PR libstdc++/70940 make pmr::resource_adaptor return aligned memory
[official-gcc.git] / gcc / tree-vect-data-refs.c
blob1ac37bf5001286f942a6df392ef17f67dcd46214
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "predict.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "ssa.h"
34 #include "optabs-tree.h"
35 #include "cgraph.h"
36 #include "dumpfile.h"
37 #include "alias.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tree-eh.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop.h"
47 #include "cfgloop.h"
48 #include "tree-scalar-evolution.h"
49 #include "tree-vectorizer.h"
50 #include "expr.h"
51 #include "builtins.h"
52 #include "params.h"
53 #include "tree-cfg.h"
54 #include "tree-hash-traits.h"
55 #include "vec-perm-indices.h"
56 #include "internal-fn.h"
58 /* Return true if load- or store-lanes optab OPTAB is implemented for
59 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
61 static bool
62 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
63 tree vectype, unsigned HOST_WIDE_INT count)
65 machine_mode mode, array_mode;
66 bool limit_p;
68 mode = TYPE_MODE (vectype);
69 if (!targetm.array_mode (mode, count).exists (&array_mode))
71 poly_uint64 bits = count * GET_MODE_BITSIZE (mode);
72 limit_p = !targetm.array_mode_supported_p (mode, count);
73 if (!int_mode_for_size (bits, limit_p).exists (&array_mode))
75 if (dump_enabled_p ())
76 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
77 "no array mode for %s["
78 HOST_WIDE_INT_PRINT_DEC "]\n",
79 GET_MODE_NAME (mode), count);
80 return false;
84 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
86 if (dump_enabled_p ())
87 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
88 "cannot use %s<%s><%s>\n", name,
89 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
90 return false;
93 if (dump_enabled_p ())
94 dump_printf_loc (MSG_NOTE, vect_location,
95 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
96 GET_MODE_NAME (mode));
98 return true;
102 /* Return the smallest scalar part of STMT.
103 This is used to determine the vectype of the stmt. We generally set the
104 vectype according to the type of the result (lhs). For stmts whose
105 result-type is different than the type of the arguments (e.g., demotion,
106 promotion), vectype will be reset appropriately (later). Note that we have
107 to visit the smallest datatype in this function, because that determines the
108 VF. If the smallest datatype in the loop is present only as the rhs of a
109 promotion operation - we'd miss it.
110 Such a case, where a variable of this datatype does not appear in the lhs
111 anywhere in the loop, can only occur if it's an invariant: e.g.:
112 'int_x = (int) short_inv', which we'd expect to have been optimized away by
113 invariant motion. However, we cannot rely on invariant motion to always
114 take invariants out of the loop, and so in the case of promotion we also
115 have to check the rhs.
116 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
117 types. */
119 tree
120 vect_get_smallest_scalar_type (gimple *stmt, HOST_WIDE_INT *lhs_size_unit,
121 HOST_WIDE_INT *rhs_size_unit)
123 tree scalar_type = gimple_expr_type (stmt);
124 HOST_WIDE_INT lhs, rhs;
126 /* During the analysis phase, this function is called on arbitrary
127 statements that might not have scalar results. */
128 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
129 return scalar_type;
131 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
133 if (is_gimple_assign (stmt)
134 && (gimple_assign_cast_p (stmt)
135 || gimple_assign_rhs_code (stmt) == DOT_PROD_EXPR
136 || gimple_assign_rhs_code (stmt) == WIDEN_SUM_EXPR
137 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
138 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
139 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
141 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
143 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
144 if (rhs < lhs)
145 scalar_type = rhs_type;
148 *lhs_size_unit = lhs;
149 *rhs_size_unit = rhs;
150 return scalar_type;
154 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
155 tested at run-time. Return TRUE if DDR was successfully inserted.
156 Return false if versioning is not supported. */
158 static bool
159 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
161 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
163 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
164 return false;
166 if (!runtime_alias_check_p (ddr, loop,
167 optimize_loop_nest_for_speed_p (loop)))
168 return false;
170 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
171 return true;
174 /* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */
176 static void
177 vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value)
179 vec<tree> checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo);
180 for (unsigned int i = 0; i < checks.length(); ++i)
181 if (checks[i] == value)
182 return;
184 if (dump_enabled_p ())
186 dump_printf_loc (MSG_NOTE, vect_location, "need run-time check that ");
187 dump_generic_expr (MSG_NOTE, TDF_SLIM, value);
188 dump_printf (MSG_NOTE, " is nonzero\n");
190 LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value);
193 /* Return true if we know that the order of vectorized STMT_A and
194 vectorized STMT_B will be the same as the order of STMT_A and STMT_B.
195 At least one of the statements is a write. */
197 static bool
198 vect_preserves_scalar_order_p (gimple *stmt_a, gimple *stmt_b)
200 stmt_vec_info stmtinfo_a = vinfo_for_stmt (stmt_a);
201 stmt_vec_info stmtinfo_b = vinfo_for_stmt (stmt_b);
203 /* Single statements are always kept in their original order. */
204 if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
205 && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
206 return true;
208 /* STMT_A and STMT_B belong to overlapping groups. All loads in a
209 group are emitted at the position of the first scalar load and all
210 stores in a group are emitted at the position of the last scalar store.
211 Thus writes will happen no earlier than their current position
212 (but could happen later) while reads will happen no later than their
213 current position (but could happen earlier). Reordering is therefore
214 only possible if the first access is a write. */
215 if (is_pattern_stmt_p (stmtinfo_a))
216 stmt_a = STMT_VINFO_RELATED_STMT (stmtinfo_a);
217 if (is_pattern_stmt_p (stmtinfo_b))
218 stmt_b = STMT_VINFO_RELATED_STMT (stmtinfo_b);
219 gimple *earlier_stmt = get_earlier_stmt (stmt_a, stmt_b);
220 return !DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt)));
223 /* A subroutine of vect_analyze_data_ref_dependence. Handle
224 DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
225 distances. These distances are conservatively correct but they don't
226 reflect a guaranteed dependence.
228 Return true if this function does all the work necessary to avoid
229 an alias or false if the caller should use the dependence distances
230 to limit the vectorization factor in the usual way. LOOP_DEPTH is
231 the depth of the loop described by LOOP_VINFO and the other arguments
232 are as for vect_analyze_data_ref_dependence. */
234 static bool
235 vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
236 loop_vec_info loop_vinfo,
237 int loop_depth, unsigned int *max_vf)
239 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
240 lambda_vector dist_v;
241 unsigned int i;
242 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
244 int dist = dist_v[loop_depth];
245 if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
247 /* If the user asserted safelen >= DIST consecutive iterations
248 can be executed concurrently, assume independence.
250 ??? An alternative would be to add the alias check even
251 in this case, and vectorize the fallback loop with the
252 maximum VF set to safelen. However, if the user has
253 explicitly given a length, it's less likely that that
254 would be a win. */
255 if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
257 if ((unsigned int) loop->safelen < *max_vf)
258 *max_vf = loop->safelen;
259 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
260 continue;
263 /* For dependence distances of 2 or more, we have the option
264 of limiting VF or checking for an alias at runtime.
265 Prefer to check at runtime if we can, to avoid limiting
266 the VF unnecessarily when the bases are in fact independent.
268 Note that the alias checks will be removed if the VF ends up
269 being small enough. */
270 return (!STMT_VINFO_GATHER_SCATTER_P
271 (vinfo_for_stmt (DR_STMT (DDR_A (ddr))))
272 && !STMT_VINFO_GATHER_SCATTER_P
273 (vinfo_for_stmt (DR_STMT (DDR_B (ddr))))
274 && vect_mark_for_runtime_alias_test (ddr, loop_vinfo));
277 return true;
281 /* Function vect_analyze_data_ref_dependence.
283 Return TRUE if there (might) exist a dependence between a memory-reference
284 DRA and a memory-reference DRB. When versioning for alias may check a
285 dependence at run-time, return FALSE. Adjust *MAX_VF according to
286 the data dependence. */
288 static bool
289 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
290 loop_vec_info loop_vinfo,
291 unsigned int *max_vf)
293 unsigned int i;
294 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
295 struct data_reference *dra = DDR_A (ddr);
296 struct data_reference *drb = DDR_B (ddr);
297 stmt_vec_info stmtinfo_a = vinfo_for_stmt (vect_dr_stmt (dra));
298 stmt_vec_info stmtinfo_b = vinfo_for_stmt (vect_dr_stmt (drb));
299 lambda_vector dist_v;
300 unsigned int loop_depth;
302 /* In loop analysis all data references should be vectorizable. */
303 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
304 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
305 gcc_unreachable ();
307 /* Independent data accesses. */
308 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
309 return false;
311 if (dra == drb
312 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
313 return false;
315 /* We do not have to consider dependences between accesses that belong
316 to the same group, unless the stride could be smaller than the
317 group size. */
318 if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
319 && (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
320 == DR_GROUP_FIRST_ELEMENT (stmtinfo_b))
321 && !STMT_VINFO_STRIDED_P (stmtinfo_a))
322 return false;
324 /* Even if we have an anti-dependence then, as the vectorized loop covers at
325 least two scalar iterations, there is always also a true dependence.
326 As the vectorizer does not re-order loads and stores we can ignore
327 the anti-dependence if TBAA can disambiguate both DRs similar to the
328 case with known negative distance anti-dependences (positive
329 distance anti-dependences would violate TBAA constraints). */
330 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
331 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
332 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
333 get_alias_set (DR_REF (drb))))
334 return false;
336 /* Unknown data dependence. */
337 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
339 /* If user asserted safelen consecutive iterations can be
340 executed concurrently, assume independence. */
341 if (loop->safelen >= 2)
343 if ((unsigned int) loop->safelen < *max_vf)
344 *max_vf = loop->safelen;
345 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
346 return false;
349 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
350 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
352 if (dump_enabled_p ())
354 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
355 "versioning for alias not supported for: "
356 "can't determine dependence between ");
357 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
358 DR_REF (dra));
359 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
360 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
361 DR_REF (drb));
362 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
364 return true;
367 if (dump_enabled_p ())
369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
370 "versioning for alias required: "
371 "can't determine dependence between ");
372 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
373 DR_REF (dra));
374 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
375 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
376 DR_REF (drb));
377 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
380 /* Add to list of ddrs that need to be tested at run-time. */
381 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
384 /* Known data dependence. */
385 if (DDR_NUM_DIST_VECTS (ddr) == 0)
387 /* If user asserted safelen consecutive iterations can be
388 executed concurrently, assume independence. */
389 if (loop->safelen >= 2)
391 if ((unsigned int) loop->safelen < *max_vf)
392 *max_vf = loop->safelen;
393 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
394 return false;
397 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
398 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
400 if (dump_enabled_p ())
402 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
403 "versioning for alias not supported for: "
404 "bad dist vector for ");
405 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
406 DR_REF (dra));
407 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
408 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
409 DR_REF (drb));
410 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
412 return true;
415 if (dump_enabled_p ())
417 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
418 "versioning for alias required: "
419 "bad dist vector for ");
420 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
421 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
422 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
423 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
425 /* Add to list of ddrs that need to be tested at run-time. */
426 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
429 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
431 if (DDR_COULD_BE_INDEPENDENT_P (ddr)
432 && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
433 loop_depth, max_vf))
434 return false;
436 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
438 int dist = dist_v[loop_depth];
440 if (dump_enabled_p ())
441 dump_printf_loc (MSG_NOTE, vect_location,
442 "dependence distance = %d.\n", dist);
444 if (dist == 0)
446 if (dump_enabled_p ())
448 dump_printf_loc (MSG_NOTE, vect_location,
449 "dependence distance == 0 between ");
450 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
451 dump_printf (MSG_NOTE, " and ");
452 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
453 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
456 /* When we perform grouped accesses and perform implicit CSE
457 by detecting equal accesses and doing disambiguation with
458 runtime alias tests like for
459 .. = a[i];
460 .. = a[i+1];
461 a[i] = ..;
462 a[i+1] = ..;
463 *p = ..;
464 .. = a[i];
465 .. = a[i+1];
466 where we will end up loading { a[i], a[i+1] } once, make
467 sure that inserting group loads before the first load and
468 stores after the last store will do the right thing.
469 Similar for groups like
470 a[i] = ...;
471 ... = a[i];
472 a[i+1] = ...;
473 where loads from the group interleave with the store. */
474 if (!vect_preserves_scalar_order_p (vect_dr_stmt(dra),
475 vect_dr_stmt (drb)))
477 if (dump_enabled_p ())
478 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
479 "READ_WRITE dependence in interleaving.\n");
480 return true;
483 if (loop->safelen < 2)
485 tree indicator = dr_zero_step_indicator (dra);
486 if (!indicator || integer_zerop (indicator))
488 if (dump_enabled_p ())
489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
490 "access also has a zero step\n");
491 return true;
493 else if (TREE_CODE (indicator) != INTEGER_CST)
494 vect_check_nonzero_value (loop_vinfo, indicator);
496 continue;
499 if (dist > 0 && DDR_REVERSED_P (ddr))
501 /* If DDR_REVERSED_P the order of the data-refs in DDR was
502 reversed (to make distance vector positive), and the actual
503 distance is negative. */
504 if (dump_enabled_p ())
505 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
506 "dependence distance negative.\n");
507 /* Record a negative dependence distance to later limit the
508 amount of stmt copying / unrolling we can perform.
509 Only need to handle read-after-write dependence. */
510 if (DR_IS_READ (drb)
511 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
512 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
513 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
514 continue;
517 unsigned int abs_dist = abs (dist);
518 if (abs_dist >= 2 && abs_dist < *max_vf)
520 /* The dependence distance requires reduction of the maximal
521 vectorization factor. */
522 *max_vf = abs (dist);
523 if (dump_enabled_p ())
524 dump_printf_loc (MSG_NOTE, vect_location,
525 "adjusting maximal vectorization factor to %i\n",
526 *max_vf);
529 if (abs_dist >= *max_vf)
531 /* Dependence distance does not create dependence, as far as
532 vectorization is concerned, in this case. */
533 if (dump_enabled_p ())
534 dump_printf_loc (MSG_NOTE, vect_location,
535 "dependence distance >= VF.\n");
536 continue;
539 if (dump_enabled_p ())
541 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
542 "not vectorized, possible dependence "
543 "between data-refs ");
544 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
545 dump_printf (MSG_NOTE, " and ");
546 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
547 dump_printf (MSG_NOTE, "\n");
550 return true;
553 return false;
556 /* Function vect_analyze_data_ref_dependences.
558 Examine all the data references in the loop, and make sure there do not
559 exist any data dependences between them. Set *MAX_VF according to
560 the maximum vectorization factor the data dependences allow. */
562 bool
563 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
564 unsigned int *max_vf)
566 unsigned int i;
567 struct data_dependence_relation *ddr;
569 DUMP_VECT_SCOPE ("vect_analyze_data_ref_dependences");
571 LOOP_VINFO_DDRS (loop_vinfo)
572 .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
573 * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
574 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
575 /* We need read-read dependences to compute STMT_VINFO_SAME_ALIGN_REFS. */
576 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
577 &LOOP_VINFO_DDRS (loop_vinfo),
578 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
579 return false;
581 /* For epilogues we either have no aliases or alias versioning
582 was applied to original loop. Therefore we may just get max_vf
583 using VF of original loop. */
584 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
585 *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
586 else
587 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
588 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
589 return false;
591 return true;
595 /* Function vect_slp_analyze_data_ref_dependence.
597 Return TRUE if there (might) exist a dependence between a memory-reference
598 DRA and a memory-reference DRB. When versioning for alias may check a
599 dependence at run-time, return FALSE. Adjust *MAX_VF according to
600 the data dependence. */
602 static bool
603 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
605 struct data_reference *dra = DDR_A (ddr);
606 struct data_reference *drb = DDR_B (ddr);
608 /* We need to check dependences of statements marked as unvectorizable
609 as well, they still can prohibit vectorization. */
611 /* Independent data accesses. */
612 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
613 return false;
615 if (dra == drb)
616 return false;
618 /* Read-read is OK. */
619 if (DR_IS_READ (dra) && DR_IS_READ (drb))
620 return false;
622 /* If dra and drb are part of the same interleaving chain consider
623 them independent. */
624 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (vect_dr_stmt (dra)))
625 && (DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (vect_dr_stmt (dra)))
626 == DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (vect_dr_stmt (drb)))))
627 return false;
629 /* Unknown data dependence. */
630 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
632 if (dump_enabled_p ())
634 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
635 "can't determine dependence between ");
636 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
637 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
638 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
639 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
642 else if (dump_enabled_p ())
644 dump_printf_loc (MSG_NOTE, vect_location,
645 "determined dependence between ");
646 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
647 dump_printf (MSG_NOTE, " and ");
648 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
649 dump_printf (MSG_NOTE, "\n");
652 return true;
656 /* Analyze dependences involved in the transform of SLP NODE. STORES
657 contain the vector of scalar stores of this instance if we are
658 disambiguating the loads. */
660 static bool
661 vect_slp_analyze_node_dependences (slp_instance instance, slp_tree node,
662 vec<gimple *> stores, gimple *last_store)
664 /* This walks over all stmts involved in the SLP load/store done
665 in NODE verifying we can sink them up to the last stmt in the
666 group. */
667 gimple *last_access = vect_find_last_scalar_stmt_in_slp (node);
668 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
670 gimple *access = SLP_TREE_SCALAR_STMTS (node)[k];
671 if (access == last_access)
672 continue;
673 data_reference *dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (access));
674 ao_ref ref;
675 bool ref_initialized_p = false;
676 for (gimple_stmt_iterator gsi = gsi_for_stmt (access);
677 gsi_stmt (gsi) != last_access; gsi_next (&gsi))
679 gimple *stmt = gsi_stmt (gsi);
680 if (! gimple_vuse (stmt)
681 || (DR_IS_READ (dr_a) && ! gimple_vdef (stmt)))
682 continue;
684 /* If we couldn't record a (single) data reference for this
685 stmt we have to resort to the alias oracle. */
686 data_reference *dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
687 if (!dr_b)
689 /* We are moving a store or sinking a load - this means
690 we cannot use TBAA for disambiguation. */
691 if (!ref_initialized_p)
692 ao_ref_init (&ref, DR_REF (dr_a));
693 if (stmt_may_clobber_ref_p_1 (stmt, &ref, false)
694 || ref_maybe_used_by_stmt_p (stmt, &ref, false))
695 return false;
696 continue;
699 bool dependent = false;
700 /* If we run into a store of this same instance (we've just
701 marked those) then delay dependence checking until we run
702 into the last store because this is where it will have
703 been sunk to (and we verify if we can do that as well). */
704 if (gimple_visited_p (stmt))
706 if (stmt != last_store)
707 continue;
708 unsigned i;
709 gimple *store;
710 FOR_EACH_VEC_ELT (stores, i, store)
712 data_reference *store_dr
713 = STMT_VINFO_DATA_REF (vinfo_for_stmt (store));
714 ddr_p ddr = initialize_data_dependence_relation
715 (dr_a, store_dr, vNULL);
716 dependent = vect_slp_analyze_data_ref_dependence (ddr);
717 free_dependence_relation (ddr);
718 if (dependent)
719 break;
722 else
724 ddr_p ddr = initialize_data_dependence_relation (dr_a,
725 dr_b, vNULL);
726 dependent = vect_slp_analyze_data_ref_dependence (ddr);
727 free_dependence_relation (ddr);
729 if (dependent)
730 return false;
733 return true;
737 /* Function vect_analyze_data_ref_dependences.
739 Examine all the data references in the basic-block, and make sure there
740 do not exist any data dependences between them. Set *MAX_VF according to
741 the maximum vectorization factor the data dependences allow. */
743 bool
744 vect_slp_analyze_instance_dependence (slp_instance instance)
746 DUMP_VECT_SCOPE ("vect_slp_analyze_instance_dependence");
748 /* The stores of this instance are at the root of the SLP tree. */
749 slp_tree store = SLP_INSTANCE_TREE (instance);
750 if (! STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (store)[0])))
751 store = NULL;
753 /* Verify we can sink stores to the vectorized stmt insert location. */
754 gimple *last_store = NULL;
755 if (store)
757 if (! vect_slp_analyze_node_dependences (instance, store, vNULL, NULL))
758 return false;
760 /* Mark stores in this instance and remember the last one. */
761 last_store = vect_find_last_scalar_stmt_in_slp (store);
762 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
763 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], true);
766 bool res = true;
768 /* Verify we can sink loads to the vectorized stmt insert location,
769 special-casing stores of this instance. */
770 slp_tree load;
771 unsigned int i;
772 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load)
773 if (! vect_slp_analyze_node_dependences (instance, load,
774 store
775 ? SLP_TREE_SCALAR_STMTS (store)
776 : vNULL, last_store))
778 res = false;
779 break;
782 /* Unset the visited flag. */
783 if (store)
784 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
785 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], false);
787 return res;
790 /* Record in VINFO the base alignment guarantee given by DRB. STMT is
791 the statement that contains DRB, which is useful for recording in the
792 dump file. */
794 static void
795 vect_record_base_alignment (vec_info *vinfo, gimple *stmt,
796 innermost_loop_behavior *drb)
798 bool existed;
799 innermost_loop_behavior *&entry
800 = vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
801 if (!existed || entry->base_alignment < drb->base_alignment)
803 entry = drb;
804 if (dump_enabled_p ())
806 dump_printf_loc (MSG_NOTE, vect_location,
807 "recording new base alignment for ");
808 dump_generic_expr (MSG_NOTE, TDF_SLIM, drb->base_address);
809 dump_printf (MSG_NOTE, "\n");
810 dump_printf_loc (MSG_NOTE, vect_location,
811 " alignment: %d\n", drb->base_alignment);
812 dump_printf_loc (MSG_NOTE, vect_location,
813 " misalignment: %d\n", drb->base_misalignment);
814 dump_printf_loc (MSG_NOTE, vect_location,
815 " based on: ");
816 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
821 /* If the region we're going to vectorize is reached, all unconditional
822 data references occur at least once. We can therefore pool the base
823 alignment guarantees from each unconditional reference. Do this by
824 going through all the data references in VINFO and checking whether
825 the containing statement makes the reference unconditionally. If so,
826 record the alignment of the base address in VINFO so that it can be
827 used for all other references with the same base. */
829 void
830 vect_record_base_alignments (vec_info *vinfo)
832 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
833 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
834 data_reference *dr;
835 unsigned int i;
836 FOR_EACH_VEC_ELT (vinfo->datarefs, i, dr)
838 gimple *stmt = vect_dr_stmt (dr);
839 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
840 if (!DR_IS_CONDITIONAL_IN_STMT (dr)
841 && STMT_VINFO_VECTORIZABLE (stmt_info)
842 && !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
844 vect_record_base_alignment (vinfo, stmt, &DR_INNERMOST (dr));
846 /* If DR is nested in the loop that is being vectorized, we can also
847 record the alignment of the base wrt the outer loop. */
848 if (loop && nested_in_vect_loop_p (loop, stmt))
849 vect_record_base_alignment
850 (vinfo, stmt, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
855 /* Return the target alignment for the vectorized form of DR. */
857 static unsigned int
858 vect_calculate_target_alignment (struct data_reference *dr)
860 gimple *stmt = vect_dr_stmt (dr);
861 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
862 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
863 return targetm.vectorize.preferred_vector_alignment (vectype);
866 /* Function vect_compute_data_ref_alignment
868 Compute the misalignment of the data reference DR.
870 Output:
871 1. DR_MISALIGNMENT (DR) is defined.
873 FOR NOW: No analysis is actually performed. Misalignment is calculated
874 only for trivial cases. TODO. */
876 static void
877 vect_compute_data_ref_alignment (struct data_reference *dr)
879 gimple *stmt = vect_dr_stmt (dr);
880 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
881 vec_base_alignments *base_alignments = &stmt_info->vinfo->base_alignments;
882 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
883 struct loop *loop = NULL;
884 tree ref = DR_REF (dr);
885 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
887 if (dump_enabled_p ())
888 dump_printf_loc (MSG_NOTE, vect_location,
889 "vect_compute_data_ref_alignment:\n");
891 if (loop_vinfo)
892 loop = LOOP_VINFO_LOOP (loop_vinfo);
894 /* Initialize misalignment to unknown. */
895 SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN);
897 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
898 return;
900 innermost_loop_behavior *drb = vect_dr_behavior (dr);
901 bool step_preserves_misalignment_p;
903 unsigned HOST_WIDE_INT vector_alignment
904 = vect_calculate_target_alignment (dr) / BITS_PER_UNIT;
905 DR_TARGET_ALIGNMENT (dr) = vector_alignment;
907 /* No step for BB vectorization. */
908 if (!loop)
910 gcc_assert (integer_zerop (drb->step));
911 step_preserves_misalignment_p = true;
914 /* In case the dataref is in an inner-loop of the loop that is being
915 vectorized (LOOP), we use the base and misalignment information
916 relative to the outer-loop (LOOP). This is ok only if the misalignment
917 stays the same throughout the execution of the inner-loop, which is why
918 we have to check that the stride of the dataref in the inner-loop evenly
919 divides by the vector alignment. */
920 else if (nested_in_vect_loop_p (loop, stmt))
922 step_preserves_misalignment_p
923 = (DR_STEP_ALIGNMENT (dr) % vector_alignment) == 0;
925 if (dump_enabled_p ())
927 if (step_preserves_misalignment_p)
928 dump_printf_loc (MSG_NOTE, vect_location,
929 "inner step divides the vector alignment.\n");
930 else
931 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
932 "inner step doesn't divide the vector"
933 " alignment.\n");
937 /* Similarly we can only use base and misalignment information relative to
938 an innermost loop if the misalignment stays the same throughout the
939 execution of the loop. As above, this is the case if the stride of
940 the dataref evenly divides by the alignment. */
941 else
943 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
944 step_preserves_misalignment_p
945 = multiple_p (DR_STEP_ALIGNMENT (dr) * vf, vector_alignment);
947 if (!step_preserves_misalignment_p && dump_enabled_p ())
948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
949 "step doesn't divide the vector alignment.\n");
952 unsigned int base_alignment = drb->base_alignment;
953 unsigned int base_misalignment = drb->base_misalignment;
955 /* Calculate the maximum of the pooled base address alignment and the
956 alignment that we can compute for DR itself. */
957 innermost_loop_behavior **entry = base_alignments->get (drb->base_address);
958 if (entry && base_alignment < (*entry)->base_alignment)
960 base_alignment = (*entry)->base_alignment;
961 base_misalignment = (*entry)->base_misalignment;
964 if (drb->offset_alignment < vector_alignment
965 || !step_preserves_misalignment_p
966 /* We need to know whether the step wrt the vectorized loop is
967 negative when computing the starting misalignment below. */
968 || TREE_CODE (drb->step) != INTEGER_CST)
970 if (dump_enabled_p ())
972 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
973 "Unknown alignment for access: ");
974 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
975 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
977 return;
980 if (base_alignment < vector_alignment)
982 unsigned int max_alignment;
983 tree base = get_base_for_alignment (drb->base_address, &max_alignment);
984 if (max_alignment < vector_alignment
985 || !vect_can_force_dr_alignment_p (base,
986 vector_alignment * BITS_PER_UNIT))
988 if (dump_enabled_p ())
990 dump_printf_loc (MSG_NOTE, vect_location,
991 "can't force alignment of ref: ");
992 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
993 dump_printf (MSG_NOTE, "\n");
995 return;
998 /* Force the alignment of the decl.
999 NOTE: This is the only change to the code we make during
1000 the analysis phase, before deciding to vectorize the loop. */
1001 if (dump_enabled_p ())
1003 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
1004 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
1005 dump_printf (MSG_NOTE, "\n");
1008 DR_VECT_AUX (dr)->base_decl = base;
1009 DR_VECT_AUX (dr)->base_misaligned = true;
1010 base_misalignment = 0;
1012 poly_int64 misalignment
1013 = base_misalignment + wi::to_poly_offset (drb->init).force_shwi ();
1015 /* If this is a backward running DR then first access in the larger
1016 vectype actually is N-1 elements before the address in the DR.
1017 Adjust misalign accordingly. */
1018 if (tree_int_cst_sgn (drb->step) < 0)
1019 /* PLUS because STEP is negative. */
1020 misalignment += ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
1021 * TREE_INT_CST_LOW (drb->step));
1023 unsigned int const_misalignment;
1024 if (!known_misalignment (misalignment, vector_alignment,
1025 &const_misalignment))
1027 if (dump_enabled_p ())
1029 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1030 "Non-constant misalignment for access: ");
1031 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1032 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1034 return;
1037 SET_DR_MISALIGNMENT (dr, const_misalignment);
1039 if (dump_enabled_p ())
1041 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1042 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
1043 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1044 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1047 return;
1050 /* Function vect_update_misalignment_for_peel.
1051 Sets DR's misalignment
1052 - to 0 if it has the same alignment as DR_PEEL,
1053 - to the misalignment computed using NPEEL if DR's salignment is known,
1054 - to -1 (unknown) otherwise.
1056 DR - the data reference whose misalignment is to be adjusted.
1057 DR_PEEL - the data reference whose misalignment is being made
1058 zero in the vector loop by the peel.
1059 NPEEL - the number of iterations in the peel loop if the misalignment
1060 of DR_PEEL is known at compile time. */
1062 static void
1063 vect_update_misalignment_for_peel (struct data_reference *dr,
1064 struct data_reference *dr_peel, int npeel)
1066 unsigned int i;
1067 vec<dr_p> same_aligned_drs;
1068 struct data_reference *current_dr;
1069 int dr_size = vect_get_scalar_dr_size (dr);
1070 int dr_peel_size = vect_get_scalar_dr_size (dr_peel);
1071 stmt_vec_info stmt_info = vinfo_for_stmt (vect_dr_stmt (dr));
1072 stmt_vec_info peel_stmt_info = vinfo_for_stmt (vect_dr_stmt (dr_peel));
1074 /* For interleaved data accesses the step in the loop must be multiplied by
1075 the size of the interleaving group. */
1076 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1077 dr_size *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (stmt_info)));
1078 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
1079 dr_peel_size *= DR_GROUP_SIZE (peel_stmt_info);
1081 /* It can be assumed that the data refs with the same alignment as dr_peel
1082 are aligned in the vector loop. */
1083 same_aligned_drs
1084 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (vect_dr_stmt (dr_peel)));
1085 FOR_EACH_VEC_ELT (same_aligned_drs, i, current_dr)
1087 if (current_dr != dr)
1088 continue;
1089 gcc_assert (!known_alignment_for_access_p (dr)
1090 || !known_alignment_for_access_p (dr_peel)
1091 || (DR_MISALIGNMENT (dr) / dr_size
1092 == DR_MISALIGNMENT (dr_peel) / dr_peel_size));
1093 SET_DR_MISALIGNMENT (dr, 0);
1094 return;
1097 if (known_alignment_for_access_p (dr)
1098 && known_alignment_for_access_p (dr_peel))
1100 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1101 int misal = DR_MISALIGNMENT (dr);
1102 misal += negative ? -npeel * dr_size : npeel * dr_size;
1103 misal &= DR_TARGET_ALIGNMENT (dr) - 1;
1104 SET_DR_MISALIGNMENT (dr, misal);
1105 return;
1108 if (dump_enabled_p ())
1109 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
1110 "to unknown (-1).\n");
1111 SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN);
1115 /* Function verify_data_ref_alignment
1117 Return TRUE if DR can be handled with respect to alignment. */
1119 static bool
1120 verify_data_ref_alignment (data_reference_p dr)
1122 enum dr_alignment_support supportable_dr_alignment
1123 = vect_supportable_dr_alignment (dr, false);
1124 if (!supportable_dr_alignment)
1126 if (dump_enabled_p ())
1128 if (DR_IS_READ (dr))
1129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1130 "not vectorized: unsupported unaligned load.");
1131 else
1132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1133 "not vectorized: unsupported unaligned "
1134 "store.");
1136 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1137 DR_REF (dr));
1138 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1140 return false;
1143 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
1144 dump_printf_loc (MSG_NOTE, vect_location,
1145 "Vectorizing an unaligned access.\n");
1147 return true;
1150 /* Function vect_verify_datarefs_alignment
1152 Return TRUE if all data references in the loop can be
1153 handled with respect to alignment. */
1155 bool
1156 vect_verify_datarefs_alignment (loop_vec_info vinfo)
1158 vec<data_reference_p> datarefs = vinfo->datarefs;
1159 struct data_reference *dr;
1160 unsigned int i;
1162 FOR_EACH_VEC_ELT (datarefs, i, dr)
1164 gimple *stmt = vect_dr_stmt (dr);
1165 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1167 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1168 continue;
1170 /* For interleaving, only the alignment of the first access matters. */
1171 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1172 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1173 continue;
1175 /* Strided accesses perform only component accesses, alignment is
1176 irrelevant for them. */
1177 if (STMT_VINFO_STRIDED_P (stmt_info)
1178 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1179 continue;
1181 if (! verify_data_ref_alignment (dr))
1182 return false;
1185 return true;
1188 /* Given an memory reference EXP return whether its alignment is less
1189 than its size. */
1191 static bool
1192 not_size_aligned (tree exp)
1194 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
1195 return true;
1197 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
1198 > get_object_alignment (exp));
1201 /* Function vector_alignment_reachable_p
1203 Return true if vector alignment for DR is reachable by peeling
1204 a few loop iterations. Return false otherwise. */
1206 static bool
1207 vector_alignment_reachable_p (struct data_reference *dr)
1209 gimple *stmt = vect_dr_stmt (dr);
1210 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1211 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1213 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1215 /* For interleaved access we peel only if number of iterations in
1216 the prolog loop ({VF - misalignment}), is a multiple of the
1217 number of the interleaved accesses. */
1218 int elem_size, mis_in_elements;
1220 /* FORNOW: handle only known alignment. */
1221 if (!known_alignment_for_access_p (dr))
1222 return false;
1224 poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1225 poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
1226 elem_size = vector_element_size (vector_size, nelements);
1227 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1229 if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info)))
1230 return false;
1233 /* If misalignment is known at the compile time then allow peeling
1234 only if natural alignment is reachable through peeling. */
1235 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1237 HOST_WIDE_INT elmsize =
1238 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1239 if (dump_enabled_p ())
1241 dump_printf_loc (MSG_NOTE, vect_location,
1242 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1243 dump_printf (MSG_NOTE,
1244 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1246 if (DR_MISALIGNMENT (dr) % elmsize)
1248 if (dump_enabled_p ())
1249 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1250 "data size does not divide the misalignment.\n");
1251 return false;
1255 if (!known_alignment_for_access_p (dr))
1257 tree type = TREE_TYPE (DR_REF (dr));
1258 bool is_packed = not_size_aligned (DR_REF (dr));
1259 if (dump_enabled_p ())
1260 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1261 "Unknown misalignment, %snaturally aligned\n",
1262 is_packed ? "not " : "");
1263 return targetm.vectorize.vector_alignment_reachable (type, is_packed);
1266 return true;
1270 /* Calculate the cost of the memory access represented by DR. */
1272 static void
1273 vect_get_data_access_cost (struct data_reference *dr,
1274 unsigned int *inside_cost,
1275 unsigned int *outside_cost,
1276 stmt_vector_for_cost *body_cost_vec,
1277 stmt_vector_for_cost *prologue_cost_vec)
1279 gimple *stmt = vect_dr_stmt (dr);
1280 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1281 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1282 int ncopies;
1284 if (PURE_SLP_STMT (stmt_info))
1285 ncopies = 1;
1286 else
1287 ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
1289 if (DR_IS_READ (dr))
1290 vect_get_load_cost (stmt_info, ncopies, true, inside_cost, outside_cost,
1291 prologue_cost_vec, body_cost_vec, false);
1292 else
1293 vect_get_store_cost (stmt_info, ncopies, inside_cost, body_cost_vec);
1295 if (dump_enabled_p ())
1296 dump_printf_loc (MSG_NOTE, vect_location,
1297 "vect_get_data_access_cost: inside_cost = %d, "
1298 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1302 typedef struct _vect_peel_info
1304 struct data_reference *dr;
1305 int npeel;
1306 unsigned int count;
1307 } *vect_peel_info;
1309 typedef struct _vect_peel_extended_info
1311 struct _vect_peel_info peel_info;
1312 unsigned int inside_cost;
1313 unsigned int outside_cost;
1314 } *vect_peel_extended_info;
1317 /* Peeling hashtable helpers. */
1319 struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
1321 static inline hashval_t hash (const _vect_peel_info *);
1322 static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
1325 inline hashval_t
1326 peel_info_hasher::hash (const _vect_peel_info *peel_info)
1328 return (hashval_t) peel_info->npeel;
1331 inline bool
1332 peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
1334 return (a->npeel == b->npeel);
1338 /* Insert DR into peeling hash table with NPEEL as key. */
1340 static void
1341 vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
1342 loop_vec_info loop_vinfo, struct data_reference *dr,
1343 int npeel)
1345 struct _vect_peel_info elem, *slot;
1346 _vect_peel_info **new_slot;
1347 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1349 elem.npeel = npeel;
1350 slot = peeling_htab->find (&elem);
1351 if (slot)
1352 slot->count++;
1353 else
1355 slot = XNEW (struct _vect_peel_info);
1356 slot->npeel = npeel;
1357 slot->dr = dr;
1358 slot->count = 1;
1359 new_slot = peeling_htab->find_slot (slot, INSERT);
1360 *new_slot = slot;
1363 if (!supportable_dr_alignment
1364 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1365 slot->count += VECT_MAX_COST;
1369 /* Traverse peeling hash table to find peeling option that aligns maximum
1370 number of data accesses. */
1373 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1374 _vect_peel_extended_info *max)
1376 vect_peel_info elem = *slot;
1378 if (elem->count > max->peel_info.count
1379 || (elem->count == max->peel_info.count
1380 && max->peel_info.npeel > elem->npeel))
1382 max->peel_info.npeel = elem->npeel;
1383 max->peel_info.count = elem->count;
1384 max->peel_info.dr = elem->dr;
1387 return 1;
1390 /* Get the costs of peeling NPEEL iterations checking data access costs
1391 for all data refs. If UNKNOWN_MISALIGNMENT is true, we assume DR0's
1392 misalignment will be zero after peeling. */
1394 static void
1395 vect_get_peeling_costs_all_drs (vec<data_reference_p> datarefs,
1396 struct data_reference *dr0,
1397 unsigned int *inside_cost,
1398 unsigned int *outside_cost,
1399 stmt_vector_for_cost *body_cost_vec,
1400 stmt_vector_for_cost *prologue_cost_vec,
1401 unsigned int npeel,
1402 bool unknown_misalignment)
1404 unsigned i;
1405 data_reference *dr;
1407 FOR_EACH_VEC_ELT (datarefs, i, dr)
1409 gimple *stmt = vect_dr_stmt (dr);
1410 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1411 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1412 continue;
1414 /* For interleaving, only the alignment of the first access
1415 matters. */
1416 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1417 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1418 continue;
1420 /* Strided accesses perform only component accesses, alignment is
1421 irrelevant for them. */
1422 if (STMT_VINFO_STRIDED_P (stmt_info)
1423 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1424 continue;
1426 int save_misalignment;
1427 save_misalignment = DR_MISALIGNMENT (dr);
1428 if (npeel == 0)
1430 else if (unknown_misalignment && dr == dr0)
1431 SET_DR_MISALIGNMENT (dr, 0);
1432 else
1433 vect_update_misalignment_for_peel (dr, dr0, npeel);
1434 vect_get_data_access_cost (dr, inside_cost, outside_cost,
1435 body_cost_vec, prologue_cost_vec);
1436 SET_DR_MISALIGNMENT (dr, save_misalignment);
1440 /* Traverse peeling hash table and calculate cost for each peeling option.
1441 Find the one with the lowest cost. */
1444 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1445 _vect_peel_extended_info *min)
1447 vect_peel_info elem = *slot;
1448 int dummy;
1449 unsigned int inside_cost = 0, outside_cost = 0;
1450 gimple *stmt = vect_dr_stmt (elem->dr);
1451 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1452 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1453 stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
1454 epilogue_cost_vec;
1456 prologue_cost_vec.create (2);
1457 body_cost_vec.create (2);
1458 epilogue_cost_vec.create (2);
1460 vect_get_peeling_costs_all_drs (LOOP_VINFO_DATAREFS (loop_vinfo),
1461 elem->dr, &inside_cost, &outside_cost,
1462 &body_cost_vec, &prologue_cost_vec,
1463 elem->npeel, false);
1465 body_cost_vec.release ();
1467 outside_cost += vect_get_known_peeling_cost
1468 (loop_vinfo, elem->npeel, &dummy,
1469 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1470 &prologue_cost_vec, &epilogue_cost_vec);
1472 /* Prologue and epilogue costs are added to the target model later.
1473 These costs depend only on the scalar iteration cost, the
1474 number of peeling iterations finally chosen, and the number of
1475 misaligned statements. So discard the information found here. */
1476 prologue_cost_vec.release ();
1477 epilogue_cost_vec.release ();
1479 if (inside_cost < min->inside_cost
1480 || (inside_cost == min->inside_cost
1481 && outside_cost < min->outside_cost))
1483 min->inside_cost = inside_cost;
1484 min->outside_cost = outside_cost;
1485 min->peel_info.dr = elem->dr;
1486 min->peel_info.npeel = elem->npeel;
1487 min->peel_info.count = elem->count;
1490 return 1;
1494 /* Choose best peeling option by traversing peeling hash table and either
1495 choosing an option with the lowest cost (if cost model is enabled) or the
1496 option that aligns as many accesses as possible. */
1498 static struct _vect_peel_extended_info
1499 vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
1500 loop_vec_info loop_vinfo)
1502 struct _vect_peel_extended_info res;
1504 res.peel_info.dr = NULL;
1506 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1508 res.inside_cost = INT_MAX;
1509 res.outside_cost = INT_MAX;
1510 peeling_htab->traverse <_vect_peel_extended_info *,
1511 vect_peeling_hash_get_lowest_cost> (&res);
1513 else
1515 res.peel_info.count = 0;
1516 peeling_htab->traverse <_vect_peel_extended_info *,
1517 vect_peeling_hash_get_most_frequent> (&res);
1518 res.inside_cost = 0;
1519 res.outside_cost = 0;
1522 return res;
1525 /* Return true if the new peeling NPEEL is supported. */
1527 static bool
1528 vect_peeling_supportable (loop_vec_info loop_vinfo, struct data_reference *dr0,
1529 unsigned npeel)
1531 unsigned i;
1532 struct data_reference *dr = NULL;
1533 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1534 gimple *stmt;
1535 stmt_vec_info stmt_info;
1536 enum dr_alignment_support supportable_dr_alignment;
1538 /* Ensure that all data refs can be vectorized after the peel. */
1539 FOR_EACH_VEC_ELT (datarefs, i, dr)
1541 int save_misalignment;
1543 if (dr == dr0)
1544 continue;
1546 stmt = vect_dr_stmt (dr);
1547 stmt_info = vinfo_for_stmt (stmt);
1548 /* For interleaving, only the alignment of the first access
1549 matters. */
1550 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1551 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1552 continue;
1554 /* Strided accesses perform only component accesses, alignment is
1555 irrelevant for them. */
1556 if (STMT_VINFO_STRIDED_P (stmt_info)
1557 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1558 continue;
1560 save_misalignment = DR_MISALIGNMENT (dr);
1561 vect_update_misalignment_for_peel (dr, dr0, npeel);
1562 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1563 SET_DR_MISALIGNMENT (dr, save_misalignment);
1565 if (!supportable_dr_alignment)
1566 return false;
1569 return true;
1572 /* Function vect_enhance_data_refs_alignment
1574 This pass will use loop versioning and loop peeling in order to enhance
1575 the alignment of data references in the loop.
1577 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1578 original loop is to be vectorized. Any other loops that are created by
1579 the transformations performed in this pass - are not supposed to be
1580 vectorized. This restriction will be relaxed.
1582 This pass will require a cost model to guide it whether to apply peeling
1583 or versioning or a combination of the two. For example, the scheme that
1584 intel uses when given a loop with several memory accesses, is as follows:
1585 choose one memory access ('p') which alignment you want to force by doing
1586 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1587 other accesses are not necessarily aligned, or (2) use loop versioning to
1588 generate one loop in which all accesses are aligned, and another loop in
1589 which only 'p' is necessarily aligned.
1591 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1592 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1593 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1595 Devising a cost model is the most critical aspect of this work. It will
1596 guide us on which access to peel for, whether to use loop versioning, how
1597 many versions to create, etc. The cost model will probably consist of
1598 generic considerations as well as target specific considerations (on
1599 powerpc for example, misaligned stores are more painful than misaligned
1600 loads).
1602 Here are the general steps involved in alignment enhancements:
1604 -- original loop, before alignment analysis:
1605 for (i=0; i<N; i++){
1606 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1607 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1610 -- After vect_compute_data_refs_alignment:
1611 for (i=0; i<N; i++){
1612 x = q[i]; # DR_MISALIGNMENT(q) = 3
1613 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1616 -- Possibility 1: we do loop versioning:
1617 if (p is aligned) {
1618 for (i=0; i<N; i++){ # loop 1A
1619 x = q[i]; # DR_MISALIGNMENT(q) = 3
1620 p[i] = y; # DR_MISALIGNMENT(p) = 0
1623 else {
1624 for (i=0; i<N; i++){ # loop 1B
1625 x = q[i]; # DR_MISALIGNMENT(q) = 3
1626 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1630 -- Possibility 2: we do loop peeling:
1631 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1632 x = q[i];
1633 p[i] = y;
1635 for (i = 3; i < N; i++){ # loop 2A
1636 x = q[i]; # DR_MISALIGNMENT(q) = 0
1637 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1640 -- Possibility 3: combination of loop peeling and versioning:
1641 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1642 x = q[i];
1643 p[i] = y;
1645 if (p is aligned) {
1646 for (i = 3; i<N; i++){ # loop 3A
1647 x = q[i]; # DR_MISALIGNMENT(q) = 0
1648 p[i] = y; # DR_MISALIGNMENT(p) = 0
1651 else {
1652 for (i = 3; i<N; i++){ # loop 3B
1653 x = q[i]; # DR_MISALIGNMENT(q) = 0
1654 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1658 These loops are later passed to loop_transform to be vectorized. The
1659 vectorizer will use the alignment information to guide the transformation
1660 (whether to generate regular loads/stores, or with special handling for
1661 misalignment). */
1663 bool
1664 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1666 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1667 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1668 enum dr_alignment_support supportable_dr_alignment;
1669 struct data_reference *dr0 = NULL, *first_store = NULL;
1670 struct data_reference *dr;
1671 unsigned int i, j;
1672 bool do_peeling = false;
1673 bool do_versioning = false;
1674 bool stat;
1675 gimple *stmt;
1676 stmt_vec_info stmt_info;
1677 unsigned int npeel = 0;
1678 bool one_misalignment_known = false;
1679 bool one_misalignment_unknown = false;
1680 bool one_dr_unsupportable = false;
1681 struct data_reference *unsupportable_dr = NULL;
1682 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1683 unsigned possible_npeel_number = 1;
1684 tree vectype;
1685 unsigned int mis, same_align_drs_max = 0;
1686 hash_table<peel_info_hasher> peeling_htab (1);
1688 DUMP_VECT_SCOPE ("vect_enhance_data_refs_alignment");
1690 /* Reset data so we can safely be called multiple times. */
1691 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1692 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
1694 /* While cost model enhancements are expected in the future, the high level
1695 view of the code at this time is as follows:
1697 A) If there is a misaligned access then see if peeling to align
1698 this access can make all data references satisfy
1699 vect_supportable_dr_alignment. If so, update data structures
1700 as needed and return true.
1702 B) If peeling wasn't possible and there is a data reference with an
1703 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1704 then see if loop versioning checks can be used to make all data
1705 references satisfy vect_supportable_dr_alignment. If so, update
1706 data structures as needed and return true.
1708 C) If neither peeling nor versioning were successful then return false if
1709 any data reference does not satisfy vect_supportable_dr_alignment.
1711 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1713 Note, Possibility 3 above (which is peeling and versioning together) is not
1714 being done at this time. */
1716 /* (1) Peeling to force alignment. */
1718 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1719 Considerations:
1720 + How many accesses will become aligned due to the peeling
1721 - How many accesses will become unaligned due to the peeling,
1722 and the cost of misaligned accesses.
1723 - The cost of peeling (the extra runtime checks, the increase
1724 in code size). */
1726 FOR_EACH_VEC_ELT (datarefs, i, dr)
1728 stmt = vect_dr_stmt (dr);
1729 stmt_info = vinfo_for_stmt (stmt);
1731 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1732 continue;
1734 /* For interleaving, only the alignment of the first access
1735 matters. */
1736 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1737 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1738 continue;
1740 /* For scatter-gather or invariant accesses there is nothing
1741 to enhance. */
1742 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)
1743 || integer_zerop (DR_STEP (dr)))
1744 continue;
1746 /* Strided accesses perform only component accesses, alignment is
1747 irrelevant for them. */
1748 if (STMT_VINFO_STRIDED_P (stmt_info)
1749 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1750 continue;
1752 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1753 do_peeling = vector_alignment_reachable_p (dr);
1754 if (do_peeling)
1756 if (known_alignment_for_access_p (dr))
1758 unsigned int npeel_tmp = 0;
1759 bool negative = tree_int_cst_compare (DR_STEP (dr),
1760 size_zero_node) < 0;
1762 vectype = STMT_VINFO_VECTYPE (stmt_info);
1763 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1764 unsigned int dr_size = vect_get_scalar_dr_size (dr);
1765 mis = (negative ? DR_MISALIGNMENT (dr) : -DR_MISALIGNMENT (dr));
1766 if (DR_MISALIGNMENT (dr) != 0)
1767 npeel_tmp = (mis & (target_align - 1)) / dr_size;
1769 /* For multiple types, it is possible that the bigger type access
1770 will have more than one peeling option. E.g., a loop with two
1771 types: one of size (vector size / 4), and the other one of
1772 size (vector size / 8). Vectorization factor will 8. If both
1773 accesses are misaligned by 3, the first one needs one scalar
1774 iteration to be aligned, and the second one needs 5. But the
1775 first one will be aligned also by peeling 5 scalar
1776 iterations, and in that case both accesses will be aligned.
1777 Hence, except for the immediate peeling amount, we also want
1778 to try to add full vector size, while we don't exceed
1779 vectorization factor.
1780 We do this automatically for cost model, since we calculate
1781 cost for every peeling option. */
1782 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1784 poly_uint64 nscalars = (STMT_SLP_TYPE (stmt_info)
1785 ? vf * DR_GROUP_SIZE (stmt_info) : vf);
1786 possible_npeel_number
1787 = vect_get_num_vectors (nscalars, vectype);
1789 /* NPEEL_TMP is 0 when there is no misalignment, but also
1790 allow peeling NELEMENTS. */
1791 if (DR_MISALIGNMENT (dr) == 0)
1792 possible_npeel_number++;
1795 /* Save info about DR in the hash table. Also include peeling
1796 amounts according to the explanation above. */
1797 for (j = 0; j < possible_npeel_number; j++)
1799 vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
1800 dr, npeel_tmp);
1801 npeel_tmp += target_align / dr_size;
1804 one_misalignment_known = true;
1806 else
1808 /* If we don't know any misalignment values, we prefer
1809 peeling for data-ref that has the maximum number of data-refs
1810 with the same alignment, unless the target prefers to align
1811 stores over load. */
1812 unsigned same_align_drs
1813 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1814 if (!dr0
1815 || same_align_drs_max < same_align_drs)
1817 same_align_drs_max = same_align_drs;
1818 dr0 = dr;
1820 /* For data-refs with the same number of related
1821 accesses prefer the one where the misalign
1822 computation will be invariant in the outermost loop. */
1823 else if (same_align_drs_max == same_align_drs)
1825 struct loop *ivloop0, *ivloop;
1826 ivloop0 = outermost_invariant_loop_for_expr
1827 (loop, DR_BASE_ADDRESS (dr0));
1828 ivloop = outermost_invariant_loop_for_expr
1829 (loop, DR_BASE_ADDRESS (dr));
1830 if ((ivloop && !ivloop0)
1831 || (ivloop && ivloop0
1832 && flow_loop_nested_p (ivloop, ivloop0)))
1833 dr0 = dr;
1836 one_misalignment_unknown = true;
1838 /* Check for data refs with unsupportable alignment that
1839 can be peeled. */
1840 if (!supportable_dr_alignment)
1842 one_dr_unsupportable = true;
1843 unsupportable_dr = dr;
1846 if (!first_store && DR_IS_WRITE (dr))
1847 first_store = dr;
1850 else
1852 if (!aligned_access_p (dr))
1854 if (dump_enabled_p ())
1855 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1856 "vector alignment may not be reachable\n");
1857 break;
1862 /* Check if we can possibly peel the loop. */
1863 if (!vect_can_advance_ivs_p (loop_vinfo)
1864 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
1865 || loop->inner)
1866 do_peeling = false;
1868 struct _vect_peel_extended_info peel_for_known_alignment;
1869 struct _vect_peel_extended_info peel_for_unknown_alignment;
1870 struct _vect_peel_extended_info best_peel;
1872 peel_for_unknown_alignment.inside_cost = INT_MAX;
1873 peel_for_unknown_alignment.outside_cost = INT_MAX;
1874 peel_for_unknown_alignment.peel_info.count = 0;
1876 if (do_peeling
1877 && one_misalignment_unknown)
1879 /* Check if the target requires to prefer stores over loads, i.e., if
1880 misaligned stores are more expensive than misaligned loads (taking
1881 drs with same alignment into account). */
1882 unsigned int load_inside_cost = 0;
1883 unsigned int load_outside_cost = 0;
1884 unsigned int store_inside_cost = 0;
1885 unsigned int store_outside_cost = 0;
1886 unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2;
1888 stmt_vector_for_cost dummy;
1889 dummy.create (2);
1890 vect_get_peeling_costs_all_drs (datarefs, dr0,
1891 &load_inside_cost,
1892 &load_outside_cost,
1893 &dummy, &dummy, estimated_npeels, true);
1894 dummy.release ();
1896 if (first_store)
1898 dummy.create (2);
1899 vect_get_peeling_costs_all_drs (datarefs, first_store,
1900 &store_inside_cost,
1901 &store_outside_cost,
1902 &dummy, &dummy,
1903 estimated_npeels, true);
1904 dummy.release ();
1906 else
1908 store_inside_cost = INT_MAX;
1909 store_outside_cost = INT_MAX;
1912 if (load_inside_cost > store_inside_cost
1913 || (load_inside_cost == store_inside_cost
1914 && load_outside_cost > store_outside_cost))
1916 dr0 = first_store;
1917 peel_for_unknown_alignment.inside_cost = store_inside_cost;
1918 peel_for_unknown_alignment.outside_cost = store_outside_cost;
1920 else
1922 peel_for_unknown_alignment.inside_cost = load_inside_cost;
1923 peel_for_unknown_alignment.outside_cost = load_outside_cost;
1926 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
1927 prologue_cost_vec.create (2);
1928 epilogue_cost_vec.create (2);
1930 int dummy2;
1931 peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
1932 (loop_vinfo, estimated_npeels, &dummy2,
1933 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1934 &prologue_cost_vec, &epilogue_cost_vec);
1936 prologue_cost_vec.release ();
1937 epilogue_cost_vec.release ();
1939 peel_for_unknown_alignment.peel_info.count = 1
1940 + STMT_VINFO_SAME_ALIGN_REFS
1941 (vinfo_for_stmt (vect_dr_stmt (dr0))).length ();
1944 peel_for_unknown_alignment.peel_info.npeel = 0;
1945 peel_for_unknown_alignment.peel_info.dr = dr0;
1947 best_peel = peel_for_unknown_alignment;
1949 peel_for_known_alignment.inside_cost = INT_MAX;
1950 peel_for_known_alignment.outside_cost = INT_MAX;
1951 peel_for_known_alignment.peel_info.count = 0;
1952 peel_for_known_alignment.peel_info.dr = NULL;
1954 if (do_peeling && one_misalignment_known)
1956 /* Peeling is possible, but there is no data access that is not supported
1957 unless aligned. So we try to choose the best possible peeling from
1958 the hash table. */
1959 peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
1960 (&peeling_htab, loop_vinfo);
1963 /* Compare costs of peeling for known and unknown alignment. */
1964 if (peel_for_known_alignment.peel_info.dr != NULL
1965 && peel_for_unknown_alignment.inside_cost
1966 >= peel_for_known_alignment.inside_cost)
1968 best_peel = peel_for_known_alignment;
1970 /* If the best peeling for known alignment has NPEEL == 0, perform no
1971 peeling at all except if there is an unsupportable dr that we can
1972 align. */
1973 if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
1974 do_peeling = false;
1977 /* If there is an unsupportable data ref, prefer this over all choices so far
1978 since we'd have to discard a chosen peeling except when it accidentally
1979 aligned the unsupportable data ref. */
1980 if (one_dr_unsupportable)
1981 dr0 = unsupportable_dr;
1982 else if (do_peeling)
1984 /* Calculate the penalty for no peeling, i.e. leaving everything as-is.
1985 TODO: Use nopeel_outside_cost or get rid of it? */
1986 unsigned nopeel_inside_cost = 0;
1987 unsigned nopeel_outside_cost = 0;
1989 stmt_vector_for_cost dummy;
1990 dummy.create (2);
1991 vect_get_peeling_costs_all_drs (datarefs, NULL, &nopeel_inside_cost,
1992 &nopeel_outside_cost, &dummy, &dummy,
1993 0, false);
1994 dummy.release ();
1996 /* Add epilogue costs. As we do not peel for alignment here, no prologue
1997 costs will be recorded. */
1998 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
1999 prologue_cost_vec.create (2);
2000 epilogue_cost_vec.create (2);
2002 int dummy2;
2003 nopeel_outside_cost += vect_get_known_peeling_cost
2004 (loop_vinfo, 0, &dummy2,
2005 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
2006 &prologue_cost_vec, &epilogue_cost_vec);
2008 prologue_cost_vec.release ();
2009 epilogue_cost_vec.release ();
2011 npeel = best_peel.peel_info.npeel;
2012 dr0 = best_peel.peel_info.dr;
2014 /* If no peeling is not more expensive than the best peeling we
2015 have so far, don't perform any peeling. */
2016 if (nopeel_inside_cost <= best_peel.inside_cost)
2017 do_peeling = false;
2020 if (do_peeling)
2022 stmt = vect_dr_stmt (dr0);
2023 stmt_info = vinfo_for_stmt (stmt);
2024 vectype = STMT_VINFO_VECTYPE (stmt_info);
2026 if (known_alignment_for_access_p (dr0))
2028 bool negative = tree_int_cst_compare (DR_STEP (dr0),
2029 size_zero_node) < 0;
2030 if (!npeel)
2032 /* Since it's known at compile time, compute the number of
2033 iterations in the peeled loop (the peeling factor) for use in
2034 updating DR_MISALIGNMENT values. The peeling factor is the
2035 vectorization factor minus the misalignment as an element
2036 count. */
2037 mis = negative ? DR_MISALIGNMENT (dr0) : -DR_MISALIGNMENT (dr0);
2038 unsigned int target_align = DR_TARGET_ALIGNMENT (dr0);
2039 npeel = ((mis & (target_align - 1))
2040 / vect_get_scalar_dr_size (dr0));
2043 /* For interleaved data access every iteration accesses all the
2044 members of the group, therefore we divide the number of iterations
2045 by the group size. */
2046 stmt_info = vinfo_for_stmt (vect_dr_stmt (dr0));
2047 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
2048 npeel /= DR_GROUP_SIZE (stmt_info);
2050 if (dump_enabled_p ())
2051 dump_printf_loc (MSG_NOTE, vect_location,
2052 "Try peeling by %d\n", npeel);
2055 /* Ensure that all datarefs can be vectorized after the peel. */
2056 if (!vect_peeling_supportable (loop_vinfo, dr0, npeel))
2057 do_peeling = false;
2059 /* Check if all datarefs are supportable and log. */
2060 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
2062 stat = vect_verify_datarefs_alignment (loop_vinfo);
2063 if (!stat)
2064 do_peeling = false;
2065 else
2066 return stat;
2069 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
2070 if (do_peeling)
2072 unsigned max_allowed_peel
2073 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
2074 if (max_allowed_peel != (unsigned)-1)
2076 unsigned max_peel = npeel;
2077 if (max_peel == 0)
2079 unsigned int target_align = DR_TARGET_ALIGNMENT (dr0);
2080 max_peel = target_align / vect_get_scalar_dr_size (dr0) - 1;
2082 if (max_peel > max_allowed_peel)
2084 do_peeling = false;
2085 if (dump_enabled_p ())
2086 dump_printf_loc (MSG_NOTE, vect_location,
2087 "Disable peeling, max peels reached: %d\n", max_peel);
2092 /* Cost model #2 - if peeling may result in a remaining loop not
2093 iterating enough to be vectorized then do not peel. Since this
2094 is a cost heuristic rather than a correctness decision, use the
2095 most likely runtime value for variable vectorization factors. */
2096 if (do_peeling
2097 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2099 unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
2100 unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel;
2101 if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo)
2102 < assumed_vf + max_peel)
2103 do_peeling = false;
2106 if (do_peeling)
2108 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
2109 If the misalignment of DR_i is identical to that of dr0 then set
2110 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
2111 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
2112 by the peeling factor times the element size of DR_i (MOD the
2113 vectorization factor times the size). Otherwise, the
2114 misalignment of DR_i must be set to unknown. */
2115 FOR_EACH_VEC_ELT (datarefs, i, dr)
2116 if (dr != dr0)
2118 /* Strided accesses perform only component accesses, alignment
2119 is irrelevant for them. */
2120 stmt_info = vinfo_for_stmt (vect_dr_stmt (dr));
2121 if (STMT_VINFO_STRIDED_P (stmt_info)
2122 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
2123 continue;
2125 vect_update_misalignment_for_peel (dr, dr0, npeel);
2128 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
2129 if (npeel)
2130 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
2131 else
2132 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2133 = DR_MISALIGNMENT (dr0);
2134 SET_DR_MISALIGNMENT (dr0, 0);
2135 if (dump_enabled_p ())
2137 dump_printf_loc (MSG_NOTE, vect_location,
2138 "Alignment of access forced using peeling.\n");
2139 dump_printf_loc (MSG_NOTE, vect_location,
2140 "Peeling for alignment will be applied.\n");
2143 /* The inside-loop cost will be accounted for in vectorizable_load
2144 and vectorizable_store correctly with adjusted alignments.
2145 Drop the body_cst_vec on the floor here. */
2146 stat = vect_verify_datarefs_alignment (loop_vinfo);
2147 gcc_assert (stat);
2148 return stat;
2152 /* (2) Versioning to force alignment. */
2154 /* Try versioning if:
2155 1) optimize loop for speed
2156 2) there is at least one unsupported misaligned data ref with an unknown
2157 misalignment, and
2158 3) all misaligned data refs with a known misalignment are supported, and
2159 4) the number of runtime alignment checks is within reason. */
2161 do_versioning =
2162 optimize_loop_nest_for_speed_p (loop)
2163 && (!loop->inner); /* FORNOW */
2165 if (do_versioning)
2167 FOR_EACH_VEC_ELT (datarefs, i, dr)
2169 stmt = vect_dr_stmt (dr);
2170 stmt_info = vinfo_for_stmt (stmt);
2172 /* For interleaving, only the alignment of the first access
2173 matters. */
2174 if (aligned_access_p (dr)
2175 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
2176 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt))
2177 continue;
2179 if (STMT_VINFO_STRIDED_P (stmt_info))
2181 /* Strided loads perform only component accesses, alignment is
2182 irrelevant for them. */
2183 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
2184 continue;
2185 do_versioning = false;
2186 break;
2189 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
2191 if (!supportable_dr_alignment)
2193 gimple *stmt;
2194 int mask;
2195 tree vectype;
2197 if (known_alignment_for_access_p (dr)
2198 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2199 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
2201 do_versioning = false;
2202 break;
2205 stmt = vect_dr_stmt (dr);
2206 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2207 gcc_assert (vectype);
2209 /* At present we don't support versioning for alignment
2210 with variable VF, since there's no guarantee that the
2211 VF is a power of two. We could relax this if we added
2212 a way of enforcing a power-of-two size. */
2213 unsigned HOST_WIDE_INT size;
2214 if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size))
2216 do_versioning = false;
2217 break;
2220 /* The rightmost bits of an aligned address must be zeros.
2221 Construct the mask needed for this test. For example,
2222 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2223 mask must be 15 = 0xf. */
2224 mask = size - 1;
2226 /* FORNOW: use the same mask to test all potentially unaligned
2227 references in the loop. The vectorizer currently supports
2228 a single vector size, see the reference to
2229 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
2230 vectorization factor is computed. */
2231 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
2232 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
2233 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2234 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
2235 vect_dr_stmt (dr));
2239 /* Versioning requires at least one misaligned data reference. */
2240 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2241 do_versioning = false;
2242 else if (!do_versioning)
2243 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2246 if (do_versioning)
2248 vec<gimple *> may_misalign_stmts
2249 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2250 gimple *stmt;
2252 /* It can now be assumed that the data references in the statements
2253 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2254 of the loop being vectorized. */
2255 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
2257 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2258 dr = STMT_VINFO_DATA_REF (stmt_info);
2259 SET_DR_MISALIGNMENT (dr, 0);
2260 if (dump_enabled_p ())
2261 dump_printf_loc (MSG_NOTE, vect_location,
2262 "Alignment of access forced using versioning.\n");
2265 if (dump_enabled_p ())
2266 dump_printf_loc (MSG_NOTE, vect_location,
2267 "Versioning for alignment will be applied.\n");
2269 /* Peeling and versioning can't be done together at this time. */
2270 gcc_assert (! (do_peeling && do_versioning));
2272 stat = vect_verify_datarefs_alignment (loop_vinfo);
2273 gcc_assert (stat);
2274 return stat;
2277 /* This point is reached if neither peeling nor versioning is being done. */
2278 gcc_assert (! (do_peeling || do_versioning));
2280 stat = vect_verify_datarefs_alignment (loop_vinfo);
2281 return stat;
2285 /* Function vect_find_same_alignment_drs.
2287 Update group and alignment relations according to the chosen
2288 vectorization factor. */
2290 static void
2291 vect_find_same_alignment_drs (struct data_dependence_relation *ddr)
2293 struct data_reference *dra = DDR_A (ddr);
2294 struct data_reference *drb = DDR_B (ddr);
2295 stmt_vec_info stmtinfo_a = vinfo_for_stmt (vect_dr_stmt (dra));
2296 stmt_vec_info stmtinfo_b = vinfo_for_stmt (vect_dr_stmt (drb));
2298 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2299 return;
2301 if (dra == drb)
2302 return;
2304 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
2305 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
2306 return;
2308 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
2309 || !operand_equal_p (DR_OFFSET (dra), DR_OFFSET (drb), 0)
2310 || !operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2311 return;
2313 /* Two references with distance zero have the same alignment. */
2314 poly_offset_int diff = (wi::to_poly_offset (DR_INIT (dra))
2315 - wi::to_poly_offset (DR_INIT (drb)));
2316 if (maybe_ne (diff, 0))
2318 /* Get the wider of the two alignments. */
2319 unsigned int align_a = (vect_calculate_target_alignment (dra)
2320 / BITS_PER_UNIT);
2321 unsigned int align_b = (vect_calculate_target_alignment (drb)
2322 / BITS_PER_UNIT);
2323 unsigned int max_align = MAX (align_a, align_b);
2325 /* Require the gap to be a multiple of the larger vector alignment. */
2326 if (!multiple_p (diff, max_align))
2327 return;
2330 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2331 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2332 if (dump_enabled_p ())
2334 dump_printf_loc (MSG_NOTE, vect_location,
2335 "accesses have the same alignment: ");
2336 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2337 dump_printf (MSG_NOTE, " and ");
2338 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2339 dump_printf (MSG_NOTE, "\n");
2344 /* Function vect_analyze_data_refs_alignment
2346 Analyze the alignment of the data-references in the loop.
2347 Return FALSE if a data reference is found that cannot be vectorized. */
2349 bool
2350 vect_analyze_data_refs_alignment (loop_vec_info vinfo)
2352 DUMP_VECT_SCOPE ("vect_analyze_data_refs_alignment");
2354 /* Mark groups of data references with same alignment using
2355 data dependence information. */
2356 vec<ddr_p> ddrs = vinfo->ddrs;
2357 struct data_dependence_relation *ddr;
2358 unsigned int i;
2360 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2361 vect_find_same_alignment_drs (ddr);
2363 vec<data_reference_p> datarefs = vinfo->datarefs;
2364 struct data_reference *dr;
2366 vect_record_base_alignments (vinfo);
2367 FOR_EACH_VEC_ELT (datarefs, i, dr)
2369 stmt_vec_info stmt_info = vinfo_for_stmt (vect_dr_stmt (dr));
2370 if (STMT_VINFO_VECTORIZABLE (stmt_info))
2371 vect_compute_data_ref_alignment (dr);
2374 return true;
2378 /* Analyze alignment of DRs of stmts in NODE. */
2380 static bool
2381 vect_slp_analyze_and_verify_node_alignment (slp_tree node)
2383 /* We vectorize from the first scalar stmt in the node unless
2384 the node is permuted in which case we start from the first
2385 element in the group. */
2386 gimple *first_stmt = SLP_TREE_SCALAR_STMTS (node)[0];
2387 data_reference_p first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2388 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
2389 first_stmt = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt));
2391 data_reference_p dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2392 vect_compute_data_ref_alignment (dr);
2393 /* For creating the data-ref pointer we need alignment of the
2394 first element anyway. */
2395 if (dr != first_dr)
2396 vect_compute_data_ref_alignment (first_dr);
2397 if (! verify_data_ref_alignment (dr))
2399 if (dump_enabled_p ())
2400 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2401 "not vectorized: bad data alignment in basic "
2402 "block.\n");
2403 return false;
2406 return true;
2409 /* Function vect_slp_analyze_instance_alignment
2411 Analyze the alignment of the data-references in the SLP instance.
2412 Return FALSE if a data reference is found that cannot be vectorized. */
2414 bool
2415 vect_slp_analyze_and_verify_instance_alignment (slp_instance instance)
2417 DUMP_VECT_SCOPE ("vect_slp_analyze_and_verify_instance_alignment");
2419 slp_tree node;
2420 unsigned i;
2421 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
2422 if (! vect_slp_analyze_and_verify_node_alignment (node))
2423 return false;
2425 node = SLP_INSTANCE_TREE (instance);
2426 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]))
2427 && ! vect_slp_analyze_and_verify_node_alignment
2428 (SLP_INSTANCE_TREE (instance)))
2429 return false;
2431 return true;
2435 /* Analyze groups of accesses: check that DR belongs to a group of
2436 accesses of legal size, step, etc. Detect gaps, single element
2437 interleaving, and other special cases. Set grouped access info.
2438 Collect groups of strided stores for further use in SLP analysis.
2439 Worker for vect_analyze_group_access. */
2441 static bool
2442 vect_analyze_group_access_1 (struct data_reference *dr)
2444 tree step = DR_STEP (dr);
2445 tree scalar_type = TREE_TYPE (DR_REF (dr));
2446 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2447 gimple *stmt = vect_dr_stmt (dr);
2448 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2449 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2450 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2451 HOST_WIDE_INT dr_step = -1;
2452 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2453 bool slp_impossible = false;
2455 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2456 size of the interleaving group (including gaps). */
2457 if (tree_fits_shwi_p (step))
2459 dr_step = tree_to_shwi (step);
2460 /* Check that STEP is a multiple of type size. Otherwise there is
2461 a non-element-sized gap at the end of the group which we
2462 cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE.
2463 ??? As we can handle non-constant step fine here we should
2464 simply remove uses of DR_GROUP_GAP between the last and first
2465 element and instead rely on DR_STEP. DR_GROUP_SIZE then would
2466 simply not include that gap. */
2467 if ((dr_step % type_size) != 0)
2469 if (dump_enabled_p ())
2471 dump_printf_loc (MSG_NOTE, vect_location,
2472 "Step ");
2473 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2474 dump_printf (MSG_NOTE,
2475 " is not a multiple of the element size for ");
2476 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2477 dump_printf (MSG_NOTE, "\n");
2479 return false;
2481 groupsize = absu_hwi (dr_step) / type_size;
2483 else
2484 groupsize = 0;
2486 /* Not consecutive access is possible only if it is a part of interleaving. */
2487 if (!DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2489 /* Check if it this DR is a part of interleaving, and is a single
2490 element of the group that is accessed in the loop. */
2492 /* Gaps are supported only for loads. STEP must be a multiple of the type
2493 size. */
2494 if (DR_IS_READ (dr)
2495 && (dr_step % type_size) == 0
2496 && groupsize > 0)
2498 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2499 DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2500 DR_GROUP_GAP (stmt_info) = groupsize - 1;
2501 if (dump_enabled_p ())
2503 dump_printf_loc (MSG_NOTE, vect_location,
2504 "Detected single element interleaving ");
2505 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2506 dump_printf (MSG_NOTE, " step ");
2507 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2508 dump_printf (MSG_NOTE, "\n");
2511 return true;
2514 if (dump_enabled_p ())
2516 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2517 "not consecutive access ");
2518 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2521 if (bb_vinfo)
2523 /* Mark the statement as unvectorizable. */
2524 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (vect_dr_stmt (dr))) = false;
2525 return true;
2528 dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
2529 STMT_VINFO_STRIDED_P (stmt_info) = true;
2530 return true;
2533 if (DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2535 /* First stmt in the interleaving chain. Check the chain. */
2536 gimple *next = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2537 struct data_reference *data_ref = dr;
2538 unsigned int count = 1;
2539 tree prev_init = DR_INIT (data_ref);
2540 gimple *prev = stmt;
2541 HOST_WIDE_INT diff, gaps = 0;
2543 /* By construction, all group members have INTEGER_CST DR_INITs. */
2544 while (next)
2546 /* Skip same data-refs. In case that two or more stmts share
2547 data-ref (supported only for loads), we vectorize only the first
2548 stmt, and the rest get their vectorized loads from the first
2549 one. */
2550 if (!tree_int_cst_compare (DR_INIT (data_ref),
2551 DR_INIT (STMT_VINFO_DATA_REF (
2552 vinfo_for_stmt (next)))))
2554 if (DR_IS_WRITE (data_ref))
2556 if (dump_enabled_p ())
2557 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2558 "Two store stmts share the same dr.\n");
2559 return false;
2562 if (dump_enabled_p ())
2563 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2564 "Two or more load stmts share the same dr.\n");
2566 /* For load use the same data-ref load. */
2567 DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2569 prev = next;
2570 next = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2571 continue;
2574 prev = next;
2575 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2577 /* All group members have the same STEP by construction. */
2578 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2580 /* Check that the distance between two accesses is equal to the type
2581 size. Otherwise, we have gaps. */
2582 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2583 - TREE_INT_CST_LOW (prev_init)) / type_size;
2584 if (diff != 1)
2586 /* FORNOW: SLP of accesses with gaps is not supported. */
2587 slp_impossible = true;
2588 if (DR_IS_WRITE (data_ref))
2590 if (dump_enabled_p ())
2591 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2592 "interleaved store with gaps\n");
2593 return false;
2596 gaps += diff - 1;
2599 last_accessed_element += diff;
2601 /* Store the gap from the previous member of the group. If there is no
2602 gap in the access, DR_GROUP_GAP is always 1. */
2603 DR_GROUP_GAP (vinfo_for_stmt (next)) = diff;
2605 prev_init = DR_INIT (data_ref);
2606 next = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2607 /* Count the number of data-refs in the chain. */
2608 count++;
2611 if (groupsize == 0)
2612 groupsize = count + gaps;
2614 /* This could be UINT_MAX but as we are generating code in a very
2615 inefficient way we have to cap earlier. See PR78699 for example. */
2616 if (groupsize > 4096)
2618 if (dump_enabled_p ())
2619 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2620 "group is too large\n");
2621 return false;
2624 /* Check that the size of the interleaving is equal to count for stores,
2625 i.e., that there are no gaps. */
2626 if (groupsize != count
2627 && !DR_IS_READ (dr))
2629 if (dump_enabled_p ())
2630 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2631 "interleaved store with gaps\n");
2632 return false;
2635 /* If there is a gap after the last load in the group it is the
2636 difference between the groupsize and the last accessed
2637 element.
2638 When there is no gap, this difference should be 0. */
2639 DR_GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - last_accessed_element;
2641 DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2642 if (dump_enabled_p ())
2644 dump_printf_loc (MSG_NOTE, vect_location,
2645 "Detected interleaving ");
2646 if (DR_IS_READ (dr))
2647 dump_printf (MSG_NOTE, "load ");
2648 else
2649 dump_printf (MSG_NOTE, "store ");
2650 dump_printf (MSG_NOTE, "of size %u starting with ",
2651 (unsigned)groupsize);
2652 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
2653 if (DR_GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
2654 dump_printf_loc (MSG_NOTE, vect_location,
2655 "There is a gap of %u elements after the group\n",
2656 DR_GROUP_GAP (vinfo_for_stmt (stmt)));
2659 /* SLP: create an SLP data structure for every interleaving group of
2660 stores for further analysis in vect_analyse_slp. */
2661 if (DR_IS_WRITE (dr) && !slp_impossible)
2663 if (loop_vinfo)
2664 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2665 if (bb_vinfo)
2666 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2670 return true;
2673 /* Analyze groups of accesses: check that DR belongs to a group of
2674 accesses of legal size, step, etc. Detect gaps, single element
2675 interleaving, and other special cases. Set grouped access info.
2676 Collect groups of strided stores for further use in SLP analysis. */
2678 static bool
2679 vect_analyze_group_access (struct data_reference *dr)
2681 if (!vect_analyze_group_access_1 (dr))
2683 /* Dissolve the group if present. */
2684 gimple *next;
2685 gimple *stmt = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (vect_dr_stmt (dr)));
2686 while (stmt)
2688 stmt_vec_info vinfo = vinfo_for_stmt (stmt);
2689 next = DR_GROUP_NEXT_ELEMENT (vinfo);
2690 DR_GROUP_FIRST_ELEMENT (vinfo) = NULL;
2691 DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
2692 stmt = next;
2694 return false;
2696 return true;
2699 /* Analyze the access pattern of the data-reference DR.
2700 In case of non-consecutive accesses call vect_analyze_group_access() to
2701 analyze groups of accesses. */
2703 static bool
2704 vect_analyze_data_ref_access (struct data_reference *dr)
2706 tree step = DR_STEP (dr);
2707 tree scalar_type = TREE_TYPE (DR_REF (dr));
2708 gimple *stmt = vect_dr_stmt (dr);
2709 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2710 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2711 struct loop *loop = NULL;
2713 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
2714 return true;
2716 if (loop_vinfo)
2717 loop = LOOP_VINFO_LOOP (loop_vinfo);
2719 if (loop_vinfo && !step)
2721 if (dump_enabled_p ())
2722 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2723 "bad data-ref access in loop\n");
2724 return false;
2727 /* Allow loads with zero step in inner-loop vectorization. */
2728 if (loop_vinfo && integer_zerop (step))
2730 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2731 if (!nested_in_vect_loop_p (loop, stmt))
2732 return DR_IS_READ (dr);
2733 /* Allow references with zero step for outer loops marked
2734 with pragma omp simd only - it guarantees absence of
2735 loop-carried dependencies between inner loop iterations. */
2736 if (loop->safelen < 2)
2738 if (dump_enabled_p ())
2739 dump_printf_loc (MSG_NOTE, vect_location,
2740 "zero step in inner loop of nest\n");
2741 return false;
2745 if (loop && nested_in_vect_loop_p (loop, stmt))
2747 /* Interleaved accesses are not yet supported within outer-loop
2748 vectorization for references in the inner-loop. */
2749 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2751 /* For the rest of the analysis we use the outer-loop step. */
2752 step = STMT_VINFO_DR_STEP (stmt_info);
2753 if (integer_zerop (step))
2755 if (dump_enabled_p ())
2756 dump_printf_loc (MSG_NOTE, vect_location,
2757 "zero step in outer loop.\n");
2758 return DR_IS_READ (dr);
2762 /* Consecutive? */
2763 if (TREE_CODE (step) == INTEGER_CST)
2765 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2766 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2767 || (dr_step < 0
2768 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2770 /* Mark that it is not interleaving. */
2771 DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2772 return true;
2776 if (loop && nested_in_vect_loop_p (loop, stmt))
2778 if (dump_enabled_p ())
2779 dump_printf_loc (MSG_NOTE, vect_location,
2780 "grouped access in outer loop.\n");
2781 return false;
2785 /* Assume this is a DR handled by non-constant strided load case. */
2786 if (TREE_CODE (step) != INTEGER_CST)
2787 return (STMT_VINFO_STRIDED_P (stmt_info)
2788 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2789 || vect_analyze_group_access (dr)));
2791 /* Not consecutive access - check if it's a part of interleaving group. */
2792 return vect_analyze_group_access (dr);
2795 /* Compare two data-references DRA and DRB to group them into chunks
2796 suitable for grouping. */
2798 static int
2799 dr_group_sort_cmp (const void *dra_, const void *drb_)
2801 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2802 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2803 int cmp;
2805 /* Stabilize sort. */
2806 if (dra == drb)
2807 return 0;
2809 /* DRs in different loops never belong to the same group. */
2810 loop_p loopa = gimple_bb (DR_STMT (dra))->loop_father;
2811 loop_p loopb = gimple_bb (DR_STMT (drb))->loop_father;
2812 if (loopa != loopb)
2813 return loopa->num < loopb->num ? -1 : 1;
2815 /* Ordering of DRs according to base. */
2816 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2817 DR_BASE_ADDRESS (drb));
2818 if (cmp != 0)
2819 return cmp;
2821 /* And according to DR_OFFSET. */
2822 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2823 if (cmp != 0)
2824 return cmp;
2826 /* Put reads before writes. */
2827 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2828 return DR_IS_READ (dra) ? -1 : 1;
2830 /* Then sort after access size. */
2831 cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2832 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2833 if (cmp != 0)
2834 return cmp;
2836 /* And after step. */
2837 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
2838 if (cmp != 0)
2839 return cmp;
2841 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2842 cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
2843 if (cmp == 0)
2844 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2845 return cmp;
2848 /* If OP is the result of a conversion, return the unconverted value,
2849 otherwise return null. */
2851 static tree
2852 strip_conversion (tree op)
2854 if (TREE_CODE (op) != SSA_NAME)
2855 return NULL_TREE;
2856 gimple *stmt = SSA_NAME_DEF_STMT (op);
2857 if (!is_gimple_assign (stmt)
2858 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
2859 return NULL_TREE;
2860 return gimple_assign_rhs1 (stmt);
2863 /* Return true if vectorizable_* routines can handle statements STMT1
2864 and STMT2 being in a single group. */
2866 static bool
2867 can_group_stmts_p (gimple *stmt1, gimple *stmt2)
2869 if (gimple_assign_single_p (stmt1))
2870 return gimple_assign_single_p (stmt2);
2872 if (is_gimple_call (stmt1) && gimple_call_internal_p (stmt1))
2874 /* Check for two masked loads or two masked stores. */
2875 if (!is_gimple_call (stmt2) || !gimple_call_internal_p (stmt2))
2876 return false;
2877 internal_fn ifn = gimple_call_internal_fn (stmt1);
2878 if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE)
2879 return false;
2880 if (ifn != gimple_call_internal_fn (stmt2))
2881 return false;
2883 /* Check that the masks are the same. Cope with casts of masks,
2884 like those created by build_mask_conversion. */
2885 tree mask1 = gimple_call_arg (stmt1, 2);
2886 tree mask2 = gimple_call_arg (stmt2, 2);
2887 if (!operand_equal_p (mask1, mask2, 0))
2889 mask1 = strip_conversion (mask1);
2890 if (!mask1)
2891 return false;
2892 mask2 = strip_conversion (mask2);
2893 if (!mask2)
2894 return false;
2895 if (!operand_equal_p (mask1, mask2, 0))
2896 return false;
2898 return true;
2901 return false;
2904 /* Function vect_analyze_data_ref_accesses.
2906 Analyze the access pattern of all the data references in the loop.
2908 FORNOW: the only access pattern that is considered vectorizable is a
2909 simple step 1 (consecutive) access.
2911 FORNOW: handle only arrays and pointer accesses. */
2913 bool
2914 vect_analyze_data_ref_accesses (vec_info *vinfo)
2916 unsigned int i;
2917 vec<data_reference_p> datarefs = vinfo->datarefs;
2918 struct data_reference *dr;
2920 DUMP_VECT_SCOPE ("vect_analyze_data_ref_accesses");
2922 if (datarefs.is_empty ())
2923 return true;
2925 /* Sort the array of datarefs to make building the interleaving chains
2926 linear. Don't modify the original vector's order, it is needed for
2927 determining what dependencies are reversed. */
2928 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2929 datarefs_copy.qsort (dr_group_sort_cmp);
2931 /* Build the interleaving chains. */
2932 for (i = 0; i < datarefs_copy.length () - 1;)
2934 data_reference_p dra = datarefs_copy[i];
2935 stmt_vec_info stmtinfo_a = vinfo_for_stmt (vect_dr_stmt (dra));
2936 stmt_vec_info lastinfo = NULL;
2937 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
2938 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a))
2940 ++i;
2941 continue;
2943 for (i = i + 1; i < datarefs_copy.length (); ++i)
2945 data_reference_p drb = datarefs_copy[i];
2946 stmt_vec_info stmtinfo_b = vinfo_for_stmt (vect_dr_stmt (drb));
2947 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b)
2948 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
2949 break;
2951 /* ??? Imperfect sorting (non-compatible types, non-modulo
2952 accesses, same accesses) can lead to a group to be artificially
2953 split here as we don't just skip over those. If it really
2954 matters we can push those to a worklist and re-iterate
2955 over them. The we can just skip ahead to the next DR here. */
2957 /* DRs in a different loop should not be put into the same
2958 interleaving group. */
2959 if (gimple_bb (DR_STMT (dra))->loop_father
2960 != gimple_bb (DR_STMT (drb))->loop_father)
2961 break;
2963 /* Check that the data-refs have same first location (except init)
2964 and they are both either store or load (not load and store,
2965 not masked loads or stores). */
2966 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2967 || data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2968 DR_BASE_ADDRESS (drb)) != 0
2969 || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
2970 || !can_group_stmts_p (vect_dr_stmt (dra), vect_dr_stmt (drb)))
2971 break;
2973 /* Check that the data-refs have the same constant size. */
2974 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2975 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2976 if (!tree_fits_uhwi_p (sza)
2977 || !tree_fits_uhwi_p (szb)
2978 || !tree_int_cst_equal (sza, szb))
2979 break;
2981 /* Check that the data-refs have the same step. */
2982 if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
2983 break;
2985 /* Check the types are compatible.
2986 ??? We don't distinguish this during sorting. */
2987 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2988 TREE_TYPE (DR_REF (drb))))
2989 break;
2991 /* Check that the DR_INITs are compile-time constants. */
2992 if (TREE_CODE (DR_INIT (dra)) != INTEGER_CST
2993 || TREE_CODE (DR_INIT (drb)) != INTEGER_CST)
2994 break;
2996 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2997 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2998 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2999 HOST_WIDE_INT init_prev
3000 = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]));
3001 gcc_assert (init_a <= init_b
3002 && init_a <= init_prev
3003 && init_prev <= init_b);
3005 /* Do not place the same access in the interleaving chain twice. */
3006 if (init_b == init_prev)
3008 gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]))
3009 < gimple_uid (DR_STMT (drb)));
3010 /* ??? For now we simply "drop" the later reference which is
3011 otherwise the same rather than finishing off this group.
3012 In the end we'd want to re-process duplicates forming
3013 multiple groups from the refs, likely by just collecting
3014 all candidates (including duplicates and split points
3015 below) in a vector and then process them together. */
3016 continue;
3019 /* If init_b == init_a + the size of the type * k, we have an
3020 interleaving, and DRA is accessed before DRB. */
3021 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
3022 if (type_size_a == 0
3023 || (init_b - init_a) % type_size_a != 0)
3024 break;
3026 /* If we have a store, the accesses are adjacent. This splits
3027 groups into chunks we support (we don't support vectorization
3028 of stores with gaps). */
3029 if (!DR_IS_READ (dra) && init_b - init_prev != type_size_a)
3030 break;
3032 /* If the step (if not zero or non-constant) is greater than the
3033 difference between data-refs' inits this splits groups into
3034 suitable sizes. */
3035 if (tree_fits_shwi_p (DR_STEP (dra)))
3037 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
3038 if (step != 0 && step <= (init_b - init_a))
3039 break;
3042 if (dump_enabled_p ())
3044 dump_printf_loc (MSG_NOTE, vect_location,
3045 "Detected interleaving ");
3046 if (DR_IS_READ (dra))
3047 dump_printf (MSG_NOTE, "load ");
3048 else
3049 dump_printf (MSG_NOTE, "store ");
3050 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
3051 dump_printf (MSG_NOTE, " and ");
3052 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
3053 dump_printf (MSG_NOTE, "\n");
3056 /* Link the found element into the group list. */
3057 if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
3059 DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = vect_dr_stmt (dra);
3060 lastinfo = stmtinfo_a;
3062 DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = vect_dr_stmt (dra);
3063 DR_GROUP_NEXT_ELEMENT (lastinfo) = vect_dr_stmt (drb);
3064 lastinfo = stmtinfo_b;
3068 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
3069 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (vect_dr_stmt (dr)))
3070 && !vect_analyze_data_ref_access (dr))
3072 if (dump_enabled_p ())
3073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3074 "not vectorized: complicated access pattern.\n");
3076 if (is_a <bb_vec_info> (vinfo))
3078 /* Mark the statement as not vectorizable. */
3079 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (vect_dr_stmt (dr))) = false;
3080 continue;
3082 else
3084 datarefs_copy.release ();
3085 return false;
3089 datarefs_copy.release ();
3090 return true;
3093 /* Function vect_vfa_segment_size.
3095 Input:
3096 DR: The data reference.
3097 LENGTH_FACTOR: segment length to consider.
3099 Return a value suitable for the dr_with_seg_len::seg_len field.
3100 This is the "distance travelled" by the pointer from the first
3101 iteration in the segment to the last. Note that it does not include
3102 the size of the access; in effect it only describes the first byte. */
3104 static tree
3105 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
3107 length_factor = size_binop (MINUS_EXPR,
3108 fold_convert (sizetype, length_factor),
3109 size_one_node);
3110 return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr)),
3111 length_factor);
3114 /* Return a value that, when added to abs (vect_vfa_segment_size (dr)),
3115 gives the worst-case number of bytes covered by the segment. */
3117 static unsigned HOST_WIDE_INT
3118 vect_vfa_access_size (data_reference *dr)
3120 stmt_vec_info stmt_vinfo = vinfo_for_stmt (vect_dr_stmt (dr));
3121 tree ref_type = TREE_TYPE (DR_REF (dr));
3122 unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type));
3123 unsigned HOST_WIDE_INT access_size = ref_size;
3124 if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo))
3126 gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == vect_dr_stmt (dr));
3127 access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo);
3129 if (STMT_VINFO_VEC_STMT (stmt_vinfo)
3130 && (vect_supportable_dr_alignment (dr, false)
3131 == dr_explicit_realign_optimized))
3133 /* We might access a full vector's worth. */
3134 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3135 access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size;
3137 return access_size;
3140 /* Get the minimum alignment for all the scalar accesses that DR describes. */
3142 static unsigned int
3143 vect_vfa_align (const data_reference *dr)
3145 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
3148 /* Function vect_no_alias_p.
3150 Given data references A and B with equal base and offset, see whether
3151 the alias relation can be decided at compilation time. Return 1 if
3152 it can and the references alias, 0 if it can and the references do
3153 not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A,
3154 SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent
3155 of dr_with_seg_len::{seg_len,access_size} for A and B. */
3157 static int
3158 vect_compile_time_alias (struct data_reference *a, struct data_reference *b,
3159 tree segment_length_a, tree segment_length_b,
3160 unsigned HOST_WIDE_INT access_size_a,
3161 unsigned HOST_WIDE_INT access_size_b)
3163 poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a));
3164 poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b));
3165 poly_uint64 const_length_a;
3166 poly_uint64 const_length_b;
3168 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
3169 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
3170 [a, a+12) */
3171 if (tree_int_cst_compare (DR_STEP (a), size_zero_node) < 0)
3173 const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi ();
3174 offset_a = (offset_a + access_size_a) - const_length_a;
3176 else
3177 const_length_a = tree_to_poly_uint64 (segment_length_a);
3178 if (tree_int_cst_compare (DR_STEP (b), size_zero_node) < 0)
3180 const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi ();
3181 offset_b = (offset_b + access_size_b) - const_length_b;
3183 else
3184 const_length_b = tree_to_poly_uint64 (segment_length_b);
3186 const_length_a += access_size_a;
3187 const_length_b += access_size_b;
3189 if (ranges_known_overlap_p (offset_a, const_length_a,
3190 offset_b, const_length_b))
3191 return 1;
3193 if (!ranges_maybe_overlap_p (offset_a, const_length_a,
3194 offset_b, const_length_b))
3195 return 0;
3197 return -1;
3200 /* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
3201 in DDR is >= VF. */
3203 static bool
3204 dependence_distance_ge_vf (data_dependence_relation *ddr,
3205 unsigned int loop_depth, poly_uint64 vf)
3207 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
3208 || DDR_NUM_DIST_VECTS (ddr) == 0)
3209 return false;
3211 /* If the dependence is exact, we should have limited the VF instead. */
3212 gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
3214 unsigned int i;
3215 lambda_vector dist_v;
3216 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3218 HOST_WIDE_INT dist = dist_v[loop_depth];
3219 if (dist != 0
3220 && !(dist > 0 && DDR_REVERSED_P (ddr))
3221 && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf))
3222 return false;
3225 if (dump_enabled_p ())
3227 dump_printf_loc (MSG_NOTE, vect_location,
3228 "dependence distance between ");
3229 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
3230 dump_printf (MSG_NOTE, " and ");
3231 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
3232 dump_printf (MSG_NOTE, " is >= VF\n");
3235 return true;
3238 /* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */
3240 static void
3241 dump_lower_bound (dump_flags_t dump_kind, const vec_lower_bound &lower_bound)
3243 dump_printf (dump_kind, "%s (", lower_bound.unsigned_p ? "unsigned" : "abs");
3244 dump_generic_expr (dump_kind, TDF_SLIM, lower_bound.expr);
3245 dump_printf (dump_kind, ") >= ");
3246 dump_dec (dump_kind, lower_bound.min_value);
3249 /* Record that the vectorized loop requires the vec_lower_bound described
3250 by EXPR, UNSIGNED_P and MIN_VALUE. */
3252 static void
3253 vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p,
3254 poly_uint64 min_value)
3256 vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3257 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3258 if (operand_equal_p (lower_bounds[i].expr, expr, 0))
3260 unsigned_p &= lower_bounds[i].unsigned_p;
3261 min_value = upper_bound (lower_bounds[i].min_value, min_value);
3262 if (lower_bounds[i].unsigned_p != unsigned_p
3263 || maybe_lt (lower_bounds[i].min_value, min_value))
3265 lower_bounds[i].unsigned_p = unsigned_p;
3266 lower_bounds[i].min_value = min_value;
3267 if (dump_enabled_p ())
3269 dump_printf_loc (MSG_NOTE, vect_location,
3270 "updating run-time check to ");
3271 dump_lower_bound (MSG_NOTE, lower_bounds[i]);
3272 dump_printf (MSG_NOTE, "\n");
3275 return;
3278 vec_lower_bound lower_bound (expr, unsigned_p, min_value);
3279 if (dump_enabled_p ())
3281 dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that ");
3282 dump_lower_bound (MSG_NOTE, lower_bound);
3283 dump_printf (MSG_NOTE, "\n");
3285 LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound);
3288 /* Return true if it's unlikely that the step of the vectorized form of DR
3289 will span fewer than GAP bytes. */
3291 static bool
3292 vect_small_gap_p (loop_vec_info loop_vinfo, data_reference *dr, poly_int64 gap)
3294 stmt_vec_info stmt_info = vinfo_for_stmt (vect_dr_stmt (dr));
3295 HOST_WIDE_INT count
3296 = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
3297 if (DR_GROUP_FIRST_ELEMENT (stmt_info))
3298 count *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (stmt_info)));
3299 return estimated_poly_value (gap) <= count * vect_get_scalar_dr_size (dr);
3302 /* Return true if we know that there is no alias between DR_A and DR_B
3303 when abs (DR_STEP (DR_A)) >= N for some N. When returning true, set
3304 *LOWER_BOUND_OUT to this N. */
3306 static bool
3307 vectorizable_with_step_bound_p (data_reference *dr_a, data_reference *dr_b,
3308 poly_uint64 *lower_bound_out)
3310 /* Check that there is a constant gap of known sign between DR_A
3311 and DR_B. */
3312 poly_int64 init_a, init_b;
3313 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0)
3314 || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0)
3315 || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)
3316 || !poly_int_tree_p (DR_INIT (dr_a), &init_a)
3317 || !poly_int_tree_p (DR_INIT (dr_b), &init_b)
3318 || !ordered_p (init_a, init_b))
3319 return false;
3321 /* Sort DR_A and DR_B by the address they access. */
3322 if (maybe_lt (init_b, init_a))
3324 std::swap (init_a, init_b);
3325 std::swap (dr_a, dr_b);
3328 /* If the two accesses could be dependent within a scalar iteration,
3329 make sure that we'd retain their order. */
3330 if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_a), init_b)
3331 && !vect_preserves_scalar_order_p (vect_dr_stmt (dr_a),
3332 vect_dr_stmt (dr_b)))
3333 return false;
3335 /* There is no alias if abs (DR_STEP) is greater than or equal to
3336 the bytes spanned by the combination of the two accesses. */
3337 *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_b) - init_a;
3338 return true;
3341 /* Function vect_prune_runtime_alias_test_list.
3343 Prune a list of ddrs to be tested at run-time by versioning for alias.
3344 Merge several alias checks into one if possible.
3345 Return FALSE if resulting list of ddrs is longer then allowed by
3346 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
3348 bool
3349 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
3351 typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
3352 hash_set <tree_pair_hash> compared_objects;
3354 vec<ddr_p> may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
3355 vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
3356 = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3357 vec<vec_object_pair> &check_unequal_addrs
3358 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3359 poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3360 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
3362 ddr_p ddr;
3363 unsigned int i;
3364 tree length_factor;
3366 DUMP_VECT_SCOPE ("vect_prune_runtime_alias_test_list");
3368 /* Step values are irrelevant for aliasing if the number of vector
3369 iterations is equal to the number of scalar iterations (which can
3370 happen for fully-SLP loops). */
3371 bool ignore_step_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U);
3373 if (!ignore_step_p)
3375 /* Convert the checks for nonzero steps into bound tests. */
3376 tree value;
3377 FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value)
3378 vect_check_lower_bound (loop_vinfo, value, true, 1);
3381 if (may_alias_ddrs.is_empty ())
3382 return true;
3384 comp_alias_ddrs.create (may_alias_ddrs.length ());
3386 unsigned int loop_depth
3387 = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
3388 LOOP_VINFO_LOOP_NEST (loop_vinfo));
3390 /* First, we collect all data ref pairs for aliasing checks. */
3391 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
3393 int comp_res;
3394 poly_uint64 lower_bound;
3395 struct data_reference *dr_a, *dr_b;
3396 gimple *dr_group_first_a, *dr_group_first_b;
3397 tree segment_length_a, segment_length_b;
3398 unsigned HOST_WIDE_INT access_size_a, access_size_b;
3399 unsigned int align_a, align_b;
3400 gimple *stmt_a, *stmt_b;
3402 /* Ignore the alias if the VF we chose ended up being no greater
3403 than the dependence distance. */
3404 if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
3405 continue;
3407 if (DDR_OBJECT_A (ddr))
3409 vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
3410 if (!compared_objects.add (new_pair))
3412 if (dump_enabled_p ())
3414 dump_printf_loc (MSG_NOTE, vect_location, "checking that ");
3415 dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.first);
3416 dump_printf (MSG_NOTE, " and ");
3417 dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.second);
3418 dump_printf (MSG_NOTE, " have different addresses\n");
3420 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
3422 continue;
3425 dr_a = DDR_A (ddr);
3426 stmt_a = vect_dr_stmt (DDR_A (ddr));
3428 dr_b = DDR_B (ddr);
3429 stmt_b = vect_dr_stmt (DDR_B (ddr));
3431 /* Skip the pair if inter-iteration dependencies are irrelevant
3432 and intra-iteration dependencies are guaranteed to be honored. */
3433 if (ignore_step_p
3434 && (vect_preserves_scalar_order_p (stmt_a, stmt_b)
3435 || vectorizable_with_step_bound_p (dr_a, dr_b, &lower_bound)))
3437 if (dump_enabled_p ())
3439 dump_printf_loc (MSG_NOTE, vect_location,
3440 "no need for alias check between ");
3441 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
3442 dump_printf (MSG_NOTE, " and ");
3443 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
3444 dump_printf (MSG_NOTE, " when VF is 1\n");
3446 continue;
3449 /* See whether we can handle the alias using a bounds check on
3450 the step, and whether that's likely to be the best approach.
3451 (It might not be, for example, if the minimum step is much larger
3452 than the number of bytes handled by one vector iteration.) */
3453 if (!ignore_step_p
3454 && TREE_CODE (DR_STEP (dr_a)) != INTEGER_CST
3455 && vectorizable_with_step_bound_p (dr_a, dr_b, &lower_bound)
3456 && (vect_small_gap_p (loop_vinfo, dr_a, lower_bound)
3457 || vect_small_gap_p (loop_vinfo, dr_b, lower_bound)))
3459 bool unsigned_p = dr_known_forward_stride_p (dr_a);
3460 if (dump_enabled_p ())
3462 dump_printf_loc (MSG_NOTE, vect_location, "no alias between ");
3463 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
3464 dump_printf (MSG_NOTE, " and ");
3465 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
3466 dump_printf (MSG_NOTE, " when the step ");
3467 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_STEP (dr_a));
3468 dump_printf (MSG_NOTE, " is outside ");
3469 if (unsigned_p)
3470 dump_printf (MSG_NOTE, "[0");
3471 else
3473 dump_printf (MSG_NOTE, "(");
3474 dump_dec (MSG_NOTE, poly_int64 (-lower_bound));
3476 dump_printf (MSG_NOTE, ", ");
3477 dump_dec (MSG_NOTE, lower_bound);
3478 dump_printf (MSG_NOTE, ")\n");
3480 vect_check_lower_bound (loop_vinfo, DR_STEP (dr_a), unsigned_p,
3481 lower_bound);
3482 continue;
3485 dr_group_first_a = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
3486 if (dr_group_first_a)
3488 stmt_a = dr_group_first_a;
3489 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
3492 dr_group_first_b = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
3493 if (dr_group_first_b)
3495 stmt_b = dr_group_first_b;
3496 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
3499 if (ignore_step_p)
3501 segment_length_a = size_zero_node;
3502 segment_length_b = size_zero_node;
3504 else
3506 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
3507 length_factor = scalar_loop_iters;
3508 else
3509 length_factor = size_int (vect_factor);
3510 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
3511 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
3513 access_size_a = vect_vfa_access_size (dr_a);
3514 access_size_b = vect_vfa_access_size (dr_b);
3515 align_a = vect_vfa_align (dr_a);
3516 align_b = vect_vfa_align (dr_b);
3518 comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
3519 DR_BASE_ADDRESS (dr_b));
3520 if (comp_res == 0)
3521 comp_res = data_ref_compare_tree (DR_OFFSET (dr_a),
3522 DR_OFFSET (dr_b));
3524 /* See whether the alias is known at compilation time. */
3525 if (comp_res == 0
3526 && TREE_CODE (DR_STEP (dr_a)) == INTEGER_CST
3527 && TREE_CODE (DR_STEP (dr_b)) == INTEGER_CST
3528 && poly_int_tree_p (segment_length_a)
3529 && poly_int_tree_p (segment_length_b))
3531 int res = vect_compile_time_alias (dr_a, dr_b,
3532 segment_length_a,
3533 segment_length_b,
3534 access_size_a,
3535 access_size_b);
3536 if (res >= 0 && dump_enabled_p ())
3538 dump_printf_loc (MSG_NOTE, vect_location,
3539 "can tell at compile time that ");
3540 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
3541 dump_printf (MSG_NOTE, " and ");
3542 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
3543 if (res == 0)
3544 dump_printf (MSG_NOTE, " do not alias\n");
3545 else
3546 dump_printf (MSG_NOTE, " alias\n");
3549 if (res == 0)
3550 continue;
3552 if (res == 1)
3554 if (dump_enabled_p ())
3555 dump_printf_loc (MSG_NOTE, vect_location,
3556 "not vectorized: compilation time alias.\n");
3557 return false;
3561 dr_with_seg_len_pair_t dr_with_seg_len_pair
3562 (dr_with_seg_len (dr_a, segment_length_a, access_size_a, align_a),
3563 dr_with_seg_len (dr_b, segment_length_b, access_size_b, align_b));
3565 /* Canonicalize pairs by sorting the two DR members. */
3566 if (comp_res > 0)
3567 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
3569 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
3572 prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor);
3574 unsigned int count = (comp_alias_ddrs.length ()
3575 + check_unequal_addrs.length ());
3577 dump_printf_loc (MSG_NOTE, vect_location,
3578 "improved number of alias checks from %d to %d\n",
3579 may_alias_ddrs.length (), count);
3580 if ((int) count > PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
3582 if (dump_enabled_p ())
3583 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3584 "number of versioning for alias "
3585 "run-time tests exceeds %d "
3586 "(--param vect-max-version-for-alias-checks)\n",
3587 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
3588 return false;
3591 return true;
3594 /* Check whether we can use an internal function for a gather load
3595 or scatter store. READ_P is true for loads and false for stores.
3596 MASKED_P is true if the load or store is conditional. MEMORY_TYPE is
3597 the type of the memory elements being loaded or stored. OFFSET_BITS
3598 is the number of bits in each scalar offset and OFFSET_SIGN is the
3599 sign of the offset. SCALE is the amount by which the offset should
3600 be multiplied *after* it has been converted to address width.
3602 Return true if the function is supported, storing the function
3603 id in *IFN_OUT and the type of a vector element in *ELEMENT_TYPE_OUT. */
3605 bool
3606 vect_gather_scatter_fn_p (bool read_p, bool masked_p, tree vectype,
3607 tree memory_type, unsigned int offset_bits,
3608 signop offset_sign, int scale,
3609 internal_fn *ifn_out, tree *element_type_out)
3611 unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type));
3612 unsigned int element_bits = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (vectype)));
3613 if (offset_bits > element_bits)
3614 /* Internal functions require the offset to be the same width as
3615 the vector elements. We can extend narrower offsets, but it isn't
3616 safe to truncate wider offsets. */
3617 return false;
3619 if (element_bits != memory_bits)
3620 /* For now the vector elements must be the same width as the
3621 memory elements. */
3622 return false;
3624 /* Work out which function we need. */
3625 internal_fn ifn;
3626 if (read_p)
3627 ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD;
3628 else
3629 ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE;
3631 /* Test whether the target supports this combination. */
3632 if (!internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type,
3633 offset_sign, scale))
3634 return false;
3636 *ifn_out = ifn;
3637 *element_type_out = TREE_TYPE (vectype);
3638 return true;
3641 /* CALL is a call to an internal gather load or scatter store function.
3642 Describe the operation in INFO. */
3644 static void
3645 vect_describe_gather_scatter_call (gcall *call, gather_scatter_info *info)
3647 stmt_vec_info stmt_info = vinfo_for_stmt (call);
3648 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3649 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3651 info->ifn = gimple_call_internal_fn (call);
3652 info->decl = NULL_TREE;
3653 info->base = gimple_call_arg (call, 0);
3654 info->offset = gimple_call_arg (call, 1);
3655 info->offset_dt = vect_unknown_def_type;
3656 info->offset_vectype = NULL_TREE;
3657 info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
3658 info->element_type = TREE_TYPE (vectype);
3659 info->memory_type = TREE_TYPE (DR_REF (dr));
3662 /* Return true if a non-affine read or write in STMT is suitable for a
3663 gather load or scatter store. Describe the operation in *INFO if so. */
3665 bool
3666 vect_check_gather_scatter (gimple *stmt, loop_vec_info loop_vinfo,
3667 gather_scatter_info *info)
3669 HOST_WIDE_INT scale = 1;
3670 poly_int64 pbitpos, pbitsize;
3671 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3672 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3673 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3674 tree offtype = NULL_TREE;
3675 tree decl = NULL_TREE, base, off;
3676 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3677 tree memory_type = TREE_TYPE (DR_REF (dr));
3678 machine_mode pmode;
3679 int punsignedp, reversep, pvolatilep = 0;
3680 internal_fn ifn;
3681 tree element_type;
3682 bool masked_p = false;
3684 /* See whether this is already a call to a gather/scatter internal function.
3685 If not, see whether it's a masked load or store. */
3686 gcall *call = dyn_cast <gcall *> (stmt);
3687 if (call && gimple_call_internal_p (call))
3689 ifn = gimple_call_internal_fn (stmt);
3690 if (internal_gather_scatter_fn_p (ifn))
3692 vect_describe_gather_scatter_call (call, info);
3693 return true;
3695 masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE);
3698 /* True if we should aim to use internal functions rather than
3699 built-in functions. */
3700 bool use_ifn_p = (DR_IS_READ (dr)
3701 ? supports_vec_gather_load_p ()
3702 : supports_vec_scatter_store_p ());
3704 base = DR_REF (dr);
3705 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3706 see if we can use the def stmt of the address. */
3707 if (masked_p
3708 && TREE_CODE (base) == MEM_REF
3709 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3710 && integer_zerop (TREE_OPERAND (base, 1))
3711 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3713 gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3714 if (is_gimple_assign (def_stmt)
3715 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3716 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3719 /* The gather and scatter builtins need address of the form
3720 loop_invariant + vector * {1, 2, 4, 8}
3722 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3723 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3724 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3725 multiplications and additions in it. To get a vector, we need
3726 a single SSA_NAME that will be defined in the loop and will
3727 contain everything that is not loop invariant and that can be
3728 vectorized. The following code attempts to find such a preexistng
3729 SSA_NAME OFF and put the loop invariants into a tree BASE
3730 that can be gimplified before the loop. */
3731 base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
3732 &punsignedp, &reversep, &pvolatilep);
3733 gcc_assert (base && !reversep);
3734 poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT);
3736 if (TREE_CODE (base) == MEM_REF)
3738 if (!integer_zerop (TREE_OPERAND (base, 1)))
3740 if (off == NULL_TREE)
3741 off = wide_int_to_tree (sizetype, mem_ref_offset (base));
3742 else
3743 off = size_binop (PLUS_EXPR, off,
3744 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3746 base = TREE_OPERAND (base, 0);
3748 else
3749 base = build_fold_addr_expr (base);
3751 if (off == NULL_TREE)
3752 off = size_zero_node;
3754 /* If base is not loop invariant, either off is 0, then we start with just
3755 the constant offset in the loop invariant BASE and continue with base
3756 as OFF, otherwise give up.
3757 We could handle that case by gimplifying the addition of base + off
3758 into some SSA_NAME and use that as off, but for now punt. */
3759 if (!expr_invariant_in_loop_p (loop, base))
3761 if (!integer_zerop (off))
3762 return false;
3763 off = base;
3764 base = size_int (pbytepos);
3766 /* Otherwise put base + constant offset into the loop invariant BASE
3767 and continue with OFF. */
3768 else
3770 base = fold_convert (sizetype, base);
3771 base = size_binop (PLUS_EXPR, base, size_int (pbytepos));
3774 /* OFF at this point may be either a SSA_NAME or some tree expression
3775 from get_inner_reference. Try to peel off loop invariants from it
3776 into BASE as long as possible. */
3777 STRIP_NOPS (off);
3778 while (offtype == NULL_TREE)
3780 enum tree_code code;
3781 tree op0, op1, add = NULL_TREE;
3783 if (TREE_CODE (off) == SSA_NAME)
3785 gimple *def_stmt = SSA_NAME_DEF_STMT (off);
3787 if (expr_invariant_in_loop_p (loop, off))
3788 return false;
3790 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3791 break;
3793 op0 = gimple_assign_rhs1 (def_stmt);
3794 code = gimple_assign_rhs_code (def_stmt);
3795 op1 = gimple_assign_rhs2 (def_stmt);
3797 else
3799 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3800 return false;
3801 code = TREE_CODE (off);
3802 extract_ops_from_tree (off, &code, &op0, &op1);
3804 switch (code)
3806 case POINTER_PLUS_EXPR:
3807 case PLUS_EXPR:
3808 if (expr_invariant_in_loop_p (loop, op0))
3810 add = op0;
3811 off = op1;
3812 do_add:
3813 add = fold_convert (sizetype, add);
3814 if (scale != 1)
3815 add = size_binop (MULT_EXPR, add, size_int (scale));
3816 base = size_binop (PLUS_EXPR, base, add);
3817 continue;
3819 if (expr_invariant_in_loop_p (loop, op1))
3821 add = op1;
3822 off = op0;
3823 goto do_add;
3825 break;
3826 case MINUS_EXPR:
3827 if (expr_invariant_in_loop_p (loop, op1))
3829 add = fold_convert (sizetype, op1);
3830 add = size_binop (MINUS_EXPR, size_zero_node, add);
3831 off = op0;
3832 goto do_add;
3834 break;
3835 case MULT_EXPR:
3836 if (scale == 1 && tree_fits_shwi_p (op1))
3838 int new_scale = tree_to_shwi (op1);
3839 /* Only treat this as a scaling operation if the target
3840 supports it. */
3841 if (use_ifn_p
3842 && !vect_gather_scatter_fn_p (DR_IS_READ (dr), masked_p,
3843 vectype, memory_type, 1,
3844 TYPE_SIGN (TREE_TYPE (op0)),
3845 new_scale, &ifn,
3846 &element_type))
3847 break;
3848 scale = new_scale;
3849 off = op0;
3850 continue;
3852 break;
3853 case SSA_NAME:
3854 off = op0;
3855 continue;
3856 CASE_CONVERT:
3857 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3858 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3859 break;
3860 if (TYPE_PRECISION (TREE_TYPE (op0))
3861 == TYPE_PRECISION (TREE_TYPE (off)))
3863 off = op0;
3864 continue;
3867 /* The internal functions need the offset to be the same width
3868 as the elements of VECTYPE. Don't include operations that
3869 cast the offset from that width to a different width. */
3870 if (use_ifn_p
3871 && (int_size_in_bytes (TREE_TYPE (vectype))
3872 == int_size_in_bytes (TREE_TYPE (off))))
3873 break;
3875 if (TYPE_PRECISION (TREE_TYPE (op0))
3876 < TYPE_PRECISION (TREE_TYPE (off)))
3878 off = op0;
3879 offtype = TREE_TYPE (off);
3880 STRIP_NOPS (off);
3881 continue;
3883 break;
3884 default:
3885 break;
3887 break;
3890 /* If at the end OFF still isn't a SSA_NAME or isn't
3891 defined in the loop, punt. */
3892 if (TREE_CODE (off) != SSA_NAME
3893 || expr_invariant_in_loop_p (loop, off))
3894 return false;
3896 if (offtype == NULL_TREE)
3897 offtype = TREE_TYPE (off);
3899 if (use_ifn_p)
3901 if (!vect_gather_scatter_fn_p (DR_IS_READ (dr), masked_p, vectype,
3902 memory_type, TYPE_PRECISION (offtype),
3903 TYPE_SIGN (offtype), scale, &ifn,
3904 &element_type))
3905 return false;
3907 else
3909 if (DR_IS_READ (dr))
3911 if (targetm.vectorize.builtin_gather)
3912 decl = targetm.vectorize.builtin_gather (vectype, offtype, scale);
3914 else
3916 if (targetm.vectorize.builtin_scatter)
3917 decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale);
3920 if (!decl)
3921 return false;
3923 ifn = IFN_LAST;
3924 element_type = TREE_TYPE (vectype);
3927 info->ifn = ifn;
3928 info->decl = decl;
3929 info->base = base;
3930 info->offset = off;
3931 info->offset_dt = vect_unknown_def_type;
3932 info->offset_vectype = NULL_TREE;
3933 info->scale = scale;
3934 info->element_type = element_type;
3935 info->memory_type = memory_type;
3936 return true;
3939 /* Find the data references in STMT, analyze them with respect to LOOP and
3940 append them to DATAREFS. Return false if datarefs in this stmt cannot
3941 be handled. */
3943 bool
3944 vect_find_stmt_data_reference (loop_p loop, gimple *stmt,
3945 vec<data_reference_p> *datarefs)
3947 /* We can ignore clobbers for dataref analysis - they are removed during
3948 loop vectorization and BB vectorization checks dependences with a
3949 stmt walk. */
3950 if (gimple_clobber_p (stmt))
3951 return true;
3953 if (gimple_has_volatile_ops (stmt))
3955 if (dump_enabled_p ())
3957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3958 "not vectorized: volatile type ");
3959 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3961 return false;
3964 if (stmt_can_throw_internal (stmt))
3966 if (dump_enabled_p ())
3968 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3969 "not vectorized: statement can throw an "
3970 "exception ");
3971 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3973 return false;
3976 auto_vec<data_reference_p, 2> refs;
3977 if (!find_data_references_in_stmt (loop, stmt, &refs))
3978 return false;
3980 if (refs.is_empty ())
3981 return true;
3983 if (refs.length () > 1)
3985 if (dump_enabled_p ())
3987 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3988 "not vectorized: more than one data ref "
3989 "in stmt: ");
3990 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3992 return false;
3995 if (gcall *call = dyn_cast <gcall *> (stmt))
3996 if (!gimple_call_internal_p (call)
3997 || (gimple_call_internal_fn (call) != IFN_MASK_LOAD
3998 && gimple_call_internal_fn (call) != IFN_MASK_STORE))
4000 if (dump_enabled_p ())
4002 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4003 "not vectorized: dr in a call ");
4004 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4006 return false;
4009 data_reference_p dr = refs.pop ();
4010 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
4011 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
4013 if (dump_enabled_p ())
4015 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4016 "not vectorized: statement is bitfield "
4017 "access ");
4018 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4020 return false;
4023 if (DR_BASE_ADDRESS (dr)
4024 && TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
4026 if (dump_enabled_p ())
4027 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4028 "not vectorized: base addr of dr is a "
4029 "constant\n");
4030 return false;
4033 datarefs->safe_push (dr);
4034 return true;
4037 /* Function vect_analyze_data_refs.
4039 Find all the data references in the loop or basic block.
4041 The general structure of the analysis of data refs in the vectorizer is as
4042 follows:
4043 1- vect_analyze_data_refs(loop/bb): call
4044 compute_data_dependences_for_loop/bb to find and analyze all data-refs
4045 in the loop/bb and their dependences.
4046 2- vect_analyze_dependences(): apply dependence testing using ddrs.
4047 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4048 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
4052 bool
4053 vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf)
4055 struct loop *loop = NULL;
4056 unsigned int i;
4057 struct data_reference *dr;
4058 tree scalar_type;
4060 DUMP_VECT_SCOPE ("vect_analyze_data_refs");
4062 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4063 loop = LOOP_VINFO_LOOP (loop_vinfo);
4065 /* Go through the data-refs, check that the analysis succeeded. Update
4066 pointer from stmt_vec_info struct to DR and vectype. */
4068 vec<data_reference_p> datarefs = vinfo->datarefs;
4069 FOR_EACH_VEC_ELT (datarefs, i, dr)
4071 gimple *stmt;
4072 stmt_vec_info stmt_info;
4073 enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
4074 bool simd_lane_access = false;
4075 poly_uint64 vf;
4077 gcc_assert (DR_REF (dr));
4078 stmt = vect_dr_stmt (dr);
4079 stmt_info = vinfo_for_stmt (stmt);
4081 /* Check that analysis of the data-ref succeeded. */
4082 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
4083 || !DR_STEP (dr))
4085 bool maybe_gather
4086 = DR_IS_READ (dr)
4087 && !TREE_THIS_VOLATILE (DR_REF (dr))
4088 && (targetm.vectorize.builtin_gather != NULL
4089 || supports_vec_gather_load_p ());
4090 bool maybe_scatter
4091 = DR_IS_WRITE (dr)
4092 && !TREE_THIS_VOLATILE (DR_REF (dr))
4093 && (targetm.vectorize.builtin_scatter != NULL
4094 || supports_vec_scatter_store_p ());
4095 bool maybe_simd_lane_access
4096 = is_a <loop_vec_info> (vinfo) && loop->simduid;
4098 /* If target supports vector gather loads or scatter stores, or if
4099 this might be a SIMD lane access, see if they can't be used. */
4100 if (is_a <loop_vec_info> (vinfo)
4101 && !nested_in_vect_loop_p (loop, stmt))
4103 if (maybe_simd_lane_access)
4105 struct data_reference *newdr
4106 = create_data_ref (NULL, loop_containing_stmt (stmt),
4107 DR_REF (dr), stmt, !maybe_scatter,
4108 DR_IS_CONDITIONAL_IN_STMT (dr));
4109 gcc_assert (newdr != NULL && DR_REF (newdr));
4110 if (DR_BASE_ADDRESS (newdr)
4111 && DR_OFFSET (newdr)
4112 && DR_INIT (newdr)
4113 && DR_STEP (newdr)
4114 && integer_zerop (DR_STEP (newdr)))
4116 tree off = DR_OFFSET (newdr);
4117 STRIP_NOPS (off);
4118 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
4119 && TREE_CODE (off) == MULT_EXPR
4120 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
4122 tree step = TREE_OPERAND (off, 1);
4123 off = TREE_OPERAND (off, 0);
4124 STRIP_NOPS (off);
4125 if (CONVERT_EXPR_P (off)
4126 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
4127 0)))
4128 < TYPE_PRECISION (TREE_TYPE (off)))
4129 off = TREE_OPERAND (off, 0);
4130 if (TREE_CODE (off) == SSA_NAME)
4132 gimple *def = SSA_NAME_DEF_STMT (off);
4133 tree reft = TREE_TYPE (DR_REF (newdr));
4134 if (is_gimple_call (def)
4135 && gimple_call_internal_p (def)
4136 && (gimple_call_internal_fn (def)
4137 == IFN_GOMP_SIMD_LANE))
4139 tree arg = gimple_call_arg (def, 0);
4140 gcc_assert (TREE_CODE (arg) == SSA_NAME);
4141 arg = SSA_NAME_VAR (arg);
4142 if (arg == loop->simduid
4143 /* For now. */
4144 && tree_int_cst_equal
4145 (TYPE_SIZE_UNIT (reft),
4146 step))
4148 DR_OFFSET (newdr) = ssize_int (0);
4149 DR_STEP (newdr) = step;
4150 DR_OFFSET_ALIGNMENT (newdr)
4151 = BIGGEST_ALIGNMENT;
4152 DR_STEP_ALIGNMENT (newdr)
4153 = highest_pow2_factor (step);
4154 dr = newdr;
4155 simd_lane_access = true;
4161 if (!simd_lane_access)
4162 free_data_ref (newdr);
4164 if (!simd_lane_access && (maybe_gather || maybe_scatter))
4166 if (maybe_gather)
4167 gatherscatter = GATHER;
4168 else
4169 gatherscatter = SCATTER;
4173 if (gatherscatter == SG_NONE && !simd_lane_access)
4175 if (dump_enabled_p ())
4177 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4178 "not vectorized: data ref analysis "
4179 "failed ");
4180 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4182 if (is_a <bb_vec_info> (vinfo))
4184 /* In BB vectorization the ref can still participate
4185 in dependence analysis, we just can't vectorize it. */
4186 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4187 continue;
4189 return false;
4193 tree base = get_base_address (DR_REF (dr));
4194 if (base && VAR_P (base) && DECL_NONALIASED (base))
4196 if (dump_enabled_p ())
4198 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4199 "not vectorized: base object not addressable "
4200 "for stmt: ");
4201 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4203 if (is_a <bb_vec_info> (vinfo))
4205 /* In BB vectorization the ref can still participate
4206 in dependence analysis, we just can't vectorize it. */
4207 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4208 continue;
4210 return false;
4213 if (is_a <loop_vec_info> (vinfo)
4214 && DR_STEP (dr)
4215 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
4217 if (nested_in_vect_loop_p (loop, stmt))
4219 if (dump_enabled_p ())
4221 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4222 "not vectorized: not suitable for strided "
4223 "load ");
4224 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4226 return false;
4228 STMT_VINFO_STRIDED_P (stmt_info) = true;
4231 /* Update DR field in stmt_vec_info struct. */
4233 /* If the dataref is in an inner-loop of the loop that is considered for
4234 for vectorization, we also want to analyze the access relative to
4235 the outer-loop (DR contains information only relative to the
4236 inner-most enclosing loop). We do that by building a reference to the
4237 first location accessed by the inner-loop, and analyze it relative to
4238 the outer-loop. */
4239 if (loop && nested_in_vect_loop_p (loop, stmt))
4241 /* Build a reference to the first location accessed by the
4242 inner loop: *(BASE + INIT + OFFSET). By construction,
4243 this address must be invariant in the inner loop, so we
4244 can consider it as being used in the outer loop. */
4245 tree base = unshare_expr (DR_BASE_ADDRESS (dr));
4246 tree offset = unshare_expr (DR_OFFSET (dr));
4247 tree init = unshare_expr (DR_INIT (dr));
4248 tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
4249 init, offset);
4250 tree init_addr = fold_build_pointer_plus (base, init_offset);
4251 tree init_ref = build_fold_indirect_ref (init_addr);
4253 if (dump_enabled_p ())
4255 dump_printf_loc (MSG_NOTE, vect_location,
4256 "analyze in outer loop: ");
4257 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_ref);
4258 dump_printf (MSG_NOTE, "\n");
4261 if (!dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
4262 init_ref, loop))
4263 /* dr_analyze_innermost already explained the failure. */
4264 return false;
4266 if (dump_enabled_p ())
4268 dump_printf_loc (MSG_NOTE, vect_location,
4269 "\touter base_address: ");
4270 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4271 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
4272 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
4273 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4274 STMT_VINFO_DR_OFFSET (stmt_info));
4275 dump_printf (MSG_NOTE,
4276 "\n\touter constant offset from base address: ");
4277 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4278 STMT_VINFO_DR_INIT (stmt_info));
4279 dump_printf (MSG_NOTE, "\n\touter step: ");
4280 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4281 STMT_VINFO_DR_STEP (stmt_info));
4282 dump_printf (MSG_NOTE, "\n\touter base alignment: %d\n",
4283 STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info));
4284 dump_printf (MSG_NOTE, "\n\touter base misalignment: %d\n",
4285 STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info));
4286 dump_printf (MSG_NOTE, "\n\touter offset alignment: %d\n",
4287 STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info));
4288 dump_printf (MSG_NOTE, "\n\touter step alignment: %d\n",
4289 STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
4293 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
4294 STMT_VINFO_DATA_REF (stmt_info) = dr;
4295 if (simd_lane_access)
4297 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
4298 free_data_ref (datarefs[i]);
4299 datarefs[i] = dr;
4302 /* Set vectype for STMT. */
4303 scalar_type = TREE_TYPE (DR_REF (dr));
4304 STMT_VINFO_VECTYPE (stmt_info)
4305 = get_vectype_for_scalar_type (scalar_type);
4306 if (!STMT_VINFO_VECTYPE (stmt_info))
4308 if (dump_enabled_p ())
4310 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4311 "not vectorized: no vectype for stmt: ");
4312 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4313 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
4314 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
4315 scalar_type);
4316 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4319 if (is_a <bb_vec_info> (vinfo))
4321 /* No vector type is fine, the ref can still participate
4322 in dependence analysis, we just can't vectorize it. */
4323 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4324 continue;
4327 if (simd_lane_access)
4329 STMT_VINFO_DATA_REF (stmt_info) = NULL;
4330 free_data_ref (dr);
4332 return false;
4334 else
4336 if (dump_enabled_p ())
4338 dump_printf_loc (MSG_NOTE, vect_location,
4339 "got vectype for stmt: ");
4340 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
4341 dump_generic_expr (MSG_NOTE, TDF_SLIM,
4342 STMT_VINFO_VECTYPE (stmt_info));
4343 dump_printf (MSG_NOTE, "\n");
4347 /* Adjust the minimal vectorization factor according to the
4348 vector type. */
4349 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4350 *min_vf = upper_bound (*min_vf, vf);
4352 if (gatherscatter != SG_NONE)
4354 gather_scatter_info gs_info;
4355 if (!vect_check_gather_scatter (stmt, as_a <loop_vec_info> (vinfo),
4356 &gs_info)
4357 || !get_vectype_for_scalar_type (TREE_TYPE (gs_info.offset)))
4359 if (dump_enabled_p ())
4361 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4362 (gatherscatter == GATHER) ?
4363 "not vectorized: not suitable for gather "
4364 "load " :
4365 "not vectorized: not suitable for scatter "
4366 "store ");
4367 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
4369 return false;
4371 STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
4375 /* We used to stop processing and prune the list here. Verify we no
4376 longer need to. */
4377 gcc_assert (i == datarefs.length ());
4379 return true;
4383 /* Function vect_get_new_vect_var.
4385 Returns a name for a new variable. The current naming scheme appends the
4386 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
4387 the name of vectorizer generated variables, and appends that to NAME if
4388 provided. */
4390 tree
4391 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
4393 const char *prefix;
4394 tree new_vect_var;
4396 switch (var_kind)
4398 case vect_simple_var:
4399 prefix = "vect";
4400 break;
4401 case vect_scalar_var:
4402 prefix = "stmp";
4403 break;
4404 case vect_mask_var:
4405 prefix = "mask";
4406 break;
4407 case vect_pointer_var:
4408 prefix = "vectp";
4409 break;
4410 default:
4411 gcc_unreachable ();
4414 if (name)
4416 char* tmp = concat (prefix, "_", name, NULL);
4417 new_vect_var = create_tmp_reg (type, tmp);
4418 free (tmp);
4420 else
4421 new_vect_var = create_tmp_reg (type, prefix);
4423 return new_vect_var;
4426 /* Like vect_get_new_vect_var but return an SSA name. */
4428 tree
4429 vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
4431 const char *prefix;
4432 tree new_vect_var;
4434 switch (var_kind)
4436 case vect_simple_var:
4437 prefix = "vect";
4438 break;
4439 case vect_scalar_var:
4440 prefix = "stmp";
4441 break;
4442 case vect_pointer_var:
4443 prefix = "vectp";
4444 break;
4445 default:
4446 gcc_unreachable ();
4449 if (name)
4451 char* tmp = concat (prefix, "_", name, NULL);
4452 new_vect_var = make_temp_ssa_name (type, NULL, tmp);
4453 free (tmp);
4455 else
4456 new_vect_var = make_temp_ssa_name (type, NULL, prefix);
4458 return new_vect_var;
4461 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
4463 static void
4464 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr)
4466 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
4467 int misalign = DR_MISALIGNMENT (dr);
4468 if (misalign == DR_MISALIGNMENT_UNKNOWN)
4469 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
4470 else
4471 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name),
4472 DR_TARGET_ALIGNMENT (dr), misalign);
4475 /* Function vect_create_addr_base_for_vector_ref.
4477 Create an expression that computes the address of the first memory location
4478 that will be accessed for a data reference.
4480 Input:
4481 STMT: The statement containing the data reference.
4482 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
4483 OFFSET: Optional. If supplied, it is be added to the initial address.
4484 LOOP: Specify relative to which loop-nest should the address be computed.
4485 For example, when the dataref is in an inner-loop nested in an
4486 outer-loop that is now being vectorized, LOOP can be either the
4487 outer-loop, or the inner-loop. The first memory location accessed
4488 by the following dataref ('in' points to short):
4490 for (i=0; i<N; i++)
4491 for (j=0; j<M; j++)
4492 s += in[i+j]
4494 is as follows:
4495 if LOOP=i_loop: &in (relative to i_loop)
4496 if LOOP=j_loop: &in+i*2B (relative to j_loop)
4497 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
4498 initial address. Unlike OFFSET, which is number of elements to
4499 be added, BYTE_OFFSET is measured in bytes.
4501 Output:
4502 1. Return an SSA_NAME whose value is the address of the memory location of
4503 the first vector of the data reference.
4504 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
4505 these statement(s) which define the returned SSA_NAME.
4507 FORNOW: We are only handling array accesses with step 1. */
4509 tree
4510 vect_create_addr_base_for_vector_ref (gimple *stmt,
4511 gimple_seq *new_stmt_list,
4512 tree offset,
4513 tree byte_offset)
4515 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4516 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4517 const char *base_name;
4518 tree addr_base;
4519 tree dest;
4520 gimple_seq seq = NULL;
4521 tree vect_ptr_type;
4522 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
4523 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4524 innermost_loop_behavior *drb = vect_dr_behavior (dr);
4526 tree data_ref_base = unshare_expr (drb->base_address);
4527 tree base_offset = unshare_expr (drb->offset);
4528 tree init = unshare_expr (drb->init);
4530 if (loop_vinfo)
4531 base_name = get_name (data_ref_base);
4532 else
4534 base_offset = ssize_int (0);
4535 init = ssize_int (0);
4536 base_name = get_name (DR_REF (dr));
4539 /* Create base_offset */
4540 base_offset = size_binop (PLUS_EXPR,
4541 fold_convert (sizetype, base_offset),
4542 fold_convert (sizetype, init));
4544 if (offset)
4546 offset = fold_build2 (MULT_EXPR, sizetype,
4547 fold_convert (sizetype, offset), step);
4548 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4549 base_offset, offset);
4551 if (byte_offset)
4553 byte_offset = fold_convert (sizetype, byte_offset);
4554 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4555 base_offset, byte_offset);
4558 /* base + base_offset */
4559 if (loop_vinfo)
4560 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
4561 else
4563 addr_base = build1 (ADDR_EXPR,
4564 build_pointer_type (TREE_TYPE (DR_REF (dr))),
4565 unshare_expr (DR_REF (dr)));
4568 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
4569 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
4570 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
4571 gimple_seq_add_seq (new_stmt_list, seq);
4573 if (DR_PTR_INFO (dr)
4574 && TREE_CODE (addr_base) == SSA_NAME
4575 && !SSA_NAME_PTR_INFO (addr_base))
4577 vect_duplicate_ssa_name_ptr_info (addr_base, dr);
4578 if (offset || byte_offset)
4579 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
4582 if (dump_enabled_p ())
4584 dump_printf_loc (MSG_NOTE, vect_location, "created ");
4585 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
4586 dump_printf (MSG_NOTE, "\n");
4589 return addr_base;
4593 /* Function vect_create_data_ref_ptr.
4595 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4596 location accessed in the loop by STMT, along with the def-use update
4597 chain to appropriately advance the pointer through the loop iterations.
4598 Also set aliasing information for the pointer. This pointer is used by
4599 the callers to this function to create a memory reference expression for
4600 vector load/store access.
4602 Input:
4603 1. STMT: a stmt that references memory. Expected to be of the form
4604 GIMPLE_ASSIGN <name, data-ref> or
4605 GIMPLE_ASSIGN <data-ref, name>.
4606 2. AGGR_TYPE: the type of the reference, which should be either a vector
4607 or an array.
4608 3. AT_LOOP: the loop where the vector memref is to be created.
4609 4. OFFSET (optional): an offset to be added to the initial address accessed
4610 by the data-ref in STMT.
4611 5. BSI: location where the new stmts are to be placed if there is no loop
4612 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4613 pointing to the initial address.
4614 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4615 to the initial address accessed by the data-ref in STMT. This is
4616 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4617 in bytes.
4618 8. IV_STEP (optional, defaults to NULL): the amount that should be added
4619 to the IV during each iteration of the loop. NULL says to move
4620 by one copy of AGGR_TYPE up or down, depending on the step of the
4621 data reference.
4623 Output:
4624 1. Declare a new ptr to vector_type, and have it point to the base of the
4625 data reference (initial addressed accessed by the data reference).
4626 For example, for vector of type V8HI, the following code is generated:
4628 v8hi *ap;
4629 ap = (v8hi *)initial_address;
4631 if OFFSET is not supplied:
4632 initial_address = &a[init];
4633 if OFFSET is supplied:
4634 initial_address = &a[init + OFFSET];
4635 if BYTE_OFFSET is supplied:
4636 initial_address = &a[init] + BYTE_OFFSET;
4638 Return the initial_address in INITIAL_ADDRESS.
4640 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4641 update the pointer in each iteration of the loop.
4643 Return the increment stmt that updates the pointer in PTR_INCR.
4645 3. Set INV_P to true if the access pattern of the data reference in the
4646 vectorized loop is invariant. Set it to false otherwise.
4648 4. Return the pointer. */
4650 tree
4651 vect_create_data_ref_ptr (gimple *stmt, tree aggr_type, struct loop *at_loop,
4652 tree offset, tree *initial_address,
4653 gimple_stmt_iterator *gsi, gimple **ptr_incr,
4654 bool only_init, bool *inv_p, tree byte_offset,
4655 tree iv_step)
4657 const char *base_name;
4658 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4659 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4660 struct loop *loop = NULL;
4661 bool nested_in_vect_loop = false;
4662 struct loop *containing_loop = NULL;
4663 tree aggr_ptr_type;
4664 tree aggr_ptr;
4665 tree new_temp;
4666 gimple_seq new_stmt_list = NULL;
4667 edge pe = NULL;
4668 basic_block new_bb;
4669 tree aggr_ptr_init;
4670 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4671 tree aptr;
4672 gimple_stmt_iterator incr_gsi;
4673 bool insert_after;
4674 tree indx_before_incr, indx_after_incr;
4675 gimple *incr;
4676 tree step;
4677 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4679 gcc_assert (iv_step != NULL_TREE
4680 || TREE_CODE (aggr_type) == ARRAY_TYPE
4681 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4683 if (loop_vinfo)
4685 loop = LOOP_VINFO_LOOP (loop_vinfo);
4686 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4687 containing_loop = (gimple_bb (stmt))->loop_father;
4688 pe = loop_preheader_edge (loop);
4690 else
4692 gcc_assert (bb_vinfo);
4693 only_init = true;
4694 *ptr_incr = NULL;
4697 /* Check the step (evolution) of the load in LOOP, and record
4698 whether it's invariant. */
4699 step = vect_dr_behavior (dr)->step;
4700 if (integer_zerop (step))
4701 *inv_p = true;
4702 else
4703 *inv_p = false;
4705 /* Create an expression for the first address accessed by this load
4706 in LOOP. */
4707 base_name = get_name (DR_BASE_ADDRESS (dr));
4709 if (dump_enabled_p ())
4711 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4712 dump_printf_loc (MSG_NOTE, vect_location,
4713 "create %s-pointer variable to type: ",
4714 get_tree_code_name (TREE_CODE (aggr_type)));
4715 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4716 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4717 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4718 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4719 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4720 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4721 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4722 else
4723 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4724 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4725 dump_printf (MSG_NOTE, "\n");
4728 /* (1) Create the new aggregate-pointer variable.
4729 Vector and array types inherit the alias set of their component
4730 type by default so we need to use a ref-all pointer if the data
4731 reference does not conflict with the created aggregated data
4732 reference because it is not addressable. */
4733 bool need_ref_all = false;
4734 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4735 get_alias_set (DR_REF (dr))))
4736 need_ref_all = true;
4737 /* Likewise for any of the data references in the stmt group. */
4738 else if (DR_GROUP_SIZE (stmt_info) > 1)
4740 gimple *orig_stmt = DR_GROUP_FIRST_ELEMENT (stmt_info);
4743 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4744 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4745 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4746 get_alias_set (DR_REF (sdr))))
4748 need_ref_all = true;
4749 break;
4751 orig_stmt = DR_GROUP_NEXT_ELEMENT (sinfo);
4753 while (orig_stmt);
4755 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4756 need_ref_all);
4757 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4760 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4761 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4762 def-use update cycles for the pointer: one relative to the outer-loop
4763 (LOOP), which is what steps (3) and (4) below do. The other is relative
4764 to the inner-loop (which is the inner-most loop containing the dataref),
4765 and this is done be step (5) below.
4767 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4768 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4769 redundant. Steps (3),(4) create the following:
4771 vp0 = &base_addr;
4772 LOOP: vp1 = phi(vp0,vp2)
4775 vp2 = vp1 + step
4776 goto LOOP
4778 If there is an inner-loop nested in loop, then step (5) will also be
4779 applied, and an additional update in the inner-loop will be created:
4781 vp0 = &base_addr;
4782 LOOP: vp1 = phi(vp0,vp2)
4784 inner: vp3 = phi(vp1,vp4)
4785 vp4 = vp3 + inner_step
4786 if () goto inner
4788 vp2 = vp1 + step
4789 if () goto LOOP */
4791 /* (2) Calculate the initial address of the aggregate-pointer, and set
4792 the aggregate-pointer to point to it before the loop. */
4794 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4796 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4797 offset, byte_offset);
4798 if (new_stmt_list)
4800 if (pe)
4802 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4803 gcc_assert (!new_bb);
4805 else
4806 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4809 *initial_address = new_temp;
4810 aggr_ptr_init = new_temp;
4812 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4813 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4814 inner-loop nested in LOOP (during outer-loop vectorization). */
4816 /* No update in loop is required. */
4817 if (only_init && (!loop_vinfo || at_loop == loop))
4818 aptr = aggr_ptr_init;
4819 else
4821 if (iv_step == NULL_TREE)
4823 /* The step of the aggregate pointer is the type size. */
4824 iv_step = TYPE_SIZE_UNIT (aggr_type);
4825 /* One exception to the above is when the scalar step of the load in
4826 LOOP is zero. In this case the step here is also zero. */
4827 if (*inv_p)
4828 iv_step = size_zero_node;
4829 else if (tree_int_cst_sgn (step) == -1)
4830 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4833 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4835 create_iv (aggr_ptr_init,
4836 fold_convert (aggr_ptr_type, iv_step),
4837 aggr_ptr, loop, &incr_gsi, insert_after,
4838 &indx_before_incr, &indx_after_incr);
4839 incr = gsi_stmt (incr_gsi);
4840 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4842 /* Copy the points-to information if it exists. */
4843 if (DR_PTR_INFO (dr))
4845 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr);
4846 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr);
4848 if (ptr_incr)
4849 *ptr_incr = incr;
4851 aptr = indx_before_incr;
4854 if (!nested_in_vect_loop || only_init)
4855 return aptr;
4858 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4859 nested in LOOP, if exists. */
4861 gcc_assert (nested_in_vect_loop);
4862 if (!only_init)
4864 standard_iv_increment_position (containing_loop, &incr_gsi,
4865 &insert_after);
4866 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4867 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4868 &indx_after_incr);
4869 incr = gsi_stmt (incr_gsi);
4870 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4872 /* Copy the points-to information if it exists. */
4873 if (DR_PTR_INFO (dr))
4875 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr);
4876 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr);
4878 if (ptr_incr)
4879 *ptr_incr = incr;
4881 return indx_before_incr;
4883 else
4884 gcc_unreachable ();
4888 /* Function bump_vector_ptr
4890 Increment a pointer (to a vector type) by vector-size. If requested,
4891 i.e. if PTR-INCR is given, then also connect the new increment stmt
4892 to the existing def-use update-chain of the pointer, by modifying
4893 the PTR_INCR as illustrated below:
4895 The pointer def-use update-chain before this function:
4896 DATAREF_PTR = phi (p_0, p_2)
4897 ....
4898 PTR_INCR: p_2 = DATAREF_PTR + step
4900 The pointer def-use update-chain after this function:
4901 DATAREF_PTR = phi (p_0, p_2)
4902 ....
4903 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4904 ....
4905 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4907 Input:
4908 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4909 in the loop.
4910 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4911 the loop. The increment amount across iterations is expected
4912 to be vector_size.
4913 BSI - location where the new update stmt is to be placed.
4914 STMT - the original scalar memory-access stmt that is being vectorized.
4915 BUMP - optional. The offset by which to bump the pointer. If not given,
4916 the offset is assumed to be vector_size.
4918 Output: Return NEW_DATAREF_PTR as illustrated above.
4922 tree
4923 bump_vector_ptr (tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
4924 gimple *stmt, tree bump)
4926 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4927 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4928 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4929 tree update = TYPE_SIZE_UNIT (vectype);
4930 gassign *incr_stmt;
4931 ssa_op_iter iter;
4932 use_operand_p use_p;
4933 tree new_dataref_ptr;
4935 if (bump)
4936 update = bump;
4938 if (TREE_CODE (dataref_ptr) == SSA_NAME)
4939 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4940 else
4941 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
4942 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4943 dataref_ptr, update);
4944 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4946 /* Copy the points-to information if it exists. */
4947 if (DR_PTR_INFO (dr))
4949 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4950 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4953 if (!ptr_incr)
4954 return new_dataref_ptr;
4956 /* Update the vector-pointer's cross-iteration increment. */
4957 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4959 tree use = USE_FROM_PTR (use_p);
4961 if (use == dataref_ptr)
4962 SET_USE (use_p, new_dataref_ptr);
4963 else
4964 gcc_assert (operand_equal_p (use, update, 0));
4967 return new_dataref_ptr;
4971 /* Copy memory reference info such as base/clique from the SRC reference
4972 to the DEST MEM_REF. */
4974 void
4975 vect_copy_ref_info (tree dest, tree src)
4977 if (TREE_CODE (dest) != MEM_REF)
4978 return;
4980 tree src_base = src;
4981 while (handled_component_p (src_base))
4982 src_base = TREE_OPERAND (src_base, 0);
4983 if (TREE_CODE (src_base) != MEM_REF
4984 && TREE_CODE (src_base) != TARGET_MEM_REF)
4985 return;
4987 MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base);
4988 MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base);
4992 /* Function vect_create_destination_var.
4994 Create a new temporary of type VECTYPE. */
4996 tree
4997 vect_create_destination_var (tree scalar_dest, tree vectype)
4999 tree vec_dest;
5000 const char *name;
5001 char *new_name;
5002 tree type;
5003 enum vect_var_kind kind;
5005 kind = vectype
5006 ? VECTOR_BOOLEAN_TYPE_P (vectype)
5007 ? vect_mask_var
5008 : vect_simple_var
5009 : vect_scalar_var;
5010 type = vectype ? vectype : TREE_TYPE (scalar_dest);
5012 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
5014 name = get_name (scalar_dest);
5015 if (name)
5016 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
5017 else
5018 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
5019 vec_dest = vect_get_new_vect_var (type, kind, new_name);
5020 free (new_name);
5022 return vec_dest;
5025 /* Function vect_grouped_store_supported.
5027 Returns TRUE if interleave high and interleave low permutations
5028 are supported, and FALSE otherwise. */
5030 bool
5031 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
5033 machine_mode mode = TYPE_MODE (vectype);
5035 /* vect_permute_store_chain requires the group size to be equal to 3 or
5036 be a power of two. */
5037 if (count != 3 && exact_log2 (count) == -1)
5039 if (dump_enabled_p ())
5040 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5041 "the size of the group of accesses"
5042 " is not a power of 2 or not eqaul to 3\n");
5043 return false;
5046 /* Check that the permutation is supported. */
5047 if (VECTOR_MODE_P (mode))
5049 unsigned int i;
5050 if (count == 3)
5052 unsigned int j0 = 0, j1 = 0, j2 = 0;
5053 unsigned int i, j;
5055 unsigned int nelt;
5056 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5058 if (dump_enabled_p ())
5059 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5060 "cannot handle groups of 3 stores for"
5061 " variable-length vectors\n");
5062 return false;
5065 vec_perm_builder sel (nelt, nelt, 1);
5066 sel.quick_grow (nelt);
5067 vec_perm_indices indices;
5068 for (j = 0; j < 3; j++)
5070 int nelt0 = ((3 - j) * nelt) % 3;
5071 int nelt1 = ((3 - j) * nelt + 1) % 3;
5072 int nelt2 = ((3 - j) * nelt + 2) % 3;
5073 for (i = 0; i < nelt; i++)
5075 if (3 * i + nelt0 < nelt)
5076 sel[3 * i + nelt0] = j0++;
5077 if (3 * i + nelt1 < nelt)
5078 sel[3 * i + nelt1] = nelt + j1++;
5079 if (3 * i + nelt2 < nelt)
5080 sel[3 * i + nelt2] = 0;
5082 indices.new_vector (sel, 2, nelt);
5083 if (!can_vec_perm_const_p (mode, indices))
5085 if (dump_enabled_p ())
5086 dump_printf (MSG_MISSED_OPTIMIZATION,
5087 "permutation op not supported by target.\n");
5088 return false;
5091 for (i = 0; i < nelt; i++)
5093 if (3 * i + nelt0 < nelt)
5094 sel[3 * i + nelt0] = 3 * i + nelt0;
5095 if (3 * i + nelt1 < nelt)
5096 sel[3 * i + nelt1] = 3 * i + nelt1;
5097 if (3 * i + nelt2 < nelt)
5098 sel[3 * i + nelt2] = nelt + j2++;
5100 indices.new_vector (sel, 2, nelt);
5101 if (!can_vec_perm_const_p (mode, indices))
5103 if (dump_enabled_p ())
5104 dump_printf (MSG_MISSED_OPTIMIZATION,
5105 "permutation op not supported by target.\n");
5106 return false;
5109 return true;
5111 else
5113 /* If length is not equal to 3 then only power of 2 is supported. */
5114 gcc_assert (pow2p_hwi (count));
5115 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5117 /* The encoding has 2 interleaved stepped patterns. */
5118 vec_perm_builder sel (nelt, 2, 3);
5119 sel.quick_grow (6);
5120 for (i = 0; i < 3; i++)
5122 sel[i * 2] = i;
5123 sel[i * 2 + 1] = i + nelt;
5125 vec_perm_indices indices (sel, 2, nelt);
5126 if (can_vec_perm_const_p (mode, indices))
5128 for (i = 0; i < 6; i++)
5129 sel[i] += exact_div (nelt, 2);
5130 indices.new_vector (sel, 2, nelt);
5131 if (can_vec_perm_const_p (mode, indices))
5132 return true;
5137 if (dump_enabled_p ())
5138 dump_printf (MSG_MISSED_OPTIMIZATION,
5139 "permutaion op not supported by target.\n");
5140 return false;
5144 /* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of
5145 type VECTYPE. MASKED_P says whether the masked form is needed. */
5147 bool
5148 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
5149 bool masked_p)
5151 if (masked_p)
5152 return vect_lanes_optab_supported_p ("vec_mask_store_lanes",
5153 vec_mask_store_lanes_optab,
5154 vectype, count);
5155 else
5156 return vect_lanes_optab_supported_p ("vec_store_lanes",
5157 vec_store_lanes_optab,
5158 vectype, count);
5162 /* Function vect_permute_store_chain.
5164 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
5165 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
5166 the data correctly for the stores. Return the final references for stores
5167 in RESULT_CHAIN.
5169 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5170 The input is 4 vectors each containing 8 elements. We assign a number to
5171 each element, the input sequence is:
5173 1st vec: 0 1 2 3 4 5 6 7
5174 2nd vec: 8 9 10 11 12 13 14 15
5175 3rd vec: 16 17 18 19 20 21 22 23
5176 4th vec: 24 25 26 27 28 29 30 31
5178 The output sequence should be:
5180 1st vec: 0 8 16 24 1 9 17 25
5181 2nd vec: 2 10 18 26 3 11 19 27
5182 3rd vec: 4 12 20 28 5 13 21 30
5183 4th vec: 6 14 22 30 7 15 23 31
5185 i.e., we interleave the contents of the four vectors in their order.
5187 We use interleave_high/low instructions to create such output. The input of
5188 each interleave_high/low operation is two vectors:
5189 1st vec 2nd vec
5190 0 1 2 3 4 5 6 7
5191 the even elements of the result vector are obtained left-to-right from the
5192 high/low elements of the first vector. The odd elements of the result are
5193 obtained left-to-right from the high/low elements of the second vector.
5194 The output of interleave_high will be: 0 4 1 5
5195 and of interleave_low: 2 6 3 7
5198 The permutation is done in log LENGTH stages. In each stage interleave_high
5199 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
5200 where the first argument is taken from the first half of DR_CHAIN and the
5201 second argument from it's second half.
5202 In our example,
5204 I1: interleave_high (1st vec, 3rd vec)
5205 I2: interleave_low (1st vec, 3rd vec)
5206 I3: interleave_high (2nd vec, 4th vec)
5207 I4: interleave_low (2nd vec, 4th vec)
5209 The output for the first stage is:
5211 I1: 0 16 1 17 2 18 3 19
5212 I2: 4 20 5 21 6 22 7 23
5213 I3: 8 24 9 25 10 26 11 27
5214 I4: 12 28 13 29 14 30 15 31
5216 The output of the second stage, i.e. the final result is:
5218 I1: 0 8 16 24 1 9 17 25
5219 I2: 2 10 18 26 3 11 19 27
5220 I3: 4 12 20 28 5 13 21 30
5221 I4: 6 14 22 30 7 15 23 31. */
5223 void
5224 vect_permute_store_chain (vec<tree> dr_chain,
5225 unsigned int length,
5226 gimple *stmt,
5227 gimple_stmt_iterator *gsi,
5228 vec<tree> *result_chain)
5230 tree vect1, vect2, high, low;
5231 gimple *perm_stmt;
5232 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5233 tree perm_mask_low, perm_mask_high;
5234 tree data_ref;
5235 tree perm3_mask_low, perm3_mask_high;
5236 unsigned int i, j, n, log_length = exact_log2 (length);
5238 result_chain->quick_grow (length);
5239 memcpy (result_chain->address (), dr_chain.address (),
5240 length * sizeof (tree));
5242 if (length == 3)
5244 /* vect_grouped_store_supported ensures that this is constant. */
5245 unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5246 unsigned int j0 = 0, j1 = 0, j2 = 0;
5248 vec_perm_builder sel (nelt, nelt, 1);
5249 sel.quick_grow (nelt);
5250 vec_perm_indices indices;
5251 for (j = 0; j < 3; j++)
5253 int nelt0 = ((3 - j) * nelt) % 3;
5254 int nelt1 = ((3 - j) * nelt + 1) % 3;
5255 int nelt2 = ((3 - j) * nelt + 2) % 3;
5257 for (i = 0; i < nelt; i++)
5259 if (3 * i + nelt0 < nelt)
5260 sel[3 * i + nelt0] = j0++;
5261 if (3 * i + nelt1 < nelt)
5262 sel[3 * i + nelt1] = nelt + j1++;
5263 if (3 * i + nelt2 < nelt)
5264 sel[3 * i + nelt2] = 0;
5266 indices.new_vector (sel, 2, nelt);
5267 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5269 for (i = 0; i < nelt; i++)
5271 if (3 * i + nelt0 < nelt)
5272 sel[3 * i + nelt0] = 3 * i + nelt0;
5273 if (3 * i + nelt1 < nelt)
5274 sel[3 * i + nelt1] = 3 * i + nelt1;
5275 if (3 * i + nelt2 < nelt)
5276 sel[3 * i + nelt2] = nelt + j2++;
5278 indices.new_vector (sel, 2, nelt);
5279 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5281 vect1 = dr_chain[0];
5282 vect2 = dr_chain[1];
5284 /* Create interleaving stmt:
5285 low = VEC_PERM_EXPR <vect1, vect2,
5286 {j, nelt, *, j + 1, nelt + j + 1, *,
5287 j + 2, nelt + j + 2, *, ...}> */
5288 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5289 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5290 vect2, perm3_mask_low);
5291 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5293 vect1 = data_ref;
5294 vect2 = dr_chain[2];
5295 /* Create interleaving stmt:
5296 low = VEC_PERM_EXPR <vect1, vect2,
5297 {0, 1, nelt + j, 3, 4, nelt + j + 1,
5298 6, 7, nelt + j + 2, ...}> */
5299 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5300 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5301 vect2, perm3_mask_high);
5302 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5303 (*result_chain)[j] = data_ref;
5306 else
5308 /* If length is not equal to 3 then only power of 2 is supported. */
5309 gcc_assert (pow2p_hwi (length));
5311 /* The encoding has 2 interleaved stepped patterns. */
5312 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
5313 vec_perm_builder sel (nelt, 2, 3);
5314 sel.quick_grow (6);
5315 for (i = 0; i < 3; i++)
5317 sel[i * 2] = i;
5318 sel[i * 2 + 1] = i + nelt;
5320 vec_perm_indices indices (sel, 2, nelt);
5321 perm_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5323 for (i = 0; i < 6; i++)
5324 sel[i] += exact_div (nelt, 2);
5325 indices.new_vector (sel, 2, nelt);
5326 perm_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5328 for (i = 0, n = log_length; i < n; i++)
5330 for (j = 0; j < length/2; j++)
5332 vect1 = dr_chain[j];
5333 vect2 = dr_chain[j+length/2];
5335 /* Create interleaving stmt:
5336 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
5337 ...}> */
5338 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
5339 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
5340 vect2, perm_mask_high);
5341 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5342 (*result_chain)[2*j] = high;
5344 /* Create interleaving stmt:
5345 low = VEC_PERM_EXPR <vect1, vect2,
5346 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
5347 ...}> */
5348 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
5349 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
5350 vect2, perm_mask_low);
5351 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5352 (*result_chain)[2*j+1] = low;
5354 memcpy (dr_chain.address (), result_chain->address (),
5355 length * sizeof (tree));
5360 /* Function vect_setup_realignment
5362 This function is called when vectorizing an unaligned load using
5363 the dr_explicit_realign[_optimized] scheme.
5364 This function generates the following code at the loop prolog:
5366 p = initial_addr;
5367 x msq_init = *(floor(p)); # prolog load
5368 realignment_token = call target_builtin;
5369 loop:
5370 x msq = phi (msq_init, ---)
5372 The stmts marked with x are generated only for the case of
5373 dr_explicit_realign_optimized.
5375 The code above sets up a new (vector) pointer, pointing to the first
5376 location accessed by STMT, and a "floor-aligned" load using that pointer.
5377 It also generates code to compute the "realignment-token" (if the relevant
5378 target hook was defined), and creates a phi-node at the loop-header bb
5379 whose arguments are the result of the prolog-load (created by this
5380 function) and the result of a load that takes place in the loop (to be
5381 created by the caller to this function).
5383 For the case of dr_explicit_realign_optimized:
5384 The caller to this function uses the phi-result (msq) to create the
5385 realignment code inside the loop, and sets up the missing phi argument,
5386 as follows:
5387 loop:
5388 msq = phi (msq_init, lsq)
5389 lsq = *(floor(p')); # load in loop
5390 result = realign_load (msq, lsq, realignment_token);
5392 For the case of dr_explicit_realign:
5393 loop:
5394 msq = *(floor(p)); # load in loop
5395 p' = p + (VS-1);
5396 lsq = *(floor(p')); # load in loop
5397 result = realign_load (msq, lsq, realignment_token);
5399 Input:
5400 STMT - (scalar) load stmt to be vectorized. This load accesses
5401 a memory location that may be unaligned.
5402 BSI - place where new code is to be inserted.
5403 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
5404 is used.
5406 Output:
5407 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
5408 target hook, if defined.
5409 Return value - the result of the loop-header phi node. */
5411 tree
5412 vect_setup_realignment (gimple *stmt, gimple_stmt_iterator *gsi,
5413 tree *realignment_token,
5414 enum dr_alignment_support alignment_support_scheme,
5415 tree init_addr,
5416 struct loop **at_loop)
5418 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5419 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5420 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5421 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
5422 struct loop *loop = NULL;
5423 edge pe = NULL;
5424 tree scalar_dest = gimple_assign_lhs (stmt);
5425 tree vec_dest;
5426 gimple *inc;
5427 tree ptr;
5428 tree data_ref;
5429 basic_block new_bb;
5430 tree msq_init = NULL_TREE;
5431 tree new_temp;
5432 gphi *phi_stmt;
5433 tree msq = NULL_TREE;
5434 gimple_seq stmts = NULL;
5435 bool inv_p;
5436 bool compute_in_loop = false;
5437 bool nested_in_vect_loop = false;
5438 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
5439 struct loop *loop_for_initial_load = NULL;
5441 if (loop_vinfo)
5443 loop = LOOP_VINFO_LOOP (loop_vinfo);
5444 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
5447 gcc_assert (alignment_support_scheme == dr_explicit_realign
5448 || alignment_support_scheme == dr_explicit_realign_optimized);
5450 /* We need to generate three things:
5451 1. the misalignment computation
5452 2. the extra vector load (for the optimized realignment scheme).
5453 3. the phi node for the two vectors from which the realignment is
5454 done (for the optimized realignment scheme). */
5456 /* 1. Determine where to generate the misalignment computation.
5458 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
5459 calculation will be generated by this function, outside the loop (in the
5460 preheader). Otherwise, INIT_ADDR had already been computed for us by the
5461 caller, inside the loop.
5463 Background: If the misalignment remains fixed throughout the iterations of
5464 the loop, then both realignment schemes are applicable, and also the
5465 misalignment computation can be done outside LOOP. This is because we are
5466 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
5467 are a multiple of VS (the Vector Size), and therefore the misalignment in
5468 different vectorized LOOP iterations is always the same.
5469 The problem arises only if the memory access is in an inner-loop nested
5470 inside LOOP, which is now being vectorized using outer-loop vectorization.
5471 This is the only case when the misalignment of the memory access may not
5472 remain fixed throughout the iterations of the inner-loop (as explained in
5473 detail in vect_supportable_dr_alignment). In this case, not only is the
5474 optimized realignment scheme not applicable, but also the misalignment
5475 computation (and generation of the realignment token that is passed to
5476 REALIGN_LOAD) have to be done inside the loop.
5478 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
5479 or not, which in turn determines if the misalignment is computed inside
5480 the inner-loop, or outside LOOP. */
5482 if (init_addr != NULL_TREE || !loop_vinfo)
5484 compute_in_loop = true;
5485 gcc_assert (alignment_support_scheme == dr_explicit_realign);
5489 /* 2. Determine where to generate the extra vector load.
5491 For the optimized realignment scheme, instead of generating two vector
5492 loads in each iteration, we generate a single extra vector load in the
5493 preheader of the loop, and in each iteration reuse the result of the
5494 vector load from the previous iteration. In case the memory access is in
5495 an inner-loop nested inside LOOP, which is now being vectorized using
5496 outer-loop vectorization, we need to determine whether this initial vector
5497 load should be generated at the preheader of the inner-loop, or can be
5498 generated at the preheader of LOOP. If the memory access has no evolution
5499 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
5500 to be generated inside LOOP (in the preheader of the inner-loop). */
5502 if (nested_in_vect_loop)
5504 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
5505 bool invariant_in_outerloop =
5506 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
5507 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
5509 else
5510 loop_for_initial_load = loop;
5511 if (at_loop)
5512 *at_loop = loop_for_initial_load;
5514 if (loop_for_initial_load)
5515 pe = loop_preheader_edge (loop_for_initial_load);
5517 /* 3. For the case of the optimized realignment, create the first vector
5518 load at the loop preheader. */
5520 if (alignment_support_scheme == dr_explicit_realign_optimized)
5522 /* Create msq_init = *(floor(p1)) in the loop preheader */
5523 gassign *new_stmt;
5525 gcc_assert (!compute_in_loop);
5526 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5527 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
5528 NULL_TREE, &init_addr, NULL, &inc,
5529 true, &inv_p);
5530 if (TREE_CODE (ptr) == SSA_NAME)
5531 new_temp = copy_ssa_name (ptr);
5532 else
5533 new_temp = make_ssa_name (TREE_TYPE (ptr));
5534 unsigned int align = DR_TARGET_ALIGNMENT (dr);
5535 new_stmt = gimple_build_assign
5536 (new_temp, BIT_AND_EXPR, ptr,
5537 build_int_cst (TREE_TYPE (ptr), -(HOST_WIDE_INT) align));
5538 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5539 gcc_assert (!new_bb);
5540 data_ref
5541 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
5542 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
5543 vect_copy_ref_info (data_ref, DR_REF (dr));
5544 new_stmt = gimple_build_assign (vec_dest, data_ref);
5545 new_temp = make_ssa_name (vec_dest, new_stmt);
5546 gimple_assign_set_lhs (new_stmt, new_temp);
5547 if (pe)
5549 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5550 gcc_assert (!new_bb);
5552 else
5553 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5555 msq_init = gimple_assign_lhs (new_stmt);
5558 /* 4. Create realignment token using a target builtin, if available.
5559 It is done either inside the containing loop, or before LOOP (as
5560 determined above). */
5562 if (targetm.vectorize.builtin_mask_for_load)
5564 gcall *new_stmt;
5565 tree builtin_decl;
5567 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
5568 if (!init_addr)
5570 /* Generate the INIT_ADDR computation outside LOOP. */
5571 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
5572 NULL_TREE);
5573 if (loop)
5575 pe = loop_preheader_edge (loop);
5576 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
5577 gcc_assert (!new_bb);
5579 else
5580 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5583 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
5584 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
5585 vec_dest =
5586 vect_create_destination_var (scalar_dest,
5587 gimple_call_return_type (new_stmt));
5588 new_temp = make_ssa_name (vec_dest, new_stmt);
5589 gimple_call_set_lhs (new_stmt, new_temp);
5591 if (compute_in_loop)
5592 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5593 else
5595 /* Generate the misalignment computation outside LOOP. */
5596 pe = loop_preheader_edge (loop);
5597 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5598 gcc_assert (!new_bb);
5601 *realignment_token = gimple_call_lhs (new_stmt);
5603 /* The result of the CALL_EXPR to this builtin is determined from
5604 the value of the parameter and no global variables are touched
5605 which makes the builtin a "const" function. Requiring the
5606 builtin to have the "const" attribute makes it unnecessary
5607 to call mark_call_clobbered. */
5608 gcc_assert (TREE_READONLY (builtin_decl));
5611 if (alignment_support_scheme == dr_explicit_realign)
5612 return msq;
5614 gcc_assert (!compute_in_loop);
5615 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
5618 /* 5. Create msq = phi <msq_init, lsq> in loop */
5620 pe = loop_preheader_edge (containing_loop);
5621 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5622 msq = make_ssa_name (vec_dest);
5623 phi_stmt = create_phi_node (msq, containing_loop->header);
5624 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
5626 return msq;
5630 /* Function vect_grouped_load_supported.
5632 COUNT is the size of the load group (the number of statements plus the
5633 number of gaps). SINGLE_ELEMENT_P is true if there is actually
5634 only one statement, with a gap of COUNT - 1.
5636 Returns true if a suitable permute exists. */
5638 bool
5639 vect_grouped_load_supported (tree vectype, bool single_element_p,
5640 unsigned HOST_WIDE_INT count)
5642 machine_mode mode = TYPE_MODE (vectype);
5644 /* If this is single-element interleaving with an element distance
5645 that leaves unused vector loads around punt - we at least create
5646 very sub-optimal code in that case (and blow up memory,
5647 see PR65518). */
5648 if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype)))
5650 if (dump_enabled_p ())
5651 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5652 "single-element interleaving not supported "
5653 "for not adjacent vector loads\n");
5654 return false;
5657 /* vect_permute_load_chain requires the group size to be equal to 3 or
5658 be a power of two. */
5659 if (count != 3 && exact_log2 (count) == -1)
5661 if (dump_enabled_p ())
5662 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5663 "the size of the group of accesses"
5664 " is not a power of 2 or not equal to 3\n");
5665 return false;
5668 /* Check that the permutation is supported. */
5669 if (VECTOR_MODE_P (mode))
5671 unsigned int i, j;
5672 if (count == 3)
5674 unsigned int nelt;
5675 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5677 if (dump_enabled_p ())
5678 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5679 "cannot handle groups of 3 loads for"
5680 " variable-length vectors\n");
5681 return false;
5684 vec_perm_builder sel (nelt, nelt, 1);
5685 sel.quick_grow (nelt);
5686 vec_perm_indices indices;
5687 unsigned int k;
5688 for (k = 0; k < 3; k++)
5690 for (i = 0; i < nelt; i++)
5691 if (3 * i + k < 2 * nelt)
5692 sel[i] = 3 * i + k;
5693 else
5694 sel[i] = 0;
5695 indices.new_vector (sel, 2, nelt);
5696 if (!can_vec_perm_const_p (mode, indices))
5698 if (dump_enabled_p ())
5699 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5700 "shuffle of 3 loads is not supported by"
5701 " target\n");
5702 return false;
5704 for (i = 0, j = 0; i < nelt; i++)
5705 if (3 * i + k < 2 * nelt)
5706 sel[i] = i;
5707 else
5708 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5709 indices.new_vector (sel, 2, nelt);
5710 if (!can_vec_perm_const_p (mode, indices))
5712 if (dump_enabled_p ())
5713 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5714 "shuffle of 3 loads is not supported by"
5715 " target\n");
5716 return false;
5719 return true;
5721 else
5723 /* If length is not equal to 3 then only power of 2 is supported. */
5724 gcc_assert (pow2p_hwi (count));
5725 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5727 /* The encoding has a single stepped pattern. */
5728 vec_perm_builder sel (nelt, 1, 3);
5729 sel.quick_grow (3);
5730 for (i = 0; i < 3; i++)
5731 sel[i] = i * 2;
5732 vec_perm_indices indices (sel, 2, nelt);
5733 if (can_vec_perm_const_p (mode, indices))
5735 for (i = 0; i < 3; i++)
5736 sel[i] = i * 2 + 1;
5737 indices.new_vector (sel, 2, nelt);
5738 if (can_vec_perm_const_p (mode, indices))
5739 return true;
5744 if (dump_enabled_p ())
5745 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5746 "extract even/odd not supported by target\n");
5747 return false;
5750 /* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of
5751 type VECTYPE. MASKED_P says whether the masked form is needed. */
5753 bool
5754 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
5755 bool masked_p)
5757 if (masked_p)
5758 return vect_lanes_optab_supported_p ("vec_mask_load_lanes",
5759 vec_mask_load_lanes_optab,
5760 vectype, count);
5761 else
5762 return vect_lanes_optab_supported_p ("vec_load_lanes",
5763 vec_load_lanes_optab,
5764 vectype, count);
5767 /* Function vect_permute_load_chain.
5769 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5770 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5771 the input data correctly. Return the final references for loads in
5772 RESULT_CHAIN.
5774 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5775 The input is 4 vectors each containing 8 elements. We assign a number to each
5776 element, the input sequence is:
5778 1st vec: 0 1 2 3 4 5 6 7
5779 2nd vec: 8 9 10 11 12 13 14 15
5780 3rd vec: 16 17 18 19 20 21 22 23
5781 4th vec: 24 25 26 27 28 29 30 31
5783 The output sequence should be:
5785 1st vec: 0 4 8 12 16 20 24 28
5786 2nd vec: 1 5 9 13 17 21 25 29
5787 3rd vec: 2 6 10 14 18 22 26 30
5788 4th vec: 3 7 11 15 19 23 27 31
5790 i.e., the first output vector should contain the first elements of each
5791 interleaving group, etc.
5793 We use extract_even/odd instructions to create such output. The input of
5794 each extract_even/odd operation is two vectors
5795 1st vec 2nd vec
5796 0 1 2 3 4 5 6 7
5798 and the output is the vector of extracted even/odd elements. The output of
5799 extract_even will be: 0 2 4 6
5800 and of extract_odd: 1 3 5 7
5803 The permutation is done in log LENGTH stages. In each stage extract_even
5804 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5805 their order. In our example,
5807 E1: extract_even (1st vec, 2nd vec)
5808 E2: extract_odd (1st vec, 2nd vec)
5809 E3: extract_even (3rd vec, 4th vec)
5810 E4: extract_odd (3rd vec, 4th vec)
5812 The output for the first stage will be:
5814 E1: 0 2 4 6 8 10 12 14
5815 E2: 1 3 5 7 9 11 13 15
5816 E3: 16 18 20 22 24 26 28 30
5817 E4: 17 19 21 23 25 27 29 31
5819 In order to proceed and create the correct sequence for the next stage (or
5820 for the correct output, if the second stage is the last one, as in our
5821 example), we first put the output of extract_even operation and then the
5822 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5823 The input for the second stage is:
5825 1st vec (E1): 0 2 4 6 8 10 12 14
5826 2nd vec (E3): 16 18 20 22 24 26 28 30
5827 3rd vec (E2): 1 3 5 7 9 11 13 15
5828 4th vec (E4): 17 19 21 23 25 27 29 31
5830 The output of the second stage:
5832 E1: 0 4 8 12 16 20 24 28
5833 E2: 2 6 10 14 18 22 26 30
5834 E3: 1 5 9 13 17 21 25 29
5835 E4: 3 7 11 15 19 23 27 31
5837 And RESULT_CHAIN after reordering:
5839 1st vec (E1): 0 4 8 12 16 20 24 28
5840 2nd vec (E3): 1 5 9 13 17 21 25 29
5841 3rd vec (E2): 2 6 10 14 18 22 26 30
5842 4th vec (E4): 3 7 11 15 19 23 27 31. */
5844 static void
5845 vect_permute_load_chain (vec<tree> dr_chain,
5846 unsigned int length,
5847 gimple *stmt,
5848 gimple_stmt_iterator *gsi,
5849 vec<tree> *result_chain)
5851 tree data_ref, first_vect, second_vect;
5852 tree perm_mask_even, perm_mask_odd;
5853 tree perm3_mask_low, perm3_mask_high;
5854 gimple *perm_stmt;
5855 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5856 unsigned int i, j, log_length = exact_log2 (length);
5858 result_chain->quick_grow (length);
5859 memcpy (result_chain->address (), dr_chain.address (),
5860 length * sizeof (tree));
5862 if (length == 3)
5864 /* vect_grouped_load_supported ensures that this is constant. */
5865 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5866 unsigned int k;
5868 vec_perm_builder sel (nelt, nelt, 1);
5869 sel.quick_grow (nelt);
5870 vec_perm_indices indices;
5871 for (k = 0; k < 3; k++)
5873 for (i = 0; i < nelt; i++)
5874 if (3 * i + k < 2 * nelt)
5875 sel[i] = 3 * i + k;
5876 else
5877 sel[i] = 0;
5878 indices.new_vector (sel, 2, nelt);
5879 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5881 for (i = 0, j = 0; i < nelt; i++)
5882 if (3 * i + k < 2 * nelt)
5883 sel[i] = i;
5884 else
5885 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5886 indices.new_vector (sel, 2, nelt);
5887 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5889 first_vect = dr_chain[0];
5890 second_vect = dr_chain[1];
5892 /* Create interleaving stmt (low part of):
5893 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5894 ...}> */
5895 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5896 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5897 second_vect, perm3_mask_low);
5898 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5900 /* Create interleaving stmt (high part of):
5901 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5902 ...}> */
5903 first_vect = data_ref;
5904 second_vect = dr_chain[2];
5905 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5906 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5907 second_vect, perm3_mask_high);
5908 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5909 (*result_chain)[k] = data_ref;
5912 else
5914 /* If length is not equal to 3 then only power of 2 is supported. */
5915 gcc_assert (pow2p_hwi (length));
5917 /* The encoding has a single stepped pattern. */
5918 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
5919 vec_perm_builder sel (nelt, 1, 3);
5920 sel.quick_grow (3);
5921 for (i = 0; i < 3; ++i)
5922 sel[i] = i * 2;
5923 vec_perm_indices indices (sel, 2, nelt);
5924 perm_mask_even = vect_gen_perm_mask_checked (vectype, indices);
5926 for (i = 0; i < 3; ++i)
5927 sel[i] = i * 2 + 1;
5928 indices.new_vector (sel, 2, nelt);
5929 perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices);
5931 for (i = 0; i < log_length; i++)
5933 for (j = 0; j < length; j += 2)
5935 first_vect = dr_chain[j];
5936 second_vect = dr_chain[j+1];
5938 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5939 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5940 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5941 first_vect, second_vect,
5942 perm_mask_even);
5943 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5944 (*result_chain)[j/2] = data_ref;
5946 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5947 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5948 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5949 first_vect, second_vect,
5950 perm_mask_odd);
5951 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5952 (*result_chain)[j/2+length/2] = data_ref;
5954 memcpy (dr_chain.address (), result_chain->address (),
5955 length * sizeof (tree));
5960 /* Function vect_shift_permute_load_chain.
5962 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5963 sequence of stmts to reorder the input data accordingly.
5964 Return the final references for loads in RESULT_CHAIN.
5965 Return true if successed, false otherwise.
5967 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5968 The input is 3 vectors each containing 8 elements. We assign a
5969 number to each element, the input sequence is:
5971 1st vec: 0 1 2 3 4 5 6 7
5972 2nd vec: 8 9 10 11 12 13 14 15
5973 3rd vec: 16 17 18 19 20 21 22 23
5975 The output sequence should be:
5977 1st vec: 0 3 6 9 12 15 18 21
5978 2nd vec: 1 4 7 10 13 16 19 22
5979 3rd vec: 2 5 8 11 14 17 20 23
5981 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5983 First we shuffle all 3 vectors to get correct elements order:
5985 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5986 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5987 3rd vec: (16 19 22) (17 20 23) (18 21)
5989 Next we unite and shift vector 3 times:
5991 1st step:
5992 shift right by 6 the concatenation of:
5993 "1st vec" and "2nd vec"
5994 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5995 "2nd vec" and "3rd vec"
5996 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5997 "3rd vec" and "1st vec"
5998 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5999 | New vectors |
6001 So that now new vectors are:
6003 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
6004 2nd vec: (10 13) (16 19 22) (17 20 23)
6005 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
6007 2nd step:
6008 shift right by 5 the concatenation of:
6009 "1st vec" and "3rd vec"
6010 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
6011 "2nd vec" and "1st vec"
6012 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
6013 "3rd vec" and "2nd vec"
6014 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
6015 | New vectors |
6017 So that now new vectors are:
6019 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
6020 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
6021 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
6023 3rd step:
6024 shift right by 5 the concatenation of:
6025 "1st vec" and "1st vec"
6026 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
6027 shift right by 3 the concatenation of:
6028 "2nd vec" and "2nd vec"
6029 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
6030 | New vectors |
6032 So that now all vectors are READY:
6033 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
6034 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
6035 3rd vec: ( 1 4 7) (10 13) (16 19 22)
6037 This algorithm is faster than one in vect_permute_load_chain if:
6038 1. "shift of a concatination" is faster than general permutation.
6039 This is usually so.
6040 2. The TARGET machine can't execute vector instructions in parallel.
6041 This is because each step of the algorithm depends on previous.
6042 The algorithm in vect_permute_load_chain is much more parallel.
6044 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
6047 static bool
6048 vect_shift_permute_load_chain (vec<tree> dr_chain,
6049 unsigned int length,
6050 gimple *stmt,
6051 gimple_stmt_iterator *gsi,
6052 vec<tree> *result_chain)
6054 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
6055 tree perm2_mask1, perm2_mask2, perm3_mask;
6056 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
6057 gimple *perm_stmt;
6059 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
6060 unsigned int i;
6061 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6062 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6064 unsigned HOST_WIDE_INT nelt, vf;
6065 if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt)
6066 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
6067 /* Not supported for variable-length vectors. */
6068 return false;
6070 vec_perm_builder sel (nelt, nelt, 1);
6071 sel.quick_grow (nelt);
6073 result_chain->quick_grow (length);
6074 memcpy (result_chain->address (), dr_chain.address (),
6075 length * sizeof (tree));
6077 if (pow2p_hwi (length) && vf > 4)
6079 unsigned int j, log_length = exact_log2 (length);
6080 for (i = 0; i < nelt / 2; ++i)
6081 sel[i] = i * 2;
6082 for (i = 0; i < nelt / 2; ++i)
6083 sel[nelt / 2 + i] = i * 2 + 1;
6084 vec_perm_indices indices (sel, 2, nelt);
6085 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6087 if (dump_enabled_p ())
6088 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6089 "shuffle of 2 fields structure is not \
6090 supported by target\n");
6091 return false;
6093 perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices);
6095 for (i = 0; i < nelt / 2; ++i)
6096 sel[i] = i * 2 + 1;
6097 for (i = 0; i < nelt / 2; ++i)
6098 sel[nelt / 2 + i] = i * 2;
6099 indices.new_vector (sel, 2, nelt);
6100 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6102 if (dump_enabled_p ())
6103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6104 "shuffle of 2 fields structure is not \
6105 supported by target\n");
6106 return false;
6108 perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices);
6110 /* Generating permutation constant to shift all elements.
6111 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
6112 for (i = 0; i < nelt; i++)
6113 sel[i] = nelt / 2 + i;
6114 indices.new_vector (sel, 2, nelt);
6115 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6117 if (dump_enabled_p ())
6118 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6119 "shift permutation is not supported by target\n");
6120 return false;
6122 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6124 /* Generating permutation constant to select vector from 2.
6125 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
6126 for (i = 0; i < nelt / 2; i++)
6127 sel[i] = i;
6128 for (i = nelt / 2; i < nelt; i++)
6129 sel[i] = nelt + i;
6130 indices.new_vector (sel, 2, nelt);
6131 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6133 if (dump_enabled_p ())
6134 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6135 "select is not supported by target\n");
6136 return false;
6138 select_mask = vect_gen_perm_mask_checked (vectype, indices);
6140 for (i = 0; i < log_length; i++)
6142 for (j = 0; j < length; j += 2)
6144 first_vect = dr_chain[j];
6145 second_vect = dr_chain[j + 1];
6147 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6148 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6149 first_vect, first_vect,
6150 perm2_mask1);
6151 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6152 vect[0] = data_ref;
6154 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6155 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6156 second_vect, second_vect,
6157 perm2_mask2);
6158 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6159 vect[1] = data_ref;
6161 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
6162 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6163 vect[0], vect[1], shift1_mask);
6164 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6165 (*result_chain)[j/2 + length/2] = data_ref;
6167 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
6168 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6169 vect[0], vect[1], select_mask);
6170 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6171 (*result_chain)[j/2] = data_ref;
6173 memcpy (dr_chain.address (), result_chain->address (),
6174 length * sizeof (tree));
6176 return true;
6178 if (length == 3 && vf > 2)
6180 unsigned int k = 0, l = 0;
6182 /* Generating permutation constant to get all elements in rigth order.
6183 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
6184 for (i = 0; i < nelt; i++)
6186 if (3 * k + (l % 3) >= nelt)
6188 k = 0;
6189 l += (3 - (nelt % 3));
6191 sel[i] = 3 * k + (l % 3);
6192 k++;
6194 vec_perm_indices indices (sel, 2, nelt);
6195 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6197 if (dump_enabled_p ())
6198 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6199 "shuffle of 3 fields structure is not \
6200 supported by target\n");
6201 return false;
6203 perm3_mask = vect_gen_perm_mask_checked (vectype, indices);
6205 /* Generating permutation constant to shift all elements.
6206 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
6207 for (i = 0; i < nelt; i++)
6208 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
6209 indices.new_vector (sel, 2, nelt);
6210 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6212 if (dump_enabled_p ())
6213 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6214 "shift permutation is not supported by target\n");
6215 return false;
6217 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6219 /* Generating permutation constant to shift all elements.
6220 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6221 for (i = 0; i < nelt; i++)
6222 sel[i] = 2 * (nelt / 3) + 1 + i;
6223 indices.new_vector (sel, 2, nelt);
6224 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6226 if (dump_enabled_p ())
6227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6228 "shift permutation is not supported by target\n");
6229 return false;
6231 shift2_mask = vect_gen_perm_mask_checked (vectype, indices);
6233 /* Generating permutation constant to shift all elements.
6234 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
6235 for (i = 0; i < nelt; i++)
6236 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
6237 indices.new_vector (sel, 2, nelt);
6238 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6240 if (dump_enabled_p ())
6241 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6242 "shift permutation is not supported by target\n");
6243 return false;
6245 shift3_mask = vect_gen_perm_mask_checked (vectype, indices);
6247 /* Generating permutation constant to shift all elements.
6248 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6249 for (i = 0; i < nelt; i++)
6250 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
6251 indices.new_vector (sel, 2, nelt);
6252 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6254 if (dump_enabled_p ())
6255 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6256 "shift permutation is not supported by target\n");
6257 return false;
6259 shift4_mask = vect_gen_perm_mask_checked (vectype, indices);
6261 for (k = 0; k < 3; k++)
6263 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
6264 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6265 dr_chain[k], dr_chain[k],
6266 perm3_mask);
6267 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6268 vect[k] = data_ref;
6271 for (k = 0; k < 3; k++)
6273 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
6274 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6275 vect[k % 3], vect[(k + 1) % 3],
6276 shift1_mask);
6277 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6278 vect_shift[k] = data_ref;
6281 for (k = 0; k < 3; k++)
6283 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
6284 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6285 vect_shift[(4 - k) % 3],
6286 vect_shift[(3 - k) % 3],
6287 shift2_mask);
6288 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6289 vect[k] = data_ref;
6292 (*result_chain)[3 - (nelt % 3)] = vect[2];
6294 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
6295 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
6296 vect[0], shift3_mask);
6297 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6298 (*result_chain)[nelt % 3] = data_ref;
6300 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
6301 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
6302 vect[1], shift4_mask);
6303 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6304 (*result_chain)[0] = data_ref;
6305 return true;
6307 return false;
6310 /* Function vect_transform_grouped_load.
6312 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
6313 to perform their permutation and ascribe the result vectorized statements to
6314 the scalar statements.
6317 void
6318 vect_transform_grouped_load (gimple *stmt, vec<tree> dr_chain, int size,
6319 gimple_stmt_iterator *gsi)
6321 machine_mode mode;
6322 vec<tree> result_chain = vNULL;
6324 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
6325 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
6326 vectors, that are ready for vector computation. */
6327 result_chain.create (size);
6329 /* If reassociation width for vector type is 2 or greater target machine can
6330 execute 2 or more vector instructions in parallel. Otherwise try to
6331 get chain for loads group using vect_shift_permute_load_chain. */
6332 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
6333 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
6334 || pow2p_hwi (size)
6335 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
6336 gsi, &result_chain))
6337 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
6338 vect_record_grouped_load_vectors (stmt, result_chain);
6339 result_chain.release ();
6342 /* RESULT_CHAIN contains the output of a group of grouped loads that were
6343 generated as part of the vectorization of STMT. Assign the statement
6344 for each vector to the associated scalar statement. */
6346 void
6347 vect_record_grouped_load_vectors (gimple *stmt, vec<tree> result_chain)
6349 gimple *first_stmt = DR_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
6350 gimple *next_stmt, *new_stmt;
6351 unsigned int i, gap_count;
6352 tree tmp_data_ref;
6354 /* Put a permuted data-ref in the VECTORIZED_STMT field.
6355 Since we scan the chain starting from it's first node, their order
6356 corresponds the order of data-refs in RESULT_CHAIN. */
6357 next_stmt = first_stmt;
6358 gap_count = 1;
6359 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
6361 if (!next_stmt)
6362 break;
6364 /* Skip the gaps. Loads created for the gaps will be removed by dead
6365 code elimination pass later. No need to check for the first stmt in
6366 the group, since it always exists.
6367 DR_GROUP_GAP is the number of steps in elements from the previous
6368 access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
6369 correspond to the gaps. */
6370 if (next_stmt != first_stmt
6371 && gap_count < DR_GROUP_GAP (vinfo_for_stmt (next_stmt)))
6373 gap_count++;
6374 continue;
6377 while (next_stmt)
6379 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
6380 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
6381 copies, and we put the new vector statement in the first available
6382 RELATED_STMT. */
6383 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
6384 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
6385 else
6387 if (!DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
6389 gimple *prev_stmt =
6390 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
6391 gimple *rel_stmt =
6392 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
6393 while (rel_stmt)
6395 prev_stmt = rel_stmt;
6396 rel_stmt =
6397 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
6400 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
6401 new_stmt;
6405 next_stmt = DR_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6406 gap_count = 1;
6407 /* If NEXT_STMT accesses the same DR as the previous statement,
6408 put the same TMP_DATA_REF as its vectorized statement; otherwise
6409 get the next data-ref from RESULT_CHAIN. */
6410 if (!next_stmt || !DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
6411 break;
6416 /* Function vect_force_dr_alignment_p.
6418 Returns whether the alignment of a DECL can be forced to be aligned
6419 on ALIGNMENT bit boundary. */
6421 bool
6422 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
6424 if (!VAR_P (decl))
6425 return false;
6427 if (decl_in_symtab_p (decl)
6428 && !symtab_node::get (decl)->can_increase_alignment_p ())
6429 return false;
6431 if (TREE_STATIC (decl))
6432 return (alignment <= MAX_OFILE_ALIGNMENT);
6433 else
6434 return (alignment <= MAX_STACK_ALIGNMENT);
6438 /* Return whether the data reference DR is supported with respect to its
6439 alignment.
6440 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
6441 it is aligned, i.e., check if it is possible to vectorize it with different
6442 alignment. */
6444 enum dr_alignment_support
6445 vect_supportable_dr_alignment (struct data_reference *dr,
6446 bool check_aligned_accesses)
6448 gimple *stmt = vect_dr_stmt (dr);
6449 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6450 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6451 machine_mode mode = TYPE_MODE (vectype);
6452 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6453 struct loop *vect_loop = NULL;
6454 bool nested_in_vect_loop = false;
6456 if (aligned_access_p (dr) && !check_aligned_accesses)
6457 return dr_aligned;
6459 /* For now assume all conditional loads/stores support unaligned
6460 access without any special code. */
6461 if (is_gimple_call (stmt)
6462 && gimple_call_internal_p (stmt)
6463 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
6464 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
6465 return dr_unaligned_supported;
6467 if (loop_vinfo)
6469 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
6470 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
6473 /* Possibly unaligned access. */
6475 /* We can choose between using the implicit realignment scheme (generating
6476 a misaligned_move stmt) and the explicit realignment scheme (generating
6477 aligned loads with a REALIGN_LOAD). There are two variants to the
6478 explicit realignment scheme: optimized, and unoptimized.
6479 We can optimize the realignment only if the step between consecutive
6480 vector loads is equal to the vector size. Since the vector memory
6481 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
6482 is guaranteed that the misalignment amount remains the same throughout the
6483 execution of the vectorized loop. Therefore, we can create the
6484 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
6485 at the loop preheader.
6487 However, in the case of outer-loop vectorization, when vectorizing a
6488 memory access in the inner-loop nested within the LOOP that is now being
6489 vectorized, while it is guaranteed that the misalignment of the
6490 vectorized memory access will remain the same in different outer-loop
6491 iterations, it is *not* guaranteed that is will remain the same throughout
6492 the execution of the inner-loop. This is because the inner-loop advances
6493 with the original scalar step (and not in steps of VS). If the inner-loop
6494 step happens to be a multiple of VS, then the misalignment remains fixed
6495 and we can use the optimized realignment scheme. For example:
6497 for (i=0; i<N; i++)
6498 for (j=0; j<M; j++)
6499 s += a[i+j];
6501 When vectorizing the i-loop in the above example, the step between
6502 consecutive vector loads is 1, and so the misalignment does not remain
6503 fixed across the execution of the inner-loop, and the realignment cannot
6504 be optimized (as illustrated in the following pseudo vectorized loop):
6506 for (i=0; i<N; i+=4)
6507 for (j=0; j<M; j++){
6508 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
6509 // when j is {0,1,2,3,4,5,6,7,...} respectively.
6510 // (assuming that we start from an aligned address).
6513 We therefore have to use the unoptimized realignment scheme:
6515 for (i=0; i<N; i+=4)
6516 for (j=k; j<M; j+=4)
6517 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
6518 // that the misalignment of the initial address is
6519 // 0).
6521 The loop can then be vectorized as follows:
6523 for (k=0; k<4; k++){
6524 rt = get_realignment_token (&vp[k]);
6525 for (i=0; i<N; i+=4){
6526 v1 = vp[i+k];
6527 for (j=k; j<M; j+=4){
6528 v2 = vp[i+j+VS-1];
6529 va = REALIGN_LOAD <v1,v2,rt>;
6530 vs += va;
6531 v1 = v2;
6534 } */
6536 if (DR_IS_READ (dr))
6538 bool is_packed = false;
6539 tree type = (TREE_TYPE (DR_REF (dr)));
6541 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
6542 && (!targetm.vectorize.builtin_mask_for_load
6543 || targetm.vectorize.builtin_mask_for_load ()))
6545 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6547 /* If we are doing SLP then the accesses need not have the
6548 same alignment, instead it depends on the SLP group size. */
6549 if (loop_vinfo
6550 && STMT_SLP_TYPE (stmt_info)
6551 && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6552 * DR_GROUP_SIZE (vinfo_for_stmt
6553 (DR_GROUP_FIRST_ELEMENT (stmt_info))),
6554 TYPE_VECTOR_SUBPARTS (vectype)))
6556 else if (!loop_vinfo
6557 || (nested_in_vect_loop
6558 && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)),
6559 GET_MODE_SIZE (TYPE_MODE (vectype)))))
6560 return dr_explicit_realign;
6561 else
6562 return dr_explicit_realign_optimized;
6564 if (!known_alignment_for_access_p (dr))
6565 is_packed = not_size_aligned (DR_REF (dr));
6567 if (targetm.vectorize.support_vector_misalignment
6568 (mode, type, DR_MISALIGNMENT (dr), is_packed))
6569 /* Can't software pipeline the loads, but can at least do them. */
6570 return dr_unaligned_supported;
6572 else
6574 bool is_packed = false;
6575 tree type = (TREE_TYPE (DR_REF (dr)));
6577 if (!known_alignment_for_access_p (dr))
6578 is_packed = not_size_aligned (DR_REF (dr));
6580 if (targetm.vectorize.support_vector_misalignment
6581 (mode, type, DR_MISALIGNMENT (dr), is_packed))
6582 return dr_unaligned_supported;
6585 /* Unsupported. */
6586 return dr_unaligned_unsupported;