Remove _GNU_SOURCE from AM_CPPFLAGS
[official-gcc.git] / gcc / sel-sched-ir.c
bloba6daa5886dc30086f60ec1d382eed3bc05680e10
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 /* We don't have to use it except for sel_print_insn. */
51 #include "sel-sched-dump.h"
53 /* A vector holding bb info for whole scheduling pass. */
54 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
56 /* A vector holding bb info. */
57 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
59 /* A pool for allocating all lists. */
60 alloc_pool sched_lists_pool;
62 /* This contains information about successors for compute_av_set. */
63 struct succs_info current_succs;
65 /* Data structure to describe interaction with the generic scheduler utils. */
66 static struct common_sched_info_def sel_common_sched_info;
68 /* The loop nest being pipelined. */
69 struct loop *current_loop_nest;
71 /* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73 static VEC(loop_p, heap) *loop_nests = NULL;
75 /* Saves blocks already in loop regions, indexed by bb->index. */
76 static sbitmap bbs_in_loop_rgns = NULL;
78 /* CFG hooks that are saved before changing create_basic_block hook. */
79 static struct cfg_hooks orig_cfg_hooks;
82 /* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84 static int *rev_top_order_index = NULL;
86 /* Length of the above array. */
87 static int rev_top_order_index_len = -1;
89 /* A regset pool structure. */
90 static struct
92 /* The stack to which regsets are returned. */
93 regset *v;
95 /* Its pointer. */
96 int n;
98 /* Its size. */
99 int s;
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
106 /* The pointer of VV stack. */
107 int nn;
109 /* Its size. */
110 int ss;
112 /* The difference between allocated and returned regsets. */
113 int diff;
114 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
116 /* This represents the nop pool. */
117 static struct
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
122 /* Its pointer. */
123 int n;
125 /* Its size. */
126 int s;
127 } nop_pool = { NULL, 0, 0 };
129 /* The pool for basic block notes. */
130 static rtx_vec_t bb_note_pool;
132 /* A NOP pattern used to emit placeholder insns. */
133 rtx nop_pattern = NULL_RTX;
134 /* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136 rtx exit_insn = NULL_RTX;
138 /* TRUE if while scheduling current region, which is loop, its preheader
139 was removed. */
140 bool preheader_removed = false;
143 /* Forward static declarations. */
144 static void fence_clear (fence_t);
146 static void deps_init_id (idata_t, insn_t, bool);
147 static void init_id_from_df (idata_t, insn_t, bool);
148 static expr_t set_insn_init (expr_t, vinsn_t, int);
150 static void cfg_preds (basic_block, insn_t **, int *);
151 static void prepare_insn_expr (insn_t, int);
152 static void free_history_vect (VEC (expr_history_def, heap) **);
154 static void move_bb_info (basic_block, basic_block);
155 static void remove_empty_bb (basic_block, bool);
156 static void sel_merge_blocks (basic_block, basic_block);
157 static void sel_remove_loop_preheader (void);
158 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
160 static bool insn_is_the_only_one_in_bb_p (insn_t);
161 static void create_initial_data_sets (basic_block);
163 static void free_av_set (basic_block);
164 static void invalidate_av_set (basic_block);
165 static void extend_insn_data (void);
166 static void sel_init_new_insn (insn_t, int);
167 static void finish_insns (void);
169 /* Various list functions. */
171 /* Copy an instruction list L. */
172 ilist_t
173 ilist_copy (ilist_t l)
175 ilist_t head = NULL, *tailp = &head;
177 while (l)
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
184 return head;
187 /* Invert an instruction list L. */
188 ilist_t
189 ilist_invert (ilist_t l)
191 ilist_t res = NULL;
193 while (l)
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
199 return res;
202 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203 void
204 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
206 bnd_t bnd;
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
218 /* Remove the list note pointed to by LP. */
219 void
220 blist_remove (blist_t *lp)
222 bnd_t b = BLIST_BND (*lp);
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
228 _list_remove (lp);
231 /* Init a fence tail L. */
232 void
233 flist_tail_init (flist_tail_t l)
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
239 /* Try to find fence corresponding to INSN in L. */
240 fence_t
241 flist_lookup (flist_t l, insn_t insn)
243 while (l)
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
248 l = FLIST_NEXT (l);
251 return NULL;
254 /* Init the fields of F before running fill_insns. */
255 static void
256 init_fence_for_scheduling (fence_t f)
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
263 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264 static void
265 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
268 int cycle, int cycle_issued_insns, int issue_more,
269 bool starts_cycle_p, bool after_stall_p)
271 fence_t f;
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
276 FENCE_INSN (f) = insn;
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
293 FENCE_ISSUE_MORE (f) = issue_more;
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
299 init_fence_for_scheduling (f);
302 /* Remove the head node of the list pointed to by LP. */
303 static void
304 flist_remove (flist_t *lp)
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
311 /* Clear the fence list pointed to by LP. */
312 void
313 flist_clear (flist_t *lp)
315 while (*lp)
316 flist_remove (lp);
319 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320 void
321 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
323 def_t d;
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
333 /* Functions to work with target contexts. */
335 /* Bulk target context. It is convenient for debugging purposes to ensure
336 that there are no uninitialized (null) target contexts. */
337 static tc_t bulk_tc = (tc_t) 1;
339 /* Target hooks wrappers. In the future we can provide some default
340 implementations for them. */
342 /* Allocate a store for the target context. */
343 static tc_t
344 alloc_target_context (void)
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
350 /* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353 static void
354 init_target_context (tc_t tc, bool clean_p)
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
360 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362 tc_t
363 create_target_context (bool clean_p)
365 tc_t tc = alloc_target_context ();
367 init_target_context (tc, clean_p);
368 return tc;
371 /* Copy TC to the current backend context. */
372 void
373 set_target_context (tc_t tc)
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
379 /* TC is about to be destroyed. Free any internal data. */
380 static void
381 clear_target_context (tc_t tc)
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
387 /* Clear and free it. */
388 static void
389 delete_target_context (tc_t tc)
391 clear_target_context (tc);
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
397 /* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399 static void
400 copy_target_context (tc_t to, tc_t from)
402 tc_t tmp = create_target_context (false);
404 set_target_context (from);
405 init_target_context (to, false);
407 set_target_context (tmp);
408 delete_target_context (tmp);
411 /* Create a copy of TC. */
412 static tc_t
413 create_copy_of_target_context (tc_t tc)
415 tc_t copy = alloc_target_context ();
417 copy_target_context (copy, tc);
419 return copy;
422 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424 void
425 reset_target_context (tc_t tc, bool clean_p)
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
431 /* Functions to work with dependence contexts.
432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
436 /* Make a copy of FROM in TO. */
437 static void
438 copy_deps_context (deps_t to, deps_t from)
440 init_deps (to, false);
441 deps_join (to, from);
444 /* Allocate store for dep context. */
445 static deps_t
446 alloc_deps_context (void)
448 return XNEW (struct deps_desc);
451 /* Allocate and initialize dep context. */
452 static deps_t
453 create_deps_context (void)
455 deps_t dc = alloc_deps_context ();
457 init_deps (dc, false);
458 return dc;
461 /* Create a copy of FROM. */
462 static deps_t
463 create_copy_of_deps_context (deps_t from)
465 deps_t to = alloc_deps_context ();
467 copy_deps_context (to, from);
468 return to;
471 /* Clean up internal data of DC. */
472 static void
473 clear_deps_context (deps_t dc)
475 free_deps (dc);
478 /* Clear and free DC. */
479 static void
480 delete_deps_context (deps_t dc)
482 clear_deps_context (dc);
483 free (dc);
486 /* Clear and init DC. */
487 static void
488 reset_deps_context (deps_t dc)
490 clear_deps_context (dc);
491 init_deps (dc, false);
494 /* This structure describes the dependence analysis hooks for advancing
495 dependence context. */
496 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
498 NULL,
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
512 0, 0, 0
515 /* Process INSN and add its impact on DC. */
516 void
517 advance_deps_context (deps_t dc, insn_t insn)
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
524 /* Functions to work with DFA states. */
526 /* Allocate store for a DFA state. */
527 static state_t
528 state_alloc (void)
530 return xmalloc (dfa_state_size);
533 /* Allocate and initialize DFA state. */
534 static state_t
535 state_create (void)
537 state_t state = state_alloc ();
539 state_reset (state);
540 advance_state (state);
541 return state;
544 /* Free DFA state. */
545 static void
546 state_free (state_t state)
548 free (state);
551 /* Make a copy of FROM in TO. */
552 static void
553 state_copy (state_t to, state_t from)
555 memcpy (to, from, dfa_state_size);
558 /* Create a copy of FROM. */
559 static state_t
560 state_create_copy (state_t from)
562 state_t to = state_alloc ();
564 state_copy (to, from);
565 return to;
569 /* Functions to work with fences. */
571 /* Clear the fence. */
572 static void
573 fence_clear (fence_t f)
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
579 ilist_clear (&FENCE_BNDS (f));
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
584 if (s != NULL)
585 free (s);
587 if (dc != NULL)
588 delete_deps_context (dc);
590 if (tc != NULL)
591 delete_target_context (tc);
592 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
593 free (FENCE_READY_TICKS (f));
594 FENCE_READY_TICKS (f) = NULL;
597 /* Init a list of fences with successors of OLD_FENCE. */
598 void
599 init_fences (insn_t old_fence)
601 insn_t succ;
602 succ_iterator si;
603 bool first = true;
604 int ready_ticks_size = get_max_uid () + 1;
606 FOR_EACH_SUCC_1 (succ, si, old_fence,
607 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
610 if (first)
611 first = false;
612 else
613 gcc_assert (flag_sel_sched_pipelining_outer_loops);
615 flist_add (&fences, succ,
616 state_create (),
617 create_deps_context () /* dc */,
618 create_target_context (true) /* tc */,
619 NULL_RTX /* last_scheduled_insn */,
620 NULL, /* executing_insns */
621 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
622 ready_ticks_size,
623 NULL_RTX /* sched_next */,
624 1 /* cycle */, 0 /* cycle_issued_insns */,
625 issue_rate, /* issue_more */
626 1 /* starts_cycle_p */, 0 /* after_stall_p */);
630 /* Merges two fences (filling fields of fence F with resulting values) by
631 following rules: 1) state, target context and last scheduled insn are
632 propagated from fallthrough edge if it is available;
633 2) deps context and cycle is propagated from more probable edge;
634 3) all other fields are set to corresponding constant values.
636 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
637 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
638 and AFTER_STALL_P are the corresponding fields of the second fence. */
639 static void
640 merge_fences (fence_t f, insn_t insn,
641 state_t state, deps_t dc, void *tc,
642 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
643 int *ready_ticks, int ready_ticks_size,
644 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
646 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
648 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
649 && !sched_next && !FENCE_SCHED_NEXT (f));
651 /* Check if we can decide which path fences came.
652 If we can't (or don't want to) - reset all. */
653 if (last_scheduled_insn == NULL
654 || last_scheduled_insn_old == NULL
655 /* This is a case when INSN is reachable on several paths from
656 one insn (this can happen when pipelining of outer loops is on and
657 there are two edges: one going around of inner loop and the other -
658 right through it; in such case just reset everything). */
659 || last_scheduled_insn == last_scheduled_insn_old)
661 state_reset (FENCE_STATE (f));
662 state_free (state);
664 reset_deps_context (FENCE_DC (f));
665 delete_deps_context (dc);
667 reset_target_context (FENCE_TC (f), true);
668 delete_target_context (tc);
670 if (cycle > FENCE_CYCLE (f))
671 FENCE_CYCLE (f) = cycle;
673 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
674 FENCE_ISSUE_MORE (f) = issue_rate;
675 VEC_free (rtx, gc, executing_insns);
676 free (ready_ticks);
677 if (FENCE_EXECUTING_INSNS (f))
678 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
679 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
680 if (FENCE_READY_TICKS (f))
681 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
683 else
685 edge edge_old = NULL, edge_new = NULL;
686 edge candidate;
687 succ_iterator si;
688 insn_t succ;
690 /* Find fallthrough edge. */
691 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
692 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
694 if (!candidate
695 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
696 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
698 /* No fallthrough edge leading to basic block of INSN. */
699 state_reset (FENCE_STATE (f));
700 state_free (state);
702 reset_target_context (FENCE_TC (f), true);
703 delete_target_context (tc);
705 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
706 FENCE_ISSUE_MORE (f) = issue_rate;
708 else
709 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
711 /* Would be weird if same insn is successor of several fallthrough
712 edges. */
713 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
714 != BLOCK_FOR_INSN (last_scheduled_insn_old));
716 state_free (FENCE_STATE (f));
717 FENCE_STATE (f) = state;
719 delete_target_context (FENCE_TC (f));
720 FENCE_TC (f) = tc;
722 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
723 FENCE_ISSUE_MORE (f) = issue_more;
725 else
727 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
728 state_free (state);
729 delete_target_context (tc);
731 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
732 != BLOCK_FOR_INSN (last_scheduled_insn));
735 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
736 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
737 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
739 if (succ == insn)
741 /* No same successor allowed from several edges. */
742 gcc_assert (!edge_old);
743 edge_old = si.e1;
746 /* Find edge of second predecessor (last_scheduled_insn->insn). */
747 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
748 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
750 if (succ == insn)
752 /* No same successor allowed from several edges. */
753 gcc_assert (!edge_new);
754 edge_new = si.e1;
758 /* Check if we can choose most probable predecessor. */
759 if (edge_old == NULL || edge_new == NULL)
761 reset_deps_context (FENCE_DC (f));
762 delete_deps_context (dc);
763 VEC_free (rtx, gc, executing_insns);
764 free (ready_ticks);
766 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
767 if (FENCE_EXECUTING_INSNS (f))
768 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
769 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
770 if (FENCE_READY_TICKS (f))
771 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
773 else
774 if (edge_new->probability > edge_old->probability)
776 delete_deps_context (FENCE_DC (f));
777 FENCE_DC (f) = dc;
778 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
779 FENCE_EXECUTING_INSNS (f) = executing_insns;
780 free (FENCE_READY_TICKS (f));
781 FENCE_READY_TICKS (f) = ready_ticks;
782 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
783 FENCE_CYCLE (f) = cycle;
785 else
787 /* Leave DC and CYCLE untouched. */
788 delete_deps_context (dc);
789 VEC_free (rtx, gc, executing_insns);
790 free (ready_ticks);
794 /* Fill remaining invariant fields. */
795 if (after_stall_p)
796 FENCE_AFTER_STALL_P (f) = 1;
798 FENCE_ISSUED_INSNS (f) = 0;
799 FENCE_STARTS_CYCLE_P (f) = 1;
800 FENCE_SCHED_NEXT (f) = NULL;
803 /* Add a new fence to NEW_FENCES list, initializing it from all
804 other parameters. */
805 static void
806 add_to_fences (flist_tail_t new_fences, insn_t insn,
807 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
808 VEC(rtx, gc) *executing_insns, int *ready_ticks,
809 int ready_ticks_size, rtx sched_next, int cycle,
810 int cycle_issued_insns, int issue_rate,
811 bool starts_cycle_p, bool after_stall_p)
813 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
815 if (! f)
817 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
818 last_scheduled_insn, executing_insns, ready_ticks,
819 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
820 issue_rate, starts_cycle_p, after_stall_p);
822 FLIST_TAIL_TAILP (new_fences)
823 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
825 else
827 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
828 executing_insns, ready_ticks, ready_ticks_size,
829 sched_next, cycle, issue_rate, after_stall_p);
833 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
834 void
835 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
837 fence_t f, old;
838 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
840 old = FLIST_FENCE (old_fences);
841 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
842 FENCE_INSN (FLIST_FENCE (old_fences)));
843 if (f)
845 merge_fences (f, old->insn, old->state, old->dc, old->tc,
846 old->last_scheduled_insn, old->executing_insns,
847 old->ready_ticks, old->ready_ticks_size,
848 old->sched_next, old->cycle, old->issue_more,
849 old->after_stall_p);
851 else
853 _list_add (tailp);
854 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
855 *FLIST_FENCE (*tailp) = *old;
856 init_fence_for_scheduling (FLIST_FENCE (*tailp));
858 FENCE_INSN (old) = NULL;
861 /* Add a new fence to NEW_FENCES list and initialize most of its data
862 as a clean one. */
863 void
864 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
866 int ready_ticks_size = get_max_uid () + 1;
868 add_to_fences (new_fences,
869 succ, state_create (), create_deps_context (),
870 create_target_context (true),
871 NULL_RTX, NULL,
872 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
873 NULL_RTX, FENCE_CYCLE (fence) + 1,
874 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
877 /* Add a new fence to NEW_FENCES list and initialize all of its data
878 from FENCE and SUCC. */
879 void
880 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
882 int * new_ready_ticks
883 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
885 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
886 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
887 add_to_fences (new_fences,
888 succ, state_create_copy (FENCE_STATE (fence)),
889 create_copy_of_deps_context (FENCE_DC (fence)),
890 create_copy_of_target_context (FENCE_TC (fence)),
891 FENCE_LAST_SCHEDULED_INSN (fence),
892 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
893 new_ready_ticks,
894 FENCE_READY_TICKS_SIZE (fence),
895 FENCE_SCHED_NEXT (fence),
896 FENCE_CYCLE (fence),
897 FENCE_ISSUED_INSNS (fence),
898 FENCE_ISSUE_MORE (fence),
899 FENCE_STARTS_CYCLE_P (fence),
900 FENCE_AFTER_STALL_P (fence));
904 /* Functions to work with regset and nop pools. */
906 /* Returns the new regset from pool. It might have some of the bits set
907 from the previous usage. */
908 regset
909 get_regset_from_pool (void)
911 regset rs;
913 if (regset_pool.n != 0)
914 rs = regset_pool.v[--regset_pool.n];
915 else
916 /* We need to create the regset. */
918 rs = ALLOC_REG_SET (&reg_obstack);
920 if (regset_pool.nn == regset_pool.ss)
921 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
922 (regset_pool.ss = 2 * regset_pool.ss + 1));
923 regset_pool.vv[regset_pool.nn++] = rs;
926 regset_pool.diff++;
928 return rs;
931 /* Same as above, but returns the empty regset. */
932 regset
933 get_clear_regset_from_pool (void)
935 regset rs = get_regset_from_pool ();
937 CLEAR_REG_SET (rs);
938 return rs;
941 /* Return regset RS to the pool for future use. */
942 void
943 return_regset_to_pool (regset rs)
945 gcc_assert (rs);
946 regset_pool.diff--;
948 if (regset_pool.n == regset_pool.s)
949 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
950 (regset_pool.s = 2 * regset_pool.s + 1));
951 regset_pool.v[regset_pool.n++] = rs;
954 #ifdef ENABLE_CHECKING
955 /* This is used as a qsort callback for sorting regset pool stacks.
956 X and XX are addresses of two regsets. They are never equal. */
957 static int
958 cmp_v_in_regset_pool (const void *x, const void *xx)
960 return *((const regset *) x) - *((const regset *) xx);
962 #endif
964 /* Free the regset pool possibly checking for memory leaks. */
965 void
966 free_regset_pool (void)
968 #ifdef ENABLE_CHECKING
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
978 int diff = 0;
980 gcc_assert (n <= nn);
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
986 while (ii < nn)
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
994 ii++;
997 gcc_assert (diff == regset_pool.diff);
999 #endif
1001 /* If not true - we have a memory leak. */
1002 gcc_assert (regset_pool.diff == 0);
1004 while (regset_pool.n)
1006 --regset_pool.n;
1007 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1010 free (regset_pool.v);
1011 regset_pool.v = NULL;
1012 regset_pool.s = 0;
1014 free (regset_pool.vv);
1015 regset_pool.vv = NULL;
1016 regset_pool.nn = 0;
1017 regset_pool.ss = 0;
1019 regset_pool.diff = 0;
1023 /* Functions to work with nop pools. NOP insns are used as temporary
1024 placeholders of the insns being scheduled to allow correct update of
1025 the data sets. When update is finished, NOPs are deleted. */
1027 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1028 nops sel-sched generates. */
1029 static vinsn_t nop_vinsn = NULL;
1031 /* Emit a nop before INSN, taking it from pool. */
1032 insn_t
1033 get_nop_from_pool (insn_t insn)
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1039 if (old_p)
1040 nop = nop_pool.v[--nop_pool.n];
1041 else
1042 nop = nop_pattern;
1044 nop = emit_insn_before (nop, insn);
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1054 return nop;
1057 /* Remove NOP from the instruction stream and return it to the pool. */
1058 void
1059 return_nop_to_pool (insn_t nop, bool full_tidying)
1061 gcc_assert (INSN_IN_STREAM_P (nop));
1062 sel_remove_insn (nop, false, full_tidying);
1064 if (nop_pool.n == nop_pool.s)
1065 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1066 (nop_pool.s = 2 * nop_pool.s + 1));
1067 nop_pool.v[nop_pool.n++] = nop;
1070 /* Free the nop pool. */
1071 void
1072 free_nop_pool (void)
1074 nop_pool.n = 0;
1075 nop_pool.s = 0;
1076 free (nop_pool.v);
1077 nop_pool.v = NULL;
1081 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1082 The callback is given two rtxes XX and YY and writes the new rtxes
1083 to NX and NY in case some needs to be skipped. */
1084 static int
1085 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1087 const_rtx x = *xx;
1088 const_rtx y = *yy;
1090 if (GET_CODE (x) == UNSPEC
1091 && (targetm.sched.skip_rtx_p == NULL
1092 || targetm.sched.skip_rtx_p (x)))
1094 *nx = XVECEXP (x, 0, 0);
1095 *ny = CONST_CAST_RTX (y);
1096 return 1;
1099 if (GET_CODE (y) == UNSPEC
1100 && (targetm.sched.skip_rtx_p == NULL
1101 || targetm.sched.skip_rtx_p (y)))
1103 *nx = CONST_CAST_RTX (x);
1104 *ny = XVECEXP (y, 0, 0);
1105 return 1;
1108 return 0;
1111 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1112 to support ia64 speculation. When changes are needed, new rtx X and new mode
1113 NMODE are written, and the callback returns true. */
1114 static int
1115 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1116 rtx *nx, enum machine_mode* nmode)
1118 if (GET_CODE (x) == UNSPEC
1119 && targetm.sched.skip_rtx_p
1120 && targetm.sched.skip_rtx_p (x))
1122 *nx = XVECEXP (x, 0 ,0);
1123 *nmode = VOIDmode;
1124 return 1;
1127 return 0;
1130 /* Returns LHS and RHS are ok to be scheduled separately. */
1131 static bool
1132 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1134 if (lhs == NULL || rhs == NULL)
1135 return false;
1137 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1138 to use reg, if const can be used. Moreover, scheduling const as rhs may
1139 lead to mode mismatch cause consts don't have modes but they could be
1140 merged from branches where the same const used in different modes. */
1141 if (CONSTANT_P (rhs))
1142 return false;
1144 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1145 if (COMPARISON_P (rhs))
1146 return false;
1148 /* Do not allow single REG to be an rhs. */
1149 if (REG_P (rhs))
1150 return false;
1152 /* See comment at find_used_regs_1 (*1) for explanation of this
1153 restriction. */
1154 /* FIXME: remove this later. */
1155 if (MEM_P (lhs))
1156 return false;
1158 /* This will filter all tricky things like ZERO_EXTRACT etc.
1159 For now we don't handle it. */
1160 if (!REG_P (lhs) && !MEM_P (lhs))
1161 return false;
1163 return true;
1166 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1167 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1168 used e.g. for insns from recovery blocks. */
1169 static void
1170 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1172 hash_rtx_callback_function hrcf;
1173 int insn_class;
1175 VINSN_INSN_RTX (vi) = insn;
1176 VINSN_COUNT (vi) = 0;
1177 vi->cost = -1;
1179 if (INSN_NOP_P (insn))
1180 return;
1182 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1183 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1184 else
1185 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1187 /* Hash vinsn depending on whether it is separable or not. */
1188 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1189 if (VINSN_SEPARABLE_P (vi))
1191 rtx rhs = VINSN_RHS (vi);
1193 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1194 NULL, NULL, false, hrcf);
1195 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1196 VOIDmode, NULL, NULL,
1197 false, hrcf);
1199 else
1201 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1202 NULL, NULL, false, hrcf);
1203 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1206 insn_class = haifa_classify_insn (insn);
1207 if (insn_class >= 2
1208 && (!targetm.sched.get_insn_spec_ds
1209 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1210 == 0)))
1211 VINSN_MAY_TRAP_P (vi) = true;
1212 else
1213 VINSN_MAY_TRAP_P (vi) = false;
1216 /* Indicate that VI has become the part of an rtx object. */
1217 void
1218 vinsn_attach (vinsn_t vi)
1220 /* Assert that VI is not pending for deletion. */
1221 gcc_assert (VINSN_INSN_RTX (vi));
1223 VINSN_COUNT (vi)++;
1226 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1227 VINSN_TYPE (VI). */
1228 static vinsn_t
1229 vinsn_create (insn_t insn, bool force_unique_p)
1231 vinsn_t vi = XCNEW (struct vinsn_def);
1233 vinsn_init (vi, insn, force_unique_p);
1234 return vi;
1237 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1238 the copy. */
1239 vinsn_t
1240 vinsn_copy (vinsn_t vi, bool reattach_p)
1242 rtx copy;
1243 bool unique = VINSN_UNIQUE_P (vi);
1244 vinsn_t new_vi;
1246 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1247 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1248 if (reattach_p)
1250 vinsn_detach (vi);
1251 vinsn_attach (new_vi);
1254 return new_vi;
1257 /* Delete the VI vinsn and free its data. */
1258 static void
1259 vinsn_delete (vinsn_t vi)
1261 gcc_assert (VINSN_COUNT (vi) == 0);
1263 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1265 return_regset_to_pool (VINSN_REG_SETS (vi));
1266 return_regset_to_pool (VINSN_REG_USES (vi));
1267 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1270 free (vi);
1273 /* Indicate that VI is no longer a part of some rtx object.
1274 Remove VI if it is no longer needed. */
1275 void
1276 vinsn_detach (vinsn_t vi)
1278 gcc_assert (VINSN_COUNT (vi) > 0);
1280 if (--VINSN_COUNT (vi) == 0)
1281 vinsn_delete (vi);
1284 /* Returns TRUE if VI is a branch. */
1285 bool
1286 vinsn_cond_branch_p (vinsn_t vi)
1288 insn_t insn;
1290 if (!VINSN_UNIQUE_P (vi))
1291 return false;
1293 insn = VINSN_INSN_RTX (vi);
1294 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1295 return false;
1297 return control_flow_insn_p (insn);
1300 /* Return latency of INSN. */
1301 static int
1302 sel_insn_rtx_cost (rtx insn)
1304 int cost;
1306 /* A USE insn, or something else we don't need to
1307 understand. We can't pass these directly to
1308 result_ready_cost or insn_default_latency because it will
1309 trigger a fatal error for unrecognizable insns. */
1310 if (recog_memoized (insn) < 0)
1311 cost = 0;
1312 else
1314 cost = insn_default_latency (insn);
1316 if (cost < 0)
1317 cost = 0;
1320 return cost;
1323 /* Return the cost of the VI.
1324 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1326 sel_vinsn_cost (vinsn_t vi)
1328 int cost = vi->cost;
1330 if (cost < 0)
1332 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1333 vi->cost = cost;
1336 return cost;
1340 /* Functions for insn emitting. */
1342 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1343 EXPR and SEQNO. */
1344 insn_t
1345 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1347 insn_t new_insn;
1349 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1351 new_insn = emit_insn_after (pattern, after);
1352 set_insn_init (expr, NULL, seqno);
1353 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1355 return new_insn;
1358 /* Force newly generated vinsns to be unique. */
1359 static bool init_insn_force_unique_p = false;
1361 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1362 initialize its data from EXPR and SEQNO. */
1363 insn_t
1364 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1365 insn_t after)
1367 insn_t insn;
1369 gcc_assert (!init_insn_force_unique_p);
1371 init_insn_force_unique_p = true;
1372 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1373 CANT_MOVE (insn) = 1;
1374 init_insn_force_unique_p = false;
1376 return insn;
1379 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1380 take it as a new vinsn instead of EXPR's vinsn.
1381 We simplify insns later, after scheduling region in
1382 simplify_changed_insns. */
1383 insn_t
1384 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1385 insn_t after)
1387 expr_t emit_expr;
1388 insn_t insn;
1389 int flags;
1391 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1392 seqno);
1393 insn = EXPR_INSN_RTX (emit_expr);
1394 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1396 flags = INSN_INIT_TODO_SSID;
1397 if (INSN_LUID (insn) == 0)
1398 flags |= INSN_INIT_TODO_LUID;
1399 sel_init_new_insn (insn, flags);
1401 return insn;
1404 /* Move insn from EXPR after AFTER. */
1405 insn_t
1406 sel_move_insn (expr_t expr, int seqno, insn_t after)
1408 insn_t insn = EXPR_INSN_RTX (expr);
1409 basic_block bb = BLOCK_FOR_INSN (after);
1410 insn_t next = NEXT_INSN (after);
1412 /* Assert that in move_op we disconnected this insn properly. */
1413 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1414 PREV_INSN (insn) = after;
1415 NEXT_INSN (insn) = next;
1417 NEXT_INSN (after) = insn;
1418 PREV_INSN (next) = insn;
1420 /* Update links from insn to bb and vice versa. */
1421 df_insn_change_bb (insn, bb);
1422 if (BB_END (bb) == after)
1423 BB_END (bb) = insn;
1425 prepare_insn_expr (insn, seqno);
1426 return insn;
1430 /* Functions to work with right-hand sides. */
1432 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1433 VECT and return true when found. Use NEW_VINSN for comparison only when
1434 COMPARE_VINSNS is true. Write to INDP the index on which
1435 the search has stopped, such that inserting the new element at INDP will
1436 retain VECT's sort order. */
1437 static bool
1438 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1439 unsigned uid, vinsn_t new_vinsn,
1440 bool compare_vinsns, int *indp)
1442 expr_history_def *arr;
1443 int i, j, len = VEC_length (expr_history_def, vect);
1445 if (len == 0)
1447 *indp = 0;
1448 return false;
1451 arr = VEC_address (expr_history_def, vect);
1452 i = 0, j = len - 1;
1454 while (i <= j)
1456 unsigned auid = arr[i].uid;
1457 vinsn_t avinsn = arr[i].new_expr_vinsn;
1459 if (auid == uid
1460 /* When undoing transformation on a bookkeeping copy, the new vinsn
1461 may not be exactly equal to the one that is saved in the vector.
1462 This is because the insn whose copy we're checking was possibly
1463 substituted itself. */
1464 && (! compare_vinsns
1465 || vinsn_equal_p (avinsn, new_vinsn)))
1467 *indp = i;
1468 return true;
1470 else if (auid > uid)
1471 break;
1472 i++;
1475 *indp = i;
1476 return false;
1479 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1480 the position found or -1, if no such value is in vector.
1481 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1483 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1484 vinsn_t new_vinsn, bool originators_p)
1486 int ind;
1488 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1489 false, &ind))
1490 return ind;
1492 if (INSN_ORIGINATORS (insn) && originators_p)
1494 unsigned uid;
1495 bitmap_iterator bi;
1497 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1498 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1499 return ind;
1502 return -1;
1505 /* Insert new element in a sorted history vector pointed to by PVECT,
1506 if it is not there already. The element is searched using
1507 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1508 the history of a transformation. */
1509 void
1510 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1511 unsigned uid, enum local_trans_type type,
1512 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1513 ds_t spec_ds)
1515 VEC(expr_history_def, heap) *vect = *pvect;
1516 expr_history_def temp;
1517 bool res;
1518 int ind;
1520 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1522 if (res)
1524 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1526 /* It is possible that speculation types of expressions that were
1527 propagated through different paths will be different here. In this
1528 case, merge the status to get the correct check later. */
1529 if (phist->spec_ds != spec_ds)
1530 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1531 return;
1534 temp.uid = uid;
1535 temp.old_expr_vinsn = old_expr_vinsn;
1536 temp.new_expr_vinsn = new_expr_vinsn;
1537 temp.spec_ds = spec_ds;
1538 temp.type = type;
1540 vinsn_attach (old_expr_vinsn);
1541 vinsn_attach (new_expr_vinsn);
1542 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1543 *pvect = vect;
1546 /* Free history vector PVECT. */
1547 static void
1548 free_history_vect (VEC (expr_history_def, heap) **pvect)
1550 unsigned i;
1551 expr_history_def *phist;
1553 if (! *pvect)
1554 return;
1556 for (i = 0;
1557 VEC_iterate (expr_history_def, *pvect, i, phist);
1558 i++)
1560 vinsn_detach (phist->old_expr_vinsn);
1561 vinsn_detach (phist->new_expr_vinsn);
1564 VEC_free (expr_history_def, heap, *pvect);
1565 *pvect = NULL;
1568 /* Merge vector FROM to PVECT. */
1569 static void
1570 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1571 VEC (expr_history_def, heap) *from)
1573 expr_history_def *phist;
1574 int i;
1576 /* We keep this vector sorted. */
1577 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1578 insert_in_history_vect (pvect, phist->uid, phist->type,
1579 phist->old_expr_vinsn, phist->new_expr_vinsn,
1580 phist->spec_ds);
1583 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1584 bool
1585 vinsn_equal_p (vinsn_t x, vinsn_t y)
1587 rtx_equal_p_callback_function repcf;
1589 if (x == y)
1590 return true;
1592 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593 return false;
1595 if (VINSN_HASH (x) != VINSN_HASH (y))
1596 return false;
1598 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1599 if (VINSN_SEPARABLE_P (x))
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x));
1603 gcc_assert (VINSN_RHS (y));
1605 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1608 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1612 /* Functions for working with expressions. */
1614 /* Initialize EXPR. */
1615 static void
1616 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618 ds_t spec_to_check_ds, int orig_sched_cycle,
1619 VEC(expr_history_def, heap) *history, signed char target_available,
1620 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1621 bool cant_move)
1623 vinsn_attach (vi);
1625 EXPR_VINSN (expr) = vi;
1626 EXPR_SPEC (expr) = spec;
1627 EXPR_USEFULNESS (expr) = use;
1628 EXPR_PRIORITY (expr) = priority;
1629 EXPR_PRIORITY_ADJ (expr) = 0;
1630 EXPR_SCHED_TIMES (expr) = sched_times;
1631 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1632 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1633 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1634 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1636 if (history)
1637 EXPR_HISTORY_OF_CHANGES (expr) = history;
1638 else
1639 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1641 EXPR_TARGET_AVAILABLE (expr) = target_available;
1642 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1643 EXPR_WAS_RENAMED (expr) = was_renamed;
1644 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1645 EXPR_CANT_MOVE (expr) = cant_move;
1648 /* Make a copy of the expr FROM into the expr TO. */
1649 void
1650 copy_expr (expr_t to, expr_t from)
1652 VEC(expr_history_def, heap) *temp = NULL;
1654 if (EXPR_HISTORY_OF_CHANGES (from))
1656 unsigned i;
1657 expr_history_def *phist;
1659 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1660 for (i = 0;
1661 VEC_iterate (expr_history_def, temp, i, phist);
1662 i++)
1664 vinsn_attach (phist->old_expr_vinsn);
1665 vinsn_attach (phist->new_expr_vinsn);
1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1670 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1671 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1672 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1673 EXPR_ORIG_SCHED_CYCLE (from), temp,
1674 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1675 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1676 EXPR_CANT_MOVE (from));
1679 /* Same, but the final expr will not ever be in av sets, so don't copy
1680 "uninteresting" data such as bitmap cache. */
1681 void
1682 copy_expr_onside (expr_t to, expr_t from)
1684 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1685 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1686 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1687 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1688 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1689 EXPR_CANT_MOVE (from));
1692 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1693 initializing new insns. */
1694 static void
1695 prepare_insn_expr (insn_t insn, int seqno)
1697 expr_t expr = INSN_EXPR (insn);
1698 ds_t ds;
1700 INSN_SEQNO (insn) = seqno;
1701 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1702 EXPR_SPEC (expr) = 0;
1703 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1704 EXPR_WAS_SUBSTITUTED (expr) = 0;
1705 EXPR_WAS_RENAMED (expr) = 0;
1706 EXPR_TARGET_AVAILABLE (expr) = 1;
1707 INSN_LIVE_VALID_P (insn) = false;
1709 /* ??? If this expression is speculative, make its dependence
1710 as weak as possible. We can filter this expression later
1711 in process_spec_exprs, because we do not distinguish
1712 between the status we got during compute_av_set and the
1713 existing status. To be fixed. */
1714 ds = EXPR_SPEC_DONE_DS (expr);
1715 if (ds)
1716 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1718 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1721 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1722 is non-null when expressions are merged from different successors at
1723 a split point. */
1724 static void
1725 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1727 if (EXPR_TARGET_AVAILABLE (to) < 0
1728 || EXPR_TARGET_AVAILABLE (from) < 0)
1729 EXPR_TARGET_AVAILABLE (to) = -1;
1730 else
1732 /* We try to detect the case when one of the expressions
1733 can only be reached through another one. In this case,
1734 we can do better. */
1735 if (split_point == NULL)
1737 int toind, fromind;
1739 toind = EXPR_ORIG_BB_INDEX (to);
1740 fromind = EXPR_ORIG_BB_INDEX (from);
1742 if (toind && toind == fromind)
1743 /* Do nothing -- everything is done in
1744 merge_with_other_exprs. */
1746 else
1747 EXPR_TARGET_AVAILABLE (to) = -1;
1749 else
1750 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1754 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1755 is non-null when expressions are merged from different successors at
1756 a split point. */
1757 static void
1758 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1760 ds_t old_to_ds, old_from_ds;
1762 old_to_ds = EXPR_SPEC_DONE_DS (to);
1763 old_from_ds = EXPR_SPEC_DONE_DS (from);
1765 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1766 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1767 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1769 /* When merging e.g. control & data speculative exprs, or a control
1770 speculative with a control&data speculative one, we really have
1771 to change vinsn too. Also, when speculative status is changed,
1772 we also need to record this as a transformation in expr's history. */
1773 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1775 old_to_ds = ds_get_speculation_types (old_to_ds);
1776 old_from_ds = ds_get_speculation_types (old_from_ds);
1778 if (old_to_ds != old_from_ds)
1780 ds_t record_ds;
1782 /* When both expressions are speculative, we need to change
1783 the vinsn first. */
1784 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1786 int res;
1788 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1789 gcc_assert (res >= 0);
1792 if (split_point != NULL)
1794 /* Record the change with proper status. */
1795 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1796 record_ds &= ~(old_to_ds & SPECULATIVE);
1797 record_ds &= ~(old_from_ds & SPECULATIVE);
1799 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1800 INSN_UID (split_point), TRANS_SPECULATION,
1801 EXPR_VINSN (from), EXPR_VINSN (to),
1802 record_ds);
1809 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1810 this is done along different paths. */
1811 void
1812 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1814 /* For now, we just set the spec of resulting expr to be minimum of the specs
1815 of merged exprs. */
1816 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1817 EXPR_SPEC (to) = EXPR_SPEC (from);
1819 if (split_point)
1820 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1821 else
1822 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1823 EXPR_USEFULNESS (from));
1825 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1826 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1828 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1829 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1831 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1832 EXPR_ORIG_BB_INDEX (to) = 0;
1834 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1835 EXPR_ORIG_SCHED_CYCLE (from));
1837 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1838 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1839 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1841 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1842 EXPR_HISTORY_OF_CHANGES (from));
1843 update_target_availability (to, from, split_point);
1844 update_speculative_bits (to, from, split_point);
1847 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1848 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1849 are merged from different successors at a split point. */
1850 void
1851 merge_expr (expr_t to, expr_t from, insn_t split_point)
1853 vinsn_t to_vi = EXPR_VINSN (to);
1854 vinsn_t from_vi = EXPR_VINSN (from);
1856 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1858 /* Make sure that speculative pattern is propagated into exprs that
1859 have non-speculative one. This will provide us with consistent
1860 speculative bits and speculative patterns inside expr. */
1861 if (EXPR_SPEC_DONE_DS (to) == 0
1862 && EXPR_SPEC_DONE_DS (from) != 0)
1863 change_vinsn_in_expr (to, EXPR_VINSN (from));
1865 merge_expr_data (to, from, split_point);
1866 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1869 /* Clear the information of this EXPR. */
1870 void
1871 clear_expr (expr_t expr)
1874 vinsn_detach (EXPR_VINSN (expr));
1875 EXPR_VINSN (expr) = NULL;
1877 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1880 /* For a given LV_SET, mark EXPR having unavailable target register. */
1881 static void
1882 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1884 if (EXPR_SEPARABLE_P (expr))
1886 if (REG_P (EXPR_LHS (expr))
1887 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1889 /* If it's an insn like r1 = use (r1, ...), and it exists in
1890 different forms in each of the av_sets being merged, we can't say
1891 whether original destination register is available or not.
1892 However, this still works if destination register is not used
1893 in the original expression: if the branch at which LV_SET we're
1894 looking here is not actually 'other branch' in sense that same
1895 expression is available through it (but it can't be determined
1896 at computation stage because of transformations on one of the
1897 branches), it still won't affect the availability.
1898 Liveness of a register somewhere on a code motion path means
1899 it's either read somewhere on a codemotion path, live on
1900 'other' branch, live at the point immediately following
1901 the original operation, or is read by the original operation.
1902 The latter case is filtered out in the condition below.
1903 It still doesn't cover the case when register is defined and used
1904 somewhere within the code motion path, and in this case we could
1905 miss a unifying code motion along both branches using a renamed
1906 register, but it won't affect a code correctness since upon
1907 an actual code motion a bookkeeping code would be generated. */
1908 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1909 REGNO (EXPR_LHS (expr))))
1910 EXPR_TARGET_AVAILABLE (expr) = -1;
1911 else
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1915 else
1917 unsigned regno;
1918 reg_set_iterator rsi;
1920 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1921 0, regno, rsi)
1922 if (bitmap_bit_p (lv_set, regno))
1924 EXPR_TARGET_AVAILABLE (expr) = false;
1925 break;
1928 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1929 0, regno, rsi)
1930 if (bitmap_bit_p (lv_set, regno))
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 break;
1938 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1939 or dependence status have changed, 2 when also the target register
1940 became unavailable, 0 if nothing had to be changed. */
1942 speculate_expr (expr_t expr, ds_t ds)
1944 int res;
1945 rtx orig_insn_rtx;
1946 rtx spec_pat;
1947 ds_t target_ds, current_ds;
1949 /* Obtain the status we need to put on EXPR. */
1950 target_ds = (ds & SPECULATIVE);
1951 current_ds = EXPR_SPEC_DONE_DS (expr);
1952 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1954 orig_insn_rtx = EXPR_INSN_RTX (expr);
1956 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1958 switch (res)
1960 case 0:
1961 EXPR_SPEC_DONE_DS (expr) = ds;
1962 return current_ds != ds ? 1 : 0;
1964 case 1:
1966 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1967 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1969 change_vinsn_in_expr (expr, spec_vinsn);
1970 EXPR_SPEC_DONE_DS (expr) = ds;
1971 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1973 /* Do not allow clobbering the address register of speculative
1974 insns. */
1975 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1976 expr_dest_regno (expr)))
1978 EXPR_TARGET_AVAILABLE (expr) = false;
1979 return 2;
1982 return 1;
1985 case -1:
1986 return -1;
1988 default:
1989 gcc_unreachable ();
1990 return -1;
1994 /* Return a destination register, if any, of EXPR. */
1996 expr_dest_reg (expr_t expr)
1998 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2000 if (dest != NULL_RTX && REG_P (dest))
2001 return dest;
2003 return NULL_RTX;
2006 /* Returns the REGNO of the R's destination. */
2007 unsigned
2008 expr_dest_regno (expr_t expr)
2010 rtx dest = expr_dest_reg (expr);
2012 gcc_assert (dest != NULL_RTX);
2013 return REGNO (dest);
2016 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2017 AV_SET having unavailable target register. */
2018 void
2019 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2021 expr_t expr;
2022 av_set_iterator avi;
2024 FOR_EACH_EXPR (expr, avi, join_set)
2025 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2026 set_unavailable_target_for_expr (expr, lv_set);
2030 /* Av set functions. */
2032 /* Add a new element to av set SETP.
2033 Return the element added. */
2034 static av_set_t
2035 av_set_add_element (av_set_t *setp)
2037 /* Insert at the beginning of the list. */
2038 _list_add (setp);
2039 return *setp;
2042 /* Add EXPR to SETP. */
2043 void
2044 av_set_add (av_set_t *setp, expr_t expr)
2046 av_set_t elem;
2048 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2049 elem = av_set_add_element (setp);
2050 copy_expr (_AV_SET_EXPR (elem), expr);
2053 /* Same, but do not copy EXPR. */
2054 static void
2055 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2057 av_set_t elem;
2059 elem = av_set_add_element (setp);
2060 *_AV_SET_EXPR (elem) = *expr;
2063 /* Remove expr pointed to by IP from the av_set. */
2064 void
2065 av_set_iter_remove (av_set_iterator *ip)
2067 clear_expr (_AV_SET_EXPR (*ip->lp));
2068 _list_iter_remove (ip);
2071 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2072 sense of vinsn_equal_p function. Return NULL if no such expr is
2073 in SET was found. */
2074 expr_t
2075 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2077 expr_t expr;
2078 av_set_iterator i;
2080 FOR_EACH_EXPR (expr, i, set)
2081 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2082 return expr;
2083 return NULL;
2086 /* Same, but also remove the EXPR found. */
2087 static expr_t
2088 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2090 expr_t expr;
2091 av_set_iterator i;
2093 FOR_EACH_EXPR_1 (expr, i, setp)
2094 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2096 _list_iter_remove_nofree (&i);
2097 return expr;
2099 return NULL;
2102 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2103 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2104 Returns NULL if no such expr is in SET was found. */
2105 static expr_t
2106 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2108 expr_t cur_expr;
2109 av_set_iterator i;
2111 FOR_EACH_EXPR (cur_expr, i, set)
2113 if (cur_expr == expr)
2114 continue;
2115 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2116 return cur_expr;
2119 return NULL;
2122 /* If other expression is already in AVP, remove one of them. */
2123 expr_t
2124 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2126 expr_t expr2;
2128 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2129 if (expr2 != NULL)
2131 /* Reset target availability on merge, since taking it only from one
2132 of the exprs would be controversial for different code. */
2133 EXPR_TARGET_AVAILABLE (expr2) = -1;
2134 EXPR_USEFULNESS (expr2) = 0;
2136 merge_expr (expr2, expr, NULL);
2138 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2139 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2141 av_set_iter_remove (ip);
2142 return expr2;
2145 return expr;
2148 /* Return true if there is an expr that correlates to VI in SET. */
2149 bool
2150 av_set_is_in_p (av_set_t set, vinsn_t vi)
2152 return av_set_lookup (set, vi) != NULL;
2155 /* Return a copy of SET. */
2156 av_set_t
2157 av_set_copy (av_set_t set)
2159 expr_t expr;
2160 av_set_iterator i;
2161 av_set_t res = NULL;
2163 FOR_EACH_EXPR (expr, i, set)
2164 av_set_add (&res, expr);
2166 return res;
2169 /* Join two av sets that do not have common elements by attaching second set
2170 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2171 _AV_SET_NEXT of first set's last element). */
2172 static void
2173 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2175 gcc_assert (*to_tailp == NULL);
2176 *to_tailp = *fromp;
2177 *fromp = NULL;
2180 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2181 pointed to by FROMP afterwards. */
2182 void
2183 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2185 expr_t expr1;
2186 av_set_iterator i;
2188 /* Delete from TOP all exprs, that present in FROMP. */
2189 FOR_EACH_EXPR_1 (expr1, i, top)
2191 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2193 if (expr2)
2195 merge_expr (expr2, expr1, insn);
2196 av_set_iter_remove (&i);
2200 join_distinct_sets (i.lp, fromp);
2203 /* Same as above, but also update availability of target register in
2204 TOP judging by TO_LV_SET and FROM_LV_SET. */
2205 void
2206 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2207 regset from_lv_set, insn_t insn)
2209 expr_t expr1;
2210 av_set_iterator i;
2211 av_set_t *to_tailp, in_both_set = NULL;
2213 /* Delete from TOP all expres, that present in FROMP. */
2214 FOR_EACH_EXPR_1 (expr1, i, top)
2216 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2218 if (expr2)
2220 /* It may be that the expressions have different destination
2221 registers, in which case we need to check liveness here. */
2222 if (EXPR_SEPARABLE_P (expr1))
2224 int regno1 = (REG_P (EXPR_LHS (expr1))
2225 ? (int) expr_dest_regno (expr1) : -1);
2226 int regno2 = (REG_P (EXPR_LHS (expr2))
2227 ? (int) expr_dest_regno (expr2) : -1);
2229 /* ??? We don't have a way to check restrictions for
2230 *other* register on the current path, we did it only
2231 for the current target register. Give up. */
2232 if (regno1 != regno2)
2233 EXPR_TARGET_AVAILABLE (expr2) = -1;
2235 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2236 EXPR_TARGET_AVAILABLE (expr2) = -1;
2238 merge_expr (expr2, expr1, insn);
2239 av_set_add_nocopy (&in_both_set, expr2);
2240 av_set_iter_remove (&i);
2242 else
2243 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2244 FROM_LV_SET. */
2245 set_unavailable_target_for_expr (expr1, from_lv_set);
2247 to_tailp = i.lp;
2249 /* These expressions are not present in TOP. Check liveness
2250 restrictions on TO_LV_SET. */
2251 FOR_EACH_EXPR (expr1, i, *fromp)
2252 set_unavailable_target_for_expr (expr1, to_lv_set);
2254 join_distinct_sets (i.lp, &in_both_set);
2255 join_distinct_sets (to_tailp, fromp);
2258 /* Clear av_set pointed to by SETP. */
2259 void
2260 av_set_clear (av_set_t *setp)
2262 expr_t expr;
2263 av_set_iterator i;
2265 FOR_EACH_EXPR_1 (expr, i, setp)
2266 av_set_iter_remove (&i);
2268 gcc_assert (*setp == NULL);
2271 /* Leave only one non-speculative element in the SETP. */
2272 void
2273 av_set_leave_one_nonspec (av_set_t *setp)
2275 expr_t expr;
2276 av_set_iterator i;
2277 bool has_one_nonspec = false;
2279 /* Keep all speculative exprs, and leave one non-speculative
2280 (the first one). */
2281 FOR_EACH_EXPR_1 (expr, i, setp)
2283 if (!EXPR_SPEC_DONE_DS (expr))
2285 if (has_one_nonspec)
2286 av_set_iter_remove (&i);
2287 else
2288 has_one_nonspec = true;
2293 /* Return the N'th element of the SET. */
2294 expr_t
2295 av_set_element (av_set_t set, int n)
2297 expr_t expr;
2298 av_set_iterator i;
2300 FOR_EACH_EXPR (expr, i, set)
2301 if (n-- == 0)
2302 return expr;
2304 gcc_unreachable ();
2305 return NULL;
2308 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2309 void
2310 av_set_substract_cond_branches (av_set_t *avp)
2312 av_set_iterator i;
2313 expr_t expr;
2315 FOR_EACH_EXPR_1 (expr, i, avp)
2316 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2317 av_set_iter_remove (&i);
2320 /* Multiplies usefulness attribute of each member of av-set *AVP by
2321 value PROB / ALL_PROB. */
2322 void
2323 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2325 av_set_iterator i;
2326 expr_t expr;
2328 FOR_EACH_EXPR (expr, i, av)
2329 EXPR_USEFULNESS (expr) = (all_prob
2330 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2331 : 0);
2334 /* Leave in AVP only those expressions, which are present in AV,
2335 and return it, merging history expressions. */
2336 void
2337 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2339 av_set_iterator i;
2340 expr_t expr, expr2;
2342 FOR_EACH_EXPR_1 (expr, i, avp)
2343 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2344 av_set_iter_remove (&i);
2345 else
2346 /* When updating av sets in bookkeeping blocks, we can add more insns
2347 there which will be transformed but the upper av sets will not
2348 reflect those transformations. We then fail to undo those
2349 when searching for such insns. So merge the history saved
2350 in the av set of the block we are processing. */
2351 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2352 EXPR_HISTORY_OF_CHANGES (expr2));
2357 /* Dependence hooks to initialize insn data. */
2359 /* This is used in hooks callable from dependence analysis when initializing
2360 instruction's data. */
2361 static struct
2363 /* Where the dependence was found (lhs/rhs). */
2364 deps_where_t where;
2366 /* The actual data object to initialize. */
2367 idata_t id;
2369 /* True when the insn should not be made clonable. */
2370 bool force_unique_p;
2372 /* True when insn should be treated as of type USE, i.e. never renamed. */
2373 bool force_use_p;
2374 } deps_init_id_data;
2377 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2378 clonable. */
2379 static void
2380 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2382 int type;
2384 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2385 That clonable insns which can be separated into lhs and rhs have type SET.
2386 Other clonable insns have type USE. */
2387 type = GET_CODE (insn);
2389 /* Only regular insns could be cloned. */
2390 if (type == INSN && !force_unique_p)
2391 type = SET;
2392 else if (type == JUMP_INSN && simplejump_p (insn))
2393 type = PC;
2394 else if (type == DEBUG_INSN)
2395 type = !force_unique_p ? USE : INSN;
2397 IDATA_TYPE (id) = type;
2398 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2399 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2400 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2403 /* Start initializing insn data. */
2404 static void
2405 deps_init_id_start_insn (insn_t insn)
2407 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2409 setup_id_for_insn (deps_init_id_data.id, insn,
2410 deps_init_id_data.force_unique_p);
2411 deps_init_id_data.where = DEPS_IN_INSN;
2414 /* Start initializing lhs data. */
2415 static void
2416 deps_init_id_start_lhs (rtx lhs)
2418 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2419 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2421 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2423 IDATA_LHS (deps_init_id_data.id) = lhs;
2424 deps_init_id_data.where = DEPS_IN_LHS;
2428 /* Finish initializing lhs data. */
2429 static void
2430 deps_init_id_finish_lhs (void)
2432 deps_init_id_data.where = DEPS_IN_INSN;
2435 /* Note a set of REGNO. */
2436 static void
2437 deps_init_id_note_reg_set (int regno)
2439 haifa_note_reg_set (regno);
2441 if (deps_init_id_data.where == DEPS_IN_RHS)
2442 deps_init_id_data.force_use_p = true;
2444 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2445 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2447 #ifdef STACK_REGS
2448 /* Make instructions that set stack registers to be ineligible for
2449 renaming to avoid issues with find_used_regs. */
2450 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2451 deps_init_id_data.force_use_p = true;
2452 #endif
2455 /* Note a clobber of REGNO. */
2456 static void
2457 deps_init_id_note_reg_clobber (int regno)
2459 haifa_note_reg_clobber (regno);
2461 if (deps_init_id_data.where == DEPS_IN_RHS)
2462 deps_init_id_data.force_use_p = true;
2464 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2465 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2468 /* Note a use of REGNO. */
2469 static void
2470 deps_init_id_note_reg_use (int regno)
2472 haifa_note_reg_use (regno);
2474 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2475 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2478 /* Start initializing rhs data. */
2479 static void
2480 deps_init_id_start_rhs (rtx rhs)
2482 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2484 /* And there was no sel_deps_reset_to_insn (). */
2485 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2487 IDATA_RHS (deps_init_id_data.id) = rhs;
2488 deps_init_id_data.where = DEPS_IN_RHS;
2492 /* Finish initializing rhs data. */
2493 static void
2494 deps_init_id_finish_rhs (void)
2496 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2497 || deps_init_id_data.where == DEPS_IN_INSN);
2498 deps_init_id_data.where = DEPS_IN_INSN;
2501 /* Finish initializing insn data. */
2502 static void
2503 deps_init_id_finish_insn (void)
2505 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2507 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2509 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2510 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2512 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2513 || deps_init_id_data.force_use_p)
2515 /* This should be a USE, as we don't want to schedule its RHS
2516 separately. However, we still want to have them recorded
2517 for the purposes of substitution. That's why we don't
2518 simply call downgrade_to_use () here. */
2519 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2520 gcc_assert (!lhs == !rhs);
2522 IDATA_TYPE (deps_init_id_data.id) = USE;
2526 deps_init_id_data.where = DEPS_IN_NOWHERE;
2529 /* This is dependence info used for initializing insn's data. */
2530 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2532 /* This initializes most of the static part of the above structure. */
2533 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2535 NULL,
2537 deps_init_id_start_insn,
2538 deps_init_id_finish_insn,
2539 deps_init_id_start_lhs,
2540 deps_init_id_finish_lhs,
2541 deps_init_id_start_rhs,
2542 deps_init_id_finish_rhs,
2543 deps_init_id_note_reg_set,
2544 deps_init_id_note_reg_clobber,
2545 deps_init_id_note_reg_use,
2546 NULL, /* note_mem_dep */
2547 NULL, /* note_dep */
2549 0, /* use_cselib */
2550 0, /* use_deps_list */
2551 0 /* generate_spec_deps */
2554 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2555 we don't actually need information about lhs and rhs. */
2556 static void
2557 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2559 rtx pat = PATTERN (insn);
2561 if (NONJUMP_INSN_P (insn)
2562 && GET_CODE (pat) == SET
2563 && !force_unique_p)
2565 IDATA_RHS (id) = SET_SRC (pat);
2566 IDATA_LHS (id) = SET_DEST (pat);
2568 else
2569 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2572 /* Possibly downgrade INSN to USE. */
2573 static void
2574 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2576 bool must_be_use = false;
2577 unsigned uid = INSN_UID (insn);
2578 df_ref *rec;
2579 rtx lhs = IDATA_LHS (id);
2580 rtx rhs = IDATA_RHS (id);
2582 /* We downgrade only SETs. */
2583 if (IDATA_TYPE (id) != SET)
2584 return;
2586 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2588 IDATA_TYPE (id) = USE;
2589 return;
2592 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2594 df_ref def = *rec;
2596 if (DF_REF_INSN (def)
2597 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2598 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2600 must_be_use = true;
2601 break;
2604 #ifdef STACK_REGS
2605 /* Make instructions that set stack registers to be ineligible for
2606 renaming to avoid issues with find_used_regs. */
2607 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2609 must_be_use = true;
2610 break;
2612 #endif
2615 if (must_be_use)
2616 IDATA_TYPE (id) = USE;
2619 /* Setup register sets describing INSN in ID. */
2620 static void
2621 setup_id_reg_sets (idata_t id, insn_t insn)
2623 unsigned uid = INSN_UID (insn);
2624 df_ref *rec;
2625 regset tmp = get_clear_regset_from_pool ();
2627 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2629 df_ref def = *rec;
2630 unsigned int regno = DF_REF_REGNO (def);
2632 /* Post modifies are treated like clobbers by sched-deps.c. */
2633 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2634 | DF_REF_PRE_POST_MODIFY)))
2635 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2636 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2638 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2640 #ifdef STACK_REGS
2641 /* For stack registers, treat writes to them as writes
2642 to the first one to be consistent with sched-deps.c. */
2643 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2644 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2645 #endif
2647 /* Mark special refs that generate read/write def pair. */
2648 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2649 || regno == STACK_POINTER_REGNUM)
2650 bitmap_set_bit (tmp, regno);
2653 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2655 df_ref use = *rec;
2656 unsigned int regno = DF_REF_REGNO (use);
2658 /* When these refs are met for the first time, skip them, as
2659 these uses are just counterparts of some defs. */
2660 if (bitmap_bit_p (tmp, regno))
2661 bitmap_clear_bit (tmp, regno);
2662 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2664 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2666 #ifdef STACK_REGS
2667 /* For stack registers, treat reads from them as reads from
2668 the first one to be consistent with sched-deps.c. */
2669 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2670 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2671 #endif
2675 return_regset_to_pool (tmp);
2678 /* Initialize instruction data for INSN in ID using DF's data. */
2679 static void
2680 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2682 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2684 setup_id_for_insn (id, insn, force_unique_p);
2685 setup_id_lhs_rhs (id, insn, force_unique_p);
2687 if (INSN_NOP_P (insn))
2688 return;
2690 maybe_downgrade_id_to_use (id, insn);
2691 setup_id_reg_sets (id, insn);
2694 /* Initialize instruction data for INSN in ID. */
2695 static void
2696 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2698 struct deps_desc _dc, *dc = &_dc;
2700 deps_init_id_data.where = DEPS_IN_NOWHERE;
2701 deps_init_id_data.id = id;
2702 deps_init_id_data.force_unique_p = force_unique_p;
2703 deps_init_id_data.force_use_p = false;
2705 init_deps (dc, false);
2707 memcpy (&deps_init_id_sched_deps_info,
2708 &const_deps_init_id_sched_deps_info,
2709 sizeof (deps_init_id_sched_deps_info));
2711 if (spec_info != NULL)
2712 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2714 sched_deps_info = &deps_init_id_sched_deps_info;
2716 deps_analyze_insn (dc, insn);
2718 free_deps (dc);
2720 deps_init_id_data.id = NULL;
2725 /* Implement hooks for collecting fundamental insn properties like if insn is
2726 an ASM or is within a SCHED_GROUP. */
2728 /* True when a "one-time init" data for INSN was already inited. */
2729 static bool
2730 first_time_insn_init (insn_t insn)
2732 return INSN_LIVE (insn) == NULL;
2735 /* Hash an entry in a transformed_insns hashtable. */
2736 static hashval_t
2737 hash_transformed_insns (const void *p)
2739 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2742 /* Compare the entries in a transformed_insns hashtable. */
2743 static int
2744 eq_transformed_insns (const void *p, const void *q)
2746 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2747 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2749 if (INSN_UID (i1) == INSN_UID (i2))
2750 return 1;
2751 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2754 /* Free an entry in a transformed_insns hashtable. */
2755 static void
2756 free_transformed_insns (void *p)
2758 struct transformed_insns *pti = (struct transformed_insns *) p;
2760 vinsn_detach (pti->vinsn_old);
2761 vinsn_detach (pti->vinsn_new);
2762 free (pti);
2765 /* Init the s_i_d data for INSN which should be inited just once, when
2766 we first see the insn. */
2767 static void
2768 init_first_time_insn_data (insn_t insn)
2770 /* This should not be set if this is the first time we init data for
2771 insn. */
2772 gcc_assert (first_time_insn_init (insn));
2774 /* These are needed for nops too. */
2775 INSN_LIVE (insn) = get_regset_from_pool ();
2776 INSN_LIVE_VALID_P (insn) = false;
2778 if (!INSN_NOP_P (insn))
2780 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2781 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2782 INSN_TRANSFORMED_INSNS (insn)
2783 = htab_create (16, hash_transformed_insns,
2784 eq_transformed_insns, free_transformed_insns);
2785 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2789 /* Free almost all above data for INSN that is scheduled already.
2790 Used for extra-large basic blocks. */
2791 void
2792 free_data_for_scheduled_insn (insn_t insn)
2794 gcc_assert (! first_time_insn_init (insn));
2796 if (! INSN_ANALYZED_DEPS (insn))
2797 return;
2799 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2800 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2801 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2803 /* This is allocated only for bookkeeping insns. */
2804 if (INSN_ORIGINATORS (insn))
2805 BITMAP_FREE (INSN_ORIGINATORS (insn));
2806 free_deps (&INSN_DEPS_CONTEXT (insn));
2808 INSN_ANALYZED_DEPS (insn) = NULL;
2810 /* Clear the readonly flag so we would ICE when trying to recalculate
2811 the deps context (as we believe that it should not happen). */
2812 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2815 /* Free the same data as above for INSN. */
2816 static void
2817 free_first_time_insn_data (insn_t insn)
2819 gcc_assert (! first_time_insn_init (insn));
2821 free_data_for_scheduled_insn (insn);
2822 return_regset_to_pool (INSN_LIVE (insn));
2823 INSN_LIVE (insn) = NULL;
2824 INSN_LIVE_VALID_P (insn) = false;
2827 /* Initialize region-scope data structures for basic blocks. */
2828 static void
2829 init_global_and_expr_for_bb (basic_block bb)
2831 if (sel_bb_empty_p (bb))
2832 return;
2834 invalidate_av_set (bb);
2837 /* Data for global dependency analysis (to initialize CANT_MOVE and
2838 SCHED_GROUP_P). */
2839 static struct
2841 /* Previous insn. */
2842 insn_t prev_insn;
2843 } init_global_data;
2845 /* Determine if INSN is in the sched_group, is an asm or should not be
2846 cloned. After that initialize its expr. */
2847 static void
2848 init_global_and_expr_for_insn (insn_t insn)
2850 if (LABEL_P (insn))
2851 return;
2853 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2855 init_global_data.prev_insn = NULL_RTX;
2856 return;
2859 gcc_assert (INSN_P (insn));
2861 if (SCHED_GROUP_P (insn))
2862 /* Setup a sched_group. */
2864 insn_t prev_insn = init_global_data.prev_insn;
2866 if (prev_insn)
2867 INSN_SCHED_NEXT (prev_insn) = insn;
2869 init_global_data.prev_insn = insn;
2871 else
2872 init_global_data.prev_insn = NULL_RTX;
2874 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2875 || asm_noperands (PATTERN (insn)) >= 0)
2876 /* Mark INSN as an asm. */
2877 INSN_ASM_P (insn) = true;
2880 bool force_unique_p;
2881 ds_t spec_done_ds;
2883 /* Certain instructions cannot be cloned, and frame related insns and
2884 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2885 their block. */
2886 if (prologue_epilogue_contains (insn))
2888 if (RTX_FRAME_RELATED_P (insn))
2889 CANT_MOVE (insn) = 1;
2890 else
2892 rtx note;
2893 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2894 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2895 && ((enum insn_note) INTVAL (XEXP (note, 0))
2896 == NOTE_INSN_EPILOGUE_BEG))
2898 CANT_MOVE (insn) = 1;
2899 break;
2902 force_unique_p = true;
2904 else
2905 if (CANT_MOVE (insn)
2906 || INSN_ASM_P (insn)
2907 || SCHED_GROUP_P (insn)
2908 || CALL_P (insn)
2909 /* Exception handling insns are always unique. */
2910 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2911 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2912 || control_flow_insn_p (insn))
2913 force_unique_p = true;
2914 else
2915 force_unique_p = false;
2917 if (targetm.sched.get_insn_spec_ds)
2919 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2920 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2922 else
2923 spec_done_ds = 0;
2925 /* Initialize INSN's expr. */
2926 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2927 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2928 spec_done_ds, 0, 0, NULL, true, false, false, false,
2929 CANT_MOVE (insn));
2932 init_first_time_insn_data (insn);
2935 /* Scan the region and initialize instruction data for basic blocks BBS. */
2936 void
2937 sel_init_global_and_expr (bb_vec_t bbs)
2939 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2940 const struct sched_scan_info_def ssi =
2942 NULL, /* extend_bb */
2943 init_global_and_expr_for_bb, /* init_bb */
2944 extend_insn_data, /* extend_insn */
2945 init_global_and_expr_for_insn /* init_insn */
2948 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2951 /* Finalize region-scope data structures for basic blocks. */
2952 static void
2953 finish_global_and_expr_for_bb (basic_block bb)
2955 av_set_clear (&BB_AV_SET (bb));
2956 BB_AV_LEVEL (bb) = 0;
2959 /* Finalize INSN's data. */
2960 static void
2961 finish_global_and_expr_insn (insn_t insn)
2963 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2964 return;
2966 gcc_assert (INSN_P (insn));
2968 if (INSN_LUID (insn) > 0)
2970 free_first_time_insn_data (insn);
2971 INSN_WS_LEVEL (insn) = 0;
2972 CANT_MOVE (insn) = 0;
2974 /* We can no longer assert this, as vinsns of this insn could be
2975 easily live in other insn's caches. This should be changed to
2976 a counter-like approach among all vinsns. */
2977 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2978 clear_expr (INSN_EXPR (insn));
2982 /* Finalize per instruction data for the whole region. */
2983 void
2984 sel_finish_global_and_expr (void)
2987 bb_vec_t bbs;
2988 int i;
2990 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2992 for (i = 0; i < current_nr_blocks; i++)
2993 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2995 /* Clear AV_SETs and INSN_EXPRs. */
2997 const struct sched_scan_info_def ssi =
2999 NULL, /* extend_bb */
3000 finish_global_and_expr_for_bb, /* init_bb */
3001 NULL, /* extend_insn */
3002 finish_global_and_expr_insn /* init_insn */
3005 sched_scan (&ssi, bbs, NULL, NULL, NULL);
3008 VEC_free (basic_block, heap, bbs);
3011 finish_insns ();
3015 /* In the below hooks, we merely calculate whether or not a dependence
3016 exists, and in what part of insn. However, we will need more data
3017 when we'll start caching dependence requests. */
3019 /* Container to hold information for dependency analysis. */
3020 static struct
3022 deps_t dc;
3024 /* A variable to track which part of rtx we are scanning in
3025 sched-deps.c: sched_analyze_insn (). */
3026 deps_where_t where;
3028 /* Current producer. */
3029 insn_t pro;
3031 /* Current consumer. */
3032 vinsn_t con;
3034 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3035 X is from { INSN, LHS, RHS }. */
3036 ds_t has_dep_p[DEPS_IN_NOWHERE];
3037 } has_dependence_data;
3039 /* Start analyzing dependencies of INSN. */
3040 static void
3041 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3043 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3045 has_dependence_data.where = DEPS_IN_INSN;
3048 /* Finish analyzing dependencies of an insn. */
3049 static void
3050 has_dependence_finish_insn (void)
3052 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3054 has_dependence_data.where = DEPS_IN_NOWHERE;
3057 /* Start analyzing dependencies of LHS. */
3058 static void
3059 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3061 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3063 if (VINSN_LHS (has_dependence_data.con) != NULL)
3064 has_dependence_data.where = DEPS_IN_LHS;
3067 /* Finish analyzing dependencies of an lhs. */
3068 static void
3069 has_dependence_finish_lhs (void)
3071 has_dependence_data.where = DEPS_IN_INSN;
3074 /* Start analyzing dependencies of RHS. */
3075 static void
3076 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3078 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3080 if (VINSN_RHS (has_dependence_data.con) != NULL)
3081 has_dependence_data.where = DEPS_IN_RHS;
3084 /* Start analyzing dependencies of an rhs. */
3085 static void
3086 has_dependence_finish_rhs (void)
3088 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3089 || has_dependence_data.where == DEPS_IN_INSN);
3091 has_dependence_data.where = DEPS_IN_INSN;
3094 /* Note a set of REGNO. */
3095 static void
3096 has_dependence_note_reg_set (int regno)
3098 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3100 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3101 VINSN_INSN_RTX
3102 (has_dependence_data.con)))
3104 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3106 if (reg_last->sets != NULL
3107 || reg_last->clobbers != NULL)
3108 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3110 if (reg_last->uses)
3111 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3115 /* Note a clobber of REGNO. */
3116 static void
3117 has_dependence_note_reg_clobber (int regno)
3119 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3121 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3122 VINSN_INSN_RTX
3123 (has_dependence_data.con)))
3125 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3127 if (reg_last->sets)
3128 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3130 if (reg_last->uses)
3131 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3135 /* Note a use of REGNO. */
3136 static void
3137 has_dependence_note_reg_use (int regno)
3139 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3141 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3142 VINSN_INSN_RTX
3143 (has_dependence_data.con)))
3145 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3147 if (reg_last->sets)
3148 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3150 if (reg_last->clobbers)
3151 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3153 /* Handle BE_IN_SPEC. */
3154 if (reg_last->uses)
3156 ds_t pro_spec_checked_ds;
3158 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3159 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3161 if (pro_spec_checked_ds != 0)
3162 /* Merge BE_IN_SPEC bits into *DSP. */
3163 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3164 NULL_RTX, NULL_RTX);
3169 /* Note a memory dependence. */
3170 static void
3171 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3172 rtx pending_mem ATTRIBUTE_UNUSED,
3173 insn_t pending_insn ATTRIBUTE_UNUSED,
3174 ds_t ds ATTRIBUTE_UNUSED)
3176 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3177 VINSN_INSN_RTX (has_dependence_data.con)))
3179 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3181 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3185 /* Note a dependence. */
3186 static void
3187 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3188 ds_t ds ATTRIBUTE_UNUSED)
3190 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3191 VINSN_INSN_RTX (has_dependence_data.con)))
3193 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3195 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3199 /* Mark the insn as having a hard dependence that prevents speculation. */
3200 void
3201 sel_mark_hard_insn (rtx insn)
3203 int i;
3205 /* Only work when we're in has_dependence_p mode.
3206 ??? This is a hack, this should actually be a hook. */
3207 if (!has_dependence_data.dc || !has_dependence_data.pro)
3208 return;
3210 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3211 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3213 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3214 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3217 /* This structure holds the hooks for the dependency analysis used when
3218 actually processing dependencies in the scheduler. */
3219 static struct sched_deps_info_def has_dependence_sched_deps_info;
3221 /* This initializes most of the fields of the above structure. */
3222 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3224 NULL,
3226 has_dependence_start_insn,
3227 has_dependence_finish_insn,
3228 has_dependence_start_lhs,
3229 has_dependence_finish_lhs,
3230 has_dependence_start_rhs,
3231 has_dependence_finish_rhs,
3232 has_dependence_note_reg_set,
3233 has_dependence_note_reg_clobber,
3234 has_dependence_note_reg_use,
3235 has_dependence_note_mem_dep,
3236 has_dependence_note_dep,
3238 0, /* use_cselib */
3239 0, /* use_deps_list */
3240 0 /* generate_spec_deps */
3243 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3244 static void
3245 setup_has_dependence_sched_deps_info (void)
3247 memcpy (&has_dependence_sched_deps_info,
3248 &const_has_dependence_sched_deps_info,
3249 sizeof (has_dependence_sched_deps_info));
3251 if (spec_info != NULL)
3252 has_dependence_sched_deps_info.generate_spec_deps = 1;
3254 sched_deps_info = &has_dependence_sched_deps_info;
3257 /* Remove all dependences found and recorded in has_dependence_data array. */
3258 void
3259 sel_clear_has_dependence (void)
3261 int i;
3263 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3264 has_dependence_data.has_dep_p[i] = 0;
3267 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3268 to the dependence information array in HAS_DEP_PP. */
3269 ds_t
3270 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3272 int i;
3273 ds_t ds;
3274 struct deps_desc *dc;
3276 if (INSN_SIMPLEJUMP_P (pred))
3277 /* Unconditional jump is just a transfer of control flow.
3278 Ignore it. */
3279 return false;
3281 dc = &INSN_DEPS_CONTEXT (pred);
3283 /* We init this field lazily. */
3284 if (dc->reg_last == NULL)
3285 init_deps_reg_last (dc);
3287 if (!dc->readonly)
3289 has_dependence_data.pro = NULL;
3290 /* Initialize empty dep context with information about PRED. */
3291 advance_deps_context (dc, pred);
3292 dc->readonly = 1;
3295 has_dependence_data.where = DEPS_IN_NOWHERE;
3296 has_dependence_data.pro = pred;
3297 has_dependence_data.con = EXPR_VINSN (expr);
3298 has_dependence_data.dc = dc;
3300 sel_clear_has_dependence ();
3302 /* Now catch all dependencies that would be generated between PRED and
3303 INSN. */
3304 setup_has_dependence_sched_deps_info ();
3305 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3306 has_dependence_data.dc = NULL;
3308 /* When a barrier was found, set DEPS_IN_INSN bits. */
3309 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3310 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3311 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3312 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3314 /* Do not allow stores to memory to move through checks. Currently
3315 we don't move this to sched-deps.c as the check doesn't have
3316 obvious places to which this dependence can be attached.
3317 FIMXE: this should go to a hook. */
3318 if (EXPR_LHS (expr)
3319 && MEM_P (EXPR_LHS (expr))
3320 && sel_insn_is_speculation_check (pred))
3321 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3323 *has_dep_pp = has_dependence_data.has_dep_p;
3324 ds = 0;
3325 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3326 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3327 NULL_RTX, NULL_RTX);
3329 return ds;
3333 /* Dependence hooks implementation that checks dependence latency constraints
3334 on the insns being scheduled. The entry point for these routines is
3335 tick_check_p predicate. */
3337 static struct
3339 /* An expr we are currently checking. */
3340 expr_t expr;
3342 /* A minimal cycle for its scheduling. */
3343 int cycle;
3345 /* Whether we have seen a true dependence while checking. */
3346 bool seen_true_dep_p;
3347 } tick_check_data;
3349 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3350 on PRO with status DS and weight DW. */
3351 static void
3352 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3354 expr_t con_expr = tick_check_data.expr;
3355 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3357 if (con_insn != pro_insn)
3359 enum reg_note dt;
3360 int tick;
3362 if (/* PROducer was removed from above due to pipelining. */
3363 !INSN_IN_STREAM_P (pro_insn)
3364 /* Or PROducer was originally on the next iteration regarding the
3365 CONsumer. */
3366 || (INSN_SCHED_TIMES (pro_insn)
3367 - EXPR_SCHED_TIMES (con_expr)) > 1)
3368 /* Don't count this dependence. */
3369 return;
3371 dt = ds_to_dt (ds);
3372 if (dt == REG_DEP_TRUE)
3373 tick_check_data.seen_true_dep_p = true;
3375 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3378 dep_def _dep, *dep = &_dep;
3380 init_dep (dep, pro_insn, con_insn, dt);
3382 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3385 /* When there are several kinds of dependencies between pro and con,
3386 only REG_DEP_TRUE should be taken into account. */
3387 if (tick > tick_check_data.cycle
3388 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3389 tick_check_data.cycle = tick;
3393 /* An implementation of note_dep hook. */
3394 static void
3395 tick_check_note_dep (insn_t pro, ds_t ds)
3397 tick_check_dep_with_dw (pro, ds, 0);
3400 /* An implementation of note_mem_dep hook. */
3401 static void
3402 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3404 dw_t dw;
3406 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3407 ? estimate_dep_weak (mem1, mem2)
3408 : 0);
3410 tick_check_dep_with_dw (pro, ds, dw);
3413 /* This structure contains hooks for dependence analysis used when determining
3414 whether an insn is ready for scheduling. */
3415 static struct sched_deps_info_def tick_check_sched_deps_info =
3417 NULL,
3419 NULL,
3420 NULL,
3421 NULL,
3422 NULL,
3423 NULL,
3424 NULL,
3425 haifa_note_reg_set,
3426 haifa_note_reg_clobber,
3427 haifa_note_reg_use,
3428 tick_check_note_mem_dep,
3429 tick_check_note_dep,
3431 0, 0, 0
3434 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3435 scheduled. Return 0 if all data from producers in DC is ready. */
3437 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3439 int cycles_left;
3440 /* Initialize variables. */
3441 tick_check_data.expr = expr;
3442 tick_check_data.cycle = 0;
3443 tick_check_data.seen_true_dep_p = false;
3444 sched_deps_info = &tick_check_sched_deps_info;
3446 gcc_assert (!dc->readonly);
3447 dc->readonly = 1;
3448 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3449 dc->readonly = 0;
3451 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3453 return cycles_left >= 0 ? cycles_left : 0;
3457 /* Functions to work with insns. */
3459 /* Returns true if LHS of INSN is the same as DEST of an insn
3460 being moved. */
3461 bool
3462 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3464 rtx lhs = INSN_LHS (insn);
3466 if (lhs == NULL || dest == NULL)
3467 return false;
3469 return rtx_equal_p (lhs, dest);
3472 /* Return s_i_d entry of INSN. Callable from debugger. */
3473 sel_insn_data_def
3474 insn_sid (insn_t insn)
3476 return *SID (insn);
3479 /* True when INSN is a speculative check. We can tell this by looking
3480 at the data structures of the selective scheduler, not by examining
3481 the pattern. */
3482 bool
3483 sel_insn_is_speculation_check (rtx insn)
3485 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3488 /* Extracts machine mode MODE and destination location DST_LOC
3489 for given INSN. */
3490 void
3491 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3493 rtx pat = PATTERN (insn);
3495 gcc_assert (dst_loc);
3496 gcc_assert (GET_CODE (pat) == SET);
3498 *dst_loc = SET_DEST (pat);
3500 gcc_assert (*dst_loc);
3501 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3503 if (mode)
3504 *mode = GET_MODE (*dst_loc);
3507 /* Returns true when moving through JUMP will result in bookkeeping
3508 creation. */
3509 bool
3510 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3512 insn_t succ;
3513 succ_iterator si;
3515 FOR_EACH_SUCC (succ, si, jump)
3516 if (sel_num_cfg_preds_gt_1 (succ))
3517 return true;
3519 return false;
3522 /* Return 'true' if INSN is the only one in its basic block. */
3523 static bool
3524 insn_is_the_only_one_in_bb_p (insn_t insn)
3526 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3529 #ifdef ENABLE_CHECKING
3530 /* Check that the region we're scheduling still has at most one
3531 backedge. */
3532 static void
3533 verify_backedges (void)
3535 if (pipelining_p)
3537 int i, n = 0;
3538 edge e;
3539 edge_iterator ei;
3541 for (i = 0; i < current_nr_blocks; i++)
3542 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3543 if (in_current_region_p (e->dest)
3544 && BLOCK_TO_BB (e->dest->index) < i)
3545 n++;
3547 gcc_assert (n <= 1);
3550 #endif
3553 /* Functions to work with control flow. */
3555 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3556 are sorted in topological order (it might have been invalidated by
3557 redirecting an edge). */
3558 static void
3559 sel_recompute_toporder (void)
3561 int i, n, rgn;
3562 int *postorder, n_blocks;
3564 postorder = XALLOCAVEC (int, n_basic_blocks);
3565 n_blocks = post_order_compute (postorder, false, false);
3567 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3568 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3569 if (CONTAINING_RGN (postorder[i]) == rgn)
3571 BLOCK_TO_BB (postorder[i]) = n;
3572 BB_TO_BLOCK (n) = postorder[i];
3573 n++;
3576 /* Assert that we updated info for all blocks. We may miss some blocks if
3577 this function is called when redirecting an edge made a block
3578 unreachable, but that block is not deleted yet. */
3579 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3582 /* Tidy the possibly empty block BB. */
3583 static bool
3584 maybe_tidy_empty_bb (basic_block bb)
3586 basic_block succ_bb, pred_bb;
3587 VEC (basic_block, heap) *dom_bbs;
3588 edge e;
3589 edge_iterator ei;
3590 bool rescan_p;
3592 /* Keep empty bb only if this block immediately precedes EXIT and
3593 has incoming non-fallthrough edge, or it has no predecessors or
3594 successors. Otherwise remove it. */
3595 if (!sel_bb_empty_p (bb)
3596 || (single_succ_p (bb)
3597 && single_succ (bb) == EXIT_BLOCK_PTR
3598 && (!single_pred_p (bb)
3599 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3600 || EDGE_COUNT (bb->preds) == 0
3601 || EDGE_COUNT (bb->succs) == 0)
3602 return false;
3604 /* Do not attempt to redirect complex edges. */
3605 FOR_EACH_EDGE (e, ei, bb->preds)
3606 if (e->flags & EDGE_COMPLEX)
3607 return false;
3609 free_data_sets (bb);
3611 /* Do not delete BB if it has more than one successor.
3612 That can occur when we moving a jump. */
3613 if (!single_succ_p (bb))
3615 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3616 sel_merge_blocks (bb->prev_bb, bb);
3617 return true;
3620 succ_bb = single_succ (bb);
3621 rescan_p = true;
3622 pred_bb = NULL;
3623 dom_bbs = NULL;
3625 /* Redirect all non-fallthru edges to the next bb. */
3626 while (rescan_p)
3628 rescan_p = false;
3630 FOR_EACH_EDGE (e, ei, bb->preds)
3632 pred_bb = e->src;
3634 if (!(e->flags & EDGE_FALLTHRU))
3636 /* We can not invalidate computed topological order by moving
3637 the edge destination block (E->SUCC) along a fallthru edge.
3639 We will update dominators here only when we'll get
3640 an unreachable block when redirecting, otherwise
3641 sel_redirect_edge_and_branch will take care of it. */
3642 if (e->dest != bb
3643 && single_pred_p (e->dest))
3644 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3645 sel_redirect_edge_and_branch (e, succ_bb);
3646 rescan_p = true;
3647 break;
3649 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3650 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3651 still have to adjust it. */
3652 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3654 /* If possible, try to remove the unneeded conditional jump. */
3655 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3656 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3658 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3659 tidy_fallthru_edge (e);
3661 else
3662 sel_redirect_edge_and_branch (e, succ_bb);
3663 rescan_p = true;
3664 break;
3669 if (can_merge_blocks_p (bb->prev_bb, bb))
3670 sel_merge_blocks (bb->prev_bb, bb);
3671 else
3673 /* This is a block without fallthru predecessor. Just delete it. */
3674 gcc_assert (pred_bb != NULL);
3676 if (in_current_region_p (pred_bb))
3677 move_bb_info (pred_bb, bb);
3678 remove_empty_bb (bb, true);
3681 if (!VEC_empty (basic_block, dom_bbs))
3683 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3684 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3685 VEC_free (basic_block, heap, dom_bbs);
3688 return true;
3691 /* Tidy the control flow after we have removed original insn from
3692 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3693 is true, also try to optimize control flow on non-empty blocks. */
3694 bool
3695 tidy_control_flow (basic_block xbb, bool full_tidying)
3697 bool changed = true;
3698 insn_t first, last;
3700 /* First check whether XBB is empty. */
3701 changed = maybe_tidy_empty_bb (xbb);
3702 if (changed || !full_tidying)
3703 return changed;
3705 /* Check if there is a unnecessary jump after insn left. */
3706 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3707 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3708 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3710 if (sel_remove_insn (BB_END (xbb), false, false))
3711 return true;
3712 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3715 first = sel_bb_head (xbb);
3716 last = sel_bb_end (xbb);
3717 if (MAY_HAVE_DEBUG_INSNS)
3719 if (first != last && DEBUG_INSN_P (first))
3721 first = NEXT_INSN (first);
3722 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3724 if (first != last && DEBUG_INSN_P (last))
3726 last = PREV_INSN (last);
3727 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3729 /* Check if there is an unnecessary jump in previous basic block leading
3730 to next basic block left after removing INSN from stream.
3731 If it is so, remove that jump and redirect edge to current
3732 basic block (where there was INSN before deletion). This way
3733 when NOP will be deleted several instructions later with its
3734 basic block we will not get a jump to next instruction, which
3735 can be harmful. */
3736 if (first == last
3737 && !sel_bb_empty_p (xbb)
3738 && INSN_NOP_P (last)
3739 /* Flow goes fallthru from current block to the next. */
3740 && EDGE_COUNT (xbb->succs) == 1
3741 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3742 /* When successor is an EXIT block, it may not be the next block. */
3743 && single_succ (xbb) != EXIT_BLOCK_PTR
3744 /* And unconditional jump in previous basic block leads to
3745 next basic block of XBB and this jump can be safely removed. */
3746 && in_current_region_p (xbb->prev_bb)
3747 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3748 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3749 /* Also this jump is not at the scheduling boundary. */
3750 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3752 bool recompute_toporder_p;
3753 /* Clear data structures of jump - jump itself will be removed
3754 by sel_redirect_edge_and_branch. */
3755 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3756 recompute_toporder_p
3757 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3759 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3761 /* It can turn out that after removing unused jump, basic block
3762 that contained that jump, becomes empty too. In such case
3763 remove it too. */
3764 if (sel_bb_empty_p (xbb->prev_bb))
3765 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3766 if (recompute_toporder_p)
3767 sel_recompute_toporder ();
3770 #ifdef ENABLE_CHECKING
3771 verify_backedges ();
3772 verify_dominators (CDI_DOMINATORS);
3773 #endif
3775 return changed;
3778 /* Purge meaningless empty blocks in the middle of a region. */
3779 void
3780 purge_empty_blocks (void)
3782 int i;
3784 /* Do not attempt to delete the first basic block in the region. */
3785 for (i = 1; i < current_nr_blocks; )
3787 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3789 if (maybe_tidy_empty_bb (b))
3790 continue;
3792 i++;
3796 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3797 do not delete insn's data, because it will be later re-emitted.
3798 Return true if we have removed some blocks afterwards. */
3799 bool
3800 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3802 basic_block bb = BLOCK_FOR_INSN (insn);
3804 gcc_assert (INSN_IN_STREAM_P (insn));
3806 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3808 expr_t expr;
3809 av_set_iterator i;
3811 /* When we remove a debug insn that is head of a BB, it remains
3812 in the AV_SET of the block, but it shouldn't. */
3813 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3814 if (EXPR_INSN_RTX (expr) == insn)
3816 av_set_iter_remove (&i);
3817 break;
3821 if (only_disconnect)
3823 insn_t prev = PREV_INSN (insn);
3824 insn_t next = NEXT_INSN (insn);
3825 basic_block bb = BLOCK_FOR_INSN (insn);
3827 NEXT_INSN (prev) = next;
3828 PREV_INSN (next) = prev;
3830 if (BB_HEAD (bb) == insn)
3832 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3833 BB_HEAD (bb) = prev;
3835 if (BB_END (bb) == insn)
3836 BB_END (bb) = prev;
3838 else
3840 remove_insn (insn);
3841 clear_expr (INSN_EXPR (insn));
3844 /* It is necessary to null this fields before calling add_insn (). */
3845 PREV_INSN (insn) = NULL_RTX;
3846 NEXT_INSN (insn) = NULL_RTX;
3848 return tidy_control_flow (bb, full_tidying);
3851 /* Estimate number of the insns in BB. */
3852 static int
3853 sel_estimate_number_of_insns (basic_block bb)
3855 int res = 0;
3856 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3858 for (; insn != next_tail; insn = NEXT_INSN (insn))
3859 if (NONDEBUG_INSN_P (insn))
3860 res++;
3862 return res;
3865 /* We don't need separate luids for notes or labels. */
3866 static int
3867 sel_luid_for_non_insn (rtx x)
3869 gcc_assert (NOTE_P (x) || LABEL_P (x));
3871 return -1;
3874 /* Return seqno of the only predecessor of INSN. */
3875 static int
3876 get_seqno_of_a_pred (insn_t insn)
3878 int seqno;
3880 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3882 if (!sel_bb_head_p (insn))
3883 seqno = INSN_SEQNO (PREV_INSN (insn));
3884 else
3886 basic_block bb = BLOCK_FOR_INSN (insn);
3888 if (single_pred_p (bb)
3889 && !in_current_region_p (single_pred (bb)))
3891 /* We can have preds outside a region when splitting edges
3892 for pipelining of an outer loop. Use succ instead.
3893 There should be only one of them. */
3894 insn_t succ = NULL;
3895 succ_iterator si;
3896 bool first = true;
3898 gcc_assert (flag_sel_sched_pipelining_outer_loops
3899 && current_loop_nest);
3900 FOR_EACH_SUCC_1 (succ, si, insn,
3901 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3903 gcc_assert (first);
3904 first = false;
3907 gcc_assert (succ != NULL);
3908 seqno = INSN_SEQNO (succ);
3910 else
3912 insn_t *preds;
3913 int n;
3915 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3916 gcc_assert (n == 1);
3918 seqno = INSN_SEQNO (preds[0]);
3920 free (preds);
3924 return seqno;
3927 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3928 with positive seqno exist. */
3930 get_seqno_by_preds (rtx insn)
3932 basic_block bb = BLOCK_FOR_INSN (insn);
3933 rtx tmp = insn, head = BB_HEAD (bb);
3934 insn_t *preds;
3935 int n, i, seqno;
3937 while (tmp != head)
3938 if (INSN_P (tmp))
3939 return INSN_SEQNO (tmp);
3940 else
3941 tmp = PREV_INSN (tmp);
3943 cfg_preds (bb, &preds, &n);
3944 for (i = 0, seqno = -1; i < n; i++)
3945 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3947 return seqno;
3952 /* Extend pass-scope data structures for basic blocks. */
3953 void
3954 sel_extend_global_bb_info (void)
3956 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3957 last_basic_block);
3960 /* Extend region-scope data structures for basic blocks. */
3961 static void
3962 extend_region_bb_info (void)
3964 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3965 last_basic_block);
3968 /* Extend all data structures to fit for all basic blocks. */
3969 static void
3970 extend_bb_info (void)
3972 sel_extend_global_bb_info ();
3973 extend_region_bb_info ();
3976 /* Finalize pass-scope data structures for basic blocks. */
3977 void
3978 sel_finish_global_bb_info (void)
3980 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3983 /* Finalize region-scope data structures for basic blocks. */
3984 static void
3985 finish_region_bb_info (void)
3987 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3991 /* Data for each insn in current region. */
3992 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3994 /* A vector for the insns we've emitted. */
3995 static insn_vec_t new_insns = NULL;
3997 /* Extend data structures for insns from current region. */
3998 static void
3999 extend_insn_data (void)
4001 int reserve;
4003 sched_extend_target ();
4004 sched_deps_init (false);
4006 /* Extend data structures for insns from current region. */
4007 reserve = (sched_max_luid + 1
4008 - VEC_length (sel_insn_data_def, s_i_d));
4009 if (reserve > 0
4010 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4012 int size;
4014 if (sched_max_luid / 2 > 1024)
4015 size = sched_max_luid + 1024;
4016 else
4017 size = 3 * sched_max_luid / 2;
4020 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4024 /* Finalize data structures for insns from current region. */
4025 static void
4026 finish_insns (void)
4028 unsigned i;
4030 /* Clear here all dependence contexts that may have left from insns that were
4031 removed during the scheduling. */
4032 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4034 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4036 if (sid_entry->live)
4037 return_regset_to_pool (sid_entry->live);
4038 if (sid_entry->analyzed_deps)
4040 BITMAP_FREE (sid_entry->analyzed_deps);
4041 BITMAP_FREE (sid_entry->found_deps);
4042 htab_delete (sid_entry->transformed_insns);
4043 free_deps (&sid_entry->deps_context);
4045 if (EXPR_VINSN (&sid_entry->expr))
4047 clear_expr (&sid_entry->expr);
4049 /* Also, clear CANT_MOVE bit here, because we really don't want it
4050 to be passed to the next region. */
4051 CANT_MOVE_BY_LUID (i) = 0;
4055 VEC_free (sel_insn_data_def, heap, s_i_d);
4058 /* A proxy to pass initialization data to init_insn (). */
4059 static sel_insn_data_def _insn_init_ssid;
4060 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4062 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4063 static bool insn_init_create_new_vinsn_p;
4065 /* Set all necessary data for initialization of the new insn[s]. */
4066 static expr_t
4067 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4069 expr_t x = &insn_init_ssid->expr;
4071 copy_expr_onside (x, expr);
4072 if (vi != NULL)
4074 insn_init_create_new_vinsn_p = false;
4075 change_vinsn_in_expr (x, vi);
4077 else
4078 insn_init_create_new_vinsn_p = true;
4080 insn_init_ssid->seqno = seqno;
4081 return x;
4084 /* Init data for INSN. */
4085 static void
4086 init_insn_data (insn_t insn)
4088 expr_t expr;
4089 sel_insn_data_t ssid = insn_init_ssid;
4091 /* The fields mentioned below are special and hence are not being
4092 propagated to the new insns. */
4093 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4094 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4095 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4097 expr = INSN_EXPR (insn);
4098 copy_expr (expr, &ssid->expr);
4099 prepare_insn_expr (insn, ssid->seqno);
4101 if (insn_init_create_new_vinsn_p)
4102 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4104 if (first_time_insn_init (insn))
4105 init_first_time_insn_data (insn);
4108 /* This is used to initialize spurious jumps generated by
4109 sel_redirect_edge (). */
4110 static void
4111 init_simplejump_data (insn_t insn)
4113 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4114 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4115 false, true);
4116 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4117 init_first_time_insn_data (insn);
4120 /* Perform deferred initialization of insns. This is used to process
4121 a new jump that may be created by redirect_edge. */
4122 void
4123 sel_init_new_insn (insn_t insn, int flags)
4125 /* We create data structures for bb when the first insn is emitted in it. */
4126 if (INSN_P (insn)
4127 && INSN_IN_STREAM_P (insn)
4128 && insn_is_the_only_one_in_bb_p (insn))
4130 extend_bb_info ();
4131 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4134 if (flags & INSN_INIT_TODO_LUID)
4135 sched_init_luids (NULL, NULL, NULL, insn);
4137 if (flags & INSN_INIT_TODO_SSID)
4139 extend_insn_data ();
4140 init_insn_data (insn);
4141 clear_expr (&insn_init_ssid->expr);
4144 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4146 extend_insn_data ();
4147 init_simplejump_data (insn);
4150 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4151 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4155 /* Functions to init/finish work with lv sets. */
4157 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4158 static void
4159 init_lv_set (basic_block bb)
4161 gcc_assert (!BB_LV_SET_VALID_P (bb));
4163 BB_LV_SET (bb) = get_regset_from_pool ();
4164 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4165 BB_LV_SET_VALID_P (bb) = true;
4168 /* Copy liveness information to BB from FROM_BB. */
4169 static void
4170 copy_lv_set_from (basic_block bb, basic_block from_bb)
4172 gcc_assert (!BB_LV_SET_VALID_P (bb));
4174 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4175 BB_LV_SET_VALID_P (bb) = true;
4178 /* Initialize lv set of all bb headers. */
4179 void
4180 init_lv_sets (void)
4182 basic_block bb;
4184 /* Initialize of LV sets. */
4185 FOR_EACH_BB (bb)
4186 init_lv_set (bb);
4188 /* Don't forget EXIT_BLOCK. */
4189 init_lv_set (EXIT_BLOCK_PTR);
4192 /* Release lv set of HEAD. */
4193 static void
4194 free_lv_set (basic_block bb)
4196 gcc_assert (BB_LV_SET (bb) != NULL);
4198 return_regset_to_pool (BB_LV_SET (bb));
4199 BB_LV_SET (bb) = NULL;
4200 BB_LV_SET_VALID_P (bb) = false;
4203 /* Finalize lv sets of all bb headers. */
4204 void
4205 free_lv_sets (void)
4207 basic_block bb;
4209 /* Don't forget EXIT_BLOCK. */
4210 free_lv_set (EXIT_BLOCK_PTR);
4212 /* Free LV sets. */
4213 FOR_EACH_BB (bb)
4214 if (BB_LV_SET (bb))
4215 free_lv_set (bb);
4218 /* Initialize an invalid AV_SET for BB.
4219 This set will be updated next time compute_av () process BB. */
4220 static void
4221 invalidate_av_set (basic_block bb)
4223 gcc_assert (BB_AV_LEVEL (bb) <= 0
4224 && BB_AV_SET (bb) == NULL);
4226 BB_AV_LEVEL (bb) = -1;
4229 /* Create initial data sets for BB (they will be invalid). */
4230 static void
4231 create_initial_data_sets (basic_block bb)
4233 if (BB_LV_SET (bb))
4234 BB_LV_SET_VALID_P (bb) = false;
4235 else
4236 BB_LV_SET (bb) = get_regset_from_pool ();
4237 invalidate_av_set (bb);
4240 /* Free av set of BB. */
4241 static void
4242 free_av_set (basic_block bb)
4244 av_set_clear (&BB_AV_SET (bb));
4245 BB_AV_LEVEL (bb) = 0;
4248 /* Free data sets of BB. */
4249 void
4250 free_data_sets (basic_block bb)
4252 free_lv_set (bb);
4253 free_av_set (bb);
4256 /* Exchange lv sets of TO and FROM. */
4257 static void
4258 exchange_lv_sets (basic_block to, basic_block from)
4261 regset to_lv_set = BB_LV_SET (to);
4263 BB_LV_SET (to) = BB_LV_SET (from);
4264 BB_LV_SET (from) = to_lv_set;
4268 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4270 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4271 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4276 /* Exchange av sets of TO and FROM. */
4277 static void
4278 exchange_av_sets (basic_block to, basic_block from)
4281 av_set_t to_av_set = BB_AV_SET (to);
4283 BB_AV_SET (to) = BB_AV_SET (from);
4284 BB_AV_SET (from) = to_av_set;
4288 int to_av_level = BB_AV_LEVEL (to);
4290 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4291 BB_AV_LEVEL (from) = to_av_level;
4295 /* Exchange data sets of TO and FROM. */
4296 void
4297 exchange_data_sets (basic_block to, basic_block from)
4299 exchange_lv_sets (to, from);
4300 exchange_av_sets (to, from);
4303 /* Copy data sets of FROM to TO. */
4304 void
4305 copy_data_sets (basic_block to, basic_block from)
4307 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4308 gcc_assert (BB_AV_SET (to) == NULL);
4310 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4311 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4313 if (BB_AV_SET_VALID_P (from))
4315 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4317 if (BB_LV_SET_VALID_P (from))
4319 gcc_assert (BB_LV_SET (to) != NULL);
4320 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4324 /* Return an av set for INSN, if any. */
4325 av_set_t
4326 get_av_set (insn_t insn)
4328 av_set_t av_set;
4330 gcc_assert (AV_SET_VALID_P (insn));
4332 if (sel_bb_head_p (insn))
4333 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4334 else
4335 av_set = NULL;
4337 return av_set;
4340 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4342 get_av_level (insn_t insn)
4344 int av_level;
4346 gcc_assert (INSN_P (insn));
4348 if (sel_bb_head_p (insn))
4349 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4350 else
4351 av_level = INSN_WS_LEVEL (insn);
4353 return av_level;
4358 /* Variables to work with control-flow graph. */
4360 /* The basic block that already has been processed by the sched_data_update (),
4361 but hasn't been in sel_add_bb () yet. */
4362 static VEC (basic_block, heap) *last_added_blocks = NULL;
4364 /* A pool for allocating successor infos. */
4365 static struct
4367 /* A stack for saving succs_info structures. */
4368 struct succs_info *stack;
4370 /* Its size. */
4371 int size;
4373 /* Top of the stack. */
4374 int top;
4376 /* Maximal value of the top. */
4377 int max_top;
4378 } succs_info_pool;
4380 /* Functions to work with control-flow graph. */
4382 /* Return basic block note of BB. */
4383 insn_t
4384 sel_bb_head (basic_block bb)
4386 insn_t head;
4388 if (bb == EXIT_BLOCK_PTR)
4390 gcc_assert (exit_insn != NULL_RTX);
4391 head = exit_insn;
4393 else
4395 insn_t note;
4397 note = bb_note (bb);
4398 head = next_nonnote_insn (note);
4400 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4401 head = NULL_RTX;
4404 return head;
4407 /* Return true if INSN is a basic block header. */
4408 bool
4409 sel_bb_head_p (insn_t insn)
4411 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4414 /* Return last insn of BB. */
4415 insn_t
4416 sel_bb_end (basic_block bb)
4418 if (sel_bb_empty_p (bb))
4419 return NULL_RTX;
4421 gcc_assert (bb != EXIT_BLOCK_PTR);
4423 return BB_END (bb);
4426 /* Return true if INSN is the last insn in its basic block. */
4427 bool
4428 sel_bb_end_p (insn_t insn)
4430 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4433 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4434 bool
4435 sel_bb_empty_p (basic_block bb)
4437 return sel_bb_head (bb) == NULL;
4440 /* True when BB belongs to the current scheduling region. */
4441 bool
4442 in_current_region_p (basic_block bb)
4444 if (bb->index < NUM_FIXED_BLOCKS)
4445 return false;
4447 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4450 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4451 basic_block
4452 fallthru_bb_of_jump (rtx jump)
4454 if (!JUMP_P (jump))
4455 return NULL;
4457 if (!any_condjump_p (jump))
4458 return NULL;
4460 /* A basic block that ends with a conditional jump may still have one successor
4461 (and be followed by a barrier), we are not interested. */
4462 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4463 return NULL;
4465 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4468 /* Remove all notes from BB. */
4469 static void
4470 init_bb (basic_block bb)
4472 remove_notes (bb_note (bb), BB_END (bb));
4473 BB_NOTE_LIST (bb) = note_list;
4476 void
4477 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4479 const struct sched_scan_info_def ssi =
4481 extend_bb_info, /* extend_bb */
4482 init_bb, /* init_bb */
4483 NULL, /* extend_insn */
4484 NULL /* init_insn */
4487 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4490 /* Restore notes for the whole region. */
4491 static void
4492 sel_restore_notes (void)
4494 int bb;
4495 insn_t insn;
4497 for (bb = 0; bb < current_nr_blocks; bb++)
4499 basic_block first, last;
4501 first = EBB_FIRST_BB (bb);
4502 last = EBB_LAST_BB (bb)->next_bb;
4506 note_list = BB_NOTE_LIST (first);
4507 restore_other_notes (NULL, first);
4508 BB_NOTE_LIST (first) = NULL_RTX;
4510 FOR_BB_INSNS (first, insn)
4511 if (NONDEBUG_INSN_P (insn))
4512 reemit_notes (insn);
4514 first = first->next_bb;
4516 while (first != last);
4520 /* Free per-bb data structures. */
4521 void
4522 sel_finish_bbs (void)
4524 sel_restore_notes ();
4526 /* Remove current loop preheader from this loop. */
4527 if (current_loop_nest)
4528 sel_remove_loop_preheader ();
4530 finish_region_bb_info ();
4533 /* Return true if INSN has a single successor of type FLAGS. */
4534 bool
4535 sel_insn_has_single_succ_p (insn_t insn, int flags)
4537 insn_t succ;
4538 succ_iterator si;
4539 bool first_p = true;
4541 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4543 if (first_p)
4544 first_p = false;
4545 else
4546 return false;
4549 return true;
4552 /* Allocate successor's info. */
4553 static struct succs_info *
4554 alloc_succs_info (void)
4556 if (succs_info_pool.top == succs_info_pool.max_top)
4558 int i;
4560 if (++succs_info_pool.max_top >= succs_info_pool.size)
4561 gcc_unreachable ();
4563 i = ++succs_info_pool.top;
4564 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4565 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4566 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4568 else
4569 succs_info_pool.top++;
4571 return &succs_info_pool.stack[succs_info_pool.top];
4574 /* Free successor's info. */
4575 void
4576 free_succs_info (struct succs_info * sinfo)
4578 gcc_assert (succs_info_pool.top >= 0
4579 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4580 succs_info_pool.top--;
4582 /* Clear stale info. */
4583 VEC_block_remove (rtx, sinfo->succs_ok,
4584 0, VEC_length (rtx, sinfo->succs_ok));
4585 VEC_block_remove (rtx, sinfo->succs_other,
4586 0, VEC_length (rtx, sinfo->succs_other));
4587 VEC_block_remove (int, sinfo->probs_ok,
4588 0, VEC_length (int, sinfo->probs_ok));
4589 sinfo->all_prob = 0;
4590 sinfo->succs_ok_n = 0;
4591 sinfo->all_succs_n = 0;
4594 /* Compute successor info for INSN. FLAGS are the flags passed
4595 to the FOR_EACH_SUCC_1 iterator. */
4596 struct succs_info *
4597 compute_succs_info (insn_t insn, short flags)
4599 succ_iterator si;
4600 insn_t succ;
4601 struct succs_info *sinfo = alloc_succs_info ();
4603 /* Traverse *all* successors and decide what to do with each. */
4604 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4606 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4607 perform code motion through inner loops. */
4608 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4610 if (current_flags & flags)
4612 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4613 VEC_safe_push (int, heap, sinfo->probs_ok,
4614 /* FIXME: Improve calculation when skipping
4615 inner loop to exits. */
4616 (si.bb_end
4617 ? si.e1->probability
4618 : REG_BR_PROB_BASE));
4619 sinfo->succs_ok_n++;
4621 else
4622 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4624 /* Compute all_prob. */
4625 if (!si.bb_end)
4626 sinfo->all_prob = REG_BR_PROB_BASE;
4627 else
4628 sinfo->all_prob += si.e1->probability;
4630 sinfo->all_succs_n++;
4633 return sinfo;
4636 /* Return the predecessors of BB in PREDS and their number in N.
4637 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4638 static void
4639 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4641 edge e;
4642 edge_iterator ei;
4644 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4646 FOR_EACH_EDGE (e, ei, bb->preds)
4648 basic_block pred_bb = e->src;
4649 insn_t bb_end = BB_END (pred_bb);
4651 if (!in_current_region_p (pred_bb))
4653 gcc_assert (flag_sel_sched_pipelining_outer_loops
4654 && current_loop_nest);
4655 continue;
4658 if (sel_bb_empty_p (pred_bb))
4659 cfg_preds_1 (pred_bb, preds, n, size);
4660 else
4662 if (*n == *size)
4663 *preds = XRESIZEVEC (insn_t, *preds,
4664 (*size = 2 * *size + 1));
4665 (*preds)[(*n)++] = bb_end;
4669 gcc_assert (*n != 0
4670 || (flag_sel_sched_pipelining_outer_loops
4671 && current_loop_nest));
4674 /* Find all predecessors of BB and record them in PREDS and their number
4675 in N. Empty blocks are skipped, and only normal (forward in-region)
4676 edges are processed. */
4677 static void
4678 cfg_preds (basic_block bb, insn_t **preds, int *n)
4680 int size = 0;
4682 *preds = NULL;
4683 *n = 0;
4684 cfg_preds_1 (bb, preds, n, &size);
4687 /* Returns true if we are moving INSN through join point. */
4688 bool
4689 sel_num_cfg_preds_gt_1 (insn_t insn)
4691 basic_block bb;
4693 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4694 return false;
4696 bb = BLOCK_FOR_INSN (insn);
4698 while (1)
4700 if (EDGE_COUNT (bb->preds) > 1)
4701 return true;
4703 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4704 bb = EDGE_PRED (bb, 0)->src;
4706 if (!sel_bb_empty_p (bb))
4707 break;
4710 return false;
4713 /* Returns true when BB should be the end of an ebb. Adapted from the
4714 code in sched-ebb.c. */
4715 bool
4716 bb_ends_ebb_p (basic_block bb)
4718 basic_block next_bb = bb_next_bb (bb);
4719 edge e;
4721 if (next_bb == EXIT_BLOCK_PTR
4722 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4723 || (LABEL_P (BB_HEAD (next_bb))
4724 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4725 Work around that. */
4726 && !single_pred_p (next_bb)))
4727 return true;
4729 if (!in_current_region_p (next_bb))
4730 return true;
4732 e = find_fallthru_edge (bb->succs);
4733 if (e)
4735 gcc_assert (e->dest == next_bb);
4737 return false;
4740 return true;
4743 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4744 successor of INSN. */
4745 bool
4746 in_same_ebb_p (insn_t insn, insn_t succ)
4748 basic_block ptr = BLOCK_FOR_INSN (insn);
4750 for(;;)
4752 if (ptr == BLOCK_FOR_INSN (succ))
4753 return true;
4755 if (bb_ends_ebb_p (ptr))
4756 return false;
4758 ptr = bb_next_bb (ptr);
4761 gcc_unreachable ();
4762 return false;
4765 /* Recomputes the reverse topological order for the function and
4766 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4767 modified appropriately. */
4768 static void
4769 recompute_rev_top_order (void)
4771 int *postorder;
4772 int n_blocks, i;
4774 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4776 rev_top_order_index_len = last_basic_block;
4777 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4778 rev_top_order_index_len);
4781 postorder = XNEWVEC (int, n_basic_blocks);
4783 n_blocks = post_order_compute (postorder, true, false);
4784 gcc_assert (n_basic_blocks == n_blocks);
4786 /* Build reverse function: for each basic block with BB->INDEX == K
4787 rev_top_order_index[K] is it's reverse topological sort number. */
4788 for (i = 0; i < n_blocks; i++)
4790 gcc_assert (postorder[i] < rev_top_order_index_len);
4791 rev_top_order_index[postorder[i]] = i;
4794 free (postorder);
4797 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4798 void
4799 clear_outdated_rtx_info (basic_block bb)
4801 rtx insn;
4803 FOR_BB_INSNS (bb, insn)
4804 if (INSN_P (insn))
4806 SCHED_GROUP_P (insn) = 0;
4807 INSN_AFTER_STALL_P (insn) = 0;
4808 INSN_SCHED_TIMES (insn) = 0;
4809 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4811 /* We cannot use the changed caches, as previously we could ignore
4812 the LHS dependence due to enabled renaming and transform
4813 the expression, and currently we'll be unable to do this. */
4814 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4818 /* Add BB_NOTE to the pool of available basic block notes. */
4819 static void
4820 return_bb_to_pool (basic_block bb)
4822 rtx note = bb_note (bb);
4824 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4825 && bb->aux == NULL);
4827 /* It turns out that current cfg infrastructure does not support
4828 reuse of basic blocks. Don't bother for now. */
4829 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4832 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4833 static rtx
4834 get_bb_note_from_pool (void)
4836 if (VEC_empty (rtx, bb_note_pool))
4837 return NULL_RTX;
4838 else
4840 rtx note = VEC_pop (rtx, bb_note_pool);
4842 PREV_INSN (note) = NULL_RTX;
4843 NEXT_INSN (note) = NULL_RTX;
4845 return note;
4849 /* Free bb_note_pool. */
4850 void
4851 free_bb_note_pool (void)
4853 VEC_free (rtx, heap, bb_note_pool);
4856 /* Setup scheduler pool and successor structure. */
4857 void
4858 alloc_sched_pools (void)
4860 int succs_size;
4862 succs_size = MAX_WS + 1;
4863 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4864 succs_info_pool.size = succs_size;
4865 succs_info_pool.top = -1;
4866 succs_info_pool.max_top = -1;
4868 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4869 sizeof (struct _list_node), 500);
4872 /* Free the pools. */
4873 void
4874 free_sched_pools (void)
4876 int i;
4878 free_alloc_pool (sched_lists_pool);
4879 gcc_assert (succs_info_pool.top == -1);
4880 for (i = 0; i < succs_info_pool.max_top; i++)
4882 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4883 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4884 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4886 free (succs_info_pool.stack);
4890 /* Returns a position in RGN where BB can be inserted retaining
4891 topological order. */
4892 static int
4893 find_place_to_insert_bb (basic_block bb, int rgn)
4895 bool has_preds_outside_rgn = false;
4896 edge e;
4897 edge_iterator ei;
4899 /* Find whether we have preds outside the region. */
4900 FOR_EACH_EDGE (e, ei, bb->preds)
4901 if (!in_current_region_p (e->src))
4903 has_preds_outside_rgn = true;
4904 break;
4907 /* Recompute the top order -- needed when we have > 1 pred
4908 and in case we don't have preds outside. */
4909 if (flag_sel_sched_pipelining_outer_loops
4910 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4912 int i, bbi = bb->index, cur_bbi;
4914 recompute_rev_top_order ();
4915 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4917 cur_bbi = BB_TO_BLOCK (i);
4918 if (rev_top_order_index[bbi]
4919 < rev_top_order_index[cur_bbi])
4920 break;
4923 /* We skipped the right block, so we increase i. We accomodate
4924 it for increasing by step later, so we decrease i. */
4925 return (i + 1) - 1;
4927 else if (has_preds_outside_rgn)
4929 /* This is the case when we generate an extra empty block
4930 to serve as region head during pipelining. */
4931 e = EDGE_SUCC (bb, 0);
4932 gcc_assert (EDGE_COUNT (bb->succs) == 1
4933 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4934 && (BLOCK_TO_BB (e->dest->index) == 0));
4935 return -1;
4938 /* We don't have preds outside the region. We should have
4939 the only pred, because the multiple preds case comes from
4940 the pipelining of outer loops, and that is handled above.
4941 Just take the bbi of this single pred. */
4942 if (EDGE_COUNT (bb->succs) > 0)
4944 int pred_bbi;
4946 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4948 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4949 return BLOCK_TO_BB (pred_bbi);
4951 else
4952 /* BB has no successors. It is safe to put it in the end. */
4953 return current_nr_blocks - 1;
4956 /* Deletes an empty basic block freeing its data. */
4957 static void
4958 delete_and_free_basic_block (basic_block bb)
4960 gcc_assert (sel_bb_empty_p (bb));
4962 if (BB_LV_SET (bb))
4963 free_lv_set (bb);
4965 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4967 /* Can't assert av_set properties because we use sel_aremove_bb
4968 when removing loop preheader from the region. At the point of
4969 removing the preheader we already have deallocated sel_region_bb_info. */
4970 gcc_assert (BB_LV_SET (bb) == NULL
4971 && !BB_LV_SET_VALID_P (bb)
4972 && BB_AV_LEVEL (bb) == 0
4973 && BB_AV_SET (bb) == NULL);
4975 delete_basic_block (bb);
4978 /* Add BB to the current region and update the region data. */
4979 static void
4980 add_block_to_current_region (basic_block bb)
4982 int i, pos, bbi = -2, rgn;
4984 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4985 bbi = find_place_to_insert_bb (bb, rgn);
4986 bbi += 1;
4987 pos = RGN_BLOCKS (rgn) + bbi;
4989 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4990 && ebb_head[bbi] == pos);
4992 /* Make a place for the new block. */
4993 extend_regions ();
4995 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4996 BLOCK_TO_BB (rgn_bb_table[i])++;
4998 memmove (rgn_bb_table + pos + 1,
4999 rgn_bb_table + pos,
5000 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5002 /* Initialize data for BB. */
5003 rgn_bb_table[pos] = bb->index;
5004 BLOCK_TO_BB (bb->index) = bbi;
5005 CONTAINING_RGN (bb->index) = rgn;
5007 RGN_NR_BLOCKS (rgn)++;
5009 for (i = rgn + 1; i <= nr_regions; i++)
5010 RGN_BLOCKS (i)++;
5013 /* Remove BB from the current region and update the region data. */
5014 static void
5015 remove_bb_from_region (basic_block bb)
5017 int i, pos, bbi = -2, rgn;
5019 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5020 bbi = BLOCK_TO_BB (bb->index);
5021 pos = RGN_BLOCKS (rgn) + bbi;
5023 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5024 && ebb_head[bbi] == pos);
5026 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5027 BLOCK_TO_BB (rgn_bb_table[i])--;
5029 memmove (rgn_bb_table + pos,
5030 rgn_bb_table + pos + 1,
5031 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5033 RGN_NR_BLOCKS (rgn)--;
5034 for (i = rgn + 1; i <= nr_regions; i++)
5035 RGN_BLOCKS (i)--;
5038 /* Add BB to the current region and update all data. If BB is NULL, add all
5039 blocks from last_added_blocks vector. */
5040 static void
5041 sel_add_bb (basic_block bb)
5043 /* Extend luids so that new notes will receive zero luids. */
5044 sched_init_luids (NULL, NULL, NULL, NULL);
5045 sched_init_bbs ();
5046 sel_init_bbs (last_added_blocks, NULL);
5048 /* When bb is passed explicitly, the vector should contain
5049 the only element that equals to bb; otherwise, the vector
5050 should not be NULL. */
5051 gcc_assert (last_added_blocks != NULL);
5053 if (bb != NULL)
5055 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5056 && VEC_index (basic_block,
5057 last_added_blocks, 0) == bb);
5058 add_block_to_current_region (bb);
5060 /* We associate creating/deleting data sets with the first insn
5061 appearing / disappearing in the bb. */
5062 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5063 create_initial_data_sets (bb);
5065 VEC_free (basic_block, heap, last_added_blocks);
5067 else
5068 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5070 int i;
5071 basic_block temp_bb = NULL;
5073 for (i = 0;
5074 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5076 add_block_to_current_region (bb);
5077 temp_bb = bb;
5080 /* We need to fetch at least one bb so we know the region
5081 to update. */
5082 gcc_assert (temp_bb != NULL);
5083 bb = temp_bb;
5085 VEC_free (basic_block, heap, last_added_blocks);
5088 rgn_setup_region (CONTAINING_RGN (bb->index));
5091 /* Remove BB from the current region and update all data.
5092 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5093 static void
5094 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5096 unsigned idx = bb->index;
5098 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5100 remove_bb_from_region (bb);
5101 return_bb_to_pool (bb);
5102 bitmap_clear_bit (blocks_to_reschedule, idx);
5104 if (remove_from_cfg_p)
5106 basic_block succ = single_succ (bb);
5107 delete_and_free_basic_block (bb);
5108 set_immediate_dominator (CDI_DOMINATORS, succ,
5109 recompute_dominator (CDI_DOMINATORS, succ));
5112 rgn_setup_region (CONTAINING_RGN (idx));
5115 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5116 static void
5117 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5119 gcc_assert (in_current_region_p (merge_bb));
5121 concat_note_lists (BB_NOTE_LIST (empty_bb),
5122 &BB_NOTE_LIST (merge_bb));
5123 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5127 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5128 region, but keep it in CFG. */
5129 static void
5130 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5132 /* The block should contain just a note or a label.
5133 We try to check whether it is unused below. */
5134 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5135 || LABEL_P (BB_HEAD (empty_bb)));
5137 /* If basic block has predecessors or successors, redirect them. */
5138 if (remove_from_cfg_p
5139 && (EDGE_COUNT (empty_bb->preds) > 0
5140 || EDGE_COUNT (empty_bb->succs) > 0))
5142 basic_block pred;
5143 basic_block succ;
5145 /* We need to init PRED and SUCC before redirecting edges. */
5146 if (EDGE_COUNT (empty_bb->preds) > 0)
5148 edge e;
5150 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5152 e = EDGE_PRED (empty_bb, 0);
5153 gcc_assert (e->src == empty_bb->prev_bb
5154 && (e->flags & EDGE_FALLTHRU));
5156 pred = empty_bb->prev_bb;
5158 else
5159 pred = NULL;
5161 if (EDGE_COUNT (empty_bb->succs) > 0)
5163 /* We do not check fallthruness here as above, because
5164 after removing a jump the edge may actually be not fallthru. */
5165 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5166 succ = EDGE_SUCC (empty_bb, 0)->dest;
5168 else
5169 succ = NULL;
5171 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5173 edge e = EDGE_PRED (empty_bb, 0);
5175 if (e->flags & EDGE_FALLTHRU)
5176 redirect_edge_succ_nodup (e, succ);
5177 else
5178 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5181 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5183 edge e = EDGE_SUCC (empty_bb, 0);
5185 if (find_edge (pred, e->dest) == NULL)
5186 redirect_edge_pred (e, pred);
5190 /* Finish removing. */
5191 sel_remove_bb (empty_bb, remove_from_cfg_p);
5194 /* An implementation of create_basic_block hook, which additionally updates
5195 per-bb data structures. */
5196 static basic_block
5197 sel_create_basic_block (void *headp, void *endp, basic_block after)
5199 basic_block new_bb;
5200 insn_t new_bb_note;
5202 gcc_assert (flag_sel_sched_pipelining_outer_loops
5203 || last_added_blocks == NULL);
5205 new_bb_note = get_bb_note_from_pool ();
5207 if (new_bb_note == NULL_RTX)
5208 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5209 else
5211 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5212 new_bb_note, after);
5213 new_bb->aux = NULL;
5216 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5218 return new_bb;
5221 /* Implement sched_init_only_bb (). */
5222 static void
5223 sel_init_only_bb (basic_block bb, basic_block after)
5225 gcc_assert (after == NULL);
5227 extend_regions ();
5228 rgn_make_new_region_out_of_new_block (bb);
5231 /* Update the latch when we've splitted or merged it from FROM block to TO.
5232 This should be checked for all outer loops, too. */
5233 static void
5234 change_loops_latches (basic_block from, basic_block to)
5236 gcc_assert (from != to);
5238 if (current_loop_nest)
5240 struct loop *loop;
5242 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5243 if (considered_for_pipelining_p (loop) && loop->latch == from)
5245 gcc_assert (loop == current_loop_nest);
5246 loop->latch = to;
5247 gcc_assert (loop_latch_edge (loop));
5252 /* Splits BB on two basic blocks, adding it to the region and extending
5253 per-bb data structures. Returns the newly created bb. */
5254 static basic_block
5255 sel_split_block (basic_block bb, rtx after)
5257 basic_block new_bb;
5258 insn_t insn;
5260 new_bb = sched_split_block_1 (bb, after);
5261 sel_add_bb (new_bb);
5263 /* This should be called after sel_add_bb, because this uses
5264 CONTAINING_RGN for the new block, which is not yet initialized.
5265 FIXME: this function may be a no-op now. */
5266 change_loops_latches (bb, new_bb);
5268 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5269 FOR_BB_INSNS (new_bb, insn)
5270 if (INSN_P (insn))
5271 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5273 if (sel_bb_empty_p (bb))
5275 gcc_assert (!sel_bb_empty_p (new_bb));
5277 /* NEW_BB has data sets that need to be updated and BB holds
5278 data sets that should be removed. Exchange these data sets
5279 so that we won't lose BB's valid data sets. */
5280 exchange_data_sets (new_bb, bb);
5281 free_data_sets (bb);
5284 if (!sel_bb_empty_p (new_bb)
5285 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5286 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5288 return new_bb;
5291 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5292 Otherwise returns NULL. */
5293 static rtx
5294 check_for_new_jump (basic_block bb, int prev_max_uid)
5296 rtx end;
5298 end = sel_bb_end (bb);
5299 if (end && INSN_UID (end) >= prev_max_uid)
5300 return end;
5301 return NULL;
5304 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5305 New means having UID at least equal to PREV_MAX_UID. */
5306 static rtx
5307 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5309 rtx jump;
5311 /* Return immediately if no new insns were emitted. */
5312 if (get_max_uid () == prev_max_uid)
5313 return NULL;
5315 /* Now check both blocks for new jumps. It will ever be only one. */
5316 if ((jump = check_for_new_jump (from, prev_max_uid)))
5317 return jump;
5319 if (jump_bb != NULL
5320 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5321 return jump;
5322 return NULL;
5325 /* Splits E and adds the newly created basic block to the current region.
5326 Returns this basic block. */
5327 basic_block
5328 sel_split_edge (edge e)
5330 basic_block new_bb, src, other_bb = NULL;
5331 int prev_max_uid;
5332 rtx jump;
5334 src = e->src;
5335 prev_max_uid = get_max_uid ();
5336 new_bb = split_edge (e);
5338 if (flag_sel_sched_pipelining_outer_loops
5339 && current_loop_nest)
5341 int i;
5342 basic_block bb;
5344 /* Some of the basic blocks might not have been added to the loop.
5345 Add them here, until this is fixed in force_fallthru. */
5346 for (i = 0;
5347 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5348 if (!bb->loop_father)
5350 add_bb_to_loop (bb, e->dest->loop_father);
5352 gcc_assert (!other_bb && (new_bb->index != bb->index));
5353 other_bb = bb;
5357 /* Add all last_added_blocks to the region. */
5358 sel_add_bb (NULL);
5360 jump = find_new_jump (src, new_bb, prev_max_uid);
5361 if (jump)
5362 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5364 /* Put the correct lv set on this block. */
5365 if (other_bb && !sel_bb_empty_p (other_bb))
5366 compute_live (sel_bb_head (other_bb));
5368 return new_bb;
5371 /* Implement sched_create_empty_bb (). */
5372 static basic_block
5373 sel_create_empty_bb (basic_block after)
5375 basic_block new_bb;
5377 new_bb = sched_create_empty_bb_1 (after);
5379 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5380 later. */
5381 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5382 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5384 VEC_free (basic_block, heap, last_added_blocks);
5385 return new_bb;
5388 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5389 will be splitted to insert a check. */
5390 basic_block
5391 sel_create_recovery_block (insn_t orig_insn)
5393 basic_block first_bb, second_bb, recovery_block;
5394 basic_block before_recovery = NULL;
5395 rtx jump;
5397 first_bb = BLOCK_FOR_INSN (orig_insn);
5398 if (sel_bb_end_p (orig_insn))
5400 /* Avoid introducing an empty block while splitting. */
5401 gcc_assert (single_succ_p (first_bb));
5402 second_bb = single_succ (first_bb);
5404 else
5405 second_bb = sched_split_block (first_bb, orig_insn);
5407 recovery_block = sched_create_recovery_block (&before_recovery);
5408 if (before_recovery)
5409 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5411 gcc_assert (sel_bb_empty_p (recovery_block));
5412 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5413 if (current_loops != NULL)
5414 add_bb_to_loop (recovery_block, first_bb->loop_father);
5416 sel_add_bb (recovery_block);
5418 jump = BB_END (recovery_block);
5419 gcc_assert (sel_bb_head (recovery_block) == jump);
5420 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5422 return recovery_block;
5425 /* Merge basic block B into basic block A. */
5426 static void
5427 sel_merge_blocks (basic_block a, basic_block b)
5429 gcc_assert (sel_bb_empty_p (b)
5430 && EDGE_COUNT (b->preds) == 1
5431 && EDGE_PRED (b, 0)->src == b->prev_bb);
5433 move_bb_info (b->prev_bb, b);
5434 remove_empty_bb (b, false);
5435 merge_blocks (a, b);
5436 change_loops_latches (b, a);
5439 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5440 data structures for possibly created bb and insns. Returns the newly
5441 added bb or NULL, when a bb was not needed. */
5442 void
5443 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5445 basic_block jump_bb, src, orig_dest = e->dest;
5446 int prev_max_uid;
5447 rtx jump;
5449 /* This function is now used only for bookkeeping code creation, where
5450 we'll never get the single pred of orig_dest block and thus will not
5451 hit unreachable blocks when updating dominator info. */
5452 gcc_assert (!sel_bb_empty_p (e->src)
5453 && !single_pred_p (orig_dest));
5454 src = e->src;
5455 prev_max_uid = get_max_uid ();
5456 jump_bb = redirect_edge_and_branch_force (e, to);
5458 if (jump_bb != NULL)
5459 sel_add_bb (jump_bb);
5461 /* This function could not be used to spoil the loop structure by now,
5462 thus we don't care to update anything. But check it to be sure. */
5463 if (current_loop_nest
5464 && pipelining_p)
5465 gcc_assert (loop_latch_edge (current_loop_nest));
5467 jump = find_new_jump (src, jump_bb, prev_max_uid);
5468 if (jump)
5469 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5470 set_immediate_dominator (CDI_DOMINATORS, to,
5471 recompute_dominator (CDI_DOMINATORS, to));
5472 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5473 recompute_dominator (CDI_DOMINATORS, orig_dest));
5476 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5477 redirected edge are in reverse topological order. */
5478 bool
5479 sel_redirect_edge_and_branch (edge e, basic_block to)
5481 bool latch_edge_p;
5482 basic_block src, orig_dest = e->dest;
5483 int prev_max_uid;
5484 rtx jump;
5485 edge redirected;
5486 bool recompute_toporder_p = false;
5487 bool maybe_unreachable = single_pred_p (orig_dest);
5489 latch_edge_p = (pipelining_p
5490 && current_loop_nest
5491 && e == loop_latch_edge (current_loop_nest));
5493 src = e->src;
5494 prev_max_uid = get_max_uid ();
5496 redirected = redirect_edge_and_branch (e, to);
5498 gcc_assert (redirected && last_added_blocks == NULL);
5500 /* When we've redirected a latch edge, update the header. */
5501 if (latch_edge_p)
5503 current_loop_nest->header = to;
5504 gcc_assert (loop_latch_edge (current_loop_nest));
5507 /* In rare situations, the topological relation between the blocks connected
5508 by the redirected edge can change (see PR42245 for an example). Update
5509 block_to_bb/bb_to_block. */
5510 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5511 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5512 recompute_toporder_p = true;
5514 jump = find_new_jump (src, NULL, prev_max_uid);
5515 if (jump)
5516 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5518 /* Only update dominator info when we don't have unreachable blocks.
5519 Otherwise we'll update in maybe_tidy_empty_bb. */
5520 if (!maybe_unreachable)
5522 set_immediate_dominator (CDI_DOMINATORS, to,
5523 recompute_dominator (CDI_DOMINATORS, to));
5524 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5525 recompute_dominator (CDI_DOMINATORS, orig_dest));
5527 return recompute_toporder_p;
5530 /* This variable holds the cfg hooks used by the selective scheduler. */
5531 static struct cfg_hooks sel_cfg_hooks;
5533 /* Register sel-sched cfg hooks. */
5534 void
5535 sel_register_cfg_hooks (void)
5537 sched_split_block = sel_split_block;
5539 orig_cfg_hooks = get_cfg_hooks ();
5540 sel_cfg_hooks = orig_cfg_hooks;
5542 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5544 set_cfg_hooks (sel_cfg_hooks);
5546 sched_init_only_bb = sel_init_only_bb;
5547 sched_split_block = sel_split_block;
5548 sched_create_empty_bb = sel_create_empty_bb;
5551 /* Unregister sel-sched cfg hooks. */
5552 void
5553 sel_unregister_cfg_hooks (void)
5555 sched_create_empty_bb = NULL;
5556 sched_split_block = NULL;
5557 sched_init_only_bb = NULL;
5559 set_cfg_hooks (orig_cfg_hooks);
5563 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5564 LABEL is where this jump should be directed. */
5566 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5568 rtx insn_rtx;
5570 gcc_assert (!INSN_P (pattern));
5572 start_sequence ();
5574 if (label == NULL_RTX)
5575 insn_rtx = emit_insn (pattern);
5576 else if (DEBUG_INSN_P (label))
5577 insn_rtx = emit_debug_insn (pattern);
5578 else
5580 insn_rtx = emit_jump_insn (pattern);
5581 JUMP_LABEL (insn_rtx) = label;
5582 ++LABEL_NUSES (label);
5585 end_sequence ();
5587 sched_init_luids (NULL, NULL, NULL, NULL);
5588 sched_extend_target ();
5589 sched_deps_init (false);
5591 /* Initialize INSN_CODE now. */
5592 recog_memoized (insn_rtx);
5593 return insn_rtx;
5596 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5597 must not be clonable. */
5598 vinsn_t
5599 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5601 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5603 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5604 return vinsn_create (insn_rtx, force_unique_p);
5607 /* Create a copy of INSN_RTX. */
5609 create_copy_of_insn_rtx (rtx insn_rtx)
5611 rtx res;
5613 if (DEBUG_INSN_P (insn_rtx))
5614 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5615 insn_rtx);
5617 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5619 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5620 NULL_RTX);
5621 return res;
5624 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5625 void
5626 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5628 vinsn_detach (EXPR_VINSN (expr));
5630 EXPR_VINSN (expr) = new_vinsn;
5631 vinsn_attach (new_vinsn);
5634 /* Helpers for global init. */
5635 /* This structure is used to be able to call existing bundling mechanism
5636 and calculate insn priorities. */
5637 static struct haifa_sched_info sched_sel_haifa_sched_info =
5639 NULL, /* init_ready_list */
5640 NULL, /* can_schedule_ready_p */
5641 NULL, /* schedule_more_p */
5642 NULL, /* new_ready */
5643 NULL, /* rgn_rank */
5644 sel_print_insn, /* rgn_print_insn */
5645 contributes_to_priority,
5646 NULL, /* insn_finishes_block_p */
5648 NULL, NULL,
5649 NULL, NULL,
5650 0, 0,
5652 NULL, /* add_remove_insn */
5653 NULL, /* begin_schedule_ready */
5654 NULL, /* begin_move_insn */
5655 NULL, /* advance_target_bb */
5656 SEL_SCHED | NEW_BBS
5659 /* Setup special insns used in the scheduler. */
5660 void
5661 setup_nop_and_exit_insns (void)
5663 gcc_assert (nop_pattern == NULL_RTX
5664 && exit_insn == NULL_RTX);
5666 nop_pattern = constm1_rtx;
5668 start_sequence ();
5669 emit_insn (nop_pattern);
5670 exit_insn = get_insns ();
5671 end_sequence ();
5672 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5675 /* Free special insns used in the scheduler. */
5676 void
5677 free_nop_and_exit_insns (void)
5679 exit_insn = NULL_RTX;
5680 nop_pattern = NULL_RTX;
5683 /* Setup a special vinsn used in new insns initialization. */
5684 void
5685 setup_nop_vinsn (void)
5687 nop_vinsn = vinsn_create (exit_insn, false);
5688 vinsn_attach (nop_vinsn);
5691 /* Free a special vinsn used in new insns initialization. */
5692 void
5693 free_nop_vinsn (void)
5695 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5696 vinsn_detach (nop_vinsn);
5697 nop_vinsn = NULL;
5700 /* Call a set_sched_flags hook. */
5701 void
5702 sel_set_sched_flags (void)
5704 /* ??? This means that set_sched_flags were called, and we decided to
5705 support speculation. However, set_sched_flags also modifies flags
5706 on current_sched_info, doing this only at global init. And we
5707 sometimes change c_s_i later. So put the correct flags again. */
5708 if (spec_info && targetm.sched.set_sched_flags)
5709 targetm.sched.set_sched_flags (spec_info);
5712 /* Setup pointers to global sched info structures. */
5713 void
5714 sel_setup_sched_infos (void)
5716 rgn_setup_common_sched_info ();
5718 memcpy (&sel_common_sched_info, common_sched_info,
5719 sizeof (sel_common_sched_info));
5721 sel_common_sched_info.fix_recovery_cfg = NULL;
5722 sel_common_sched_info.add_block = NULL;
5723 sel_common_sched_info.estimate_number_of_insns
5724 = sel_estimate_number_of_insns;
5725 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5726 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5728 common_sched_info = &sel_common_sched_info;
5730 current_sched_info = &sched_sel_haifa_sched_info;
5731 current_sched_info->sched_max_insns_priority =
5732 get_rgn_sched_max_insns_priority ();
5734 sel_set_sched_flags ();
5738 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5739 *BB_ORD_INDEX after that is increased. */
5740 static void
5741 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5743 RGN_NR_BLOCKS (rgn) += 1;
5744 RGN_DONT_CALC_DEPS (rgn) = 0;
5745 RGN_HAS_REAL_EBB (rgn) = 0;
5746 CONTAINING_RGN (bb->index) = rgn;
5747 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5748 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5749 (*bb_ord_index)++;
5751 /* FIXME: it is true only when not scheduling ebbs. */
5752 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5755 /* Functions to support pipelining of outer loops. */
5757 /* Creates a new empty region and returns it's number. */
5758 static int
5759 sel_create_new_region (void)
5761 int new_rgn_number = nr_regions;
5763 RGN_NR_BLOCKS (new_rgn_number) = 0;
5765 /* FIXME: This will work only when EBBs are not created. */
5766 if (new_rgn_number != 0)
5767 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5768 RGN_NR_BLOCKS (new_rgn_number - 1);
5769 else
5770 RGN_BLOCKS (new_rgn_number) = 0;
5772 /* Set the blocks of the next region so the other functions may
5773 calculate the number of blocks in the region. */
5774 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5775 RGN_NR_BLOCKS (new_rgn_number);
5777 nr_regions++;
5779 return new_rgn_number;
5782 /* If X has a smaller topological sort number than Y, returns -1;
5783 if greater, returns 1. */
5784 static int
5785 bb_top_order_comparator (const void *x, const void *y)
5787 basic_block bb1 = *(const basic_block *) x;
5788 basic_block bb2 = *(const basic_block *) y;
5790 gcc_assert (bb1 == bb2
5791 || rev_top_order_index[bb1->index]
5792 != rev_top_order_index[bb2->index]);
5794 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5795 bbs with greater number should go earlier. */
5796 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5797 return -1;
5798 else
5799 return 1;
5802 /* Create a region for LOOP and return its number. If we don't want
5803 to pipeline LOOP, return -1. */
5804 static int
5805 make_region_from_loop (struct loop *loop)
5807 unsigned int i;
5808 int new_rgn_number = -1;
5809 struct loop *inner;
5811 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5812 int bb_ord_index = 0;
5813 basic_block *loop_blocks;
5814 basic_block preheader_block;
5816 if (loop->num_nodes
5817 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5818 return -1;
5820 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5821 for (inner = loop->inner; inner; inner = inner->inner)
5822 if (flow_bb_inside_loop_p (inner, loop->latch))
5823 return -1;
5825 loop->ninsns = num_loop_insns (loop);
5826 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5827 return -1;
5829 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5831 for (i = 0; i < loop->num_nodes; i++)
5832 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5834 free (loop_blocks);
5835 return -1;
5838 preheader_block = loop_preheader_edge (loop)->src;
5839 gcc_assert (preheader_block);
5840 gcc_assert (loop_blocks[0] == loop->header);
5842 new_rgn_number = sel_create_new_region ();
5844 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5845 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5847 for (i = 0; i < loop->num_nodes; i++)
5849 /* Add only those blocks that haven't been scheduled in the inner loop.
5850 The exception is the basic blocks with bookkeeping code - they should
5851 be added to the region (and they actually don't belong to the loop
5852 body, but to the region containing that loop body). */
5854 gcc_assert (new_rgn_number >= 0);
5856 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5858 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5859 new_rgn_number);
5860 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5864 free (loop_blocks);
5865 MARK_LOOP_FOR_PIPELINING (loop);
5867 return new_rgn_number;
5870 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5871 void
5872 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5874 unsigned int i;
5875 int new_rgn_number = -1;
5876 basic_block bb;
5878 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5879 int bb_ord_index = 0;
5881 new_rgn_number = sel_create_new_region ();
5883 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5885 gcc_assert (new_rgn_number >= 0);
5887 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5890 VEC_free (basic_block, heap, *loop_blocks);
5891 gcc_assert (*loop_blocks == NULL);
5895 /* Create region(s) from loop nest LOOP, such that inner loops will be
5896 pipelined before outer loops. Returns true when a region for LOOP
5897 is created. */
5898 static bool
5899 make_regions_from_loop_nest (struct loop *loop)
5901 struct loop *cur_loop;
5902 int rgn_number;
5904 /* Traverse all inner nodes of the loop. */
5905 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5906 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5907 return false;
5909 /* At this moment all regular inner loops should have been pipelined.
5910 Try to create a region from this loop. */
5911 rgn_number = make_region_from_loop (loop);
5913 if (rgn_number < 0)
5914 return false;
5916 VEC_safe_push (loop_p, heap, loop_nests, loop);
5917 return true;
5920 /* Initalize data structures needed. */
5921 void
5922 sel_init_pipelining (void)
5924 /* Collect loop information to be used in outer loops pipelining. */
5925 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5926 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5927 | LOOPS_HAVE_RECORDED_EXITS
5928 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5929 current_loop_nest = NULL;
5931 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5932 sbitmap_zero (bbs_in_loop_rgns);
5934 recompute_rev_top_order ();
5937 /* Returns a struct loop for region RGN. */
5938 loop_p
5939 get_loop_nest_for_rgn (unsigned int rgn)
5941 /* Regions created with extend_rgns don't have corresponding loop nests,
5942 because they don't represent loops. */
5943 if (rgn < VEC_length (loop_p, loop_nests))
5944 return VEC_index (loop_p, loop_nests, rgn);
5945 else
5946 return NULL;
5949 /* True when LOOP was included into pipelining regions. */
5950 bool
5951 considered_for_pipelining_p (struct loop *loop)
5953 if (loop_depth (loop) == 0)
5954 return false;
5956 /* Now, the loop could be too large or irreducible. Check whether its
5957 region is in LOOP_NESTS.
5958 We determine the region number of LOOP as the region number of its
5959 latch. We can't use header here, because this header could be
5960 just removed preheader and it will give us the wrong region number.
5961 Latch can't be used because it could be in the inner loop too. */
5962 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5964 int rgn = CONTAINING_RGN (loop->latch->index);
5966 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5967 return true;
5970 return false;
5973 /* Makes regions from the rest of the blocks, after loops are chosen
5974 for pipelining. */
5975 static void
5976 make_regions_from_the_rest (void)
5978 int cur_rgn_blocks;
5979 int *loop_hdr;
5980 int i;
5982 basic_block bb;
5983 edge e;
5984 edge_iterator ei;
5985 int *degree;
5987 /* Index in rgn_bb_table where to start allocating new regions. */
5988 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5990 /* Make regions from all the rest basic blocks - those that don't belong to
5991 any loop or belong to irreducible loops. Prepare the data structures
5992 for extend_rgns. */
5994 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5995 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5996 loop. */
5997 loop_hdr = XNEWVEC (int, last_basic_block);
5998 degree = XCNEWVEC (int, last_basic_block);
6001 /* For each basic block that belongs to some loop assign the number
6002 of innermost loop it belongs to. */
6003 for (i = 0; i < last_basic_block; i++)
6004 loop_hdr[i] = -1;
6006 FOR_EACH_BB (bb)
6008 if (bb->loop_father && !bb->loop_father->num == 0
6009 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6010 loop_hdr[bb->index] = bb->loop_father->num;
6013 /* For each basic block degree is calculated as the number of incoming
6014 edges, that are going out of bbs that are not yet scheduled.
6015 The basic blocks that are scheduled have degree value of zero. */
6016 FOR_EACH_BB (bb)
6018 degree[bb->index] = 0;
6020 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6022 FOR_EACH_EDGE (e, ei, bb->preds)
6023 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6024 degree[bb->index]++;
6026 else
6027 degree[bb->index] = -1;
6030 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6032 /* Any block that did not end up in a region is placed into a region
6033 by itself. */
6034 FOR_EACH_BB (bb)
6035 if (degree[bb->index] >= 0)
6037 rgn_bb_table[cur_rgn_blocks] = bb->index;
6038 RGN_NR_BLOCKS (nr_regions) = 1;
6039 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6040 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6041 RGN_HAS_REAL_EBB (nr_regions) = 0;
6042 CONTAINING_RGN (bb->index) = nr_regions++;
6043 BLOCK_TO_BB (bb->index) = 0;
6046 free (degree);
6047 free (loop_hdr);
6050 /* Free data structures used in pipelining of loops. */
6051 void sel_finish_pipelining (void)
6053 loop_iterator li;
6054 struct loop *loop;
6056 /* Release aux fields so we don't free them later by mistake. */
6057 FOR_EACH_LOOP (li, loop, 0)
6058 loop->aux = NULL;
6060 loop_optimizer_finalize ();
6062 VEC_free (loop_p, heap, loop_nests);
6064 free (rev_top_order_index);
6065 rev_top_order_index = NULL;
6068 /* This function replaces the find_rgns when
6069 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6070 void
6071 sel_find_rgns (void)
6073 sel_init_pipelining ();
6074 extend_regions ();
6076 if (current_loops)
6078 loop_p loop;
6079 loop_iterator li;
6081 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6082 ? LI_FROM_INNERMOST
6083 : LI_ONLY_INNERMOST))
6084 make_regions_from_loop_nest (loop);
6087 /* Make regions from all the rest basic blocks and schedule them.
6088 These blocks include blocks that don't belong to any loop or belong
6089 to irreducible loops. */
6090 make_regions_from_the_rest ();
6092 /* We don't need bbs_in_loop_rgns anymore. */
6093 sbitmap_free (bbs_in_loop_rgns);
6094 bbs_in_loop_rgns = NULL;
6097 /* Add the preheader blocks from previous loop to current region taking
6098 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6099 This function is only used with -fsel-sched-pipelining-outer-loops. */
6100 void
6101 sel_add_loop_preheaders (bb_vec_t *bbs)
6103 int i;
6104 basic_block bb;
6105 VEC(basic_block, heap) *preheader_blocks
6106 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6108 for (i = 0;
6109 VEC_iterate (basic_block, preheader_blocks, i, bb);
6110 i++)
6112 VEC_safe_push (basic_block, heap, *bbs, bb);
6113 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6114 sel_add_bb (bb);
6117 VEC_free (basic_block, heap, preheader_blocks);
6120 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6121 Please note that the function should also work when pipelining_p is
6122 false, because it is used when deciding whether we should or should
6123 not reschedule pipelined code. */
6124 bool
6125 sel_is_loop_preheader_p (basic_block bb)
6127 if (current_loop_nest)
6129 struct loop *outer;
6131 if (preheader_removed)
6132 return false;
6134 /* Preheader is the first block in the region. */
6135 if (BLOCK_TO_BB (bb->index) == 0)
6136 return true;
6138 /* We used to find a preheader with the topological information.
6139 Check that the above code is equivalent to what we did before. */
6141 if (in_current_region_p (current_loop_nest->header))
6142 gcc_assert (!(BLOCK_TO_BB (bb->index)
6143 < BLOCK_TO_BB (current_loop_nest->header->index)));
6145 /* Support the situation when the latch block of outer loop
6146 could be from here. */
6147 for (outer = loop_outer (current_loop_nest);
6148 outer;
6149 outer = loop_outer (outer))
6150 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6151 gcc_unreachable ();
6154 return false;
6157 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6158 can be removed, making the corresponding edge fallthrough (assuming that
6159 all basic blocks between JUMP_BB and DEST_BB are empty). */
6160 static bool
6161 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6163 if (!onlyjump_p (BB_END (jump_bb))
6164 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6165 return false;
6167 /* Several outgoing edges, abnormal edge or destination of jump is
6168 not DEST_BB. */
6169 if (EDGE_COUNT (jump_bb->succs) != 1
6170 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6171 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6172 return false;
6174 /* If not anything of the upper. */
6175 return true;
6178 /* Removes the loop preheader from the current region and saves it in
6179 PREHEADER_BLOCKS of the father loop, so they will be added later to
6180 region that represents an outer loop. */
6181 static void
6182 sel_remove_loop_preheader (void)
6184 int i, old_len;
6185 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6186 basic_block bb;
6187 bool all_empty_p = true;
6188 VEC(basic_block, heap) *preheader_blocks
6189 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6191 gcc_assert (current_loop_nest);
6192 old_len = VEC_length (basic_block, preheader_blocks);
6194 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6195 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6197 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6199 /* If the basic block belongs to region, but doesn't belong to
6200 corresponding loop, then it should be a preheader. */
6201 if (sel_is_loop_preheader_p (bb))
6203 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6204 if (BB_END (bb) != bb_note (bb))
6205 all_empty_p = false;
6209 /* Remove these blocks only after iterating over the whole region. */
6210 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6211 i >= old_len;
6212 i--)
6214 bb = VEC_index (basic_block, preheader_blocks, i);
6215 sel_remove_bb (bb, false);
6218 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6220 if (!all_empty_p)
6221 /* Immediately create new region from preheader. */
6222 make_region_from_loop_preheader (&preheader_blocks);
6223 else
6225 /* If all preheader blocks are empty - dont create new empty region.
6226 Instead, remove them completely. */
6227 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6229 edge e;
6230 edge_iterator ei;
6231 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6233 /* Redirect all incoming edges to next basic block. */
6234 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6236 if (! (e->flags & EDGE_FALLTHRU))
6237 redirect_edge_and_branch (e, bb->next_bb);
6238 else
6239 redirect_edge_succ (e, bb->next_bb);
6241 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6242 delete_and_free_basic_block (bb);
6244 /* Check if after deleting preheader there is a nonconditional
6245 jump in PREV_BB that leads to the next basic block NEXT_BB.
6246 If it is so - delete this jump and clear data sets of its
6247 basic block if it becomes empty. */
6248 if (next_bb->prev_bb == prev_bb
6249 && prev_bb != ENTRY_BLOCK_PTR
6250 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6252 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6253 if (BB_END (prev_bb) == bb_note (prev_bb))
6254 free_data_sets (prev_bb);
6257 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6258 recompute_dominator (CDI_DOMINATORS,
6259 next_bb));
6262 VEC_free (basic_block, heap, preheader_blocks);
6264 else
6265 /* Store preheader within the father's loop structure. */
6266 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6267 preheader_blocks);
6269 #endif