zeros. */
4885 if (y[NE - 1] == 0)
4887 while ((y[NE - 2] & 0x8000) == 0)
4889 emul (ten, y, y);
4890 expon -= 1;
4893 else
4895 emovi (y, w);
4896 for (i = 0; i < NDEC + 1; i++)
4898 if ((w[NI - 1] & 0x7) != 0)
4899 break;
4900 /* multiply by 10 */
4901 emovz (w, u);
4902 eshdn1 (u);
4903 eshdn1 (u);
4904 eaddm (w, u);
4905 u[1] += 3;
4906 while (u[2] != 0)
4908 eshdn1 (u);
4909 u[1] += 1;
4911 if (u[NI - 1] != 0)
4912 break;
4913 if (eone[NE - 1] <= u[1])
4914 break;
4915 emovz (u, w);
4916 expon -= 1;
4918 emovo (w, y);
4920 k = -MAXP;
4921 p = &emtens[0][0];
4922 r = &etens[0][0];
4923 emov (y, w);
4924 emov (eone, t);
4925 while (ecmp (eone, w) > 0)
4927 if (ecmp (p, w) >= 0)
4929 emul (r, w, w);
4930 emul (r, t, t);
4931 expon += k;
4933 k /= 2;
4934 if (k == 0)
4935 break;
4936 p += NE;
4937 r += NE;
4939 ediv (t, eone, t);
4941 isone:
4942 /* Find the first (leading) digit. */
4943 emovi (t, w);
4944 emovz (w, t);
4945 emovi (y, w);
4946 emovz (w, y);
4947 eiremain (t, y);
4948 digit = equot[NI - 1];
4949 while ((digit == 0) && (ecmp (y, ezero) != 0))
4951 eshup1 (y);
4952 emovz (y, u);
4953 eshup1 (u);
4954 eshup1 (u);
4955 eaddm (u, y);
4956 eiremain (t, y);
4957 digit = equot[NI - 1];
4958 expon -= 1;
4960 s = wstring;
4961 if (sign)
4962 *s++ = '-';
4963 else
4964 *s++ = ' ';
4965 /* Examine number of digits requested by caller. */
4966 if (ndigs < 0)
4967 ndigs = 0;
4968 if (ndigs > NDEC)
4969 ndigs = NDEC;
4970 if (digit == 10)
4972 *s++ = '1';
4973 *s++ = '.';
4974 if (ndigs > 0)
4976 *s++ = '0';
4977 ndigs -= 1;
4979 expon += 1;
4981 else
4983 *s++ = (char)digit + '0';
4984 *s++ = '.';
4986 /* Generate digits after the decimal point. */
4987 for (k = 0; k <= ndigs; k++)
4989 /* multiply current number by 10, without normalizing */
4990 eshup1 (y);
4991 emovz (y, u);
4992 eshup1 (u);
4993 eshup1 (u);
4994 eaddm (u, y);
4995 eiremain (t, y);
4996 *s++ = (char) equot[NI - 1] + '0';
4998 digit = equot[NI - 1];
4999 --s;
5000 ss = s;
5001 /* round off the ASCII string */
5002 if (digit > 4)
5004 /* Test for critical rounding case in ASCII output. */
5005 if (digit == 5)
5007 emovo (y, t);
5008 if (ecmp (t, ezero) != 0)
5009 goto roun; /* round to nearest */
5010 #ifndef C4X
5011 if ((*(s - 1) & 1) == 0)
5012 goto doexp; /* round to even */
5013 #endif
5015 /* Round up and propagate carry-outs */
5016 roun:
5017 --s;
5018 k = *s & CHARMASK;
5019 /* Carry out to most significant digit? */
5020 if (k == '.')
5022 --s;
5023 k = *s;
5024 k += 1;
5025 *s = (char) k;
5026 /* Most significant digit carries to 10? */
5027 if (k > '9')
5029 expon += 1;
5030 *s = '1';
5032 goto doexp;
5034 /* Round up and carry out from less significant digits */
5035 k += 1;
5036 *s = (char) k;
5037 if (k > '9')
5039 *s = '0';
5040 goto roun;
5043 doexp:
5045 if (expon >= 0)
5046 sprintf (ss, "e+%d", expon);
5047 else
5048 sprintf (ss, "e%d", expon);
5050 sprintf (ss, "e%d", expon);
5051 bxit:
5052 rndprc = rndsav;
5053 /* copy out the working string */
5054 s = string;
5055 ss = wstring;
5056 while (*ss == ' ') /* strip possible leading space */
5057 ++ss;
5058 while ((*s++ = *ss++) != '\0')
5063 /* Convert ASCII string to floating point.
5065 Numeric input is a free format decimal number of any length, with
5066 or without decimal point. Entering E after the number followed by an
5067 integer number causes the second number to be interpreted as a power of
5068 10 to be multiplied by the first number (i.e., "scientific" notation). */
5070 /* Convert ASCII string S to single precision float value Y. */
5072 static void
5073 asctoe24 (s, y)
5074 const char *s;
5075 unsigned EMUSHORT *y;
5077 asctoeg (s, y, 24);
5081 /* Convert ASCII string S to double precision value Y. */
5083 static void
5084 asctoe53 (s, y)
5085 const char *s;
5086 unsigned EMUSHORT *y;
5088 #if defined(DEC) || defined(IBM)
5089 asctoeg (s, y, 56);
5090 #else
5091 #if defined(C4X)
5092 asctoeg (s, y, 32);
5093 #else
5094 asctoeg (s, y, 53);
5095 #endif
5096 #endif
5100 /* Convert ASCII string S to double extended value Y. */
5102 static void
5103 asctoe64 (s, y)
5104 const char *s;
5105 unsigned EMUSHORT *y;
5107 asctoeg (s, y, 64);
5110 #ifndef INTEL_EXTENDED_IEEE_FORMAT
5111 /* Convert ASCII string S to 128-bit long double Y. */
5113 static void
5114 asctoe113 (s, y)
5115 const char *s;
5116 unsigned EMUSHORT *y;
5118 asctoeg (s, y, 113);
5120 #endif
5122 /* Convert ASCII string S to e type Y. */
5124 static void
5125 asctoe (s, y)
5126 const char *s;
5127 unsigned EMUSHORT *y;
5129 asctoeg (s, y, NBITS);
5132 /* Convert ASCII string SS to e type Y, with a specified rounding precision
5133 of OPREC bits. BASE is 16 for C99 hexadecimal floating constants. */
5135 static void
5136 asctoeg (ss, y, oprec)
5137 const char *ss;
5138 unsigned EMUSHORT *y;
5139 int oprec;
5141 unsigned EMUSHORT yy[NI], xt[NI], tt[NI];
5142 int esign, decflg, sgnflg, nexp, exp, prec, lost;
5143 int i, k, trail, c, rndsav;
5144 EMULONG lexp;
5145 unsigned EMUSHORT nsign;
5146 char *sp, *s, *lstr;
5147 int base = 10;
5149 /* Copy the input string. */
5150 lstr = (char *) alloca (strlen (ss) + 1);
5152 while (*ss == ' ') /* skip leading spaces */
5153 ++ss;
5155 sp = lstr;
5156 while ((*sp++ = *ss++) != '\0')
5158 s = lstr;
5160 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
5162 base = 16;
5163 s += 2;
5166 rndsav = rndprc;
5167 rndprc = NBITS; /* Set to full precision */
5168 lost = 0;
5169 nsign = 0;
5170 decflg = 0;
5171 sgnflg = 0;
5172 nexp = 0;
5173 exp = 0;
5174 prec = 0;
5175 ecleaz (yy);
5176 trail = 0;
5178 nxtcom:
5179 if (*s >= '0' && *s <= '9')
5180 k = *s - '0';
5181 else if (*s >= 'a' && *s <= 'f')
5182 k = 10 + *s - 'a';
5183 else
5184 k = 10 + *s - 'A';
5185 if ((k >= 0) && (k < base))
5187 /* Ignore leading zeros */
5188 if ((prec == 0) && (decflg == 0) && (k == 0))
5189 goto donchr;
5190 /* Identify and strip trailing zeros after the decimal point. */
5191 if ((trail == 0) && (decflg != 0))
5193 sp = s;
5194 while ((*sp >= '0' && *sp <= '9')
5195 || (base == 16 && ((*sp >= 'a' && *sp <= 'f')
5196 || (*sp >= 'A' && *sp <= 'F'))))
5197 ++sp;
5198 /* Check for syntax error */
5199 c = *sp & CHARMASK;
5200 if ((base != 10 || ((c != 'e') && (c != 'E')))
5201 && (base != 16 || ((c != 'p') && (c != 'P')))
5202 && (c != '\0')
5203 && (c != '\n') && (c != '\r') && (c != ' ')
5204 && (c != ','))
5205 goto unexpected_char_error;
5206 --sp;
5207 while (*sp == '0')
5208 *sp-- = 'z';
5209 trail = 1;
5210 if (*s == 'z')
5211 goto donchr;
5214 /* If enough digits were given to more than fill up the yy register,
5215 continuing until overflow into the high guard word yy[2]
5216 guarantees that there will be a roundoff bit at the top
5217 of the low guard word after normalization. */
5219 if (yy[2] == 0)
5221 if (base == 16)
5223 if (decflg)
5224 nexp += 4; /* count digits after decimal point */
5226 eshup1 (yy); /* multiply current number by 16 */
5227 eshup1 (yy);
5228 eshup1 (yy);
5229 eshup1 (yy);
5231 else
5233 if (decflg)
5234 nexp += 1; /* count digits after decimal point */
5236 eshup1 (yy); /* multiply current number by 10 */
5237 emovz (yy, xt);
5238 eshup1 (xt);
5239 eshup1 (xt);
5240 eaddm (xt, yy);
5242 /* Insert the current digit. */
5243 ecleaz (xt);
5244 xt[NI - 2] = (unsigned EMUSHORT) k;
5245 eaddm (xt, yy);
5247 else
5249 /* Mark any lost non-zero digit. */
5250 lost |= k;
5251 /* Count lost digits before the decimal point. */
5252 if (decflg == 0)
5254 if (base == 10)
5255 nexp -= 1;
5256 else
5257 nexp -= 4;
5260 prec += 1;
5261 goto donchr;
5264 switch (*s)
5266 case 'z':
5267 break;
5268 case 'E':
5269 case 'e':
5270 case 'P':
5271 case 'p':
5272 goto expnt;
5273 case '.': /* decimal point */
5274 if (decflg)
5275 goto unexpected_char_error;
5276 ++decflg;
5277 break;
5278 case '-':
5279 nsign = 0xffff;
5280 if (sgnflg)
5281 goto unexpected_char_error;
5282 ++sgnflg;
5283 break;
5284 case '+':
5285 if (sgnflg)
5286 goto unexpected_char_error;
5287 ++sgnflg;
5288 break;
5289 case ',':
5290 case ' ':
5291 case '\0':
5292 case '\n':
5293 case '\r':
5294 goto daldone;
5295 case 'i':
5296 case 'I':
5297 goto infinite;
5298 default:
5299 unexpected_char_error:
5300 #ifdef NANS
5301 einan (yy);
5302 #else
5303 mtherr ("asctoe", DOMAIN);
5304 eclear (yy);
5305 #endif
5306 goto aexit;
5308 donchr:
5309 ++s;
5310 goto nxtcom;
5312 /* Exponent interpretation */
5313 expnt:
5314 /* 0.0eXXX is zero, regardless of XXX. Check for the 0.0. */
5315 for (k = 0; k < NI; k++)
5317 if (yy[k] != 0)
5318 goto read_expnt;
5320 goto aexit;
5322 read_expnt:
5323 esign = 1;
5324 exp = 0;
5325 ++s;
5326 /* check for + or - */
5327 if (*s == '-')
5329 esign = -1;
5330 ++s;
5332 if (*s == '+')
5333 ++s;
5334 while ((*s >= '0') && (*s <= '9'))
5336 exp *= 10;
5337 exp += *s++ - '0';
5338 if (exp > 999999)
5339 break;
5341 if (esign < 0)
5342 exp = -exp;
5343 if ((exp > MAXDECEXP) && (base == 10))
5345 infinite:
5346 ecleaz (yy);
5347 yy[E] = 0x7fff; /* infinity */
5348 goto aexit;
5350 if ((exp < MINDECEXP) && (base == 10))
5352 zero:
5353 ecleaz (yy);
5354 goto aexit;
5357 daldone:
5358 if (base == 16)
5360 /* Base 16 hexadecimal floating constant. */
5361 if ((k = enormlz (yy)) > NBITS)
5363 ecleaz (yy);
5364 goto aexit;
5366 /* Adjust the exponent. NEXP is the number of hex digits,
5367 EXP is a power of 2. */
5368 lexp = (EXONE - 1 + NBITS) - k + yy[E] + exp - nexp;
5369 if (lexp > 0x7fff)
5370 goto infinite;
5371 if (lexp < 0)
5372 goto zero;
5373 yy[E] = lexp;
5374 goto expdon;
5377 nexp = exp - nexp;
5378 /* Pad trailing zeros to minimize power of 10, per IEEE spec. */
5379 while ((nexp > 0) && (yy[2] == 0))
5381 emovz (yy, xt);
5382 eshup1 (xt);
5383 eshup1 (xt);
5384 eaddm (yy, xt);
5385 eshup1 (xt);
5386 if (xt[2] != 0)
5387 break;
5388 nexp -= 1;
5389 emovz (xt, yy);
5391 if ((k = enormlz (yy)) > NBITS)
5393 ecleaz (yy);
5394 goto aexit;
5396 lexp = (EXONE - 1 + NBITS) - k;
5397 emdnorm (yy, lost, 0, lexp, 64);
5398 lost = 0;
5400 /* Convert to external format:
5402 Multiply by 10**nexp. If precision is 64 bits,
5403 the maximum relative error incurred in forming 10**n
5404 for 0 <= n <= 324 is 8.2e-20, at 10**180.
5405 For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
5406 For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */
5408 lexp = yy[E];
5409 if (nexp == 0)
5411 k = 0;
5412 goto expdon;
5414 esign = 1;
5415 if (nexp < 0)
5417 nexp = -nexp;
5418 esign = -1;
5419 if (nexp > 4096)
5421 /* Punt. Can't handle this without 2 divides. */
5422 emovi (etens[0], tt);
5423 lexp -= tt[E];
5424 k = edivm (tt, yy);
5425 lexp += EXONE;
5426 nexp -= 4096;
5429 emov (eone, xt);
5430 exp = 1;
5431 i = NTEN;
5434 if (exp & nexp)
5435 emul (etens[i], xt, xt);
5436 i--;
5437 exp = exp + exp;
5439 while (exp <= MAXP);
5441 emovi (xt, tt);
5442 if (esign < 0)
5444 lexp -= tt[E];
5445 k = edivm (tt, yy);
5446 lexp += EXONE;
5448 else
5450 lexp += tt[E];
5451 k = emulm (tt, yy);
5452 lexp -= EXONE - 1;
5454 lost = k;
5456 expdon:
5458 /* Round and convert directly to the destination type */
5459 if (oprec == 53)
5460 lexp -= EXONE - 0x3ff;
5461 #ifdef C4X
5462 else if (oprec == 24 || oprec == 32)
5463 lexp -= (EXONE - 0x7f);
5464 #else
5465 #ifdef IBM
5466 else if (oprec == 24 || oprec == 56)
5467 lexp -= EXONE - (0x41 << 2);
5468 #else
5469 else if (oprec == 24)
5470 lexp -= EXONE - 0177;
5471 #endif /* IBM */
5472 #endif /* C4X */
5473 #ifdef DEC
5474 else if (oprec == 56)
5475 lexp -= EXONE - 0201;
5476 #endif
5477 rndprc = oprec;
5478 emdnorm (yy, lost, 0, lexp, 64);
5480 aexit:
5482 rndprc = rndsav;
5483 yy[0] = nsign;
5484 switch (oprec)
5486 #ifdef DEC
5487 case 56:
5488 todec (yy, y); /* see etodec.c */
5489 break;
5490 #endif
5491 #ifdef IBM
5492 case 56:
5493 toibm (yy, y, DFmode);
5494 break;
5495 #endif
5496 #ifdef C4X
5497 case 32:
5498 toc4x (yy, y, HFmode);
5499 break;
5500 #endif
5502 case 53:
5503 toe53 (yy, y);
5504 break;
5505 case 24:
5506 toe24 (yy, y);
5507 break;
5508 case 64:
5509 toe64 (yy, y);
5510 break;
5511 case 113:
5512 toe113 (yy, y);
5513 break;
5514 case NBITS:
5515 emovo (yy, y);
5516 break;
5522 /* Return Y = largest integer not greater than X (truncated toward minus
5523 infinity). */
5525 static unsigned EMUSHORT bmask[] =
5527 0xffff,
5528 0xfffe,
5529 0xfffc,
5530 0xfff8,
5531 0xfff0,
5532 0xffe0,
5533 0xffc0,
5534 0xff80,
5535 0xff00,
5536 0xfe00,
5537 0xfc00,
5538 0xf800,
5539 0xf000,
5540 0xe000,
5541 0xc000,
5542 0x8000,
5543 0x0000,
5546 static void
5547 efloor (x, y)
5548 unsigned EMUSHORT x[], y[];
5550 register unsigned EMUSHORT *p;
5551 int e, expon, i;
5552 unsigned EMUSHORT f[NE];
5554 emov (x, f); /* leave in external format */
5555 expon = (int) f[NE - 1];
5556 e = (expon & 0x7fff) - (EXONE - 1);
5557 if (e <= 0)
5559 eclear (y);
5560 goto isitneg;
5562 /* number of bits to clear out */
5563 e = NBITS - e;
5564 emov (f, y);
5565 if (e <= 0)
5566 return;
5568 p = &y[0];
5569 while (e >= 16)
5571 *p++ = 0;
5572 e -= 16;
5574 /* clear the remaining bits */
5575 *p &= bmask[e];
5576 /* truncate negatives toward minus infinity */
5577 isitneg:
5579 if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000)
5581 for (i = 0; i < NE - 1; i++)
5583 if (f[i] != y[i])
5585 esub (eone, y, y);
5586 break;
5593 #if 0
5594 /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1.
5595 For example, 1.1 = 0.55 * 2^1. */
5597 static void
5598 efrexp (x, exp, s)
5599 unsigned EMUSHORT x[];
5600 int *exp;
5601 unsigned EMUSHORT s[];
5603 unsigned EMUSHORT xi[NI];
5604 EMULONG li;
5606 emovi (x, xi);
5607 /* Handle denormalized numbers properly using long integer exponent. */
5608 li = (EMULONG) ((EMUSHORT) xi[1]);
5610 if (li == 0)
5612 li -= enormlz (xi);
5614 xi[1] = 0x3ffe;
5615 emovo (xi, s);
5616 *exp = (int) (li - 0x3ffe);
5618 #endif
5620 /* Return e type Y = X * 2^PWR2. */
5622 static void
5623 eldexp (x, pwr2, y)
5624 unsigned EMUSHORT x[];
5625 int pwr2;
5626 unsigned EMUSHORT y[];
5628 unsigned EMUSHORT xi[NI];
5629 EMULONG li;
5630 int i;
5632 emovi (x, xi);
5633 li = xi[1];
5634 li += pwr2;
5635 i = 0;
5636 emdnorm (xi, i, i, li, 64);
5637 emovo (xi, y);
5641 #if 0
5642 /* C = remainder after dividing B by A, all e type values.
5643 Least significant integer quotient bits left in EQUOT. */
5645 static void
5646 eremain (a, b, c)
5647 unsigned EMUSHORT a[], b[], c[];
5649 unsigned EMUSHORT den[NI], num[NI];
5651 #ifdef NANS
5652 if (eisinf (b)
5653 || (ecmp (a, ezero) == 0)
5654 || eisnan (a)
5655 || eisnan (b))
5657 enan (c, 0);
5658 return;
5660 #endif
5661 if (ecmp (a, ezero) == 0)
5663 mtherr ("eremain", SING);
5664 eclear (c);
5665 return;
5667 emovi (a, den);
5668 emovi (b, num);
5669 eiremain (den, num);
5670 /* Sign of remainder = sign of quotient */
5671 if (a[0] == b[0])
5672 num[0] = 0;
5673 else
5674 num[0] = 0xffff;
5675 emovo (num, c);
5677 #endif
5679 /* Return quotient of exploded e-types NUM / DEN in EQUOT,
5680 remainder in NUM. */
5682 static void
5683 eiremain (den, num)
5684 unsigned EMUSHORT den[], num[];
5686 EMULONG ld, ln;
5687 unsigned EMUSHORT j;
5689 ld = den[E];
5690 ld -= enormlz (den);
5691 ln = num[E];
5692 ln -= enormlz (num);
5693 ecleaz (equot);
5694 while (ln >= ld)
5696 if (ecmpm (den, num) <= 0)
5698 esubm (den, num);
5699 j = 1;
5701 else
5702 j = 0;
5703 eshup1 (equot);
5704 equot[NI - 1] |= j;
5705 eshup1 (num);
5706 ln -= 1;
5708 emdnorm (num, 0, 0, ln, 0);
5711 /* Report an error condition CODE encountered in function NAME.
5713 Mnemonic Value Significance
5715 DOMAIN 1 argument domain error
5716 SING 2 function singularity
5717 OVERFLOW 3 overflow range error
5718 UNDERFLOW 4 underflow range error
5719 TLOSS 5 total loss of precision
5720 PLOSS 6 partial loss of precision
5721 INVALID 7 NaN - producing operation
5722 EDOM 33 Unix domain error code
5723 ERANGE 34 Unix range error code
5725 The order of appearance of the following messages is bound to the
5726 error codes defined above. */
5728 int merror = 0;
5729 extern int merror;
5731 static void
5732 mtherr (name, code)
5733 const char *name;
5734 int code;
5736 /* The string passed by the calling program is supposed to be the
5737 name of the function in which the error occurred.
5738 The code argument selects which error message string will be printed. */
5740 if (strcmp (name, "esub") == 0)
5741 name = "subtraction";
5742 else if (strcmp (name, "ediv") == 0)
5743 name = "division";
5744 else if (strcmp (name, "emul") == 0)
5745 name = "multiplication";
5746 else if (strcmp (name, "enormlz") == 0)
5747 name = "normalization";
5748 else if (strcmp (name, "etoasc") == 0)
5749 name = "conversion to text";
5750 else if (strcmp (name, "asctoe") == 0)
5751 name = "parsing";
5752 else if (strcmp (name, "eremain") == 0)
5753 name = "modulus";
5754 else if (strcmp (name, "esqrt") == 0)
5755 name = "square root";
5756 if (extra_warnings)
5758 switch (code)
5760 case DOMAIN: warning ("%s: argument domain error" , name); break;
5761 case SING: warning ("%s: function singularity" , name); break;
5762 case OVERFLOW: warning ("%s: overflow range error" , name); break;
5763 case UNDERFLOW: warning ("%s: underflow range error" , name); break;
5764 case TLOSS: warning ("%s: total loss of precision" , name); break;
5765 case PLOSS: warning ("%s: partial loss of precision", name); break;
5766 case INVALID: warning ("%s: NaN - producing operation", name); break;
5767 default: abort ();
5771 /* Set global error message word */
5772 merror = code + 1;
5775 #ifdef DEC
5776 /* Convert DEC double precision D to e type E. */
5778 static void
5779 dectoe (d, e)
5780 unsigned EMUSHORT *d;
5781 unsigned EMUSHORT *e;
5783 unsigned EMUSHORT y[NI];
5784 register unsigned EMUSHORT r, *p;
5786 ecleaz (y); /* start with a zero */
5787 p = y; /* point to our number */
5788 r = *d; /* get DEC exponent word */
5789 if (*d & (unsigned int) 0x8000)
5790 *p = 0xffff; /* fill in our sign */
5791 ++p; /* bump pointer to our exponent word */
5792 r &= 0x7fff; /* strip the sign bit */
5793 if (r == 0) /* answer = 0 if high order DEC word = 0 */
5794 goto done;
5797 r >>= 7; /* shift exponent word down 7 bits */
5798 r += EXONE - 0201; /* subtract DEC exponent offset */
5799 /* add our e type exponent offset */
5800 *p++ = r; /* to form our exponent */
5802 r = *d++; /* now do the high order mantissa */
5803 r &= 0177; /* strip off the DEC exponent and sign bits */
5804 r |= 0200; /* the DEC understood high order mantissa bit */
5805 *p++ = r; /* put result in our high guard word */
5807 *p++ = *d++; /* fill in the rest of our mantissa */
5808 *p++ = *d++;
5809 *p = *d;
5811 eshdn8 (y); /* shift our mantissa down 8 bits */
5812 done:
5813 emovo (y, e);
5816 /* Convert e type X to DEC double precision D. */
5818 static void
5819 etodec (x, d)
5820 unsigned EMUSHORT *x, *d;
5822 unsigned EMUSHORT xi[NI];
5823 EMULONG exp;
5824 int rndsav;
5826 emovi (x, xi);
5827 /* Adjust exponent for offsets. */
5828 exp = (EMULONG) xi[E] - (EXONE - 0201);
5829 /* Round off to nearest or even. */
5830 rndsav = rndprc;
5831 rndprc = 56;
5832 emdnorm (xi, 0, 0, exp, 64);
5833 rndprc = rndsav;
5834 todec (xi, d);
5837 /* Convert exploded e-type X, that has already been rounded to
5838 56-bit precision, to DEC format double Y. */
5840 static void
5841 todec (x, y)
5842 unsigned EMUSHORT *x, *y;
5844 unsigned EMUSHORT i;
5845 unsigned EMUSHORT *p;
5847 p = x;
5848 *y = 0;
5849 if (*p++)
5850 *y = 0100000;
5851 i = *p++;
5852 if (i == 0)
5854 *y++ = 0;
5855 *y++ = 0;
5856 *y++ = 0;
5857 *y++ = 0;
5858 return;
5860 if (i > 0377)
5862 *y++ |= 077777;
5863 *y++ = 0xffff;
5864 *y++ = 0xffff;
5865 *y++ = 0xffff;
5866 #ifdef ERANGE
5867 errno = ERANGE;
5868 #endif
5869 return;
5871 i &= 0377;
5872 i <<= 7;
5873 eshup8 (x);
5874 x[M] &= 0177;
5875 i |= x[M];
5876 *y++ |= i;
5877 *y++ = x[M + 1];
5878 *y++ = x[M + 2];
5879 *y++ = x[M + 3];
5881 #endif /* DEC */
5883 #ifdef IBM
5884 /* Convert IBM single/double precision to e type. */
5886 static void
5887 ibmtoe (d, e, mode)
5888 unsigned EMUSHORT *d;
5889 unsigned EMUSHORT *e;
5890 enum machine_mode mode;
5892 unsigned EMUSHORT y[NI];
5893 register unsigned EMUSHORT r, *p;
5895 ecleaz (y); /* start with a zero */
5896 p = y; /* point to our number */
5897 r = *d; /* get IBM exponent word */
5898 if (*d & (unsigned int) 0x8000)
5899 *p = 0xffff; /* fill in our sign */
5900 ++p; /* bump pointer to our exponent word */
5901 r &= 0x7f00; /* strip the sign bit */
5902 r >>= 6; /* shift exponent word down 6 bits */
5903 /* in fact shift by 8 right and 2 left */
5904 r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */
5905 /* add our e type exponent offset */
5906 *p++ = r; /* to form our exponent */
5908 *p++ = *d++ & 0xff; /* now do the high order mantissa */
5909 /* strip off the IBM exponent and sign bits */
5910 if (mode != SFmode) /* there are only 2 words in SFmode */
5912 *p++ = *d++; /* fill in the rest of our mantissa */
5913 *p++ = *d++;
5915 *p = *d;
5917 if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0)
5918 y[0] = y[E] = 0;
5919 else
5920 y[E] -= 5 + enormlz (y); /* now normalise the mantissa */
5921 /* handle change in RADIX */
5922 emovo (y, e);
5927 /* Convert e type to IBM single/double precision. */
5929 static void
5930 etoibm (x, d, mode)
5931 unsigned EMUSHORT *x, *d;
5932 enum machine_mode mode;
5934 unsigned EMUSHORT xi[NI];
5935 EMULONG exp;
5936 int rndsav;
5938 emovi (x, xi);
5939 exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */
5940 /* round off to nearest or even */
5941 rndsav = rndprc;
5942 rndprc = 56;
5943 emdnorm (xi, 0, 0, exp, 64);
5944 rndprc = rndsav;
5945 toibm (xi, d, mode);
5948 static void
5949 toibm (x, y, mode)
5950 unsigned EMUSHORT *x, *y;
5951 enum machine_mode mode;
5953 unsigned EMUSHORT i;
5954 unsigned EMUSHORT *p;
5955 int r;
5957 p = x;
5958 *y = 0;
5959 if (*p++)
5960 *y = 0x8000;
5961 i = *p++;
5962 if (i == 0)
5964 *y++ = 0;
5965 *y++ = 0;
5966 if (mode != SFmode)
5968 *y++ = 0;
5969 *y++ = 0;
5971 return;
5973 r = i & 0x3;
5974 i >>= 2;
5975 if (i > 0x7f)
5977 *y++ |= 0x7fff;
5978 *y++ = 0xffff;
5979 if (mode != SFmode)
5981 *y++ = 0xffff;
5982 *y++ = 0xffff;
5984 #ifdef ERANGE
5985 errno = ERANGE;
5986 #endif
5987 return;
5989 i &= 0x7f;
5990 *y |= (i << 8);
5991 eshift (x, r + 5);
5992 *y++ |= x[M];
5993 *y++ = x[M + 1];
5994 if (mode != SFmode)
5996 *y++ = x[M + 2];
5997 *y++ = x[M + 3];
6000 #endif /* IBM */
6003 #ifdef C4X
6004 /* Convert C4X single/double precision to e type. */
6006 static void
6007 c4xtoe (d, e, mode)
6008 unsigned EMUSHORT *d;
6009 unsigned EMUSHORT *e;
6010 enum machine_mode mode;
6012 unsigned EMUSHORT y[NI];
6013 int r;
6014 int isnegative;
6015 int size;
6016 int i;
6017 int carry;
6019 /* Short-circuit the zero case. */
6020 if ((d[0] == 0x8000)
6021 && (d[1] == 0x0000)
6022 && ((mode == QFmode) || ((d[2] == 0x0000) && (d[3] == 0x0000))))
6024 e[0] = 0;
6025 e[1] = 0;
6026 e[2] = 0;
6027 e[3] = 0;
6028 e[4] = 0;
6029 e[5] = 0;
6030 return;
6033 ecleaz (y); /* start with a zero */
6034 r = d[0]; /* get sign/exponent part */
6035 if (r & (unsigned int) 0x0080)
6037 y[0] = 0xffff; /* fill in our sign */
6038 isnegative = TRUE;
6040 else
6042 isnegative = FALSE;
6045 r >>= 8; /* Shift exponent word down 8 bits. */
6046 if (r & 0x80) /* Make the exponent negative if it is. */
6048 r = r | (~0 & ~0xff);
6051 if (isnegative)
6053 /* Now do the high order mantissa. We don't "or" on the high bit
6054 because it is 2 (not 1) and is handled a little differently
6055 below. */
6056 y[M] = d[0] & 0x7f;
6058 y[M+1] = d[1];
6059 if (mode != QFmode) /* There are only 2 words in QFmode. */
6061 y[M+2] = d[2]; /* Fill in the rest of our mantissa. */
6062 y[M+3] = d[3];
6063 size = 4;
6065 else
6067 size = 2;
6069 eshift(y, -8);
6071 /* Now do the two's complement on the data. */
6073 carry = 1; /* Initially add 1 for the two's complement. */
6074 for (i=size + M; i > M; i--)
6076 if (carry && (y[i] == 0x0000))
6078 /* We overflowed into the next word, carry is the same. */
6079 y[i] = carry ? 0x0000 : 0xffff;
6081 else
6083 /* No overflow, just invert and add carry. */
6084 y[i] = ((~y[i]) + carry) & 0xffff;
6085 carry = 0;
6089 if (carry)
6091 eshift(y, -1);
6092 y[M+1] |= 0x8000;
6093 r++;
6095 y[1] = r + EXONE;
6097 else
6099 /* Add our e type exponent offset to form our exponent. */
6100 r += EXONE;
6101 y[1] = r;
6103 /* Now do the high order mantissa strip off the exponent and sign
6104 bits and add the high 1 bit. */
6105 y[M] = (d[0] & 0x7f) | 0x80;
6107 y[M+1] = d[1];
6108 if (mode != QFmode) /* There are only 2 words in QFmode. */
6110 y[M+2] = d[2]; /* Fill in the rest of our mantissa. */
6111 y[M+3] = d[3];
6113 eshift(y, -8);
6116 emovo (y, e);
6120 /* Convert e type to C4X single/double precision. */
6122 static void
6123 etoc4x (x, d, mode)
6124 unsigned EMUSHORT *x, *d;
6125 enum machine_mode mode;
6127 unsigned EMUSHORT xi[NI];
6128 EMULONG exp;
6129 int rndsav;
6131 emovi (x, xi);
6133 /* Adjust exponent for offsets. */
6134 exp = (EMULONG) xi[E] - (EXONE - 0x7f);
6136 /* Round off to nearest or even. */
6137 rndsav = rndprc;
6138 rndprc = mode == QFmode ? 24 : 32;
6139 emdnorm (xi, 0, 0, exp, 64);
6140 rndprc = rndsav;
6141 toc4x (xi, d, mode);
6144 static void
6145 toc4x (x, y, mode)
6146 unsigned EMUSHORT *x, *y;
6147 enum machine_mode mode;
6149 int i;
6150 int v;
6151 int carry;
6153 /* Short-circuit the zero case */
6154 if ((x[0] == 0) /* Zero exponent and sign */
6155 && (x[1] == 0)
6156 && (x[M] == 0) /* The rest is for zero mantissa */
6157 && (x[M+1] == 0)
6158 /* Only check for double if necessary */
6159 && ((mode == QFmode) || ((x[M+2] == 0) && (x[M+3] == 0))))
6161 /* We have a zero. Put it into the output and return. */
6162 *y++ = 0x8000;
6163 *y++ = 0x0000;
6164 if (mode != QFmode)
6166 *y++ = 0x0000;
6167 *y++ = 0x0000;
6169 return;
6172 *y = 0;
6174 /* Negative number require a two's complement conversion of the
6175 mantissa. */
6176 if (x[0])
6178 *y = 0x0080;
6180 i = ((int) x[1]) - 0x7f;
6182 /* Now add 1 to the inverted data to do the two's complement. */
6183 if (mode != QFmode)
6184 v = 4 + M;
6185 else
6186 v = 2 + M;
6187 carry = 1;
6188 while (v > M)
6190 if (x[v] == 0x0000)
6192 x[v] = carry ? 0x0000 : 0xffff;
6194 else
6196 x[v] = ((~x[v]) + carry) & 0xffff;
6197 carry = 0;
6199 v--;
6202 /* The following is a special case. The C4X negative float requires
6203 a zero in the high bit (because the format is (2 - x) x 2^m), so
6204 if a one is in that bit, we have to shift left one to get rid
6205 of it. This only occurs if the number is -1 x 2^m. */
6206 if (x[M+1] & 0x8000)
6208 /* This is the case of -1 x 2^m, we have to rid ourselves of the
6209 high sign bit and shift the exponent. */
6210 eshift(x, 1);
6211 i--;
6214 else
6216 i = ((int) x[1]) - 0x7f;
6219 if ((i < -128) || (i > 127))
6221 y[0] |= 0xff7f;
6222 y[1] = 0xffff;
6223 if (mode != QFmode)
6225 y[2] = 0xffff;
6226 y[3] = 0xffff;
6228 #ifdef ERANGE
6229 errno = ERANGE;
6230 #endif
6231 return;
6234 y[0] |= ((i & 0xff) << 8);
6236 eshift (x, 8);
6238 y[0] |= x[M] & 0x7f;
6239 y[1] = x[M + 1];
6240 if (mode != QFmode)
6242 y[2] = x[M + 2];
6243 y[3] = x[M + 3];
6246 #endif /* C4X */
6248 /* Output a binary NaN bit pattern in the target machine's format. */
6250 /* If special NaN bit patterns are required, define them in tm.h
6251 as arrays of unsigned 16-bit shorts. Otherwise, use the default
6252 patterns here. */
6253 #ifdef TFMODE_NAN
6254 TFMODE_NAN;
6255 #else
6256 #ifdef IEEE
6257 unsigned EMUSHORT TFbignan[8] =
6258 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6259 unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff};
6260 #endif
6261 #endif
6263 #ifdef XFMODE_NAN
6264 XFMODE_NAN;
6265 #else
6266 #ifdef IEEE
6267 unsigned EMUSHORT XFbignan[6] =
6268 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6269 unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0};
6270 #endif
6271 #endif
6273 #ifdef DFMODE_NAN
6274 DFMODE_NAN;
6275 #else
6276 #ifdef IEEE
6277 unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff};
6278 unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8};
6279 #endif
6280 #endif
6282 #ifdef SFMODE_NAN
6283 SFMODE_NAN;
6284 #else
6285 #ifdef IEEE
6286 unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff};
6287 unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0};
6288 #endif
6289 #endif
6292 #ifdef NANS
6293 static void
6294 make_nan (nan, sign, mode)
6295 unsigned EMUSHORT *nan;
6296 int sign;
6297 enum machine_mode mode;
6299 int n;
6300 unsigned EMUSHORT *p;
6302 switch (mode)
6304 /* Possibly the `reserved operand' patterns on a VAX can be
6305 used like NaN's, but probably not in the same way as IEEE. */
6306 #if !defined(DEC) && !defined(IBM) && !defined(C4X)
6307 case TFmode:
6308 #ifndef INTEL_EXTENDED_IEEE_FORMAT
6309 n = 8;
6310 if (REAL_WORDS_BIG_ENDIAN)
6311 p = TFbignan;
6312 else
6313 p = TFlittlenan;
6314 break;
6315 #endif
6316 /* FALLTHRU */
6318 case XFmode:
6319 n = 6;
6320 if (REAL_WORDS_BIG_ENDIAN)
6321 p = XFbignan;
6322 else
6323 p = XFlittlenan;
6324 break;
6326 case DFmode:
6327 n = 4;
6328 if (REAL_WORDS_BIG_ENDIAN)
6329 p = DFbignan;
6330 else
6331 p = DFlittlenan;
6332 break;
6334 case SFmode:
6335 case HFmode:
6336 n = 2;
6337 if (REAL_WORDS_BIG_ENDIAN)
6338 p = SFbignan;
6339 else
6340 p = SFlittlenan;
6341 break;
6342 #endif
6344 default:
6345 abort ();
6347 if (REAL_WORDS_BIG_ENDIAN)
6348 *nan++ = (sign << 15) | (*p++ & 0x7fff);
6349 while (--n != 0)
6350 *nan++ = *p++;
6351 if (! REAL_WORDS_BIG_ENDIAN)
6352 *nan = (sign << 15) | (*p & 0x7fff);
6354 #endif /* NANS */
6356 /* This is the inverse of the function `etarsingle' invoked by
6357 REAL_VALUE_TO_TARGET_SINGLE. */
6359 REAL_VALUE_TYPE
6360 ereal_unto_float (f)
6361 long f;
6363 REAL_VALUE_TYPE r;
6364 unsigned EMUSHORT s[2];
6365 unsigned EMUSHORT e[NE];
6367 /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
6368 This is the inverse operation to what the function `endian' does. */
6369 if (REAL_WORDS_BIG_ENDIAN)
6371 s[0] = (unsigned EMUSHORT) (f >> 16);
6372 s[1] = (unsigned EMUSHORT) f;
6374 else
6376 s[0] = (unsigned EMUSHORT) f;
6377 s[1] = (unsigned EMUSHORT) (f >> 16);
6379 /* Convert and promote the target float to E-type. */
6380 e24toe (s, e);
6381 /* Output E-type to REAL_VALUE_TYPE. */
6382 PUT_REAL (e, &r);
6383 return r;
6387 /* This is the inverse of the function `etardouble' invoked by
6388 REAL_VALUE_TO_TARGET_DOUBLE. */
6390 REAL_VALUE_TYPE
6391 ereal_unto_double (d)
6392 long d[];
6394 REAL_VALUE_TYPE r;
6395 unsigned EMUSHORT s[4];
6396 unsigned EMUSHORT e[NE];
6398 /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */
6399 if (REAL_WORDS_BIG_ENDIAN)
6401 s[0] = (unsigned EMUSHORT) (d[0] >> 16);
6402 s[1] = (unsigned EMUSHORT) d[0];
6403 s[2] = (unsigned EMUSHORT) (d[1] >> 16);
6404 s[3] = (unsigned EMUSHORT) d[1];
6406 else
6408 /* Target float words are little-endian. */
6409 s[0] = (unsigned EMUSHORT) d[0];
6410 s[1] = (unsigned EMUSHORT) (d[0] >> 16);
6411 s[2] = (unsigned EMUSHORT) d[1];
6412 s[3] = (unsigned EMUSHORT) (d[1] >> 16);
6414 /* Convert target double to E-type. */
6415 e53toe (s, e);
6416 /* Output E-type to REAL_VALUE_TYPE. */
6417 PUT_REAL (e, &r);
6418 return r;
6422 /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE.
6423 This is somewhat like ereal_unto_float, but the input types
6424 for these are different. */
6426 REAL_VALUE_TYPE
6427 ereal_from_float (f)
6428 HOST_WIDE_INT f;
6430 REAL_VALUE_TYPE r;
6431 unsigned EMUSHORT s[2];
6432 unsigned EMUSHORT e[NE];
6434 /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
6435 This is the inverse operation to what the function `endian' does. */
6436 if (REAL_WORDS_BIG_ENDIAN)
6438 s[0] = (unsigned EMUSHORT) (f >> 16);
6439 s[1] = (unsigned EMUSHORT) f;
6441 else
6443 s[0] = (unsigned EMUSHORT) f;
6444 s[1] = (unsigned EMUSHORT) (f >> 16);
6446 /* Convert and promote the target float to E-type. */
6447 e24toe (s, e);
6448 /* Output E-type to REAL_VALUE_TYPE. */
6449 PUT_REAL (e, &r);
6450 return r;
6454 /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE.
6455 This is somewhat like ereal_unto_double, but the input types
6456 for these are different.
6458 The DFmode is stored as an array of HOST_WIDE_INT in the target's
6459 data format, with no holes in the bit packing. The first element
6460 of the input array holds the bits that would come first in the
6461 target computer's memory. */
6463 REAL_VALUE_TYPE
6464 ereal_from_double (d)
6465 HOST_WIDE_INT d[];
6467 REAL_VALUE_TYPE r;
6468 unsigned EMUSHORT s[4];
6469 unsigned EMUSHORT e[NE];
6471 /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */
6472 if (REAL_WORDS_BIG_ENDIAN)
6474 #if HOST_BITS_PER_WIDE_INT == 32
6475 s[0] = (unsigned EMUSHORT) (d[0] >> 16);
6476 s[1] = (unsigned EMUSHORT) d[0];
6477 s[2] = (unsigned EMUSHORT) (d[1] >> 16);
6478 s[3] = (unsigned EMUSHORT) d[1];
6479 #else
6480 /* In this case the entire target double is contained in the
6481 first array element. The second element of the input is
6482 ignored. */
6483 s[0] = (unsigned EMUSHORT) (d[0] >> 48);
6484 s[1] = (unsigned EMUSHORT) (d[0] >> 32);
6485 s[2] = (unsigned EMUSHORT) (d[0] >> 16);
6486 s[3] = (unsigned EMUSHORT) d[0];
6487 #endif
6489 else
6491 /* Target float words are little-endian. */
6492 s[0] = (unsigned EMUSHORT) d[0];
6493 s[1] = (unsigned EMUSHORT) (d[0] >> 16);
6494 #if HOST_BITS_PER_WIDE_INT == 32
6495 s[2] = (unsigned EMUSHORT) d[1];
6496 s[3] = (unsigned EMUSHORT) (d[1] >> 16);
6497 #else
6498 s[2] = (unsigned EMUSHORT) (d[0] >> 32);
6499 s[3] = (unsigned EMUSHORT) (d[0] >> 48);
6500 #endif
6502 /* Convert target double to E-type. */
6503 e53toe (s, e);
6504 /* Output E-type to REAL_VALUE_TYPE. */
6505 PUT_REAL (e, &r);
6506 return r;
6510 #if 0
6511 /* Convert target computer unsigned 64-bit integer to e-type.
6512 The endian-ness of DImode follows the convention for integers,
6513 so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */
6515 static void
6516 uditoe (di, e)
6517 unsigned EMUSHORT *di; /* Address of the 64-bit int. */
6518 unsigned EMUSHORT *e;
6520 unsigned EMUSHORT yi[NI];
6521 int k;
6523 ecleaz (yi);
6524 if (WORDS_BIG_ENDIAN)
6526 for (k = M; k < M + 4; k++)
6527 yi[k] = *di++;
6529 else
6531 for (k = M + 3; k >= M; k--)
6532 yi[k] = *di++;
6534 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
6535 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
6536 ecleaz (yi); /* it was zero */
6537 else
6538 yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
6539 emovo (yi, e);
6542 /* Convert target computer signed 64-bit integer to e-type. */
6544 static void
6545 ditoe (di, e)
6546 unsigned EMUSHORT *di; /* Address of the 64-bit int. */
6547 unsigned EMUSHORT *e;
6549 unsigned EMULONG acc;
6550 unsigned EMUSHORT yi[NI];
6551 unsigned EMUSHORT carry;
6552 int k, sign;
6554 ecleaz (yi);
6555 if (WORDS_BIG_ENDIAN)
6557 for (k = M; k < M + 4; k++)
6558 yi[k] = *di++;
6560 else
6562 for (k = M + 3; k >= M; k--)
6563 yi[k] = *di++;
6565 /* Take absolute value */
6566 sign = 0;
6567 if (yi[M] & 0x8000)
6569 sign = 1;
6570 carry = 0;
6571 for (k = M + 3; k >= M; k--)
6573 acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry;
6574 yi[k] = acc;
6575 carry = 0;
6576 if (acc & 0x10000)
6577 carry = 1;
6580 yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */
6581 if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
6582 ecleaz (yi); /* it was zero */
6583 else
6584 yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
6585 emovo (yi, e);
6586 if (sign)
6587 eneg (e);
6591 /* Convert e-type to unsigned 64-bit int. */
6593 static void
6594 etoudi (x, i)
6595 unsigned EMUSHORT *x;
6596 unsigned EMUSHORT *i;
6598 unsigned EMUSHORT xi[NI];
6599 int j, k;
6601 emovi (x, xi);
6602 if (xi[0])
6604 xi[M] = 0;
6605 goto noshift;
6607 k = (int) xi[E] - (EXONE - 1);
6608 if (k <= 0)
6610 for (j = 0; j < 4; j++)
6611 *i++ = 0;
6612 return;
6614 if (k > 64)
6616 for (j = 0; j < 4; j++)
6617 *i++ = 0xffff;
6618 if (extra_warnings)
6619 warning ("overflow on truncation to integer");
6620 return;
6622 if (k > 16)
6624 /* Shift more than 16 bits: first shift up k-16 mod 16,
6625 then shift up by 16's. */
6626 j = k - ((k >> 4) << 4);
6627 if (j == 0)
6628 j = 16;
6629 eshift (xi, j);
6630 if (WORDS_BIG_ENDIAN)
6631 *i++ = xi[M];
6632 else
6634 i += 3;
6635 *i-- = xi[M];
6637 k -= j;
6640 eshup6 (xi);
6641 if (WORDS_BIG_ENDIAN)
6642 *i++ = xi[M];
6643 else
6644 *i-- = xi[M];
6646 while ((k -= 16) > 0);
6648 else
6650 /* shift not more than 16 bits */
6651 eshift (xi, k);
6653 noshift:
6655 if (WORDS_BIG_ENDIAN)
6657 i += 3;
6658 *i-- = xi[M];
6659 *i-- = 0;
6660 *i-- = 0;
6661 *i = 0;
6663 else
6665 *i++ = xi[M];
6666 *i++ = 0;
6667 *i++ = 0;
6668 *i = 0;
6674 /* Convert e-type to signed 64-bit int. */
6676 static void
6677 etodi (x, i)
6678 unsigned EMUSHORT *x;
6679 unsigned EMUSHORT *i;
6681 unsigned EMULONG acc;
6682 unsigned EMUSHORT xi[NI];
6683 unsigned EMUSHORT carry;
6684 unsigned EMUSHORT *isave;
6685 int j, k;
6687 emovi (x, xi);
6688 k = (int) xi[E] - (EXONE - 1);
6689 if (k <= 0)
6691 for (j = 0; j < 4; j++)
6692 *i++ = 0;
6693 return;
6695 if (k > 64)
6697 for (j = 0; j < 4; j++)
6698 *i++ = 0xffff;
6699 if (extra_warnings)
6700 warning ("overflow on truncation to integer");
6701 return;
6703 isave = i;
6704 if (k > 16)
6706 /* Shift more than 16 bits: first shift up k-16 mod 16,
6707 then shift up by 16's. */
6708 j = k - ((k >> 4) << 4);
6709 if (j == 0)
6710 j = 16;
6711 eshift (xi, j);
6712 if (WORDS_BIG_ENDIAN)
6713 *i++ = xi[M];
6714 else
6716 i += 3;
6717 *i-- = xi[M];
6719 k -= j;
6722 eshup6 (xi);
6723 if (WORDS_BIG_ENDIAN)
6724 *i++ = xi[M];
6725 else
6726 *i-- = xi[M];
6728 while ((k -= 16) > 0);
6730 else
6732 /* shift not more than 16 bits */
6733 eshift (xi, k);
6735 if (WORDS_BIG_ENDIAN)
6737 i += 3;
6738 *i = xi[M];
6739 *i-- = 0;
6740 *i-- = 0;
6741 *i = 0;
6743 else
6745 *i++ = xi[M];
6746 *i++ = 0;
6747 *i++ = 0;
6748 *i = 0;
6751 /* Negate if negative */
6752 if (xi[0])
6754 carry = 0;
6755 if (WORDS_BIG_ENDIAN)
6756 isave += 3;
6757 for (k = 0; k < 4; k++)
6759 acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry;
6760 if (WORDS_BIG_ENDIAN)
6761 *isave-- = acc;
6762 else
6763 *isave++ = acc;
6764 carry = 0;
6765 if (acc & 0x10000)
6766 carry = 1;
6772 /* Longhand square root routine. */
6775 static int esqinited = 0;
6776 static unsigned short sqrndbit[NI];
6778 static void
6779 esqrt (x, y)
6780 unsigned EMUSHORT *x, *y;
6782 unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI];
6783 EMULONG m, exp;
6784 int i, j, k, n, nlups;
6786 if (esqinited == 0)
6788 ecleaz (sqrndbit);
6789 sqrndbit[NI - 2] = 1;
6790 esqinited = 1;
6792 /* Check for arg <= 0 */
6793 i = ecmp (x, ezero);
6794 if (i <= 0)
6796 if (i == -1)
6798 mtherr ("esqrt", DOMAIN);
6799 eclear (y);
6801 else
6802 emov (x, y);
6803 return;
6806 #ifdef INFINITY
6807 if (eisinf (x))
6809 eclear (y);
6810 einfin (y);
6811 return;
6813 #endif
6814 /* Bring in the arg and renormalize if it is denormal. */
6815 emovi (x, xx);
6816 m = (EMULONG) xx[1]; /* local long word exponent */
6817 if (m == 0)
6818 m -= enormlz (xx);
6820 /* Divide exponent by 2 */
6821 m -= 0x3ffe;
6822 exp = (unsigned short) ((m / 2) + 0x3ffe);
6824 /* Adjust if exponent odd */
6825 if ((m & 1) != 0)
6827 if (m > 0)
6828 exp += 1;
6829 eshdn1 (xx);
6832 ecleaz (sq);
6833 ecleaz (num);
6834 n = 8; /* get 8 bits of result per inner loop */
6835 nlups = rndprc;
6836 j = 0;
6838 while (nlups > 0)
6840 /* bring in next word of arg */
6841 if (j < NE)
6842 num[NI - 1] = xx[j + 3];
6843 /* Do additional bit on last outer loop, for roundoff. */
6844 if (nlups <= 8)
6845 n = nlups + 1;
6846 for (i = 0; i < n; i++)
6848 /* Next 2 bits of arg */
6849 eshup1 (num);
6850 eshup1 (num);
6851 /* Shift up answer */
6852 eshup1 (sq);
6853 /* Make trial divisor */
6854 for (k = 0; k < NI; k++)
6855 temp[k] = sq[k];
6856 eshup1 (temp);
6857 eaddm (sqrndbit, temp);
6858 /* Subtract and insert answer bit if it goes in */
6859 if (ecmpm (temp, num) <= 0)
6861 esubm (temp, num);
6862 sq[NI - 2] |= 1;
6865 nlups -= n;
6866 j += 1;
6869 /* Adjust for extra, roundoff loop done. */
6870 exp += (NBITS - 1) - rndprc;
6872 /* Sticky bit = 1 if the remainder is nonzero. */
6873 k = 0;
6874 for (i = 3; i < NI; i++)
6875 k |= (int) num[i];
6877 /* Renormalize and round off. */
6878 emdnorm (sq, k, 0, exp, 64);
6879 emovo (sq, y);
6881 #endif
6882 #endif /* EMU_NON_COMPILE not defined */
6884 /* Return the binary precision of the significand for a given
6885 floating point mode. The mode can hold an integer value
6886 that many bits wide, without losing any bits. */
6888 unsigned int
6889 significand_size (mode)
6890 enum machine_mode mode;
6893 /* Don't test the modes, but their sizes, lest this
6894 code won't work for BITS_PER_UNIT != 8 . */
6896 switch (GET_MODE_BITSIZE (mode))
6898 case 32:
6900 #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
6901 return 56;
6902 #endif
6904 return 24;
6906 case 64:
6907 #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6908 return 53;
6909 #else
6910 #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
6911 return 56;
6912 #else
6913 #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
6914 return 56;
6915 #else
6916 #if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
6917 return 56;
6918 #else
6919 abort ();
6920 #endif
6921 #endif
6922 #endif
6923 #endif
6925 case 96:
6926 return 64;
6928 case 128:
6929 #ifndef INTEL_EXTENDED_IEEE_FORMAT
6930 return 113;
6931 #else
6932 return 64;
6933 #endif
6935 default:
6936 abort ();