1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
34 #include "coretypes.h"
38 #include "hard-reg-set.h"
40 #include "insn-config.h"
43 #include "diagnostic-core.h"
48 #include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
50 #include "tree-pass.h"
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass
;
62 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
63 static bool crossjumps_occured
;
65 /* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67 static bool block_was_dirty
;
69 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
70 static bool try_crossjump_bb (int, basic_block
);
71 static bool outgoing_edges_match (int, basic_block
, basic_block
);
72 static enum replace_direction
old_insns_match_p (int, rtx
, rtx
);
74 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
75 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block
);
78 static bool try_forward_edges (int, basic_block
);
79 static edge
thread_jump (edge
, basic_block
);
80 static bool mark_effect (rtx
, bitmap
);
81 static void notice_new_block (basic_block
);
82 static void update_forwarder_flag (basic_block
);
83 static int mentions_nonequal_regs (rtx
*, void *);
84 static void merge_memattrs (rtx
, rtx
);
86 /* Set flags for newly created block. */
89 notice_new_block (basic_block bb
)
94 if (forwarder_block_p (bb
))
95 bb
->flags
|= BB_FORWARDER_BLOCK
;
98 /* Recompute forwarder flag after block has been modified. */
101 update_forwarder_flag (basic_block bb
)
103 if (forwarder_block_p (bb
))
104 bb
->flags
|= BB_FORWARDER_BLOCK
;
106 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
113 try_simplify_condjump (basic_block cbranch_block
)
115 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
116 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
123 /* Verify that we've got a normal conditional branch at the end
125 cbranch_insn
= BB_END (cbranch_block
);
126 if (!any_condjump_p (cbranch_insn
))
129 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
130 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block
= cbranch_fallthru_edge
->dest
;
136 if (!single_pred_p (jump_block
)
137 || jump_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
138 || !FORWARDER_BLOCK_P (jump_block
))
140 jump_dest_block
= single_succ (jump_block
);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
153 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block
= cbranch_jump_edge
->dest
;
160 if (cbranch_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
161 || !can_fallthru (jump_block
, cbranch_dest_block
))
164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
169 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
170 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
177 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
179 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
180 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
181 update_br_prob_note (cbranch_block
);
183 /* Delete the block with the unconditional jump, and clean up the mess. */
184 delete_basic_block (jump_block
);
185 tidy_fallthru_edge (cbranch_jump_edge
);
186 update_forwarder_flag (cbranch_block
);
191 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
195 mark_effect (rtx exp
, regset nonequal
)
199 switch (GET_CODE (exp
))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
204 if (REG_P (XEXP (exp
, 0)))
206 dest
= XEXP (exp
, 0);
207 regno
= REGNO (dest
);
208 if (HARD_REGISTER_NUM_P (regno
))
209 bitmap_clear_range (nonequal
, regno
,
210 hard_regno_nregs
[regno
][GET_MODE (dest
)]);
212 bitmap_clear_bit (nonequal
, regno
);
217 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
219 dest
= SET_DEST (exp
);
224 regno
= REGNO (dest
);
225 if (HARD_REGISTER_NUM_P (regno
))
226 bitmap_set_range (nonequal
, regno
,
227 hard_regno_nregs
[regno
][GET_MODE (dest
)]);
229 bitmap_set_bit (nonequal
, regno
);
237 /* Return nonzero if X is a register set in regset DATA.
238 Called via for_each_rtx. */
240 mentions_nonequal_regs (rtx
*x
, void *data
)
242 regset nonequal
= (regset
) data
;
248 if (REGNO_REG_SET_P (nonequal
, regno
))
250 if (regno
< FIRST_PSEUDO_REGISTER
)
252 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
254 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
260 /* Attempt to prove that the basic block B will have no side effects and
261 always continues in the same edge if reached via E. Return the edge
262 if exist, NULL otherwise. */
265 thread_jump (edge e
, basic_block b
)
267 rtx set1
, set2
, cond1
, cond2
, insn
;
268 enum rtx_code code1
, code2
, reversed_code2
;
269 bool reverse1
= false;
273 reg_set_iterator rsi
;
275 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
278 /* At the moment, we do handle only conditional jumps, but later we may
279 want to extend this code to tablejumps and others. */
280 if (EDGE_COUNT (e
->src
->succs
) != 2)
282 if (EDGE_COUNT (b
->succs
) != 2)
284 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
288 /* Second branch must end with onlyjump, as we will eliminate the jump. */
289 if (!any_condjump_p (BB_END (e
->src
)))
292 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
294 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
298 set1
= pc_set (BB_END (e
->src
));
299 set2
= pc_set (BB_END (b
));
300 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
301 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
304 cond1
= XEXP (SET_SRC (set1
), 0);
305 cond2
= XEXP (SET_SRC (set2
), 0);
307 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
309 code1
= GET_CODE (cond1
);
311 code2
= GET_CODE (cond2
);
312 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
314 if (!comparison_dominates_p (code1
, code2
)
315 && !comparison_dominates_p (code1
, reversed_code2
))
318 /* Ensure that the comparison operators are equivalent.
319 ??? This is far too pessimistic. We should allow swapped operands,
320 different CCmodes, or for example comparisons for interval, that
321 dominate even when operands are not equivalent. */
322 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
323 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
326 /* Short circuit cases where block B contains some side effects, as we can't
328 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
329 insn
= NEXT_INSN (insn
))
330 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
332 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
338 /* First process all values computed in the source basic block. */
339 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
340 insn
!= NEXT_INSN (BB_END (e
->src
));
341 insn
= NEXT_INSN (insn
))
343 cselib_process_insn (insn
);
345 nonequal
= BITMAP_ALLOC (NULL
);
346 CLEAR_REG_SET (nonequal
);
348 /* Now assume that we've continued by the edge E to B and continue
349 processing as if it were same basic block.
350 Our goal is to prove that whole block is an NOOP. */
352 for (insn
= NEXT_INSN (BB_HEAD (b
));
353 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
354 insn
= NEXT_INSN (insn
))
358 rtx pat
= PATTERN (insn
);
360 if (GET_CODE (pat
) == PARALLEL
)
362 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
363 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
366 failed
|= mark_effect (pat
, nonequal
);
369 cselib_process_insn (insn
);
372 /* Later we should clear nonequal of dead registers. So far we don't
373 have life information in cfg_cleanup. */
376 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
380 /* cond2 must not mention any register that is not equal to the
382 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
385 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
388 BITMAP_FREE (nonequal
);
390 if ((comparison_dominates_p (code1
, code2
) != 0)
391 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
392 return BRANCH_EDGE (b
);
394 return FALLTHRU_EDGE (b
);
397 BITMAP_FREE (nonequal
);
402 /* Attempt to forward edges leaving basic block B.
403 Return true if successful. */
406 try_forward_edges (int mode
, basic_block b
)
408 bool changed
= false;
410 edge e
, *threaded_edges
= NULL
;
412 /* If we are partitioning hot/cold basic blocks, we don't want to
413 mess up unconditional or indirect jumps that cross between hot
416 Basic block partitioning may result in some jumps that appear to
417 be optimizable (or blocks that appear to be mergeable), but which really
418 must be left untouched (they are required to make it safely across
419 partition boundaries). See the comments at the top of
420 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
422 if (JUMP_P (BB_END (b
)) && CROSSING_JUMP_P (BB_END (b
)))
425 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
427 basic_block target
, first
;
428 location_t goto_locus
;
430 bool threaded
= false;
431 int nthreaded_edges
= 0;
432 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
434 /* Skip complex edges because we don't know how to update them.
436 Still handle fallthru edges, as we can succeed to forward fallthru
437 edge to the same place as the branch edge of conditional branch
438 and turn conditional branch to an unconditional branch. */
439 if (e
->flags
& EDGE_COMPLEX
)
445 target
= first
= e
->dest
;
446 counter
= NUM_FIXED_BLOCKS
;
447 goto_locus
= e
->goto_locus
;
449 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
450 up jumps that cross between hot/cold sections.
452 Basic block partitioning may result in some jumps that appear
453 to be optimizable (or blocks that appear to be mergeable), but which
454 really must be left untouched (they are required to make it safely
455 across partition boundaries). See the comments at the top of
456 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 if (first
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
460 && JUMP_P (BB_END (first
))
461 && CROSSING_JUMP_P (BB_END (first
)))
464 while (counter
< n_basic_blocks_for_fn (cfun
))
466 basic_block new_target
= NULL
;
467 bool new_target_threaded
= false;
468 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
470 if (FORWARDER_BLOCK_P (target
)
471 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
472 && single_succ (target
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
474 /* Bypass trivial infinite loops. */
475 new_target
= single_succ (target
);
476 if (target
== new_target
)
477 counter
= n_basic_blocks_for_fn (cfun
);
480 /* When not optimizing, ensure that edges or forwarder
481 blocks with different locus are not optimized out. */
482 location_t new_locus
= single_succ_edge (target
)->goto_locus
;
483 location_t locus
= goto_locus
;
485 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
486 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
487 && new_locus
!= locus
)
491 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
494 rtx last
= BB_END (target
);
495 if (DEBUG_INSN_P (last
))
496 last
= prev_nondebug_insn (last
);
497 if (last
&& INSN_P (last
))
498 new_locus
= INSN_LOCATION (last
);
500 new_locus
= UNKNOWN_LOCATION
;
502 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
503 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
504 && new_locus
!= locus
)
508 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
517 /* Allow to thread only over one edge at time to simplify updating
519 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
521 edge t
= thread_jump (e
, target
);
525 threaded_edges
= XNEWVEC (edge
,
526 n_basic_blocks_for_fn (cfun
));
531 /* Detect an infinite loop across blocks not
532 including the start block. */
533 for (i
= 0; i
< nthreaded_edges
; ++i
)
534 if (threaded_edges
[i
] == t
)
536 if (i
< nthreaded_edges
)
538 counter
= n_basic_blocks_for_fn (cfun
);
543 /* Detect an infinite loop across the start block. */
547 gcc_assert (nthreaded_edges
548 < (n_basic_blocks_for_fn (cfun
)
549 - NUM_FIXED_BLOCKS
));
550 threaded_edges
[nthreaded_edges
++] = t
;
552 new_target
= t
->dest
;
553 new_target_threaded
= true;
562 threaded
|= new_target_threaded
;
565 if (counter
>= n_basic_blocks_for_fn (cfun
))
568 fprintf (dump_file
, "Infinite loop in BB %i.\n",
571 else if (target
== first
)
572 ; /* We didn't do anything. */
575 /* Save the values now, as the edge may get removed. */
576 gcov_type edge_count
= e
->count
;
577 int edge_probability
= e
->probability
;
581 e
->goto_locus
= goto_locus
;
583 /* Don't force if target is exit block. */
584 if (threaded
&& target
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
586 notice_new_block (redirect_edge_and_branch_force (e
, target
));
588 fprintf (dump_file
, "Conditionals threaded.\n");
590 else if (!redirect_edge_and_branch (e
, target
))
594 "Forwarding edge %i->%i to %i failed.\n",
595 b
->index
, e
->dest
->index
, target
->index
);
600 /* We successfully forwarded the edge. Now update profile
601 data: for each edge we traversed in the chain, remove
602 the original edge's execution count. */
603 edge_frequency
= apply_probability (b
->frequency
, edge_probability
);
609 if (!single_succ_p (first
))
611 gcc_assert (n
< nthreaded_edges
);
612 t
= threaded_edges
[n
++];
613 gcc_assert (t
->src
== first
);
614 update_bb_profile_for_threading (first
, edge_frequency
,
616 update_br_prob_note (first
);
620 first
->count
-= edge_count
;
621 if (first
->count
< 0)
623 first
->frequency
-= edge_frequency
;
624 if (first
->frequency
< 0)
625 first
->frequency
= 0;
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n
< nthreaded_edges
631 && first
== threaded_edges
[n
]->src
)
633 t
= single_succ_edge (first
);
636 t
->count
-= edge_count
;
641 while (first
!= target
);
649 free (threaded_edges
);
654 /* Blocks A and B are to be merged into a single block. A has no incoming
655 fallthru edge, so it can be moved before B without adding or modifying
656 any jumps (aside from the jump from A to B). */
659 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
663 /* If we are partitioning hot/cold basic blocks, we don't want to
664 mess up unconditional or indirect jumps that cross between hot
667 Basic block partitioning may result in some jumps that appear to
668 be optimizable (or blocks that appear to be mergeable), but which really
669 must be left untouched (they are required to make it safely across
670 partition boundaries). See the comments at the top of
671 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
673 if (BB_PARTITION (a
) != BB_PARTITION (b
))
676 barrier
= next_nonnote_insn (BB_END (a
));
677 gcc_assert (BARRIER_P (barrier
));
678 delete_insn (barrier
);
680 /* Scramble the insn chain. */
681 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
682 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
686 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
689 /* Swap the records for the two blocks around. */
692 link_block (a
, b
->prev_bb
);
694 /* Now blocks A and B are contiguous. Merge them. */
698 /* Blocks A and B are to be merged into a single block. B has no outgoing
699 fallthru edge, so it can be moved after A without adding or modifying
700 any jumps (aside from the jump from A to B). */
703 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
705 rtx barrier
, real_b_end
;
708 /* If we are partitioning hot/cold basic blocks, we don't want to
709 mess up unconditional or indirect jumps that cross between hot
712 Basic block partitioning may result in some jumps that appear to
713 be optimizable (or blocks that appear to be mergeable), but which really
714 must be left untouched (they are required to make it safely across
715 partition boundaries). See the comments at the top of
716 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
718 if (BB_PARTITION (a
) != BB_PARTITION (b
))
721 real_b_end
= BB_END (b
);
723 /* If there is a jump table following block B temporarily add the jump table
724 to block B so that it will also be moved to the correct location. */
725 if (tablejump_p (BB_END (b
), &label
, &table
)
726 && prev_active_insn (label
) == BB_END (b
))
731 /* There had better have been a barrier there. Delete it. */
732 barrier
= NEXT_INSN (BB_END (b
));
733 if (barrier
&& BARRIER_P (barrier
))
734 delete_insn (barrier
);
737 /* Scramble the insn chain. */
738 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
740 /* Restore the real end of b. */
741 BB_END (b
) = real_b_end
;
744 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
747 /* Now blocks A and B are contiguous. Merge them. */
751 /* Attempt to merge basic blocks that are potentially non-adjacent.
752 Return NULL iff the attempt failed, otherwise return basic block
753 where cleanup_cfg should continue. Because the merging commonly
754 moves basic block away or introduces another optimization
755 possibility, return basic block just before B so cleanup_cfg don't
758 It may be good idea to return basic block before C in the case
759 C has been moved after B and originally appeared earlier in the
760 insn sequence, but we have no information available about the
761 relative ordering of these two. Hopefully it is not too common. */
764 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
768 /* If we are partitioning hot/cold basic blocks, we don't want to
769 mess up unconditional or indirect jumps that cross between hot
772 Basic block partitioning may result in some jumps that appear to
773 be optimizable (or blocks that appear to be mergeable), but which really
774 must be left untouched (they are required to make it safely across
775 partition boundaries). See the comments at the top of
776 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
778 if (BB_PARTITION (b
) != BB_PARTITION (c
))
781 /* If B has a fallthru edge to C, no need to move anything. */
782 if (e
->flags
& EDGE_FALLTHRU
)
784 int b_index
= b
->index
, c_index
= c
->index
;
786 /* Protect the loop latches. */
787 if (current_loops
&& c
->loop_father
->latch
== c
)
791 update_forwarder_flag (b
);
794 fprintf (dump_file
, "Merged %d and %d without moving.\n",
797 return b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? b
: b
->prev_bb
;
800 /* Otherwise we will need to move code around. Do that only if expensive
801 transformations are allowed. */
802 else if (mode
& CLEANUP_EXPENSIVE
)
804 edge tmp_edge
, b_fallthru_edge
;
805 bool c_has_outgoing_fallthru
;
806 bool b_has_incoming_fallthru
;
808 /* Avoid overactive code motion, as the forwarder blocks should be
809 eliminated by edge redirection instead. One exception might have
810 been if B is a forwarder block and C has no fallthru edge, but
811 that should be cleaned up by bb-reorder instead. */
812 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
815 /* We must make sure to not munge nesting of lexical blocks,
816 and loop notes. This is done by squeezing out all the notes
817 and leaving them there to lie. Not ideal, but functional. */
819 tmp_edge
= find_fallthru_edge (c
->succs
);
820 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
822 tmp_edge
= find_fallthru_edge (b
->preds
);
823 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
824 b_fallthru_edge
= tmp_edge
;
827 next
= next
->prev_bb
;
829 /* Otherwise, we're going to try to move C after B. If C does
830 not have an outgoing fallthru, then it can be moved
831 immediately after B without introducing or modifying jumps. */
832 if (! c_has_outgoing_fallthru
)
834 merge_blocks_move_successor_nojumps (b
, c
);
835 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
838 /* If B does not have an incoming fallthru, then it can be moved
839 immediately before C without introducing or modifying jumps.
840 C cannot be the first block, so we do not have to worry about
841 accessing a non-existent block. */
843 if (b_has_incoming_fallthru
)
847 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
849 bb
= force_nonfallthru (b_fallthru_edge
);
851 notice_new_block (bb
);
854 merge_blocks_move_predecessor_nojumps (b
, c
);
855 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
862 /* Removes the memory attributes of MEM expression
863 if they are not equal. */
866 merge_memattrs (rtx x
, rtx y
)
875 if (x
== 0 || y
== 0)
880 if (code
!= GET_CODE (y
))
883 if (GET_MODE (x
) != GET_MODE (y
))
886 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
890 else if (! MEM_ATTRS (y
))
894 HOST_WIDE_INT mem_size
;
896 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
898 set_mem_alias_set (x
, 0);
899 set_mem_alias_set (y
, 0);
902 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
906 clear_mem_offset (x
);
907 clear_mem_offset (y
);
909 else if (MEM_OFFSET_KNOWN_P (x
) != MEM_OFFSET_KNOWN_P (y
)
910 || (MEM_OFFSET_KNOWN_P (x
)
911 && MEM_OFFSET (x
) != MEM_OFFSET (y
)))
913 clear_mem_offset (x
);
914 clear_mem_offset (y
);
917 if (MEM_SIZE_KNOWN_P (x
) && MEM_SIZE_KNOWN_P (y
))
919 mem_size
= MAX (MEM_SIZE (x
), MEM_SIZE (y
));
920 set_mem_size (x
, mem_size
);
921 set_mem_size (y
, mem_size
);
929 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
930 set_mem_align (y
, MEM_ALIGN (x
));
935 if (MEM_READONLY_P (x
) != MEM_READONLY_P (y
))
937 MEM_READONLY_P (x
) = 0;
938 MEM_READONLY_P (y
) = 0;
940 if (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
))
942 MEM_NOTRAP_P (x
) = 0;
943 MEM_NOTRAP_P (y
) = 0;
945 if (MEM_VOLATILE_P (x
) != MEM_VOLATILE_P (y
))
947 MEM_VOLATILE_P (x
) = 1;
948 MEM_VOLATILE_P (y
) = 1;
952 fmt
= GET_RTX_FORMAT (code
);
953 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
958 /* Two vectors must have the same length. */
959 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
962 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
963 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
968 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
975 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
976 different single sets S1 and S2. */
979 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
984 if (p1
== s1
&& p2
== s2
)
987 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
990 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
993 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
995 e1
= XVECEXP (p1
, 0, i
);
996 e2
= XVECEXP (p2
, 0, i
);
997 if (e1
== s1
&& e2
== s2
)
1000 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
1009 /* Examine register notes on I1 and I2 and return:
1010 - dir_forward if I1 can be replaced by I2, or
1011 - dir_backward if I2 can be replaced by I1, or
1012 - dir_both if both are the case. */
1014 static enum replace_direction
1015 can_replace_by (rtx i1
, rtx i2
)
1017 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
1020 /* Check for 2 sets. */
1021 s1
= single_set (i1
);
1022 s2
= single_set (i2
);
1023 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
1026 /* Check that the 2 sets set the same dest. */
1029 if (!(reload_completed
1030 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1033 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1034 set dest to the same value. */
1035 note1
= find_reg_equal_equiv_note (i1
);
1036 note2
= find_reg_equal_equiv_note (i2
);
1037 if (!note1
|| !note2
|| !rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0))
1038 || !CONST_INT_P (XEXP (note1
, 0)))
1041 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1044 /* Although the 2 sets set dest to the same value, we cannot replace
1045 (set (dest) (const_int))
1048 because we don't know if the reg is live and has the same value at the
1049 location of replacement. */
1050 src1
= SET_SRC (s1
);
1051 src2
= SET_SRC (s2
);
1052 c1
= CONST_INT_P (src1
);
1053 c2
= CONST_INT_P (src2
);
1059 return dir_backward
;
1064 /* Merges directions A and B. */
1066 static enum replace_direction
1067 merge_dir (enum replace_direction a
, enum replace_direction b
)
1069 /* Implements the following table:
1088 /* Examine I1 and I2 and return:
1089 - dir_forward if I1 can be replaced by I2, or
1090 - dir_backward if I2 can be replaced by I1, or
1091 - dir_both if both are the case. */
1093 static enum replace_direction
1094 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
1098 /* Verify that I1 and I2 are equivalent. */
1099 if (GET_CODE (i1
) != GET_CODE (i2
))
1102 /* __builtin_unreachable() may lead to empty blocks (ending with
1103 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1104 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1107 /* ??? Do not allow cross-jumping between different stack levels. */
1108 p1
= find_reg_note (i1
, REG_ARGS_SIZE
, NULL
);
1109 p2
= find_reg_note (i2
, REG_ARGS_SIZE
, NULL
);
1114 if (!rtx_equal_p (p1
, p2
))
1117 /* ??? Worse, this adjustment had better be constant lest we
1118 have differing incoming stack levels. */
1119 if (!frame_pointer_needed
1120 && find_args_size_adjust (i1
) == HOST_WIDE_INT_MIN
)
1129 if (GET_CODE (p1
) != GET_CODE (p2
))
1132 /* If this is a CALL_INSN, compare register usage information.
1133 If we don't check this on stack register machines, the two
1134 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1135 numbers of stack registers in the same basic block.
1136 If we don't check this on machines with delay slots, a delay slot may
1137 be filled that clobbers a parameter expected by the subroutine.
1139 ??? We take the simple route for now and assume that if they're
1140 equal, they were constructed identically.
1142 Also check for identical exception regions. */
1146 /* Ensure the same EH region. */
1147 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1148 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1153 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1156 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1157 CALL_INSN_FUNCTION_USAGE (i2
))
1158 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1161 /* For address sanitizer, never crossjump __asan_report_* builtins,
1162 otherwise errors might be reported on incorrect lines. */
1163 if (flag_sanitize
& SANITIZE_ADDRESS
)
1165 rtx call
= get_call_rtx_from (i1
);
1166 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
1168 rtx symbol
= XEXP (XEXP (call
, 0), 0);
1169 if (SYMBOL_REF_DECL (symbol
)
1170 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
1172 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
1174 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1175 >= BUILT_IN_ASAN_REPORT_LOAD1
1176 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1177 <= BUILT_IN_ASAN_REPORT_STORE16
)
1185 /* If cross_jump_death_matters is not 0, the insn's mode
1186 indicates whether or not the insn contains any stack-like
1189 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1191 /* If register stack conversion has already been done, then
1192 death notes must also be compared before it is certain that
1193 the two instruction streams match. */
1196 HARD_REG_SET i1_regset
, i2_regset
;
1198 CLEAR_HARD_REG_SET (i1_regset
);
1199 CLEAR_HARD_REG_SET (i2_regset
);
1201 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1202 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1203 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1205 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1206 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1207 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1209 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1214 if (reload_completed
1215 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1218 return can_replace_by (i1
, i2
);
1221 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1222 flow_find_head_matching_sequence, ensure the notes match. */
1225 merge_notes (rtx i1
, rtx i2
)
1227 /* If the merged insns have different REG_EQUAL notes, then
1229 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1230 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1232 if (equiv1
&& !equiv2
)
1233 remove_note (i1
, equiv1
);
1234 else if (!equiv1
&& equiv2
)
1235 remove_note (i2
, equiv2
);
1236 else if (equiv1
&& equiv2
1237 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1239 remove_note (i1
, equiv1
);
1240 remove_note (i2
, equiv2
);
1244 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1245 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1246 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1247 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1248 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1251 walk_to_nondebug_insn (rtx
*i1
, basic_block
*bb1
, bool follow_fallthru
,
1256 *did_fallthru
= false;
1259 while (!NONDEBUG_INSN_P (*i1
))
1261 if (*i1
!= BB_HEAD (*bb1
))
1263 *i1
= PREV_INSN (*i1
);
1267 if (!follow_fallthru
)
1270 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1271 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1272 || !single_succ_p (fallthru
->src
))
1275 *bb1
= fallthru
->src
;
1276 *i1
= BB_END (*bb1
);
1277 *did_fallthru
= true;
1281 /* Look through the insns at the end of BB1 and BB2 and find the longest
1282 sequence that are either equivalent, or allow forward or backward
1283 replacement. Store the first insns for that sequence in *F1 and *F2 and
1284 return the sequence length.
1286 DIR_P indicates the allowed replacement direction on function entry, and
1287 the actual replacement direction on function exit. If NULL, only equivalent
1288 sequences are allowed.
1290 To simplify callers of this function, if the blocks match exactly,
1291 store the head of the blocks in *F1 and *F2. */
1294 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx
*f1
, rtx
*f2
,
1295 enum replace_direction
*dir_p
)
1297 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1299 enum replace_direction dir
, last_dir
, afterlast_dir
;
1300 bool follow_fallthru
, did_fallthru
;
1306 afterlast_dir
= dir
;
1307 last_dir
= afterlast_dir
;
1309 /* Skip simple jumps at the end of the blocks. Complex jumps still
1310 need to be compared for equivalence, which we'll do below. */
1313 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1315 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1318 i1
= PREV_INSN (i1
);
1323 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1326 /* Count everything except for unconditional jump as insn.
1327 Don't count any jumps if dir_p is NULL. */
1328 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
&& dir_p
)
1330 i2
= PREV_INSN (i2
);
1335 /* In the following example, we can replace all jumps to C by jumps to A.
1337 This removes 4 duplicate insns.
1338 [bb A] insn1 [bb C] insn1
1344 We could also replace all jumps to A by jumps to C, but that leaves B
1345 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1346 step, all jumps to B would be replaced with jumps to the middle of C,
1347 achieving the same result with more effort.
1348 So we allow only the first possibility, which means that we don't allow
1349 fallthru in the block that's being replaced. */
1351 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1352 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1356 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1357 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1361 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1364 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1365 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1368 merge_memattrs (i1
, i2
);
1370 /* Don't begin a cross-jump with a NOTE insn. */
1373 merge_notes (i1
, i2
);
1375 afterlast1
= last1
, afterlast2
= last2
;
1376 last1
= i1
, last2
= i2
;
1377 afterlast_dir
= last_dir
;
1379 if (active_insn_p (i1
))
1383 i1
= PREV_INSN (i1
);
1384 i2
= PREV_INSN (i2
);
1388 /* Don't allow the insn after a compare to be shared by
1389 cross-jumping unless the compare is also shared. */
1390 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1391 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1394 /* Include preceding notes and labels in the cross-jump. One,
1395 this may bring us to the head of the blocks as requested above.
1396 Two, it keeps line number notes as matched as may be. */
1399 bb1
= BLOCK_FOR_INSN (last1
);
1400 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1401 last1
= PREV_INSN (last1
);
1403 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1404 last1
= PREV_INSN (last1
);
1406 bb2
= BLOCK_FOR_INSN (last2
);
1407 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1408 last2
= PREV_INSN (last2
);
1410 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1411 last2
= PREV_INSN (last2
);
1422 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1423 the head of the two blocks. Do not include jumps at the end.
1424 If STOP_AFTER is nonzero, stop after finding that many matching
1425 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1426 non-zero, only count active insns. */
1429 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx
*f1
,
1430 rtx
*f2
, int stop_after
)
1432 rtx i1
, i2
, last1
, last2
, beforelast1
, beforelast2
;
1436 int nehedges1
= 0, nehedges2
= 0;
1438 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1439 if (e
->flags
& EDGE_EH
)
1441 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1442 if (e
->flags
& EDGE_EH
)
1447 last1
= beforelast1
= last2
= beforelast2
= NULL_RTX
;
1451 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1452 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1454 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1456 i1
= NEXT_INSN (i1
);
1459 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1461 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1463 i2
= NEXT_INSN (i2
);
1466 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1467 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1470 if (NOTE_P (i1
) || NOTE_P (i2
)
1471 || JUMP_P (i1
) || JUMP_P (i2
))
1474 /* A sanity check to make sure we're not merging insns with different
1475 effects on EH. If only one of them ends a basic block, it shouldn't
1476 have an EH edge; if both end a basic block, there should be the same
1477 number of EH edges. */
1478 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1480 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1482 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1483 && nehedges1
!= nehedges2
))
1486 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1489 merge_memattrs (i1
, i2
);
1491 /* Don't begin a cross-jump with a NOTE insn. */
1494 merge_notes (i1
, i2
);
1496 beforelast1
= last1
, beforelast2
= last2
;
1497 last1
= i1
, last2
= i2
;
1498 if (!stop_after
|| active_insn_p (i1
))
1502 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1503 || (stop_after
> 0 && ninsns
== stop_after
))
1506 i1
= NEXT_INSN (i1
);
1507 i2
= NEXT_INSN (i2
);
1511 /* Don't allow a compare to be shared by cross-jumping unless the insn
1512 after the compare is also shared. */
1513 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && sets_cc0_p (last1
))
1514 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1526 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1527 the branch instruction. This means that if we commonize the control
1528 flow before end of the basic block, the semantic remains unchanged.
1530 We may assume that there exists one edge with a common destination. */
1533 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1535 int nehedges1
= 0, nehedges2
= 0;
1536 edge fallthru1
= 0, fallthru2
= 0;
1540 /* If we performed shrink-wrapping, edges to the exit block can
1541 only be distinguished for JUMP_INSNs. The two paths may differ in
1542 whether they went through the prologue. Sibcalls are fine, we know
1543 that we either didn't need or inserted an epilogue before them. */
1544 if (crtl
->shrink_wrapped
1545 && single_succ_p (bb1
)
1546 && single_succ (bb1
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
1547 && !JUMP_P (BB_END (bb1
))
1548 && !(CALL_P (BB_END (bb1
)) && SIBLING_CALL_P (BB_END (bb1
))))
1551 /* If BB1 has only one successor, we may be looking at either an
1552 unconditional jump, or a fake edge to exit. */
1553 if (single_succ_p (bb1
)
1554 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1555 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1556 return (single_succ_p (bb2
)
1557 && (single_succ_edge (bb2
)->flags
1558 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1559 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1561 /* Match conditional jumps - this may get tricky when fallthru and branch
1562 edges are crossed. */
1563 if (EDGE_COUNT (bb1
->succs
) == 2
1564 && any_condjump_p (BB_END (bb1
))
1565 && onlyjump_p (BB_END (bb1
)))
1567 edge b1
, f1
, b2
, f2
;
1568 bool reverse
, match
;
1569 rtx set1
, set2
, cond1
, cond2
;
1570 enum rtx_code code1
, code2
;
1572 if (EDGE_COUNT (bb2
->succs
) != 2
1573 || !any_condjump_p (BB_END (bb2
))
1574 || !onlyjump_p (BB_END (bb2
)))
1577 b1
= BRANCH_EDGE (bb1
);
1578 b2
= BRANCH_EDGE (bb2
);
1579 f1
= FALLTHRU_EDGE (bb1
);
1580 f2
= FALLTHRU_EDGE (bb2
);
1582 /* Get around possible forwarders on fallthru edges. Other cases
1583 should be optimized out already. */
1584 if (FORWARDER_BLOCK_P (f1
->dest
))
1585 f1
= single_succ_edge (f1
->dest
);
1587 if (FORWARDER_BLOCK_P (f2
->dest
))
1588 f2
= single_succ_edge (f2
->dest
);
1590 /* To simplify use of this function, return false if there are
1591 unneeded forwarder blocks. These will get eliminated later
1592 during cleanup_cfg. */
1593 if (FORWARDER_BLOCK_P (f1
->dest
)
1594 || FORWARDER_BLOCK_P (f2
->dest
)
1595 || FORWARDER_BLOCK_P (b1
->dest
)
1596 || FORWARDER_BLOCK_P (b2
->dest
))
1599 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1601 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1606 set1
= pc_set (BB_END (bb1
));
1607 set2
= pc_set (BB_END (bb2
));
1608 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1609 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1612 cond1
= XEXP (SET_SRC (set1
), 0);
1613 cond2
= XEXP (SET_SRC (set2
), 0);
1614 code1
= GET_CODE (cond1
);
1616 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1618 code2
= GET_CODE (cond2
);
1620 if (code2
== UNKNOWN
)
1623 /* Verify codes and operands match. */
1624 match
= ((code1
== code2
1625 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1626 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1627 || (code1
== swap_condition (code2
)
1628 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1630 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1633 /* If we return true, we will join the blocks. Which means that
1634 we will only have one branch prediction bit to work with. Thus
1635 we require the existing branches to have probabilities that are
1638 && optimize_bb_for_speed_p (bb1
)
1639 && optimize_bb_for_speed_p (bb2
))
1643 if (b1
->dest
== b2
->dest
)
1644 prob2
= b2
->probability
;
1646 /* Do not use f2 probability as f2 may be forwarded. */
1647 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1649 /* Fail if the difference in probabilities is greater than 50%.
1650 This rules out two well-predicted branches with opposite
1652 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1656 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1657 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1663 if (dump_file
&& match
)
1664 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1665 bb1
->index
, bb2
->index
);
1670 /* Generic case - we are seeing a computed jump, table jump or trapping
1673 /* Check whether there are tablejumps in the end of BB1 and BB2.
1674 Return true if they are identical. */
1679 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1680 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1681 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1683 /* The labels should never be the same rtx. If they really are same
1684 the jump tables are same too. So disable crossjumping of blocks BB1
1685 and BB2 because when deleting the common insns in the end of BB1
1686 by delete_basic_block () the jump table would be deleted too. */
1687 /* If LABEL2 is referenced in BB1->END do not do anything
1688 because we would loose information when replacing
1689 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1690 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1692 /* Set IDENTICAL to true when the tables are identical. */
1693 bool identical
= false;
1696 p1
= PATTERN (table1
);
1697 p2
= PATTERN (table2
);
1698 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1702 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1703 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1704 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1705 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1710 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1711 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1717 replace_label_data rr
;
1720 /* Temporarily replace references to LABEL1 with LABEL2
1721 in BB1->END so that we could compare the instructions. */
1724 rr
.update_label_nuses
= false;
1725 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1727 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1729 if (dump_file
&& match
)
1731 "Tablejumps in bb %i and %i match.\n",
1732 bb1
->index
, bb2
->index
);
1734 /* Set the original label in BB1->END because when deleting
1735 a block whose end is a tablejump, the tablejump referenced
1736 from the instruction is deleted too. */
1739 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1748 /* Find the last non-debug non-note instruction in each bb, except
1749 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1750 handles that case specially. old_insns_match_p does not handle
1751 other types of instruction notes. */
1752 rtx last1
= BB_END (bb1
);
1753 rtx last2
= BB_END (bb2
);
1754 while (!NOTE_INSN_BASIC_BLOCK_P (last1
) &&
1755 (DEBUG_INSN_P (last1
) || NOTE_P (last1
)))
1756 last1
= PREV_INSN (last1
);
1757 while (!NOTE_INSN_BASIC_BLOCK_P (last2
) &&
1758 (DEBUG_INSN_P (last2
) || NOTE_P (last2
)))
1759 last2
= PREV_INSN (last2
);
1760 gcc_assert (last1
&& last2
);
1762 /* First ensure that the instructions match. There may be many outgoing
1763 edges so this test is generally cheaper. */
1764 if (old_insns_match_p (mode
, last1
, last2
) != dir_both
)
1767 /* Search the outgoing edges, ensure that the counts do match, find possible
1768 fallthru and exception handling edges since these needs more
1770 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1773 bool nonfakeedges
= false;
1774 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1776 e2
= EDGE_SUCC (bb2
, ei
.index
);
1778 if ((e1
->flags
& EDGE_FAKE
) == 0)
1779 nonfakeedges
= true;
1781 if (e1
->flags
& EDGE_EH
)
1784 if (e2
->flags
& EDGE_EH
)
1787 if (e1
->flags
& EDGE_FALLTHRU
)
1789 if (e2
->flags
& EDGE_FALLTHRU
)
1793 /* If number of edges of various types does not match, fail. */
1794 if (nehedges1
!= nehedges2
1795 || (fallthru1
!= 0) != (fallthru2
!= 0))
1798 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1799 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1800 attempt to optimize, as the two basic blocks might have different
1801 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1802 traps there should be REG_ARG_SIZE notes, they could be missing
1803 for __builtin_unreachable () uses though. */
1805 && !ACCUMULATE_OUTGOING_ARGS
1807 || !find_reg_note (last1
, REG_ARGS_SIZE
, NULL
)))
1810 /* fallthru edges must be forwarded to the same destination. */
1813 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1814 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1815 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1816 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1822 /* Ensure the same EH region. */
1824 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1825 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1830 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1834 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1835 version of sequence abstraction. */
1836 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1840 basic_block d1
= e1
->dest
;
1842 if (FORWARDER_BLOCK_P (d1
))
1843 d1
= EDGE_SUCC (d1
, 0)->dest
;
1845 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1847 basic_block d2
= e2
->dest
;
1848 if (FORWARDER_BLOCK_P (d2
))
1849 d2
= EDGE_SUCC (d2
, 0)->dest
;
1861 /* Returns true if BB basic block has a preserve label. */
1864 block_has_preserve_label (basic_block bb
)
1868 && LABEL_PRESERVE_P (block_label (bb
)));
1871 /* E1 and E2 are edges with the same destination block. Search their
1872 predecessors for common code. If found, redirect control flow from
1873 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1874 or the other way around (dir_backward). DIR specifies the allowed
1875 replacement direction. */
1878 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1879 enum replace_direction dir
)
1882 basic_block src1
= e1
->src
, src2
= e2
->src
;
1883 basic_block redirect_to
, redirect_from
, to_remove
;
1884 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1885 rtx newpos1
, newpos2
;
1889 newpos1
= newpos2
= NULL_RTX
;
1891 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1892 to try this optimization.
1894 Basic block partitioning may result in some jumps that appear to
1895 be optimizable (or blocks that appear to be mergeable), but which really
1896 must be left untouched (they are required to make it safely across
1897 partition boundaries). See the comments at the top of
1898 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1900 if (crtl
->has_bb_partition
&& reload_completed
)
1903 /* Search backward through forwarder blocks. We don't need to worry
1904 about multiple entry or chained forwarders, as they will be optimized
1905 away. We do this to look past the unconditional jump following a
1906 conditional jump that is required due to the current CFG shape. */
1907 if (single_pred_p (src1
)
1908 && FORWARDER_BLOCK_P (src1
))
1909 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1911 if (single_pred_p (src2
)
1912 && FORWARDER_BLOCK_P (src2
))
1913 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1915 /* Nothing to do if we reach ENTRY, or a common source block. */
1916 if (src1
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || src2
1917 == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1922 /* Seeing more than 1 forwarder blocks would confuse us later... */
1923 if (FORWARDER_BLOCK_P (e1
->dest
)
1924 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1927 if (FORWARDER_BLOCK_P (e2
->dest
)
1928 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1931 /* Likewise with dead code (possibly newly created by the other optimizations
1933 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1936 /* Look for the common insn sequence, part the first ... */
1937 if (!outgoing_edges_match (mode
, src1
, src2
))
1940 /* ... and part the second. */
1941 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
1945 if (newpos1
!= NULL_RTX
)
1946 src1
= BLOCK_FOR_INSN (newpos1
);
1947 if (newpos2
!= NULL_RTX
)
1948 src2
= BLOCK_FOR_INSN (newpos2
);
1950 if (dir
== dir_backward
)
1952 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1953 SWAP (basic_block
, osrc1
, osrc2
);
1954 SWAP (basic_block
, src1
, src2
);
1955 SWAP (edge
, e1
, e2
);
1956 SWAP (rtx
, newpos1
, newpos2
);
1960 /* Don't proceed with the crossjump unless we found a sufficient number
1961 of matching instructions or the 'from' block was totally matched
1962 (such that its predecessors will hopefully be redirected and the
1964 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1965 && (newpos1
!= BB_HEAD (src1
)))
1968 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1969 if (block_has_preserve_label (e1
->dest
)
1970 && (e1
->flags
& EDGE_ABNORMAL
))
1973 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1975 If we have tablejumps in the end of SRC1 and SRC2
1976 they have been already compared for equivalence in outgoing_edges_match ()
1977 so replace the references to TABLE1 by references to TABLE2. */
1982 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
1983 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
1984 && label1
!= label2
)
1986 replace_label_data rr
;
1989 /* Replace references to LABEL1 with LABEL2. */
1992 rr
.update_label_nuses
= true;
1993 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1995 /* Do not replace the label in SRC1->END because when deleting
1996 a block whose end is a tablejump, the tablejump referenced
1997 from the instruction is deleted too. */
1998 if (insn
!= BB_END (osrc1
))
1999 for_each_rtx (&insn
, replace_label
, &rr
);
2004 /* Avoid splitting if possible. We must always split when SRC2 has
2005 EH predecessor edges, or we may end up with basic blocks with both
2006 normal and EH predecessor edges. */
2007 if (newpos2
== BB_HEAD (src2
)
2008 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
2012 if (newpos2
== BB_HEAD (src2
))
2014 /* Skip possible basic block header. */
2015 if (LABEL_P (newpos2
))
2016 newpos2
= NEXT_INSN (newpos2
);
2017 while (DEBUG_INSN_P (newpos2
))
2018 newpos2
= NEXT_INSN (newpos2
);
2019 if (NOTE_P (newpos2
))
2020 newpos2
= NEXT_INSN (newpos2
);
2021 while (DEBUG_INSN_P (newpos2
))
2022 newpos2
= NEXT_INSN (newpos2
);
2026 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
2027 src2
->index
, nmatch
);
2028 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
2033 "Cross jumping from bb %i to bb %i; %i common insns\n",
2034 src1
->index
, src2
->index
, nmatch
);
2036 /* We may have some registers visible through the block. */
2037 df_set_bb_dirty (redirect_to
);
2040 redirect_edges_to
= redirect_to
;
2042 redirect_edges_to
= osrc2
;
2044 /* Recompute the frequencies and counts of outgoing edges. */
2045 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
2049 basic_block d
= s
->dest
;
2051 if (FORWARDER_BLOCK_P (d
))
2052 d
= single_succ (d
);
2054 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
2056 basic_block d2
= s2
->dest
;
2057 if (FORWARDER_BLOCK_P (d2
))
2058 d2
= single_succ (d2
);
2063 s
->count
+= s2
->count
;
2065 /* Take care to update possible forwarder blocks. We verified
2066 that there is no more than one in the chain, so we can't run
2067 into infinite loop. */
2068 if (FORWARDER_BLOCK_P (s
->dest
))
2070 single_succ_edge (s
->dest
)->count
+= s2
->count
;
2071 s
->dest
->count
+= s2
->count
;
2072 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
2075 if (FORWARDER_BLOCK_P (s2
->dest
))
2077 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
2078 if (single_succ_edge (s2
->dest
)->count
< 0)
2079 single_succ_edge (s2
->dest
)->count
= 0;
2080 s2
->dest
->count
-= s2
->count
;
2081 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
2082 if (s2
->dest
->frequency
< 0)
2083 s2
->dest
->frequency
= 0;
2084 if (s2
->dest
->count
< 0)
2085 s2
->dest
->count
= 0;
2088 if (!redirect_edges_to
->frequency
&& !src1
->frequency
)
2089 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
2092 = ((s
->probability
* redirect_edges_to
->frequency
+
2093 s2
->probability
* src1
->frequency
)
2094 / (redirect_edges_to
->frequency
+ src1
->frequency
));
2097 /* Adjust count and frequency for the block. An earlier jump
2098 threading pass may have left the profile in an inconsistent
2099 state (see update_bb_profile_for_threading) so we must be
2100 prepared for overflows. */
2104 tmp
->count
+= src1
->count
;
2105 tmp
->frequency
+= src1
->frequency
;
2106 if (tmp
->frequency
> BB_FREQ_MAX
)
2107 tmp
->frequency
= BB_FREQ_MAX
;
2108 if (tmp
== redirect_edges_to
)
2110 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2113 update_br_prob_note (redirect_edges_to
);
2115 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2117 /* Skip possible basic block header. */
2118 if (LABEL_P (newpos1
))
2119 newpos1
= NEXT_INSN (newpos1
);
2121 while (DEBUG_INSN_P (newpos1
))
2122 newpos1
= NEXT_INSN (newpos1
);
2124 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2125 newpos1
= NEXT_INSN (newpos1
);
2127 while (DEBUG_INSN_P (newpos1
))
2128 newpos1
= NEXT_INSN (newpos1
);
2130 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2131 to_remove
= single_succ (redirect_from
);
2133 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2134 delete_basic_block (to_remove
);
2136 update_forwarder_flag (redirect_from
);
2137 if (redirect_to
!= src2
)
2138 update_forwarder_flag (src2
);
2143 /* Search the predecessors of BB for common insn sequences. When found,
2144 share code between them by redirecting control flow. Return true if
2145 any changes made. */
2148 try_crossjump_bb (int mode
, basic_block bb
)
2150 edge e
, e2
, fallthru
;
2152 unsigned max
, ix
, ix2
;
2154 /* Nothing to do if there is not at least two incoming edges. */
2155 if (EDGE_COUNT (bb
->preds
) < 2)
2158 /* Don't crossjump if this block ends in a computed jump,
2159 unless we are optimizing for size. */
2160 if (optimize_bb_for_size_p (bb
)
2161 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2162 && computed_jump_p (BB_END (bb
)))
2165 /* If we are partitioning hot/cold basic blocks, we don't want to
2166 mess up unconditional or indirect jumps that cross between hot
2169 Basic block partitioning may result in some jumps that appear to
2170 be optimizable (or blocks that appear to be mergeable), but which really
2171 must be left untouched (they are required to make it safely across
2172 partition boundaries). See the comments at the top of
2173 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2175 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2176 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2177 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2180 /* It is always cheapest to redirect a block that ends in a branch to
2181 a block that falls through into BB, as that adds no branches to the
2182 program. We'll try that combination first. */
2184 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
2186 if (EDGE_COUNT (bb
->preds
) > max
)
2189 fallthru
= find_fallthru_edge (bb
->preds
);
2192 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2194 e
= EDGE_PRED (bb
, ix
);
2197 /* As noted above, first try with the fallthru predecessor (or, a
2198 fallthru predecessor if we are in cfglayout mode). */
2201 /* Don't combine the fallthru edge into anything else.
2202 If there is a match, we'll do it the other way around. */
2205 /* If nothing changed since the last attempt, there is nothing
2208 && !((e
->src
->flags
& BB_MODIFIED
)
2209 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2212 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2220 /* Non-obvious work limiting check: Recognize that we're going
2221 to call try_crossjump_bb on every basic block. So if we have
2222 two blocks with lots of outgoing edges (a switch) and they
2223 share lots of common destinations, then we would do the
2224 cross-jump check once for each common destination.
2226 Now, if the blocks actually are cross-jump candidates, then
2227 all of their destinations will be shared. Which means that
2228 we only need check them for cross-jump candidacy once. We
2229 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2230 choosing to do the check from the block for which the edge
2231 in question is the first successor of A. */
2232 if (EDGE_SUCC (e
->src
, 0) != e
)
2235 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2237 e2
= EDGE_PRED (bb
, ix2
);
2242 /* We've already checked the fallthru edge above. */
2246 /* The "first successor" check above only prevents multiple
2247 checks of crossjump(A,B). In order to prevent redundant
2248 checks of crossjump(B,A), require that A be the block
2249 with the lowest index. */
2250 if (e
->src
->index
> e2
->src
->index
)
2253 /* If nothing changed since the last attempt, there is nothing
2256 && !((e
->src
->flags
& BB_MODIFIED
)
2257 || (e2
->src
->flags
& BB_MODIFIED
)))
2260 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2262 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2272 crossjumps_occured
= true;
2277 /* Search the successors of BB for common insn sequences. When found,
2278 share code between them by moving it across the basic block
2279 boundary. Return true if any changes made. */
2282 try_head_merge_bb (basic_block bb
)
2284 basic_block final_dest_bb
= NULL
;
2285 int max_match
= INT_MAX
;
2287 rtx
*headptr
, *currptr
, *nextptr
;
2288 bool changed
, moveall
;
2290 rtx e0_last_head
, cond
, move_before
;
2291 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2292 rtx jump
= BB_END (bb
);
2293 regset live
, live_union
;
2295 /* Nothing to do if there is not at least two outgoing edges. */
2299 /* Don't crossjump if this block ends in a computed jump,
2300 unless we are optimizing for size. */
2301 if (optimize_bb_for_size_p (bb
)
2302 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2303 && computed_jump_p (BB_END (bb
)))
2306 cond
= get_condition (jump
, &move_before
, true, false);
2307 if (cond
== NULL_RTX
)
2310 if (reg_mentioned_p (cc0_rtx
, jump
))
2311 move_before
= prev_nonnote_nondebug_insn (jump
);
2317 for (ix
= 0; ix
< nedges
; ix
++)
2318 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2321 for (ix
= 0; ix
< nedges
; ix
++)
2323 edge e
= EDGE_SUCC (bb
, ix
);
2324 basic_block other_bb
= e
->dest
;
2326 if (df_get_bb_dirty (other_bb
))
2328 block_was_dirty
= true;
2332 if (e
->flags
& EDGE_ABNORMAL
)
2335 /* Normally, all destination blocks must only be reachable from this
2336 block, i.e. they must have one incoming edge.
2338 There is one special case we can handle, that of multiple consecutive
2339 jumps where the first jumps to one of the targets of the second jump.
2340 This happens frequently in switch statements for default labels.
2341 The structure is as follows:
2347 jump with targets A, B, C, D...
2349 has two incoming edges, from FINAL_DEST_BB and BB
2351 In this case, we can try to move the insns through BB and into
2353 if (EDGE_COUNT (other_bb
->preds
) != 1)
2355 edge incoming_edge
, incoming_bb_other_edge
;
2358 if (final_dest_bb
!= NULL
2359 || EDGE_COUNT (other_bb
->preds
) != 2)
2362 /* We must be able to move the insns across the whole block. */
2363 move_before
= BB_HEAD (bb
);
2364 while (!NONDEBUG_INSN_P (move_before
))
2365 move_before
= NEXT_INSN (move_before
);
2367 if (EDGE_COUNT (bb
->preds
) != 1)
2369 incoming_edge
= EDGE_PRED (bb
, 0);
2370 final_dest_bb
= incoming_edge
->src
;
2371 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2373 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2374 if (incoming_bb_other_edge
!= incoming_edge
)
2376 if (incoming_bb_other_edge
->dest
!= other_bb
)
2381 e0
= EDGE_SUCC (bb
, 0);
2382 e0_last_head
= NULL_RTX
;
2385 for (ix
= 1; ix
< nedges
; ix
++)
2387 edge e
= EDGE_SUCC (bb
, ix
);
2388 rtx e0_last
, e_last
;
2391 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2392 &e0_last
, &e_last
, 0);
2396 if (nmatch
< max_match
)
2399 e0_last_head
= e0_last
;
2403 /* If we matched an entire block, we probably have to avoid moving the
2406 && e0_last_head
== BB_END (e0
->dest
)
2407 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2408 || control_flow_insn_p (e0_last_head
)))
2414 e0_last_head
= prev_real_insn (e0_last_head
);
2415 while (DEBUG_INSN_P (e0_last_head
));
2421 /* We must find a union of the live registers at each of the end points. */
2422 live
= BITMAP_ALLOC (NULL
);
2423 live_union
= BITMAP_ALLOC (NULL
);
2425 currptr
= XNEWVEC (rtx
, nedges
);
2426 headptr
= XNEWVEC (rtx
, nedges
);
2427 nextptr
= XNEWVEC (rtx
, nedges
);
2429 for (ix
= 0; ix
< nedges
; ix
++)
2432 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2433 rtx head
= BB_HEAD (merge_bb
);
2435 while (!NONDEBUG_INSN_P (head
))
2436 head
= NEXT_INSN (head
);
2440 /* Compute the end point and live information */
2441 for (j
= 1; j
< max_match
; j
++)
2443 head
= NEXT_INSN (head
);
2444 while (!NONDEBUG_INSN_P (head
));
2445 simulate_backwards_to_point (merge_bb
, live
, head
);
2446 IOR_REG_SET (live_union
, live
);
2449 /* If we're moving across two blocks, verify the validity of the
2450 first move, then adjust the target and let the loop below deal
2451 with the final move. */
2452 if (final_dest_bb
!= NULL
)
2456 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2457 jump
, e0
->dest
, live_union
,
2461 if (move_upto
== NULL_RTX
)
2464 while (e0_last_head
!= move_upto
)
2466 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2468 e0_last_head
= PREV_INSN (e0_last_head
);
2471 if (e0_last_head
== NULL_RTX
)
2474 jump
= BB_END (final_dest_bb
);
2475 cond
= get_condition (jump
, &move_before
, true, false);
2476 if (cond
== NULL_RTX
)
2479 if (reg_mentioned_p (cc0_rtx
, jump
))
2480 move_before
= prev_nonnote_nondebug_insn (jump
);
2490 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2491 move_before
, jump
, e0
->dest
, live_union
,
2493 if (!moveall
&& move_upto
== NULL_RTX
)
2495 if (jump
== move_before
)
2498 /* Try again, using a different insertion point. */
2502 /* Don't try moving before a cc0 user, as that may invalidate
2504 if (reg_mentioned_p (cc0_rtx
, jump
))
2511 if (final_dest_bb
&& !moveall
)
2512 /* We haven't checked whether a partial move would be OK for the first
2513 move, so we have to fail this case. */
2519 if (currptr
[0] == move_upto
)
2521 for (ix
= 0; ix
< nedges
; ix
++)
2523 rtx curr
= currptr
[ix
];
2525 curr
= NEXT_INSN (curr
);
2526 while (!NONDEBUG_INSN_P (curr
));
2531 /* If we can't currently move all of the identical insns, remember
2532 each insn after the range that we'll merge. */
2534 for (ix
= 0; ix
< nedges
; ix
++)
2536 rtx curr
= currptr
[ix
];
2538 curr
= NEXT_INSN (curr
);
2539 while (!NONDEBUG_INSN_P (curr
));
2543 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2544 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2545 if (final_dest_bb
!= NULL
)
2546 df_set_bb_dirty (final_dest_bb
);
2547 df_set_bb_dirty (bb
);
2548 for (ix
= 1; ix
< nedges
; ix
++)
2550 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2551 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2555 if (jump
== move_before
)
2558 /* For the unmerged insns, try a different insertion point. */
2562 /* Don't try moving before a cc0 user, as that may invalidate
2564 if (reg_mentioned_p (cc0_rtx
, jump
))
2568 for (ix
= 0; ix
< nedges
; ix
++)
2569 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2579 crossjumps_occured
|= changed
;
2584 /* Return true if BB contains just bb note, or bb note followed
2585 by only DEBUG_INSNs. */
2588 trivially_empty_bb_p (basic_block bb
)
2590 rtx insn
= BB_END (bb
);
2594 if (insn
== BB_HEAD (bb
))
2596 if (!DEBUG_INSN_P (insn
))
2598 insn
= PREV_INSN (insn
);
2602 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2603 instructions etc. Return nonzero if changes were made. */
2606 try_optimize_cfg (int mode
)
2608 bool changed_overall
= false;
2611 basic_block bb
, b
, next
;
2613 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2616 crossjumps_occured
= false;
2618 FOR_EACH_BB_FN (bb
, cfun
)
2619 update_forwarder_flag (bb
);
2621 if (! targetm
.cannot_modify_jumps_p ())
2624 /* Attempt to merge blocks as made possible by edge removal. If
2625 a block has only one successor, and the successor has only
2626 one predecessor, they may be combined. */
2629 block_was_dirty
= false;
2635 "\n\ntry_optimize_cfg iteration %i\n\n",
2638 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
2639 != EXIT_BLOCK_PTR_FOR_FN (cfun
);)
2643 bool changed_here
= false;
2645 /* Delete trivially dead basic blocks. This is either
2646 blocks with no predecessors, or empty blocks with no
2647 successors. However if the empty block with no
2648 successors is the successor of the ENTRY_BLOCK, it is
2649 kept. This ensures that the ENTRY_BLOCK will have a
2650 successor which is a precondition for many RTL
2651 passes. Empty blocks may result from expanding
2652 __builtin_unreachable (). */
2653 if (EDGE_COUNT (b
->preds
) == 0
2654 || (EDGE_COUNT (b
->succs
) == 0
2655 && trivially_empty_bb_p (b
)
2656 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
2660 if (EDGE_COUNT (b
->preds
) > 0)
2665 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2668 && BARRIER_P (BB_FOOTER (b
)))
2669 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2670 if ((e
->flags
& EDGE_FALLTHRU
)
2671 && BB_FOOTER (e
->src
) == NULL
)
2675 BB_FOOTER (e
->src
) = BB_FOOTER (b
);
2676 BB_FOOTER (b
) = NULL
;
2681 BB_FOOTER (e
->src
) = emit_barrier ();
2688 rtx last
= get_last_bb_insn (b
);
2689 if (last
&& BARRIER_P (last
))
2690 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2691 if ((e
->flags
& EDGE_FALLTHRU
))
2692 emit_barrier_after (BB_END (e
->src
));
2695 delete_basic_block (b
);
2697 /* Avoid trying to remove the exit block. */
2698 b
= (c
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? c
->next_bb
: c
);
2702 /* Remove code labels no longer used. */
2703 if (single_pred_p (b
)
2704 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2705 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2706 && LABEL_P (BB_HEAD (b
))
2707 /* If the previous block ends with a branch to this
2708 block, we can't delete the label. Normally this
2709 is a condjump that is yet to be simplified, but
2710 if CASE_DROPS_THRU, this can be a tablejump with
2711 some element going to the same place as the
2712 default (fallthru). */
2713 && (single_pred (b
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
)
2714 || !JUMP_P (BB_END (single_pred (b
)))
2715 || ! label_is_jump_target_p (BB_HEAD (b
),
2716 BB_END (single_pred (b
)))))
2718 delete_insn (BB_HEAD (b
));
2720 fprintf (dump_file
, "Deleted label in block %i.\n",
2724 /* If we fall through an empty block, we can remove it. */
2725 if (!(mode
& (CLEANUP_CFGLAYOUT
| CLEANUP_NO_INSN_DEL
))
2726 && single_pred_p (b
)
2727 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2728 && !LABEL_P (BB_HEAD (b
))
2729 && FORWARDER_BLOCK_P (b
)
2730 /* Note that forwarder_block_p true ensures that
2731 there is a successor for this block. */
2732 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2733 && n_basic_blocks_for_fn (cfun
) > NUM_FIXED_BLOCKS
+ 1)
2737 "Deleting fallthru block %i.\n",
2740 c
= ((b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2741 ? b
->next_bb
: b
->prev_bb
);
2742 redirect_edge_succ_nodup (single_pred_edge (b
),
2744 delete_basic_block (b
);
2750 /* Merge B with its single successor, if any. */
2751 if (single_succ_p (b
)
2752 && (s
= single_succ_edge (b
))
2753 && !(s
->flags
& EDGE_COMPLEX
)
2754 && (c
= s
->dest
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2755 && single_pred_p (c
)
2758 /* When not in cfg_layout mode use code aware of reordering
2759 INSN. This code possibly creates new basic blocks so it
2760 does not fit merge_blocks interface and is kept here in
2761 hope that it will become useless once more of compiler
2762 is transformed to use cfg_layout mode. */
2764 if ((mode
& CLEANUP_CFGLAYOUT
)
2765 && can_merge_blocks_p (b
, c
))
2767 merge_blocks (b
, c
);
2768 update_forwarder_flag (b
);
2769 changed_here
= true;
2771 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2772 /* If the jump insn has side effects,
2773 we can't kill the edge. */
2774 && (!JUMP_P (BB_END (b
))
2775 || (reload_completed
2776 ? simplejump_p (BB_END (b
))
2777 : (onlyjump_p (BB_END (b
))
2778 && !tablejump_p (BB_END (b
),
2780 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2783 changed_here
= true;
2787 /* Simplify branch over branch. */
2788 if ((mode
& CLEANUP_EXPENSIVE
)
2789 && !(mode
& CLEANUP_CFGLAYOUT
)
2790 && try_simplify_condjump (b
))
2791 changed_here
= true;
2793 /* If B has a single outgoing edge, but uses a
2794 non-trivial jump instruction without side-effects, we
2795 can either delete the jump entirely, or replace it
2796 with a simple unconditional jump. */
2797 if (single_succ_p (b
)
2798 && single_succ (b
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2799 && onlyjump_p (BB_END (b
))
2800 && !CROSSING_JUMP_P (BB_END (b
))
2801 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2803 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2805 update_forwarder_flag (b
);
2806 changed_here
= true;
2809 /* Simplify branch to branch. */
2810 if (try_forward_edges (mode
, b
))
2812 update_forwarder_flag (b
);
2813 changed_here
= true;
2816 /* Look for shared code between blocks. */
2817 if ((mode
& CLEANUP_CROSSJUMP
)
2818 && try_crossjump_bb (mode
, b
))
2819 changed_here
= true;
2821 if ((mode
& CLEANUP_CROSSJUMP
)
2822 /* This can lengthen register lifetimes. Do it only after
2825 && try_head_merge_bb (b
))
2826 changed_here
= true;
2828 /* Don't get confused by the index shift caused by
2836 if ((mode
& CLEANUP_CROSSJUMP
)
2837 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR_FOR_FN (cfun
)))
2840 if (block_was_dirty
)
2842 /* This should only be set by head-merging. */
2843 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
2849 /* Edge forwarding in particular can cause hot blocks previously
2850 reached by both hot and cold blocks to become dominated only
2851 by cold blocks. This will cause the verification below to fail,
2852 and lead to now cold code in the hot section. This is not easy
2853 to detect and fix during edge forwarding, and in some cases
2854 is only visible after newly unreachable blocks are deleted,
2855 which will be done in fixup_partitions. */
2856 fixup_partitions ();
2858 #ifdef ENABLE_CHECKING
2859 verify_flow_info ();
2863 changed_overall
|= changed
;
2869 FOR_ALL_BB_FN (b
, cfun
)
2870 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2872 return changed_overall
;
2875 /* Delete all unreachable basic blocks. */
2878 delete_unreachable_blocks (void)
2880 bool changed
= false;
2881 basic_block b
, prev_bb
;
2883 find_unreachable_blocks ();
2885 /* When we're in GIMPLE mode and there may be debug insns, we should
2886 delete blocks in reverse dominator order, so as to get a chance
2887 to substitute all released DEFs into debug stmts. If we don't
2888 have dominators information, walking blocks backward gets us a
2889 better chance of retaining most debug information than
2891 if (MAY_HAVE_DEBUG_INSNS
&& current_ir_type () == IR_GIMPLE
2892 && dom_info_available_p (CDI_DOMINATORS
))
2894 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
2895 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
2897 prev_bb
= b
->prev_bb
;
2899 if (!(b
->flags
& BB_REACHABLE
))
2901 /* Speed up the removal of blocks that don't dominate
2902 others. Walking backwards, this should be the common
2904 if (!first_dom_son (CDI_DOMINATORS
, b
))
2905 delete_basic_block (b
);
2909 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
2915 prev_bb
= b
->prev_bb
;
2917 gcc_assert (!(b
->flags
& BB_REACHABLE
));
2919 delete_basic_block (b
);
2931 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
2932 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
2934 prev_bb
= b
->prev_bb
;
2936 if (!(b
->flags
& BB_REACHABLE
))
2938 delete_basic_block (b
);
2945 tidy_fallthru_edges ();
2949 /* Delete any jump tables never referenced. We can't delete them at the
2950 time of removing tablejump insn as they are referenced by the preceding
2951 insns computing the destination, so we delay deleting and garbagecollect
2952 them once life information is computed. */
2954 delete_dead_jumptables (void)
2958 /* A dead jump table does not belong to any basic block. Scan insns
2959 between two adjacent basic blocks. */
2960 FOR_EACH_BB_FN (bb
, cfun
)
2964 for (insn
= NEXT_INSN (BB_END (bb
));
2965 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
2968 next
= NEXT_INSN (insn
);
2970 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
2971 && JUMP_TABLE_DATA_P (next
))
2973 rtx label
= insn
, jump
= next
;
2976 fprintf (dump_file
, "Dead jumptable %i removed\n",
2979 next
= NEXT_INSN (next
);
2981 delete_insn (label
);
2988 /* Tidy the CFG by deleting unreachable code and whatnot. */
2991 cleanup_cfg (int mode
)
2993 bool changed
= false;
2995 /* Set the cfglayout mode flag here. We could update all the callers
2996 but that is just inconvenient, especially given that we eventually
2997 want to have cfglayout mode as the default. */
2998 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2999 mode
|= CLEANUP_CFGLAYOUT
;
3001 timevar_push (TV_CLEANUP_CFG
);
3002 if (delete_unreachable_blocks ())
3005 /* We've possibly created trivially dead code. Cleanup it right
3006 now to introduce more opportunities for try_optimize_cfg. */
3007 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
3008 && !reload_completed
)
3009 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3014 /* To tail-merge blocks ending in the same noreturn function (e.g.
3015 a call to abort) we have to insert fake edges to exit. Do this
3016 here once. The fake edges do not interfere with any other CFG
3018 if (mode
& CLEANUP_CROSSJUMP
)
3019 add_noreturn_fake_exit_edges ();
3021 if (!dbg_cnt (cfg_cleanup
))
3024 while (try_optimize_cfg (mode
))
3026 delete_unreachable_blocks (), changed
= true;
3027 if (!(mode
& CLEANUP_NO_INSN_DEL
))
3029 /* Try to remove some trivially dead insns when doing an expensive
3030 cleanup. But delete_trivially_dead_insns doesn't work after
3031 reload (it only handles pseudos) and run_fast_dce is too costly
3032 to run in every iteration.
3034 For effective cross jumping, we really want to run a fast DCE to
3035 clean up any dead conditions, or they get in the way of performing
3038 Other transformations in cleanup_cfg are not so sensitive to dead
3039 code, so delete_trivially_dead_insns or even doing nothing at all
3041 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
3042 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3044 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occured
)
3051 if (mode
& CLEANUP_CROSSJUMP
)
3052 remove_fake_exit_edges ();
3054 /* Don't call delete_dead_jumptables in cfglayout mode, because
3055 that function assumes that jump tables are in the insns stream.
3056 But we also don't _have_ to delete dead jumptables in cfglayout
3057 mode because we shouldn't even be looking at things that are
3058 not in a basic block. Dead jumptables are cleaned up when
3059 going out of cfglayout mode. */
3060 if (!(mode
& CLEANUP_CFGLAYOUT
))
3061 delete_dead_jumptables ();
3063 /* ??? We probably do this way too often. */
3066 || (mode
& CLEANUP_CFG_CHANGED
)))
3068 timevar_push (TV_REPAIR_LOOPS
);
3069 /* The above doesn't preserve dominance info if available. */
3070 gcc_assert (!dom_info_available_p (CDI_DOMINATORS
));
3071 calculate_dominance_info (CDI_DOMINATORS
);
3072 fix_loop_structure (NULL
);
3073 free_dominance_info (CDI_DOMINATORS
);
3074 timevar_pop (TV_REPAIR_LOOPS
);
3077 timevar_pop (TV_CLEANUP_CFG
);
3084 const pass_data pass_data_jump
=
3086 RTL_PASS
, /* type */
3088 OPTGROUP_NONE
, /* optinfo_flags */
3089 true, /* has_execute */
3090 TV_JUMP
, /* tv_id */
3091 0, /* properties_required */
3092 0, /* properties_provided */
3093 0, /* properties_destroyed */
3094 0, /* todo_flags_start */
3095 0, /* todo_flags_finish */
3098 class pass_jump
: public rtl_opt_pass
3101 pass_jump (gcc::context
*ctxt
)
3102 : rtl_opt_pass (pass_data_jump
, ctxt
)
3105 /* opt_pass methods: */
3106 virtual unsigned int execute (function
*);
3108 }; // class pass_jump
3111 pass_jump::execute (function
*)
3113 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3115 dump_flow_info (dump_file
, dump_flags
);
3116 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
3117 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
3124 make_pass_jump (gcc::context
*ctxt
)
3126 return new pass_jump (ctxt
);
3131 const pass_data pass_data_jump2
=
3133 RTL_PASS
, /* type */
3135 OPTGROUP_NONE
, /* optinfo_flags */
3136 true, /* has_execute */
3137 TV_JUMP
, /* tv_id */
3138 0, /* properties_required */
3139 0, /* properties_provided */
3140 0, /* properties_destroyed */
3141 0, /* todo_flags_start */
3142 0, /* todo_flags_finish */
3145 class pass_jump2
: public rtl_opt_pass
3148 pass_jump2 (gcc::context
*ctxt
)
3149 : rtl_opt_pass (pass_data_jump2
, ctxt
)
3152 /* opt_pass methods: */
3153 virtual unsigned int execute (function
*)
3155 cleanup_cfg (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0);
3159 }; // class pass_jump2
3164 make_pass_jump2 (gcc::context
*ctxt
)
3166 return new pass_jump2 (ctxt
);