Improve costs for DImode shifts of interger constants.
[official-gcc.git] / gcc / real.c
blob09ec5c08c3863e18f498009e9a3d36522f6c2a9d
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "realmpfr.h"
29 #include "dfp.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
35 Specifically
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
39 where
40 s = sign (+- 1)
41 b = base or radix, here always 2
42 e = exponent
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
48 range [0.5, 1.0).
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
54 in a normalized form.
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
66 #endif
68 static void get_zero (REAL_VALUE_TYPE *, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
71 static void get_inf (REAL_VALUE_TYPE *, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
73 const REAL_VALUE_TYPE *, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
75 unsigned int);
76 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
77 unsigned int);
78 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
79 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
80 const REAL_VALUE_TYPE *);
81 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, int);
83 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
84 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
86 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *);
92 static void normalize (REAL_VALUE_TYPE *);
94 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
95 const REAL_VALUE_TYPE *, int);
96 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
97 const REAL_VALUE_TYPE *);
98 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
99 const REAL_VALUE_TYPE *);
100 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
104 static void decimal_from_integer (REAL_VALUE_TYPE *);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
106 size_t);
108 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE * real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE *, int);
113 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
115 /* Initialize R with a positive zero. */
117 static inline void
118 get_zero (REAL_VALUE_TYPE *r, int sign)
120 memset (r, 0, sizeof (*r));
121 r->sign = sign;
124 /* Initialize R with the canonical quiet NaN. */
126 static inline void
127 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
129 memset (r, 0, sizeof (*r));
130 r->cl = rvc_nan;
131 r->sign = sign;
132 r->canonical = 1;
135 static inline void
136 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
138 memset (r, 0, sizeof (*r));
139 r->cl = rvc_nan;
140 r->sign = sign;
141 r->signalling = 1;
142 r->canonical = 1;
145 static inline void
146 get_inf (REAL_VALUE_TYPE *r, int sign)
148 memset (r, 0, sizeof (*r));
149 r->cl = rvc_inf;
150 r->sign = sign;
154 /* Right-shift the significand of A by N bits; put the result in the
155 significand of R. If any one bits are shifted out, return true. */
157 static bool
158 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
159 unsigned int n)
161 unsigned long sticky = 0;
162 unsigned int i, ofs = 0;
164 if (n >= HOST_BITS_PER_LONG)
166 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
167 sticky |= a->sig[i];
168 n &= HOST_BITS_PER_LONG - 1;
171 if (n != 0)
173 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
174 for (i = 0; i < SIGSZ; ++i)
176 r->sig[i]
177 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
178 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
179 << (HOST_BITS_PER_LONG - n)));
182 else
184 for (i = 0; ofs + i < SIGSZ; ++i)
185 r->sig[i] = a->sig[ofs + i];
186 for (; i < SIGSZ; ++i)
187 r->sig[i] = 0;
190 return sticky != 0;
193 /* Right-shift the significand of A by N bits; put the result in the
194 significand of R. */
196 static void
197 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
198 unsigned int n)
200 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
202 n &= HOST_BITS_PER_LONG - 1;
203 if (n != 0)
205 for (i = 0; i < SIGSZ; ++i)
207 r->sig[i]
208 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
209 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
210 << (HOST_BITS_PER_LONG - n)));
213 else
215 for (i = 0; ofs + i < SIGSZ; ++i)
216 r->sig[i] = a->sig[ofs + i];
217 for (; i < SIGSZ; ++i)
218 r->sig[i] = 0;
222 /* Left-shift the significand of A by N bits; put the result in the
223 significand of R. */
225 static void
226 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
227 unsigned int n)
229 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
231 n &= HOST_BITS_PER_LONG - 1;
232 if (n == 0)
234 for (i = 0; ofs + i < SIGSZ; ++i)
235 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
236 for (; i < SIGSZ; ++i)
237 r->sig[SIGSZ-1-i] = 0;
239 else
240 for (i = 0; i < SIGSZ; ++i)
242 r->sig[SIGSZ-1-i]
243 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
244 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
245 >> (HOST_BITS_PER_LONG - n)));
249 /* Likewise, but N is specialized to 1. */
251 static inline void
252 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
254 unsigned int i;
256 for (i = SIGSZ - 1; i > 0; --i)
257 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
258 r->sig[0] = a->sig[0] << 1;
261 /* Add the significands of A and B, placing the result in R. Return
262 true if there was carry out of the most significant word. */
264 static inline bool
265 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
266 const REAL_VALUE_TYPE *b)
268 bool carry = false;
269 int i;
271 for (i = 0; i < SIGSZ; ++i)
273 unsigned long ai = a->sig[i];
274 unsigned long ri = ai + b->sig[i];
276 if (carry)
278 carry = ri < ai;
279 carry |= ++ri == 0;
281 else
282 carry = ri < ai;
284 r->sig[i] = ri;
287 return carry;
290 /* Subtract the significands of A and B, placing the result in R. CARRY is
291 true if there's a borrow incoming to the least significant word.
292 Return true if there was borrow out of the most significant word. */
294 static inline bool
295 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
296 const REAL_VALUE_TYPE *b, int carry)
298 int i;
300 for (i = 0; i < SIGSZ; ++i)
302 unsigned long ai = a->sig[i];
303 unsigned long ri = ai - b->sig[i];
305 if (carry)
307 carry = ri > ai;
308 carry |= ~--ri == 0;
310 else
311 carry = ri > ai;
313 r->sig[i] = ri;
316 return carry;
319 /* Negate the significand A, placing the result in R. */
321 static inline void
322 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
324 bool carry = true;
325 int i;
327 for (i = 0; i < SIGSZ; ++i)
329 unsigned long ri, ai = a->sig[i];
331 if (carry)
333 if (ai)
335 ri = -ai;
336 carry = false;
338 else
339 ri = ai;
341 else
342 ri = ~ai;
344 r->sig[i] = ri;
348 /* Compare significands. Return tri-state vs zero. */
350 static inline int
351 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
353 int i;
355 for (i = SIGSZ - 1; i >= 0; --i)
357 unsigned long ai = a->sig[i];
358 unsigned long bi = b->sig[i];
360 if (ai > bi)
361 return 1;
362 if (ai < bi)
363 return -1;
366 return 0;
369 /* Return true if A is nonzero. */
371 static inline int
372 cmp_significand_0 (const REAL_VALUE_TYPE *a)
374 int i;
376 for (i = SIGSZ - 1; i >= 0; --i)
377 if (a->sig[i])
378 return 1;
380 return 0;
383 /* Set bit N of the significand of R. */
385 static inline void
386 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
388 r->sig[n / HOST_BITS_PER_LONG]
389 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
392 /* Clear bit N of the significand of R. */
394 static inline void
395 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
397 r->sig[n / HOST_BITS_PER_LONG]
398 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
401 /* Test bit N of the significand of R. */
403 static inline bool
404 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
406 /* ??? Compiler bug here if we return this expression directly.
407 The conversion to bool strips the "&1" and we wind up testing
408 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
409 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
410 return t;
413 /* Clear bits 0..N-1 of the significand of R. */
415 static void
416 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
418 int i, w = n / HOST_BITS_PER_LONG;
420 for (i = 0; i < w; ++i)
421 r->sig[i] = 0;
423 /* We are actually passing N == SIGNIFICAND_BITS which would result
424 in an out-of-bound access below. */
425 if (n % HOST_BITS_PER_LONG != 0)
426 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
429 /* Divide the significands of A and B, placing the result in R. Return
430 true if the division was inexact. */
432 static inline bool
433 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
434 const REAL_VALUE_TYPE *b)
436 REAL_VALUE_TYPE u;
437 int i, bit = SIGNIFICAND_BITS - 1;
438 unsigned long msb, inexact;
440 u = *a;
441 memset (r->sig, 0, sizeof (r->sig));
443 msb = 0;
444 goto start;
447 msb = u.sig[SIGSZ-1] & SIG_MSB;
448 lshift_significand_1 (&u, &u);
449 start:
450 if (msb || cmp_significands (&u, b) >= 0)
452 sub_significands (&u, &u, b, 0);
453 set_significand_bit (r, bit);
456 while (--bit >= 0);
458 for (i = 0, inexact = 0; i < SIGSZ; i++)
459 inexact |= u.sig[i];
461 return inexact != 0;
464 /* Adjust the exponent and significand of R such that the most
465 significant bit is set. We underflow to zero and overflow to
466 infinity here, without denormals. (The intermediate representation
467 exponent is large enough to handle target denormals normalized.) */
469 static void
470 normalize (REAL_VALUE_TYPE *r)
472 int shift = 0, exp;
473 int i, j;
475 if (r->decimal)
476 return;
478 /* Find the first word that is nonzero. */
479 for (i = SIGSZ - 1; i >= 0; i--)
480 if (r->sig[i] == 0)
481 shift += HOST_BITS_PER_LONG;
482 else
483 break;
485 /* Zero significand flushes to zero. */
486 if (i < 0)
488 r->cl = rvc_zero;
489 SET_REAL_EXP (r, 0);
490 return;
493 /* Find the first bit that is nonzero. */
494 for (j = 0; ; j++)
495 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
496 break;
497 shift += j;
499 if (shift > 0)
501 exp = REAL_EXP (r) - shift;
502 if (exp > MAX_EXP)
503 get_inf (r, r->sign);
504 else if (exp < -MAX_EXP)
505 get_zero (r, r->sign);
506 else
508 SET_REAL_EXP (r, exp);
509 lshift_significand (r, r, shift);
514 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
515 result may be inexact due to a loss of precision. */
517 static bool
518 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
519 const REAL_VALUE_TYPE *b, int subtract_p)
521 int dexp, sign, exp;
522 REAL_VALUE_TYPE t;
523 bool inexact = false;
525 /* Determine if we need to add or subtract. */
526 sign = a->sign;
527 subtract_p = (sign ^ b->sign) ^ subtract_p;
529 switch (CLASS2 (a->cl, b->cl))
531 case CLASS2 (rvc_zero, rvc_zero):
532 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
533 get_zero (r, sign & !subtract_p);
534 return false;
536 case CLASS2 (rvc_zero, rvc_normal):
537 case CLASS2 (rvc_zero, rvc_inf):
538 case CLASS2 (rvc_zero, rvc_nan):
539 /* 0 + ANY = ANY. */
540 case CLASS2 (rvc_normal, rvc_nan):
541 case CLASS2 (rvc_inf, rvc_nan):
542 case CLASS2 (rvc_nan, rvc_nan):
543 /* ANY + NaN = NaN. */
544 case CLASS2 (rvc_normal, rvc_inf):
545 /* R + Inf = Inf. */
546 *r = *b;
547 /* Make resulting NaN value to be qNaN. The caller has the
548 responsibility to avoid the operation if flag_signaling_nans
549 is on. */
550 r->signalling = 0;
551 r->sign = sign ^ subtract_p;
552 return false;
554 case CLASS2 (rvc_normal, rvc_zero):
555 case CLASS2 (rvc_inf, rvc_zero):
556 case CLASS2 (rvc_nan, rvc_zero):
557 /* ANY + 0 = ANY. */
558 case CLASS2 (rvc_nan, rvc_normal):
559 case CLASS2 (rvc_nan, rvc_inf):
560 /* NaN + ANY = NaN. */
561 case CLASS2 (rvc_inf, rvc_normal):
562 /* Inf + R = Inf. */
563 *r = *a;
564 /* Make resulting NaN value to be qNaN. The caller has the
565 responsibility to avoid the operation if flag_signaling_nans
566 is on. */
567 r->signalling = 0;
568 return false;
570 case CLASS2 (rvc_inf, rvc_inf):
571 if (subtract_p)
572 /* Inf - Inf = NaN. */
573 get_canonical_qnan (r, 0);
574 else
575 /* Inf + Inf = Inf. */
576 *r = *a;
577 return false;
579 case CLASS2 (rvc_normal, rvc_normal):
580 break;
582 default:
583 gcc_unreachable ();
586 /* Swap the arguments such that A has the larger exponent. */
587 dexp = REAL_EXP (a) - REAL_EXP (b);
588 if (dexp < 0)
590 const REAL_VALUE_TYPE *t;
591 t = a, a = b, b = t;
592 dexp = -dexp;
593 sign ^= subtract_p;
595 exp = REAL_EXP (a);
597 /* If the exponents are not identical, we need to shift the
598 significand of B down. */
599 if (dexp > 0)
601 /* If the exponents are too far apart, the significands
602 do not overlap, which makes the subtraction a noop. */
603 if (dexp >= SIGNIFICAND_BITS)
605 *r = *a;
606 r->sign = sign;
607 return true;
610 inexact |= sticky_rshift_significand (&t, b, dexp);
611 b = &t;
614 if (subtract_p)
616 if (sub_significands (r, a, b, inexact))
618 /* We got a borrow out of the subtraction. That means that
619 A and B had the same exponent, and B had the larger
620 significand. We need to swap the sign and negate the
621 significand. */
622 sign ^= 1;
623 neg_significand (r, r);
626 else
628 if (add_significands (r, a, b))
630 /* We got carry out of the addition. This means we need to
631 shift the significand back down one bit and increase the
632 exponent. */
633 inexact |= sticky_rshift_significand (r, r, 1);
634 r->sig[SIGSZ-1] |= SIG_MSB;
635 if (++exp > MAX_EXP)
637 get_inf (r, sign);
638 return true;
643 r->cl = rvc_normal;
644 r->sign = sign;
645 SET_REAL_EXP (r, exp);
646 /* Zero out the remaining fields. */
647 r->signalling = 0;
648 r->canonical = 0;
649 r->decimal = 0;
651 /* Re-normalize the result. */
652 normalize (r);
654 /* Special case: if the subtraction results in zero, the result
655 is positive. */
656 if (r->cl == rvc_zero)
657 r->sign = 0;
658 else
659 r->sig[0] |= inexact;
661 return inexact;
664 /* Calculate R = A * B. Return true if the result may be inexact. */
666 static bool
667 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
668 const REAL_VALUE_TYPE *b)
670 REAL_VALUE_TYPE u, t, *rr;
671 unsigned int i, j, k;
672 int sign = a->sign ^ b->sign;
673 bool inexact = false;
675 switch (CLASS2 (a->cl, b->cl))
677 case CLASS2 (rvc_zero, rvc_zero):
678 case CLASS2 (rvc_zero, rvc_normal):
679 case CLASS2 (rvc_normal, rvc_zero):
680 /* +-0 * ANY = 0 with appropriate sign. */
681 get_zero (r, sign);
682 return false;
684 case CLASS2 (rvc_zero, rvc_nan):
685 case CLASS2 (rvc_normal, rvc_nan):
686 case CLASS2 (rvc_inf, rvc_nan):
687 case CLASS2 (rvc_nan, rvc_nan):
688 /* ANY * NaN = NaN. */
689 *r = *b;
690 /* Make resulting NaN value to be qNaN. The caller has the
691 responsibility to avoid the operation if flag_signaling_nans
692 is on. */
693 r->signalling = 0;
694 r->sign = sign;
695 return false;
697 case CLASS2 (rvc_nan, rvc_zero):
698 case CLASS2 (rvc_nan, rvc_normal):
699 case CLASS2 (rvc_nan, rvc_inf):
700 /* NaN * ANY = NaN. */
701 *r = *a;
702 /* Make resulting NaN value to be qNaN. The caller has the
703 responsibility to avoid the operation if flag_signaling_nans
704 is on. */
705 r->signalling = 0;
706 r->sign = sign;
707 return false;
709 case CLASS2 (rvc_zero, rvc_inf):
710 case CLASS2 (rvc_inf, rvc_zero):
711 /* 0 * Inf = NaN */
712 get_canonical_qnan (r, sign);
713 return false;
715 case CLASS2 (rvc_inf, rvc_inf):
716 case CLASS2 (rvc_normal, rvc_inf):
717 case CLASS2 (rvc_inf, rvc_normal):
718 /* Inf * Inf = Inf, R * Inf = Inf */
719 get_inf (r, sign);
720 return false;
722 case CLASS2 (rvc_normal, rvc_normal):
723 break;
725 default:
726 gcc_unreachable ();
729 if (r == a || r == b)
730 rr = &t;
731 else
732 rr = r;
733 get_zero (rr, 0);
735 /* Collect all the partial products. Since we don't have sure access
736 to a widening multiply, we split each long into two half-words.
738 Consider the long-hand form of a four half-word multiplication:
740 A B C D
741 * E F G H
742 --------------
743 DE DF DG DH
744 CE CF CG CH
745 BE BF BG BH
746 AE AF AG AH
748 We construct partial products of the widened half-word products
749 that are known to not overlap, e.g. DF+DH. Each such partial
750 product is given its proper exponent, which allows us to sum them
751 and obtain the finished product. */
753 for (i = 0; i < SIGSZ * 2; ++i)
755 unsigned long ai = a->sig[i / 2];
756 if (i & 1)
757 ai >>= HOST_BITS_PER_LONG / 2;
758 else
759 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
761 if (ai == 0)
762 continue;
764 for (j = 0; j < 2; ++j)
766 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
767 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
769 if (exp > MAX_EXP)
771 get_inf (r, sign);
772 return true;
774 if (exp < -MAX_EXP)
776 /* Would underflow to zero, which we shouldn't bother adding. */
777 inexact = true;
778 continue;
781 memset (&u, 0, sizeof (u));
782 u.cl = rvc_normal;
783 SET_REAL_EXP (&u, exp);
785 for (k = j; k < SIGSZ * 2; k += 2)
787 unsigned long bi = b->sig[k / 2];
788 if (k & 1)
789 bi >>= HOST_BITS_PER_LONG / 2;
790 else
791 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
793 u.sig[k / 2] = ai * bi;
796 normalize (&u);
797 inexact |= do_add (rr, rr, &u, 0);
801 rr->sign = sign;
802 if (rr != r)
803 *r = t;
805 return inexact;
808 /* Calculate R = A / B. Return true if the result may be inexact. */
810 static bool
811 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
812 const REAL_VALUE_TYPE *b)
814 int exp, sign = a->sign ^ b->sign;
815 REAL_VALUE_TYPE t, *rr;
816 bool inexact;
818 switch (CLASS2 (a->cl, b->cl))
820 case CLASS2 (rvc_zero, rvc_zero):
821 /* 0 / 0 = NaN. */
822 case CLASS2 (rvc_inf, rvc_inf):
823 /* Inf / Inf = NaN. */
824 get_canonical_qnan (r, sign);
825 return false;
827 case CLASS2 (rvc_zero, rvc_normal):
828 case CLASS2 (rvc_zero, rvc_inf):
829 /* 0 / ANY = 0. */
830 case CLASS2 (rvc_normal, rvc_inf):
831 /* R / Inf = 0. */
832 get_zero (r, sign);
833 return false;
835 case CLASS2 (rvc_normal, rvc_zero):
836 /* R / 0 = Inf. */
837 case CLASS2 (rvc_inf, rvc_zero):
838 /* Inf / 0 = Inf. */
839 get_inf (r, sign);
840 return false;
842 case CLASS2 (rvc_zero, rvc_nan):
843 case CLASS2 (rvc_normal, rvc_nan):
844 case CLASS2 (rvc_inf, rvc_nan):
845 case CLASS2 (rvc_nan, rvc_nan):
846 /* ANY / NaN = NaN. */
847 *r = *b;
848 /* Make resulting NaN value to be qNaN. The caller has the
849 responsibility to avoid the operation if flag_signaling_nans
850 is on. */
851 r->signalling = 0;
852 r->sign = sign;
853 return false;
855 case CLASS2 (rvc_nan, rvc_zero):
856 case CLASS2 (rvc_nan, rvc_normal):
857 case CLASS2 (rvc_nan, rvc_inf):
858 /* NaN / ANY = NaN. */
859 *r = *a;
860 /* Make resulting NaN value to be qNaN. The caller has the
861 responsibility to avoid the operation if flag_signaling_nans
862 is on. */
863 r->signalling = 0;
864 r->sign = sign;
865 return false;
867 case CLASS2 (rvc_inf, rvc_normal):
868 /* Inf / R = Inf. */
869 get_inf (r, sign);
870 return false;
872 case CLASS2 (rvc_normal, rvc_normal):
873 break;
875 default:
876 gcc_unreachable ();
879 if (r == a || r == b)
880 rr = &t;
881 else
882 rr = r;
884 /* Make sure all fields in the result are initialized. */
885 get_zero (rr, 0);
886 rr->cl = rvc_normal;
887 rr->sign = sign;
889 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
890 if (exp > MAX_EXP)
892 get_inf (r, sign);
893 return true;
895 if (exp < -MAX_EXP)
897 get_zero (r, sign);
898 return true;
900 SET_REAL_EXP (rr, exp);
902 inexact = div_significands (rr, a, b);
904 /* Re-normalize the result. */
905 normalize (rr);
906 rr->sig[0] |= inexact;
908 if (rr != r)
909 *r = t;
911 return inexact;
914 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
915 one of the two operands is a NaN. */
917 static int
918 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
919 int nan_result)
921 int ret;
923 switch (CLASS2 (a->cl, b->cl))
925 case CLASS2 (rvc_zero, rvc_zero):
926 /* Sign of zero doesn't matter for compares. */
927 return 0;
929 case CLASS2 (rvc_normal, rvc_zero):
930 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
931 if (a->decimal)
932 return decimal_do_compare (a, b, nan_result);
933 /* Fall through. */
934 case CLASS2 (rvc_inf, rvc_zero):
935 case CLASS2 (rvc_inf, rvc_normal):
936 return (a->sign ? -1 : 1);
938 case CLASS2 (rvc_inf, rvc_inf):
939 return -a->sign - -b->sign;
941 case CLASS2 (rvc_zero, rvc_normal):
942 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
943 if (b->decimal)
944 return decimal_do_compare (a, b, nan_result);
945 /* Fall through. */
946 case CLASS2 (rvc_zero, rvc_inf):
947 case CLASS2 (rvc_normal, rvc_inf):
948 return (b->sign ? 1 : -1);
950 case CLASS2 (rvc_zero, rvc_nan):
951 case CLASS2 (rvc_normal, rvc_nan):
952 case CLASS2 (rvc_inf, rvc_nan):
953 case CLASS2 (rvc_nan, rvc_nan):
954 case CLASS2 (rvc_nan, rvc_zero):
955 case CLASS2 (rvc_nan, rvc_normal):
956 case CLASS2 (rvc_nan, rvc_inf):
957 return nan_result;
959 case CLASS2 (rvc_normal, rvc_normal):
960 break;
962 default:
963 gcc_unreachable ();
966 if (a->decimal || b->decimal)
967 return decimal_do_compare (a, b, nan_result);
969 if (a->sign != b->sign)
970 return -a->sign - -b->sign;
972 if (REAL_EXP (a) > REAL_EXP (b))
973 ret = 1;
974 else if (REAL_EXP (a) < REAL_EXP (b))
975 ret = -1;
976 else
977 ret = cmp_significands (a, b);
979 return (a->sign ? -ret : ret);
982 /* Return A truncated to an integral value toward zero. */
984 static void
985 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
987 *r = *a;
989 switch (r->cl)
991 case rvc_zero:
992 case rvc_inf:
993 case rvc_nan:
994 /* Make resulting NaN value to be qNaN. The caller has the
995 responsibility to avoid the operation if flag_signaling_nans
996 is on. */
997 r->signalling = 0;
998 break;
1000 case rvc_normal:
1001 if (r->decimal)
1003 decimal_do_fix_trunc (r, a);
1004 return;
1006 if (REAL_EXP (r) <= 0)
1007 get_zero (r, r->sign);
1008 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
1009 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
1010 break;
1012 default:
1013 gcc_unreachable ();
1017 /* Perform the binary or unary operation described by CODE.
1018 For a unary operation, leave OP1 NULL. This function returns
1019 true if the result may be inexact due to loss of precision. */
1021 bool
1022 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
1023 const REAL_VALUE_TYPE *op1)
1025 enum tree_code code = (enum tree_code) icode;
1027 if (op0->decimal || (op1 && op1->decimal))
1028 return decimal_real_arithmetic (r, code, op0, op1);
1030 switch (code)
1032 case PLUS_EXPR:
1033 /* Clear any padding areas in *r if it isn't equal to one of the
1034 operands so that we can later do bitwise comparisons later on. */
1035 if (r != op0 && r != op1)
1036 memset (r, '\0', sizeof (*r));
1037 return do_add (r, op0, op1, 0);
1039 case MINUS_EXPR:
1040 if (r != op0 && r != op1)
1041 memset (r, '\0', sizeof (*r));
1042 return do_add (r, op0, op1, 1);
1044 case MULT_EXPR:
1045 if (r != op0 && r != op1)
1046 memset (r, '\0', sizeof (*r));
1047 return do_multiply (r, op0, op1);
1049 case RDIV_EXPR:
1050 if (r != op0 && r != op1)
1051 memset (r, '\0', sizeof (*r));
1052 return do_divide (r, op0, op1);
1054 case MIN_EXPR:
1055 if (op1->cl == rvc_nan)
1057 *r = *op1;
1058 /* Make resulting NaN value to be qNaN. The caller has the
1059 responsibility to avoid the operation if flag_signaling_nans
1060 is on. */
1061 r->signalling = 0;
1063 else if (do_compare (op0, op1, -1) < 0)
1064 *r = *op0;
1065 else
1066 *r = *op1;
1067 break;
1069 case MAX_EXPR:
1070 if (op1->cl == rvc_nan)
1072 *r = *op1;
1073 /* Make resulting NaN value to be qNaN. The caller has the
1074 responsibility to avoid the operation if flag_signaling_nans
1075 is on. */
1076 r->signalling = 0;
1078 else if (do_compare (op0, op1, 1) < 0)
1079 *r = *op1;
1080 else
1081 *r = *op0;
1082 break;
1084 case NEGATE_EXPR:
1085 *r = *op0;
1086 r->sign ^= 1;
1087 break;
1089 case ABS_EXPR:
1090 *r = *op0;
1091 r->sign = 0;
1092 break;
1094 case FIX_TRUNC_EXPR:
1095 do_fix_trunc (r, op0);
1096 break;
1098 default:
1099 gcc_unreachable ();
1101 return false;
1104 REAL_VALUE_TYPE
1105 real_value_negate (const REAL_VALUE_TYPE *op0)
1107 REAL_VALUE_TYPE r;
1108 real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
1109 return r;
1112 REAL_VALUE_TYPE
1113 real_value_abs (const REAL_VALUE_TYPE *op0)
1115 REAL_VALUE_TYPE r;
1116 real_arithmetic (&r, ABS_EXPR, op0, NULL);
1117 return r;
1120 /* Return whether OP0 == OP1. */
1122 bool
1123 real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1125 return do_compare (op0, op1, -1) == 0;
1128 /* Return whether OP0 < OP1. */
1130 bool
1131 real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1133 return do_compare (op0, op1, 1) < 0;
1136 bool
1137 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1138 const REAL_VALUE_TYPE *op1)
1140 enum tree_code code = (enum tree_code) icode;
1142 switch (code)
1144 case LT_EXPR:
1145 return real_less (op0, op1);
1146 case LE_EXPR:
1147 return do_compare (op0, op1, 1) <= 0;
1148 case GT_EXPR:
1149 return do_compare (op0, op1, -1) > 0;
1150 case GE_EXPR:
1151 return do_compare (op0, op1, -1) >= 0;
1152 case EQ_EXPR:
1153 return real_equal (op0, op1);
1154 case NE_EXPR:
1155 return do_compare (op0, op1, -1) != 0;
1156 case UNORDERED_EXPR:
1157 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1158 case ORDERED_EXPR:
1159 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1160 case UNLT_EXPR:
1161 return do_compare (op0, op1, -1) < 0;
1162 case UNLE_EXPR:
1163 return do_compare (op0, op1, -1) <= 0;
1164 case UNGT_EXPR:
1165 return do_compare (op0, op1, 1) > 0;
1166 case UNGE_EXPR:
1167 return do_compare (op0, op1, 1) >= 0;
1168 case UNEQ_EXPR:
1169 return do_compare (op0, op1, 0) == 0;
1170 case LTGT_EXPR:
1171 return do_compare (op0, op1, 0) != 0;
1173 default:
1174 gcc_unreachable ();
1178 /* Return floor log2(R). */
1181 real_exponent (const REAL_VALUE_TYPE *r)
1183 switch (r->cl)
1185 case rvc_zero:
1186 return 0;
1187 case rvc_inf:
1188 case rvc_nan:
1189 return (unsigned int)-1 >> 1;
1190 case rvc_normal:
1191 return REAL_EXP (r);
1192 default:
1193 gcc_unreachable ();
1197 /* R = OP0 * 2**EXP. */
1199 void
1200 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1202 *r = *op0;
1203 switch (r->cl)
1205 case rvc_zero:
1206 case rvc_inf:
1207 case rvc_nan:
1208 /* Make resulting NaN value to be qNaN. The caller has the
1209 responsibility to avoid the operation if flag_signaling_nans
1210 is on. */
1211 r->signalling = 0;
1212 break;
1214 case rvc_normal:
1215 exp += REAL_EXP (op0);
1216 if (exp > MAX_EXP)
1217 get_inf (r, r->sign);
1218 else if (exp < -MAX_EXP)
1219 get_zero (r, r->sign);
1220 else
1221 SET_REAL_EXP (r, exp);
1222 break;
1224 default:
1225 gcc_unreachable ();
1229 /* Determine whether a floating-point value X is infinite. */
1231 bool
1232 real_isinf (const REAL_VALUE_TYPE *r)
1234 return (r->cl == rvc_inf);
1237 /* Determine whether a floating-point value X is a NaN. */
1239 bool
1240 real_isnan (const REAL_VALUE_TYPE *r)
1242 return (r->cl == rvc_nan);
1245 /* Determine whether a floating-point value X is a signaling NaN. */
1246 bool real_issignaling_nan (const REAL_VALUE_TYPE *r)
1248 return real_isnan (r) && r->signalling;
1251 /* Determine whether a floating-point value X is finite. */
1253 bool
1254 real_isfinite (const REAL_VALUE_TYPE *r)
1256 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1259 /* Determine whether a floating-point value X is negative. */
1261 bool
1262 real_isneg (const REAL_VALUE_TYPE *r)
1264 return r->sign;
1267 /* Determine whether a floating-point value X is minus zero. */
1269 bool
1270 real_isnegzero (const REAL_VALUE_TYPE *r)
1272 return r->sign && r->cl == rvc_zero;
1275 /* Compare two floating-point objects for bitwise identity. */
1277 bool
1278 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1280 int i;
1282 if (a->cl != b->cl)
1283 return false;
1284 if (a->sign != b->sign)
1285 return false;
1287 switch (a->cl)
1289 case rvc_zero:
1290 case rvc_inf:
1291 return true;
1293 case rvc_normal:
1294 if (a->decimal != b->decimal)
1295 return false;
1296 if (REAL_EXP (a) != REAL_EXP (b))
1297 return false;
1298 break;
1300 case rvc_nan:
1301 if (a->signalling != b->signalling)
1302 return false;
1303 /* The significand is ignored for canonical NaNs. */
1304 if (a->canonical || b->canonical)
1305 return a->canonical == b->canonical;
1306 break;
1308 default:
1309 gcc_unreachable ();
1312 for (i = 0; i < SIGSZ; ++i)
1313 if (a->sig[i] != b->sig[i])
1314 return false;
1316 return true;
1319 /* Try to change R into its exact multiplicative inverse in format FMT.
1320 Return true if successful. */
1322 bool
1323 exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
1325 const REAL_VALUE_TYPE *one = real_digit (1);
1326 REAL_VALUE_TYPE u;
1327 int i;
1329 if (r->cl != rvc_normal)
1330 return false;
1332 /* Check for a power of two: all significand bits zero except the MSB. */
1333 for (i = 0; i < SIGSZ-1; ++i)
1334 if (r->sig[i] != 0)
1335 return false;
1336 if (r->sig[SIGSZ-1] != SIG_MSB)
1337 return false;
1339 /* Find the inverse and truncate to the required format. */
1340 do_divide (&u, one, r);
1341 real_convert (&u, fmt, &u);
1343 /* The rounding may have overflowed. */
1344 if (u.cl != rvc_normal)
1345 return false;
1346 for (i = 0; i < SIGSZ-1; ++i)
1347 if (u.sig[i] != 0)
1348 return false;
1349 if (u.sig[SIGSZ-1] != SIG_MSB)
1350 return false;
1352 *r = u;
1353 return true;
1356 /* Return true if arithmetic on values in IMODE that were promoted
1357 from values in TMODE is equivalent to direct arithmetic on values
1358 in TMODE. */
1360 bool
1361 real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
1363 const struct real_format *tfmt, *ifmt;
1364 tfmt = REAL_MODE_FORMAT (tmode);
1365 ifmt = REAL_MODE_FORMAT (imode);
1366 /* These conditions are conservative rather than trying to catch the
1367 exact boundary conditions; the main case to allow is IEEE float
1368 and double. */
1369 return (ifmt->b == tfmt->b
1370 && ifmt->p > 2 * tfmt->p
1371 && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1372 && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1373 && ifmt->emax > 2 * tfmt->emax + 2
1374 && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1375 && ifmt->round_towards_zero == tfmt->round_towards_zero
1376 && (ifmt->has_sign_dependent_rounding
1377 == tfmt->has_sign_dependent_rounding)
1378 && ifmt->has_nans >= tfmt->has_nans
1379 && ifmt->has_inf >= tfmt->has_inf
1380 && ifmt->has_signed_zero >= tfmt->has_signed_zero
1381 && !MODE_COMPOSITE_P (tmode)
1382 && !MODE_COMPOSITE_P (imode));
1385 /* Render R as an integer. */
1387 HOST_WIDE_INT
1388 real_to_integer (const REAL_VALUE_TYPE *r)
1390 unsigned HOST_WIDE_INT i;
1392 switch (r->cl)
1394 case rvc_zero:
1395 underflow:
1396 return 0;
1398 case rvc_inf:
1399 case rvc_nan:
1400 overflow:
1401 i = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
1402 if (!r->sign)
1403 i--;
1404 return i;
1406 case rvc_normal:
1407 if (r->decimal)
1408 return decimal_real_to_integer (r);
1410 if (REAL_EXP (r) <= 0)
1411 goto underflow;
1412 /* Only force overflow for unsigned overflow. Signed overflow is
1413 undefined, so it doesn't matter what we return, and some callers
1414 expect to be able to use this routine for both signed and
1415 unsigned conversions. */
1416 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1417 goto overflow;
1419 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1420 i = r->sig[SIGSZ-1];
1421 else
1423 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1424 i = r->sig[SIGSZ-1];
1425 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1426 i |= r->sig[SIGSZ-2];
1429 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1431 if (r->sign)
1432 i = -i;
1433 return i;
1435 default:
1436 gcc_unreachable ();
1440 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1441 be represented in precision, *FAIL is set to TRUE. */
1443 wide_int
1444 real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
1446 HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
1447 int exp;
1448 int words, w;
1449 wide_int result;
1451 switch (r->cl)
1453 case rvc_zero:
1454 underflow:
1455 return wi::zero (precision);
1457 case rvc_inf:
1458 case rvc_nan:
1459 overflow:
1460 *fail = true;
1462 if (r->sign)
1463 return wi::set_bit_in_zero (precision - 1, precision);
1464 else
1465 return ~wi::set_bit_in_zero (precision - 1, precision);
1467 case rvc_normal:
1468 if (r->decimal)
1469 return decimal_real_to_integer (r, fail, precision);
1471 exp = REAL_EXP (r);
1472 if (exp <= 0)
1473 goto underflow;
1474 /* Only force overflow for unsigned overflow. Signed overflow is
1475 undefined, so it doesn't matter what we return, and some callers
1476 expect to be able to use this routine for both signed and
1477 unsigned conversions. */
1478 if (exp > precision)
1479 goto overflow;
1481 /* Put the significand into a wide_int that has precision W, which
1482 is the smallest HWI-multiple that has at least PRECISION bits.
1483 This ensures that the top bit of the significand is in the
1484 top bit of the wide_int. */
1485 words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
1486 w = words * HOST_BITS_PER_WIDE_INT;
1488 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1489 for (int i = 0; i < words; i++)
1491 int j = SIGSZ - words + i;
1492 val[i] = (j < 0) ? 0 : r->sig[j];
1494 #else
1495 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1496 for (int i = 0; i < words; i++)
1498 int j = SIGSZ - (words * 2) + (i * 2);
1499 if (j < 0)
1500 val[i] = 0;
1501 else
1502 val[i] = r->sig[j];
1503 j += 1;
1504 if (j >= 0)
1505 val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
1507 #endif
1508 /* Shift the value into place and truncate to the desired precision. */
1509 result = wide_int::from_array (val, words, w);
1510 result = wi::lrshift (result, w - exp);
1511 result = wide_int::from (result, precision, UNSIGNED);
1513 if (r->sign)
1514 return -result;
1515 else
1516 return result;
1518 default:
1519 gcc_unreachable ();
1523 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1524 of NUM / DEN. Return the quotient and place the remainder in NUM.
1525 It is expected that NUM / DEN are close enough that the quotient is
1526 small. */
1528 static unsigned long
1529 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1531 unsigned long q, msb;
1532 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1534 if (expn < expd)
1535 return 0;
1537 q = msb = 0;
1538 goto start;
1541 msb = num->sig[SIGSZ-1] & SIG_MSB;
1542 q <<= 1;
1543 lshift_significand_1 (num, num);
1544 start:
1545 if (msb || cmp_significands (num, den) >= 0)
1547 sub_significands (num, num, den, 0);
1548 q |= 1;
1551 while (--expn >= expd);
1553 SET_REAL_EXP (num, expd);
1554 normalize (num);
1556 return q;
1559 /* Render R as a decimal floating point constant. Emit DIGITS significant
1560 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1561 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1562 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1563 to a string that, when parsed back in mode MODE, yields the same value. */
1565 #define M_LOG10_2 0.30102999566398119521
1567 void
1568 real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1569 size_t buf_size, size_t digits,
1570 int crop_trailing_zeros, machine_mode mode)
1572 const struct real_format *fmt = NULL;
1573 const REAL_VALUE_TYPE *one, *ten;
1574 REAL_VALUE_TYPE r, pten, u, v;
1575 int dec_exp, cmp_one, digit;
1576 size_t max_digits;
1577 char *p, *first, *last;
1578 bool sign;
1579 bool round_up;
1581 if (mode != VOIDmode)
1583 fmt = REAL_MODE_FORMAT (mode);
1584 gcc_assert (fmt);
1587 r = *r_orig;
1588 switch (r.cl)
1590 case rvc_zero:
1591 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1592 return;
1593 case rvc_normal:
1594 break;
1595 case rvc_inf:
1596 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1597 return;
1598 case rvc_nan:
1599 /* ??? Print the significand as well, if not canonical? */
1600 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1601 (r_orig->signalling ? 'S' : 'Q'));
1602 return;
1603 default:
1604 gcc_unreachable ();
1607 if (r.decimal)
1609 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1610 return;
1613 /* Bound the number of digits printed by the size of the representation. */
1614 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1615 if (digits == 0 || digits > max_digits)
1616 digits = max_digits;
1618 /* Estimate the decimal exponent, and compute the length of the string it
1619 will print as. Be conservative and add one to account for possible
1620 overflow or rounding error. */
1621 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1622 for (max_digits = 1; dec_exp ; max_digits++)
1623 dec_exp /= 10;
1625 /* Bound the number of digits printed by the size of the output buffer. */
1626 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1627 gcc_assert (max_digits <= buf_size);
1628 if (digits > max_digits)
1629 digits = max_digits;
1631 one = real_digit (1);
1632 ten = ten_to_ptwo (0);
1634 sign = r.sign;
1635 r.sign = 0;
1637 dec_exp = 0;
1638 pten = *one;
1640 cmp_one = do_compare (&r, one, 0);
1641 if (cmp_one > 0)
1643 int m;
1645 /* Number is greater than one. Convert significand to an integer
1646 and strip trailing decimal zeros. */
1648 u = r;
1649 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1651 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1652 m = floor_log2 (max_digits);
1654 /* Iterate over the bits of the possible powers of 10 that might
1655 be present in U and eliminate them. That is, if we find that
1656 10**2**M divides U evenly, keep the division and increase
1657 DEC_EXP by 2**M. */
1660 REAL_VALUE_TYPE t;
1662 do_divide (&t, &u, ten_to_ptwo (m));
1663 do_fix_trunc (&v, &t);
1664 if (cmp_significands (&v, &t) == 0)
1666 u = t;
1667 dec_exp += 1 << m;
1670 while (--m >= 0);
1672 /* Revert the scaling to integer that we performed earlier. */
1673 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1674 - (SIGNIFICAND_BITS - 1));
1675 r = u;
1677 /* Find power of 10. Do this by dividing out 10**2**M when
1678 this is larger than the current remainder. Fill PTEN with
1679 the power of 10 that we compute. */
1680 if (REAL_EXP (&r) > 0)
1682 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1685 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1686 if (do_compare (&u, ptentwo, 0) >= 0)
1688 do_divide (&u, &u, ptentwo);
1689 do_multiply (&pten, &pten, ptentwo);
1690 dec_exp += 1 << m;
1693 while (--m >= 0);
1695 else
1696 /* We managed to divide off enough tens in the above reduction
1697 loop that we've now got a negative exponent. Fall into the
1698 less-than-one code to compute the proper value for PTEN. */
1699 cmp_one = -1;
1701 if (cmp_one < 0)
1703 int m;
1705 /* Number is less than one. Pad significand with leading
1706 decimal zeros. */
1708 v = r;
1709 while (1)
1711 /* Stop if we'd shift bits off the bottom. */
1712 if (v.sig[0] & 7)
1713 break;
1715 do_multiply (&u, &v, ten);
1717 /* Stop if we're now >= 1 or zero. */
1718 if (REAL_EXP (&u) > 0 || u.cl == rvc_zero)
1719 break;
1721 v = u;
1722 dec_exp -= 1;
1724 r = v;
1726 /* Find power of 10. Do this by multiplying in P=10**2**M when
1727 the current remainder is smaller than 1/P. Fill PTEN with the
1728 power of 10 that we compute. */
1729 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1732 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1733 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1735 if (do_compare (&v, ptenmtwo, 0) <= 0)
1737 do_multiply (&v, &v, ptentwo);
1738 do_multiply (&pten, &pten, ptentwo);
1739 dec_exp -= 1 << m;
1742 while (--m >= 0);
1744 /* Invert the positive power of 10 that we've collected so far. */
1745 do_divide (&pten, one, &pten);
1748 p = str;
1749 if (sign)
1750 *p++ = '-';
1751 first = p++;
1753 /* At this point, PTEN should contain the nearest power of 10 smaller
1754 than R, such that this division produces the first digit.
1756 Using a divide-step primitive that returns the complete integral
1757 remainder avoids the rounding error that would be produced if
1758 we were to use do_divide here and then simply multiply by 10 for
1759 each subsequent digit. */
1761 digit = rtd_divmod (&r, &pten);
1763 /* Be prepared for error in that division via underflow ... */
1764 if (digit == 0 && cmp_significand_0 (&r))
1766 /* Multiply by 10 and try again. */
1767 do_multiply (&r, &r, ten);
1768 digit = rtd_divmod (&r, &pten);
1769 dec_exp -= 1;
1770 gcc_assert (digit != 0);
1773 /* ... or overflow. */
1774 if (digit == 10)
1776 *p++ = '1';
1777 if (--digits > 0)
1778 *p++ = '0';
1779 dec_exp += 1;
1781 else
1783 gcc_assert (digit <= 10);
1784 *p++ = digit + '0';
1787 /* Generate subsequent digits. */
1788 while (--digits > 0)
1790 do_multiply (&r, &r, ten);
1791 digit = rtd_divmod (&r, &pten);
1792 *p++ = digit + '0';
1794 last = p;
1796 /* Generate one more digit with which to do rounding. */
1797 do_multiply (&r, &r, ten);
1798 digit = rtd_divmod (&r, &pten);
1800 /* Round the result. */
1801 if (fmt && fmt->round_towards_zero)
1803 /* If the format uses round towards zero when parsing the string
1804 back in, we need to always round away from zero here. */
1805 if (cmp_significand_0 (&r))
1806 digit++;
1807 round_up = digit > 0;
1809 else
1811 if (digit == 5)
1813 /* Round to nearest. If R is nonzero there are additional
1814 nonzero digits to be extracted. */
1815 if (cmp_significand_0 (&r))
1816 digit++;
1817 /* Round to even. */
1818 else if ((p[-1] - '0') & 1)
1819 digit++;
1822 round_up = digit > 5;
1825 if (round_up)
1827 while (p > first)
1829 digit = *--p;
1830 if (digit == '9')
1831 *p = '0';
1832 else
1834 *p = digit + 1;
1835 break;
1839 /* Carry out of the first digit. This means we had all 9's and
1840 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1841 if (p == first)
1843 first[1] = '1';
1844 dec_exp++;
1848 /* Insert the decimal point. */
1849 first[0] = first[1];
1850 first[1] = '.';
1852 /* If requested, drop trailing zeros. Never crop past "1.0". */
1853 if (crop_trailing_zeros)
1854 while (last > first + 3 && last[-1] == '0')
1855 last--;
1857 /* Append the exponent. */
1858 sprintf (last, "e%+d", dec_exp);
1860 /* Verify that we can read the original value back in. */
1861 if (flag_checking && mode != VOIDmode)
1863 real_from_string (&r, str);
1864 real_convert (&r, mode, &r);
1865 gcc_assert (real_identical (&r, r_orig));
1869 /* Likewise, except always uses round-to-nearest. */
1871 void
1872 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1873 size_t digits, int crop_trailing_zeros)
1875 real_to_decimal_for_mode (str, r_orig, buf_size,
1876 digits, crop_trailing_zeros, VOIDmode);
1879 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1880 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1881 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1882 strip trailing zeros. */
1884 void
1885 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1886 size_t digits, int crop_trailing_zeros)
1888 int i, j, exp = REAL_EXP (r);
1889 char *p, *first;
1890 char exp_buf[16];
1891 size_t max_digits;
1893 switch (r->cl)
1895 case rvc_zero:
1896 exp = 0;
1897 break;
1898 case rvc_normal:
1899 break;
1900 case rvc_inf:
1901 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1902 return;
1903 case rvc_nan:
1904 /* ??? Print the significand as well, if not canonical? */
1905 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1906 (r->signalling ? 'S' : 'Q'));
1907 return;
1908 default:
1909 gcc_unreachable ();
1912 if (r->decimal)
1914 /* Hexadecimal format for decimal floats is not interesting. */
1915 strcpy (str, "N/A");
1916 return;
1919 if (digits == 0)
1920 digits = SIGNIFICAND_BITS / 4;
1922 /* Bound the number of digits printed by the size of the output buffer. */
1924 sprintf (exp_buf, "p%+d", exp);
1925 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1926 gcc_assert (max_digits <= buf_size);
1927 if (digits > max_digits)
1928 digits = max_digits;
1930 p = str;
1931 if (r->sign)
1932 *p++ = '-';
1933 *p++ = '0';
1934 *p++ = 'x';
1935 *p++ = '0';
1936 *p++ = '.';
1937 first = p;
1939 for (i = SIGSZ - 1; i >= 0; --i)
1940 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1942 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1943 if (--digits == 0)
1944 goto out;
1947 out:
1948 if (crop_trailing_zeros)
1949 while (p > first + 1 && p[-1] == '0')
1950 p--;
1952 sprintf (p, "p%+d", exp);
1955 /* Initialize R from a decimal or hexadecimal string. The string is
1956 assumed to have been syntax checked already. Return -1 if the
1957 value underflows, +1 if overflows, and 0 otherwise. */
1960 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1962 int exp = 0;
1963 bool sign = false;
1965 get_zero (r, 0);
1967 if (*str == '-')
1969 sign = true;
1970 str++;
1972 else if (*str == '+')
1973 str++;
1975 if (!strncmp (str, "QNaN", 4))
1977 get_canonical_qnan (r, sign);
1978 return 0;
1980 else if (!strncmp (str, "SNaN", 4))
1982 get_canonical_snan (r, sign);
1983 return 0;
1985 else if (!strncmp (str, "Inf", 3))
1987 get_inf (r, sign);
1988 return 0;
1991 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1993 /* Hexadecimal floating point. */
1994 int pos = SIGNIFICAND_BITS - 4, d;
1996 str += 2;
1998 while (*str == '0')
1999 str++;
2000 while (1)
2002 d = hex_value (*str);
2003 if (d == _hex_bad)
2004 break;
2005 if (pos >= 0)
2007 r->sig[pos / HOST_BITS_PER_LONG]
2008 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2009 pos -= 4;
2011 else if (d)
2012 /* Ensure correct rounding by setting last bit if there is
2013 a subsequent nonzero digit. */
2014 r->sig[0] |= 1;
2015 exp += 4;
2016 str++;
2018 if (*str == '.')
2020 str++;
2021 if (pos == SIGNIFICAND_BITS - 4)
2023 while (*str == '0')
2024 str++, exp -= 4;
2026 while (1)
2028 d = hex_value (*str);
2029 if (d == _hex_bad)
2030 break;
2031 if (pos >= 0)
2033 r->sig[pos / HOST_BITS_PER_LONG]
2034 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2035 pos -= 4;
2037 else if (d)
2038 /* Ensure correct rounding by setting last bit if there is
2039 a subsequent nonzero digit. */
2040 r->sig[0] |= 1;
2041 str++;
2045 /* If the mantissa is zero, ignore the exponent. */
2046 if (!cmp_significand_0 (r))
2047 goto is_a_zero;
2049 if (*str == 'p' || *str == 'P')
2051 bool exp_neg = false;
2053 str++;
2054 if (*str == '-')
2056 exp_neg = true;
2057 str++;
2059 else if (*str == '+')
2060 str++;
2062 d = 0;
2063 while (ISDIGIT (*str))
2065 d *= 10;
2066 d += *str - '0';
2067 if (d > MAX_EXP)
2069 /* Overflowed the exponent. */
2070 if (exp_neg)
2071 goto underflow;
2072 else
2073 goto overflow;
2075 str++;
2077 if (exp_neg)
2078 d = -d;
2080 exp += d;
2083 r->cl = rvc_normal;
2084 SET_REAL_EXP (r, exp);
2086 normalize (r);
2088 else
2090 /* Decimal floating point. */
2091 const char *cstr = str;
2092 mpfr_t m;
2093 bool inexact;
2095 while (*cstr == '0')
2096 cstr++;
2097 if (*cstr == '.')
2099 cstr++;
2100 while (*cstr == '0')
2101 cstr++;
2104 /* If the mantissa is zero, ignore the exponent. */
2105 if (!ISDIGIT (*cstr))
2106 goto is_a_zero;
2108 /* Nonzero value, possibly overflowing or underflowing. */
2109 mpfr_init2 (m, SIGNIFICAND_BITS);
2110 inexact = mpfr_strtofr (m, str, NULL, 10, MPFR_RNDZ);
2111 /* The result should never be a NaN, and because the rounding is
2112 toward zero should never be an infinity. */
2113 gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
2114 if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
2116 mpfr_clear (m);
2117 goto underflow;
2119 else if (mpfr_get_exp (m) > MAX_EXP - 4)
2121 mpfr_clear (m);
2122 goto overflow;
2124 else
2126 real_from_mpfr (r, m, NULL_TREE, MPFR_RNDZ);
2127 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2128 because the hex digits used in real_from_mpfr did not
2129 start with a digit 8 to f, but the exponent bounds above
2130 should have avoided underflow or overflow. */
2131 gcc_assert (r->cl == rvc_normal);
2132 /* Set a sticky bit if mpfr_strtofr was inexact. */
2133 r->sig[0] |= inexact;
2134 mpfr_clear (m);
2138 r->sign = sign;
2139 return 0;
2141 is_a_zero:
2142 get_zero (r, sign);
2143 return 0;
2145 underflow:
2146 get_zero (r, sign);
2147 return -1;
2149 overflow:
2150 get_inf (r, sign);
2151 return 1;
2154 /* Legacy. Similar, but return the result directly. */
2156 REAL_VALUE_TYPE
2157 real_from_string2 (const char *s, format_helper fmt)
2159 REAL_VALUE_TYPE r;
2161 real_from_string (&r, s);
2162 if (fmt)
2163 real_convert (&r, fmt, &r);
2165 return r;
2168 /* Initialize R from string S and desired format FMT. */
2170 void
2171 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
2173 if (fmt.decimal_p ())
2174 decimal_real_from_string (r, s);
2175 else
2176 real_from_string (r, s);
2178 if (fmt)
2179 real_convert (r, fmt, r);
2182 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2183 FMT is nonnull. */
2185 void
2186 real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
2187 const wide_int_ref &val_in, signop sgn)
2189 if (val_in == 0)
2190 get_zero (r, 0);
2191 else
2193 unsigned int len = val_in.get_precision ();
2194 int i, j, e = 0;
2195 int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
2196 const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
2197 * HOST_BITS_PER_WIDE_INT);
2199 memset (r, 0, sizeof (*r));
2200 r->cl = rvc_normal;
2201 r->sign = wi::neg_p (val_in, sgn);
2203 /* We have to ensure we can negate the largest negative number. */
2204 wide_int val = wide_int::from (val_in, maxbitlen, sgn);
2206 if (r->sign)
2207 val = -val;
2209 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2210 won't work with precisions that are not a multiple of
2211 HOST_BITS_PER_WIDE_INT. */
2212 len += HOST_BITS_PER_WIDE_INT - 1;
2214 /* Ensure we can represent the largest negative number. */
2215 len += 1;
2217 len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
2219 /* Cap the size to the size allowed by real.h. */
2220 if (len > realmax)
2222 HOST_WIDE_INT cnt_l_z;
2223 cnt_l_z = wi::clz (val);
2225 if (maxbitlen - cnt_l_z > realmax)
2227 e = maxbitlen - cnt_l_z - realmax;
2229 /* This value is too large, we must shift it right to
2230 preserve all the bits we can, and then bump the
2231 exponent up by that amount. */
2232 val = wi::lrshift (val, e);
2234 len = realmax;
2237 /* Clear out top bits so elt will work with precisions that aren't
2238 a multiple of HOST_BITS_PER_WIDE_INT. */
2239 val = wide_int::from (val, len, sgn);
2240 len = len / HOST_BITS_PER_WIDE_INT;
2242 SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
2244 j = SIGSZ - 1;
2245 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2246 for (i = len - 1; i >= 0; i--)
2248 r->sig[j--] = val.elt (i);
2249 if (j < 0)
2250 break;
2252 else
2254 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2255 for (i = len - 1; i >= 0; i--)
2257 HOST_WIDE_INT e = val.elt (i);
2258 r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
2259 if (j < 0)
2260 break;
2261 r->sig[j--] = e;
2262 if (j < 0)
2263 break;
2267 normalize (r);
2270 if (fmt.decimal_p ())
2271 decimal_from_integer (r);
2272 if (fmt)
2273 real_convert (r, fmt, r);
2276 /* Render R, an integral value, as a floating point constant with no
2277 specified exponent. */
2279 static void
2280 decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2281 size_t buf_size)
2283 int dec_exp, digit, digits;
2284 REAL_VALUE_TYPE r, pten;
2285 char *p;
2286 bool sign;
2288 r = *r_orig;
2290 if (r.cl == rvc_zero)
2292 strcpy (str, "0.");
2293 return;
2296 sign = r.sign;
2297 r.sign = 0;
2299 dec_exp = REAL_EXP (&r) * M_LOG10_2;
2300 digits = dec_exp + 1;
2301 gcc_assert ((digits + 2) < (int)buf_size);
2303 pten = *real_digit (1);
2304 times_pten (&pten, dec_exp);
2306 p = str;
2307 if (sign)
2308 *p++ = '-';
2310 digit = rtd_divmod (&r, &pten);
2311 gcc_assert (digit >= 0 && digit <= 9);
2312 *p++ = digit + '0';
2313 while (--digits > 0)
2315 times_pten (&r, 1);
2316 digit = rtd_divmod (&r, &pten);
2317 *p++ = digit + '0';
2319 *p++ = '.';
2320 *p++ = '\0';
2323 /* Convert a real with an integral value to decimal float. */
2325 static void
2326 decimal_from_integer (REAL_VALUE_TYPE *r)
2328 char str[256];
2330 decimal_integer_string (str, r, sizeof (str) - 1);
2331 decimal_real_from_string (r, str);
2334 /* Returns 10**2**N. */
2336 static const REAL_VALUE_TYPE *
2337 ten_to_ptwo (int n)
2339 static REAL_VALUE_TYPE tens[EXP_BITS];
2341 gcc_assert (n >= 0);
2342 gcc_assert (n < EXP_BITS);
2344 if (tens[n].cl == rvc_zero)
2346 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2348 HOST_WIDE_INT t = 10;
2349 int i;
2351 for (i = 0; i < n; ++i)
2352 t *= t;
2354 real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
2356 else
2358 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2359 do_multiply (&tens[n], t, t);
2363 return &tens[n];
2366 /* Returns 10**(-2**N). */
2368 static const REAL_VALUE_TYPE *
2369 ten_to_mptwo (int n)
2371 static REAL_VALUE_TYPE tens[EXP_BITS];
2373 gcc_assert (n >= 0);
2374 gcc_assert (n < EXP_BITS);
2376 if (tens[n].cl == rvc_zero)
2377 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2379 return &tens[n];
2382 /* Returns N. */
2384 static const REAL_VALUE_TYPE *
2385 real_digit (int n)
2387 static REAL_VALUE_TYPE num[10];
2389 gcc_assert (n >= 0);
2390 gcc_assert (n <= 9);
2392 if (n > 0 && num[n].cl == rvc_zero)
2393 real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
2395 return &num[n];
2398 /* Multiply R by 10**EXP. */
2400 static void
2401 times_pten (REAL_VALUE_TYPE *r, int exp)
2403 REAL_VALUE_TYPE pten, *rr;
2404 bool negative = (exp < 0);
2405 int i;
2407 if (negative)
2409 exp = -exp;
2410 pten = *real_digit (1);
2411 rr = &pten;
2413 else
2414 rr = r;
2416 for (i = 0; exp > 0; ++i, exp >>= 1)
2417 if (exp & 1)
2418 do_multiply (rr, rr, ten_to_ptwo (i));
2420 if (negative)
2421 do_divide (r, r, &pten);
2424 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2426 const REAL_VALUE_TYPE *
2427 dconst_e_ptr (void)
2429 static REAL_VALUE_TYPE value;
2431 /* Initialize mathematical constants for constant folding builtins.
2432 These constants need to be given to at least 160 bits precision. */
2433 if (value.cl == rvc_zero)
2435 mpfr_t m;
2436 mpfr_init2 (m, SIGNIFICAND_BITS);
2437 mpfr_set_ui (m, 1, MPFR_RNDN);
2438 mpfr_exp (m, m, MPFR_RNDN);
2439 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2440 mpfr_clear (m);
2443 return &value;
2446 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2448 #define CACHED_FRACTION(NAME, N) \
2449 const REAL_VALUE_TYPE * \
2450 NAME (void) \
2452 static REAL_VALUE_TYPE value; \
2454 /* Initialize mathematical constants for constant folding builtins. \
2455 These constants need to be given to at least 160 bits \
2456 precision. */ \
2457 if (value.cl == rvc_zero) \
2458 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2459 return &value; \
2462 CACHED_FRACTION (dconst_third_ptr, 3)
2463 CACHED_FRACTION (dconst_quarter_ptr, 4)
2464 CACHED_FRACTION (dconst_sixth_ptr, 6)
2465 CACHED_FRACTION (dconst_ninth_ptr, 9)
2467 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2469 const REAL_VALUE_TYPE *
2470 dconst_sqrt2_ptr (void)
2472 static REAL_VALUE_TYPE value;
2474 /* Initialize mathematical constants for constant folding builtins.
2475 These constants need to be given to at least 160 bits precision. */
2476 if (value.cl == rvc_zero)
2478 mpfr_t m;
2479 mpfr_init2 (m, SIGNIFICAND_BITS);
2480 mpfr_sqrt_ui (m, 2, MPFR_RNDN);
2481 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2482 mpfr_clear (m);
2484 return &value;
2487 /* Fills R with +Inf. */
2489 void
2490 real_inf (REAL_VALUE_TYPE *r)
2492 get_inf (r, 0);
2495 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2496 we force a QNaN, else we force an SNaN. The string, if not empty,
2497 is parsed as a number and placed in the significand. Return true
2498 if the string was successfully parsed. */
2500 bool
2501 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2502 format_helper fmt)
2504 if (*str == 0)
2506 if (quiet)
2507 get_canonical_qnan (r, 0);
2508 else
2509 get_canonical_snan (r, 0);
2511 else
2513 int base = 10, d;
2515 memset (r, 0, sizeof (*r));
2516 r->cl = rvc_nan;
2518 /* Parse akin to strtol into the significand of R. */
2520 while (ISSPACE (*str))
2521 str++;
2522 if (*str == '-')
2523 str++;
2524 else if (*str == '+')
2525 str++;
2526 if (*str == '0')
2528 str++;
2529 if (*str == 'x' || *str == 'X')
2531 base = 16;
2532 str++;
2534 else
2535 base = 8;
2538 while ((d = hex_value (*str)) < base)
2540 REAL_VALUE_TYPE u;
2542 switch (base)
2544 case 8:
2545 lshift_significand (r, r, 3);
2546 break;
2547 case 16:
2548 lshift_significand (r, r, 4);
2549 break;
2550 case 10:
2551 lshift_significand_1 (&u, r);
2552 lshift_significand (r, r, 3);
2553 add_significands (r, r, &u);
2554 break;
2555 default:
2556 gcc_unreachable ();
2559 get_zero (&u, 0);
2560 u.sig[0] = d;
2561 add_significands (r, r, &u);
2563 str++;
2566 /* Must have consumed the entire string for success. */
2567 if (*str != 0)
2568 return false;
2570 /* Shift the significand into place such that the bits
2571 are in the most significant bits for the format. */
2572 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2574 /* Our MSB is always unset for NaNs. */
2575 r->sig[SIGSZ-1] &= ~SIG_MSB;
2577 /* Force quiet or signaling NaN. */
2578 r->signalling = !quiet;
2581 return true;
2584 /* Fills R with the largest finite value representable in mode MODE.
2585 If SIGN is nonzero, R is set to the most negative finite value. */
2587 void
2588 real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
2590 const struct real_format *fmt;
2591 int np2;
2593 fmt = REAL_MODE_FORMAT (mode);
2594 gcc_assert (fmt);
2595 memset (r, 0, sizeof (*r));
2597 if (fmt->b == 10)
2598 decimal_real_maxval (r, sign, mode);
2599 else
2601 r->cl = rvc_normal;
2602 r->sign = sign;
2603 SET_REAL_EXP (r, fmt->emax);
2605 np2 = SIGNIFICAND_BITS - fmt->p;
2606 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2607 clear_significand_below (r, np2);
2609 if (fmt->pnan < fmt->p)
2610 /* This is an IBM extended double format made up of two IEEE
2611 doubles. The value of the long double is the sum of the
2612 values of the two parts. The most significant part is
2613 required to be the value of the long double rounded to the
2614 nearest double. Rounding means we need a slightly smaller
2615 value for LDBL_MAX. */
2616 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2620 /* Fills R with 2**N. */
2622 void
2623 real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
2625 memset (r, 0, sizeof (*r));
2627 n++;
2628 if (n > MAX_EXP)
2629 r->cl = rvc_inf;
2630 else if (n < -MAX_EXP)
2632 else
2634 r->cl = rvc_normal;
2635 SET_REAL_EXP (r, n);
2636 r->sig[SIGSZ-1] = SIG_MSB;
2638 if (fmt.decimal_p ())
2639 decimal_real_convert (r, fmt, r);
2643 static void
2644 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2646 int p2, np2, i, w;
2647 int emin2m1, emax2;
2648 bool round_up = false;
2650 if (r->decimal)
2652 if (fmt->b == 10)
2654 decimal_round_for_format (fmt, r);
2655 return;
2657 /* FIXME. We can come here via fp_easy_constant
2658 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2659 investigated whether this convert needs to be here, or
2660 something else is missing. */
2661 decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
2664 p2 = fmt->p;
2665 emin2m1 = fmt->emin - 1;
2666 emax2 = fmt->emax;
2668 np2 = SIGNIFICAND_BITS - p2;
2669 switch (r->cl)
2671 underflow:
2672 get_zero (r, r->sign);
2673 /* FALLTHRU */
2674 case rvc_zero:
2675 if (!fmt->has_signed_zero)
2676 r->sign = 0;
2677 return;
2679 overflow:
2680 get_inf (r, r->sign);
2681 case rvc_inf:
2682 return;
2684 case rvc_nan:
2685 clear_significand_below (r, np2);
2686 return;
2688 case rvc_normal:
2689 break;
2691 default:
2692 gcc_unreachable ();
2695 /* Check the range of the exponent. If we're out of range,
2696 either underflow or overflow. */
2697 if (REAL_EXP (r) > emax2)
2698 goto overflow;
2699 else if (REAL_EXP (r) <= emin2m1)
2701 int diff;
2703 if (!fmt->has_denorm)
2705 /* Don't underflow completely until we've had a chance to round. */
2706 if (REAL_EXP (r) < emin2m1)
2707 goto underflow;
2709 else
2711 diff = emin2m1 - REAL_EXP (r) + 1;
2712 if (diff > p2)
2713 goto underflow;
2715 /* De-normalize the significand. */
2716 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2717 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2721 if (!fmt->round_towards_zero)
2723 /* There are P2 true significand bits, followed by one guard bit,
2724 followed by one sticky bit, followed by stuff. Fold nonzero
2725 stuff into the sticky bit. */
2726 unsigned long sticky;
2727 bool guard, lsb;
2729 sticky = 0;
2730 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2731 sticky |= r->sig[i];
2732 sticky |= r->sig[w]
2733 & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2735 guard = test_significand_bit (r, np2 - 1);
2736 lsb = test_significand_bit (r, np2);
2738 /* Round to even. */
2739 round_up = guard && (sticky || lsb);
2742 if (round_up)
2744 REAL_VALUE_TYPE u;
2745 get_zero (&u, 0);
2746 set_significand_bit (&u, np2);
2748 if (add_significands (r, r, &u))
2750 /* Overflow. Means the significand had been all ones, and
2751 is now all zeros. Need to increase the exponent, and
2752 possibly re-normalize it. */
2753 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2754 if (REAL_EXP (r) > emax2)
2755 goto overflow;
2756 r->sig[SIGSZ-1] = SIG_MSB;
2760 /* Catch underflow that we deferred until after rounding. */
2761 if (REAL_EXP (r) <= emin2m1)
2762 goto underflow;
2764 /* Clear out trailing garbage. */
2765 clear_significand_below (r, np2);
2768 /* Extend or truncate to a new format. */
2770 void
2771 real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
2772 const REAL_VALUE_TYPE *a)
2774 *r = *a;
2776 if (a->decimal || fmt->b == 10)
2777 decimal_real_convert (r, fmt, a);
2779 round_for_format (fmt, r);
2781 /* Make resulting NaN value to be qNaN. The caller has the
2782 responsibility to avoid the operation if flag_signaling_nans
2783 is on. */
2784 if (r->cl == rvc_nan)
2785 r->signalling = 0;
2787 /* round_for_format de-normalizes denormals. Undo just that part. */
2788 if (r->cl == rvc_normal)
2789 normalize (r);
2792 /* Legacy. Likewise, except return the struct directly. */
2794 REAL_VALUE_TYPE
2795 real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
2797 REAL_VALUE_TYPE r;
2798 real_convert (&r, fmt, &a);
2799 return r;
2802 /* Return true if truncating to FMT is exact. */
2804 bool
2805 exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
2807 REAL_VALUE_TYPE t;
2808 int emin2m1;
2810 /* Don't allow conversion to denormals. */
2811 emin2m1 = fmt->emin - 1;
2812 if (REAL_EXP (a) <= emin2m1)
2813 return false;
2815 /* After conversion to the new format, the value must be identical. */
2816 real_convert (&t, fmt, a);
2817 return real_identical (&t, a);
2820 /* Write R to the given target format. Place the words of the result
2821 in target word order in BUF. There are always 32 bits in each
2822 long, no matter the size of the host long.
2824 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2826 long
2827 real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
2828 format_helper fmt)
2830 REAL_VALUE_TYPE r;
2831 long buf1;
2833 r = *r_orig;
2834 round_for_format (fmt, &r);
2836 if (!buf)
2837 buf = &buf1;
2838 (*fmt->encode) (fmt, buf, &r);
2840 return *buf;
2843 /* Read R from the given target format. Read the words of the result
2844 in target word order in BUF. There are always 32 bits in each
2845 long, no matter the size of the host long. */
2847 void
2848 real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
2850 (*fmt->decode) (fmt, r, buf);
2853 /* Return the number of bits of the largest binary value that the
2854 significand of FMT will hold. */
2855 /* ??? Legacy. Should get access to real_format directly. */
2858 significand_size (format_helper fmt)
2860 if (fmt == NULL)
2861 return 0;
2863 if (fmt->b == 10)
2865 /* Return the size in bits of the largest binary value that can be
2866 held by the decimal coefficient for this format. This is one more
2867 than the number of bits required to hold the largest coefficient
2868 of this format. */
2869 double log2_10 = 3.3219281;
2870 return fmt->p * log2_10;
2872 return fmt->p;
2875 /* Return a hash value for the given real value. */
2876 /* ??? The "unsigned int" return value is intended to be hashval_t,
2877 but I didn't want to pull hashtab.h into real.h. */
2879 unsigned int
2880 real_hash (const REAL_VALUE_TYPE *r)
2882 unsigned int h;
2883 size_t i;
2885 h = r->cl | (r->sign << 2);
2886 switch (r->cl)
2888 case rvc_zero:
2889 case rvc_inf:
2890 return h;
2892 case rvc_normal:
2893 h |= (unsigned int)REAL_EXP (r) << 3;
2894 break;
2896 case rvc_nan:
2897 if (r->signalling)
2898 h ^= (unsigned int)-1;
2899 if (r->canonical)
2900 return h;
2901 break;
2903 default:
2904 gcc_unreachable ();
2907 if (sizeof (unsigned long) > sizeof (unsigned int))
2908 for (i = 0; i < SIGSZ; ++i)
2910 unsigned long s = r->sig[i];
2911 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2913 else
2914 for (i = 0; i < SIGSZ; ++i)
2915 h ^= r->sig[i];
2917 return h;
2920 /* IEEE single-precision format. */
2922 static void encode_ieee_single (const struct real_format *fmt,
2923 long *, const REAL_VALUE_TYPE *);
2924 static void decode_ieee_single (const struct real_format *,
2925 REAL_VALUE_TYPE *, const long *);
2927 static void
2928 encode_ieee_single (const struct real_format *fmt, long *buf,
2929 const REAL_VALUE_TYPE *r)
2931 unsigned long image, sig, exp;
2932 unsigned long sign = r->sign;
2933 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2935 image = sign << 31;
2936 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2938 switch (r->cl)
2940 case rvc_zero:
2941 break;
2943 case rvc_inf:
2944 if (fmt->has_inf)
2945 image |= 255 << 23;
2946 else
2947 image |= 0x7fffffff;
2948 break;
2950 case rvc_nan:
2951 if (fmt->has_nans)
2953 if (r->canonical)
2954 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2955 if (r->signalling == fmt->qnan_msb_set)
2956 sig &= ~(1 << 22);
2957 else
2958 sig |= 1 << 22;
2959 if (sig == 0)
2960 sig = 1 << 21;
2962 image |= 255 << 23;
2963 image |= sig;
2965 else
2966 image |= 0x7fffffff;
2967 break;
2969 case rvc_normal:
2970 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2971 whereas the intermediate representation is 0.F x 2**exp.
2972 Which means we're off by one. */
2973 if (denormal)
2974 exp = 0;
2975 else
2976 exp = REAL_EXP (r) + 127 - 1;
2977 image |= exp << 23;
2978 image |= sig;
2979 break;
2981 default:
2982 gcc_unreachable ();
2985 buf[0] = image;
2988 static void
2989 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2990 const long *buf)
2992 unsigned long image = buf[0] & 0xffffffff;
2993 bool sign = (image >> 31) & 1;
2994 int exp = (image >> 23) & 0xff;
2996 memset (r, 0, sizeof (*r));
2997 image <<= HOST_BITS_PER_LONG - 24;
2998 image &= ~SIG_MSB;
3000 if (exp == 0)
3002 if (image && fmt->has_denorm)
3004 r->cl = rvc_normal;
3005 r->sign = sign;
3006 SET_REAL_EXP (r, -126);
3007 r->sig[SIGSZ-1] = image << 1;
3008 normalize (r);
3010 else if (fmt->has_signed_zero)
3011 r->sign = sign;
3013 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
3015 if (image)
3017 r->cl = rvc_nan;
3018 r->sign = sign;
3019 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
3020 ^ fmt->qnan_msb_set);
3021 r->sig[SIGSZ-1] = image;
3023 else
3025 r->cl = rvc_inf;
3026 r->sign = sign;
3029 else
3031 r->cl = rvc_normal;
3032 r->sign = sign;
3033 SET_REAL_EXP (r, exp - 127 + 1);
3034 r->sig[SIGSZ-1] = image | SIG_MSB;
3038 const struct real_format ieee_single_format =
3040 encode_ieee_single,
3041 decode_ieee_single,
3045 -125,
3046 128,
3050 false,
3051 true,
3052 true,
3053 true,
3054 true,
3055 true,
3056 true,
3057 false,
3058 "ieee_single"
3061 const struct real_format mips_single_format =
3063 encode_ieee_single,
3064 decode_ieee_single,
3068 -125,
3069 128,
3073 false,
3074 true,
3075 true,
3076 true,
3077 true,
3078 true,
3079 false,
3080 true,
3081 "mips_single"
3084 const struct real_format motorola_single_format =
3086 encode_ieee_single,
3087 decode_ieee_single,
3091 -125,
3092 128,
3096 false,
3097 true,
3098 true,
3099 true,
3100 true,
3101 true,
3102 true,
3103 true,
3104 "motorola_single"
3107 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3108 single precision with the following differences:
3109 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3110 are generated.
3111 - NaNs are not supported.
3112 - The range of non-zero numbers in binary is
3113 (001)[1.]000...000 to (255)[1.]111...111.
3114 - Denormals can be represented, but are treated as +0.0 when
3115 used as an operand and are never generated as a result.
3116 - -0.0 can be represented, but a zero result is always +0.0.
3117 - the only supported rounding mode is trunction (towards zero). */
3118 const struct real_format spu_single_format =
3120 encode_ieee_single,
3121 decode_ieee_single,
3125 -125,
3126 129,
3130 true,
3131 false,
3132 false,
3133 false,
3134 true,
3135 true,
3136 false,
3137 false,
3138 "spu_single"
3141 /* IEEE double-precision format. */
3143 static void encode_ieee_double (const struct real_format *fmt,
3144 long *, const REAL_VALUE_TYPE *);
3145 static void decode_ieee_double (const struct real_format *,
3146 REAL_VALUE_TYPE *, const long *);
3148 static void
3149 encode_ieee_double (const struct real_format *fmt, long *buf,
3150 const REAL_VALUE_TYPE *r)
3152 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3153 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3155 image_hi = r->sign << 31;
3156 image_lo = 0;
3158 if (HOST_BITS_PER_LONG == 64)
3160 sig_hi = r->sig[SIGSZ-1];
3161 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3162 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3164 else
3166 sig_hi = r->sig[SIGSZ-1];
3167 sig_lo = r->sig[SIGSZ-2];
3168 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3169 sig_hi = (sig_hi >> 11) & 0xfffff;
3172 switch (r->cl)
3174 case rvc_zero:
3175 break;
3177 case rvc_inf:
3178 if (fmt->has_inf)
3179 image_hi |= 2047 << 20;
3180 else
3182 image_hi |= 0x7fffffff;
3183 image_lo = 0xffffffff;
3185 break;
3187 case rvc_nan:
3188 if (fmt->has_nans)
3190 if (r->canonical)
3192 if (fmt->canonical_nan_lsbs_set)
3194 sig_hi = (1 << 19) - 1;
3195 sig_lo = 0xffffffff;
3197 else
3199 sig_hi = 0;
3200 sig_lo = 0;
3203 if (r->signalling == fmt->qnan_msb_set)
3204 sig_hi &= ~(1 << 19);
3205 else
3206 sig_hi |= 1 << 19;
3207 if (sig_hi == 0 && sig_lo == 0)
3208 sig_hi = 1 << 18;
3210 image_hi |= 2047 << 20;
3211 image_hi |= sig_hi;
3212 image_lo = sig_lo;
3214 else
3216 image_hi |= 0x7fffffff;
3217 image_lo = 0xffffffff;
3219 break;
3221 case rvc_normal:
3222 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3223 whereas the intermediate representation is 0.F x 2**exp.
3224 Which means we're off by one. */
3225 if (denormal)
3226 exp = 0;
3227 else
3228 exp = REAL_EXP (r) + 1023 - 1;
3229 image_hi |= exp << 20;
3230 image_hi |= sig_hi;
3231 image_lo = sig_lo;
3232 break;
3234 default:
3235 gcc_unreachable ();
3238 if (FLOAT_WORDS_BIG_ENDIAN)
3239 buf[0] = image_hi, buf[1] = image_lo;
3240 else
3241 buf[0] = image_lo, buf[1] = image_hi;
3244 static void
3245 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3246 const long *buf)
3248 unsigned long image_hi, image_lo;
3249 bool sign;
3250 int exp;
3252 if (FLOAT_WORDS_BIG_ENDIAN)
3253 image_hi = buf[0], image_lo = buf[1];
3254 else
3255 image_lo = buf[0], image_hi = buf[1];
3256 image_lo &= 0xffffffff;
3257 image_hi &= 0xffffffff;
3259 sign = (image_hi >> 31) & 1;
3260 exp = (image_hi >> 20) & 0x7ff;
3262 memset (r, 0, sizeof (*r));
3264 image_hi <<= 32 - 21;
3265 image_hi |= image_lo >> 21;
3266 image_hi &= 0x7fffffff;
3267 image_lo <<= 32 - 21;
3269 if (exp == 0)
3271 if ((image_hi || image_lo) && fmt->has_denorm)
3273 r->cl = rvc_normal;
3274 r->sign = sign;
3275 SET_REAL_EXP (r, -1022);
3276 if (HOST_BITS_PER_LONG == 32)
3278 image_hi = (image_hi << 1) | (image_lo >> 31);
3279 image_lo <<= 1;
3280 r->sig[SIGSZ-1] = image_hi;
3281 r->sig[SIGSZ-2] = image_lo;
3283 else
3285 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3286 r->sig[SIGSZ-1] = image_hi;
3288 normalize (r);
3290 else if (fmt->has_signed_zero)
3291 r->sign = sign;
3293 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3295 if (image_hi || image_lo)
3297 r->cl = rvc_nan;
3298 r->sign = sign;
3299 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3300 if (HOST_BITS_PER_LONG == 32)
3302 r->sig[SIGSZ-1] = image_hi;
3303 r->sig[SIGSZ-2] = image_lo;
3305 else
3306 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3308 else
3310 r->cl = rvc_inf;
3311 r->sign = sign;
3314 else
3316 r->cl = rvc_normal;
3317 r->sign = sign;
3318 SET_REAL_EXP (r, exp - 1023 + 1);
3319 if (HOST_BITS_PER_LONG == 32)
3321 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3322 r->sig[SIGSZ-2] = image_lo;
3324 else
3325 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3329 const struct real_format ieee_double_format =
3331 encode_ieee_double,
3332 decode_ieee_double,
3336 -1021,
3337 1024,
3341 false,
3342 true,
3343 true,
3344 true,
3345 true,
3346 true,
3347 true,
3348 false,
3349 "ieee_double"
3352 const struct real_format mips_double_format =
3354 encode_ieee_double,
3355 decode_ieee_double,
3359 -1021,
3360 1024,
3364 false,
3365 true,
3366 true,
3367 true,
3368 true,
3369 true,
3370 false,
3371 true,
3372 "mips_double"
3375 const struct real_format motorola_double_format =
3377 encode_ieee_double,
3378 decode_ieee_double,
3382 -1021,
3383 1024,
3387 false,
3388 true,
3389 true,
3390 true,
3391 true,
3392 true,
3393 true,
3394 true,
3395 "motorola_double"
3398 /* IEEE extended real format. This comes in three flavors: Intel's as
3399 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3400 12- and 16-byte images may be big- or little endian; Motorola's is
3401 always big endian. */
3403 /* Helper subroutine which converts from the internal format to the
3404 12-byte little-endian Intel format. Functions below adjust this
3405 for the other possible formats. */
3406 static void
3407 encode_ieee_extended (const struct real_format *fmt, long *buf,
3408 const REAL_VALUE_TYPE *r)
3410 unsigned long image_hi, sig_hi, sig_lo;
3411 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3413 image_hi = r->sign << 15;
3414 sig_hi = sig_lo = 0;
3416 switch (r->cl)
3418 case rvc_zero:
3419 break;
3421 case rvc_inf:
3422 if (fmt->has_inf)
3424 image_hi |= 32767;
3426 /* Intel requires the explicit integer bit to be set, otherwise
3427 it considers the value a "pseudo-infinity". Motorola docs
3428 say it doesn't care. */
3429 sig_hi = 0x80000000;
3431 else
3433 image_hi |= 32767;
3434 sig_lo = sig_hi = 0xffffffff;
3436 break;
3438 case rvc_nan:
3439 if (fmt->has_nans)
3441 image_hi |= 32767;
3442 if (r->canonical)
3444 if (fmt->canonical_nan_lsbs_set)
3446 sig_hi = (1 << 30) - 1;
3447 sig_lo = 0xffffffff;
3450 else if (HOST_BITS_PER_LONG == 32)
3452 sig_hi = r->sig[SIGSZ-1];
3453 sig_lo = r->sig[SIGSZ-2];
3455 else
3457 sig_lo = r->sig[SIGSZ-1];
3458 sig_hi = sig_lo >> 31 >> 1;
3459 sig_lo &= 0xffffffff;
3461 if (r->signalling == fmt->qnan_msb_set)
3462 sig_hi &= ~(1 << 30);
3463 else
3464 sig_hi |= 1 << 30;
3465 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3466 sig_hi = 1 << 29;
3468 /* Intel requires the explicit integer bit to be set, otherwise
3469 it considers the value a "pseudo-nan". Motorola docs say it
3470 doesn't care. */
3471 sig_hi |= 0x80000000;
3473 else
3475 image_hi |= 32767;
3476 sig_lo = sig_hi = 0xffffffff;
3478 break;
3480 case rvc_normal:
3482 int exp = REAL_EXP (r);
3484 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3485 whereas the intermediate representation is 0.F x 2**exp.
3486 Which means we're off by one.
3488 Except for Motorola, which consider exp=0 and explicit
3489 integer bit set to continue to be normalized. In theory
3490 this discrepancy has been taken care of by the difference
3491 in fmt->emin in round_for_format. */
3493 if (denormal)
3494 exp = 0;
3495 else
3497 exp += 16383 - 1;
3498 gcc_assert (exp >= 0);
3500 image_hi |= exp;
3502 if (HOST_BITS_PER_LONG == 32)
3504 sig_hi = r->sig[SIGSZ-1];
3505 sig_lo = r->sig[SIGSZ-2];
3507 else
3509 sig_lo = r->sig[SIGSZ-1];
3510 sig_hi = sig_lo >> 31 >> 1;
3511 sig_lo &= 0xffffffff;
3514 break;
3516 default:
3517 gcc_unreachable ();
3520 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3523 /* Convert from the internal format to the 12-byte Motorola format
3524 for an IEEE extended real. */
3525 static void
3526 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3527 const REAL_VALUE_TYPE *r)
3529 long intermed[3];
3530 encode_ieee_extended (fmt, intermed, r);
3532 if (r->cl == rvc_inf)
3533 /* For infinity clear the explicit integer bit again, so that the
3534 format matches the canonical infinity generated by the FPU. */
3535 intermed[1] = 0;
3537 /* Motorola chips are assumed always to be big-endian. Also, the
3538 padding in a Motorola extended real goes between the exponent and
3539 the mantissa. At this point the mantissa is entirely within
3540 elements 0 and 1 of intermed, and the exponent entirely within
3541 element 2, so all we have to do is swap the order around, and
3542 shift element 2 left 16 bits. */
3543 buf[0] = intermed[2] << 16;
3544 buf[1] = intermed[1];
3545 buf[2] = intermed[0];
3548 /* Convert from the internal format to the 12-byte Intel format for
3549 an IEEE extended real. */
3550 static void
3551 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3552 const REAL_VALUE_TYPE *r)
3554 if (FLOAT_WORDS_BIG_ENDIAN)
3556 /* All the padding in an Intel-format extended real goes at the high
3557 end, which in this case is after the mantissa, not the exponent.
3558 Therefore we must shift everything down 16 bits. */
3559 long intermed[3];
3560 encode_ieee_extended (fmt, intermed, r);
3561 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3562 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3563 buf[2] = (intermed[0] << 16);
3565 else
3566 /* encode_ieee_extended produces what we want directly. */
3567 encode_ieee_extended (fmt, buf, r);
3570 /* Convert from the internal format to the 16-byte Intel format for
3571 an IEEE extended real. */
3572 static void
3573 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3574 const REAL_VALUE_TYPE *r)
3576 /* All the padding in an Intel-format extended real goes at the high end. */
3577 encode_ieee_extended_intel_96 (fmt, buf, r);
3578 buf[3] = 0;
3581 /* As above, we have a helper function which converts from 12-byte
3582 little-endian Intel format to internal format. Functions below
3583 adjust for the other possible formats. */
3584 static void
3585 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3586 const long *buf)
3588 unsigned long image_hi, sig_hi, sig_lo;
3589 bool sign;
3590 int exp;
3592 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3593 sig_lo &= 0xffffffff;
3594 sig_hi &= 0xffffffff;
3595 image_hi &= 0xffffffff;
3597 sign = (image_hi >> 15) & 1;
3598 exp = image_hi & 0x7fff;
3600 memset (r, 0, sizeof (*r));
3602 if (exp == 0)
3604 if ((sig_hi || sig_lo) && fmt->has_denorm)
3606 r->cl = rvc_normal;
3607 r->sign = sign;
3609 /* When the IEEE format contains a hidden bit, we know that
3610 it's zero at this point, and so shift up the significand
3611 and decrease the exponent to match. In this case, Motorola
3612 defines the explicit integer bit to be valid, so we don't
3613 know whether the msb is set or not. */
3614 SET_REAL_EXP (r, fmt->emin);
3615 if (HOST_BITS_PER_LONG == 32)
3617 r->sig[SIGSZ-1] = sig_hi;
3618 r->sig[SIGSZ-2] = sig_lo;
3620 else
3621 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3623 normalize (r);
3625 else if (fmt->has_signed_zero)
3626 r->sign = sign;
3628 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3630 /* See above re "pseudo-infinities" and "pseudo-nans".
3631 Short summary is that the MSB will likely always be
3632 set, and that we don't care about it. */
3633 sig_hi &= 0x7fffffff;
3635 if (sig_hi || sig_lo)
3637 r->cl = rvc_nan;
3638 r->sign = sign;
3639 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3640 if (HOST_BITS_PER_LONG == 32)
3642 r->sig[SIGSZ-1] = sig_hi;
3643 r->sig[SIGSZ-2] = sig_lo;
3645 else
3646 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3648 else
3650 r->cl = rvc_inf;
3651 r->sign = sign;
3654 else
3656 r->cl = rvc_normal;
3657 r->sign = sign;
3658 SET_REAL_EXP (r, exp - 16383 + 1);
3659 if (HOST_BITS_PER_LONG == 32)
3661 r->sig[SIGSZ-1] = sig_hi;
3662 r->sig[SIGSZ-2] = sig_lo;
3664 else
3665 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3669 /* Convert from the internal format to the 12-byte Motorola format
3670 for an IEEE extended real. */
3671 static void
3672 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3673 const long *buf)
3675 long intermed[3];
3677 /* Motorola chips are assumed always to be big-endian. Also, the
3678 padding in a Motorola extended real goes between the exponent and
3679 the mantissa; remove it. */
3680 intermed[0] = buf[2];
3681 intermed[1] = buf[1];
3682 intermed[2] = (unsigned long)buf[0] >> 16;
3684 decode_ieee_extended (fmt, r, intermed);
3687 /* Convert from the internal format to the 12-byte Intel format for
3688 an IEEE extended real. */
3689 static void
3690 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3691 const long *buf)
3693 if (FLOAT_WORDS_BIG_ENDIAN)
3695 /* All the padding in an Intel-format extended real goes at the high
3696 end, which in this case is after the mantissa, not the exponent.
3697 Therefore we must shift everything up 16 bits. */
3698 long intermed[3];
3700 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3701 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3702 intermed[2] = ((unsigned long)buf[0] >> 16);
3704 decode_ieee_extended (fmt, r, intermed);
3706 else
3707 /* decode_ieee_extended produces what we want directly. */
3708 decode_ieee_extended (fmt, r, buf);
3711 /* Convert from the internal format to the 16-byte Intel format for
3712 an IEEE extended real. */
3713 static void
3714 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3715 const long *buf)
3717 /* All the padding in an Intel-format extended real goes at the high end. */
3718 decode_ieee_extended_intel_96 (fmt, r, buf);
3721 const struct real_format ieee_extended_motorola_format =
3723 encode_ieee_extended_motorola,
3724 decode_ieee_extended_motorola,
3728 -16382,
3729 16384,
3733 false,
3734 true,
3735 true,
3736 true,
3737 true,
3738 true,
3739 true,
3740 true,
3741 "ieee_extended_motorola"
3744 const struct real_format ieee_extended_intel_96_format =
3746 encode_ieee_extended_intel_96,
3747 decode_ieee_extended_intel_96,
3751 -16381,
3752 16384,
3756 false,
3757 true,
3758 true,
3759 true,
3760 true,
3761 true,
3762 true,
3763 false,
3764 "ieee_extended_intel_96"
3767 const struct real_format ieee_extended_intel_128_format =
3769 encode_ieee_extended_intel_128,
3770 decode_ieee_extended_intel_128,
3774 -16381,
3775 16384,
3779 false,
3780 true,
3781 true,
3782 true,
3783 true,
3784 true,
3785 true,
3786 false,
3787 "ieee_extended_intel_128"
3790 /* The following caters to i386 systems that set the rounding precision
3791 to 53 bits instead of 64, e.g. FreeBSD. */
3792 const struct real_format ieee_extended_intel_96_round_53_format =
3794 encode_ieee_extended_intel_96,
3795 decode_ieee_extended_intel_96,
3799 -16381,
3800 16384,
3804 false,
3805 true,
3806 true,
3807 true,
3808 true,
3809 true,
3810 true,
3811 false,
3812 "ieee_extended_intel_96_round_53"
3815 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3816 numbers whose sum is equal to the extended precision value. The number
3817 with greater magnitude is first. This format has the same magnitude
3818 range as an IEEE double precision value, but effectively 106 bits of
3819 significand precision. Infinity and NaN are represented by their IEEE
3820 double precision value stored in the first number, the second number is
3821 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3823 static void encode_ibm_extended (const struct real_format *fmt,
3824 long *, const REAL_VALUE_TYPE *);
3825 static void decode_ibm_extended (const struct real_format *,
3826 REAL_VALUE_TYPE *, const long *);
3828 static void
3829 encode_ibm_extended (const struct real_format *fmt, long *buf,
3830 const REAL_VALUE_TYPE *r)
3832 REAL_VALUE_TYPE u, normr, v;
3833 const struct real_format *base_fmt;
3835 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3837 /* Renormalize R before doing any arithmetic on it. */
3838 normr = *r;
3839 if (normr.cl == rvc_normal)
3840 normalize (&normr);
3842 /* u = IEEE double precision portion of significand. */
3843 u = normr;
3844 round_for_format (base_fmt, &u);
3845 encode_ieee_double (base_fmt, &buf[0], &u);
3847 if (u.cl == rvc_normal)
3849 do_add (&v, &normr, &u, 1);
3850 /* Call round_for_format since we might need to denormalize. */
3851 round_for_format (base_fmt, &v);
3852 encode_ieee_double (base_fmt, &buf[2], &v);
3854 else
3856 /* Inf, NaN, 0 are all representable as doubles, so the
3857 least-significant part can be 0.0. */
3858 buf[2] = 0;
3859 buf[3] = 0;
3863 static void
3864 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3865 const long *buf)
3867 REAL_VALUE_TYPE u, v;
3868 const struct real_format *base_fmt;
3870 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3871 decode_ieee_double (base_fmt, &u, &buf[0]);
3873 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3875 decode_ieee_double (base_fmt, &v, &buf[2]);
3876 do_add (r, &u, &v, 0);
3878 else
3879 *r = u;
3882 const struct real_format ibm_extended_format =
3884 encode_ibm_extended,
3885 decode_ibm_extended,
3887 53 + 53,
3889 -1021 + 53,
3890 1024,
3891 127,
3894 false,
3895 true,
3896 true,
3897 true,
3898 true,
3899 true,
3900 true,
3901 false,
3902 "ibm_extended"
3905 const struct real_format mips_extended_format =
3907 encode_ibm_extended,
3908 decode_ibm_extended,
3910 53 + 53,
3912 -1021 + 53,
3913 1024,
3914 127,
3917 false,
3918 true,
3919 true,
3920 true,
3921 true,
3922 true,
3923 false,
3924 true,
3925 "mips_extended"
3929 /* IEEE quad precision format. */
3931 static void encode_ieee_quad (const struct real_format *fmt,
3932 long *, const REAL_VALUE_TYPE *);
3933 static void decode_ieee_quad (const struct real_format *,
3934 REAL_VALUE_TYPE *, const long *);
3936 static void
3937 encode_ieee_quad (const struct real_format *fmt, long *buf,
3938 const REAL_VALUE_TYPE *r)
3940 unsigned long image3, image2, image1, image0, exp;
3941 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3942 REAL_VALUE_TYPE u;
3944 image3 = r->sign << 31;
3945 image2 = 0;
3946 image1 = 0;
3947 image0 = 0;
3949 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3951 switch (r->cl)
3953 case rvc_zero:
3954 break;
3956 case rvc_inf:
3957 if (fmt->has_inf)
3958 image3 |= 32767 << 16;
3959 else
3961 image3 |= 0x7fffffff;
3962 image2 = 0xffffffff;
3963 image1 = 0xffffffff;
3964 image0 = 0xffffffff;
3966 break;
3968 case rvc_nan:
3969 if (fmt->has_nans)
3971 image3 |= 32767 << 16;
3973 if (r->canonical)
3975 if (fmt->canonical_nan_lsbs_set)
3977 image3 |= 0x7fff;
3978 image2 = image1 = image0 = 0xffffffff;
3981 else if (HOST_BITS_PER_LONG == 32)
3983 image0 = u.sig[0];
3984 image1 = u.sig[1];
3985 image2 = u.sig[2];
3986 image3 |= u.sig[3] & 0xffff;
3988 else
3990 image0 = u.sig[0];
3991 image1 = image0 >> 31 >> 1;
3992 image2 = u.sig[1];
3993 image3 |= (image2 >> 31 >> 1) & 0xffff;
3994 image0 &= 0xffffffff;
3995 image2 &= 0xffffffff;
3997 if (r->signalling == fmt->qnan_msb_set)
3998 image3 &= ~0x8000;
3999 else
4000 image3 |= 0x8000;
4001 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
4002 image3 |= 0x4000;
4004 else
4006 image3 |= 0x7fffffff;
4007 image2 = 0xffffffff;
4008 image1 = 0xffffffff;
4009 image0 = 0xffffffff;
4011 break;
4013 case rvc_normal:
4014 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4015 whereas the intermediate representation is 0.F x 2**exp.
4016 Which means we're off by one. */
4017 if (denormal)
4018 exp = 0;
4019 else
4020 exp = REAL_EXP (r) + 16383 - 1;
4021 image3 |= exp << 16;
4023 if (HOST_BITS_PER_LONG == 32)
4025 image0 = u.sig[0];
4026 image1 = u.sig[1];
4027 image2 = u.sig[2];
4028 image3 |= u.sig[3] & 0xffff;
4030 else
4032 image0 = u.sig[0];
4033 image1 = image0 >> 31 >> 1;
4034 image2 = u.sig[1];
4035 image3 |= (image2 >> 31 >> 1) & 0xffff;
4036 image0 &= 0xffffffff;
4037 image2 &= 0xffffffff;
4039 break;
4041 default:
4042 gcc_unreachable ();
4045 if (FLOAT_WORDS_BIG_ENDIAN)
4047 buf[0] = image3;
4048 buf[1] = image2;
4049 buf[2] = image1;
4050 buf[3] = image0;
4052 else
4054 buf[0] = image0;
4055 buf[1] = image1;
4056 buf[2] = image2;
4057 buf[3] = image3;
4061 static void
4062 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4063 const long *buf)
4065 unsigned long image3, image2, image1, image0;
4066 bool sign;
4067 int exp;
4069 if (FLOAT_WORDS_BIG_ENDIAN)
4071 image3 = buf[0];
4072 image2 = buf[1];
4073 image1 = buf[2];
4074 image0 = buf[3];
4076 else
4078 image0 = buf[0];
4079 image1 = buf[1];
4080 image2 = buf[2];
4081 image3 = buf[3];
4083 image0 &= 0xffffffff;
4084 image1 &= 0xffffffff;
4085 image2 &= 0xffffffff;
4087 sign = (image3 >> 31) & 1;
4088 exp = (image3 >> 16) & 0x7fff;
4089 image3 &= 0xffff;
4091 memset (r, 0, sizeof (*r));
4093 if (exp == 0)
4095 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4097 r->cl = rvc_normal;
4098 r->sign = sign;
4100 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4101 if (HOST_BITS_PER_LONG == 32)
4103 r->sig[0] = image0;
4104 r->sig[1] = image1;
4105 r->sig[2] = image2;
4106 r->sig[3] = image3;
4108 else
4110 r->sig[0] = (image1 << 31 << 1) | image0;
4111 r->sig[1] = (image3 << 31 << 1) | image2;
4114 normalize (r);
4116 else if (fmt->has_signed_zero)
4117 r->sign = sign;
4119 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4121 if (image3 | image2 | image1 | image0)
4123 r->cl = rvc_nan;
4124 r->sign = sign;
4125 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4127 if (HOST_BITS_PER_LONG == 32)
4129 r->sig[0] = image0;
4130 r->sig[1] = image1;
4131 r->sig[2] = image2;
4132 r->sig[3] = image3;
4134 else
4136 r->sig[0] = (image1 << 31 << 1) | image0;
4137 r->sig[1] = (image3 << 31 << 1) | image2;
4139 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4141 else
4143 r->cl = rvc_inf;
4144 r->sign = sign;
4147 else
4149 r->cl = rvc_normal;
4150 r->sign = sign;
4151 SET_REAL_EXP (r, exp - 16383 + 1);
4153 if (HOST_BITS_PER_LONG == 32)
4155 r->sig[0] = image0;
4156 r->sig[1] = image1;
4157 r->sig[2] = image2;
4158 r->sig[3] = image3;
4160 else
4162 r->sig[0] = (image1 << 31 << 1) | image0;
4163 r->sig[1] = (image3 << 31 << 1) | image2;
4165 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4166 r->sig[SIGSZ-1] |= SIG_MSB;
4170 const struct real_format ieee_quad_format =
4172 encode_ieee_quad,
4173 decode_ieee_quad,
4175 113,
4176 113,
4177 -16381,
4178 16384,
4179 127,
4180 127,
4181 128,
4182 false,
4183 true,
4184 true,
4185 true,
4186 true,
4187 true,
4188 true,
4189 false,
4190 "ieee_quad"
4193 const struct real_format mips_quad_format =
4195 encode_ieee_quad,
4196 decode_ieee_quad,
4198 113,
4199 113,
4200 -16381,
4201 16384,
4202 127,
4203 127,
4204 128,
4205 false,
4206 true,
4207 true,
4208 true,
4209 true,
4210 true,
4211 false,
4212 true,
4213 "mips_quad"
4216 /* Descriptions of VAX floating point formats can be found beginning at
4218 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4220 The thing to remember is that they're almost IEEE, except for word
4221 order, exponent bias, and the lack of infinities, nans, and denormals.
4223 We don't implement the H_floating format here, simply because neither
4224 the VAX or Alpha ports use it. */
4226 static void encode_vax_f (const struct real_format *fmt,
4227 long *, const REAL_VALUE_TYPE *);
4228 static void decode_vax_f (const struct real_format *,
4229 REAL_VALUE_TYPE *, const long *);
4230 static void encode_vax_d (const struct real_format *fmt,
4231 long *, const REAL_VALUE_TYPE *);
4232 static void decode_vax_d (const struct real_format *,
4233 REAL_VALUE_TYPE *, const long *);
4234 static void encode_vax_g (const struct real_format *fmt,
4235 long *, const REAL_VALUE_TYPE *);
4236 static void decode_vax_g (const struct real_format *,
4237 REAL_VALUE_TYPE *, const long *);
4239 static void
4240 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4241 const REAL_VALUE_TYPE *r)
4243 unsigned long sign, exp, sig, image;
4245 sign = r->sign << 15;
4247 switch (r->cl)
4249 case rvc_zero:
4250 image = 0;
4251 break;
4253 case rvc_inf:
4254 case rvc_nan:
4255 image = 0xffff7fff | sign;
4256 break;
4258 case rvc_normal:
4259 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4260 exp = REAL_EXP (r) + 128;
4262 image = (sig << 16) & 0xffff0000;
4263 image |= sign;
4264 image |= exp << 7;
4265 image |= sig >> 16;
4266 break;
4268 default:
4269 gcc_unreachable ();
4272 buf[0] = image;
4275 static void
4276 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4277 REAL_VALUE_TYPE *r, const long *buf)
4279 unsigned long image = buf[0] & 0xffffffff;
4280 int exp = (image >> 7) & 0xff;
4282 memset (r, 0, sizeof (*r));
4284 if (exp != 0)
4286 r->cl = rvc_normal;
4287 r->sign = (image >> 15) & 1;
4288 SET_REAL_EXP (r, exp - 128);
4290 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4291 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4295 static void
4296 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4297 const REAL_VALUE_TYPE *r)
4299 unsigned long image0, image1, sign = r->sign << 15;
4301 switch (r->cl)
4303 case rvc_zero:
4304 image0 = image1 = 0;
4305 break;
4307 case rvc_inf:
4308 case rvc_nan:
4309 image0 = 0xffff7fff | sign;
4310 image1 = 0xffffffff;
4311 break;
4313 case rvc_normal:
4314 /* Extract the significand into straight hi:lo. */
4315 if (HOST_BITS_PER_LONG == 64)
4317 image0 = r->sig[SIGSZ-1];
4318 image1 = (image0 >> (64 - 56)) & 0xffffffff;
4319 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4321 else
4323 image0 = r->sig[SIGSZ-1];
4324 image1 = r->sig[SIGSZ-2];
4325 image1 = (image0 << 24) | (image1 >> 8);
4326 image0 = (image0 >> 8) & 0xffffff;
4329 /* Rearrange the half-words of the significand to match the
4330 external format. */
4331 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4332 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4334 /* Add the sign and exponent. */
4335 image0 |= sign;
4336 image0 |= (REAL_EXP (r) + 128) << 7;
4337 break;
4339 default:
4340 gcc_unreachable ();
4343 if (FLOAT_WORDS_BIG_ENDIAN)
4344 buf[0] = image1, buf[1] = image0;
4345 else
4346 buf[0] = image0, buf[1] = image1;
4349 static void
4350 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4351 REAL_VALUE_TYPE *r, const long *buf)
4353 unsigned long image0, image1;
4354 int exp;
4356 if (FLOAT_WORDS_BIG_ENDIAN)
4357 image1 = buf[0], image0 = buf[1];
4358 else
4359 image0 = buf[0], image1 = buf[1];
4360 image0 &= 0xffffffff;
4361 image1 &= 0xffffffff;
4363 exp = (image0 >> 7) & 0xff;
4365 memset (r, 0, sizeof (*r));
4367 if (exp != 0)
4369 r->cl = rvc_normal;
4370 r->sign = (image0 >> 15) & 1;
4371 SET_REAL_EXP (r, exp - 128);
4373 /* Rearrange the half-words of the external format into
4374 proper ascending order. */
4375 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4376 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4378 if (HOST_BITS_PER_LONG == 64)
4380 image0 = (image0 << 31 << 1) | image1;
4381 image0 <<= 64 - 56;
4382 image0 |= SIG_MSB;
4383 r->sig[SIGSZ-1] = image0;
4385 else
4387 r->sig[SIGSZ-1] = image0;
4388 r->sig[SIGSZ-2] = image1;
4389 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4390 r->sig[SIGSZ-1] |= SIG_MSB;
4395 static void
4396 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4397 const REAL_VALUE_TYPE *r)
4399 unsigned long image0, image1, sign = r->sign << 15;
4401 switch (r->cl)
4403 case rvc_zero:
4404 image0 = image1 = 0;
4405 break;
4407 case rvc_inf:
4408 case rvc_nan:
4409 image0 = 0xffff7fff | sign;
4410 image1 = 0xffffffff;
4411 break;
4413 case rvc_normal:
4414 /* Extract the significand into straight hi:lo. */
4415 if (HOST_BITS_PER_LONG == 64)
4417 image0 = r->sig[SIGSZ-1];
4418 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4419 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4421 else
4423 image0 = r->sig[SIGSZ-1];
4424 image1 = r->sig[SIGSZ-2];
4425 image1 = (image0 << 21) | (image1 >> 11);
4426 image0 = (image0 >> 11) & 0xfffff;
4429 /* Rearrange the half-words of the significand to match the
4430 external format. */
4431 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4432 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4434 /* Add the sign and exponent. */
4435 image0 |= sign;
4436 image0 |= (REAL_EXP (r) + 1024) << 4;
4437 break;
4439 default:
4440 gcc_unreachable ();
4443 if (FLOAT_WORDS_BIG_ENDIAN)
4444 buf[0] = image1, buf[1] = image0;
4445 else
4446 buf[0] = image0, buf[1] = image1;
4449 static void
4450 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4451 REAL_VALUE_TYPE *r, const long *buf)
4453 unsigned long image0, image1;
4454 int exp;
4456 if (FLOAT_WORDS_BIG_ENDIAN)
4457 image1 = buf[0], image0 = buf[1];
4458 else
4459 image0 = buf[0], image1 = buf[1];
4460 image0 &= 0xffffffff;
4461 image1 &= 0xffffffff;
4463 exp = (image0 >> 4) & 0x7ff;
4465 memset (r, 0, sizeof (*r));
4467 if (exp != 0)
4469 r->cl = rvc_normal;
4470 r->sign = (image0 >> 15) & 1;
4471 SET_REAL_EXP (r, exp - 1024);
4473 /* Rearrange the half-words of the external format into
4474 proper ascending order. */
4475 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4476 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4478 if (HOST_BITS_PER_LONG == 64)
4480 image0 = (image0 << 31 << 1) | image1;
4481 image0 <<= 64 - 53;
4482 image0 |= SIG_MSB;
4483 r->sig[SIGSZ-1] = image0;
4485 else
4487 r->sig[SIGSZ-1] = image0;
4488 r->sig[SIGSZ-2] = image1;
4489 lshift_significand (r, r, 64 - 53);
4490 r->sig[SIGSZ-1] |= SIG_MSB;
4495 const struct real_format vax_f_format =
4497 encode_vax_f,
4498 decode_vax_f,
4502 -127,
4503 127,
4507 false,
4508 false,
4509 false,
4510 false,
4511 false,
4512 false,
4513 false,
4514 false,
4515 "vax_f"
4518 const struct real_format vax_d_format =
4520 encode_vax_d,
4521 decode_vax_d,
4525 -127,
4526 127,
4530 false,
4531 false,
4532 false,
4533 false,
4534 false,
4535 false,
4536 false,
4537 false,
4538 "vax_d"
4541 const struct real_format vax_g_format =
4543 encode_vax_g,
4544 decode_vax_g,
4548 -1023,
4549 1023,
4553 false,
4554 false,
4555 false,
4556 false,
4557 false,
4558 false,
4559 false,
4560 false,
4561 "vax_g"
4564 /* Encode real R into a single precision DFP value in BUF. */
4565 static void
4566 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4567 long *buf ATTRIBUTE_UNUSED,
4568 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4570 encode_decimal32 (fmt, buf, r);
4573 /* Decode a single precision DFP value in BUF into a real R. */
4574 static void
4575 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4576 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4577 const long *buf ATTRIBUTE_UNUSED)
4579 decode_decimal32 (fmt, r, buf);
4582 /* Encode real R into a double precision DFP value in BUF. */
4583 static void
4584 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4585 long *buf ATTRIBUTE_UNUSED,
4586 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4588 encode_decimal64 (fmt, buf, r);
4591 /* Decode a double precision DFP value in BUF into a real R. */
4592 static void
4593 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4594 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4595 const long *buf ATTRIBUTE_UNUSED)
4597 decode_decimal64 (fmt, r, buf);
4600 /* Encode real R into a quad precision DFP value in BUF. */
4601 static void
4602 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4603 long *buf ATTRIBUTE_UNUSED,
4604 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4606 encode_decimal128 (fmt, buf, r);
4609 /* Decode a quad precision DFP value in BUF into a real R. */
4610 static void
4611 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4612 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4613 const long *buf ATTRIBUTE_UNUSED)
4615 decode_decimal128 (fmt, r, buf);
4618 /* Single precision decimal floating point (IEEE 754). */
4619 const struct real_format decimal_single_format =
4621 encode_decimal_single,
4622 decode_decimal_single,
4626 -94,
4631 false,
4632 true,
4633 true,
4634 true,
4635 true,
4636 true,
4637 true,
4638 false,
4639 "decimal_single"
4642 /* Double precision decimal floating point (IEEE 754). */
4643 const struct real_format decimal_double_format =
4645 encode_decimal_double,
4646 decode_decimal_double,
4650 -382,
4651 385,
4655 false,
4656 true,
4657 true,
4658 true,
4659 true,
4660 true,
4661 true,
4662 false,
4663 "decimal_double"
4666 /* Quad precision decimal floating point (IEEE 754). */
4667 const struct real_format decimal_quad_format =
4669 encode_decimal_quad,
4670 decode_decimal_quad,
4674 -6142,
4675 6145,
4676 127,
4677 127,
4678 128,
4679 false,
4680 true,
4681 true,
4682 true,
4683 true,
4684 true,
4685 true,
4686 false,
4687 "decimal_quad"
4690 /* Encode half-precision floats. This routine is used both for the IEEE
4691 ARM alternative encodings. */
4692 static void
4693 encode_ieee_half (const struct real_format *fmt, long *buf,
4694 const REAL_VALUE_TYPE *r)
4696 unsigned long image, sig, exp;
4697 unsigned long sign = r->sign;
4698 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
4700 image = sign << 15;
4701 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4703 switch (r->cl)
4705 case rvc_zero:
4706 break;
4708 case rvc_inf:
4709 if (fmt->has_inf)
4710 image |= 31 << 10;
4711 else
4712 image |= 0x7fff;
4713 break;
4715 case rvc_nan:
4716 if (fmt->has_nans)
4718 if (r->canonical)
4719 sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4720 if (r->signalling == fmt->qnan_msb_set)
4721 sig &= ~(1 << 9);
4722 else
4723 sig |= 1 << 9;
4724 if (sig == 0)
4725 sig = 1 << 8;
4727 image |= 31 << 10;
4728 image |= sig;
4730 else
4731 image |= 0x3ff;
4732 break;
4734 case rvc_normal:
4735 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4736 whereas the intermediate representation is 0.F x 2**exp.
4737 Which means we're off by one. */
4738 if (denormal)
4739 exp = 0;
4740 else
4741 exp = REAL_EXP (r) + 15 - 1;
4742 image |= exp << 10;
4743 image |= sig;
4744 break;
4746 default:
4747 gcc_unreachable ();
4750 buf[0] = image;
4753 /* Decode half-precision floats. This routine is used both for the IEEE
4754 ARM alternative encodings. */
4755 static void
4756 decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4757 const long *buf)
4759 unsigned long image = buf[0] & 0xffff;
4760 bool sign = (image >> 15) & 1;
4761 int exp = (image >> 10) & 0x1f;
4763 memset (r, 0, sizeof (*r));
4764 image <<= HOST_BITS_PER_LONG - 11;
4765 image &= ~SIG_MSB;
4767 if (exp == 0)
4769 if (image && fmt->has_denorm)
4771 r->cl = rvc_normal;
4772 r->sign = sign;
4773 SET_REAL_EXP (r, -14);
4774 r->sig[SIGSZ-1] = image << 1;
4775 normalize (r);
4777 else if (fmt->has_signed_zero)
4778 r->sign = sign;
4780 else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4782 if (image)
4784 r->cl = rvc_nan;
4785 r->sign = sign;
4786 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4787 ^ fmt->qnan_msb_set);
4788 r->sig[SIGSZ-1] = image;
4790 else
4792 r->cl = rvc_inf;
4793 r->sign = sign;
4796 else
4798 r->cl = rvc_normal;
4799 r->sign = sign;
4800 SET_REAL_EXP (r, exp - 15 + 1);
4801 r->sig[SIGSZ-1] = image | SIG_MSB;
4805 /* Encode arm_bfloat types. */
4806 static void
4807 encode_arm_bfloat_half (const struct real_format *fmt, long *buf,
4808 const REAL_VALUE_TYPE *r)
4810 unsigned long image, sig, exp;
4811 unsigned long sign = r->sign;
4812 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
4814 image = sign << 15;
4815 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 8)) & 0x7f;
4817 switch (r->cl)
4819 case rvc_zero:
4820 break;
4822 case rvc_inf:
4823 if (fmt->has_inf)
4824 image |= 255 << 7;
4825 else
4826 image |= 0x7fff;
4827 break;
4829 case rvc_nan:
4830 if (fmt->has_nans)
4832 if (r->canonical)
4833 sig = (fmt->canonical_nan_lsbs_set ? (1 << 6) - 1 : 0);
4834 if (r->signalling == fmt->qnan_msb_set)
4835 sig &= ~(1 << 6);
4836 else
4837 sig |= 1 << 6;
4838 if (sig == 0)
4839 sig = 1 << 5;
4841 image |= 255 << 7;
4842 image |= sig;
4844 else
4845 image |= 0x7fff;
4846 break;
4848 case rvc_normal:
4849 if (denormal)
4850 exp = 0;
4851 else
4852 exp = REAL_EXP (r) + 127 - 1;
4853 image |= exp << 7;
4854 image |= sig;
4855 break;
4857 default:
4858 gcc_unreachable ();
4861 buf[0] = image;
4864 /* Decode arm_bfloat types. */
4865 static void
4866 decode_arm_bfloat_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4867 const long *buf)
4869 unsigned long image = buf[0] & 0xffff;
4870 bool sign = (image >> 15) & 1;
4871 int exp = (image >> 7) & 0xff;
4873 memset (r, 0, sizeof (*r));
4874 image <<= HOST_BITS_PER_LONG - 8;
4875 image &= ~SIG_MSB;
4877 if (exp == 0)
4879 if (image && fmt->has_denorm)
4881 r->cl = rvc_normal;
4882 r->sign = sign;
4883 SET_REAL_EXP (r, -126);
4884 r->sig[SIGSZ-1] = image << 1;
4885 normalize (r);
4887 else if (fmt->has_signed_zero)
4888 r->sign = sign;
4890 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
4892 if (image)
4894 r->cl = rvc_nan;
4895 r->sign = sign;
4896 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4897 ^ fmt->qnan_msb_set);
4898 r->sig[SIGSZ-1] = image;
4900 else
4902 r->cl = rvc_inf;
4903 r->sign = sign;
4906 else
4908 r->cl = rvc_normal;
4909 r->sign = sign;
4910 SET_REAL_EXP (r, exp - 127 + 1);
4911 r->sig[SIGSZ-1] = image | SIG_MSB;
4915 /* Half-precision format, as specified in IEEE 754R. */
4916 const struct real_format ieee_half_format =
4918 encode_ieee_half,
4919 decode_ieee_half,
4923 -13,
4928 false,
4929 true,
4930 true,
4931 true,
4932 true,
4933 true,
4934 true,
4935 false,
4936 "ieee_half"
4939 /* ARM's alternative half-precision format, similar to IEEE but with
4940 no reserved exponent value for NaNs and infinities; rather, it just
4941 extends the range of exponents by one. */
4942 const struct real_format arm_half_format =
4944 encode_ieee_half,
4945 decode_ieee_half,
4949 -13,
4954 false,
4955 true,
4956 false,
4957 false,
4958 true,
4959 true,
4960 false,
4961 false,
4962 "arm_half"
4965 /* ARM Bfloat half-precision format. This format resembles a truncated
4966 (16-bit) version of the 32-bit IEEE 754 single-precision floating-point
4967 format. */
4968 const struct real_format arm_bfloat_half_format =
4970 encode_arm_bfloat_half,
4971 decode_arm_bfloat_half,
4975 -125,
4976 128,
4980 false,
4981 true,
4982 true,
4983 true,
4984 true,
4985 true,
4986 true,
4987 false,
4988 "arm_bfloat_half"
4992 /* A synthetic "format" for internal arithmetic. It's the size of the
4993 internal significand minus the two bits needed for proper rounding.
4994 The encode and decode routines exist only to satisfy our paranoia
4995 harness. */
4997 static void encode_internal (const struct real_format *fmt,
4998 long *, const REAL_VALUE_TYPE *);
4999 static void decode_internal (const struct real_format *,
5000 REAL_VALUE_TYPE *, const long *);
5002 static void
5003 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
5004 const REAL_VALUE_TYPE *r)
5006 memcpy (buf, r, sizeof (*r));
5009 static void
5010 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
5011 REAL_VALUE_TYPE *r, const long *buf)
5013 memcpy (r, buf, sizeof (*r));
5016 const struct real_format real_internal_format =
5018 encode_internal,
5019 decode_internal,
5021 SIGNIFICAND_BITS - 2,
5022 SIGNIFICAND_BITS - 2,
5023 -MAX_EXP,
5024 MAX_EXP,
5028 false,
5029 false,
5030 true,
5031 true,
5032 false,
5033 true,
5034 true,
5035 false,
5036 "real_internal"
5039 /* Calculate X raised to the integer exponent N in format FMT and store
5040 the result in R. Return true if the result may be inexact due to
5041 loss of precision. The algorithm is the classic "left-to-right binary
5042 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
5043 Algorithms", "The Art of Computer Programming", Volume 2. */
5045 bool
5046 real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
5047 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
5049 unsigned HOST_WIDE_INT bit;
5050 REAL_VALUE_TYPE t;
5051 bool inexact = false;
5052 bool init = false;
5053 bool neg;
5054 int i;
5056 if (n == 0)
5058 *r = dconst1;
5059 return false;
5061 else if (n < 0)
5063 /* Don't worry about overflow, from now on n is unsigned. */
5064 neg = true;
5065 n = -n;
5067 else
5068 neg = false;
5070 t = *x;
5071 bit = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
5072 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
5074 if (init)
5076 inexact |= do_multiply (&t, &t, &t);
5077 if (n & bit)
5078 inexact |= do_multiply (&t, &t, x);
5080 else if (n & bit)
5081 init = true;
5082 bit >>= 1;
5085 if (neg)
5086 inexact |= do_divide (&t, &dconst1, &t);
5088 real_convert (r, fmt, &t);
5089 return inexact;
5092 /* Round X to the nearest integer not larger in absolute value, i.e.
5093 towards zero, placing the result in R in format FMT. */
5095 void
5096 real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
5097 const REAL_VALUE_TYPE *x)
5099 do_fix_trunc (r, x);
5100 if (fmt)
5101 real_convert (r, fmt, r);
5104 /* Round X to the largest integer not greater in value, i.e. round
5105 down, placing the result in R in format FMT. */
5107 void
5108 real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
5109 const REAL_VALUE_TYPE *x)
5111 REAL_VALUE_TYPE t;
5113 do_fix_trunc (&t, x);
5114 if (! real_identical (&t, x) && x->sign)
5115 do_add (&t, &t, &dconstm1, 0);
5116 if (fmt)
5117 real_convert (r, fmt, &t);
5118 else
5119 *r = t;
5122 /* Round X to the smallest integer not less then argument, i.e. round
5123 up, placing the result in R in format FMT. */
5125 void
5126 real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
5127 const REAL_VALUE_TYPE *x)
5129 REAL_VALUE_TYPE t;
5131 do_fix_trunc (&t, x);
5132 if (! real_identical (&t, x) && ! x->sign)
5133 do_add (&t, &t, &dconst1, 0);
5134 if (fmt)
5135 real_convert (r, fmt, &t);
5136 else
5137 *r = t;
5140 /* Round X to the nearest integer, but round halfway cases away from
5141 zero. */
5143 void
5144 real_round (REAL_VALUE_TYPE *r, format_helper fmt,
5145 const REAL_VALUE_TYPE *x)
5147 do_add (r, x, &dconsthalf, x->sign);
5148 do_fix_trunc (r, r);
5149 if (fmt)
5150 real_convert (r, fmt, r);
5153 /* Return true (including 0) if integer part of R is even, else return
5154 false. The function is not valid for rvc_inf and rvc_nan classes. */
5156 static bool
5157 is_even (REAL_VALUE_TYPE *r)
5159 gcc_assert (r->cl != rvc_inf);
5160 gcc_assert (r->cl != rvc_nan);
5162 if (r->cl == rvc_zero)
5163 return true;
5165 /* For (-1,1), number is even. */
5166 if (REAL_EXP (r) <= 0)
5167 return true;
5169 /* Check lowest bit, if not set, return true. */
5170 else if (REAL_EXP (r) <= SIGNIFICAND_BITS)
5172 unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r);
5173 int w = n / HOST_BITS_PER_LONG;
5175 unsigned long num = ((unsigned long)1 << (n % HOST_BITS_PER_LONG));
5177 if ((r->sig[w] & num) == 0)
5178 return true;
5180 else
5181 return true;
5183 return false;
5186 /* Return true if R is halfway between two integers, else return
5187 false. */
5189 static bool
5190 is_halfway_below (const REAL_VALUE_TYPE *r)
5192 if (r->cl != rvc_normal)
5193 return false;
5195 /* For numbers (-0.5,0) and (0,0.5). */
5196 if (REAL_EXP (r) < 0)
5197 return false;
5199 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
5201 unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r) - 1;
5202 int w = n / HOST_BITS_PER_LONG;
5204 for (int i = 0; i < w; ++i)
5205 if (r->sig[i] != 0)
5206 return false;
5208 unsigned long num = 1UL << (n % HOST_BITS_PER_LONG);
5210 if ((r->sig[w] & num) != 0 && (r->sig[w] & (num - 1)) == 0)
5211 return true;
5213 return false;
5216 /* Round X to nearest integer, rounding halfway cases towards even. */
5218 void
5219 real_roundeven (REAL_VALUE_TYPE *r, format_helper fmt,
5220 const REAL_VALUE_TYPE *x)
5222 if (is_halfway_below (x))
5224 /* Special case as -0.5 rounds to -0.0 and
5225 similarly +0.5 rounds to +0.0. */
5226 if (REAL_EXP (x) == 0)
5228 *r = *x;
5229 clear_significand_below (r, SIGNIFICAND_BITS);
5231 else
5233 do_add (r, x, &dconsthalf, x->sign);
5234 if (!is_even (r))
5235 do_add (r, r, &dconstm1, x->sign);
5237 if (fmt)
5238 real_convert (r, fmt, r);
5240 else
5241 real_round (r, fmt, x);
5244 /* Set the sign of R to the sign of X. */
5246 void
5247 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
5249 r->sign = x->sign;
5252 /* Check whether the real constant value given is an integer.
5253 Returns false for signaling NaN. */
5255 bool
5256 real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
5258 REAL_VALUE_TYPE cint;
5260 real_trunc (&cint, fmt, c);
5261 return real_identical (c, &cint);
5264 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
5265 storing it in *INT_OUT if so. */
5267 bool
5268 real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
5270 REAL_VALUE_TYPE cint;
5272 HOST_WIDE_INT n = real_to_integer (c);
5273 real_from_integer (&cint, VOIDmode, n, SIGNED);
5274 if (real_identical (c, &cint))
5276 *int_out = n;
5277 return true;
5279 return false;
5282 /* Calculate nextafter (X, Y) or nexttoward (X, Y). Return true if
5283 underflow or overflow needs to be raised. */
5285 bool
5286 real_nextafter (REAL_VALUE_TYPE *r, format_helper fmt,
5287 const REAL_VALUE_TYPE *x, const REAL_VALUE_TYPE *y)
5289 int cmp = do_compare (x, y, 2);
5290 /* If either operand is NaN, return qNaN. */
5291 if (cmp == 2)
5293 get_canonical_qnan (r, 0);
5294 return false;
5296 /* If x == y, return y cast to target type. */
5297 if (cmp == 0)
5299 real_convert (r, fmt, y);
5300 return false;
5303 if (x->cl == rvc_zero)
5305 get_zero (r, y->sign);
5306 r->cl = rvc_normal;
5307 SET_REAL_EXP (r, fmt->emin - fmt->p + 1);
5308 r->sig[SIGSZ - 1] = SIG_MSB;
5309 return false;
5312 int np2 = SIGNIFICAND_BITS - fmt->p;
5313 /* For denormals adjust np2 correspondingly. */
5314 if (x->cl == rvc_normal && REAL_EXP (x) < fmt->emin)
5315 np2 += fmt->emin - REAL_EXP (x);
5317 REAL_VALUE_TYPE u;
5318 get_zero (r, x->sign);
5319 get_zero (&u, 0);
5320 set_significand_bit (&u, np2);
5321 r->cl = rvc_normal;
5322 SET_REAL_EXP (r, REAL_EXP (x));
5324 if (x->cl == rvc_inf)
5326 bool borrow = sub_significands (r, r, &u, 0);
5327 gcc_assert (borrow);
5328 SET_REAL_EXP (r, fmt->emax);
5330 else if (cmp == (x->sign ? 1 : -1))
5332 if (add_significands (r, x, &u))
5334 /* Overflow. Means the significand had been all ones, and
5335 is now all zeros. Need to increase the exponent, and
5336 possibly re-normalize it. */
5337 SET_REAL_EXP (r, REAL_EXP (r) + 1);
5338 if (REAL_EXP (r) > fmt->emax)
5340 get_inf (r, x->sign);
5341 return true;
5343 r->sig[SIGSZ - 1] = SIG_MSB;
5346 else
5348 if (REAL_EXP (x) > fmt->emin && x->sig[SIGSZ - 1] == SIG_MSB)
5350 int i;
5351 for (i = SIGSZ - 2; i >= 0; i--)
5352 if (x->sig[i])
5353 break;
5354 if (i < 0)
5356 /* When mantissa is 1.0, we need to subtract only
5357 half of u: nextafter (1.0, 0.0) is 1.0 - __DBL_EPSILON__ / 2
5358 rather than 1.0 - __DBL_EPSILON__. */
5359 clear_significand_bit (&u, np2);
5360 np2--;
5361 set_significand_bit (&u, np2);
5364 sub_significands (r, x, &u, 0);
5367 /* Clear out trailing garbage. */
5368 clear_significand_below (r, np2);
5369 normalize (r);
5370 if (REAL_EXP (r) <= fmt->emin - fmt->p)
5372 get_zero (r, x->sign);
5373 return true;
5375 return r->cl == rvc_zero || REAL_EXP (r) < fmt->emin;
5378 /* Write into BUF the maximum representable finite floating-point
5379 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5380 float string. LEN is the size of BUF, and the buffer must be large
5381 enough to contain the resulting string. If NORM_MAX, instead write
5382 the maximum representable finite normalized floating-point number,
5383 defined to be such that all choices of digits for that exponent are
5384 representable in the format (this only makes a difference for IBM
5385 long double). */
5387 void
5388 get_max_float (const struct real_format *fmt, char *buf, size_t len,
5389 bool norm_max)
5391 int i, n;
5392 char *p;
5393 bool is_ibm_extended = fmt->pnan < fmt->p;
5395 strcpy (buf, "0x0.");
5396 n = fmt->p;
5397 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
5398 *p++ = 'f';
5399 if (i < n)
5400 *p++ = "08ce"[n - i];
5401 sprintf (p, "p%d",
5402 (is_ibm_extended && norm_max) ? fmt->emax - 1 : fmt->emax);
5403 if (is_ibm_extended && !norm_max)
5405 /* This is an IBM extended double format made up of two IEEE
5406 doubles. The value of the long double is the sum of the
5407 values of the two parts. The most significant part is
5408 required to be the value of the long double rounded to the
5409 nearest double. Rounding means we need a slightly smaller
5410 value for LDBL_MAX. */
5411 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
5414 gcc_assert (strlen (buf) < len);
5417 /* True if all values of integral type can be represented
5418 by this floating-point type exactly. */
5420 bool format_helper::can_represent_integral_type_p (tree type) const
5422 gcc_assert (! decimal_p () && INTEGRAL_TYPE_P (type));
5424 /* INT?_MIN is power-of-two so it takes
5425 only one mantissa bit. */
5426 bool signed_p = TYPE_SIGN (type) == SIGNED;
5427 return TYPE_PRECISION (type) - signed_p <= significand_size (*this);
5430 /* True if mode M has a NaN representation and
5431 the treatment of NaN operands is important. */
5433 bool
5434 HONOR_NANS (machine_mode m)
5436 return MODE_HAS_NANS (m) && !flag_finite_math_only;
5439 bool
5440 HONOR_NANS (const_tree t)
5442 return HONOR_NANS (element_mode (t));
5445 bool
5446 HONOR_NANS (const_rtx x)
5448 return HONOR_NANS (GET_MODE (x));
5451 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5453 bool
5454 HONOR_SNANS (machine_mode m)
5456 return flag_signaling_nans && HONOR_NANS (m);
5459 bool
5460 HONOR_SNANS (const_tree t)
5462 return HONOR_SNANS (element_mode (t));
5465 bool
5466 HONOR_SNANS (const_rtx x)
5468 return HONOR_SNANS (GET_MODE (x));
5471 /* As for HONOR_NANS, but true if the mode can represent infinity and
5472 the treatment of infinite values is important. */
5474 bool
5475 HONOR_INFINITIES (machine_mode m)
5477 return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
5480 bool
5481 HONOR_INFINITIES (const_tree t)
5483 return HONOR_INFINITIES (element_mode (t));
5486 bool
5487 HONOR_INFINITIES (const_rtx x)
5489 return HONOR_INFINITIES (GET_MODE (x));
5492 /* Like HONOR_NANS, but true if the given mode distinguishes between
5493 positive and negative zero, and the sign of zero is important. */
5495 bool
5496 HONOR_SIGNED_ZEROS (machine_mode m)
5498 return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
5501 bool
5502 HONOR_SIGNED_ZEROS (const_tree t)
5504 return HONOR_SIGNED_ZEROS (element_mode (t));
5507 bool
5508 HONOR_SIGNED_ZEROS (const_rtx x)
5510 return HONOR_SIGNED_ZEROS (GET_MODE (x));
5513 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5514 and the rounding mode is important. */
5516 bool
5517 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
5519 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
5522 bool
5523 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
5525 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
5528 bool
5529 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
5531 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));
5534 /* Fills r with the largest value such that 1 + r*r won't overflow.
5535 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
5537 void
5538 build_sinatan_real (REAL_VALUE_TYPE * r, tree type)
5540 REAL_VALUE_TYPE maxval;
5541 mpfr_t mpfr_const1, mpfr_c, mpfr_maxval;
5542 machine_mode mode = TYPE_MODE (type);
5543 const struct real_format * fmt = REAL_MODE_FORMAT (mode);
5545 real_maxval (&maxval, 0, mode);
5547 mpfr_inits (mpfr_const1, mpfr_c, mpfr_maxval, NULL);
5549 mpfr_from_real (mpfr_const1, &dconst1, MPFR_RNDN);
5550 mpfr_from_real (mpfr_maxval, &maxval, MPFR_RNDN);
5552 mpfr_sub (mpfr_c, mpfr_maxval, mpfr_const1, MPFR_RNDN);
5553 mpfr_sqrt (mpfr_c, mpfr_c, MPFR_RNDZ);
5555 real_from_mpfr (r, mpfr_c, fmt, MPFR_RNDZ);
5557 mpfr_clears (mpfr_const1, mpfr_c, mpfr_maxval, NULL);