Improve costs for DImode shifts of interger constants.
[official-gcc.git] / gcc / lra.c
blobcaa09d86ca6022cd285ed1a42082e89c6b8f77c5
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2020 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "memmodel.h"
113 #include "tm_p.h"
114 #include "optabs.h"
115 #include "regs.h"
116 #include "ira.h"
117 #include "recog.h"
118 #include "expr.h"
119 #include "cfgrtl.h"
120 #include "cfgbuild.h"
121 #include "lra.h"
122 #include "lra-int.h"
123 #include "print-rtl.h"
124 #include "function-abi.h"
126 /* Dump bitmap SET with TITLE and BB INDEX. */
127 void
128 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
130 unsigned int i;
131 int count;
132 bitmap_iterator bi;
133 static const int max_nums_on_line = 10;
135 if (bitmap_empty_p (set))
136 return;
137 fprintf (lra_dump_file, " %s %d:", title, index);
138 fprintf (lra_dump_file, "\n");
139 count = max_nums_on_line + 1;
140 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
142 if (count > max_nums_on_line)
144 fprintf (lra_dump_file, "\n ");
145 count = 0;
147 fprintf (lra_dump_file, " %4u", i);
148 count++;
150 fprintf (lra_dump_file, "\n");
153 /* Hard registers currently not available for allocation. It can
154 changed after some hard registers become not eliminable. */
155 HARD_REG_SET lra_no_alloc_regs;
157 static int get_new_reg_value (void);
158 static void expand_reg_info (void);
159 static void invalidate_insn_recog_data (int);
160 static int get_insn_freq (rtx_insn *);
161 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
162 rtx_insn *, int);
163 static void remove_scratches_1 (rtx_insn *);
165 /* Expand all regno related info needed for LRA. */
166 static void
167 expand_reg_data (int old)
169 resize_reg_info ();
170 expand_reg_info ();
171 ira_expand_reg_equiv ();
172 for (int i = (int) max_reg_num () - 1; i >= old; i--)
173 lra_change_class (i, ALL_REGS, " Set", true);
176 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
177 or of VOIDmode, use MD_MODE for the new reg. Initialize its
178 register class to RCLASS. Print message about assigning class
179 RCLASS containing new register name TITLE unless it is NULL. Use
180 attributes of ORIGINAL if it is a register. The created register
181 will have unique held value. */
183 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
184 enum reg_class rclass, const char *title)
186 machine_mode mode;
187 rtx new_reg;
189 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
190 mode = md_mode;
191 lra_assert (mode != VOIDmode);
192 new_reg = gen_reg_rtx (mode);
193 if (original == NULL_RTX || ! REG_P (original))
195 if (lra_dump_file != NULL)
196 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
198 else
200 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
201 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
202 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
203 REG_POINTER (new_reg) = REG_POINTER (original);
204 REG_ATTRS (new_reg) = REG_ATTRS (original);
205 if (lra_dump_file != NULL)
206 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
207 REGNO (new_reg), REGNO (original));
209 if (lra_dump_file != NULL)
211 if (title != NULL)
212 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
213 reg_class_names[rclass], *title == '\0' ? "" : " ",
214 title, REGNO (new_reg));
215 fprintf (lra_dump_file, "\n");
217 expand_reg_data (max_reg_num ());
218 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
219 return new_reg;
222 /* Analogous to the previous function but also inherits value of
223 ORIGINAL. */
225 lra_create_new_reg (machine_mode md_mode, rtx original,
226 enum reg_class rclass, const char *title)
228 rtx new_reg;
230 new_reg
231 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
232 if (original != NULL_RTX && REG_P (original))
233 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
234 return new_reg;
237 /* Set up for REGNO unique hold value. */
238 void
239 lra_set_regno_unique_value (int regno)
241 lra_reg_info[regno].val = get_new_reg_value ();
244 /* Invalidate INSN related info used by LRA. The info should never be
245 used after that. */
246 void
247 lra_invalidate_insn_data (rtx_insn *insn)
249 lra_invalidate_insn_regno_info (insn);
250 invalidate_insn_recog_data (INSN_UID (insn));
253 /* Mark INSN deleted and invalidate the insn related info used by
254 LRA. */
255 void
256 lra_set_insn_deleted (rtx_insn *insn)
258 lra_invalidate_insn_data (insn);
259 SET_INSN_DELETED (insn);
262 /* Delete an unneeded INSN and any previous insns who sole purpose is
263 loading data that is dead in INSN. */
264 void
265 lra_delete_dead_insn (rtx_insn *insn)
267 rtx_insn *prev = prev_real_insn (insn);
268 rtx prev_dest;
270 /* If the previous insn sets a register that dies in our insn,
271 delete it too. */
272 if (prev && GET_CODE (PATTERN (prev)) == SET
273 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
274 && reg_mentioned_p (prev_dest, PATTERN (insn))
275 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
276 && ! side_effects_p (SET_SRC (PATTERN (prev))))
277 lra_delete_dead_insn (prev);
279 lra_set_insn_deleted (insn);
282 /* Emit insn x = y + z. Return NULL if we failed to do it.
283 Otherwise, return the insn. We don't use gen_add3_insn as it might
284 clobber CC. */
285 static rtx_insn *
286 emit_add3_insn (rtx x, rtx y, rtx z)
288 rtx_insn *last;
290 last = get_last_insn ();
292 if (have_addptr3_insn (x, y, z))
294 rtx_insn *insn = gen_addptr3_insn (x, y, z);
296 /* If the target provides an "addptr" pattern it hopefully does
297 for a reason. So falling back to the normal add would be
298 a bug. */
299 lra_assert (insn != NULL_RTX);
300 emit_insn (insn);
301 return insn;
304 rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
305 y, z)));
306 if (recog_memoized (insn) < 0)
308 delete_insns_since (last);
309 insn = NULL;
311 return insn;
314 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
315 last resort. */
316 static rtx_insn *
317 emit_add2_insn (rtx x, rtx y)
319 rtx_insn *insn = emit_add3_insn (x, x, y);
320 if (insn == NULL_RTX)
322 insn = gen_add2_insn (x, y);
323 if (insn != NULL_RTX)
324 emit_insn (insn);
326 return insn;
329 /* Target checks operands through operand predicates to recognize an
330 insn. We should have a special precaution to generate add insns
331 which are frequent results of elimination.
333 Emit insns for x = y + z. X can be used to store intermediate
334 values and should be not in Y and Z when we use X to store an
335 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
336 + disp] where base and index are registers, disp and scale are
337 constants. Y should contain base if it is present, Z should
338 contain disp if any. index[*scale] can be part of Y or Z. */
339 void
340 lra_emit_add (rtx x, rtx y, rtx z)
342 int old;
343 rtx_insn *last;
344 rtx a1, a2, base, index, disp, scale, index_scale;
345 bool ok_p;
347 rtx_insn *add3_insn = emit_add3_insn (x, y, z);
348 old = max_reg_num ();
349 if (add3_insn != NULL)
351 else
353 disp = a2 = NULL_RTX;
354 if (GET_CODE (y) == PLUS)
356 a1 = XEXP (y, 0);
357 a2 = XEXP (y, 1);
358 disp = z;
360 else
362 a1 = y;
363 if (CONSTANT_P (z))
364 disp = z;
365 else
366 a2 = z;
368 index_scale = scale = NULL_RTX;
369 if (GET_CODE (a1) == MULT)
371 index_scale = a1;
372 index = XEXP (a1, 0);
373 scale = XEXP (a1, 1);
374 base = a2;
376 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
378 index_scale = a2;
379 index = XEXP (a2, 0);
380 scale = XEXP (a2, 1);
381 base = a1;
383 else
385 base = a1;
386 index = a2;
388 if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
389 || (index != NULL_RTX
390 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
391 || (disp != NULL_RTX && ! CONSTANT_P (disp))
392 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
394 /* Probably we have no 3 op add. Last chance is to use 2-op
395 add insn. To succeed, don't move Z to X as an address
396 segment always comes in Y. Otherwise, we might fail when
397 adding the address segment to register. */
398 lra_assert (x != y && x != z);
399 emit_move_insn (x, y);
400 rtx_insn *insn = emit_add2_insn (x, z);
401 lra_assert (insn != NULL_RTX);
403 else
405 if (index_scale == NULL_RTX)
406 index_scale = index;
407 if (disp == NULL_RTX)
409 /* Generate x = index_scale; x = x + base. */
410 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
411 emit_move_insn (x, index_scale);
412 rtx_insn *insn = emit_add2_insn (x, base);
413 lra_assert (insn != NULL_RTX);
415 else if (scale == NULL_RTX)
417 /* Try x = base + disp. */
418 lra_assert (base != NULL_RTX);
419 last = get_last_insn ();
420 rtx_insn *move_insn =
421 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
422 if (recog_memoized (move_insn) < 0)
424 delete_insns_since (last);
425 /* Generate x = disp; x = x + base. */
426 emit_move_insn (x, disp);
427 rtx_insn *add2_insn = emit_add2_insn (x, base);
428 lra_assert (add2_insn != NULL_RTX);
430 /* Generate x = x + index. */
431 if (index != NULL_RTX)
433 rtx_insn *insn = emit_add2_insn (x, index);
434 lra_assert (insn != NULL_RTX);
437 else
439 /* Try x = index_scale; x = x + disp; x = x + base. */
440 last = get_last_insn ();
441 rtx_insn *move_insn = emit_move_insn (x, index_scale);
442 ok_p = false;
443 if (recog_memoized (move_insn) >= 0)
445 rtx_insn *insn = emit_add2_insn (x, disp);
446 if (insn != NULL_RTX)
448 if (base == NULL_RTX)
449 ok_p = true;
450 else
452 insn = emit_add2_insn (x, base);
453 if (insn != NULL_RTX)
454 ok_p = true;
458 if (! ok_p)
460 rtx_insn *insn;
462 delete_insns_since (last);
463 /* Generate x = disp; x = x + base; x = x + index_scale. */
464 emit_move_insn (x, disp);
465 if (base != NULL_RTX)
467 insn = emit_add2_insn (x, base);
468 lra_assert (insn != NULL_RTX);
470 insn = emit_add2_insn (x, index_scale);
471 lra_assert (insn != NULL_RTX);
476 /* Functions emit_... can create pseudos -- so expand the pseudo
477 data. */
478 if (old != max_reg_num ())
479 expand_reg_data (old);
482 /* The number of emitted reload insns so far. */
483 int lra_curr_reload_num;
485 /* Emit x := y, processing special case when y = u + v or y = u + v *
486 scale + w through emit_add (Y can be an address which is base +
487 index reg * scale + displacement in general case). X may be used
488 as intermediate result therefore it should be not in Y. */
489 void
490 lra_emit_move (rtx x, rtx y)
492 int old;
493 rtx_insn *insn;
495 if (GET_CODE (y) != PLUS)
497 if (rtx_equal_p (x, y))
498 return;
499 old = max_reg_num ();
501 insn = (GET_CODE (x) != STRICT_LOW_PART
502 ? emit_move_insn (x, y) : emit_insn (gen_rtx_SET (x, y)));
503 /* The move pattern may require scratch registers, so convert them
504 into real registers now. */
505 if (insn != NULL_RTX)
506 remove_scratches_1 (insn);
507 if (REG_P (x))
508 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
509 /* Function emit_move can create pseudos -- so expand the pseudo
510 data. */
511 if (old != max_reg_num ())
512 expand_reg_data (old);
513 return;
515 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
518 /* Update insn operands which are duplication of operands whose
519 numbers are in array of NOPS (with end marker -1). The insn is
520 represented by its LRA internal representation ID. */
521 void
522 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
524 int i, j, nop;
525 struct lra_static_insn_data *static_id = id->insn_static_data;
527 for (i = 0; i < static_id->n_dups; i++)
528 for (j = 0; (nop = nops[j]) >= 0; j++)
529 if (static_id->dup_num[i] == nop)
530 *id->dup_loc[i] = *id->operand_loc[nop];
535 /* This page contains code dealing with info about registers in the
536 insns. */
538 /* Pools for insn reg info. */
539 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
541 /* Create LRA insn related info about a reference to REGNO in INSN
542 with TYPE (in/out/inout), biggest reference mode MODE, flag that it
543 is reference through subreg (SUBREG_P), and reference to the next
544 insn reg info (NEXT). If REGNO can be early clobbered,
545 alternatives in which it can be early clobbered are given by
546 EARLY_CLOBBER_ALTS. */
547 static struct lra_insn_reg *
548 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
549 machine_mode mode, bool subreg_p,
550 alternative_mask early_clobber_alts,
551 struct lra_insn_reg *next)
553 lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
554 ir->type = type;
555 ir->biggest_mode = mode;
556 if (NONDEBUG_INSN_P (insn)
557 && partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
558 lra_reg_info[regno].biggest_mode = mode;
559 ir->subreg_p = subreg_p;
560 ir->early_clobber_alts = early_clobber_alts;
561 ir->regno = regno;
562 ir->next = next;
563 return ir;
566 /* Free insn reg info list IR. */
567 static void
568 free_insn_regs (struct lra_insn_reg *ir)
570 struct lra_insn_reg *next_ir;
572 for (; ir != NULL; ir = next_ir)
574 next_ir = ir->next;
575 lra_insn_reg_pool.remove (ir);
579 /* Finish pool for insn reg info. */
580 static void
581 finish_insn_regs (void)
583 lra_insn_reg_pool.release ();
588 /* This page contains code dealing LRA insn info (or in other words
589 LRA internal insn representation). */
591 /* Map INSN_CODE -> the static insn data. This info is valid during
592 all translation unit. */
593 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
595 /* Debug insns are represented as a special insn with one input
596 operand which is RTL expression in var_location. */
598 /* The following data are used as static insn operand data for all
599 debug insns. If structure lra_operand_data is changed, the
600 initializer should be changed too. */
601 static struct lra_operand_data debug_operand_data =
603 NULL, /* alternative */
604 0, /* early_clobber_alts */
605 E_VOIDmode, /* We are not interesting in the operand mode. */
606 OP_IN,
607 0, 0, 0
610 /* The following data are used as static insn data for all debug
611 bind insns. If structure lra_static_insn_data is changed, the
612 initializer should be changed too. */
613 static struct lra_static_insn_data debug_bind_static_data =
615 &debug_operand_data,
616 0, /* Duplication operands #. */
617 -1, /* Commutative operand #. */
618 1, /* Operands #. There is only one operand which is debug RTL
619 expression. */
620 0, /* Duplications #. */
621 0, /* Alternatives #. We are not interesting in alternatives
622 because we does not proceed debug_insns for reloads. */
623 NULL, /* Hard registers referenced in machine description. */
624 NULL /* Descriptions of operands in alternatives. */
627 /* The following data are used as static insn data for all debug
628 marker insns. If structure lra_static_insn_data is changed, the
629 initializer should be changed too. */
630 static struct lra_static_insn_data debug_marker_static_data =
632 &debug_operand_data,
633 0, /* Duplication operands #. */
634 -1, /* Commutative operand #. */
635 0, /* Operands #. There isn't any operand. */
636 0, /* Duplications #. */
637 0, /* Alternatives #. We are not interesting in alternatives
638 because we does not proceed debug_insns for reloads. */
639 NULL, /* Hard registers referenced in machine description. */
640 NULL /* Descriptions of operands in alternatives. */
643 /* Called once per compiler work to initialize some LRA data related
644 to insns. */
645 static void
646 init_insn_code_data_once (void)
648 memset (insn_code_data, 0, sizeof (insn_code_data));
651 /* Called once per compiler work to finalize some LRA data related to
652 insns. */
653 static void
654 finish_insn_code_data_once (void)
656 for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
658 if (insn_code_data[i] != NULL)
660 free (insn_code_data[i]);
661 insn_code_data[i] = NULL;
666 /* Return static insn data, allocate and setup if necessary. Although
667 dup_num is static data (it depends only on icode), to set it up we
668 need to extract insn first. So recog_data should be valid for
669 normal insn (ICODE >= 0) before the call. */
670 static struct lra_static_insn_data *
671 get_static_insn_data (int icode, int nop, int ndup, int nalt)
673 struct lra_static_insn_data *data;
674 size_t n_bytes;
676 lra_assert (icode < (int) NUM_INSN_CODES);
677 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
678 return data;
679 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
680 n_bytes = sizeof (struct lra_static_insn_data)
681 + sizeof (struct lra_operand_data) * nop
682 + sizeof (int) * ndup;
683 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
684 data->operand_alternative = NULL;
685 data->n_operands = nop;
686 data->n_dups = ndup;
687 data->n_alternatives = nalt;
688 data->operand = ((struct lra_operand_data *)
689 ((char *) data + sizeof (struct lra_static_insn_data)));
690 data->dup_num = ((int *) ((char *) data->operand
691 + sizeof (struct lra_operand_data) * nop));
692 if (icode >= 0)
694 int i;
696 insn_code_data[icode] = data;
697 for (i = 0; i < nop; i++)
699 data->operand[i].constraint
700 = insn_data[icode].operand[i].constraint;
701 data->operand[i].mode = insn_data[icode].operand[i].mode;
702 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
703 data->operand[i].is_operator
704 = insn_data[icode].operand[i].is_operator;
705 data->operand[i].type
706 = (data->operand[i].constraint[0] == '=' ? OP_OUT
707 : data->operand[i].constraint[0] == '+' ? OP_INOUT
708 : OP_IN);
709 data->operand[i].is_address = false;
711 for (i = 0; i < ndup; i++)
712 data->dup_num[i] = recog_data.dup_num[i];
714 return data;
717 /* The current length of the following array. */
718 int lra_insn_recog_data_len;
720 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
721 lra_insn_recog_data_t *lra_insn_recog_data;
723 /* Alloc pool we allocate entries for lra_insn_recog_data from. */
724 static object_allocator<class lra_insn_recog_data>
725 lra_insn_recog_data_pool ("insn recog data pool");
727 /* Initialize LRA data about insns. */
728 static void
729 init_insn_recog_data (void)
731 lra_insn_recog_data_len = 0;
732 lra_insn_recog_data = NULL;
735 /* Expand, if necessary, LRA data about insns. */
736 static void
737 check_and_expand_insn_recog_data (int index)
739 int i, old;
741 if (lra_insn_recog_data_len > index)
742 return;
743 old = lra_insn_recog_data_len;
744 lra_insn_recog_data_len = index * 3 / 2 + 1;
745 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
746 lra_insn_recog_data,
747 lra_insn_recog_data_len);
748 for (i = old; i < lra_insn_recog_data_len; i++)
749 lra_insn_recog_data[i] = NULL;
752 /* Finish LRA DATA about insn. */
753 static void
754 free_insn_recog_data (lra_insn_recog_data_t data)
756 if (data->operand_loc != NULL)
757 free (data->operand_loc);
758 if (data->dup_loc != NULL)
759 free (data->dup_loc);
760 if (data->arg_hard_regs != NULL)
761 free (data->arg_hard_regs);
762 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
764 if (data->insn_static_data->operand_alternative != NULL)
765 free (const_cast <operand_alternative *>
766 (data->insn_static_data->operand_alternative));
767 free_insn_regs (data->insn_static_data->hard_regs);
768 free (data->insn_static_data);
770 free_insn_regs (data->regs);
771 data->regs = NULL;
772 lra_insn_recog_data_pool.remove (data);
775 /* Pools for copies. */
776 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
778 /* Finish LRA data about all insns. */
779 static void
780 finish_insn_recog_data (void)
782 int i;
783 lra_insn_recog_data_t data;
785 for (i = 0; i < lra_insn_recog_data_len; i++)
786 if ((data = lra_insn_recog_data[i]) != NULL)
787 free_insn_recog_data (data);
788 finish_insn_regs ();
789 lra_copy_pool.release ();
790 lra_insn_reg_pool.release ();
791 lra_insn_recog_data_pool.release ();
792 free (lra_insn_recog_data);
795 /* Setup info about operands in alternatives of LRA DATA of insn. */
796 static void
797 setup_operand_alternative (lra_insn_recog_data_t data,
798 const operand_alternative *op_alt)
800 int i, j, nop, nalt;
801 int icode = data->icode;
802 struct lra_static_insn_data *static_data = data->insn_static_data;
804 static_data->commutative = -1;
805 nop = static_data->n_operands;
806 nalt = static_data->n_alternatives;
807 static_data->operand_alternative = op_alt;
808 for (i = 0; i < nop; i++)
810 static_data->operand[i].early_clobber_alts = 0;
811 static_data->operand[i].is_address = false;
812 if (static_data->operand[i].constraint[0] == '%')
814 /* We currently only support one commutative pair of operands. */
815 if (static_data->commutative < 0)
816 static_data->commutative = i;
817 else
818 lra_assert (icode < 0); /* Asm */
819 /* The last operand should not be marked commutative. */
820 lra_assert (i != nop - 1);
823 for (j = 0; j < nalt; j++)
824 for (i = 0; i < nop; i++, op_alt++)
826 if (op_alt->earlyclobber)
827 static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
828 static_data->operand[i].is_address |= op_alt->is_address;
832 /* Recursively process X and collect info about registers, which are
833 not the insn operands, in X with TYPE (in/out/inout) and flag that
834 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
835 to LIST. X is a part of insn given by DATA. Return the result
836 list. */
837 static struct lra_insn_reg *
838 collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
839 lra_insn_recog_data_t data,
840 struct lra_insn_reg *list,
841 enum op_type type, bool early_clobber)
843 int i, j, regno, last;
844 bool subreg_p;
845 machine_mode mode;
846 struct lra_insn_reg *curr;
847 rtx op = *x;
848 enum rtx_code code = GET_CODE (op);
849 const char *fmt = GET_RTX_FORMAT (code);
851 for (i = 0; i < data->insn_static_data->n_operands; i++)
852 if (! data->insn_static_data->operand[i].is_operator
853 && x == data->operand_loc[i])
854 /* It is an operand loc. Stop here. */
855 return list;
856 for (i = 0; i < data->insn_static_data->n_dups; i++)
857 if (x == data->dup_loc[i])
858 /* It is a dup loc. Stop here. */
859 return list;
860 mode = GET_MODE (op);
861 subreg_p = false;
862 if (code == SUBREG)
864 mode = wider_subreg_mode (op);
865 if (read_modify_subreg_p (op))
866 subreg_p = true;
867 op = SUBREG_REG (op);
868 code = GET_CODE (op);
870 if (REG_P (op))
872 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
873 return list;
874 /* Process all regs even unallocatable ones as we need info
875 about all regs for rematerialization pass. */
876 for (last = end_hard_regno (mode, regno); regno < last; regno++)
878 for (curr = list; curr != NULL; curr = curr->next)
879 if (curr->regno == regno && curr->subreg_p == subreg_p
880 && curr->biggest_mode == mode)
882 if (curr->type != type)
883 curr->type = OP_INOUT;
884 if (early_clobber)
885 curr->early_clobber_alts = ALL_ALTERNATIVES;
886 break;
888 if (curr == NULL)
890 /* This is a new hard regno or the info cannot be
891 integrated into the found structure. */
892 #ifdef STACK_REGS
893 early_clobber
894 = (early_clobber
895 /* This clobber is to inform popping floating
896 point stack only. */
897 && ! (FIRST_STACK_REG <= regno
898 && regno <= LAST_STACK_REG));
899 #endif
900 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
901 early_clobber ? ALL_ALTERNATIVES : 0, list);
904 return list;
906 switch (code)
908 case SET:
909 list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
910 list, OP_OUT, false);
911 list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
912 list, OP_IN, false);
913 break;
914 case CLOBBER:
915 /* We treat clobber of non-operand hard registers as early clobber. */
916 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
917 list, OP_OUT, true);
918 break;
919 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
920 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
921 list, OP_INOUT, false);
922 break;
923 case PRE_MODIFY: case POST_MODIFY:
924 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
925 list, OP_INOUT, false);
926 list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
927 list, OP_IN, false);
928 break;
929 default:
930 fmt = GET_RTX_FORMAT (code);
931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
933 if (fmt[i] == 'e')
934 list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
935 list, OP_IN, false);
936 else if (fmt[i] == 'E')
937 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
938 list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
939 data, list, OP_IN, false);
942 return list;
945 /* Set up and return info about INSN. Set up the info if it is not set up
946 yet. */
947 lra_insn_recog_data_t
948 lra_set_insn_recog_data (rtx_insn *insn)
950 lra_insn_recog_data_t data;
951 int i, n, icode;
952 rtx **locs;
953 unsigned int uid = INSN_UID (insn);
954 struct lra_static_insn_data *insn_static_data;
956 check_and_expand_insn_recog_data (uid);
957 if (DEBUG_INSN_P (insn))
958 icode = -1;
959 else
961 icode = INSN_CODE (insn);
962 if (icode < 0)
963 /* It might be a new simple insn which is not recognized yet. */
964 INSN_CODE (insn) = icode = recog_memoized (insn);
966 data = lra_insn_recog_data_pool.allocate ();
967 lra_insn_recog_data[uid] = data;
968 data->insn = insn;
969 data->used_insn_alternative = LRA_UNKNOWN_ALT;
970 data->icode = icode;
971 data->regs = NULL;
972 if (DEBUG_INSN_P (insn))
974 data->dup_loc = NULL;
975 data->arg_hard_regs = NULL;
976 data->preferred_alternatives = ALL_ALTERNATIVES;
977 if (DEBUG_BIND_INSN_P (insn))
979 data->insn_static_data = &debug_bind_static_data;
980 data->operand_loc = XNEWVEC (rtx *, 1);
981 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
983 else if (DEBUG_MARKER_INSN_P (insn))
985 data->insn_static_data = &debug_marker_static_data;
986 data->operand_loc = NULL;
988 return data;
990 if (icode < 0)
992 int nop, nalt;
993 machine_mode operand_mode[MAX_RECOG_OPERANDS];
994 const char *constraints[MAX_RECOG_OPERANDS];
996 nop = asm_noperands (PATTERN (insn));
997 data->operand_loc = data->dup_loc = NULL;
998 nalt = 1;
999 if (nop < 0)
1001 /* It is a special insn like USE or CLOBBER. We should
1002 recognize any regular insn otherwise LRA can do nothing
1003 with this insn. */
1004 gcc_assert (GET_CODE (PATTERN (insn)) == USE
1005 || GET_CODE (PATTERN (insn)) == CLOBBER
1006 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1007 data->insn_static_data = insn_static_data
1008 = get_static_insn_data (-1, 0, 0, nalt);
1010 else
1012 /* expand_asm_operands makes sure there aren't too many
1013 operands. */
1014 lra_assert (nop <= MAX_RECOG_OPERANDS);
1015 if (nop != 0)
1016 data->operand_loc = XNEWVEC (rtx *, nop);
1017 /* Now get the operand values and constraints out of the
1018 insn. */
1019 decode_asm_operands (PATTERN (insn), NULL,
1020 data->operand_loc,
1021 constraints, operand_mode, NULL);
1022 if (nop > 0)
1023 for (const char *p =constraints[0]; *p; p++)
1024 nalt += *p == ',';
1025 data->insn_static_data = insn_static_data
1026 = get_static_insn_data (-1, nop, 0, nalt);
1027 for (i = 0; i < nop; i++)
1029 insn_static_data->operand[i].mode = operand_mode[i];
1030 insn_static_data->operand[i].constraint = constraints[i];
1031 insn_static_data->operand[i].strict_low = false;
1032 insn_static_data->operand[i].is_operator = false;
1033 insn_static_data->operand[i].is_address = false;
1036 for (i = 0; i < insn_static_data->n_operands; i++)
1037 insn_static_data->operand[i].type
1038 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1039 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1040 : OP_IN);
1041 data->preferred_alternatives = ALL_ALTERNATIVES;
1042 if (nop > 0)
1044 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1045 nalt * nop);
1046 preprocess_constraints (nop, nalt, constraints, op_alt,
1047 data->operand_loc);
1048 setup_operand_alternative (data, op_alt);
1051 else
1053 insn_extract (insn);
1054 data->insn_static_data = insn_static_data
1055 = get_static_insn_data (icode, insn_data[icode].n_operands,
1056 insn_data[icode].n_dups,
1057 insn_data[icode].n_alternatives);
1058 n = insn_static_data->n_operands;
1059 if (n == 0)
1060 locs = NULL;
1061 else
1063 locs = XNEWVEC (rtx *, n);
1064 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1066 data->operand_loc = locs;
1067 n = insn_static_data->n_dups;
1068 if (n == 0)
1069 locs = NULL;
1070 else
1072 locs = XNEWVEC (rtx *, n);
1073 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1075 data->dup_loc = locs;
1076 data->preferred_alternatives = get_preferred_alternatives (insn);
1077 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1078 if (!insn_static_data->operand_alternative)
1079 setup_operand_alternative (data, op_alt);
1080 else if (op_alt != insn_static_data->operand_alternative)
1081 insn_static_data->operand_alternative = op_alt;
1083 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1084 insn_static_data->hard_regs = NULL;
1085 else
1086 insn_static_data->hard_regs
1087 = collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
1088 NULL, OP_IN, false);
1089 data->arg_hard_regs = NULL;
1090 if (CALL_P (insn))
1092 bool use_p;
1093 rtx link;
1094 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1096 n_hard_regs = 0;
1097 /* Finding implicit hard register usage. We believe it will be
1098 not changed whatever transformations are used. Call insns
1099 are such example. */
1100 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1101 link != NULL_RTX;
1102 link = XEXP (link, 1))
1103 if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1104 || GET_CODE (XEXP (link, 0)) == CLOBBER)
1105 && REG_P (XEXP (XEXP (link, 0), 0)))
1107 regno = REGNO (XEXP (XEXP (link, 0), 0));
1108 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1109 /* It is an argument register. */
1110 for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1111 arg_hard_regs[n_hard_regs++]
1112 = regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1115 if (n_hard_regs != 0)
1117 arg_hard_regs[n_hard_regs++] = -1;
1118 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1119 memcpy (data->arg_hard_regs, arg_hard_regs,
1120 sizeof (int) * n_hard_regs);
1123 /* Some output operand can be recognized only from the context not
1124 from the constraints which are empty in this case. Call insn may
1125 contain a hard register in set destination with empty constraint
1126 and extract_insn treats them as an input. */
1127 for (i = 0; i < insn_static_data->n_operands; i++)
1129 int j;
1130 rtx pat, set;
1131 struct lra_operand_data *operand = &insn_static_data->operand[i];
1133 /* ??? Should we treat 'X' the same way. It looks to me that
1134 'X' means anything and empty constraint means we do not
1135 care. */
1136 if (operand->type != OP_IN || *operand->constraint != '\0'
1137 || operand->is_operator)
1138 continue;
1139 pat = PATTERN (insn);
1140 if (GET_CODE (pat) == SET)
1142 if (data->operand_loc[i] != &SET_DEST (pat))
1143 continue;
1145 else if (GET_CODE (pat) == PARALLEL)
1147 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1149 set = XVECEXP (PATTERN (insn), 0, j);
1150 if (GET_CODE (set) == SET
1151 && &SET_DEST (set) == data->operand_loc[i])
1152 break;
1154 if (j < 0)
1155 continue;
1157 else
1158 continue;
1159 operand->type = OP_OUT;
1161 return data;
1164 /* Return info about insn give by UID. The info should be already set
1165 up. */
1166 static lra_insn_recog_data_t
1167 get_insn_recog_data_by_uid (int uid)
1169 lra_insn_recog_data_t data;
1171 data = lra_insn_recog_data[uid];
1172 lra_assert (data != NULL);
1173 return data;
1176 /* Invalidate all info about insn given by its UID. */
1177 static void
1178 invalidate_insn_recog_data (int uid)
1180 lra_insn_recog_data_t data;
1182 data = lra_insn_recog_data[uid];
1183 lra_assert (data != NULL);
1184 free_insn_recog_data (data);
1185 lra_insn_recog_data[uid] = NULL;
1188 /* Update all the insn info about INSN. It is usually called when
1189 something in the insn was changed. Return the updated info. */
1190 lra_insn_recog_data_t
1191 lra_update_insn_recog_data (rtx_insn *insn)
1193 lra_insn_recog_data_t data;
1194 int n;
1195 unsigned int uid = INSN_UID (insn);
1196 struct lra_static_insn_data *insn_static_data;
1197 poly_int64 sp_offset = 0;
1199 check_and_expand_insn_recog_data (uid);
1200 if ((data = lra_insn_recog_data[uid]) != NULL
1201 && data->icode != INSN_CODE (insn))
1203 sp_offset = data->sp_offset;
1204 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1205 invalidate_insn_recog_data (uid);
1206 data = NULL;
1208 if (data == NULL)
1210 data = lra_get_insn_recog_data (insn);
1211 /* Initiate or restore SP offset. */
1212 data->sp_offset = sp_offset;
1213 return data;
1215 insn_static_data = data->insn_static_data;
1216 data->used_insn_alternative = LRA_UNKNOWN_ALT;
1217 if (DEBUG_INSN_P (insn))
1218 return data;
1219 if (data->icode < 0)
1221 int nop;
1222 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1223 const char *constraints[MAX_RECOG_OPERANDS];
1225 nop = asm_noperands (PATTERN (insn));
1226 if (nop >= 0)
1228 lra_assert (nop == data->insn_static_data->n_operands);
1229 /* Now get the operand values and constraints out of the
1230 insn. */
1231 decode_asm_operands (PATTERN (insn), NULL,
1232 data->operand_loc,
1233 constraints, operand_mode, NULL);
1235 if (flag_checking)
1236 for (int i = 0; i < nop; i++)
1237 lra_assert
1238 (insn_static_data->operand[i].mode == operand_mode[i]
1239 && insn_static_data->operand[i].constraint == constraints[i]
1240 && ! insn_static_data->operand[i].is_operator);
1243 if (flag_checking)
1244 for (int i = 0; i < insn_static_data->n_operands; i++)
1245 lra_assert
1246 (insn_static_data->operand[i].type
1247 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1248 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1249 : OP_IN));
1251 else
1253 insn_extract (insn);
1254 n = insn_static_data->n_operands;
1255 if (n != 0)
1256 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1257 n = insn_static_data->n_dups;
1258 if (n != 0)
1259 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1260 lra_assert (check_bool_attrs (insn));
1262 return data;
1265 /* Set up that INSN is using alternative ALT now. */
1266 void
1267 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1269 lra_insn_recog_data_t data;
1271 data = lra_get_insn_recog_data (insn);
1272 data->used_insn_alternative = alt;
1275 /* Set up that insn with UID is using alternative ALT now. The insn
1276 info should be already set up. */
1277 void
1278 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1280 lra_insn_recog_data_t data;
1282 check_and_expand_insn_recog_data (uid);
1283 data = lra_insn_recog_data[uid];
1284 lra_assert (data != NULL);
1285 data->used_insn_alternative = alt;
1290 /* This page contains code dealing with common register info and
1291 pseudo copies. */
1293 /* The size of the following array. */
1294 static int reg_info_size;
1295 /* Common info about each register. */
1296 class lra_reg *lra_reg_info;
1298 HARD_REG_SET hard_regs_spilled_into;
1300 /* Last register value. */
1301 static int last_reg_value;
1303 /* Return new register value. */
1304 static int
1305 get_new_reg_value (void)
1307 return ++last_reg_value;
1310 /* Vec referring to pseudo copies. */
1311 static vec<lra_copy_t> copy_vec;
1313 /* Initialize I-th element of lra_reg_info. */
1314 static inline void
1315 initialize_lra_reg_info_element (int i)
1317 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1318 #ifdef STACK_REGS
1319 lra_reg_info[i].no_stack_p = false;
1320 #endif
1321 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1322 lra_reg_info[i].preferred_hard_regno1 = -1;
1323 lra_reg_info[i].preferred_hard_regno2 = -1;
1324 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1325 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1326 lra_reg_info[i].biggest_mode = VOIDmode;
1327 lra_reg_info[i].live_ranges = NULL;
1328 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1329 lra_reg_info[i].last_reload = 0;
1330 lra_reg_info[i].restore_rtx = NULL_RTX;
1331 lra_reg_info[i].val = get_new_reg_value ();
1332 lra_reg_info[i].offset = 0;
1333 lra_reg_info[i].copies = NULL;
1336 /* Initialize common reg info and copies. */
1337 static void
1338 init_reg_info (void)
1340 int i;
1342 last_reg_value = 0;
1343 reg_info_size = max_reg_num () * 3 / 2 + 1;
1344 lra_reg_info = XNEWVEC (class lra_reg, reg_info_size);
1345 for (i = 0; i < reg_info_size; i++)
1346 initialize_lra_reg_info_element (i);
1347 copy_vec.truncate (0);
1348 CLEAR_HARD_REG_SET (hard_regs_spilled_into);
1352 /* Finish common reg info and copies. */
1353 static void
1354 finish_reg_info (void)
1356 int i;
1358 for (i = 0; i < reg_info_size; i++)
1359 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1360 free (lra_reg_info);
1361 reg_info_size = 0;
1364 /* Expand common reg info if it is necessary. */
1365 static void
1366 expand_reg_info (void)
1368 int i, old = reg_info_size;
1370 if (reg_info_size > max_reg_num ())
1371 return;
1372 reg_info_size = max_reg_num () * 3 / 2 + 1;
1373 lra_reg_info = XRESIZEVEC (class lra_reg, lra_reg_info, reg_info_size);
1374 for (i = old; i < reg_info_size; i++)
1375 initialize_lra_reg_info_element (i);
1378 /* Free all copies. */
1379 void
1380 lra_free_copies (void)
1382 lra_copy_t cp;
1384 while (copy_vec.length () != 0)
1386 cp = copy_vec.pop ();
1387 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1388 lra_copy_pool.remove (cp);
1392 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1393 frequency is FREQ. */
1394 void
1395 lra_create_copy (int regno1, int regno2, int freq)
1397 bool regno1_dest_p;
1398 lra_copy_t cp;
1400 lra_assert (regno1 != regno2);
1401 regno1_dest_p = true;
1402 if (regno1 > regno2)
1404 std::swap (regno1, regno2);
1405 regno1_dest_p = false;
1407 cp = lra_copy_pool.allocate ();
1408 copy_vec.safe_push (cp);
1409 cp->regno1_dest_p = regno1_dest_p;
1410 cp->freq = freq;
1411 cp->regno1 = regno1;
1412 cp->regno2 = regno2;
1413 cp->regno1_next = lra_reg_info[regno1].copies;
1414 lra_reg_info[regno1].copies = cp;
1415 cp->regno2_next = lra_reg_info[regno2].copies;
1416 lra_reg_info[regno2].copies = cp;
1417 if (lra_dump_file != NULL)
1418 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1419 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1422 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1423 NULL. */
1424 lra_copy_t
1425 lra_get_copy (int n)
1427 if (n >= (int) copy_vec.length ())
1428 return NULL;
1429 return copy_vec[n];
1434 /* This page contains code dealing with info about registers in
1435 insns. */
1437 /* Process X of INSN recursively and add info (operand type is given
1438 by TYPE) about registers in X to the insn DATA. If X can be early
1439 clobbered, alternatives in which it can be early clobbered are given
1440 by EARLY_CLOBBER_ALTS. */
1441 static void
1442 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
1443 rtx_insn *insn, enum op_type type,
1444 alternative_mask early_clobber_alts)
1446 int i, j, regno;
1447 bool subreg_p;
1448 machine_mode mode;
1449 const char *fmt;
1450 enum rtx_code code;
1451 struct lra_insn_reg *curr;
1453 code = GET_CODE (x);
1454 mode = GET_MODE (x);
1455 subreg_p = false;
1456 if (GET_CODE (x) == SUBREG)
1458 mode = wider_subreg_mode (x);
1459 if (read_modify_subreg_p (x))
1460 subreg_p = true;
1461 x = SUBREG_REG (x);
1462 code = GET_CODE (x);
1464 if (REG_P (x))
1466 regno = REGNO (x);
1467 /* Process all regs even unallocatable ones as we need info about
1468 all regs for rematerialization pass. */
1469 expand_reg_info ();
1470 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
1472 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1473 early_clobber_alts, data->regs);
1474 return;
1476 else
1478 for (curr = data->regs; curr != NULL; curr = curr->next)
1479 if (curr->regno == regno)
1481 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1482 /* The info cannot be integrated into the found
1483 structure. */
1484 data->regs = new_insn_reg (data->insn, regno, type, mode,
1485 subreg_p, early_clobber_alts,
1486 data->regs);
1487 else
1489 if (curr->type != type)
1490 curr->type = OP_INOUT;
1491 curr->early_clobber_alts |= early_clobber_alts;
1493 return;
1495 gcc_unreachable ();
1499 switch (code)
1501 case SET:
1502 add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, 0);
1503 add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, 0);
1504 break;
1505 case CLOBBER:
1506 /* We treat clobber of non-operand hard registers as early
1507 clobber. */
1508 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
1509 ALL_ALTERNATIVES);
1510 break;
1511 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1512 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1513 break;
1514 case PRE_MODIFY: case POST_MODIFY:
1515 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1516 add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, 0);
1517 break;
1518 default:
1519 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1520 /* Some targets place small structures in registers for return
1521 values of functions, and those registers are wrapped in
1522 PARALLEL that we may see as the destination of a SET. Here
1523 is an example:
1525 (call_insn 13 12 14 2 (set (parallel:BLK [
1526 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1527 (const_int 0 [0]))
1528 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1529 (const_int 8 [0x8]))
1531 (call (mem:QI (symbol_ref:DI (... */
1532 type = OP_IN;
1533 fmt = GET_RTX_FORMAT (code);
1534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1536 if (fmt[i] == 'e')
1537 add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, 0);
1538 else if (fmt[i] == 'E')
1540 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1541 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
1542 type, 0);
1548 /* Return execution frequency of INSN. */
1549 static int
1550 get_insn_freq (rtx_insn *insn)
1552 basic_block bb = BLOCK_FOR_INSN (insn);
1554 gcc_checking_assert (bb != NULL);
1555 return REG_FREQ_FROM_BB (bb);
1558 /* Invalidate all reg info of INSN with DATA and execution frequency
1559 FREQ. Update common info about the invalidated registers. */
1560 static void
1561 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1562 int freq)
1564 int uid;
1565 bool debug_p;
1566 unsigned int i;
1567 struct lra_insn_reg *ir, *next_ir;
1569 uid = INSN_UID (insn);
1570 debug_p = DEBUG_INSN_P (insn);
1571 for (ir = data->regs; ir != NULL; ir = next_ir)
1573 i = ir->regno;
1574 next_ir = ir->next;
1575 lra_insn_reg_pool.remove (ir);
1576 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1577 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1579 lra_reg_info[i].nrefs--;
1580 lra_reg_info[i].freq -= freq;
1581 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1584 data->regs = NULL;
1587 /* Invalidate all reg info of INSN. Update common info about the
1588 invalidated registers. */
1589 void
1590 lra_invalidate_insn_regno_info (rtx_insn *insn)
1592 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1593 get_insn_freq (insn));
1596 /* Update common reg info from reg info of insn given by its DATA and
1597 execution frequency FREQ. */
1598 static void
1599 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1601 unsigned int i;
1602 struct lra_insn_reg *ir;
1604 for (ir = data->regs; ir != NULL; ir = ir->next)
1605 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1607 lra_reg_info[i].nrefs++;
1608 lra_reg_info[i].freq += freq;
1612 /* Set up insn reg info of INSN. Update common reg info from reg info
1613 of INSN. */
1614 void
1615 lra_update_insn_regno_info (rtx_insn *insn)
1617 int i, freq;
1618 lra_insn_recog_data_t data;
1619 struct lra_static_insn_data *static_data;
1620 enum rtx_code code;
1621 rtx link;
1623 if (! INSN_P (insn))
1624 return;
1625 data = lra_get_insn_recog_data (insn);
1626 static_data = data->insn_static_data;
1627 freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
1628 invalidate_insn_data_regno_info (data, insn, freq);
1629 for (i = static_data->n_operands - 1; i >= 0; i--)
1630 add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
1631 static_data->operand[i].type,
1632 static_data->operand[i].early_clobber_alts);
1633 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1634 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
1635 code == USE ? OP_IN : OP_OUT, 0);
1636 if (CALL_P (insn))
1637 /* On some targets call insns can refer to pseudos in memory in
1638 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1639 consider their occurrences in calls for different
1640 transformations (e.g. inheritance) with given pseudos. */
1641 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1642 link != NULL_RTX;
1643 link = XEXP (link, 1))
1645 code = GET_CODE (XEXP (link, 0));
1646 if ((code == USE || code == CLOBBER)
1647 && MEM_P (XEXP (XEXP (link, 0), 0)))
1648 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
1649 code == USE ? OP_IN : OP_OUT, 0);
1651 if (NONDEBUG_INSN_P (insn))
1652 setup_insn_reg_info (data, freq);
1655 /* Return reg info of insn given by it UID. */
1656 struct lra_insn_reg *
1657 lra_get_insn_regs (int uid)
1659 lra_insn_recog_data_t data;
1661 data = get_insn_recog_data_by_uid (uid);
1662 return data->regs;
1667 /* Recursive hash function for RTL X. */
1668 hashval_t
1669 lra_rtx_hash (rtx x)
1671 int i, j;
1672 enum rtx_code code;
1673 const char *fmt;
1674 hashval_t val = 0;
1676 if (x == 0)
1677 return val;
1679 code = GET_CODE (x);
1680 val += (int) code + 4095;
1682 /* Some RTL can be compared nonrecursively. */
1683 switch (code)
1685 case REG:
1686 return val + REGNO (x);
1688 case LABEL_REF:
1689 return iterative_hash_object (XEXP (x, 0), val);
1691 case SYMBOL_REF:
1692 return iterative_hash_object (XSTR (x, 0), val);
1694 case SCRATCH:
1695 case CONST_DOUBLE:
1696 case CONST_VECTOR:
1697 return val;
1699 case CONST_INT:
1700 return val + UINTVAL (x);
1702 default:
1703 break;
1706 /* Hash the elements. */
1707 fmt = GET_RTX_FORMAT (code);
1708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1710 switch (fmt[i])
1712 case 'w':
1713 val += XWINT (x, i);
1714 break;
1716 case 'n':
1717 case 'i':
1718 val += XINT (x, i);
1719 break;
1721 case 'V':
1722 case 'E':
1723 val += XVECLEN (x, i);
1725 for (j = 0; j < XVECLEN (x, i); j++)
1726 val += lra_rtx_hash (XVECEXP (x, i, j));
1727 break;
1729 case 'e':
1730 val += lra_rtx_hash (XEXP (x, i));
1731 break;
1733 case 'S':
1734 case 's':
1735 val += htab_hash_string (XSTR (x, i));
1736 break;
1738 case 'u':
1739 case '0':
1740 case 't':
1741 break;
1743 /* It is believed that rtx's at this level will never
1744 contain anything but integers and other rtx's, except for
1745 within LABEL_REFs and SYMBOL_REFs. */
1746 default:
1747 abort ();
1750 return val;
1755 /* This page contains code dealing with stack of the insns which
1756 should be processed by the next constraint pass. */
1758 /* Bitmap used to put an insn on the stack only in one exemplar. */
1759 static sbitmap lra_constraint_insn_stack_bitmap;
1761 /* The stack itself. */
1762 vec<rtx_insn *> lra_constraint_insn_stack;
1764 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1765 info for INSN, otherwise only update it if INSN is not already on the
1766 stack. */
1767 static inline void
1768 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1770 unsigned int uid = INSN_UID (insn);
1771 if (always_update)
1772 lra_update_insn_regno_info (insn);
1773 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1774 lra_constraint_insn_stack_bitmap =
1775 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1776 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1777 return;
1778 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1779 if (! always_update)
1780 lra_update_insn_regno_info (insn);
1781 lra_constraint_insn_stack.safe_push (insn);
1784 /* Put INSN on the stack. */
1785 void
1786 lra_push_insn (rtx_insn *insn)
1788 lra_push_insn_1 (insn, false);
1791 /* Put INSN on the stack and update its reg info. */
1792 void
1793 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1795 lra_push_insn_1 (insn, true);
1798 /* Put insn with UID on the stack. */
1799 void
1800 lra_push_insn_by_uid (unsigned int uid)
1802 lra_push_insn (lra_insn_recog_data[uid]->insn);
1805 /* Take the last-inserted insns off the stack and return it. */
1806 rtx_insn *
1807 lra_pop_insn (void)
1809 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1810 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1811 return insn;
1814 /* Return the current size of the insn stack. */
1815 unsigned int
1816 lra_insn_stack_length (void)
1818 return lra_constraint_insn_stack.length ();
1821 /* Push insns FROM to TO (excluding it) going in reverse order. */
1822 static void
1823 push_insns (rtx_insn *from, rtx_insn *to)
1825 rtx_insn *insn;
1827 if (from == NULL_RTX)
1828 return;
1829 for (insn = from; insn != to; insn = PREV_INSN (insn))
1830 if (INSN_P (insn))
1831 lra_push_insn (insn);
1834 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1835 taken from the next BB insn after LAST or zero if there in such
1836 insn. */
1837 static void
1838 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1840 rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
1841 poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
1842 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1844 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1845 lra_get_insn_recog_data (insn)->sp_offset = offset;
1848 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1849 insns onto the stack. Print about emitting the insns with
1850 TITLE. */
1851 void
1852 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1853 const char *title)
1855 rtx_insn *last;
1857 if (before == NULL_RTX && after == NULL_RTX)
1858 return;
1859 if (lra_dump_file != NULL)
1861 dump_insn_slim (lra_dump_file, insn);
1862 if (before != NULL_RTX)
1864 fprintf (lra_dump_file," %s before:\n", title);
1865 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1867 if (after != NULL_RTX)
1869 fprintf (lra_dump_file, " %s after:\n", title);
1870 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1872 fprintf (lra_dump_file, "\n");
1874 if (before != NULL_RTX)
1876 if (cfun->can_throw_non_call_exceptions)
1877 copy_reg_eh_region_note_forward (insn, before, NULL);
1878 emit_insn_before (before, insn);
1879 push_insns (PREV_INSN (insn), PREV_INSN (before));
1880 setup_sp_offset (before, PREV_INSN (insn));
1882 if (after != NULL_RTX)
1884 if (cfun->can_throw_non_call_exceptions)
1885 copy_reg_eh_region_note_forward (insn, after, NULL);
1886 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1888 emit_insn_after (after, insn);
1889 push_insns (last, insn);
1890 setup_sp_offset (after, last);
1892 if (cfun->can_throw_non_call_exceptions)
1894 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1895 if (note && !insn_could_throw_p (insn))
1896 remove_note (insn, note);
1901 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1902 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1903 DEBUG_P is if LOC is within a DEBUG_INSN. Return true if any
1904 change was made. */
1905 bool
1906 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
1907 bool debug_p)
1909 rtx x = *loc;
1910 bool result = false;
1911 enum rtx_code code;
1912 const char *fmt;
1913 int i, j;
1915 if (x == NULL_RTX)
1916 return false;
1918 code = GET_CODE (x);
1919 if (code == SUBREG && subreg_p)
1921 rtx subst, inner = SUBREG_REG (x);
1922 /* Transform subreg of constant while we still have inner mode
1923 of the subreg. The subreg internal should not be an insn
1924 operand. */
1925 if (REG_P (inner) && (int) REGNO (inner) == old_regno
1926 && CONSTANT_P (new_reg)
1927 && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1928 SUBREG_BYTE (x))) != NULL_RTX)
1930 *loc = subst;
1931 return true;
1935 else if (code == REG && (int) REGNO (x) == old_regno)
1937 machine_mode mode = GET_MODE (x);
1938 machine_mode inner_mode = GET_MODE (new_reg);
1940 if (mode != inner_mode
1941 && ! (CONST_SCALAR_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1943 poly_uint64 offset = 0;
1944 if (partial_subreg_p (mode, inner_mode)
1945 && SCALAR_INT_MODE_P (inner_mode))
1946 offset = subreg_lowpart_offset (mode, inner_mode);
1947 if (debug_p)
1948 new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
1949 else
1950 new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
1952 *loc = new_reg;
1953 return true;
1956 /* Scan all the operand sub-expressions. */
1957 fmt = GET_RTX_FORMAT (code);
1958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1960 if (fmt[i] == 'e')
1962 if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1963 new_reg, subreg_p, debug_p))
1964 result = true;
1966 else if (fmt[i] == 'E')
1968 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1969 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1970 new_reg, subreg_p, debug_p))
1971 result = true;
1974 return result;
1977 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1978 of constant if SUBREG_P. This won't update the insn ptr, just the
1979 contents of the insn. */
1980 bool
1981 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1982 rtx new_reg, bool subreg_p)
1984 rtx loc = insn;
1985 return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
1986 DEBUG_INSN_P (insn));
1991 /* This page contains code dealing with scratches (changing them onto
1992 pseudos and restoring them from the pseudos).
1994 We change scratches into pseudos at the beginning of LRA to
1995 simplify dealing with them (conflicts, hard register assignments).
1997 If the pseudo denoting scratch was spilled it means that we do need
1998 a hard register for it. Such pseudos are transformed back to
1999 scratches at the end of LRA. */
2001 /* Description of location of a former scratch operand. */
2002 struct sloc
2004 rtx_insn *insn; /* Insn where the scratch was. */
2005 int nop; /* Number of the operand which was a scratch. */
2006 int icode; /* Original icode from which scratch was removed. */
2009 typedef struct sloc *sloc_t;
2011 /* Locations of the former scratches. */
2012 static vec<sloc_t> scratches;
2014 /* Bitmap of scratch regnos. */
2015 static bitmap_head scratch_bitmap;
2017 /* Bitmap of scratch operands. */
2018 static bitmap_head scratch_operand_bitmap;
2020 /* Return true if pseudo REGNO is made of SCRATCH. */
2021 bool
2022 lra_former_scratch_p (int regno)
2024 return bitmap_bit_p (&scratch_bitmap, regno);
2027 /* Return true if the operand NOP of INSN is a former scratch. */
2028 bool
2029 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
2031 return bitmap_bit_p (&scratch_operand_bitmap,
2032 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
2035 /* Register operand NOP in INSN as a former scratch. It will be
2036 changed to scratch back, if it is necessary, at the LRA end. */
2037 void
2038 lra_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
2040 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
2041 rtx op = *id->operand_loc[nop];
2042 sloc_t loc = XNEW (struct sloc);
2043 lra_assert (REG_P (op));
2044 loc->insn = insn;
2045 loc->nop = nop;
2046 loc->icode = icode;
2047 scratches.safe_push (loc);
2048 bitmap_set_bit (&scratch_bitmap, REGNO (op));
2049 bitmap_set_bit (&scratch_operand_bitmap,
2050 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
2051 add_reg_note (insn, REG_UNUSED, op);
2054 /* Change INSN's scratches into pseudos and save their location. */
2055 static void
2056 remove_scratches_1 (rtx_insn *insn)
2058 int i;
2059 bool insn_changed_p;
2060 rtx reg;
2061 lra_insn_recog_data_t id;
2062 struct lra_static_insn_data *static_id;
2064 id = lra_get_insn_recog_data (insn);
2065 static_id = id->insn_static_data;
2066 insn_changed_p = false;
2067 for (i = 0; i < static_id->n_operands; i++)
2068 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
2069 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
2071 insn_changed_p = true;
2072 *id->operand_loc[i] = reg
2073 = lra_create_new_reg (static_id->operand[i].mode,
2074 *id->operand_loc[i], ALL_REGS, NULL);
2075 lra_register_new_scratch_op (insn, i, id->icode);
2076 if (lra_dump_file != NULL)
2077 fprintf (lra_dump_file,
2078 "Removing SCRATCH in insn #%u (nop %d)\n",
2079 INSN_UID (insn), i);
2081 if (insn_changed_p)
2082 /* Because we might use DF right after caller-saves sub-pass
2083 we need to keep DF info up to date. */
2084 df_insn_rescan (insn);
2087 /* Change scratches into pseudos and save their location. */
2088 static void
2089 remove_scratches (void)
2091 basic_block bb;
2092 rtx_insn *insn;
2094 scratches.create (get_max_uid ());
2095 bitmap_initialize (&scratch_bitmap, &reg_obstack);
2096 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
2097 FOR_EACH_BB_FN (bb, cfun)
2098 FOR_BB_INSNS (bb, insn)
2099 if (INSN_P (insn))
2100 remove_scratches_1 (insn);
2103 /* Changes pseudos created by function remove_scratches onto scratches. */
2104 static void
2105 restore_scratches (void)
2107 int regno;
2108 unsigned i;
2109 sloc_t loc;
2110 rtx_insn *last = NULL;
2111 lra_insn_recog_data_t id = NULL;
2113 for (i = 0; scratches.iterate (i, &loc); i++)
2115 /* Ignore already deleted insns. */
2116 if (NOTE_P (loc->insn)
2117 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
2118 continue;
2119 if (last != loc->insn)
2121 last = loc->insn;
2122 id = lra_get_insn_recog_data (last);
2124 if (loc->icode != id->icode)
2126 /* The icode doesn't match, which means the insn has been modified
2127 (e.g. register elimination). The scratch cannot be restored. */
2128 continue;
2130 if (REG_P (*id->operand_loc[loc->nop])
2131 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2132 >= FIRST_PSEUDO_REGISTER)
2133 && lra_get_regno_hard_regno (regno) < 0)
2135 /* It should be only case when scratch register with chosen
2136 constraint 'X' did not get memory or hard register. */
2137 lra_assert (lra_former_scratch_p (regno));
2138 *id->operand_loc[loc->nop]
2139 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2140 lra_update_dup (id, loc->nop);
2141 if (lra_dump_file != NULL)
2142 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2143 INSN_UID (loc->insn), loc->nop);
2146 for (i = 0; scratches.iterate (i, &loc); i++)
2147 free (loc);
2148 scratches.release ();
2149 bitmap_clear (&scratch_bitmap);
2150 bitmap_clear (&scratch_operand_bitmap);
2155 /* Function checks RTL for correctness. If FINAL_P is true, it is
2156 done at the end of LRA and the check is more rigorous. */
2157 static void
2158 check_rtl (bool final_p)
2160 basic_block bb;
2161 rtx_insn *insn;
2163 lra_assert (! final_p || reload_completed);
2164 FOR_EACH_BB_FN (bb, cfun)
2165 FOR_BB_INSNS (bb, insn)
2166 if (NONDEBUG_INSN_P (insn)
2167 && GET_CODE (PATTERN (insn)) != USE
2168 && GET_CODE (PATTERN (insn)) != CLOBBER
2169 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2171 if (final_p)
2173 extract_constrain_insn (insn);
2174 continue;
2176 /* LRA code is based on assumption that all addresses can be
2177 correctly decomposed. LRA can generate reloads for
2178 decomposable addresses. The decomposition code checks the
2179 correctness of the addresses. So we don't need to check
2180 the addresses here. Don't call insn_invalid_p here, it can
2181 change the code at this stage. */
2182 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2183 fatal_insn_not_found (insn);
2187 /* Determine if the current function has an exception receiver block
2188 that reaches the exit block via non-exceptional edges */
2189 static bool
2190 has_nonexceptional_receiver (void)
2192 edge e;
2193 edge_iterator ei;
2194 basic_block *tos, *worklist, bb;
2196 /* If we're not optimizing, then just err on the safe side. */
2197 if (!optimize)
2198 return true;
2200 /* First determine which blocks can reach exit via normal paths. */
2201 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2203 FOR_EACH_BB_FN (bb, cfun)
2204 bb->flags &= ~BB_REACHABLE;
2206 /* Place the exit block on our worklist. */
2207 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2208 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2210 /* Iterate: find everything reachable from what we've already seen. */
2211 while (tos != worklist)
2213 bb = *--tos;
2215 FOR_EACH_EDGE (e, ei, bb->preds)
2216 if (e->flags & EDGE_ABNORMAL)
2218 free (worklist);
2219 return true;
2221 else
2223 basic_block src = e->src;
2225 if (!(src->flags & BB_REACHABLE))
2227 src->flags |= BB_REACHABLE;
2228 *tos++ = src;
2232 free (worklist);
2233 /* No exceptional block reached exit unexceptionally. */
2234 return false;
2237 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2238 We change pseudos by hard registers without notification of DF and
2239 that can make the notes obsolete. DF-infrastructure does not deal
2240 with REG_INC notes -- so we should regenerate them here. */
2241 static void
2242 update_inc_notes (void)
2244 rtx *pnote;
2245 basic_block bb;
2246 rtx_insn *insn;
2248 FOR_EACH_BB_FN (bb, cfun)
2249 FOR_BB_INSNS (bb, insn)
2250 if (NONDEBUG_INSN_P (insn))
2252 pnote = &REG_NOTES (insn);
2253 while (*pnote != 0)
2255 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2256 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2257 || REG_NOTE_KIND (*pnote) == REG_INC)
2258 *pnote = XEXP (*pnote, 1);
2259 else
2260 pnote = &XEXP (*pnote, 1);
2263 if (AUTO_INC_DEC)
2264 add_auto_inc_notes (insn, PATTERN (insn));
2268 /* Set to 1 while in lra. */
2269 int lra_in_progress;
2271 /* Start of pseudo regnos before the LRA. */
2272 int lra_new_regno_start;
2274 /* Start of reload pseudo regnos before the new spill pass. */
2275 int lra_constraint_new_regno_start;
2277 /* Avoid spilling pseudos with regno more than the following value if
2278 it is possible. */
2279 int lra_bad_spill_regno_start;
2281 /* Inheritance pseudo regnos before the new spill pass. */
2282 bitmap_head lra_inheritance_pseudos;
2284 /* Split regnos before the new spill pass. */
2285 bitmap_head lra_split_regs;
2287 /* Reload pseudo regnos before the new assignment pass which still can
2288 be spilled after the assignment pass as memory is also accepted in
2289 insns for the reload pseudos. */
2290 bitmap_head lra_optional_reload_pseudos;
2292 /* Pseudo regnos used for subreg reloads before the new assignment
2293 pass. Such pseudos still can be spilled after the assignment
2294 pass. */
2295 bitmap_head lra_subreg_reload_pseudos;
2297 /* File used for output of LRA debug information. */
2298 FILE *lra_dump_file;
2300 /* True if we found an asm error. */
2301 bool lra_asm_error_p;
2303 /* True if we should try spill into registers of different classes
2304 instead of memory. */
2305 bool lra_reg_spill_p;
2307 /* Set up value LRA_REG_SPILL_P. */
2308 static void
2309 setup_reg_spill_flag (void)
2311 int cl, mode;
2313 if (targetm.spill_class != NULL)
2314 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2315 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2316 if (targetm.spill_class ((enum reg_class) cl,
2317 (machine_mode) mode) != NO_REGS)
2319 lra_reg_spill_p = true;
2320 return;
2322 lra_reg_spill_p = false;
2325 /* True if the current function is too big to use regular algorithms
2326 in LRA. In other words, we should use simpler and faster algorithms
2327 in LRA. It also means we should not worry about generation code
2328 for caller saves. The value is set up in IRA. */
2329 bool lra_simple_p;
2331 /* Major LRA entry function. F is a file should be used to dump LRA
2332 debug info. */
2333 void
2334 lra (FILE *f)
2336 int i;
2337 bool live_p, inserted_p;
2339 lra_dump_file = f;
2340 lra_asm_error_p = false;
2342 timevar_push (TV_LRA);
2344 /* Make sure that the last insn is a note. Some subsequent passes
2345 need it. */
2346 emit_note (NOTE_INSN_DELETED);
2348 lra_no_alloc_regs = ira_no_alloc_regs;
2350 init_reg_info ();
2351 expand_reg_info ();
2353 init_insn_recog_data ();
2355 /* Some quick check on RTL generated by previous passes. */
2356 if (flag_checking)
2357 check_rtl (false);
2359 lra_in_progress = 1;
2361 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2362 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2363 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2364 lra_rematerialization_iter = 0;
2366 setup_reg_spill_flag ();
2368 /* Function remove_scratches can creates new pseudos for clobbers --
2369 so set up lra_constraint_new_regno_start before its call to
2370 permit changing reg classes for pseudos created by this
2371 simplification. */
2372 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2373 lra_bad_spill_regno_start = INT_MAX;
2374 remove_scratches ();
2376 /* A function that has a non-local label that can reach the exit
2377 block via non-exceptional paths must save all call-saved
2378 registers. */
2379 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2380 crtl->saves_all_registers = 1;
2382 if (crtl->saves_all_registers)
2383 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2384 if (!crtl->abi->clobbers_full_reg_p (i)
2385 && !fixed_regs[i]
2386 && !LOCAL_REGNO (i))
2387 df_set_regs_ever_live (i, true);
2389 /* We don't DF from now and avoid its using because it is to
2390 expensive when a lot of RTL changes are made. */
2391 df_set_flags (DF_NO_INSN_RESCAN);
2392 lra_constraint_insn_stack.create (get_max_uid ());
2393 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2394 bitmap_clear (lra_constraint_insn_stack_bitmap);
2395 lra_live_ranges_init ();
2396 lra_constraints_init ();
2397 lra_curr_reload_num = 0;
2398 push_insns (get_last_insn (), NULL);
2399 /* It is needed for the 1st coalescing. */
2400 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2401 bitmap_initialize (&lra_split_regs, &reg_obstack);
2402 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2403 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2404 live_p = false;
2405 if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
2406 /* If we have a stack frame, we must align it now. The stack size
2407 may be a part of the offset computation for register
2408 elimination. */
2409 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2410 lra_init_equiv ();
2411 for (;;)
2413 for (;;)
2415 bool reloads_p = lra_constraints (lra_constraint_iter == 0);
2416 /* Constraint transformations may result in that eliminable
2417 hard regs become uneliminable and pseudos which use them
2418 should be spilled. It is better to do it before pseudo
2419 assignments.
2421 For example, rs6000 can make
2422 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2423 to use a constant pool. */
2424 lra_eliminate (false, false);
2425 /* We should try to assign hard registers to scratches even
2426 if there were no RTL transformations in lra_constraints.
2427 Also we should check IRA assignments on the first
2428 iteration as they can be wrong because of early clobbers
2429 operands which are ignored in IRA. */
2430 if (! reloads_p && lra_constraint_iter > 1)
2432 /* Stack is not empty here only when there are changes
2433 during the elimination sub-pass. */
2434 if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
2435 break;
2436 else
2437 /* If there are no reloads but changing due
2438 elimination, restart the constraint sub-pass
2439 first. */
2440 continue;
2442 /* Do inheritance only for regular algorithms. */
2443 if (! lra_simple_p)
2444 lra_inheritance ();
2445 if (live_p)
2446 lra_clear_live_ranges ();
2447 bool fails_p;
2450 /* We need live ranges for lra_assign -- so build them.
2451 But don't remove dead insns or change global live
2452 info as we can undo inheritance transformations after
2453 inheritance pseudo assigning. */
2454 lra_create_live_ranges (true, !lra_simple_p);
2455 live_p = true;
2456 /* If we don't spill non-reload and non-inheritance
2457 pseudos, there is no sense to run memory-memory move
2458 coalescing. If inheritance pseudos were spilled, the
2459 memory-memory moves involving them will be removed by
2460 pass undoing inheritance. */
2461 if (lra_simple_p)
2462 lra_assign (fails_p);
2463 else
2465 bool spill_p = !lra_assign (fails_p);
2467 if (lra_undo_inheritance ())
2468 live_p = false;
2469 if (spill_p && ! fails_p)
2471 if (! live_p)
2473 lra_create_live_ranges (true, true);
2474 live_p = true;
2476 if (lra_coalesce ())
2477 live_p = false;
2479 if (! live_p)
2480 lra_clear_live_ranges ();
2482 if (fails_p)
2484 /* It is a very rare case. It is the last hope to
2485 split a hard regno live range for a reload
2486 pseudo. */
2487 if (live_p)
2488 lra_clear_live_ranges ();
2489 live_p = false;
2490 if (! lra_split_hard_reg_for ())
2491 break;
2494 while (fails_p);
2495 if (! live_p) {
2496 /* We need the correct reg notes for work of constraint sub-pass. */
2497 lra_create_live_ranges (true, true);
2498 live_p = true;
2501 /* Don't clear optional reloads bitmap until all constraints are
2502 satisfied as we need to differ them from regular reloads. */
2503 bitmap_clear (&lra_optional_reload_pseudos);
2504 bitmap_clear (&lra_subreg_reload_pseudos);
2505 bitmap_clear (&lra_inheritance_pseudos);
2506 bitmap_clear (&lra_split_regs);
2507 if (! live_p)
2509 /* We need full live info for spilling pseudos into
2510 registers instead of memory. */
2511 lra_create_live_ranges (lra_reg_spill_p, true);
2512 live_p = true;
2514 /* We should check necessity for spilling here as the above live
2515 range pass can remove spilled pseudos. */
2516 if (! lra_need_for_spills_p ())
2517 break;
2518 /* Now we know what pseudos should be spilled. Try to
2519 rematerialize them first. */
2520 if (lra_remat ())
2522 /* We need full live info -- see the comment above. */
2523 lra_create_live_ranges (lra_reg_spill_p, true);
2524 live_p = true;
2525 if (! lra_need_for_spills_p ())
2527 if (lra_need_for_scratch_reg_p ())
2528 continue;
2529 break;
2532 lra_spill ();
2533 /* Assignment of stack slots changes elimination offsets for
2534 some eliminations. So update the offsets here. */
2535 lra_eliminate (false, false);
2536 lra_constraint_new_regno_start = max_reg_num ();
2537 if (lra_bad_spill_regno_start == INT_MAX
2538 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2539 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2540 /* After switching off inheritance and rematerialization
2541 passes, avoid spilling reload pseudos will be created to
2542 prevent LRA cycling in some complicated cases. */
2543 lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2544 lra_assignment_iter_after_spill = 0;
2546 restore_scratches ();
2547 lra_eliminate (true, false);
2548 lra_final_code_change ();
2549 lra_in_progress = 0;
2550 if (live_p)
2551 lra_clear_live_ranges ();
2552 lra_live_ranges_finish ();
2553 lra_constraints_finish ();
2554 finish_reg_info ();
2555 sbitmap_free (lra_constraint_insn_stack_bitmap);
2556 lra_constraint_insn_stack.release ();
2557 finish_insn_recog_data ();
2558 regstat_free_n_sets_and_refs ();
2559 regstat_free_ri ();
2560 reload_completed = 1;
2561 update_inc_notes ();
2563 inserted_p = fixup_abnormal_edges ();
2565 /* We've possibly turned single trapping insn into multiple ones. */
2566 if (cfun->can_throw_non_call_exceptions)
2568 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2569 bitmap_ones (blocks);
2570 find_many_sub_basic_blocks (blocks);
2573 if (inserted_p)
2574 commit_edge_insertions ();
2576 /* Replacing pseudos with their memory equivalents might have
2577 created shared rtx. Subsequent passes would get confused
2578 by this, so unshare everything here. */
2579 unshare_all_rtl_again (get_insns ());
2581 if (flag_checking)
2582 check_rtl (true);
2584 timevar_pop (TV_LRA);
2587 /* Called once per compiler to initialize LRA data once. */
2588 void
2589 lra_init_once (void)
2591 init_insn_code_data_once ();
2594 /* Called once per compiler to finish LRA data which are initialize
2595 once. */
2596 void
2597 lra_finish_once (void)
2599 finish_insn_code_data_once ();