1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
42 #include "basic-block.h"
47 #include "stringpool.h"
50 #include "hard-reg-set.h"
52 #include "insn-config.h"
56 #include "langhooks.h"
62 struct target_rtl default_target_rtl
;
64 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69 /* Commonly used modes. */
71 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
72 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
73 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
76 /* Datastructures maintained for currently processed function in RTL form. */
78 struct rtl_data x_rtl
;
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
90 static GTY(()) int label_num
= 1;
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
101 REAL_VALUE_TYPE dconst0
;
102 REAL_VALUE_TYPE dconst1
;
103 REAL_VALUE_TYPE dconst2
;
104 REAL_VALUE_TYPE dconstm1
;
105 REAL_VALUE_TYPE dconsthalf
;
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
109 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
116 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
118 /* Standard pieces of rtx, to be substituted directly into things. */
121 rtx simple_return_rtx
;
124 /* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
128 htab_t const_int_htab
;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
131 htab_t const_wide_int_htab
;
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
135 htab_t reg_attrs_htab
;
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
139 htab_t const_double_htab
;
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
143 htab_t const_fixed_htab
;
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
149 static void set_used_decls (tree
);
150 static void mark_label_nuses (rtx
);
151 static hashval_t
const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 #if TARGET_SUPPORTS_WIDE_INT
154 static hashval_t
const_wide_int_htab_hash (const void *);
155 static int const_wide_int_htab_eq (const void *, const void *);
156 static rtx
lookup_const_wide_int (rtx
);
158 static hashval_t
const_double_htab_hash (const void *);
159 static int const_double_htab_eq (const void *, const void *);
160 static rtx
lookup_const_double (rtx
);
161 static hashval_t
const_fixed_htab_hash (const void *);
162 static int const_fixed_htab_eq (const void *, const void *);
163 static rtx
lookup_const_fixed (rtx
);
164 static hashval_t
reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs
*get_reg_attrs (tree
, int);
167 static rtx
gen_const_vector (enum machine_mode
, int);
168 static void copy_rtx_if_shared_1 (rtx
*orig
);
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability
= -1;
174 /* Returns a hash code for X (which is a really a CONST_INT). */
177 const_int_htab_hash (const void *x
)
179 return (hashval_t
) INTVAL ((const_rtx
) x
);
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
187 const_int_htab_eq (const void *x
, const void *y
)
189 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
192 #if TARGET_SUPPORTS_WIDE_INT
193 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
196 const_wide_int_htab_hash (const void *x
)
199 HOST_WIDE_INT hash
= 0;
200 const_rtx xr
= (const_rtx
) x
;
202 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
203 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
205 return (hashval_t
) hash
;
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
213 const_wide_int_htab_eq (const void *x
, const void *y
)
216 const_rtx xr
= (const_rtx
) x
;
217 const_rtx yr
= (const_rtx
) y
;
218 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
221 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
222 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
231 const_double_htab_hash (const void *x
)
233 const_rtx
const value
= (const_rtx
) x
;
236 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
237 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
240 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h
^= GET_MODE (value
);
247 /* Returns nonzero if the value represented by X (really a ...)
248 is the same as that represented by Y (really a ...) */
250 const_double_htab_eq (const void *x
, const void *y
)
252 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
254 if (GET_MODE (a
) != GET_MODE (b
))
256 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
257 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
258 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
261 CONST_DOUBLE_REAL_VALUE (b
));
264 /* Returns a hash code for X (which is really a CONST_FIXED). */
267 const_fixed_htab_hash (const void *x
)
269 const_rtx
const value
= (const_rtx
) x
;
272 h
= fixed_hash (CONST_FIXED_VALUE (value
));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h
^= GET_MODE (value
);
278 /* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
282 const_fixed_htab_eq (const void *x
, const void *y
)
284 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
286 if (GET_MODE (a
) != GET_MODE (b
))
288 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
291 /* Return true if the given memory attributes are equal. */
294 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
296 return (p
->alias
== q
->alias
297 && p
->offset_known_p
== q
->offset_known_p
298 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
299 && p
->size_known_p
== q
->size_known_p
300 && (!p
->size_known_p
|| p
->size
== q
->size
)
301 && p
->align
== q
->align
302 && p
->addrspace
== q
->addrspace
303 && (p
->expr
== q
->expr
304 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
305 && operand_equal_p (p
->expr
, q
->expr
, 0))));
308 /* Set MEM's memory attributes so that they are the same as ATTRS. */
311 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
313 /* If everything is the default, we can just clear the attributes. */
314 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
321 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
323 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
324 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
328 /* Returns a hash code for X (which is a really a reg_attrs *). */
331 reg_attrs_htab_hash (const void *x
)
333 const reg_attrs
*const p
= (const reg_attrs
*) x
;
335 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
338 /* Returns nonzero if the value represented by X (which is really a
339 reg_attrs *) is the same as that given by Y (which is also really a
343 reg_attrs_htab_eq (const void *x
, const void *y
)
345 const reg_attrs
*const p
= (const reg_attrs
*) x
;
346 const reg_attrs
*const q
= (const reg_attrs
*) y
;
348 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
350 /* Allocate a new reg_attrs structure and insert it into the hash table if
351 one identical to it is not already in the table. We are doing this for
355 get_reg_attrs (tree decl
, int offset
)
360 /* If everything is the default, we can just return zero. */
361 if (decl
== 0 && offset
== 0)
365 attrs
.offset
= offset
;
367 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
370 *slot
= ggc_alloc
<reg_attrs
> ();
371 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
374 return (reg_attrs
*) *slot
;
379 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
380 and to block register equivalences to be seen across this insn. */
385 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
386 MEM_VOLATILE_P (x
) = true;
392 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
393 don't attempt to share with the various global pieces of rtl (such as
394 frame_pointer_rtx). */
397 gen_raw_REG (enum machine_mode mode
, int regno
)
399 rtx x
= gen_rtx_raw_REG (mode
, regno
);
400 ORIGINAL_REGNO (x
) = regno
;
404 /* There are some RTL codes that require special attention; the generation
405 functions do the raw handling. If you add to this list, modify
406 special_rtx in gengenrtl.c as well. */
409 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
413 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
414 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
416 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
417 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
418 return const_true_rtx
;
421 /* Look up the CONST_INT in the hash table. */
422 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
423 (hashval_t
) arg
, INSERT
);
425 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
431 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
433 return GEN_INT (trunc_int_for_mode (c
, mode
));
436 /* CONST_DOUBLEs might be created from pairs of integers, or from
437 REAL_VALUE_TYPEs. Also, their length is known only at run time,
438 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
440 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
441 hash table. If so, return its counterpart; otherwise add it
442 to the hash table and return it. */
444 lookup_const_double (rtx real
)
446 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
453 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
454 VALUE in mode MODE. */
456 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
458 rtx real
= rtx_alloc (CONST_DOUBLE
);
459 PUT_MODE (real
, mode
);
463 return lookup_const_double (real
);
466 /* Determine whether FIXED, a CONST_FIXED, already exists in the
467 hash table. If so, return its counterpart; otherwise add it
468 to the hash table and return it. */
471 lookup_const_fixed (rtx fixed
)
473 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
480 /* Return a CONST_FIXED rtx for a fixed-point value specified by
481 VALUE in mode MODE. */
484 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
486 rtx fixed
= rtx_alloc (CONST_FIXED
);
487 PUT_MODE (fixed
, mode
);
491 return lookup_const_fixed (fixed
);
494 #if TARGET_SUPPORTS_WIDE_INT == 0
495 /* Constructs double_int from rtx CST. */
498 rtx_to_double_int (const_rtx cst
)
502 if (CONST_INT_P (cst
))
503 r
= double_int::from_shwi (INTVAL (cst
));
504 else if (CONST_DOUBLE_AS_INT_P (cst
))
506 r
.low
= CONST_DOUBLE_LOW (cst
);
507 r
.high
= CONST_DOUBLE_HIGH (cst
);
516 #if TARGET_SUPPORTS_WIDE_INT
517 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
518 If so, return its counterpart; otherwise add it to the hash table and
522 lookup_const_wide_int (rtx wint
)
524 void **slot
= htab_find_slot (const_wide_int_htab
, wint
, INSERT
);
532 /* Return an rtx constant for V, given that the constant has mode MODE.
533 The returned rtx will be a CONST_INT if V fits, otherwise it will be
534 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
535 (if TARGET_SUPPORTS_WIDE_INT). */
538 immed_wide_int_const (const wide_int_ref
&v
, enum machine_mode mode
)
540 unsigned int len
= v
.get_len ();
541 unsigned int prec
= GET_MODE_PRECISION (mode
);
543 /* Allow truncation but not extension since we do not know if the
544 number is signed or unsigned. */
545 gcc_assert (prec
<= v
.get_precision ());
547 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
548 return gen_int_mode (v
.elt (0), mode
);
550 #if TARGET_SUPPORTS_WIDE_INT
554 unsigned int blocks_needed
555 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
557 if (len
> blocks_needed
)
560 value
= const_wide_int_alloc (len
);
562 /* It is so tempting to just put the mode in here. Must control
564 PUT_MODE (value
, VOIDmode
);
565 CWI_PUT_NUM_ELEM (value
, len
);
567 for (i
= 0; i
< len
; i
++)
568 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
570 return lookup_const_wide_int (value
);
573 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
577 #if TARGET_SUPPORTS_WIDE_INT == 0
578 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
579 of ints: I0 is the low-order word and I1 is the high-order word.
580 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
581 implied upper bits are copies of the high bit of i1. The value
582 itself is neither signed nor unsigned. Do not use this routine for
583 non-integer modes; convert to REAL_VALUE_TYPE and use
584 CONST_DOUBLE_FROM_REAL_VALUE. */
587 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
592 /* There are the following cases (note that there are no modes with
593 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
595 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
597 2) If the value of the integer fits into HOST_WIDE_INT anyway
598 (i.e., i1 consists only from copies of the sign bit, and sign
599 of i0 and i1 are the same), then we return a CONST_INT for i0.
600 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
601 if (mode
!= VOIDmode
)
603 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
604 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
605 /* We can get a 0 for an error mark. */
606 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
607 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
609 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
610 return gen_int_mode (i0
, mode
);
613 /* If this integer fits in one word, return a CONST_INT. */
614 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
617 /* We use VOIDmode for integers. */
618 value
= rtx_alloc (CONST_DOUBLE
);
619 PUT_MODE (value
, VOIDmode
);
621 CONST_DOUBLE_LOW (value
) = i0
;
622 CONST_DOUBLE_HIGH (value
) = i1
;
624 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
625 XWINT (value
, i
) = 0;
627 return lookup_const_double (value
);
632 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
634 /* In case the MD file explicitly references the frame pointer, have
635 all such references point to the same frame pointer. This is
636 used during frame pointer elimination to distinguish the explicit
637 references to these registers from pseudos that happened to be
640 If we have eliminated the frame pointer or arg pointer, we will
641 be using it as a normal register, for example as a spill
642 register. In such cases, we might be accessing it in a mode that
643 is not Pmode and therefore cannot use the pre-allocated rtx.
645 Also don't do this when we are making new REGs in reload, since
646 we don't want to get confused with the real pointers. */
648 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
650 if (regno
== FRAME_POINTER_REGNUM
651 && (!reload_completed
|| frame_pointer_needed
))
652 return frame_pointer_rtx
;
653 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
654 if (regno
== HARD_FRAME_POINTER_REGNUM
655 && (!reload_completed
|| frame_pointer_needed
))
656 return hard_frame_pointer_rtx
;
658 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
659 if (regno
== ARG_POINTER_REGNUM
)
660 return arg_pointer_rtx
;
662 #ifdef RETURN_ADDRESS_POINTER_REGNUM
663 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
664 return return_address_pointer_rtx
;
666 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
667 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
668 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
669 return pic_offset_table_rtx
;
670 if (regno
== STACK_POINTER_REGNUM
)
671 return stack_pointer_rtx
;
675 /* If the per-function register table has been set up, try to re-use
676 an existing entry in that table to avoid useless generation of RTL.
678 This code is disabled for now until we can fix the various backends
679 which depend on having non-shared hard registers in some cases. Long
680 term we want to re-enable this code as it can significantly cut down
681 on the amount of useless RTL that gets generated.
683 We'll also need to fix some code that runs after reload that wants to
684 set ORIGINAL_REGNO. */
689 && regno
< FIRST_PSEUDO_REGISTER
690 && reg_raw_mode
[regno
] == mode
)
691 return regno_reg_rtx
[regno
];
694 return gen_raw_REG (mode
, regno
);
698 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
700 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
702 /* This field is not cleared by the mere allocation of the rtx, so
709 /* Generate a memory referring to non-trapping constant memory. */
712 gen_const_mem (enum machine_mode mode
, rtx addr
)
714 rtx mem
= gen_rtx_MEM (mode
, addr
);
715 MEM_READONLY_P (mem
) = 1;
716 MEM_NOTRAP_P (mem
) = 1;
720 /* Generate a MEM referring to fixed portions of the frame, e.g., register
724 gen_frame_mem (enum machine_mode mode
, rtx addr
)
726 rtx mem
= gen_rtx_MEM (mode
, addr
);
727 MEM_NOTRAP_P (mem
) = 1;
728 set_mem_alias_set (mem
, get_frame_alias_set ());
732 /* Generate a MEM referring to a temporary use of the stack, not part
733 of the fixed stack frame. For example, something which is pushed
734 by a target splitter. */
736 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
738 rtx mem
= gen_rtx_MEM (mode
, addr
);
739 MEM_NOTRAP_P (mem
) = 1;
740 if (!cfun
->calls_alloca
)
741 set_mem_alias_set (mem
, get_frame_alias_set ());
745 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
746 this construct would be valid, and false otherwise. */
749 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
750 const_rtx reg
, unsigned int offset
)
752 unsigned int isize
= GET_MODE_SIZE (imode
);
753 unsigned int osize
= GET_MODE_SIZE (omode
);
755 /* All subregs must be aligned. */
756 if (offset
% osize
!= 0)
759 /* The subreg offset cannot be outside the inner object. */
763 /* ??? This should not be here. Temporarily continue to allow word_mode
764 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
765 Generally, backends are doing something sketchy but it'll take time to
767 if (omode
== word_mode
)
769 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
770 is the culprit here, and not the backends. */
771 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
773 /* Allow component subregs of complex and vector. Though given the below
774 extraction rules, it's not always clear what that means. */
775 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
776 && GET_MODE_INNER (imode
) == omode
)
778 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
779 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
780 represent this. It's questionable if this ought to be represented at
781 all -- why can't this all be hidden in post-reload splitters that make
782 arbitrarily mode changes to the registers themselves. */
783 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
785 /* Subregs involving floating point modes are not allowed to
786 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
787 (subreg:SI (reg:DF) 0) isn't. */
788 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
790 if (! (isize
== osize
791 /* LRA can use subreg to store a floating point value in
792 an integer mode. Although the floating point and the
793 integer modes need the same number of hard registers,
794 the size of floating point mode can be less than the
795 integer mode. LRA also uses subregs for a register
796 should be used in different mode in on insn. */
801 /* Paradoxical subregs must have offset zero. */
805 /* This is a normal subreg. Verify that the offset is representable. */
807 /* For hard registers, we already have most of these rules collected in
808 subreg_offset_representable_p. */
809 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
811 unsigned int regno
= REGNO (reg
);
813 #ifdef CANNOT_CHANGE_MODE_CLASS
814 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
815 && GET_MODE_INNER (imode
) == omode
)
817 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
821 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
824 /* For pseudo registers, we want most of the same checks. Namely:
825 If the register no larger than a word, the subreg must be lowpart.
826 If the register is larger than a word, the subreg must be the lowpart
827 of a subword. A subreg does *not* perform arbitrary bit extraction.
828 Given that we've already checked mode/offset alignment, we only have
829 to check subword subregs here. */
830 if (osize
< UNITS_PER_WORD
831 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
833 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
834 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
835 if (offset
% UNITS_PER_WORD
!= low_off
)
842 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
844 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
845 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
848 /* Generate a SUBREG representing the least-significant part of REG if MODE
849 is smaller than mode of REG, otherwise paradoxical SUBREG. */
852 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
854 enum machine_mode inmode
;
856 inmode
= GET_MODE (reg
);
857 if (inmode
== VOIDmode
)
859 return gen_rtx_SUBREG (mode
, reg
,
860 subreg_lowpart_offset (mode
, inmode
));
864 gen_rtx_VAR_LOCATION (enum machine_mode mode
, tree decl
, rtx loc
,
865 enum var_init_status status
)
867 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
868 PAT_VAR_LOCATION_STATUS (x
) = status
;
873 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
876 gen_rtvec (int n
, ...)
884 /* Don't allocate an empty rtvec... */
891 rt_val
= rtvec_alloc (n
);
893 for (i
= 0; i
< n
; i
++)
894 rt_val
->elem
[i
] = va_arg (p
, rtx
);
901 gen_rtvec_v (int n
, rtx
*argp
)
906 /* Don't allocate an empty rtvec... */
910 rt_val
= rtvec_alloc (n
);
912 for (i
= 0; i
< n
; i
++)
913 rt_val
->elem
[i
] = *argp
++;
918 /* Return the number of bytes between the start of an OUTER_MODE
919 in-memory value and the start of an INNER_MODE in-memory value,
920 given that the former is a lowpart of the latter. It may be a
921 paradoxical lowpart, in which case the offset will be negative
922 on big-endian targets. */
925 byte_lowpart_offset (enum machine_mode outer_mode
,
926 enum machine_mode inner_mode
)
928 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
929 return subreg_lowpart_offset (outer_mode
, inner_mode
);
931 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
934 /* Generate a REG rtx for a new pseudo register of mode MODE.
935 This pseudo is assigned the next sequential register number. */
938 gen_reg_rtx (enum machine_mode mode
)
941 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
943 gcc_assert (can_create_pseudo_p ());
945 /* If a virtual register with bigger mode alignment is generated,
946 increase stack alignment estimation because it might be spilled
948 if (SUPPORTS_STACK_ALIGNMENT
949 && crtl
->stack_alignment_estimated
< align
950 && !crtl
->stack_realign_processed
)
952 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
953 if (crtl
->stack_alignment_estimated
< min_align
)
954 crtl
->stack_alignment_estimated
= min_align
;
957 if (generating_concat_p
958 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
959 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
961 /* For complex modes, don't make a single pseudo.
962 Instead, make a CONCAT of two pseudos.
963 This allows noncontiguous allocation of the real and imaginary parts,
964 which makes much better code. Besides, allocating DCmode
965 pseudos overstrains reload on some machines like the 386. */
966 rtx realpart
, imagpart
;
967 enum machine_mode partmode
= GET_MODE_INNER (mode
);
969 realpart
= gen_reg_rtx (partmode
);
970 imagpart
= gen_reg_rtx (partmode
);
971 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
974 /* Do not call gen_reg_rtx with uninitialized crtl. */
975 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
977 /* Make sure regno_pointer_align, and regno_reg_rtx are large
978 enough to have an element for this pseudo reg number. */
980 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
982 int old_size
= crtl
->emit
.regno_pointer_align_length
;
986 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
987 memset (tmp
+ old_size
, 0, old_size
);
988 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
990 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
991 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
992 regno_reg_rtx
= new1
;
994 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
997 val
= gen_raw_REG (mode
, reg_rtx_no
);
998 regno_reg_rtx
[reg_rtx_no
++] = val
;
1002 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1005 reg_is_parm_p (rtx reg
)
1009 gcc_assert (REG_P (reg
));
1010 decl
= REG_EXPR (reg
);
1011 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1014 /* Update NEW with the same attributes as REG, but with OFFSET added
1015 to the REG_OFFSET. */
1018 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
1020 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1021 REG_OFFSET (reg
) + offset
);
1024 /* Generate a register with same attributes as REG, but with OFFSET
1025 added to the REG_OFFSET. */
1028 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
1031 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1033 update_reg_offset (new_rtx
, reg
, offset
);
1037 /* Generate a new pseudo-register with the same attributes as REG, but
1038 with OFFSET added to the REG_OFFSET. */
1041 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
1043 rtx new_rtx
= gen_reg_rtx (mode
);
1045 update_reg_offset (new_rtx
, reg
, offset
);
1049 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1050 new register is a (possibly paradoxical) lowpart of the old one. */
1053 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
1055 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1056 PUT_MODE (reg
, mode
);
1059 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1060 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1063 set_reg_attrs_from_value (rtx reg
, rtx x
)
1066 bool can_be_reg_pointer
= true;
1068 /* Don't call mark_reg_pointer for incompatible pointer sign
1070 while (GET_CODE (x
) == SIGN_EXTEND
1071 || GET_CODE (x
) == ZERO_EXTEND
1072 || GET_CODE (x
) == TRUNCATE
1073 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1075 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1076 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1077 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
1078 can_be_reg_pointer
= false;
1083 /* Hard registers can be reused for multiple purposes within the same
1084 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1085 on them is wrong. */
1086 if (HARD_REGISTER_P (reg
))
1089 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1092 if (MEM_OFFSET_KNOWN_P (x
))
1093 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1094 MEM_OFFSET (x
) + offset
);
1095 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1096 mark_reg_pointer (reg
, 0);
1101 update_reg_offset (reg
, x
, offset
);
1102 if (can_be_reg_pointer
&& REG_POINTER (x
))
1103 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1107 /* Generate a REG rtx for a new pseudo register, copying the mode
1108 and attributes from X. */
1111 gen_reg_rtx_and_attrs (rtx x
)
1113 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1114 set_reg_attrs_from_value (reg
, x
);
1118 /* Set the register attributes for registers contained in PARM_RTX.
1119 Use needed values from memory attributes of MEM. */
1122 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1124 if (REG_P (parm_rtx
))
1125 set_reg_attrs_from_value (parm_rtx
, mem
);
1126 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1128 /* Check for a NULL entry in the first slot, used to indicate that the
1129 parameter goes both on the stack and in registers. */
1130 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1131 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1133 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1134 if (REG_P (XEXP (x
, 0)))
1135 REG_ATTRS (XEXP (x
, 0))
1136 = get_reg_attrs (MEM_EXPR (mem
),
1137 INTVAL (XEXP (x
, 1)));
1142 /* Set the REG_ATTRS for registers in value X, given that X represents
1146 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1148 if (GET_CODE (x
) == SUBREG
)
1150 gcc_assert (subreg_lowpart_p (x
));
1155 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1157 if (GET_CODE (x
) == CONCAT
)
1159 if (REG_P (XEXP (x
, 0)))
1160 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1161 if (REG_P (XEXP (x
, 1)))
1162 REG_ATTRS (XEXP (x
, 1))
1163 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1165 if (GET_CODE (x
) == PARALLEL
)
1169 /* Check for a NULL entry, used to indicate that the parameter goes
1170 both on the stack and in registers. */
1171 if (XEXP (XVECEXP (x
, 0, 0), 0))
1176 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1178 rtx y
= XVECEXP (x
, 0, i
);
1179 if (REG_P (XEXP (y
, 0)))
1180 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1185 /* Assign the RTX X to declaration T. */
1188 set_decl_rtl (tree t
, rtx x
)
1190 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1192 set_reg_attrs_for_decl_rtl (t
, x
);
1195 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1196 if the ABI requires the parameter to be passed by reference. */
1199 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1201 DECL_INCOMING_RTL (t
) = x
;
1202 if (x
&& !by_reference_p
)
1203 set_reg_attrs_for_decl_rtl (t
, x
);
1206 /* Identify REG (which may be a CONCAT) as a user register. */
1209 mark_user_reg (rtx reg
)
1211 if (GET_CODE (reg
) == CONCAT
)
1213 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1214 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1218 gcc_assert (REG_P (reg
));
1219 REG_USERVAR_P (reg
) = 1;
1223 /* Identify REG as a probable pointer register and show its alignment
1224 as ALIGN, if nonzero. */
1227 mark_reg_pointer (rtx reg
, int align
)
1229 if (! REG_POINTER (reg
))
1231 REG_POINTER (reg
) = 1;
1234 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1236 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1237 /* We can no-longer be sure just how aligned this pointer is. */
1238 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1241 /* Return 1 plus largest pseudo reg number used in the current function. */
1249 /* Return 1 + the largest label number used so far in the current function. */
1252 max_label_num (void)
1257 /* Return first label number used in this function (if any were used). */
1260 get_first_label_num (void)
1262 return first_label_num
;
1265 /* If the rtx for label was created during the expansion of a nested
1266 function, then first_label_num won't include this label number.
1267 Fix this now so that array indices work later. */
1270 maybe_set_first_label_num (rtx x
)
1272 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1273 first_label_num
= CODE_LABEL_NUMBER (x
);
1276 /* Return a value representing some low-order bits of X, where the number
1277 of low-order bits is given by MODE. Note that no conversion is done
1278 between floating-point and fixed-point values, rather, the bit
1279 representation is returned.
1281 This function handles the cases in common between gen_lowpart, below,
1282 and two variants in cse.c and combine.c. These are the cases that can
1283 be safely handled at all points in the compilation.
1285 If this is not a case we can handle, return 0. */
1288 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1290 int msize
= GET_MODE_SIZE (mode
);
1293 enum machine_mode innermode
;
1295 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1296 so we have to make one up. Yuk. */
1297 innermode
= GET_MODE (x
);
1299 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1300 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1301 else if (innermode
== VOIDmode
)
1302 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1304 xsize
= GET_MODE_SIZE (innermode
);
1306 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1308 if (innermode
== mode
)
1311 /* MODE must occupy no more words than the mode of X. */
1312 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1313 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1316 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1317 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1320 offset
= subreg_lowpart_offset (mode
, innermode
);
1322 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1323 && (GET_MODE_CLASS (mode
) == MODE_INT
1324 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1326 /* If we are getting the low-order part of something that has been
1327 sign- or zero-extended, we can either just use the object being
1328 extended or make a narrower extension. If we want an even smaller
1329 piece than the size of the object being extended, call ourselves
1332 This case is used mostly by combine and cse. */
1334 if (GET_MODE (XEXP (x
, 0)) == mode
)
1336 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1337 return gen_lowpart_common (mode
, XEXP (x
, 0));
1338 else if (msize
< xsize
)
1339 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1341 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1342 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1343 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1344 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1346 /* Otherwise, we can't do this. */
1351 gen_highpart (enum machine_mode mode
, rtx x
)
1353 unsigned int msize
= GET_MODE_SIZE (mode
);
1356 /* This case loses if X is a subreg. To catch bugs early,
1357 complain if an invalid MODE is used even in other cases. */
1358 gcc_assert (msize
<= UNITS_PER_WORD
1359 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1361 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1362 subreg_highpart_offset (mode
, GET_MODE (x
)));
1363 gcc_assert (result
);
1365 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1366 the target if we have a MEM. gen_highpart must return a valid operand,
1367 emitting code if necessary to do so. */
1370 result
= validize_mem (result
);
1371 gcc_assert (result
);
1377 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1378 be VOIDmode constant. */
1380 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1382 if (GET_MODE (exp
) != VOIDmode
)
1384 gcc_assert (GET_MODE (exp
) == innermode
);
1385 return gen_highpart (outermode
, exp
);
1387 return simplify_gen_subreg (outermode
, exp
, innermode
,
1388 subreg_highpart_offset (outermode
, innermode
));
1391 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1394 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1396 unsigned int offset
= 0;
1397 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1401 if (WORDS_BIG_ENDIAN
)
1402 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1403 if (BYTES_BIG_ENDIAN
)
1404 offset
+= difference
% UNITS_PER_WORD
;
1410 /* Return offset in bytes to get OUTERMODE high part
1411 of the value in mode INNERMODE stored in memory in target format. */
1413 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1415 unsigned int offset
= 0;
1416 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1418 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1422 if (! WORDS_BIG_ENDIAN
)
1423 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1424 if (! BYTES_BIG_ENDIAN
)
1425 offset
+= difference
% UNITS_PER_WORD
;
1431 /* Return 1 iff X, assumed to be a SUBREG,
1432 refers to the least significant part of its containing reg.
1433 If X is not a SUBREG, always return 1 (it is its own low part!). */
1436 subreg_lowpart_p (const_rtx x
)
1438 if (GET_CODE (x
) != SUBREG
)
1440 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1443 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1444 == SUBREG_BYTE (x
));
1447 /* Return true if X is a paradoxical subreg, false otherwise. */
1449 paradoxical_subreg_p (const_rtx x
)
1451 if (GET_CODE (x
) != SUBREG
)
1453 return (GET_MODE_PRECISION (GET_MODE (x
))
1454 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1457 /* Return subword OFFSET of operand OP.
1458 The word number, OFFSET, is interpreted as the word number starting
1459 at the low-order address. OFFSET 0 is the low-order word if not
1460 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1462 If we cannot extract the required word, we return zero. Otherwise,
1463 an rtx corresponding to the requested word will be returned.
1465 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1466 reload has completed, a valid address will always be returned. After
1467 reload, if a valid address cannot be returned, we return zero.
1469 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1470 it is the responsibility of the caller.
1472 MODE is the mode of OP in case it is a CONST_INT.
1474 ??? This is still rather broken for some cases. The problem for the
1475 moment is that all callers of this thing provide no 'goal mode' to
1476 tell us to work with. This exists because all callers were written
1477 in a word based SUBREG world.
1478 Now use of this function can be deprecated by simplify_subreg in most
1483 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1485 if (mode
== VOIDmode
)
1486 mode
= GET_MODE (op
);
1488 gcc_assert (mode
!= VOIDmode
);
1490 /* If OP is narrower than a word, fail. */
1492 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1495 /* If we want a word outside OP, return zero. */
1497 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1500 /* Form a new MEM at the requested address. */
1503 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1505 if (! validate_address
)
1508 else if (reload_completed
)
1510 if (! strict_memory_address_addr_space_p (word_mode
,
1512 MEM_ADDR_SPACE (op
)))
1516 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1519 /* Rest can be handled by simplify_subreg. */
1520 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1523 /* Similar to `operand_subword', but never return 0. If we can't
1524 extract the required subword, put OP into a register and try again.
1525 The second attempt must succeed. We always validate the address in
1528 MODE is the mode of OP, in case it is CONST_INT. */
1531 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1533 rtx result
= operand_subword (op
, offset
, 1, mode
);
1538 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1540 /* If this is a register which can not be accessed by words, copy it
1541 to a pseudo register. */
1543 op
= copy_to_reg (op
);
1545 op
= force_reg (mode
, op
);
1548 result
= operand_subword (op
, offset
, 1, mode
);
1549 gcc_assert (result
);
1554 /* Returns 1 if both MEM_EXPR can be considered equal
1558 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1563 if (! expr1
|| ! expr2
)
1566 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1569 return operand_equal_p (expr1
, expr2
, 0);
1572 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1573 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1577 get_mem_align_offset (rtx mem
, unsigned int align
)
1580 unsigned HOST_WIDE_INT offset
;
1582 /* This function can't use
1583 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1584 || (MAX (MEM_ALIGN (mem),
1585 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1589 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1591 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1592 for <variable>. get_inner_reference doesn't handle it and
1593 even if it did, the alignment in that case needs to be determined
1594 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1595 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1596 isn't sufficiently aligned, the object it is in might be. */
1597 gcc_assert (MEM_P (mem
));
1598 expr
= MEM_EXPR (mem
);
1599 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1602 offset
= MEM_OFFSET (mem
);
1605 if (DECL_ALIGN (expr
) < align
)
1608 else if (INDIRECT_REF_P (expr
))
1610 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1613 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1617 tree inner
= TREE_OPERAND (expr
, 0);
1618 tree field
= TREE_OPERAND (expr
, 1);
1619 tree byte_offset
= component_ref_field_offset (expr
);
1620 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1623 || !tree_fits_uhwi_p (byte_offset
)
1624 || !tree_fits_uhwi_p (bit_offset
))
1627 offset
+= tree_to_uhwi (byte_offset
);
1628 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1630 if (inner
== NULL_TREE
)
1632 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1633 < (unsigned int) align
)
1637 else if (DECL_P (inner
))
1639 if (DECL_ALIGN (inner
) < align
)
1643 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1651 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1654 /* Given REF (a MEM) and T, either the type of X or the expression
1655 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1656 if we are making a new object of this type. BITPOS is nonzero if
1657 there is an offset outstanding on T that will be applied later. */
1660 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1661 HOST_WIDE_INT bitpos
)
1663 HOST_WIDE_INT apply_bitpos
= 0;
1665 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1668 /* It can happen that type_for_mode was given a mode for which there
1669 is no language-level type. In which case it returns NULL, which
1674 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1675 if (type
== error_mark_node
)
1678 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1679 wrong answer, as it assumes that DECL_RTL already has the right alias
1680 info. Callers should not set DECL_RTL until after the call to
1681 set_mem_attributes. */
1682 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1684 memset (&attrs
, 0, sizeof (attrs
));
1686 /* Get the alias set from the expression or type (perhaps using a
1687 front-end routine) and use it. */
1688 attrs
.alias
= get_alias_set (t
);
1690 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1691 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1693 /* Default values from pre-existing memory attributes if present. */
1694 refattrs
= MEM_ATTRS (ref
);
1697 /* ??? Can this ever happen? Calling this routine on a MEM that
1698 already carries memory attributes should probably be invalid. */
1699 attrs
.expr
= refattrs
->expr
;
1700 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1701 attrs
.offset
= refattrs
->offset
;
1702 attrs
.size_known_p
= refattrs
->size_known_p
;
1703 attrs
.size
= refattrs
->size
;
1704 attrs
.align
= refattrs
->align
;
1707 /* Otherwise, default values from the mode of the MEM reference. */
1710 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1711 gcc_assert (!defattrs
->expr
);
1712 gcc_assert (!defattrs
->offset_known_p
);
1714 /* Respect mode size. */
1715 attrs
.size_known_p
= defattrs
->size_known_p
;
1716 attrs
.size
= defattrs
->size
;
1717 /* ??? Is this really necessary? We probably should always get
1718 the size from the type below. */
1720 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1721 if T is an object, always compute the object alignment below. */
1723 attrs
.align
= defattrs
->align
;
1725 attrs
.align
= BITS_PER_UNIT
;
1726 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1727 e.g. if the type carries an alignment attribute. Should we be
1728 able to simply always use TYPE_ALIGN? */
1731 /* We can set the alignment from the type if we are making an object,
1732 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1733 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1734 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1736 /* If the size is known, we can set that. */
1737 tree new_size
= TYPE_SIZE_UNIT (type
);
1739 /* The address-space is that of the type. */
1740 as
= TYPE_ADDR_SPACE (type
);
1742 /* If T is not a type, we may be able to deduce some more information about
1748 if (TREE_THIS_VOLATILE (t
))
1749 MEM_VOLATILE_P (ref
) = 1;
1751 /* Now remove any conversions: they don't change what the underlying
1752 object is. Likewise for SAVE_EXPR. */
1753 while (CONVERT_EXPR_P (t
)
1754 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1755 || TREE_CODE (t
) == SAVE_EXPR
)
1756 t
= TREE_OPERAND (t
, 0);
1758 /* Note whether this expression can trap. */
1759 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1761 base
= get_base_address (t
);
1765 && TREE_READONLY (base
)
1766 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1767 && !TREE_THIS_VOLATILE (base
))
1768 MEM_READONLY_P (ref
) = 1;
1770 /* Mark static const strings readonly as well. */
1771 if (TREE_CODE (base
) == STRING_CST
1772 && TREE_READONLY (base
)
1773 && TREE_STATIC (base
))
1774 MEM_READONLY_P (ref
) = 1;
1776 /* Address-space information is on the base object. */
1777 if (TREE_CODE (base
) == MEM_REF
1778 || TREE_CODE (base
) == TARGET_MEM_REF
)
1779 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1782 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1785 /* If this expression uses it's parent's alias set, mark it such
1786 that we won't change it. */
1787 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1788 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1790 /* If this is a decl, set the attributes of the MEM from it. */
1794 attrs
.offset_known_p
= true;
1796 apply_bitpos
= bitpos
;
1797 new_size
= DECL_SIZE_UNIT (t
);
1800 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1801 else if (CONSTANT_CLASS_P (t
))
1804 /* If this is a field reference, record it. */
1805 else if (TREE_CODE (t
) == COMPONENT_REF
)
1808 attrs
.offset_known_p
= true;
1810 apply_bitpos
= bitpos
;
1811 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1812 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1815 /* If this is an array reference, look for an outer field reference. */
1816 else if (TREE_CODE (t
) == ARRAY_REF
)
1818 tree off_tree
= size_zero_node
;
1819 /* We can't modify t, because we use it at the end of the
1825 tree index
= TREE_OPERAND (t2
, 1);
1826 tree low_bound
= array_ref_low_bound (t2
);
1827 tree unit_size
= array_ref_element_size (t2
);
1829 /* We assume all arrays have sizes that are a multiple of a byte.
1830 First subtract the lower bound, if any, in the type of the
1831 index, then convert to sizetype and multiply by the size of
1832 the array element. */
1833 if (! integer_zerop (low_bound
))
1834 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1837 off_tree
= size_binop (PLUS_EXPR
,
1838 size_binop (MULT_EXPR
,
1839 fold_convert (sizetype
,
1843 t2
= TREE_OPERAND (t2
, 0);
1845 while (TREE_CODE (t2
) == ARRAY_REF
);
1848 || TREE_CODE (t2
) == COMPONENT_REF
)
1851 attrs
.offset_known_p
= false;
1852 if (tree_fits_uhwi_p (off_tree
))
1854 attrs
.offset_known_p
= true;
1855 attrs
.offset
= tree_to_uhwi (off_tree
);
1856 apply_bitpos
= bitpos
;
1859 /* Else do not record a MEM_EXPR. */
1862 /* If this is an indirect reference, record it. */
1863 else if (TREE_CODE (t
) == MEM_REF
1864 || TREE_CODE (t
) == TARGET_MEM_REF
)
1867 attrs
.offset_known_p
= true;
1869 apply_bitpos
= bitpos
;
1872 /* Compute the alignment. */
1873 unsigned int obj_align
;
1874 unsigned HOST_WIDE_INT obj_bitpos
;
1875 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1876 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1877 if (obj_bitpos
!= 0)
1878 obj_align
= (obj_bitpos
& -obj_bitpos
);
1879 attrs
.align
= MAX (attrs
.align
, obj_align
);
1882 if (tree_fits_uhwi_p (new_size
))
1884 attrs
.size_known_p
= true;
1885 attrs
.size
= tree_to_uhwi (new_size
);
1888 /* If we modified OFFSET based on T, then subtract the outstanding
1889 bit position offset. Similarly, increase the size of the accessed
1890 object to contain the negative offset. */
1893 gcc_assert (attrs
.offset_known_p
);
1894 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1895 if (attrs
.size_known_p
)
1896 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1899 /* Now set the attributes we computed above. */
1900 attrs
.addrspace
= as
;
1901 set_mem_attrs (ref
, &attrs
);
1905 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1907 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1910 /* Set the alias set of MEM to SET. */
1913 set_mem_alias_set (rtx mem
, alias_set_type set
)
1915 struct mem_attrs attrs
;
1917 /* If the new and old alias sets don't conflict, something is wrong. */
1918 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1919 attrs
= *get_mem_attrs (mem
);
1921 set_mem_attrs (mem
, &attrs
);
1924 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1927 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1929 struct mem_attrs attrs
;
1931 attrs
= *get_mem_attrs (mem
);
1932 attrs
.addrspace
= addrspace
;
1933 set_mem_attrs (mem
, &attrs
);
1936 /* Set the alignment of MEM to ALIGN bits. */
1939 set_mem_align (rtx mem
, unsigned int align
)
1941 struct mem_attrs attrs
;
1943 attrs
= *get_mem_attrs (mem
);
1944 attrs
.align
= align
;
1945 set_mem_attrs (mem
, &attrs
);
1948 /* Set the expr for MEM to EXPR. */
1951 set_mem_expr (rtx mem
, tree expr
)
1953 struct mem_attrs attrs
;
1955 attrs
= *get_mem_attrs (mem
);
1957 set_mem_attrs (mem
, &attrs
);
1960 /* Set the offset of MEM to OFFSET. */
1963 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1965 struct mem_attrs attrs
;
1967 attrs
= *get_mem_attrs (mem
);
1968 attrs
.offset_known_p
= true;
1969 attrs
.offset
= offset
;
1970 set_mem_attrs (mem
, &attrs
);
1973 /* Clear the offset of MEM. */
1976 clear_mem_offset (rtx mem
)
1978 struct mem_attrs attrs
;
1980 attrs
= *get_mem_attrs (mem
);
1981 attrs
.offset_known_p
= false;
1982 set_mem_attrs (mem
, &attrs
);
1985 /* Set the size of MEM to SIZE. */
1988 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1990 struct mem_attrs attrs
;
1992 attrs
= *get_mem_attrs (mem
);
1993 attrs
.size_known_p
= true;
1995 set_mem_attrs (mem
, &attrs
);
1998 /* Clear the size of MEM. */
2001 clear_mem_size (rtx mem
)
2003 struct mem_attrs attrs
;
2005 attrs
= *get_mem_attrs (mem
);
2006 attrs
.size_known_p
= false;
2007 set_mem_attrs (mem
, &attrs
);
2010 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2011 and its address changed to ADDR. (VOIDmode means don't change the mode.
2012 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2013 returned memory location is required to be valid. INPLACE is true if any
2014 changes can be made directly to MEMREF or false if MEMREF must be treated
2017 The memory attributes are not changed. */
2020 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
,
2026 gcc_assert (MEM_P (memref
));
2027 as
= MEM_ADDR_SPACE (memref
);
2028 if (mode
== VOIDmode
)
2029 mode
= GET_MODE (memref
);
2031 addr
= XEXP (memref
, 0);
2032 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2033 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2036 /* Don't validate address for LRA. LRA can make the address valid
2037 by itself in most efficient way. */
2038 if (validate
&& !lra_in_progress
)
2040 if (reload_in_progress
|| reload_completed
)
2041 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2043 addr
= memory_address_addr_space (mode
, addr
, as
);
2046 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2051 XEXP (memref
, 0) = addr
;
2055 new_rtx
= gen_rtx_MEM (mode
, addr
);
2056 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2060 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2061 way we are changing MEMREF, so we only preserve the alias set. */
2064 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
2066 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2067 enum machine_mode mmode
= GET_MODE (new_rtx
);
2068 struct mem_attrs attrs
, *defattrs
;
2070 attrs
= *get_mem_attrs (memref
);
2071 defattrs
= mode_mem_attrs
[(int) mmode
];
2072 attrs
.expr
= NULL_TREE
;
2073 attrs
.offset_known_p
= false;
2074 attrs
.size_known_p
= defattrs
->size_known_p
;
2075 attrs
.size
= defattrs
->size
;
2076 attrs
.align
= defattrs
->align
;
2078 /* If there are no changes, just return the original memory reference. */
2079 if (new_rtx
== memref
)
2081 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2084 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2085 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2088 set_mem_attrs (new_rtx
, &attrs
);
2092 /* Return a memory reference like MEMREF, but with its mode changed
2093 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2094 nonzero, the memory address is forced to be valid.
2095 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2096 and the caller is responsible for adjusting MEMREF base register.
2097 If ADJUST_OBJECT is zero, the underlying object associated with the
2098 memory reference is left unchanged and the caller is responsible for
2099 dealing with it. Otherwise, if the new memory reference is outside
2100 the underlying object, even partially, then the object is dropped.
2101 SIZE, if nonzero, is the size of an access in cases where MODE
2102 has no inherent size. */
2105 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2106 int validate
, int adjust_address
, int adjust_object
,
2109 rtx addr
= XEXP (memref
, 0);
2111 enum machine_mode address_mode
;
2113 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2114 unsigned HOST_WIDE_INT max_align
;
2115 #ifdef POINTERS_EXTEND_UNSIGNED
2116 enum machine_mode pointer_mode
2117 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2120 /* VOIDmode means no mode change for change_address_1. */
2121 if (mode
== VOIDmode
)
2122 mode
= GET_MODE (memref
);
2124 /* Take the size of non-BLKmode accesses from the mode. */
2125 defattrs
= mode_mem_attrs
[(int) mode
];
2126 if (defattrs
->size_known_p
)
2127 size
= defattrs
->size
;
2129 /* If there are no changes, just return the original memory reference. */
2130 if (mode
== GET_MODE (memref
) && !offset
2131 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2132 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2136 /* ??? Prefer to create garbage instead of creating shared rtl.
2137 This may happen even if offset is nonzero -- consider
2138 (plus (plus reg reg) const_int) -- so do this always. */
2139 addr
= copy_rtx (addr
);
2141 /* Convert a possibly large offset to a signed value within the
2142 range of the target address space. */
2143 address_mode
= get_address_mode (memref
);
2144 pbits
= GET_MODE_BITSIZE (address_mode
);
2145 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2147 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2148 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2154 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2155 object, we can merge it into the LO_SUM. */
2156 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2158 && (unsigned HOST_WIDE_INT
) offset
2159 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2160 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2161 plus_constant (address_mode
,
2162 XEXP (addr
, 1), offset
));
2163 #ifdef POINTERS_EXTEND_UNSIGNED
2164 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2165 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2166 the fact that pointers are not allowed to overflow. */
2167 else if (POINTERS_EXTEND_UNSIGNED
> 0
2168 && GET_CODE (addr
) == ZERO_EXTEND
2169 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2170 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2171 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2172 plus_constant (pointer_mode
,
2173 XEXP (addr
, 0), offset
));
2176 addr
= plus_constant (address_mode
, addr
, offset
);
2179 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2181 /* If the address is a REG, change_address_1 rightfully returns memref,
2182 but this would destroy memref's MEM_ATTRS. */
2183 if (new_rtx
== memref
&& offset
!= 0)
2184 new_rtx
= copy_rtx (new_rtx
);
2186 /* Conservatively drop the object if we don't know where we start from. */
2187 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2189 attrs
.expr
= NULL_TREE
;
2193 /* Compute the new values of the memory attributes due to this adjustment.
2194 We add the offsets and update the alignment. */
2195 if (attrs
.offset_known_p
)
2197 attrs
.offset
+= offset
;
2199 /* Drop the object if the new left end is not within its bounds. */
2200 if (adjust_object
&& attrs
.offset
< 0)
2202 attrs
.expr
= NULL_TREE
;
2207 /* Compute the new alignment by taking the MIN of the alignment and the
2208 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2212 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2213 attrs
.align
= MIN (attrs
.align
, max_align
);
2218 /* Drop the object if the new right end is not within its bounds. */
2219 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2221 attrs
.expr
= NULL_TREE
;
2224 attrs
.size_known_p
= true;
2227 else if (attrs
.size_known_p
)
2229 gcc_assert (!adjust_object
);
2230 attrs
.size
-= offset
;
2231 /* ??? The store_by_pieces machinery generates negative sizes,
2232 so don't assert for that here. */
2235 set_mem_attrs (new_rtx
, &attrs
);
2240 /* Return a memory reference like MEMREF, but with its mode changed
2241 to MODE and its address changed to ADDR, which is assumed to be
2242 MEMREF offset by OFFSET bytes. If VALIDATE is
2243 nonzero, the memory address is forced to be valid. */
2246 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2247 HOST_WIDE_INT offset
, int validate
)
2249 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2250 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2253 /* Return a memory reference like MEMREF, but whose address is changed by
2254 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2255 known to be in OFFSET (possibly 1). */
2258 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2260 rtx new_rtx
, addr
= XEXP (memref
, 0);
2261 enum machine_mode address_mode
;
2262 struct mem_attrs attrs
, *defattrs
;
2264 attrs
= *get_mem_attrs (memref
);
2265 address_mode
= get_address_mode (memref
);
2266 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2268 /* At this point we don't know _why_ the address is invalid. It
2269 could have secondary memory references, multiplies or anything.
2271 However, if we did go and rearrange things, we can wind up not
2272 being able to recognize the magic around pic_offset_table_rtx.
2273 This stuff is fragile, and is yet another example of why it is
2274 bad to expose PIC machinery too early. */
2275 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2277 && GET_CODE (addr
) == PLUS
2278 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2280 addr
= force_reg (GET_MODE (addr
), addr
);
2281 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2284 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2285 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2287 /* If there are no changes, just return the original memory reference. */
2288 if (new_rtx
== memref
)
2291 /* Update the alignment to reflect the offset. Reset the offset, which
2293 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2294 attrs
.offset_known_p
= false;
2295 attrs
.size_known_p
= defattrs
->size_known_p
;
2296 attrs
.size
= defattrs
->size
;
2297 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2298 set_mem_attrs (new_rtx
, &attrs
);
2302 /* Return a memory reference like MEMREF, but with its address changed to
2303 ADDR. The caller is asserting that the actual piece of memory pointed
2304 to is the same, just the form of the address is being changed, such as
2305 by putting something into a register. INPLACE is true if any changes
2306 can be made directly to MEMREF or false if MEMREF must be treated as
2310 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2312 /* change_address_1 copies the memory attribute structure without change
2313 and that's exactly what we want here. */
2314 update_temp_slot_address (XEXP (memref
, 0), addr
);
2315 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2318 /* Likewise, but the reference is not required to be valid. */
2321 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2323 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2326 /* Return a memory reference like MEMREF, but with its mode widened to
2327 MODE and offset by OFFSET. This would be used by targets that e.g.
2328 cannot issue QImode memory operations and have to use SImode memory
2329 operations plus masking logic. */
2332 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2334 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2335 struct mem_attrs attrs
;
2336 unsigned int size
= GET_MODE_SIZE (mode
);
2338 /* If there are no changes, just return the original memory reference. */
2339 if (new_rtx
== memref
)
2342 attrs
= *get_mem_attrs (new_rtx
);
2344 /* If we don't know what offset we were at within the expression, then
2345 we can't know if we've overstepped the bounds. */
2346 if (! attrs
.offset_known_p
)
2347 attrs
.expr
= NULL_TREE
;
2351 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2353 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2354 tree offset
= component_ref_field_offset (attrs
.expr
);
2356 if (! DECL_SIZE_UNIT (field
))
2358 attrs
.expr
= NULL_TREE
;
2362 /* Is the field at least as large as the access? If so, ok,
2363 otherwise strip back to the containing structure. */
2364 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2365 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2366 && attrs
.offset
>= 0)
2369 if (! tree_fits_uhwi_p (offset
))
2371 attrs
.expr
= NULL_TREE
;
2375 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2376 attrs
.offset
+= tree_to_uhwi (offset
);
2377 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2380 /* Similarly for the decl. */
2381 else if (DECL_P (attrs
.expr
)
2382 && DECL_SIZE_UNIT (attrs
.expr
)
2383 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2384 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2385 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2389 /* The widened memory access overflows the expression, which means
2390 that it could alias another expression. Zap it. */
2391 attrs
.expr
= NULL_TREE
;
2397 attrs
.offset_known_p
= false;
2399 /* The widened memory may alias other stuff, so zap the alias set. */
2400 /* ??? Maybe use get_alias_set on any remaining expression. */
2402 attrs
.size_known_p
= true;
2404 set_mem_attrs (new_rtx
, &attrs
);
2408 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2409 static GTY(()) tree spill_slot_decl
;
2412 get_spill_slot_decl (bool force_build_p
)
2414 tree d
= spill_slot_decl
;
2416 struct mem_attrs attrs
;
2418 if (d
|| !force_build_p
)
2421 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2422 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2423 DECL_ARTIFICIAL (d
) = 1;
2424 DECL_IGNORED_P (d
) = 1;
2426 spill_slot_decl
= d
;
2428 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2429 MEM_NOTRAP_P (rd
) = 1;
2430 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2431 attrs
.alias
= new_alias_set ();
2433 set_mem_attrs (rd
, &attrs
);
2434 SET_DECL_RTL (d
, rd
);
2439 /* Given MEM, a result from assign_stack_local, fill in the memory
2440 attributes as appropriate for a register allocator spill slot.
2441 These slots are not aliasable by other memory. We arrange for
2442 them all to use a single MEM_EXPR, so that the aliasing code can
2443 work properly in the case of shared spill slots. */
2446 set_mem_attrs_for_spill (rtx mem
)
2448 struct mem_attrs attrs
;
2451 attrs
= *get_mem_attrs (mem
);
2452 attrs
.expr
= get_spill_slot_decl (true);
2453 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2454 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2456 /* We expect the incoming memory to be of the form:
2457 (mem:MODE (plus (reg sfp) (const_int offset)))
2458 with perhaps the plus missing for offset = 0. */
2459 addr
= XEXP (mem
, 0);
2460 attrs
.offset_known_p
= true;
2462 if (GET_CODE (addr
) == PLUS
2463 && CONST_INT_P (XEXP (addr
, 1)))
2464 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2466 set_mem_attrs (mem
, &attrs
);
2467 MEM_NOTRAP_P (mem
) = 1;
2470 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2473 gen_label_rtx (void)
2475 return gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2476 NULL
, label_num
++, NULL
);
2479 /* For procedure integration. */
2481 /* Install new pointers to the first and last insns in the chain.
2482 Also, set cur_insn_uid to one higher than the last in use.
2483 Used for an inline-procedure after copying the insn chain. */
2486 set_new_first_and_last_insn (rtx first
, rtx last
)
2490 set_first_insn (first
);
2491 set_last_insn (last
);
2494 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2496 int debug_count
= 0;
2498 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2499 cur_debug_insn_uid
= 0;
2501 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2502 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2503 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2506 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2507 if (DEBUG_INSN_P (insn
))
2512 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2514 cur_debug_insn_uid
++;
2517 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2518 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2523 /* Go through all the RTL insn bodies and copy any invalid shared
2524 structure. This routine should only be called once. */
2527 unshare_all_rtl_1 (rtx insn
)
2529 /* Unshare just about everything else. */
2530 unshare_all_rtl_in_chain (insn
);
2532 /* Make sure the addresses of stack slots found outside the insn chain
2533 (such as, in DECL_RTL of a variable) are not shared
2534 with the insn chain.
2536 This special care is necessary when the stack slot MEM does not
2537 actually appear in the insn chain. If it does appear, its address
2538 is unshared from all else at that point. */
2539 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2542 /* Go through all the RTL insn bodies and copy any invalid shared
2543 structure, again. This is a fairly expensive thing to do so it
2544 should be done sparingly. */
2547 unshare_all_rtl_again (rtx insn
)
2552 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2555 reset_used_flags (PATTERN (p
));
2556 reset_used_flags (REG_NOTES (p
));
2558 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2561 /* Make sure that virtual stack slots are not shared. */
2562 set_used_decls (DECL_INITIAL (cfun
->decl
));
2564 /* Make sure that virtual parameters are not shared. */
2565 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2566 set_used_flags (DECL_RTL (decl
));
2568 reset_used_flags (stack_slot_list
);
2570 unshare_all_rtl_1 (insn
);
2574 unshare_all_rtl (void)
2576 unshare_all_rtl_1 (get_insns ());
2581 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2582 Recursively does the same for subexpressions. */
2585 verify_rtx_sharing (rtx orig
, rtx insn
)
2590 const char *format_ptr
;
2595 code
= GET_CODE (x
);
2597 /* These types may be freely shared. */
2613 /* SCRATCH must be shared because they represent distinct values. */
2616 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2617 clobbers or clobbers of hard registers that originated as pseudos.
2618 This is needed to allow safe register renaming. */
2619 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2620 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2625 if (shared_const_p (orig
))
2630 /* A MEM is allowed to be shared if its address is constant. */
2631 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2632 || reload_completed
|| reload_in_progress
)
2641 /* This rtx may not be shared. If it has already been seen,
2642 replace it with a copy of itself. */
2643 #ifdef ENABLE_CHECKING
2644 if (RTX_FLAG (x
, used
))
2646 error ("invalid rtl sharing found in the insn");
2648 error ("shared rtx");
2650 internal_error ("internal consistency failure");
2653 gcc_assert (!RTX_FLAG (x
, used
));
2655 RTX_FLAG (x
, used
) = 1;
2657 /* Now scan the subexpressions recursively. */
2659 format_ptr
= GET_RTX_FORMAT (code
);
2661 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2663 switch (*format_ptr
++)
2666 verify_rtx_sharing (XEXP (x
, i
), insn
);
2670 if (XVEC (x
, i
) != NULL
)
2673 int len
= XVECLEN (x
, i
);
2675 for (j
= 0; j
< len
; j
++)
2677 /* We allow sharing of ASM_OPERANDS inside single
2679 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2680 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2682 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2684 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2693 /* Reset used-flags for INSN. */
2696 reset_insn_used_flags (rtx insn
)
2698 gcc_assert (INSN_P (insn
));
2699 reset_used_flags (PATTERN (insn
));
2700 reset_used_flags (REG_NOTES (insn
));
2702 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2705 /* Go through all the RTL insn bodies and clear all the USED bits. */
2708 reset_all_used_flags (void)
2712 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2715 rtx pat
= PATTERN (p
);
2716 if (GET_CODE (pat
) != SEQUENCE
)
2717 reset_insn_used_flags (p
);
2720 gcc_assert (REG_NOTES (p
) == NULL
);
2721 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2723 rtx insn
= XVECEXP (pat
, 0, i
);
2725 reset_insn_used_flags (insn
);
2731 /* Verify sharing in INSN. */
2734 verify_insn_sharing (rtx insn
)
2736 gcc_assert (INSN_P (insn
));
2737 reset_used_flags (PATTERN (insn
));
2738 reset_used_flags (REG_NOTES (insn
));
2740 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2743 /* Go through all the RTL insn bodies and check that there is no unexpected
2744 sharing in between the subexpressions. */
2747 verify_rtl_sharing (void)
2751 timevar_push (TV_VERIFY_RTL_SHARING
);
2753 reset_all_used_flags ();
2755 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2758 rtx pat
= PATTERN (p
);
2759 if (GET_CODE (pat
) != SEQUENCE
)
2760 verify_insn_sharing (p
);
2762 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2764 rtx insn
= XVECEXP (pat
, 0, i
);
2766 verify_insn_sharing (insn
);
2770 reset_all_used_flags ();
2772 timevar_pop (TV_VERIFY_RTL_SHARING
);
2775 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2776 Assumes the mark bits are cleared at entry. */
2779 unshare_all_rtl_in_chain (rtx insn
)
2781 for (; insn
; insn
= NEXT_INSN (insn
))
2784 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2785 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2787 CALL_INSN_FUNCTION_USAGE (insn
)
2788 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2792 /* Go through all virtual stack slots of a function and mark them as
2793 shared. We never replace the DECL_RTLs themselves with a copy,
2794 but expressions mentioned into a DECL_RTL cannot be shared with
2795 expressions in the instruction stream.
2797 Note that reload may convert pseudo registers into memories in-place.
2798 Pseudo registers are always shared, but MEMs never are. Thus if we
2799 reset the used flags on MEMs in the instruction stream, we must set
2800 them again on MEMs that appear in DECL_RTLs. */
2803 set_used_decls (tree blk
)
2808 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2809 if (DECL_RTL_SET_P (t
))
2810 set_used_flags (DECL_RTL (t
));
2812 /* Now process sub-blocks. */
2813 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2817 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2818 Recursively does the same for subexpressions. Uses
2819 copy_rtx_if_shared_1 to reduce stack space. */
2822 copy_rtx_if_shared (rtx orig
)
2824 copy_rtx_if_shared_1 (&orig
);
2828 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2829 use. Recursively does the same for subexpressions. */
2832 copy_rtx_if_shared_1 (rtx
*orig1
)
2838 const char *format_ptr
;
2842 /* Repeat is used to turn tail-recursion into iteration. */
2849 code
= GET_CODE (x
);
2851 /* These types may be freely shared. */
2867 /* SCRATCH must be shared because they represent distinct values. */
2870 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2871 clobbers or clobbers of hard registers that originated as pseudos.
2872 This is needed to allow safe register renaming. */
2873 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2874 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2879 if (shared_const_p (x
))
2889 /* The chain of insns is not being copied. */
2896 /* This rtx may not be shared. If it has already been seen,
2897 replace it with a copy of itself. */
2899 if (RTX_FLAG (x
, used
))
2901 x
= shallow_copy_rtx (x
);
2904 RTX_FLAG (x
, used
) = 1;
2906 /* Now scan the subexpressions recursively.
2907 We can store any replaced subexpressions directly into X
2908 since we know X is not shared! Any vectors in X
2909 must be copied if X was copied. */
2911 format_ptr
= GET_RTX_FORMAT (code
);
2912 length
= GET_RTX_LENGTH (code
);
2915 for (i
= 0; i
< length
; i
++)
2917 switch (*format_ptr
++)
2921 copy_rtx_if_shared_1 (last_ptr
);
2922 last_ptr
= &XEXP (x
, i
);
2926 if (XVEC (x
, i
) != NULL
)
2929 int len
= XVECLEN (x
, i
);
2931 /* Copy the vector iff I copied the rtx and the length
2933 if (copied
&& len
> 0)
2934 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2936 /* Call recursively on all inside the vector. */
2937 for (j
= 0; j
< len
; j
++)
2940 copy_rtx_if_shared_1 (last_ptr
);
2941 last_ptr
= &XVECEXP (x
, i
, j
);
2956 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2959 mark_used_flags (rtx x
, int flag
)
2963 const char *format_ptr
;
2966 /* Repeat is used to turn tail-recursion into iteration. */
2971 code
= GET_CODE (x
);
2973 /* These types may be freely shared so we needn't do any resetting
2997 /* The chain of insns is not being copied. */
3004 RTX_FLAG (x
, used
) = flag
;
3006 format_ptr
= GET_RTX_FORMAT (code
);
3007 length
= GET_RTX_LENGTH (code
);
3009 for (i
= 0; i
< length
; i
++)
3011 switch (*format_ptr
++)
3019 mark_used_flags (XEXP (x
, i
), flag
);
3023 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3024 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3030 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3031 to look for shared sub-parts. */
3034 reset_used_flags (rtx x
)
3036 mark_used_flags (x
, 0);
3039 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3040 to look for shared sub-parts. */
3043 set_used_flags (rtx x
)
3045 mark_used_flags (x
, 1);
3048 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3049 Return X or the rtx for the pseudo reg the value of X was copied into.
3050 OTHER must be valid as a SET_DEST. */
3053 make_safe_from (rtx x
, rtx other
)
3056 switch (GET_CODE (other
))
3059 other
= SUBREG_REG (other
);
3061 case STRICT_LOW_PART
:
3064 other
= XEXP (other
, 0);
3073 && GET_CODE (x
) != SUBREG
)
3075 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3076 || reg_mentioned_p (other
, x
))))
3078 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3079 emit_move_insn (temp
, x
);
3085 /* Emission of insns (adding them to the doubly-linked list). */
3087 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3090 get_last_insn_anywhere (void)
3092 struct sequence_stack
*stack
;
3093 if (get_last_insn ())
3094 return get_last_insn ();
3095 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3096 if (stack
->last
!= 0)
3101 /* Return the first nonnote insn emitted in current sequence or current
3102 function. This routine looks inside SEQUENCEs. */
3105 get_first_nonnote_insn (void)
3107 rtx insn
= get_insns ();
3112 for (insn
= next_insn (insn
);
3113 insn
&& NOTE_P (insn
);
3114 insn
= next_insn (insn
))
3118 if (NONJUMP_INSN_P (insn
)
3119 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3120 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3127 /* Return the last nonnote insn emitted in current sequence or current
3128 function. This routine looks inside SEQUENCEs. */
3131 get_last_nonnote_insn (void)
3133 rtx insn
= get_last_insn ();
3138 for (insn
= previous_insn (insn
);
3139 insn
&& NOTE_P (insn
);
3140 insn
= previous_insn (insn
))
3144 if (NONJUMP_INSN_P (insn
)
3145 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3146 insn
= XVECEXP (PATTERN (insn
), 0,
3147 XVECLEN (PATTERN (insn
), 0) - 1);
3154 /* Return the number of actual (non-debug) insns emitted in this
3158 get_max_insn_count (void)
3160 int n
= cur_insn_uid
;
3162 /* The table size must be stable across -g, to avoid codegen
3163 differences due to debug insns, and not be affected by
3164 -fmin-insn-uid, to avoid excessive table size and to simplify
3165 debugging of -fcompare-debug failures. */
3166 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3167 n
-= cur_debug_insn_uid
;
3169 n
-= MIN_NONDEBUG_INSN_UID
;
3175 /* Return the next insn. If it is a SEQUENCE, return the first insn
3179 next_insn (rtx insn
)
3183 insn
= NEXT_INSN (insn
);
3184 if (insn
&& NONJUMP_INSN_P (insn
)
3185 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3186 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3192 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3196 previous_insn (rtx insn
)
3200 insn
= PREV_INSN (insn
);
3201 if (insn
&& NONJUMP_INSN_P (insn
)
3202 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3203 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3209 /* Return the next insn after INSN that is not a NOTE. This routine does not
3210 look inside SEQUENCEs. */
3213 next_nonnote_insn (rtx insn
)
3217 insn
= NEXT_INSN (insn
);
3218 if (insn
== 0 || !NOTE_P (insn
))
3225 /* Return the next insn after INSN that is not a NOTE, but stop the
3226 search before we enter another basic block. This routine does not
3227 look inside SEQUENCEs. */
3230 next_nonnote_insn_bb (rtx insn
)
3234 insn
= NEXT_INSN (insn
);
3235 if (insn
== 0 || !NOTE_P (insn
))
3237 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3244 /* Return the previous insn before INSN that is not a NOTE. This routine does
3245 not look inside SEQUENCEs. */
3248 prev_nonnote_insn (rtx insn
)
3252 insn
= PREV_INSN (insn
);
3253 if (insn
== 0 || !NOTE_P (insn
))
3260 /* Return the previous insn before INSN that is not a NOTE, but stop
3261 the search before we enter another basic block. This routine does
3262 not look inside SEQUENCEs. */
3265 prev_nonnote_insn_bb (rtx insn
)
3269 insn
= PREV_INSN (insn
);
3270 if (insn
== 0 || !NOTE_P (insn
))
3272 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3279 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3280 routine does not look inside SEQUENCEs. */
3283 next_nondebug_insn (rtx insn
)
3287 insn
= NEXT_INSN (insn
);
3288 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3295 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3296 This routine does not look inside SEQUENCEs. */
3299 prev_nondebug_insn (rtx insn
)
3303 insn
= PREV_INSN (insn
);
3304 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3311 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3312 This routine does not look inside SEQUENCEs. */
3315 next_nonnote_nondebug_insn (rtx insn
)
3319 insn
= NEXT_INSN (insn
);
3320 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3327 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3328 This routine does not look inside SEQUENCEs. */
3331 prev_nonnote_nondebug_insn (rtx insn
)
3335 insn
= PREV_INSN (insn
);
3336 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3343 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3344 or 0, if there is none. This routine does not look inside
3348 next_real_insn (rtx insn
)
3352 insn
= NEXT_INSN (insn
);
3353 if (insn
== 0 || INSN_P (insn
))
3360 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3361 or 0, if there is none. This routine does not look inside
3365 prev_real_insn (rtx insn
)
3369 insn
= PREV_INSN (insn
);
3370 if (insn
== 0 || INSN_P (insn
))
3377 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3378 This routine does not look inside SEQUENCEs. */
3381 last_call_insn (void)
3385 for (insn
= get_last_insn ();
3386 insn
&& !CALL_P (insn
);
3387 insn
= PREV_INSN (insn
))
3393 /* Find the next insn after INSN that really does something. This routine
3394 does not look inside SEQUENCEs. After reload this also skips over
3395 standalone USE and CLOBBER insn. */
3398 active_insn_p (const_rtx insn
)
3400 return (CALL_P (insn
) || JUMP_P (insn
)
3401 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3402 || (NONJUMP_INSN_P (insn
)
3403 && (! reload_completed
3404 || (GET_CODE (PATTERN (insn
)) != USE
3405 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3409 next_active_insn (rtx insn
)
3413 insn
= NEXT_INSN (insn
);
3414 if (insn
== 0 || active_insn_p (insn
))
3421 /* Find the last insn before INSN that really does something. This routine
3422 does not look inside SEQUENCEs. After reload this also skips over
3423 standalone USE and CLOBBER insn. */
3426 prev_active_insn (rtx insn
)
3430 insn
= PREV_INSN (insn
);
3431 if (insn
== 0 || active_insn_p (insn
))
3439 /* Return the next insn that uses CC0 after INSN, which is assumed to
3440 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3441 applied to the result of this function should yield INSN).
3443 Normally, this is simply the next insn. However, if a REG_CC_USER note
3444 is present, it contains the insn that uses CC0.
3446 Return 0 if we can't find the insn. */
3449 next_cc0_user (rtx insn
)
3451 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3454 return XEXP (note
, 0);
3456 insn
= next_nonnote_insn (insn
);
3457 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3458 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3460 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3466 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3467 note, it is the previous insn. */
3470 prev_cc0_setter (rtx insn
)
3472 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3475 return XEXP (note
, 0);
3477 insn
= prev_nonnote_insn (insn
);
3478 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3485 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3488 find_auto_inc (rtx
*xp
, void *data
)
3491 rtx reg
= (rtx
) data
;
3493 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3496 switch (GET_CODE (x
))
3504 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3515 /* Increment the label uses for all labels present in rtx. */
3518 mark_label_nuses (rtx x
)
3524 code
= GET_CODE (x
);
3525 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3526 LABEL_NUSES (XEXP (x
, 0))++;
3528 fmt
= GET_RTX_FORMAT (code
);
3529 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3532 mark_label_nuses (XEXP (x
, i
));
3533 else if (fmt
[i
] == 'E')
3534 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3535 mark_label_nuses (XVECEXP (x
, i
, j
));
3540 /* Try splitting insns that can be split for better scheduling.
3541 PAT is the pattern which might split.
3542 TRIAL is the insn providing PAT.
3543 LAST is nonzero if we should return the last insn of the sequence produced.
3545 If this routine succeeds in splitting, it returns the first or last
3546 replacement insn depending on the value of LAST. Otherwise, it
3547 returns TRIAL. If the insn to be returned can be split, it will be. */
3550 try_split (rtx pat
, rtx trial
, int last
)
3552 rtx before
= PREV_INSN (trial
);
3553 rtx after
= NEXT_INSN (trial
);
3554 int has_barrier
= 0;
3557 rtx insn_last
, insn
;
3559 rtx call_insn
= NULL_RTX
;
3561 /* We're not good at redistributing frame information. */
3562 if (RTX_FRAME_RELATED_P (trial
))
3565 if (any_condjump_p (trial
)
3566 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3567 split_branch_probability
= XINT (note
, 0);
3568 probability
= split_branch_probability
;
3570 seq
= split_insns (pat
, trial
);
3572 split_branch_probability
= -1;
3574 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3575 We may need to handle this specially. */
3576 if (after
&& BARRIER_P (after
))
3579 after
= NEXT_INSN (after
);
3585 /* Avoid infinite loop if any insn of the result matches
3586 the original pattern. */
3590 if (INSN_P (insn_last
)
3591 && rtx_equal_p (PATTERN (insn_last
), pat
))
3593 if (!NEXT_INSN (insn_last
))
3595 insn_last
= NEXT_INSN (insn_last
);
3598 /* We will be adding the new sequence to the function. The splitters
3599 may have introduced invalid RTL sharing, so unshare the sequence now. */
3600 unshare_all_rtl_in_chain (seq
);
3602 /* Mark labels and copy flags. */
3603 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3608 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3609 mark_jump_label (PATTERN (insn
), insn
, 0);
3611 if (probability
!= -1
3612 && any_condjump_p (insn
)
3613 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3615 /* We can preserve the REG_BR_PROB notes only if exactly
3616 one jump is created, otherwise the machine description
3617 is responsible for this step using
3618 split_branch_probability variable. */
3619 gcc_assert (njumps
== 1);
3620 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3625 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3626 in SEQ and copy any additional information across. */
3629 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3634 gcc_assert (call_insn
== NULL_RTX
);
3637 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3638 target may have explicitly specified. */
3639 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3642 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3644 /* If the old call was a sibling call, the new one must
3646 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3648 /* If the new call is the last instruction in the sequence,
3649 it will effectively replace the old call in-situ. Otherwise
3650 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3651 so that it comes immediately after the new call. */
3652 if (NEXT_INSN (insn
))
3653 for (next
= NEXT_INSN (trial
);
3654 next
&& NOTE_P (next
);
3655 next
= NEXT_INSN (next
))
3656 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3659 add_insn_after (next
, insn
, NULL
);
3665 /* Copy notes, particularly those related to the CFG. */
3666 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3668 switch (REG_NOTE_KIND (note
))
3671 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3677 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3680 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3684 case REG_NON_LOCAL_GOTO
:
3685 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3688 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3694 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3696 rtx reg
= XEXP (note
, 0);
3697 if (!FIND_REG_INC_NOTE (insn
, reg
)
3698 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3699 add_reg_note (insn
, REG_INC
, reg
);
3705 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3709 gcc_assert (call_insn
!= NULL_RTX
);
3710 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3718 /* If there are LABELS inside the split insns increment the
3719 usage count so we don't delete the label. */
3723 while (insn
!= NULL_RTX
)
3725 /* JUMP_P insns have already been "marked" above. */
3726 if (NONJUMP_INSN_P (insn
))
3727 mark_label_nuses (PATTERN (insn
));
3729 insn
= PREV_INSN (insn
);
3733 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3735 delete_insn (trial
);
3737 emit_barrier_after (tem
);
3739 /* Recursively call try_split for each new insn created; by the
3740 time control returns here that insn will be fully split, so
3741 set LAST and continue from the insn after the one returned.
3742 We can't use next_active_insn here since AFTER may be a note.
3743 Ignore deleted insns, which can be occur if not optimizing. */
3744 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3745 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3746 tem
= try_split (PATTERN (tem
), tem
, 1);
3748 /* Return either the first or the last insn, depending on which was
3751 ? (after
? PREV_INSN (after
) : get_last_insn ())
3752 : NEXT_INSN (before
);
3755 /* Make and return an INSN rtx, initializing all its slots.
3756 Store PATTERN in the pattern slots. */
3759 make_insn_raw (rtx pattern
)
3763 insn
= rtx_alloc (INSN
);
3765 INSN_UID (insn
) = cur_insn_uid
++;
3766 PATTERN (insn
) = pattern
;
3767 INSN_CODE (insn
) = -1;
3768 REG_NOTES (insn
) = NULL
;
3769 INSN_LOCATION (insn
) = curr_insn_location ();
3770 BLOCK_FOR_INSN (insn
) = NULL
;
3772 #ifdef ENABLE_RTL_CHECKING
3775 && (returnjump_p (insn
)
3776 || (GET_CODE (insn
) == SET
3777 && SET_DEST (insn
) == pc_rtx
)))
3779 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3787 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3790 make_debug_insn_raw (rtx pattern
)
3794 insn
= rtx_alloc (DEBUG_INSN
);
3795 INSN_UID (insn
) = cur_debug_insn_uid
++;
3796 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3797 INSN_UID (insn
) = cur_insn_uid
++;
3799 PATTERN (insn
) = pattern
;
3800 INSN_CODE (insn
) = -1;
3801 REG_NOTES (insn
) = NULL
;
3802 INSN_LOCATION (insn
) = curr_insn_location ();
3803 BLOCK_FOR_INSN (insn
) = NULL
;
3808 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3811 make_jump_insn_raw (rtx pattern
)
3815 insn
= rtx_alloc (JUMP_INSN
);
3816 INSN_UID (insn
) = cur_insn_uid
++;
3818 PATTERN (insn
) = pattern
;
3819 INSN_CODE (insn
) = -1;
3820 REG_NOTES (insn
) = NULL
;
3821 JUMP_LABEL (insn
) = NULL
;
3822 INSN_LOCATION (insn
) = curr_insn_location ();
3823 BLOCK_FOR_INSN (insn
) = NULL
;
3828 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3831 make_call_insn_raw (rtx pattern
)
3835 insn
= rtx_alloc (CALL_INSN
);
3836 INSN_UID (insn
) = cur_insn_uid
++;
3838 PATTERN (insn
) = pattern
;
3839 INSN_CODE (insn
) = -1;
3840 REG_NOTES (insn
) = NULL
;
3841 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3842 INSN_LOCATION (insn
) = curr_insn_location ();
3843 BLOCK_FOR_INSN (insn
) = NULL
;
3848 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3851 make_note_raw (enum insn_note subtype
)
3853 /* Some notes are never created this way at all. These notes are
3854 only created by patching out insns. */
3855 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3856 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3858 rtx note
= rtx_alloc (NOTE
);
3859 INSN_UID (note
) = cur_insn_uid
++;
3860 NOTE_KIND (note
) = subtype
;
3861 BLOCK_FOR_INSN (note
) = NULL
;
3862 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3866 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3867 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3868 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3871 link_insn_into_chain (rtx insn
, rtx prev
, rtx next
)
3873 PREV_INSN (insn
) = prev
;
3874 NEXT_INSN (insn
) = next
;
3877 NEXT_INSN (prev
) = insn
;
3878 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3880 rtx sequence
= PATTERN (prev
);
3881 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3886 PREV_INSN (next
) = insn
;
3887 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3888 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3891 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3893 rtx sequence
= PATTERN (insn
);
3894 PREV_INSN (XVECEXP (sequence
, 0, 0)) = prev
;
3895 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3899 /* Add INSN to the end of the doubly-linked list.
3900 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3905 rtx prev
= get_last_insn ();
3906 link_insn_into_chain (insn
, prev
, NULL
);
3907 if (NULL
== get_insns ())
3908 set_first_insn (insn
);
3909 set_last_insn (insn
);
3912 /* Add INSN into the doubly-linked list after insn AFTER. */
3915 add_insn_after_nobb (rtx insn
, rtx after
)
3917 rtx next
= NEXT_INSN (after
);
3919 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3921 link_insn_into_chain (insn
, after
, next
);
3925 if (get_last_insn () == after
)
3926 set_last_insn (insn
);
3929 struct sequence_stack
*stack
= seq_stack
;
3930 /* Scan all pending sequences too. */
3931 for (; stack
; stack
= stack
->next
)
3932 if (after
== stack
->last
)
3941 /* Add INSN into the doubly-linked list before insn BEFORE. */
3944 add_insn_before_nobb (rtx insn
, rtx before
)
3946 rtx prev
= PREV_INSN (before
);
3948 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3950 link_insn_into_chain (insn
, prev
, before
);
3954 if (get_insns () == before
)
3955 set_first_insn (insn
);
3958 struct sequence_stack
*stack
= seq_stack
;
3959 /* Scan all pending sequences too. */
3960 for (; stack
; stack
= stack
->next
)
3961 if (before
== stack
->first
)
3963 stack
->first
= insn
;
3972 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3973 If BB is NULL, an attempt is made to infer the bb from before.
3975 This and the next function should be the only functions called
3976 to insert an insn once delay slots have been filled since only
3977 they know how to update a SEQUENCE. */
3980 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3982 add_insn_after_nobb (insn
, after
);
3983 if (!BARRIER_P (after
)
3984 && !BARRIER_P (insn
)
3985 && (bb
= BLOCK_FOR_INSN (after
)))
3987 set_block_for_insn (insn
, bb
);
3989 df_insn_rescan (insn
);
3990 /* Should not happen as first in the BB is always
3991 either NOTE or LABEL. */
3992 if (BB_END (bb
) == after
3993 /* Avoid clobbering of structure when creating new BB. */
3994 && !BARRIER_P (insn
)
3995 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4000 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4001 If BB is NULL, an attempt is made to infer the bb from before.
4003 This and the previous function should be the only functions called
4004 to insert an insn once delay slots have been filled since only
4005 they know how to update a SEQUENCE. */
4008 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
4010 add_insn_before_nobb (insn
, before
);
4013 && !BARRIER_P (before
)
4014 && !BARRIER_P (insn
))
4015 bb
= BLOCK_FOR_INSN (before
);
4019 set_block_for_insn (insn
, bb
);
4021 df_insn_rescan (insn
);
4022 /* Should not happen as first in the BB is always either NOTE or
4024 gcc_assert (BB_HEAD (bb
) != insn
4025 /* Avoid clobbering of structure when creating new BB. */
4027 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4031 /* Replace insn with an deleted instruction note. */
4034 set_insn_deleted (rtx insn
)
4037 df_insn_delete (insn
);
4038 PUT_CODE (insn
, NOTE
);
4039 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4043 /* Unlink INSN from the insn chain.
4045 This function knows how to handle sequences.
4047 This function does not invalidate data flow information associated with
4048 INSN (i.e. does not call df_insn_delete). That makes this function
4049 usable for only disconnecting an insn from the chain, and re-emit it
4052 To later insert INSN elsewhere in the insn chain via add_insn and
4053 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4054 the caller. Nullifying them here breaks many insn chain walks.
4056 To really delete an insn and related DF information, use delete_insn. */
4059 remove_insn (rtx insn
)
4061 rtx next
= NEXT_INSN (insn
);
4062 rtx prev
= PREV_INSN (insn
);
4067 NEXT_INSN (prev
) = next
;
4068 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4070 rtx sequence
= PATTERN (prev
);
4071 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
4074 else if (get_insns () == insn
)
4077 PREV_INSN (next
) = NULL
;
4078 set_first_insn (next
);
4082 struct sequence_stack
*stack
= seq_stack
;
4083 /* Scan all pending sequences too. */
4084 for (; stack
; stack
= stack
->next
)
4085 if (insn
== stack
->first
)
4087 stack
->first
= next
;
4096 PREV_INSN (next
) = prev
;
4097 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4098 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
4100 else if (get_last_insn () == insn
)
4101 set_last_insn (prev
);
4104 struct sequence_stack
*stack
= seq_stack
;
4105 /* Scan all pending sequences too. */
4106 for (; stack
; stack
= stack
->next
)
4107 if (insn
== stack
->last
)
4116 /* Fix up basic block boundaries, if necessary. */
4117 if (!BARRIER_P (insn
)
4118 && (bb
= BLOCK_FOR_INSN (insn
)))
4120 if (BB_HEAD (bb
) == insn
)
4122 /* Never ever delete the basic block note without deleting whole
4124 gcc_assert (!NOTE_P (insn
));
4125 BB_HEAD (bb
) = next
;
4127 if (BB_END (bb
) == insn
)
4132 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4135 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4137 gcc_assert (call_insn
&& CALL_P (call_insn
));
4139 /* Put the register usage information on the CALL. If there is already
4140 some usage information, put ours at the end. */
4141 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4145 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4146 link
= XEXP (link
, 1))
4149 XEXP (link
, 1) = call_fusage
;
4152 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4155 /* Delete all insns made since FROM.
4156 FROM becomes the new last instruction. */
4159 delete_insns_since (rtx from
)
4164 NEXT_INSN (from
) = 0;
4165 set_last_insn (from
);
4168 /* This function is deprecated, please use sequences instead.
4170 Move a consecutive bunch of insns to a different place in the chain.
4171 The insns to be moved are those between FROM and TO.
4172 They are moved to a new position after the insn AFTER.
4173 AFTER must not be FROM or TO or any insn in between.
4175 This function does not know about SEQUENCEs and hence should not be
4176 called after delay-slot filling has been done. */
4179 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4181 #ifdef ENABLE_CHECKING
4183 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4184 gcc_assert (after
!= x
);
4185 gcc_assert (after
!= to
);
4188 /* Splice this bunch out of where it is now. */
4189 if (PREV_INSN (from
))
4190 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4192 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4193 if (get_last_insn () == to
)
4194 set_last_insn (PREV_INSN (from
));
4195 if (get_insns () == from
)
4196 set_first_insn (NEXT_INSN (to
));
4198 /* Make the new neighbors point to it and it to them. */
4199 if (NEXT_INSN (after
))
4200 PREV_INSN (NEXT_INSN (after
)) = to
;
4202 NEXT_INSN (to
) = NEXT_INSN (after
);
4203 PREV_INSN (from
) = after
;
4204 NEXT_INSN (after
) = from
;
4205 if (after
== get_last_insn ())
4209 /* Same as function above, but take care to update BB boundaries. */
4211 reorder_insns (rtx from
, rtx to
, rtx after
)
4213 rtx prev
= PREV_INSN (from
);
4214 basic_block bb
, bb2
;
4216 reorder_insns_nobb (from
, to
, after
);
4218 if (!BARRIER_P (after
)
4219 && (bb
= BLOCK_FOR_INSN (after
)))
4222 df_set_bb_dirty (bb
);
4224 if (!BARRIER_P (from
)
4225 && (bb2
= BLOCK_FOR_INSN (from
)))
4227 if (BB_END (bb2
) == to
)
4228 BB_END (bb2
) = prev
;
4229 df_set_bb_dirty (bb2
);
4232 if (BB_END (bb
) == after
)
4235 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4237 df_insn_change_bb (x
, bb
);
4242 /* Emit insn(s) of given code and pattern
4243 at a specified place within the doubly-linked list.
4245 All of the emit_foo global entry points accept an object
4246 X which is either an insn list or a PATTERN of a single
4249 There are thus a few canonical ways to generate code and
4250 emit it at a specific place in the instruction stream. For
4251 example, consider the instruction named SPOT and the fact that
4252 we would like to emit some instructions before SPOT. We might
4256 ... emit the new instructions ...
4257 insns_head = get_insns ();
4260 emit_insn_before (insns_head, SPOT);
4262 It used to be common to generate SEQUENCE rtl instead, but that
4263 is a relic of the past which no longer occurs. The reason is that
4264 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4265 generated would almost certainly die right after it was created. */
4268 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4269 rtx (*make_raw
) (rtx
))
4273 gcc_assert (before
);
4278 switch (GET_CODE (x
))
4290 rtx next
= NEXT_INSN (insn
);
4291 add_insn_before (insn
, before
, bb
);
4297 #ifdef ENABLE_RTL_CHECKING
4304 last
= (*make_raw
) (x
);
4305 add_insn_before (last
, before
, bb
);
4312 /* Make X be output before the instruction BEFORE. */
4315 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4317 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4320 /* Make an instruction with body X and code JUMP_INSN
4321 and output it before the instruction BEFORE. */
4324 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4326 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4327 make_jump_insn_raw
);
4330 /* Make an instruction with body X and code CALL_INSN
4331 and output it before the instruction BEFORE. */
4334 emit_call_insn_before_noloc (rtx x
, rtx before
)
4336 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4337 make_call_insn_raw
);
4340 /* Make an instruction with body X and code DEBUG_INSN
4341 and output it before the instruction BEFORE. */
4344 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4346 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4347 make_debug_insn_raw
);
4350 /* Make an insn of code BARRIER
4351 and output it before the insn BEFORE. */
4354 emit_barrier_before (rtx before
)
4356 rtx insn
= rtx_alloc (BARRIER
);
4358 INSN_UID (insn
) = cur_insn_uid
++;
4360 add_insn_before (insn
, before
, NULL
);
4364 /* Emit the label LABEL before the insn BEFORE. */
4367 emit_label_before (rtx label
, rtx before
)
4369 gcc_checking_assert (INSN_UID (label
) == 0);
4370 INSN_UID (label
) = cur_insn_uid
++;
4371 add_insn_before (label
, before
, NULL
);
4375 /* Helper for emit_insn_after, handles lists of instructions
4379 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4383 if (!bb
&& !BARRIER_P (after
))
4384 bb
= BLOCK_FOR_INSN (after
);
4388 df_set_bb_dirty (bb
);
4389 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4390 if (!BARRIER_P (last
))
4392 set_block_for_insn (last
, bb
);
4393 df_insn_rescan (last
);
4395 if (!BARRIER_P (last
))
4397 set_block_for_insn (last
, bb
);
4398 df_insn_rescan (last
);
4400 if (BB_END (bb
) == after
)
4404 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4407 after_after
= NEXT_INSN (after
);
4409 NEXT_INSN (after
) = first
;
4410 PREV_INSN (first
) = after
;
4411 NEXT_INSN (last
) = after_after
;
4413 PREV_INSN (after_after
) = last
;
4415 if (after
== get_last_insn ())
4416 set_last_insn (last
);
4422 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4423 rtx (*make_raw
)(rtx
))
4432 switch (GET_CODE (x
))
4441 last
= emit_insn_after_1 (x
, after
, bb
);
4444 #ifdef ENABLE_RTL_CHECKING
4451 last
= (*make_raw
) (x
);
4452 add_insn_after (last
, after
, bb
);
4459 /* Make X be output after the insn AFTER and set the BB of insn. If
4460 BB is NULL, an attempt is made to infer the BB from AFTER. */
4463 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4465 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4469 /* Make an insn of code JUMP_INSN with body X
4470 and output it after the insn AFTER. */
4473 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4475 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4478 /* Make an instruction with body X and code CALL_INSN
4479 and output it after the instruction AFTER. */
4482 emit_call_insn_after_noloc (rtx x
, rtx after
)
4484 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4487 /* Make an instruction with body X and code CALL_INSN
4488 and output it after the instruction AFTER. */
4491 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4493 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4496 /* Make an insn of code BARRIER
4497 and output it after the insn AFTER. */
4500 emit_barrier_after (rtx after
)
4502 rtx insn
= rtx_alloc (BARRIER
);
4504 INSN_UID (insn
) = cur_insn_uid
++;
4506 add_insn_after (insn
, after
, NULL
);
4510 /* Emit the label LABEL after the insn AFTER. */
4513 emit_label_after (rtx label
, rtx after
)
4515 gcc_checking_assert (INSN_UID (label
) == 0);
4516 INSN_UID (label
) = cur_insn_uid
++;
4517 add_insn_after (label
, after
, NULL
);
4521 /* Notes require a bit of special handling: Some notes need to have their
4522 BLOCK_FOR_INSN set, others should never have it set, and some should
4523 have it set or clear depending on the context. */
4525 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4526 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4527 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4530 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4534 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4535 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4538 /* Notes for var tracking and EH region markers can appear between or
4539 inside basic blocks. If the caller is emitting on the basic block
4540 boundary, do not set BLOCK_FOR_INSN on the new note. */
4541 case NOTE_INSN_VAR_LOCATION
:
4542 case NOTE_INSN_CALL_ARG_LOCATION
:
4543 case NOTE_INSN_EH_REGION_BEG
:
4544 case NOTE_INSN_EH_REGION_END
:
4545 return on_bb_boundary_p
;
4547 /* Otherwise, BLOCK_FOR_INSN must be set. */
4553 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4556 emit_note_after (enum insn_note subtype
, rtx after
)
4558 rtx note
= make_note_raw (subtype
);
4559 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4560 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4562 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4563 add_insn_after_nobb (note
, after
);
4565 add_insn_after (note
, after
, bb
);
4569 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4572 emit_note_before (enum insn_note subtype
, rtx before
)
4574 rtx note
= make_note_raw (subtype
);
4575 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4576 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4578 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4579 add_insn_before_nobb (note
, before
);
4581 add_insn_before (note
, before
, bb
);
4585 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4586 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4589 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4590 rtx (*make_raw
) (rtx
))
4592 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4594 if (pattern
== NULL_RTX
|| !loc
)
4597 after
= NEXT_INSN (after
);
4600 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4601 INSN_LOCATION (after
) = loc
;
4604 after
= NEXT_INSN (after
);
4609 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4610 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4614 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4615 rtx (*make_raw
) (rtx
))
4619 if (skip_debug_insns
)
4620 while (DEBUG_INSN_P (prev
))
4621 prev
= PREV_INSN (prev
);
4624 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4627 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4630 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4632 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4634 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4637 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4639 emit_insn_after (rtx pattern
, rtx after
)
4641 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4644 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4646 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4648 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4651 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4653 emit_jump_insn_after (rtx pattern
, rtx after
)
4655 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4658 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4660 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4662 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4665 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4667 emit_call_insn_after (rtx pattern
, rtx after
)
4669 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4672 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4674 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4676 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4679 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4681 emit_debug_insn_after (rtx pattern
, rtx after
)
4683 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4686 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4687 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4688 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4692 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4693 rtx (*make_raw
) (rtx
))
4695 rtx first
= PREV_INSN (before
);
4696 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4697 insnp
? before
: NULL_RTX
,
4700 if (pattern
== NULL_RTX
|| !loc
)
4704 first
= get_insns ();
4706 first
= NEXT_INSN (first
);
4709 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4710 INSN_LOCATION (first
) = loc
;
4713 first
= NEXT_INSN (first
);
4718 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4719 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4720 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4721 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4724 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4725 bool insnp
, rtx (*make_raw
) (rtx
))
4729 if (skip_debug_insns
)
4730 while (DEBUG_INSN_P (next
))
4731 next
= PREV_INSN (next
);
4734 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4737 return emit_pattern_before_noloc (pattern
, before
,
4738 insnp
? before
: NULL_RTX
,
4742 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4744 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4746 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4750 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4752 emit_insn_before (rtx pattern
, rtx before
)
4754 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4757 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4759 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4761 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4762 make_jump_insn_raw
);
4765 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4767 emit_jump_insn_before (rtx pattern
, rtx before
)
4769 return emit_pattern_before (pattern
, before
, true, false,
4770 make_jump_insn_raw
);
4773 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4775 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4777 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4778 make_call_insn_raw
);
4781 /* Like emit_call_insn_before_noloc,
4782 but set insn_location according to BEFORE. */
4784 emit_call_insn_before (rtx pattern
, rtx before
)
4786 return emit_pattern_before (pattern
, before
, true, false,
4787 make_call_insn_raw
);
4790 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4792 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4794 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4795 make_debug_insn_raw
);
4798 /* Like emit_debug_insn_before_noloc,
4799 but set insn_location according to BEFORE. */
4801 emit_debug_insn_before (rtx pattern
, rtx before
)
4803 return emit_pattern_before (pattern
, before
, false, false,
4804 make_debug_insn_raw
);
4807 /* Take X and emit it at the end of the doubly-linked
4810 Returns the last insn emitted. */
4815 rtx last
= get_last_insn ();
4821 switch (GET_CODE (x
))
4833 rtx next
= NEXT_INSN (insn
);
4840 #ifdef ENABLE_RTL_CHECKING
4841 case JUMP_TABLE_DATA
:
4848 last
= make_insn_raw (x
);
4856 /* Make an insn of code DEBUG_INSN with pattern X
4857 and add it to the end of the doubly-linked list. */
4860 emit_debug_insn (rtx x
)
4862 rtx last
= get_last_insn ();
4868 switch (GET_CODE (x
))
4880 rtx next
= NEXT_INSN (insn
);
4887 #ifdef ENABLE_RTL_CHECKING
4888 case JUMP_TABLE_DATA
:
4895 last
= make_debug_insn_raw (x
);
4903 /* Make an insn of code JUMP_INSN with pattern X
4904 and add it to the end of the doubly-linked list. */
4907 emit_jump_insn (rtx x
)
4909 rtx last
= NULL_RTX
, insn
;
4911 switch (GET_CODE (x
))
4923 rtx next
= NEXT_INSN (insn
);
4930 #ifdef ENABLE_RTL_CHECKING
4931 case JUMP_TABLE_DATA
:
4938 last
= make_jump_insn_raw (x
);
4946 /* Make an insn of code CALL_INSN with pattern X
4947 and add it to the end of the doubly-linked list. */
4950 emit_call_insn (rtx x
)
4954 switch (GET_CODE (x
))
4963 insn
= emit_insn (x
);
4966 #ifdef ENABLE_RTL_CHECKING
4968 case JUMP_TABLE_DATA
:
4974 insn
= make_call_insn_raw (x
);
4982 /* Add the label LABEL to the end of the doubly-linked list. */
4985 emit_label (rtx label
)
4987 gcc_checking_assert (INSN_UID (label
) == 0);
4988 INSN_UID (label
) = cur_insn_uid
++;
4993 /* Make an insn of code JUMP_TABLE_DATA
4994 and add it to the end of the doubly-linked list. */
4997 emit_jump_table_data (rtx table
)
4999 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
5000 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5001 PATTERN (jump_table_data
) = table
;
5002 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5003 add_insn (jump_table_data
);
5004 return jump_table_data
;
5007 /* Make an insn of code BARRIER
5008 and add it to the end of the doubly-linked list. */
5013 rtx barrier
= rtx_alloc (BARRIER
);
5014 INSN_UID (barrier
) = cur_insn_uid
++;
5019 /* Emit a copy of note ORIG. */
5022 emit_note_copy (rtx orig
)
5024 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5025 rtx note
= make_note_raw (kind
);
5026 NOTE_DATA (note
) = NOTE_DATA (orig
);
5031 /* Make an insn of code NOTE or type NOTE_NO
5032 and add it to the end of the doubly-linked list. */
5035 emit_note (enum insn_note kind
)
5037 rtx note
= make_note_raw (kind
);
5042 /* Emit a clobber of lvalue X. */
5045 emit_clobber (rtx x
)
5047 /* CONCATs should not appear in the insn stream. */
5048 if (GET_CODE (x
) == CONCAT
)
5050 emit_clobber (XEXP (x
, 0));
5051 return emit_clobber (XEXP (x
, 1));
5053 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5056 /* Return a sequence of insns to clobber lvalue X. */
5070 /* Emit a use of rvalue X. */
5075 /* CONCATs should not appear in the insn stream. */
5076 if (GET_CODE (x
) == CONCAT
)
5078 emit_use (XEXP (x
, 0));
5079 return emit_use (XEXP (x
, 1));
5081 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5084 /* Return a sequence of insns to use rvalue X. */
5098 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5099 Return the set in INSN that such notes describe, or NULL if the notes
5100 have no meaning for INSN. */
5103 set_for_reg_notes (rtx insn
)
5110 pat
= PATTERN (insn
);
5111 if (GET_CODE (pat
) == PARALLEL
)
5113 /* We do not use single_set because that ignores SETs of unused
5114 registers. REG_EQUAL and REG_EQUIV notes really do require the
5115 PARALLEL to have a single SET. */
5116 if (multiple_sets (insn
))
5118 pat
= XVECEXP (pat
, 0, 0);
5121 if (GET_CODE (pat
) != SET
)
5124 reg
= SET_DEST (pat
);
5126 /* Notes apply to the contents of a STRICT_LOW_PART. */
5127 if (GET_CODE (reg
) == STRICT_LOW_PART
)
5128 reg
= XEXP (reg
, 0);
5130 /* Check that we have a register. */
5131 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5137 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5138 note of this type already exists, remove it first. */
5141 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5143 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5149 if (!set_for_reg_notes (insn
))
5152 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5153 It serves no useful purpose and breaks eliminate_regs. */
5154 if (GET_CODE (datum
) == ASM_OPERANDS
)
5163 XEXP (note
, 0) = datum
;
5166 add_reg_note (insn
, kind
, datum
);
5167 note
= REG_NOTES (insn
);
5174 df_notes_rescan (insn
);
5183 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5185 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5187 rtx set
= set_for_reg_notes (insn
);
5189 if (set
&& SET_DEST (set
) == dst
)
5190 return set_unique_reg_note (insn
, kind
, datum
);
5194 /* Return an indication of which type of insn should have X as a body.
5195 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5197 static enum rtx_code
5198 classify_insn (rtx x
)
5202 if (GET_CODE (x
) == CALL
)
5204 if (ANY_RETURN_P (x
))
5206 if (GET_CODE (x
) == SET
)
5208 if (SET_DEST (x
) == pc_rtx
)
5210 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5215 if (GET_CODE (x
) == PARALLEL
)
5218 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5219 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5221 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5222 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5224 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5225 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5231 /* Emit the rtl pattern X as an appropriate kind of insn.
5232 If X is a label, it is simply added into the insn chain. */
5237 enum rtx_code code
= classify_insn (x
);
5242 return emit_label (x
);
5244 return emit_insn (x
);
5247 rtx insn
= emit_jump_insn (x
);
5248 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5249 return emit_barrier ();
5253 return emit_call_insn (x
);
5255 return emit_debug_insn (x
);
5261 /* Space for free sequence stack entries. */
5262 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5264 /* Begin emitting insns to a sequence. If this sequence will contain
5265 something that might cause the compiler to pop arguments to function
5266 calls (because those pops have previously been deferred; see
5267 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5268 before calling this function. That will ensure that the deferred
5269 pops are not accidentally emitted in the middle of this sequence. */
5272 start_sequence (void)
5274 struct sequence_stack
*tem
;
5276 if (free_sequence_stack
!= NULL
)
5278 tem
= free_sequence_stack
;
5279 free_sequence_stack
= tem
->next
;
5282 tem
= ggc_alloc
<sequence_stack
> ();
5284 tem
->next
= seq_stack
;
5285 tem
->first
= get_insns ();
5286 tem
->last
= get_last_insn ();
5294 /* Set up the insn chain starting with FIRST as the current sequence,
5295 saving the previously current one. See the documentation for
5296 start_sequence for more information about how to use this function. */
5299 push_to_sequence (rtx first
)
5305 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5308 set_first_insn (first
);
5309 set_last_insn (last
);
5312 /* Like push_to_sequence, but take the last insn as an argument to avoid
5313 looping through the list. */
5316 push_to_sequence2 (rtx first
, rtx last
)
5320 set_first_insn (first
);
5321 set_last_insn (last
);
5324 /* Set up the outer-level insn chain
5325 as the current sequence, saving the previously current one. */
5328 push_topmost_sequence (void)
5330 struct sequence_stack
*stack
, *top
= NULL
;
5334 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5337 set_first_insn (top
->first
);
5338 set_last_insn (top
->last
);
5341 /* After emitting to the outer-level insn chain, update the outer-level
5342 insn chain, and restore the previous saved state. */
5345 pop_topmost_sequence (void)
5347 struct sequence_stack
*stack
, *top
= NULL
;
5349 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5352 top
->first
= get_insns ();
5353 top
->last
= get_last_insn ();
5358 /* After emitting to a sequence, restore previous saved state.
5360 To get the contents of the sequence just made, you must call
5361 `get_insns' *before* calling here.
5363 If the compiler might have deferred popping arguments while
5364 generating this sequence, and this sequence will not be immediately
5365 inserted into the instruction stream, use do_pending_stack_adjust
5366 before calling get_insns. That will ensure that the deferred
5367 pops are inserted into this sequence, and not into some random
5368 location in the instruction stream. See INHIBIT_DEFER_POP for more
5369 information about deferred popping of arguments. */
5374 struct sequence_stack
*tem
= seq_stack
;
5376 set_first_insn (tem
->first
);
5377 set_last_insn (tem
->last
);
5378 seq_stack
= tem
->next
;
5380 memset (tem
, 0, sizeof (*tem
));
5381 tem
->next
= free_sequence_stack
;
5382 free_sequence_stack
= tem
;
5385 /* Return 1 if currently emitting into a sequence. */
5388 in_sequence_p (void)
5390 return seq_stack
!= 0;
5393 /* Put the various virtual registers into REGNO_REG_RTX. */
5396 init_virtual_regs (void)
5398 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5399 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5400 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5401 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5402 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5403 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5404 = virtual_preferred_stack_boundary_rtx
;
5408 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5409 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5410 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5411 static int copy_insn_n_scratches
;
5413 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5414 copied an ASM_OPERANDS.
5415 In that case, it is the original input-operand vector. */
5416 static rtvec orig_asm_operands_vector
;
5418 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5419 copied an ASM_OPERANDS.
5420 In that case, it is the copied input-operand vector. */
5421 static rtvec copy_asm_operands_vector
;
5423 /* Likewise for the constraints vector. */
5424 static rtvec orig_asm_constraints_vector
;
5425 static rtvec copy_asm_constraints_vector
;
5427 /* Recursively create a new copy of an rtx for copy_insn.
5428 This function differs from copy_rtx in that it handles SCRATCHes and
5429 ASM_OPERANDs properly.
5430 Normally, this function is not used directly; use copy_insn as front end.
5431 However, you could first copy an insn pattern with copy_insn and then use
5432 this function afterwards to properly copy any REG_NOTEs containing
5436 copy_insn_1 (rtx orig
)
5441 const char *format_ptr
;
5446 code
= GET_CODE (orig
);
5461 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5462 clobbers or clobbers of hard registers that originated as pseudos.
5463 This is needed to allow safe register renaming. */
5464 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5465 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5470 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5471 if (copy_insn_scratch_in
[i
] == orig
)
5472 return copy_insn_scratch_out
[i
];
5476 if (shared_const_p (orig
))
5480 /* A MEM with a constant address is not sharable. The problem is that
5481 the constant address may need to be reloaded. If the mem is shared,
5482 then reloading one copy of this mem will cause all copies to appear
5483 to have been reloaded. */
5489 /* Copy the various flags, fields, and other information. We assume
5490 that all fields need copying, and then clear the fields that should
5491 not be copied. That is the sensible default behavior, and forces
5492 us to explicitly document why we are *not* copying a flag. */
5493 copy
= shallow_copy_rtx (orig
);
5495 /* We do not copy the USED flag, which is used as a mark bit during
5496 walks over the RTL. */
5497 RTX_FLAG (copy
, used
) = 0;
5499 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5502 RTX_FLAG (copy
, jump
) = 0;
5503 RTX_FLAG (copy
, call
) = 0;
5504 RTX_FLAG (copy
, frame_related
) = 0;
5507 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5509 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5510 switch (*format_ptr
++)
5513 if (XEXP (orig
, i
) != NULL
)
5514 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5519 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5520 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5521 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5522 XVEC (copy
, i
) = copy_asm_operands_vector
;
5523 else if (XVEC (orig
, i
) != NULL
)
5525 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5526 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5527 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5538 /* These are left unchanged. */
5545 if (code
== SCRATCH
)
5547 i
= copy_insn_n_scratches
++;
5548 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5549 copy_insn_scratch_in
[i
] = orig
;
5550 copy_insn_scratch_out
[i
] = copy
;
5552 else if (code
== ASM_OPERANDS
)
5554 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5555 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5556 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5557 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5563 /* Create a new copy of an rtx.
5564 This function differs from copy_rtx in that it handles SCRATCHes and
5565 ASM_OPERANDs properly.
5566 INSN doesn't really have to be a full INSN; it could be just the
5569 copy_insn (rtx insn
)
5571 copy_insn_n_scratches
= 0;
5572 orig_asm_operands_vector
= 0;
5573 orig_asm_constraints_vector
= 0;
5574 copy_asm_operands_vector
= 0;
5575 copy_asm_constraints_vector
= 0;
5576 return copy_insn_1 (insn
);
5579 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5580 on that assumption that INSN itself remains in its original place. */
5583 copy_delay_slot_insn (rtx insn
)
5585 /* Copy INSN with its rtx_code, all its notes, location etc. */
5586 insn
= copy_rtx (insn
);
5587 INSN_UID (insn
) = cur_insn_uid
++;
5591 /* Initialize data structures and variables in this file
5592 before generating rtl for each function. */
5597 set_first_insn (NULL
);
5598 set_last_insn (NULL
);
5599 if (MIN_NONDEBUG_INSN_UID
)
5600 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5603 cur_debug_insn_uid
= 1;
5604 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5605 first_label_num
= label_num
;
5608 /* Init the tables that describe all the pseudo regs. */
5610 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5612 crtl
->emit
.regno_pointer_align
5613 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5615 regno_reg_rtx
= ggc_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5617 /* Put copies of all the hard registers into regno_reg_rtx. */
5618 memcpy (regno_reg_rtx
,
5619 initial_regno_reg_rtx
,
5620 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5622 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5623 init_virtual_regs ();
5625 /* Indicate that the virtual registers and stack locations are
5627 REG_POINTER (stack_pointer_rtx
) = 1;
5628 REG_POINTER (frame_pointer_rtx
) = 1;
5629 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5630 REG_POINTER (arg_pointer_rtx
) = 1;
5632 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5633 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5634 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5635 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5636 REG_POINTER (virtual_cfa_rtx
) = 1;
5638 #ifdef STACK_BOUNDARY
5639 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5640 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5641 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5642 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5644 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5645 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5646 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5647 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5648 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5651 #ifdef INIT_EXPANDERS
5656 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5659 gen_const_vector (enum machine_mode mode
, int constant
)
5664 enum machine_mode inner
;
5666 units
= GET_MODE_NUNITS (mode
);
5667 inner
= GET_MODE_INNER (mode
);
5669 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5671 v
= rtvec_alloc (units
);
5673 /* We need to call this function after we set the scalar const_tiny_rtx
5675 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5677 for (i
= 0; i
< units
; ++i
)
5678 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5680 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5684 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5685 all elements are zero, and the one vector when all elements are one. */
5687 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5689 enum machine_mode inner
= GET_MODE_INNER (mode
);
5690 int nunits
= GET_MODE_NUNITS (mode
);
5694 /* Check to see if all of the elements have the same value. */
5695 x
= RTVEC_ELT (v
, nunits
- 1);
5696 for (i
= nunits
- 2; i
>= 0; i
--)
5697 if (RTVEC_ELT (v
, i
) != x
)
5700 /* If the values are all the same, check to see if we can use one of the
5701 standard constant vectors. */
5704 if (x
== CONST0_RTX (inner
))
5705 return CONST0_RTX (mode
);
5706 else if (x
== CONST1_RTX (inner
))
5707 return CONST1_RTX (mode
);
5708 else if (x
== CONSTM1_RTX (inner
))
5709 return CONSTM1_RTX (mode
);
5712 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5715 /* Initialise global register information required by all functions. */
5718 init_emit_regs (void)
5721 enum machine_mode mode
;
5724 /* Reset register attributes */
5725 htab_empty (reg_attrs_htab
);
5727 /* We need reg_raw_mode, so initialize the modes now. */
5728 init_reg_modes_target ();
5730 /* Assign register numbers to the globally defined register rtx. */
5731 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5732 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5733 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5734 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5735 virtual_incoming_args_rtx
=
5736 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5737 virtual_stack_vars_rtx
=
5738 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5739 virtual_stack_dynamic_rtx
=
5740 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5741 virtual_outgoing_args_rtx
=
5742 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5743 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5744 virtual_preferred_stack_boundary_rtx
=
5745 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5747 /* Initialize RTL for commonly used hard registers. These are
5748 copied into regno_reg_rtx as we begin to compile each function. */
5749 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5750 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5752 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5753 return_address_pointer_rtx
5754 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5757 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5758 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5760 pic_offset_table_rtx
= NULL_RTX
;
5762 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5764 mode
= (enum machine_mode
) i
;
5765 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
5766 attrs
->align
= BITS_PER_UNIT
;
5767 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5768 if (mode
!= BLKmode
)
5770 attrs
->size_known_p
= true;
5771 attrs
->size
= GET_MODE_SIZE (mode
);
5772 if (STRICT_ALIGNMENT
)
5773 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5775 mode_mem_attrs
[i
] = attrs
;
5779 /* Initialize global machine_mode variables. */
5782 init_derived_machine_modes (void)
5784 byte_mode
= VOIDmode
;
5785 word_mode
= VOIDmode
;
5787 for (enum machine_mode mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5789 mode
= GET_MODE_WIDER_MODE (mode
))
5791 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5792 && byte_mode
== VOIDmode
)
5795 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5796 && word_mode
== VOIDmode
)
5800 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5803 /* Create some permanent unique rtl objects shared between all functions. */
5806 init_emit_once (void)
5809 enum machine_mode mode
;
5810 enum machine_mode double_mode
;
5812 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5813 CONST_FIXED, and memory attribute hash tables. */
5814 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5815 const_int_htab_eq
, NULL
);
5817 #if TARGET_SUPPORTS_WIDE_INT
5818 const_wide_int_htab
= htab_create_ggc (37, const_wide_int_htab_hash
,
5819 const_wide_int_htab_eq
, NULL
);
5821 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5822 const_double_htab_eq
, NULL
);
5824 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5825 const_fixed_htab_eq
, NULL
);
5827 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5828 reg_attrs_htab_eq
, NULL
);
5830 #ifdef INIT_EXPANDERS
5831 /* This is to initialize {init|mark|free}_machine_status before the first
5832 call to push_function_context_to. This is needed by the Chill front
5833 end which calls push_function_context_to before the first call to
5834 init_function_start. */
5838 /* Create the unique rtx's for certain rtx codes and operand values. */
5840 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5841 tries to use these variables. */
5842 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5843 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5844 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5846 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5847 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5848 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5850 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5852 double_mode
= mode_for_size (DOUBLE_TYPE_SIZE
, MODE_FLOAT
, 0);
5854 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
5855 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
5856 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
5861 dconsthalf
= dconst1
;
5862 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5864 for (i
= 0; i
< 3; i
++)
5866 const REAL_VALUE_TYPE
*const r
=
5867 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5869 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5871 mode
= GET_MODE_WIDER_MODE (mode
))
5872 const_tiny_rtx
[i
][(int) mode
] =
5873 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5875 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5877 mode
= GET_MODE_WIDER_MODE (mode
))
5878 const_tiny_rtx
[i
][(int) mode
] =
5879 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5881 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5883 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5885 mode
= GET_MODE_WIDER_MODE (mode
))
5886 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5888 for (mode
= MIN_MODE_PARTIAL_INT
;
5889 mode
<= MAX_MODE_PARTIAL_INT
;
5890 mode
= (enum machine_mode
)((int)(mode
) + 1))
5891 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5894 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5896 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5898 mode
= GET_MODE_WIDER_MODE (mode
))
5899 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5901 for (mode
= MIN_MODE_PARTIAL_INT
;
5902 mode
<= MAX_MODE_PARTIAL_INT
;
5903 mode
= (enum machine_mode
)((int)(mode
) + 1))
5904 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5906 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5908 mode
= GET_MODE_WIDER_MODE (mode
))
5910 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5911 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5914 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5916 mode
= GET_MODE_WIDER_MODE (mode
))
5918 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5919 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5922 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5924 mode
= GET_MODE_WIDER_MODE (mode
))
5926 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5927 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5928 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5931 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5933 mode
= GET_MODE_WIDER_MODE (mode
))
5935 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5936 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5939 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5941 mode
= GET_MODE_WIDER_MODE (mode
))
5943 FCONST0 (mode
).data
.high
= 0;
5944 FCONST0 (mode
).data
.low
= 0;
5945 FCONST0 (mode
).mode
= mode
;
5946 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5947 FCONST0 (mode
), mode
);
5950 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5952 mode
= GET_MODE_WIDER_MODE (mode
))
5954 FCONST0 (mode
).data
.high
= 0;
5955 FCONST0 (mode
).data
.low
= 0;
5956 FCONST0 (mode
).mode
= mode
;
5957 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5958 FCONST0 (mode
), mode
);
5961 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5963 mode
= GET_MODE_WIDER_MODE (mode
))
5965 FCONST0 (mode
).data
.high
= 0;
5966 FCONST0 (mode
).data
.low
= 0;
5967 FCONST0 (mode
).mode
= mode
;
5968 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5969 FCONST0 (mode
), mode
);
5971 /* We store the value 1. */
5972 FCONST1 (mode
).data
.high
= 0;
5973 FCONST1 (mode
).data
.low
= 0;
5974 FCONST1 (mode
).mode
= mode
;
5976 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5977 HOST_BITS_PER_DOUBLE_INT
,
5978 SIGNED_FIXED_POINT_MODE_P (mode
));
5979 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5980 FCONST1 (mode
), mode
);
5983 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5985 mode
= GET_MODE_WIDER_MODE (mode
))
5987 FCONST0 (mode
).data
.high
= 0;
5988 FCONST0 (mode
).data
.low
= 0;
5989 FCONST0 (mode
).mode
= mode
;
5990 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5991 FCONST0 (mode
), mode
);
5993 /* We store the value 1. */
5994 FCONST1 (mode
).data
.high
= 0;
5995 FCONST1 (mode
).data
.low
= 0;
5996 FCONST1 (mode
).mode
= mode
;
5998 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5999 HOST_BITS_PER_DOUBLE_INT
,
6000 SIGNED_FIXED_POINT_MODE_P (mode
));
6001 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6002 FCONST1 (mode
), mode
);
6005 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
6007 mode
= GET_MODE_WIDER_MODE (mode
))
6009 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6012 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
6014 mode
= GET_MODE_WIDER_MODE (mode
))
6016 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6019 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
6021 mode
= GET_MODE_WIDER_MODE (mode
))
6023 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6024 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6027 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
6029 mode
= GET_MODE_WIDER_MODE (mode
))
6031 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6032 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6035 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6036 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
6037 const_tiny_rtx
[0][i
] = const0_rtx
;
6039 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6040 if (STORE_FLAG_VALUE
== 1)
6041 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
6043 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6044 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6045 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6046 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6049 /* Produce exact duplicate of insn INSN after AFTER.
6050 Care updating of libcall regions if present. */
6053 emit_copy_of_insn_after (rtx insn
, rtx after
)
6057 switch (GET_CODE (insn
))
6060 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6064 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6065 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6069 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6073 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6074 if (CALL_INSN_FUNCTION_USAGE (insn
))
6075 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6076 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6077 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6078 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6079 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6080 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6081 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6088 /* Update LABEL_NUSES. */
6089 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6091 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6093 /* If the old insn is frame related, then so is the new one. This is
6094 primarily needed for IA-64 unwind info which marks epilogue insns,
6095 which may be duplicated by the basic block reordering code. */
6096 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6098 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6099 will make them. REG_LABEL_TARGETs are created there too, but are
6100 supposed to be sticky, so we copy them. */
6101 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6102 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6104 if (GET_CODE (link
) == EXPR_LIST
)
6105 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
6106 copy_insn_1 (XEXP (link
, 0)));
6108 add_shallow_copy_of_reg_note (new_rtx
, link
);
6111 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6115 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6117 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
6119 if (hard_reg_clobbers
[mode
][regno
])
6120 return hard_reg_clobbers
[mode
][regno
];
6122 return (hard_reg_clobbers
[mode
][regno
] =
6123 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6126 location_t prologue_location
;
6127 location_t epilogue_location
;
6129 /* Hold current location information and last location information, so the
6130 datastructures are built lazily only when some instructions in given
6131 place are needed. */
6132 static location_t curr_location
;
6134 /* Allocate insn location datastructure. */
6136 insn_locations_init (void)
6138 prologue_location
= epilogue_location
= 0;
6139 curr_location
= UNKNOWN_LOCATION
;
6142 /* At the end of emit stage, clear current location. */
6144 insn_locations_finalize (void)
6146 epilogue_location
= curr_location
;
6147 curr_location
= UNKNOWN_LOCATION
;
6150 /* Set current location. */
6152 set_curr_insn_location (location_t location
)
6154 curr_location
= location
;
6157 /* Get current location. */
6159 curr_insn_location (void)
6161 return curr_location
;
6164 /* Return lexical scope block insn belongs to. */
6166 insn_scope (const_rtx insn
)
6168 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6171 /* Return line number of the statement that produced this insn. */
6173 insn_line (const_rtx insn
)
6175 return LOCATION_LINE (INSN_LOCATION (insn
));
6178 /* Return source file of the statement that produced this insn. */
6180 insn_file (const_rtx insn
)
6182 return LOCATION_FILE (INSN_LOCATION (insn
));
6185 /* Return expanded location of the statement that produced this insn. */
6187 insn_location (const_rtx insn
)
6189 return expand_location (INSN_LOCATION (insn
));
6192 /* Return true if memory model MODEL requires a pre-operation (release-style)
6193 barrier or a post-operation (acquire-style) barrier. While not universal,
6194 this function matches behavior of several targets. */
6197 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6199 switch (model
& MEMMODEL_MASK
)
6201 case MEMMODEL_RELAXED
:
6202 case MEMMODEL_CONSUME
:
6204 case MEMMODEL_RELEASE
:
6206 case MEMMODEL_ACQUIRE
:
6208 case MEMMODEL_ACQ_REL
:
6209 case MEMMODEL_SEQ_CST
:
6216 #include "gt-emit-rtl.h"