1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
42 (define_operator_list tcc_comparison
43 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
44 (define_operator_list inverted_tcc_comparison
45 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list inverted_tcc_comparison_with_nans
47 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
48 (define_operator_list swapped_tcc_comparison
49 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
50 (define_operator_list simple_comparison lt le eq ne ge gt)
51 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53 #include "cfn-operators.pd"
55 /* Define operand lists for math rounding functions {,i,l,ll}FN,
56 where the versions prefixed with "i" return an int, those prefixed with
57 "l" return a long and those prefixed with "ll" return a long long.
59 Also define operand lists:
61 X<FN>F for all float functions, in the order i, l, ll
62 X<FN> for all double functions, in the same order
63 X<FN>L for all long double functions, in the same order. */
64 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
65 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
68 (define_operator_list X##FN BUILT_IN_I##FN \
71 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
75 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80 /* Binary operations and their associated IFN_COND_* function. */
81 (define_operator_list UNCOND_BINARY
83 mult trunc_div trunc_mod rdiv
85 bit_and bit_ior bit_xor)
86 (define_operator_list COND_BINARY
87 IFN_COND_ADD IFN_COND_SUB
88 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
89 IFN_COND_MIN IFN_COND_MAX
90 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
92 /* Same for ternary operations. */
93 (define_operator_list UNCOND_TERNARY
94 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
95 (define_operator_list COND_TERNARY
96 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
98 /* As opposed to convert?, this still creates a single pattern, so
99 it is not a suitable replacement for convert? in all cases. */
100 (match (nop_convert @0)
102 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
103 (match (nop_convert @0)
105 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
106 && known_eq (TYPE_VECTOR_SUBPARTS (type),
107 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
108 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
109 /* This one has to be last, or it shadows the others. */
110 (match (nop_convert @0)
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
127 (for op (plus pointer_plus minus bit_ior bit_xor)
129 (op @0 integer_zerop)
132 /* 0 +p index -> (type)index */
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
137 /* ptr - 0 -> (type)ptr */
139 (pointer_diff @0 integer_zerop)
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
155 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158 if not -frounding-math. For sNaNs the first operation would raise
159 exceptions but turn the result into qNan, so the second operation
160 would not raise it. */
161 (for inner_op (plus minus)
162 (for outer_op (plus minus)
164 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
167 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
171 = ((outer_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173 (if (outer_plus && !inner_plus)
178 This is unsafe for certain floats even in non-IEEE formats.
179 In IEEE, it is unsafe because it does wrong for NaNs.
180 Also note that operand_equal_p is always false if an operand
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185 { build_zero_cst (type); }))
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
191 (mult @0 integer_zerop@1)
194 /* Maybe fold x * 0 to 0. The expressions aren't the same
195 when x is NaN, since x * 0 is also NaN. Nor are they the
196 same in modes with signed zeros, since multiplying a
197 negative value by 0 gives -0, not +0. */
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
203 /* In IEEE floating point, x*1 is not equivalent to x for snans.
204 Likewise for complex arithmetic with signed zeros. */
207 (if (!HONOR_SNANS (type)
208 && (!HONOR_SIGNED_ZEROS (type)
209 || !COMPLEX_FLOAT_TYPE_P (type)))
212 /* Transform x * -1.0 into -x. */
214 (mult @0 real_minus_onep)
215 (if (!HONOR_SNANS (type)
216 && (!HONOR_SIGNED_ZEROS (type)
217 || !COMPLEX_FLOAT_TYPE_P (type)))
220 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
222 (mult SSA_NAME@1 SSA_NAME@2)
223 (if (INTEGRAL_TYPE_P (type)
224 && get_nonzero_bits (@1) == 1
225 && get_nonzero_bits (@2) == 1)
228 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
229 unless the target has native support for the former but not the latter. */
231 (mult @0 VECTOR_CST@1)
232 (if (initializer_each_zero_or_onep (@1)
233 && !HONOR_SNANS (type)
234 && !HONOR_SIGNED_ZEROS (type))
235 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
237 && (!VECTOR_MODE_P (TYPE_MODE (type))
238 || (VECTOR_MODE_P (TYPE_MODE (itype))
239 && optab_handler (and_optab,
240 TYPE_MODE (itype)) != CODE_FOR_nothing)))
241 (view_convert (bit_and:itype (view_convert @0)
242 (ne @1 { build_zero_cst (type); })))))))
244 (for cmp (gt ge lt le)
245 outp (convert convert negate negate)
246 outn (negate negate convert convert)
247 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
248 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
249 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
250 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
252 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
253 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
254 && types_match (type, TREE_TYPE (@0)))
256 (if (types_match (type, float_type_node))
257 (BUILT_IN_COPYSIGNF @1 (outp @0)))
258 (if (types_match (type, double_type_node))
259 (BUILT_IN_COPYSIGN @1 (outp @0)))
260 (if (types_match (type, long_double_type_node))
261 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
262 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
263 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
264 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
265 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
267 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
268 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
269 && types_match (type, TREE_TYPE (@0)))
271 (if (types_match (type, float_type_node))
272 (BUILT_IN_COPYSIGNF @1 (outn @0)))
273 (if (types_match (type, double_type_node))
274 (BUILT_IN_COPYSIGN @1 (outn @0)))
275 (if (types_match (type, long_double_type_node))
276 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
278 /* Transform X * copysign (1.0, X) into abs(X). */
280 (mult:c @0 (COPYSIGN_ALL real_onep @0))
281 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
284 /* Transform X * copysign (1.0, -X) into -abs(X). */
286 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
287 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
290 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
292 (COPYSIGN_ALL REAL_CST@0 @1)
293 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
294 (COPYSIGN_ALL (negate @0) @1)))
296 /* X * 1, X / 1 -> X. */
297 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
302 /* (A / (1 << B)) -> (A >> B).
303 Only for unsigned A. For signed A, this would not preserve rounding
305 For example: (-1 / ( 1 << B)) != -1 >> B. */
307 (trunc_div @0 (lshift integer_onep@1 @2))
308 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
309 && (!VECTOR_TYPE_P (type)
310 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
311 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
314 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
315 undefined behavior in constexpr evaluation, and assuming that the division
316 traps enables better optimizations than these anyway. */
317 (for div (trunc_div ceil_div floor_div round_div exact_div)
318 /* 0 / X is always zero. */
320 (div integer_zerop@0 @1)
321 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
322 (if (!integer_zerop (@1))
326 (div @0 integer_minus_onep@1)
327 (if (!TYPE_UNSIGNED (type))
332 /* But not for 0 / 0 so that we can get the proper warnings and errors.
333 And not for _Fract types where we can't build 1. */
334 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
335 { build_one_cst (type); }))
336 /* X / abs (X) is X < 0 ? -1 : 1. */
339 (if (INTEGRAL_TYPE_P (type)
340 && TYPE_OVERFLOW_UNDEFINED (type))
341 (cond (lt @0 { build_zero_cst (type); })
342 { build_minus_one_cst (type); } { build_one_cst (type); })))
345 (div:C @0 (negate @0))
346 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
347 && TYPE_OVERFLOW_UNDEFINED (type))
348 { build_minus_one_cst (type); })))
350 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
351 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
354 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
355 && TYPE_UNSIGNED (type))
358 /* Combine two successive divisions. Note that combining ceil_div
359 and floor_div is trickier and combining round_div even more so. */
360 (for div (trunc_div exact_div)
362 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
364 wi::overflow_type overflow;
365 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
366 TYPE_SIGN (type), &overflow);
368 (if (div == EXACT_DIV_EXPR
369 || optimize_successive_divisions_p (@2, @3))
371 (div @0 { wide_int_to_tree (type, mul); })
372 (if (TYPE_UNSIGNED (type)
373 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
374 { build_zero_cst (type); }))))))
376 /* Combine successive multiplications. Similar to above, but handling
377 overflow is different. */
379 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
381 wi::overflow_type overflow;
382 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
383 TYPE_SIGN (type), &overflow);
385 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
386 otherwise undefined overflow implies that @0 must be zero. */
387 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
388 (mult @0 { wide_int_to_tree (type, mul); }))))
390 /* Optimize A / A to 1.0 if we don't care about
391 NaNs or Infinities. */
394 (if (FLOAT_TYPE_P (type)
395 && ! HONOR_NANS (type)
396 && ! HONOR_INFINITIES (type))
397 { build_one_cst (type); }))
399 /* Optimize -A / A to -1.0 if we don't care about
400 NaNs or Infinities. */
402 (rdiv:C @0 (negate @0))
403 (if (FLOAT_TYPE_P (type)
404 && ! HONOR_NANS (type)
405 && ! HONOR_INFINITIES (type))
406 { build_minus_one_cst (type); }))
408 /* PR71078: x / abs(x) -> copysign (1.0, x) */
410 (rdiv:C (convert? @0) (convert? (abs @0)))
411 (if (SCALAR_FLOAT_TYPE_P (type)
412 && ! HONOR_NANS (type)
413 && ! HONOR_INFINITIES (type))
415 (if (types_match (type, float_type_node))
416 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
417 (if (types_match (type, double_type_node))
418 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
419 (if (types_match (type, long_double_type_node))
420 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
422 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
425 (if (!HONOR_SNANS (type))
428 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
430 (rdiv @0 real_minus_onep)
431 (if (!HONOR_SNANS (type))
434 (if (flag_reciprocal_math)
435 /* Convert (A/B)/C to A/(B*C). */
437 (rdiv (rdiv:s @0 @1) @2)
438 (rdiv @0 (mult @1 @2)))
440 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
442 (rdiv @0 (mult:s @1 REAL_CST@2))
444 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
446 (rdiv (mult @0 { tem; } ) @1))))
448 /* Convert A/(B/C) to (A/B)*C */
450 (rdiv @0 (rdiv:s @1 @2))
451 (mult (rdiv @0 @1) @2)))
453 /* Simplify x / (- y) to -x / y. */
455 (rdiv @0 (negate @1))
456 (rdiv (negate @0) @1))
458 (if (flag_unsafe_math_optimizations)
459 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
460 Since C / x may underflow to zero, do this only for unsafe math. */
461 (for op (lt le gt ge)
464 (op (rdiv REAL_CST@0 @1) real_zerop@2)
465 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
467 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
469 /* For C < 0, use the inverted operator. */
470 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
473 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
474 (for div (trunc_div ceil_div floor_div round_div exact_div)
476 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
477 (if (integer_pow2p (@2)
478 && tree_int_cst_sgn (@2) > 0
479 && tree_nop_conversion_p (type, TREE_TYPE (@0))
480 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
482 { build_int_cst (integer_type_node,
483 wi::exact_log2 (wi::to_wide (@2))); }))))
485 /* If ARG1 is a constant, we can convert this to a multiply by the
486 reciprocal. This does not have the same rounding properties,
487 so only do this if -freciprocal-math. We can actually
488 always safely do it if ARG1 is a power of two, but it's hard to
489 tell if it is or not in a portable manner. */
490 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
494 (if (flag_reciprocal_math
497 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
499 (mult @0 { tem; } )))
500 (if (cst != COMPLEX_CST)
501 (with { tree inverse = exact_inverse (type, @1); }
503 (mult @0 { inverse; } ))))))))
505 (for mod (ceil_mod floor_mod round_mod trunc_mod)
506 /* 0 % X is always zero. */
508 (mod integer_zerop@0 @1)
509 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
510 (if (!integer_zerop (@1))
512 /* X % 1 is always zero. */
514 (mod @0 integer_onep)
515 { build_zero_cst (type); })
516 /* X % -1 is zero. */
518 (mod @0 integer_minus_onep@1)
519 (if (!TYPE_UNSIGNED (type))
520 { build_zero_cst (type); }))
524 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
525 (if (!integer_zerop (@0))
526 { build_zero_cst (type); }))
527 /* (X % Y) % Y is just X % Y. */
529 (mod (mod@2 @0 @1) @1)
531 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
533 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
534 (if (ANY_INTEGRAL_TYPE_P (type)
535 && TYPE_OVERFLOW_UNDEFINED (type)
536 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
538 { build_zero_cst (type); }))
539 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
540 modulo and comparison, since it is simpler and equivalent. */
543 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
544 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
545 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
546 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
548 /* X % -C is the same as X % C. */
550 (trunc_mod @0 INTEGER_CST@1)
551 (if (TYPE_SIGN (type) == SIGNED
552 && !TREE_OVERFLOW (@1)
553 && wi::neg_p (wi::to_wide (@1))
554 && !TYPE_OVERFLOW_TRAPS (type)
555 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
556 && !sign_bit_p (@1, @1))
557 (trunc_mod @0 (negate @1))))
559 /* X % -Y is the same as X % Y. */
561 (trunc_mod @0 (convert? (negate @1)))
562 (if (INTEGRAL_TYPE_P (type)
563 && !TYPE_UNSIGNED (type)
564 && !TYPE_OVERFLOW_TRAPS (type)
565 && tree_nop_conversion_p (type, TREE_TYPE (@1))
566 /* Avoid this transformation if X might be INT_MIN or
567 Y might be -1, because we would then change valid
568 INT_MIN % -(-1) into invalid INT_MIN % -1. */
569 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
570 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
572 (trunc_mod @0 (convert @1))))
574 /* X - (X / Y) * Y is the same as X % Y. */
576 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
577 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
578 (convert (trunc_mod @0 @1))))
580 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
581 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
582 Also optimize A % (C << N) where C is a power of 2,
583 to A & ((C << N) - 1). */
584 (match (power_of_two_cand @1)
586 (match (power_of_two_cand @1)
587 (lshift INTEGER_CST@1 @2))
588 (for mod (trunc_mod floor_mod)
590 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
591 (if ((TYPE_UNSIGNED (type)
592 || tree_expr_nonnegative_p (@0))
593 && tree_nop_conversion_p (type, TREE_TYPE (@3))
594 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
595 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
597 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
599 (trunc_div (mult @0 integer_pow2p@1) @1)
600 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
601 (bit_and @0 { wide_int_to_tree
602 (type, wi::mask (TYPE_PRECISION (type)
603 - wi::exact_log2 (wi::to_wide (@1)),
604 false, TYPE_PRECISION (type))); })))
606 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
608 (mult (trunc_div @0 integer_pow2p@1) @1)
609 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
610 (bit_and @0 (negate @1))))
612 /* Simplify (t * 2) / 2) -> t. */
613 (for div (trunc_div ceil_div floor_div round_div exact_div)
615 (div (mult:c @0 @1) @1)
616 (if (ANY_INTEGRAL_TYPE_P (type)
617 && TYPE_OVERFLOW_UNDEFINED (type))
621 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
626 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
629 (pows (op @0) REAL_CST@1)
630 (with { HOST_WIDE_INT n; }
631 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
633 /* Likewise for powi. */
636 (pows (op @0) INTEGER_CST@1)
637 (if ((wi::to_wide (@1) & 1) == 0)
639 /* Strip negate and abs from both operands of hypot. */
647 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
648 (for copysigns (COPYSIGN_ALL)
650 (copysigns (op @0) @1)
653 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
658 /* Convert absu(x)*absu(x) -> x*x. */
660 (mult (absu@1 @0) @1)
661 (mult (convert@2 @0) @2))
663 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
667 (coss (copysigns @0 @1))
670 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
674 (pows (copysigns @0 @2) REAL_CST@1)
675 (with { HOST_WIDE_INT n; }
676 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
678 /* Likewise for powi. */
682 (pows (copysigns @0 @2) INTEGER_CST@1)
683 (if ((wi::to_wide (@1) & 1) == 0)
688 /* hypot(copysign(x, y), z) -> hypot(x, z). */
690 (hypots (copysigns @0 @1) @2)
692 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
694 (hypots @0 (copysigns @1 @2))
697 /* copysign(x, CST) -> [-]abs (x). */
698 (for copysigns (COPYSIGN_ALL)
700 (copysigns @0 REAL_CST@1)
701 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
705 /* copysign(copysign(x, y), z) -> copysign(x, z). */
706 (for copysigns (COPYSIGN_ALL)
708 (copysigns (copysigns @0 @1) @2)
711 /* copysign(x,y)*copysign(x,y) -> x*x. */
712 (for copysigns (COPYSIGN_ALL)
714 (mult (copysigns@2 @0 @1) @2)
717 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
718 (for ccoss (CCOS CCOSH)
723 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
724 (for ops (conj negate)
730 /* Fold (a * (1 << b)) into (a << b) */
732 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
733 (if (! FLOAT_TYPE_P (type)
734 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
737 /* Fold (1 << (C - x)) where C = precision(type) - 1
738 into ((1 << C) >> x). */
740 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
741 (if (INTEGRAL_TYPE_P (type)
742 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
744 (if (TYPE_UNSIGNED (type))
745 (rshift (lshift @0 @2) @3)
747 { tree utype = unsigned_type_for (type); }
748 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
750 /* Fold (C1/X)*C2 into (C1*C2)/X. */
752 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
753 (if (flag_associative_math
756 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
758 (rdiv { tem; } @1)))))
760 /* Simplify ~X & X as zero. */
762 (bit_and:c (convert? @0) (convert? (bit_not @0)))
763 { build_zero_cst (type); })
765 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
767 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
768 (if (TYPE_UNSIGNED (type))
769 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
771 (for bitop (bit_and bit_ior)
773 /* PR35691: Transform
774 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
775 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
777 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
778 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
779 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
780 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
781 (cmp (bit_ior @0 (convert @1)) @2)))
783 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
784 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
786 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
787 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
788 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
789 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
790 (cmp (bit_and @0 (convert @1)) @2))))
792 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
794 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
795 (minus (bit_xor @0 @1) @1))
797 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
798 (if (~wi::to_wide (@2) == wi::to_wide (@1))
799 (minus (bit_xor @0 @1) @1)))
801 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
803 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
804 (minus @1 (bit_xor @0 @1)))
806 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
807 (for op (bit_ior bit_xor plus)
809 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
812 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
813 (if (~wi::to_wide (@2) == wi::to_wide (@1))
816 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
818 (bit_ior:c (bit_xor:c @0 @1) @0)
821 /* (a & ~b) | (a ^ b) --> a ^ b */
823 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
826 /* (a & ~b) ^ ~a --> ~(a & b) */
828 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
829 (bit_not (bit_and @0 @1)))
831 /* (a | b) & ~(a ^ b) --> a & b */
833 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
836 /* a | ~(a ^ b) --> a | ~b */
838 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
839 (bit_ior @0 (bit_not @1)))
841 /* (a | b) | (a &^ b) --> a | b */
842 (for op (bit_and bit_xor)
844 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
847 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
849 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
852 /* ~(~a & b) --> a | ~b */
854 (bit_not (bit_and:cs (bit_not @0) @1))
855 (bit_ior @0 (bit_not @1)))
857 /* ~(~a | b) --> a & ~b */
859 (bit_not (bit_ior:cs (bit_not @0) @1))
860 (bit_and @0 (bit_not @1)))
862 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
865 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
866 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
867 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
871 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
872 ((A & N) + B) & M -> (A + B) & M
873 Similarly if (N & M) == 0,
874 ((A | N) + B) & M -> (A + B) & M
875 and for - instead of + (or unary - instead of +)
876 and/or ^ instead of |.
877 If B is constant and (B & M) == 0, fold into A & M. */
879 (for bitop (bit_and bit_ior bit_xor)
881 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
884 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
885 @3, @4, @1, ERROR_MARK, NULL_TREE,
888 (convert (bit_and (op (convert:utype { pmop[0]; })
889 (convert:utype { pmop[1]; }))
890 (convert:utype @2))))))
892 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
895 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
896 NULL_TREE, NULL_TREE, @1, bitop, @3,
899 (convert (bit_and (op (convert:utype { pmop[0]; })
900 (convert:utype { pmop[1]; }))
901 (convert:utype @2)))))))
903 (bit_and (op:s @0 @1) INTEGER_CST@2)
906 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
907 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
908 NULL_TREE, NULL_TREE, pmop); }
910 (convert (bit_and (op (convert:utype { pmop[0]; })
911 (convert:utype { pmop[1]; }))
912 (convert:utype @2)))))))
913 (for bitop (bit_and bit_ior bit_xor)
915 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
918 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
919 bitop, @2, @3, NULL_TREE, ERROR_MARK,
920 NULL_TREE, NULL_TREE, pmop); }
922 (convert (bit_and (negate (convert:utype { pmop[0]; }))
923 (convert:utype @1)))))))
925 /* X % Y is smaller than Y. */
928 (cmp (trunc_mod @0 @1) @1)
929 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
930 { constant_boolean_node (cmp == LT_EXPR, type); })))
933 (cmp @1 (trunc_mod @0 @1))
934 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
935 { constant_boolean_node (cmp == GT_EXPR, type); })))
939 (bit_ior @0 integer_all_onesp@1)
944 (bit_ior @0 integer_zerop)
949 (bit_and @0 integer_zerop@1)
955 (for op (bit_ior bit_xor plus)
957 (op:c (convert? @0) (convert? (bit_not @0)))
958 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
963 { build_zero_cst (type); })
965 /* Canonicalize X ^ ~0 to ~X. */
967 (bit_xor @0 integer_all_onesp@1)
972 (bit_and @0 integer_all_onesp)
975 /* x & x -> x, x | x -> x */
976 (for bitop (bit_and bit_ior)
981 /* x & C -> x if we know that x & ~C == 0. */
984 (bit_and SSA_NAME@0 INTEGER_CST@1)
985 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
986 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
990 /* x + (x & 1) -> (x + 1) & ~1 */
992 (plus:c @0 (bit_and:s @0 integer_onep@1))
993 (bit_and (plus @0 @1) (bit_not @1)))
995 /* x & ~(x & y) -> x & ~y */
996 /* x | ~(x | y) -> x | ~y */
997 (for bitop (bit_and bit_ior)
999 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1000 (bitop @0 (bit_not @1))))
1002 /* (~x & y) | ~(x | y) -> ~x */
1004 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1007 /* (x | y) ^ (x | ~y) -> ~x */
1009 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1012 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1014 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1015 (bit_not (bit_xor @0 @1)))
1017 /* (~x | y) ^ (x ^ y) -> x | ~y */
1019 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1020 (bit_ior @0 (bit_not @1)))
1022 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1024 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1025 (bit_not (bit_and @0 @1)))
1027 /* (x | y) & ~x -> y & ~x */
1028 /* (x & y) | ~x -> y | ~x */
1029 (for bitop (bit_and bit_ior)
1030 rbitop (bit_ior bit_and)
1032 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1035 /* (x & y) ^ (x | y) -> x ^ y */
1037 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1040 /* (x ^ y) ^ (x | y) -> x & y */
1042 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1045 /* (x & y) + (x ^ y) -> x | y */
1046 /* (x & y) | (x ^ y) -> x | y */
1047 /* (x & y) ^ (x ^ y) -> x | y */
1048 (for op (plus bit_ior bit_xor)
1050 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1053 /* (x & y) + (x | y) -> x + y */
1055 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1058 /* (x + y) - (x | y) -> x & y */
1060 (minus (plus @0 @1) (bit_ior @0 @1))
1061 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1062 && !TYPE_SATURATING (type))
1065 /* (x + y) - (x & y) -> x | y */
1067 (minus (plus @0 @1) (bit_and @0 @1))
1068 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1069 && !TYPE_SATURATING (type))
1072 /* (x | y) - (x ^ y) -> x & y */
1074 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1077 /* (x | y) - (x & y) -> x ^ y */
1079 (minus (bit_ior @0 @1) (bit_and @0 @1))
1082 /* (x | y) & ~(x & y) -> x ^ y */
1084 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1087 /* (x | y) & (~x ^ y) -> x & y */
1089 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1092 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1094 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1095 (bit_not (bit_xor @0 @1)))
1097 /* (~x | y) ^ (x | ~y) -> x ^ y */
1099 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1102 /* ~x & ~y -> ~(x | y)
1103 ~x | ~y -> ~(x & y) */
1104 (for op (bit_and bit_ior)
1105 rop (bit_ior bit_and)
1107 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1108 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1109 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1110 (bit_not (rop (convert @0) (convert @1))))))
1112 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1113 with a constant, and the two constants have no bits in common,
1114 we should treat this as a BIT_IOR_EXPR since this may produce more
1116 (for op (bit_xor plus)
1118 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1119 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1120 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1121 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1122 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1123 (bit_ior (convert @4) (convert @5)))))
1125 /* (X | Y) ^ X -> Y & ~ X*/
1127 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1128 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1129 (convert (bit_and @1 (bit_not @0)))))
1131 /* Convert ~X ^ ~Y to X ^ Y. */
1133 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1134 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1135 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1136 (bit_xor (convert @0) (convert @1))))
1138 /* Convert ~X ^ C to X ^ ~C. */
1140 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1141 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1142 (bit_xor (convert @0) (bit_not @1))))
1144 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1145 (for opo (bit_and bit_xor)
1146 opi (bit_xor bit_and)
1148 (opo:c (opi:cs @0 @1) @1)
1149 (bit_and (bit_not @0) @1)))
1151 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1152 operands are another bit-wise operation with a common input. If so,
1153 distribute the bit operations to save an operation and possibly two if
1154 constants are involved. For example, convert
1155 (A | B) & (A | C) into A | (B & C)
1156 Further simplification will occur if B and C are constants. */
1157 (for op (bit_and bit_ior bit_xor)
1158 rop (bit_ior bit_and bit_and)
1160 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1161 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1162 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1163 (rop (convert @0) (op (convert @1) (convert @2))))))
1165 /* Some simple reassociation for bit operations, also handled in reassoc. */
1166 /* (X & Y) & Y -> X & Y
1167 (X | Y) | Y -> X | Y */
1168 (for op (bit_and bit_ior)
1170 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1172 /* (X ^ Y) ^ Y -> X */
1174 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1176 /* (X & Y) & (X & Z) -> (X & Y) & Z
1177 (X | Y) | (X | Z) -> (X | Y) | Z */
1178 (for op (bit_and bit_ior)
1180 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1181 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1182 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1183 (if (single_use (@5) && single_use (@6))
1184 (op @3 (convert @2))
1185 (if (single_use (@3) && single_use (@4))
1186 (op (convert @1) @5))))))
1187 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1189 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1190 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1191 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1192 (bit_xor (convert @1) (convert @2))))
1194 /* Convert abs (abs (X)) into abs (X).
1195 also absu (absu (X)) into absu (X). */
1201 (absu (convert@2 (absu@1 @0)))
1202 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1205 /* Convert abs[u] (-X) -> abs[u] (X). */
1214 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1216 (abs tree_expr_nonnegative_p@0)
1220 (absu tree_expr_nonnegative_p@0)
1223 /* A few cases of fold-const.c negate_expr_p predicate. */
1224 (match negate_expr_p
1226 (if ((INTEGRAL_TYPE_P (type)
1227 && TYPE_UNSIGNED (type))
1228 || (!TYPE_OVERFLOW_SANITIZED (type)
1229 && may_negate_without_overflow_p (t)))))
1230 (match negate_expr_p
1232 (match negate_expr_p
1234 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1235 (match negate_expr_p
1237 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1238 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1240 (match negate_expr_p
1242 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1243 (match negate_expr_p
1245 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1246 || (FLOAT_TYPE_P (type)
1247 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1248 && !HONOR_SIGNED_ZEROS (type)))))
1250 /* (-A) * (-B) -> A * B */
1252 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1253 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1254 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1255 (mult (convert @0) (convert (negate @1)))))
1257 /* -(A + B) -> (-B) - A. */
1259 (negate (plus:c @0 negate_expr_p@1))
1260 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1261 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1262 (minus (negate @1) @0)))
1264 /* -(A - B) -> B - A. */
1266 (negate (minus @0 @1))
1267 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1268 || (FLOAT_TYPE_P (type)
1269 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1270 && !HONOR_SIGNED_ZEROS (type)))
1273 (negate (pointer_diff @0 @1))
1274 (if (TYPE_OVERFLOW_UNDEFINED (type))
1275 (pointer_diff @1 @0)))
1277 /* A - B -> A + (-B) if B is easily negatable. */
1279 (minus @0 negate_expr_p@1)
1280 (if (!FIXED_POINT_TYPE_P (type))
1281 (plus @0 (negate @1))))
1283 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1285 For bitwise binary operations apply operand conversions to the
1286 binary operation result instead of to the operands. This allows
1287 to combine successive conversions and bitwise binary operations.
1288 We combine the above two cases by using a conditional convert. */
1289 (for bitop (bit_and bit_ior bit_xor)
1291 (bitop (convert @0) (convert? @1))
1292 (if (((TREE_CODE (@1) == INTEGER_CST
1293 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1294 && int_fits_type_p (@1, TREE_TYPE (@0)))
1295 || types_match (@0, @1))
1296 /* ??? This transform conflicts with fold-const.c doing
1297 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1298 constants (if x has signed type, the sign bit cannot be set
1299 in c). This folds extension into the BIT_AND_EXPR.
1300 Restrict it to GIMPLE to avoid endless recursions. */
1301 && (bitop != BIT_AND_EXPR || GIMPLE)
1302 && (/* That's a good idea if the conversion widens the operand, thus
1303 after hoisting the conversion the operation will be narrower. */
1304 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1305 /* It's also a good idea if the conversion is to a non-integer
1307 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1308 /* Or if the precision of TO is not the same as the precision
1310 || !type_has_mode_precision_p (type)))
1311 (convert (bitop @0 (convert @1))))))
1313 (for bitop (bit_and bit_ior)
1314 rbitop (bit_ior bit_and)
1315 /* (x | y) & x -> x */
1316 /* (x & y) | x -> x */
1318 (bitop:c (rbitop:c @0 @1) @0)
1320 /* (~x | y) & x -> x & y */
1321 /* (~x & y) | x -> x | y */
1323 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1326 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1328 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1329 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1331 /* Combine successive equal operations with constants. */
1332 (for bitop (bit_and bit_ior bit_xor)
1334 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1335 (if (!CONSTANT_CLASS_P (@0))
1336 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1337 folded to a constant. */
1338 (bitop @0 (bitop @1 @2))
1339 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1340 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1341 the values involved are such that the operation can't be decided at
1342 compile time. Try folding one of @0 or @1 with @2 to see whether
1343 that combination can be decided at compile time.
1345 Keep the existing form if both folds fail, to avoid endless
1347 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1349 (bitop @1 { cst1; })
1350 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1352 (bitop @0 { cst2; }))))))))
1354 /* Try simple folding for X op !X, and X op X with the help
1355 of the truth_valued_p and logical_inverted_value predicates. */
1356 (match truth_valued_p
1358 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1359 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1360 (match truth_valued_p
1362 (match truth_valued_p
1365 (match (logical_inverted_value @0)
1367 (match (logical_inverted_value @0)
1368 (bit_not truth_valued_p@0))
1369 (match (logical_inverted_value @0)
1370 (eq @0 integer_zerop))
1371 (match (logical_inverted_value @0)
1372 (ne truth_valued_p@0 integer_truep))
1373 (match (logical_inverted_value @0)
1374 (bit_xor truth_valued_p@0 integer_truep))
1378 (bit_and:c @0 (logical_inverted_value @0))
1379 { build_zero_cst (type); })
1380 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1381 (for op (bit_ior bit_xor)
1383 (op:c truth_valued_p@0 (logical_inverted_value @0))
1384 { constant_boolean_node (true, type); }))
1385 /* X ==/!= !X is false/true. */
1388 (op:c truth_valued_p@0 (logical_inverted_value @0))
1389 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1393 (bit_not (bit_not @0))
1396 /* Convert ~ (-A) to A - 1. */
1398 (bit_not (convert? (negate @0)))
1399 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1400 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1401 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1403 /* Convert - (~A) to A + 1. */
1405 (negate (nop_convert (bit_not @0)))
1406 (plus (view_convert @0) { build_each_one_cst (type); }))
1408 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1410 (bit_not (convert? (minus @0 integer_each_onep)))
1411 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1412 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1413 (convert (negate @0))))
1415 (bit_not (convert? (plus @0 integer_all_onesp)))
1416 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1417 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1418 (convert (negate @0))))
1420 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1422 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1423 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1424 (convert (bit_xor @0 (bit_not @1)))))
1426 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1427 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1428 (convert (bit_xor @0 @1))))
1430 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1432 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1433 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1434 (bit_not (bit_xor (view_convert @0) @1))))
1436 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1438 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1439 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1441 /* Fold A - (A & B) into ~B & A. */
1443 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1444 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1445 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1446 (convert (bit_and (bit_not @1) @0))))
1448 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1449 (for cmp (gt lt ge le)
1451 (mult (convert (cmp @0 @1)) @2)
1452 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1454 /* For integral types with undefined overflow and C != 0 fold
1455 x * C EQ/NE y * C into x EQ/NE y. */
1458 (cmp (mult:c @0 @1) (mult:c @2 @1))
1459 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1460 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1461 && tree_expr_nonzero_p (@1))
1464 /* For integral types with wrapping overflow and C odd fold
1465 x * C EQ/NE y * C into x EQ/NE y. */
1468 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1469 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1470 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1471 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1474 /* For integral types with undefined overflow and C != 0 fold
1475 x * C RELOP y * C into:
1477 x RELOP y for nonnegative C
1478 y RELOP x for negative C */
1479 (for cmp (lt gt le ge)
1481 (cmp (mult:c @0 @1) (mult:c @2 @1))
1482 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1483 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1484 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1486 (if (TREE_CODE (@1) == INTEGER_CST
1487 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1490 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1494 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1495 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1496 && TYPE_UNSIGNED (TREE_TYPE (@0))
1497 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1498 && (wi::to_wide (@2)
1499 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1500 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1501 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1503 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1504 (for cmp (simple_comparison)
1506 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1507 (if (element_precision (@3) >= element_precision (@0)
1508 && types_match (@0, @1))
1509 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1510 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1512 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1515 tree utype = unsigned_type_for (TREE_TYPE (@0));
1517 (cmp (convert:utype @1) (convert:utype @0)))))
1518 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1519 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1523 tree utype = unsigned_type_for (TREE_TYPE (@0));
1525 (cmp (convert:utype @0) (convert:utype @1)))))))))
1527 /* X / C1 op C2 into a simple range test. */
1528 (for cmp (simple_comparison)
1530 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1531 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1532 && integer_nonzerop (@1)
1533 && !TREE_OVERFLOW (@1)
1534 && !TREE_OVERFLOW (@2))
1535 (with { tree lo, hi; bool neg_overflow;
1536 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1539 (if (code == LT_EXPR || code == GE_EXPR)
1540 (if (TREE_OVERFLOW (lo))
1541 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1542 (if (code == LT_EXPR)
1545 (if (code == LE_EXPR || code == GT_EXPR)
1546 (if (TREE_OVERFLOW (hi))
1547 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1548 (if (code == LE_EXPR)
1552 { build_int_cst (type, code == NE_EXPR); })
1553 (if (code == EQ_EXPR && !hi)
1555 (if (code == EQ_EXPR && !lo)
1557 (if (code == NE_EXPR && !hi)
1559 (if (code == NE_EXPR && !lo)
1562 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1566 tree etype = range_check_type (TREE_TYPE (@0));
1569 if (! TYPE_UNSIGNED (etype))
1570 etype = unsigned_type_for (etype);
1571 hi = fold_convert (etype, hi);
1572 lo = fold_convert (etype, lo);
1573 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1576 (if (etype && hi && !TREE_OVERFLOW (hi))
1577 (if (code == EQ_EXPR)
1578 (le (minus (convert:etype @0) { lo; }) { hi; })
1579 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1581 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1582 (for op (lt le ge gt)
1584 (op (plus:c @0 @2) (plus:c @1 @2))
1585 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1586 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1588 /* For equality and subtraction, this is also true with wrapping overflow. */
1589 (for op (eq ne minus)
1591 (op (plus:c @0 @2) (plus:c @1 @2))
1592 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1593 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1594 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1597 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1598 (for op (lt le ge gt)
1600 (op (minus @0 @2) (minus @1 @2))
1601 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1602 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1604 /* For equality and subtraction, this is also true with wrapping overflow. */
1605 (for op (eq ne minus)
1607 (op (minus @0 @2) (minus @1 @2))
1608 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1609 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1610 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1612 /* And for pointers... */
1613 (for op (simple_comparison)
1615 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1616 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1619 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1620 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1621 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1622 (pointer_diff @0 @1)))
1624 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1625 (for op (lt le ge gt)
1627 (op (minus @2 @0) (minus @2 @1))
1628 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1629 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1631 /* For equality and subtraction, this is also true with wrapping overflow. */
1632 (for op (eq ne minus)
1634 (op (minus @2 @0) (minus @2 @1))
1635 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1636 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1637 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1639 /* And for pointers... */
1640 (for op (simple_comparison)
1642 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1643 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1646 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1647 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1648 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1649 (pointer_diff @1 @0)))
1651 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1652 (for op (lt le gt ge)
1654 (op:c (plus:c@2 @0 @1) @1)
1655 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1656 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1657 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1658 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1659 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1660 /* For equality, this is also true with wrapping overflow. */
1663 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1664 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1665 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1666 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1667 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1668 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1669 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1670 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1672 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1673 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1674 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1675 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1676 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1678 /* X - Y < X is the same as Y > 0 when there is no overflow.
1679 For equality, this is also true with wrapping overflow. */
1680 (for op (simple_comparison)
1682 (op:c @0 (minus@2 @0 @1))
1683 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1684 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1685 || ((op == EQ_EXPR || op == NE_EXPR)
1686 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1687 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1688 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1691 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1692 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1696 (cmp (trunc_div @0 @1) integer_zerop)
1697 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1698 /* Complex ==/!= is allowed, but not </>=. */
1699 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1700 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1703 /* X == C - X can never be true if C is odd. */
1706 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1707 (if (TREE_INT_CST_LOW (@1) & 1)
1708 { constant_boolean_node (cmp == NE_EXPR, type); })))
1710 /* Arguments on which one can call get_nonzero_bits to get the bits
1712 (match with_possible_nonzero_bits
1714 (match with_possible_nonzero_bits
1716 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1717 /* Slightly extended version, do not make it recursive to keep it cheap. */
1718 (match (with_possible_nonzero_bits2 @0)
1719 with_possible_nonzero_bits@0)
1720 (match (with_possible_nonzero_bits2 @0)
1721 (bit_and:c with_possible_nonzero_bits@0 @2))
1723 /* Same for bits that are known to be set, but we do not have
1724 an equivalent to get_nonzero_bits yet. */
1725 (match (with_certain_nonzero_bits2 @0)
1727 (match (with_certain_nonzero_bits2 @0)
1728 (bit_ior @1 INTEGER_CST@0))
1730 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1733 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1734 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1735 { constant_boolean_node (cmp == NE_EXPR, type); })))
1737 /* ((X inner_op C0) outer_op C1)
1738 With X being a tree where value_range has reasoned certain bits to always be
1739 zero throughout its computed value range,
1740 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1741 where zero_mask has 1's for all bits that are sure to be 0 in
1743 if (inner_op == '^') C0 &= ~C1;
1744 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1745 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1747 (for inner_op (bit_ior bit_xor)
1748 outer_op (bit_xor bit_ior)
1751 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1755 wide_int zero_mask_not;
1759 if (TREE_CODE (@2) == SSA_NAME)
1760 zero_mask_not = get_nonzero_bits (@2);
1764 if (inner_op == BIT_XOR_EXPR)
1766 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1767 cst_emit = C0 | wi::to_wide (@1);
1771 C0 = wi::to_wide (@0);
1772 cst_emit = C0 ^ wi::to_wide (@1);
1775 (if (!fail && (C0 & zero_mask_not) == 0)
1776 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1777 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1778 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1780 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1782 (pointer_plus (pointer_plus:s @0 @1) @3)
1783 (pointer_plus @0 (plus @1 @3)))
1789 tem4 = (unsigned long) tem3;
1794 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1795 /* Conditionally look through a sign-changing conversion. */
1796 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1797 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1798 || (GENERIC && type == TREE_TYPE (@1))))
1801 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1802 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1806 tem = (sizetype) ptr;
1810 and produce the simpler and easier to analyze with respect to alignment
1811 ... = ptr & ~algn; */
1813 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1814 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1815 (bit_and @0 { algn; })))
1817 /* Try folding difference of addresses. */
1819 (minus (convert ADDR_EXPR@0) (convert @1))
1820 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1821 (with { poly_int64 diff; }
1822 (if (ptr_difference_const (@0, @1, &diff))
1823 { build_int_cst_type (type, diff); }))))
1825 (minus (convert @0) (convert ADDR_EXPR@1))
1826 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1827 (with { poly_int64 diff; }
1828 (if (ptr_difference_const (@0, @1, &diff))
1829 { build_int_cst_type (type, diff); }))))
1831 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1832 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1833 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1834 (with { poly_int64 diff; }
1835 (if (ptr_difference_const (@0, @1, &diff))
1836 { build_int_cst_type (type, diff); }))))
1838 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1839 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1840 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1841 (with { poly_int64 diff; }
1842 (if (ptr_difference_const (@0, @1, &diff))
1843 { build_int_cst_type (type, diff); }))))
1845 /* If arg0 is derived from the address of an object or function, we may
1846 be able to fold this expression using the object or function's
1849 (bit_and (convert? @0) INTEGER_CST@1)
1850 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1851 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1855 unsigned HOST_WIDE_INT bitpos;
1856 get_pointer_alignment_1 (@0, &align, &bitpos);
1858 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1859 { wide_int_to_tree (type, (wi::to_wide (@1)
1860 & (bitpos / BITS_PER_UNIT))); }))))
1863 /* We can't reassociate at all for saturating types. */
1864 (if (!TYPE_SATURATING (type))
1866 /* Contract negates. */
1867 /* A + (-B) -> A - B */
1869 (plus:c @0 (convert? (negate @1)))
1870 /* Apply STRIP_NOPS on the negate. */
1871 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1872 && !TYPE_OVERFLOW_SANITIZED (type))
1876 if (INTEGRAL_TYPE_P (type)
1877 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1878 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1880 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1881 /* A - (-B) -> A + B */
1883 (minus @0 (convert? (negate @1)))
1884 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1885 && !TYPE_OVERFLOW_SANITIZED (type))
1889 if (INTEGRAL_TYPE_P (type)
1890 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1891 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1893 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1895 Sign-extension is ok except for INT_MIN, which thankfully cannot
1896 happen without overflow. */
1898 (negate (convert (negate @1)))
1899 (if (INTEGRAL_TYPE_P (type)
1900 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1901 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1902 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1903 && !TYPE_OVERFLOW_SANITIZED (type)
1904 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1907 (negate (convert negate_expr_p@1))
1908 (if (SCALAR_FLOAT_TYPE_P (type)
1909 && ((DECIMAL_FLOAT_TYPE_P (type)
1910 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1911 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1912 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1913 (convert (negate @1))))
1915 (negate (nop_convert (negate @1)))
1916 (if (!TYPE_OVERFLOW_SANITIZED (type)
1917 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1920 /* We can't reassociate floating-point unless -fassociative-math
1921 or fixed-point plus or minus because of saturation to +-Inf. */
1922 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1923 && !FIXED_POINT_TYPE_P (type))
1925 /* Match patterns that allow contracting a plus-minus pair
1926 irrespective of overflow issues. */
1927 /* (A +- B) - A -> +- B */
1928 /* (A +- B) -+ B -> A */
1929 /* A - (A +- B) -> -+ B */
1930 /* A +- (B -+ A) -> +- B */
1932 (minus (plus:c @0 @1) @0)
1935 (minus (minus @0 @1) @0)
1938 (plus:c (minus @0 @1) @1)
1941 (minus @0 (plus:c @0 @1))
1944 (minus @0 (minus @0 @1))
1946 /* (A +- B) + (C - A) -> C +- B */
1947 /* (A + B) - (A - C) -> B + C */
1948 /* More cases are handled with comparisons. */
1950 (plus:c (plus:c @0 @1) (minus @2 @0))
1953 (plus:c (minus @0 @1) (minus @2 @0))
1956 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1957 (if (TYPE_OVERFLOW_UNDEFINED (type)
1958 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1959 (pointer_diff @2 @1)))
1961 (minus (plus:c @0 @1) (minus @0 @2))
1964 /* (A +- CST1) +- CST2 -> A + CST3
1965 Use view_convert because it is safe for vectors and equivalent for
1967 (for outer_op (plus minus)
1968 (for inner_op (plus minus)
1969 neg_inner_op (minus plus)
1971 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1973 /* If one of the types wraps, use that one. */
1974 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1975 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1976 forever if something doesn't simplify into a constant. */
1977 (if (!CONSTANT_CLASS_P (@0))
1978 (if (outer_op == PLUS_EXPR)
1979 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1980 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1981 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1982 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1983 (if (outer_op == PLUS_EXPR)
1984 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1985 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1986 /* If the constant operation overflows we cannot do the transform
1987 directly as we would introduce undefined overflow, for example
1988 with (a - 1) + INT_MIN. */
1989 (if (types_match (type, @0))
1990 (with { tree cst = const_binop (outer_op == inner_op
1991 ? PLUS_EXPR : MINUS_EXPR,
1993 (if (cst && !TREE_OVERFLOW (cst))
1994 (inner_op @0 { cst; } )
1995 /* X+INT_MAX+1 is X-INT_MIN. */
1996 (if (INTEGRAL_TYPE_P (type) && cst
1997 && wi::to_wide (cst) == wi::min_value (type))
1998 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1999 /* Last resort, use some unsigned type. */
2000 (with { tree utype = unsigned_type_for (type); }
2002 (view_convert (inner_op
2003 (view_convert:utype @0)
2005 { drop_tree_overflow (cst); }))))))))))))))
2007 /* (CST1 - A) +- CST2 -> CST3 - A */
2008 (for outer_op (plus minus)
2010 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
2011 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2012 (if (cst && !TREE_OVERFLOW (cst))
2013 (minus { cst; } @0)))))
2015 /* CST1 - (CST2 - A) -> CST3 + A */
2017 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
2018 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2019 (if (cst && !TREE_OVERFLOW (cst))
2020 (plus { cst; } @0))))
2024 (plus:c (bit_not @0) @0)
2025 (if (!TYPE_OVERFLOW_TRAPS (type))
2026 { build_all_ones_cst (type); }))
2030 (plus (convert? (bit_not @0)) integer_each_onep)
2031 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2032 (negate (convert @0))))
2036 (minus (convert? (negate @0)) integer_each_onep)
2037 (if (!TYPE_OVERFLOW_TRAPS (type)
2038 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2039 (bit_not (convert @0))))
2043 (minus integer_all_onesp @0)
2046 /* (T)(P + A) - (T)P -> (T) A */
2048 (minus (convert (plus:c @@0 @1))
2050 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2051 /* For integer types, if A has a smaller type
2052 than T the result depends on the possible
2054 E.g. T=size_t, A=(unsigned)429497295, P>0.
2055 However, if an overflow in P + A would cause
2056 undefined behavior, we can assume that there
2058 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2059 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2062 (minus (convert (pointer_plus @@0 @1))
2064 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2065 /* For pointer types, if the conversion of A to the
2066 final type requires a sign- or zero-extension,
2067 then we have to punt - it is not defined which
2069 || (POINTER_TYPE_P (TREE_TYPE (@0))
2070 && TREE_CODE (@1) == INTEGER_CST
2071 && tree_int_cst_sign_bit (@1) == 0))
2074 (pointer_diff (pointer_plus @@0 @1) @0)
2075 /* The second argument of pointer_plus must be interpreted as signed, and
2076 thus sign-extended if necessary. */
2077 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2078 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2079 second arg is unsigned even when we need to consider it as signed,
2080 we don't want to diagnose overflow here. */
2081 (convert (view_convert:stype @1))))
2083 /* (T)P - (T)(P + A) -> -(T) A */
2085 (minus (convert? @0)
2086 (convert (plus:c @@0 @1)))
2087 (if (INTEGRAL_TYPE_P (type)
2088 && TYPE_OVERFLOW_UNDEFINED (type)
2089 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2090 (with { tree utype = unsigned_type_for (type); }
2091 (convert (negate (convert:utype @1))))
2092 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2093 /* For integer types, if A has a smaller type
2094 than T the result depends on the possible
2096 E.g. T=size_t, A=(unsigned)429497295, P>0.
2097 However, if an overflow in P + A would cause
2098 undefined behavior, we can assume that there
2100 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2101 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2102 (negate (convert @1)))))
2105 (convert (pointer_plus @@0 @1)))
2106 (if (INTEGRAL_TYPE_P (type)
2107 && TYPE_OVERFLOW_UNDEFINED (type)
2108 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2109 (with { tree utype = unsigned_type_for (type); }
2110 (convert (negate (convert:utype @1))))
2111 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2112 /* For pointer types, if the conversion of A to the
2113 final type requires a sign- or zero-extension,
2114 then we have to punt - it is not defined which
2116 || (POINTER_TYPE_P (TREE_TYPE (@0))
2117 && TREE_CODE (@1) == INTEGER_CST
2118 && tree_int_cst_sign_bit (@1) == 0))
2119 (negate (convert @1)))))
2121 (pointer_diff @0 (pointer_plus @@0 @1))
2122 /* The second argument of pointer_plus must be interpreted as signed, and
2123 thus sign-extended if necessary. */
2124 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2125 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2126 second arg is unsigned even when we need to consider it as signed,
2127 we don't want to diagnose overflow here. */
2128 (negate (convert (view_convert:stype @1)))))
2130 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2132 (minus (convert (plus:c @@0 @1))
2133 (convert (plus:c @0 @2)))
2134 (if (INTEGRAL_TYPE_P (type)
2135 && TYPE_OVERFLOW_UNDEFINED (type)
2136 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2137 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2138 (with { tree utype = unsigned_type_for (type); }
2139 (convert (minus (convert:utype @1) (convert:utype @2))))
2140 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2141 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2142 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2143 /* For integer types, if A has a smaller type
2144 than T the result depends on the possible
2146 E.g. T=size_t, A=(unsigned)429497295, P>0.
2147 However, if an overflow in P + A would cause
2148 undefined behavior, we can assume that there
2150 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2151 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2152 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2153 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2154 (minus (convert @1) (convert @2)))))
2156 (minus (convert (pointer_plus @@0 @1))
2157 (convert (pointer_plus @0 @2)))
2158 (if (INTEGRAL_TYPE_P (type)
2159 && TYPE_OVERFLOW_UNDEFINED (type)
2160 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2161 (with { tree utype = unsigned_type_for (type); }
2162 (convert (minus (convert:utype @1) (convert:utype @2))))
2163 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2164 /* For pointer types, if the conversion of A to the
2165 final type requires a sign- or zero-extension,
2166 then we have to punt - it is not defined which
2168 || (POINTER_TYPE_P (TREE_TYPE (@0))
2169 && TREE_CODE (@1) == INTEGER_CST
2170 && tree_int_cst_sign_bit (@1) == 0
2171 && TREE_CODE (@2) == INTEGER_CST
2172 && tree_int_cst_sign_bit (@2) == 0))
2173 (minus (convert @1) (convert @2)))))
2175 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2176 /* The second argument of pointer_plus must be interpreted as signed, and
2177 thus sign-extended if necessary. */
2178 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2179 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2180 second arg is unsigned even when we need to consider it as signed,
2181 we don't want to diagnose overflow here. */
2182 (minus (convert (view_convert:stype @1))
2183 (convert (view_convert:stype @2)))))))
2185 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2186 Modeled after fold_plusminus_mult_expr. */
2187 (if (!TYPE_SATURATING (type)
2188 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2189 (for plusminus (plus minus)
2191 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2192 (if ((!ANY_INTEGRAL_TYPE_P (type)
2193 || TYPE_OVERFLOW_WRAPS (type)
2194 || (INTEGRAL_TYPE_P (type)
2195 && tree_expr_nonzero_p (@0)
2196 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2197 /* If @1 +- @2 is constant require a hard single-use on either
2198 original operand (but not on both). */
2199 && (single_use (@3) || single_use (@4)))
2200 (mult (plusminus @1 @2) @0)))
2201 /* We cannot generate constant 1 for fract. */
2202 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2204 (plusminus @0 (mult:c@3 @0 @2))
2205 (if ((!ANY_INTEGRAL_TYPE_P (type)
2206 || TYPE_OVERFLOW_WRAPS (type)
2207 || (INTEGRAL_TYPE_P (type)
2208 && tree_expr_nonzero_p (@0)
2209 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2211 (mult (plusminus { build_one_cst (type); } @2) @0)))
2213 (plusminus (mult:c@3 @0 @2) @0)
2214 (if ((!ANY_INTEGRAL_TYPE_P (type)
2215 || TYPE_OVERFLOW_WRAPS (type)
2216 || (INTEGRAL_TYPE_P (type)
2217 && tree_expr_nonzero_p (@0)
2218 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2220 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2222 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2224 (for minmax (min max FMIN_ALL FMAX_ALL)
2228 /* min(max(x,y),y) -> y. */
2230 (min:c (max:c @0 @1) @1)
2232 /* max(min(x,y),y) -> y. */
2234 (max:c (min:c @0 @1) @1)
2236 /* max(a,-a) -> abs(a). */
2238 (max:c @0 (negate @0))
2239 (if (TREE_CODE (type) != COMPLEX_TYPE
2240 && (! ANY_INTEGRAL_TYPE_P (type)
2241 || TYPE_OVERFLOW_UNDEFINED (type)))
2243 /* min(a,-a) -> -abs(a). */
2245 (min:c @0 (negate @0))
2246 (if (TREE_CODE (type) != COMPLEX_TYPE
2247 && (! ANY_INTEGRAL_TYPE_P (type)
2248 || TYPE_OVERFLOW_UNDEFINED (type)))
2253 (if (INTEGRAL_TYPE_P (type)
2254 && TYPE_MIN_VALUE (type)
2255 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2257 (if (INTEGRAL_TYPE_P (type)
2258 && TYPE_MAX_VALUE (type)
2259 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2264 (if (INTEGRAL_TYPE_P (type)
2265 && TYPE_MAX_VALUE (type)
2266 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2268 (if (INTEGRAL_TYPE_P (type)
2269 && TYPE_MIN_VALUE (type)
2270 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2273 /* max (a, a + CST) -> a + CST where CST is positive. */
2274 /* max (a, a + CST) -> a where CST is negative. */
2276 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2277 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2278 (if (tree_int_cst_sgn (@1) > 0)
2282 /* min (a, a + CST) -> a where CST is positive. */
2283 /* min (a, a + CST) -> a + CST where CST is negative. */
2285 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2286 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2287 (if (tree_int_cst_sgn (@1) > 0)
2291 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2292 and the outer convert demotes the expression back to x's type. */
2293 (for minmax (min max)
2295 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2296 (if (INTEGRAL_TYPE_P (type)
2297 && types_match (@1, type) && int_fits_type_p (@2, type)
2298 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2299 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2300 (minmax @1 (convert @2)))))
2302 (for minmax (FMIN_ALL FMAX_ALL)
2303 /* If either argument is NaN, return the other one. Avoid the
2304 transformation if we get (and honor) a signalling NaN. */
2306 (minmax:c @0 REAL_CST@1)
2307 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2308 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2310 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2311 functions to return the numeric arg if the other one is NaN.
2312 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2313 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2314 worry about it either. */
2315 (if (flag_finite_math_only)
2322 /* min (-A, -B) -> -max (A, B) */
2323 (for minmax (min max FMIN_ALL FMAX_ALL)
2324 maxmin (max min FMAX_ALL FMIN_ALL)
2326 (minmax (negate:s@2 @0) (negate:s@3 @1))
2327 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2328 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2329 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2330 (negate (maxmin @0 @1)))))
2331 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2332 MAX (~X, ~Y) -> ~MIN (X, Y) */
2333 (for minmax (min max)
2336 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2337 (bit_not (maxmin @0 @1))))
2339 /* MIN (X, Y) == X -> X <= Y */
2340 (for minmax (min min max max)
2344 (cmp:c (minmax:c @0 @1) @0)
2345 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2347 /* MIN (X, 5) == 0 -> X == 0
2348 MIN (X, 5) == 7 -> false */
2351 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2352 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2353 TYPE_SIGN (TREE_TYPE (@0))))
2354 { constant_boolean_node (cmp == NE_EXPR, type); }
2355 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2356 TYPE_SIGN (TREE_TYPE (@0))))
2360 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2361 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2362 TYPE_SIGN (TREE_TYPE (@0))))
2363 { constant_boolean_node (cmp == NE_EXPR, type); }
2364 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2365 TYPE_SIGN (TREE_TYPE (@0))))
2367 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2368 (for minmax (min min max max min min max max )
2369 cmp (lt le gt ge gt ge lt le )
2370 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2372 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2373 (comb (cmp @0 @2) (cmp @1 @2))))
2375 /* Simplifications of shift and rotates. */
2377 (for rotate (lrotate rrotate)
2379 (rotate integer_all_onesp@0 @1)
2382 /* Optimize -1 >> x for arithmetic right shifts. */
2384 (rshift integer_all_onesp@0 @1)
2385 (if (!TYPE_UNSIGNED (type)
2386 && tree_expr_nonnegative_p (@1))
2389 /* Optimize (x >> c) << c into x & (-1<<c). */
2391 (lshift (rshift @0 INTEGER_CST@1) @1)
2392 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2393 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2395 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2398 (rshift (lshift @0 INTEGER_CST@1) @1)
2399 (if (TYPE_UNSIGNED (type)
2400 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2401 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2403 (for shiftrotate (lrotate rrotate lshift rshift)
2405 (shiftrotate @0 integer_zerop)
2408 (shiftrotate integer_zerop@0 @1)
2410 /* Prefer vector1 << scalar to vector1 << vector2
2411 if vector2 is uniform. */
2412 (for vec (VECTOR_CST CONSTRUCTOR)
2414 (shiftrotate @0 vec@1)
2415 (with { tree tem = uniform_vector_p (@1); }
2417 (shiftrotate @0 { tem; }))))))
2419 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2420 Y is 0. Similarly for X >> Y. */
2422 (for shift (lshift rshift)
2424 (shift @0 SSA_NAME@1)
2425 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2427 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2428 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2430 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2434 /* Rewrite an LROTATE_EXPR by a constant into an
2435 RROTATE_EXPR by a new constant. */
2437 (lrotate @0 INTEGER_CST@1)
2438 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2439 build_int_cst (TREE_TYPE (@1),
2440 element_precision (type)), @1); }))
2442 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2443 (for op (lrotate rrotate rshift lshift)
2445 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2446 (with { unsigned int prec = element_precision (type); }
2447 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2448 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2449 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2450 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2451 (with { unsigned int low = (tree_to_uhwi (@1)
2452 + tree_to_uhwi (@2)); }
2453 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2454 being well defined. */
2456 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2457 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2458 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2459 { build_zero_cst (type); }
2460 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2461 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2464 /* ((1 << A) & 1) != 0 -> A == 0
2465 ((1 << A) & 1) == 0 -> A != 0 */
2469 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2470 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2472 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2473 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2477 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2478 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2480 || (!integer_zerop (@2)
2481 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2482 { constant_boolean_node (cmp == NE_EXPR, type); }
2483 (if (!integer_zerop (@2)
2484 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2485 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2487 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2488 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2489 if the new mask might be further optimized. */
2490 (for shift (lshift rshift)
2492 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2494 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2495 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2496 && tree_fits_uhwi_p (@1)
2497 && tree_to_uhwi (@1) > 0
2498 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2501 unsigned int shiftc = tree_to_uhwi (@1);
2502 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2503 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2504 tree shift_type = TREE_TYPE (@3);
2507 if (shift == LSHIFT_EXPR)
2508 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2509 else if (shift == RSHIFT_EXPR
2510 && type_has_mode_precision_p (shift_type))
2512 prec = TYPE_PRECISION (TREE_TYPE (@3));
2514 /* See if more bits can be proven as zero because of
2517 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2519 tree inner_type = TREE_TYPE (@0);
2520 if (type_has_mode_precision_p (inner_type)
2521 && TYPE_PRECISION (inner_type) < prec)
2523 prec = TYPE_PRECISION (inner_type);
2524 /* See if we can shorten the right shift. */
2526 shift_type = inner_type;
2527 /* Otherwise X >> C1 is all zeros, so we'll optimize
2528 it into (X, 0) later on by making sure zerobits
2532 zerobits = HOST_WIDE_INT_M1U;
2535 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2536 zerobits <<= prec - shiftc;
2538 /* For arithmetic shift if sign bit could be set, zerobits
2539 can contain actually sign bits, so no transformation is
2540 possible, unless MASK masks them all away. In that
2541 case the shift needs to be converted into logical shift. */
2542 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2543 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2545 if ((mask & zerobits) == 0)
2546 shift_type = unsigned_type_for (TREE_TYPE (@3));
2552 /* ((X << 16) & 0xff00) is (X, 0). */
2553 (if ((mask & zerobits) == mask)
2554 { build_int_cst (type, 0); }
2555 (with { newmask = mask | zerobits; }
2556 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2559 /* Only do the transformation if NEWMASK is some integer
2561 for (prec = BITS_PER_UNIT;
2562 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2563 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2566 (if (prec < HOST_BITS_PER_WIDE_INT
2567 || newmask == HOST_WIDE_INT_M1U)
2569 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2570 (if (!tree_int_cst_equal (newmaskt, @2))
2571 (if (shift_type != TREE_TYPE (@3))
2572 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2573 (bit_and @4 { newmaskt; })))))))))))))
2575 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2576 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2577 (for shift (lshift rshift)
2578 (for bit_op (bit_and bit_xor bit_ior)
2580 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2582 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2583 (bit_op (shift (convert @0) @1) { mask; }))))))
2585 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2587 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2588 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2589 && (element_precision (TREE_TYPE (@0))
2590 <= element_precision (TREE_TYPE (@1))
2591 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2593 { tree shift_type = TREE_TYPE (@0); }
2594 (convert (rshift (convert:shift_type @1) @2)))))
2596 /* ~(~X >>r Y) -> X >>r Y
2597 ~(~X <<r Y) -> X <<r Y */
2598 (for rotate (lrotate rrotate)
2600 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2601 (if ((element_precision (TREE_TYPE (@0))
2602 <= element_precision (TREE_TYPE (@1))
2603 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2604 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2605 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2607 { tree rotate_type = TREE_TYPE (@0); }
2608 (convert (rotate (convert:rotate_type @1) @2))))))
2610 /* Simplifications of conversions. */
2612 /* Basic strip-useless-type-conversions / strip_nops. */
2613 (for cvt (convert view_convert float fix_trunc)
2616 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2617 || (GENERIC && type == TREE_TYPE (@0)))
2620 /* Contract view-conversions. */
2622 (view_convert (view_convert @0))
2625 /* For integral conversions with the same precision or pointer
2626 conversions use a NOP_EXPR instead. */
2629 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2630 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2631 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2634 /* Strip inner integral conversions that do not change precision or size, or
2635 zero-extend while keeping the same size (for bool-to-char). */
2637 (view_convert (convert@0 @1))
2638 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2639 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2640 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2641 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2642 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2643 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2646 /* Simplify a view-converted empty constructor. */
2648 (view_convert CONSTRUCTOR@0)
2649 (if (TREE_CODE (@0) != SSA_NAME
2650 && CONSTRUCTOR_NELTS (@0) == 0)
2651 { build_zero_cst (type); }))
2653 /* Re-association barriers around constants and other re-association
2654 barriers can be removed. */
2656 (paren CONSTANT_CLASS_P@0)
2659 (paren (paren@1 @0))
2662 /* Handle cases of two conversions in a row. */
2663 (for ocvt (convert float fix_trunc)
2664 (for icvt (convert float)
2669 tree inside_type = TREE_TYPE (@0);
2670 tree inter_type = TREE_TYPE (@1);
2671 int inside_int = INTEGRAL_TYPE_P (inside_type);
2672 int inside_ptr = POINTER_TYPE_P (inside_type);
2673 int inside_float = FLOAT_TYPE_P (inside_type);
2674 int inside_vec = VECTOR_TYPE_P (inside_type);
2675 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2676 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2677 int inter_int = INTEGRAL_TYPE_P (inter_type);
2678 int inter_ptr = POINTER_TYPE_P (inter_type);
2679 int inter_float = FLOAT_TYPE_P (inter_type);
2680 int inter_vec = VECTOR_TYPE_P (inter_type);
2681 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2682 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2683 int final_int = INTEGRAL_TYPE_P (type);
2684 int final_ptr = POINTER_TYPE_P (type);
2685 int final_float = FLOAT_TYPE_P (type);
2686 int final_vec = VECTOR_TYPE_P (type);
2687 unsigned int final_prec = TYPE_PRECISION (type);
2688 int final_unsignedp = TYPE_UNSIGNED (type);
2691 /* In addition to the cases of two conversions in a row
2692 handled below, if we are converting something to its own
2693 type via an object of identical or wider precision, neither
2694 conversion is needed. */
2695 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2697 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2698 && (((inter_int || inter_ptr) && final_int)
2699 || (inter_float && final_float))
2700 && inter_prec >= final_prec)
2703 /* Likewise, if the intermediate and initial types are either both
2704 float or both integer, we don't need the middle conversion if the
2705 former is wider than the latter and doesn't change the signedness
2706 (for integers). Avoid this if the final type is a pointer since
2707 then we sometimes need the middle conversion. */
2708 (if (((inter_int && inside_int) || (inter_float && inside_float))
2709 && (final_int || final_float)
2710 && inter_prec >= inside_prec
2711 && (inter_float || inter_unsignedp == inside_unsignedp))
2714 /* If we have a sign-extension of a zero-extended value, we can
2715 replace that by a single zero-extension. Likewise if the
2716 final conversion does not change precision we can drop the
2717 intermediate conversion. */
2718 (if (inside_int && inter_int && final_int
2719 && ((inside_prec < inter_prec && inter_prec < final_prec
2720 && inside_unsignedp && !inter_unsignedp)
2721 || final_prec == inter_prec))
2724 /* Two conversions in a row are not needed unless:
2725 - some conversion is floating-point (overstrict for now), or
2726 - some conversion is a vector (overstrict for now), or
2727 - the intermediate type is narrower than both initial and
2729 - the intermediate type and innermost type differ in signedness,
2730 and the outermost type is wider than the intermediate, or
2731 - the initial type is a pointer type and the precisions of the
2732 intermediate and final types differ, or
2733 - the final type is a pointer type and the precisions of the
2734 initial and intermediate types differ. */
2735 (if (! inside_float && ! inter_float && ! final_float
2736 && ! inside_vec && ! inter_vec && ! final_vec
2737 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2738 && ! (inside_int && inter_int
2739 && inter_unsignedp != inside_unsignedp
2740 && inter_prec < final_prec)
2741 && ((inter_unsignedp && inter_prec > inside_prec)
2742 == (final_unsignedp && final_prec > inter_prec))
2743 && ! (inside_ptr && inter_prec != final_prec)
2744 && ! (final_ptr && inside_prec != inter_prec))
2747 /* A truncation to an unsigned type (a zero-extension) should be
2748 canonicalized as bitwise and of a mask. */
2749 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2750 && final_int && inter_int && inside_int
2751 && final_prec == inside_prec
2752 && final_prec > inter_prec
2754 (convert (bit_and @0 { wide_int_to_tree
2756 wi::mask (inter_prec, false,
2757 TYPE_PRECISION (inside_type))); })))
2759 /* If we are converting an integer to a floating-point that can
2760 represent it exactly and back to an integer, we can skip the
2761 floating-point conversion. */
2762 (if (GIMPLE /* PR66211 */
2763 && inside_int && inter_float && final_int &&
2764 (unsigned) significand_size (TYPE_MODE (inter_type))
2765 >= inside_prec - !inside_unsignedp)
2768 /* If we have a narrowing conversion to an integral type that is fed by a
2769 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2770 masks off bits outside the final type (and nothing else). */
2772 (convert (bit_and @0 INTEGER_CST@1))
2773 (if (INTEGRAL_TYPE_P (type)
2774 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2775 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2776 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2777 TYPE_PRECISION (type)), 0))
2781 /* (X /[ex] A) * A -> X. */
2783 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2786 /* Simplify (A / B) * B + (A % B) -> A. */
2787 (for div (trunc_div ceil_div floor_div round_div)
2788 mod (trunc_mod ceil_mod floor_mod round_mod)
2790 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
2793 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2794 (for op (plus minus)
2796 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2797 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2798 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2801 wi::overflow_type overflow;
2802 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2803 TYPE_SIGN (type), &overflow);
2805 (if (types_match (type, TREE_TYPE (@2))
2806 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2807 (op @0 { wide_int_to_tree (type, mul); })
2808 (with { tree utype = unsigned_type_for (type); }
2809 (convert (op (convert:utype @0)
2810 (mult (convert:utype @1) (convert:utype @2))))))))))
2812 /* Canonicalization of binary operations. */
2814 /* Convert X + -C into X - C. */
2816 (plus @0 REAL_CST@1)
2817 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2818 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2819 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2820 (minus @0 { tem; })))))
2822 /* Convert x+x into x*2. */
2825 (if (SCALAR_FLOAT_TYPE_P (type))
2826 (mult @0 { build_real (type, dconst2); })
2827 (if (INTEGRAL_TYPE_P (type))
2828 (mult @0 { build_int_cst (type, 2); }))))
2832 (minus integer_zerop @1)
2835 (pointer_diff integer_zerop @1)
2836 (negate (convert @1)))
2838 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2839 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2840 (-ARG1 + ARG0) reduces to -ARG1. */
2842 (minus real_zerop@0 @1)
2843 (if (fold_real_zero_addition_p (type, @0, 0))
2846 /* Transform x * -1 into -x. */
2848 (mult @0 integer_minus_onep)
2851 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2852 signed overflow for CST != 0 && CST != -1. */
2854 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2855 (if (TREE_CODE (@2) != INTEGER_CST
2857 && !integer_zerop (@1) && !integer_minus_onep (@1))
2858 (mult (mult @0 @2) @1)))
2860 /* True if we can easily extract the real and imaginary parts of a complex
2862 (match compositional_complex
2863 (convert? (complex @0 @1)))
2865 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2867 (complex (realpart @0) (imagpart @0))
2870 (realpart (complex @0 @1))
2873 (imagpart (complex @0 @1))
2876 /* Sometimes we only care about half of a complex expression. */
2878 (realpart (convert?:s (conj:s @0)))
2879 (convert (realpart @0)))
2881 (imagpart (convert?:s (conj:s @0)))
2882 (convert (negate (imagpart @0))))
2883 (for part (realpart imagpart)
2884 (for op (plus minus)
2886 (part (convert?:s@2 (op:s @0 @1)))
2887 (convert (op (part @0) (part @1))))))
2889 (realpart (convert?:s (CEXPI:s @0)))
2892 (imagpart (convert?:s (CEXPI:s @0)))
2895 /* conj(conj(x)) -> x */
2897 (conj (convert? (conj @0)))
2898 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2901 /* conj({x,y}) -> {x,-y} */
2903 (conj (convert?:s (complex:s @0 @1)))
2904 (with { tree itype = TREE_TYPE (type); }
2905 (complex (convert:itype @0) (negate (convert:itype @1)))))
2907 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2908 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2913 (bswap (bit_not (bswap @0)))
2915 (for bitop (bit_xor bit_ior bit_and)
2917 (bswap (bitop:c (bswap @0) @1))
2918 (bitop @0 (bswap @1)))))
2921 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2923 /* Simplify constant conditions.
2924 Only optimize constant conditions when the selected branch
2925 has the same type as the COND_EXPR. This avoids optimizing
2926 away "c ? x : throw", where the throw has a void type.
2927 Note that we cannot throw away the fold-const.c variant nor
2928 this one as we depend on doing this transform before possibly
2929 A ? B : B -> B triggers and the fold-const.c one can optimize
2930 0 ? A : B to B even if A has side-effects. Something
2931 genmatch cannot handle. */
2933 (cond INTEGER_CST@0 @1 @2)
2934 (if (integer_zerop (@0))
2935 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2937 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2940 (vec_cond VECTOR_CST@0 @1 @2)
2941 (if (integer_all_onesp (@0))
2943 (if (integer_zerop (@0))
2946 /* Sink unary operations to constant branches, but only if we do fold it to
2948 (for op (negate bit_not abs absu)
2950 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
2954 cst1 = const_unop (op, type, @1);
2956 cst2 = const_unop (op, type, @2);
2959 (vec_cond @0 { cst1; } { cst2; })))))
2961 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2963 /* This pattern implements two kinds simplification:
2966 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2967 1) Conversions are type widening from smaller type.
2968 2) Const c1 equals to c2 after canonicalizing comparison.
2969 3) Comparison has tree code LT, LE, GT or GE.
2970 This specific pattern is needed when (cmp (convert x) c) may not
2971 be simplified by comparison patterns because of multiple uses of
2972 x. It also makes sense here because simplifying across multiple
2973 referred var is always benefitial for complicated cases.
2976 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2977 (for cmp (lt le gt ge eq)
2979 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2982 tree from_type = TREE_TYPE (@1);
2983 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2984 enum tree_code code = ERROR_MARK;
2986 if (INTEGRAL_TYPE_P (from_type)
2987 && int_fits_type_p (@2, from_type)
2988 && (types_match (c1_type, from_type)
2989 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2990 && (TYPE_UNSIGNED (from_type)
2991 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2992 && (types_match (c2_type, from_type)
2993 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2994 && (TYPE_UNSIGNED (from_type)
2995 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2999 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3001 /* X <= Y - 1 equals to X < Y. */
3004 /* X > Y - 1 equals to X >= Y. */
3008 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3010 /* X < Y + 1 equals to X <= Y. */
3013 /* X >= Y + 1 equals to X > Y. */
3017 if (code != ERROR_MARK
3018 || wi::to_widest (@2) == wi::to_widest (@3))
3020 if (cmp == LT_EXPR || cmp == LE_EXPR)
3022 if (cmp == GT_EXPR || cmp == GE_EXPR)
3026 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3027 else if (int_fits_type_p (@3, from_type))
3031 (if (code == MAX_EXPR)
3032 (convert (max @1 (convert @2)))
3033 (if (code == MIN_EXPR)
3034 (convert (min @1 (convert @2)))
3035 (if (code == EQ_EXPR)
3036 (convert (cond (eq @1 (convert @3))
3037 (convert:from_type @3) (convert:from_type @2)))))))))
3039 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3041 1) OP is PLUS or MINUS.
3042 2) CMP is LT, LE, GT or GE.
3043 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3045 This pattern also handles special cases like:
3047 A) Operand x is a unsigned to signed type conversion and c1 is
3048 integer zero. In this case,
3049 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3050 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3051 B) Const c1 may not equal to (C3 op' C2). In this case we also
3052 check equality for (c1+1) and (c1-1) by adjusting comparison
3055 TODO: Though signed type is handled by this pattern, it cannot be
3056 simplified at the moment because C standard requires additional
3057 type promotion. In order to match&simplify it here, the IR needs
3058 to be cleaned up by other optimizers, i.e, VRP. */
3059 (for op (plus minus)
3060 (for cmp (lt le gt ge)
3062 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3063 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3064 (if (types_match (from_type, to_type)
3065 /* Check if it is special case A). */
3066 || (TYPE_UNSIGNED (from_type)
3067 && !TYPE_UNSIGNED (to_type)
3068 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3069 && integer_zerop (@1)
3070 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3073 wi::overflow_type overflow = wi::OVF_NONE;
3074 enum tree_code code, cmp_code = cmp;
3076 wide_int c1 = wi::to_wide (@1);
3077 wide_int c2 = wi::to_wide (@2);
3078 wide_int c3 = wi::to_wide (@3);
3079 signop sgn = TYPE_SIGN (from_type);
3081 /* Handle special case A), given x of unsigned type:
3082 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3083 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3084 if (!types_match (from_type, to_type))
3086 if (cmp_code == LT_EXPR)
3088 if (cmp_code == GE_EXPR)
3090 c1 = wi::max_value (to_type);
3092 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3093 compute (c3 op' c2) and check if it equals to c1 with op' being
3094 the inverted operator of op. Make sure overflow doesn't happen
3095 if it is undefined. */
3096 if (op == PLUS_EXPR)
3097 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3099 real_c1 = wi::add (c3, c2, sgn, &overflow);
3102 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3104 /* Check if c1 equals to real_c1. Boundary condition is handled
3105 by adjusting comparison operation if necessary. */
3106 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3109 /* X <= Y - 1 equals to X < Y. */
3110 if (cmp_code == LE_EXPR)
3112 /* X > Y - 1 equals to X >= Y. */
3113 if (cmp_code == GT_EXPR)
3116 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3119 /* X < Y + 1 equals to X <= Y. */
3120 if (cmp_code == LT_EXPR)
3122 /* X >= Y + 1 equals to X > Y. */
3123 if (cmp_code == GE_EXPR)
3126 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3128 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3130 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3135 (if (code == MAX_EXPR)
3136 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3137 { wide_int_to_tree (from_type, c2); })
3138 (if (code == MIN_EXPR)
3139 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3140 { wide_int_to_tree (from_type, c2); })))))))))
3142 (for cnd (cond vec_cond)
3143 /* A ? B : (A ? X : C) -> A ? B : C. */
3145 (cnd @0 (cnd @0 @1 @2) @3)
3148 (cnd @0 @1 (cnd @0 @2 @3))
3150 /* A ? B : (!A ? C : X) -> A ? B : C. */
3151 /* ??? This matches embedded conditions open-coded because genmatch
3152 would generate matching code for conditions in separate stmts only.
3153 The following is still important to merge then and else arm cases
3154 from if-conversion. */
3156 (cnd @0 @1 (cnd @2 @3 @4))
3157 (if (inverse_conditions_p (@0, @2))
3160 (cnd @0 (cnd @1 @2 @3) @4)
3161 (if (inverse_conditions_p (@0, @1))
3164 /* A ? B : B -> B. */
3169 /* !A ? B : C -> A ? C : B. */
3171 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3174 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3175 return all -1 or all 0 results. */
3176 /* ??? We could instead convert all instances of the vec_cond to negate,
3177 but that isn't necessarily a win on its own. */
3179 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3180 (if (VECTOR_TYPE_P (type)
3181 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3182 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3183 && (TYPE_MODE (TREE_TYPE (type))
3184 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3185 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3187 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3189 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3190 (if (VECTOR_TYPE_P (type)
3191 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3192 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3193 && (TYPE_MODE (TREE_TYPE (type))
3194 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3195 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3198 /* Simplifications of comparisons. */
3200 /* See if we can reduce the magnitude of a constant involved in a
3201 comparison by changing the comparison code. This is a canonicalization
3202 formerly done by maybe_canonicalize_comparison_1. */
3206 (cmp @0 uniform_integer_cst_p@1)
3207 (with { tree cst = uniform_integer_cst_p (@1); }
3208 (if (tree_int_cst_sgn (cst) == -1)
3209 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3210 wide_int_to_tree (TREE_TYPE (cst),
3216 (cmp @0 uniform_integer_cst_p@1)
3217 (with { tree cst = uniform_integer_cst_p (@1); }
3218 (if (tree_int_cst_sgn (cst) == 1)
3219 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3220 wide_int_to_tree (TREE_TYPE (cst),
3221 wi::to_wide (cst) - 1)); })))))
3223 /* We can simplify a logical negation of a comparison to the
3224 inverted comparison. As we cannot compute an expression
3225 operator using invert_tree_comparison we have to simulate
3226 that with expression code iteration. */
3227 (for cmp (tcc_comparison)
3228 icmp (inverted_tcc_comparison)
3229 ncmp (inverted_tcc_comparison_with_nans)
3230 /* Ideally we'd like to combine the following two patterns
3231 and handle some more cases by using
3232 (logical_inverted_value (cmp @0 @1))
3233 here but for that genmatch would need to "inline" that.
3234 For now implement what forward_propagate_comparison did. */
3236 (bit_not (cmp @0 @1))
3237 (if (VECTOR_TYPE_P (type)
3238 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3239 /* Comparison inversion may be impossible for trapping math,
3240 invert_tree_comparison will tell us. But we can't use
3241 a computed operator in the replacement tree thus we have
3242 to play the trick below. */
3243 (with { enum tree_code ic = invert_tree_comparison
3244 (cmp, HONOR_NANS (@0)); }
3250 (bit_xor (cmp @0 @1) integer_truep)
3251 (with { enum tree_code ic = invert_tree_comparison
3252 (cmp, HONOR_NANS (@0)); }
3258 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3259 ??? The transformation is valid for the other operators if overflow
3260 is undefined for the type, but performing it here badly interacts
3261 with the transformation in fold_cond_expr_with_comparison which
3262 attempts to synthetize ABS_EXPR. */
3264 (for sub (minus pointer_diff)
3266 (cmp (sub@2 @0 @1) integer_zerop)
3267 (if (single_use (@2))
3270 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3271 signed arithmetic case. That form is created by the compiler
3272 often enough for folding it to be of value. One example is in
3273 computing loop trip counts after Operator Strength Reduction. */
3274 (for cmp (simple_comparison)
3275 scmp (swapped_simple_comparison)
3277 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3278 /* Handle unfolded multiplication by zero. */
3279 (if (integer_zerop (@1))
3281 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3282 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3284 /* If @1 is negative we swap the sense of the comparison. */
3285 (if (tree_int_cst_sgn (@1) < 0)
3289 /* Simplify comparison of something with itself. For IEEE
3290 floating-point, we can only do some of these simplifications. */
3294 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3295 || ! HONOR_NANS (@0))
3296 { constant_boolean_node (true, type); }
3297 (if (cmp != EQ_EXPR)
3303 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3304 || ! HONOR_NANS (@0))
3305 { constant_boolean_node (false, type); })))
3306 (for cmp (unle unge uneq)
3309 { constant_boolean_node (true, type); }))
3310 (for cmp (unlt ungt)
3316 (if (!flag_trapping_math)
3317 { constant_boolean_node (false, type); }))
3319 /* Fold ~X op ~Y as Y op X. */
3320 (for cmp (simple_comparison)
3322 (cmp (bit_not@2 @0) (bit_not@3 @1))
3323 (if (single_use (@2) && single_use (@3))
3326 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3327 (for cmp (simple_comparison)
3328 scmp (swapped_simple_comparison)
3330 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3331 (if (single_use (@2)
3332 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3333 (scmp @0 (bit_not @1)))))
3335 (for cmp (simple_comparison)
3336 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3338 (cmp (convert@2 @0) (convert? @1))
3339 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3340 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3341 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3342 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3343 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3346 tree type1 = TREE_TYPE (@1);
3347 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3349 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3350 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3351 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3352 type1 = float_type_node;
3353 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3354 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3355 type1 = double_type_node;
3358 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3359 ? TREE_TYPE (@0) : type1);
3361 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3362 (cmp (convert:newtype @0) (convert:newtype @1))))))
3366 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3368 /* a CMP (-0) -> a CMP 0 */
3369 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3370 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3371 /* x != NaN is always true, other ops are always false. */
3372 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3373 && ! HONOR_SNANS (@1))
3374 { constant_boolean_node (cmp == NE_EXPR, type); })
3375 /* Fold comparisons against infinity. */
3376 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3377 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3380 REAL_VALUE_TYPE max;
3381 enum tree_code code = cmp;
3382 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3384 code = swap_tree_comparison (code);
3387 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3388 (if (code == GT_EXPR
3389 && !(HONOR_NANS (@0) && flag_trapping_math))
3390 { constant_boolean_node (false, type); })
3391 (if (code == LE_EXPR)
3392 /* x <= +Inf is always true, if we don't care about NaNs. */
3393 (if (! HONOR_NANS (@0))
3394 { constant_boolean_node (true, type); }
3395 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3396 an "invalid" exception. */
3397 (if (!flag_trapping_math)
3399 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3400 for == this introduces an exception for x a NaN. */
3401 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3403 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3405 (lt @0 { build_real (TREE_TYPE (@0), max); })
3406 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3407 /* x < +Inf is always equal to x <= DBL_MAX. */
3408 (if (code == LT_EXPR)
3409 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3411 (ge @0 { build_real (TREE_TYPE (@0), max); })
3412 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3413 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3414 an exception for x a NaN so use an unordered comparison. */
3415 (if (code == NE_EXPR)
3416 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3417 (if (! HONOR_NANS (@0))
3419 (ge @0 { build_real (TREE_TYPE (@0), max); })
3420 (le @0 { build_real (TREE_TYPE (@0), max); }))
3422 (unge @0 { build_real (TREE_TYPE (@0), max); })
3423 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3425 /* If this is a comparison of a real constant with a PLUS_EXPR
3426 or a MINUS_EXPR of a real constant, we can convert it into a
3427 comparison with a revised real constant as long as no overflow
3428 occurs when unsafe_math_optimizations are enabled. */
3429 (if (flag_unsafe_math_optimizations)
3430 (for op (plus minus)
3432 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3435 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3436 TREE_TYPE (@1), @2, @1);
3438 (if (tem && !TREE_OVERFLOW (tem))
3439 (cmp @0 { tem; }))))))
3441 /* Likewise, we can simplify a comparison of a real constant with
3442 a MINUS_EXPR whose first operand is also a real constant, i.e.
3443 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3444 floating-point types only if -fassociative-math is set. */
3445 (if (flag_associative_math)
3447 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3448 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3449 (if (tem && !TREE_OVERFLOW (tem))
3450 (cmp { tem; } @1)))))
3452 /* Fold comparisons against built-in math functions. */
3453 (if (flag_unsafe_math_optimizations
3454 && ! flag_errno_math)
3457 (cmp (sq @0) REAL_CST@1)
3459 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3461 /* sqrt(x) < y is always false, if y is negative. */
3462 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3463 { constant_boolean_node (false, type); })
3464 /* sqrt(x) > y is always true, if y is negative and we
3465 don't care about NaNs, i.e. negative values of x. */
3466 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3467 { constant_boolean_node (true, type); })
3468 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3469 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3470 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3472 /* sqrt(x) < 0 is always false. */
3473 (if (cmp == LT_EXPR)
3474 { constant_boolean_node (false, type); })
3475 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3476 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3477 { constant_boolean_node (true, type); })
3478 /* sqrt(x) <= 0 -> x == 0. */
3479 (if (cmp == LE_EXPR)
3481 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3482 == or !=. In the last case:
3484 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3486 if x is negative or NaN. Due to -funsafe-math-optimizations,
3487 the results for other x follow from natural arithmetic. */
3489 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3493 real_arithmetic (&c2, MULT_EXPR,
3494 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3495 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3497 (if (REAL_VALUE_ISINF (c2))
3498 /* sqrt(x) > y is x == +Inf, when y is very large. */
3499 (if (HONOR_INFINITIES (@0))
3500 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3501 { constant_boolean_node (false, type); })
3502 /* sqrt(x) > c is the same as x > c*c. */
3503 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3504 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3508 real_arithmetic (&c2, MULT_EXPR,
3509 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3510 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3512 (if (REAL_VALUE_ISINF (c2))
3514 /* sqrt(x) < y is always true, when y is a very large
3515 value and we don't care about NaNs or Infinities. */
3516 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3517 { constant_boolean_node (true, type); })
3518 /* sqrt(x) < y is x != +Inf when y is very large and we
3519 don't care about NaNs. */
3520 (if (! HONOR_NANS (@0))
3521 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3522 /* sqrt(x) < y is x >= 0 when y is very large and we
3523 don't care about Infinities. */
3524 (if (! HONOR_INFINITIES (@0))
3525 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3526 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3529 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3530 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3531 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3532 (if (! HONOR_NANS (@0))
3533 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3534 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3537 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3538 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3539 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3541 (cmp (sq @0) (sq @1))
3542 (if (! HONOR_NANS (@0))
3545 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3546 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3547 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3549 (cmp (float@0 @1) (float @2))
3550 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3551 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3554 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3555 tree type1 = TREE_TYPE (@1);
3556 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3557 tree type2 = TREE_TYPE (@2);
3558 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3560 (if (fmt.can_represent_integral_type_p (type1)
3561 && fmt.can_represent_integral_type_p (type2))
3562 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3563 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3564 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3565 && type1_signed_p >= type2_signed_p)
3566 (icmp @1 (convert @2))
3567 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3568 && type1_signed_p <= type2_signed_p)
3569 (icmp (convert:type2 @1) @2)
3570 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3571 && type1_signed_p == type2_signed_p)
3572 (icmp @1 @2))))))))))
3574 /* Optimize various special cases of (FTYPE) N CMP CST. */
3575 (for cmp (lt le eq ne ge gt)
3576 icmp (le le eq ne ge ge)
3578 (cmp (float @0) REAL_CST@1)
3579 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3580 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3583 tree itype = TREE_TYPE (@0);
3584 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3585 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3586 /* Be careful to preserve any potential exceptions due to
3587 NaNs. qNaNs are ok in == or != context.
3588 TODO: relax under -fno-trapping-math or
3589 -fno-signaling-nans. */
3591 = real_isnan (cst) && (cst->signalling
3592 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3594 /* TODO: allow non-fitting itype and SNaNs when
3595 -fno-trapping-math. */
3596 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3599 signop isign = TYPE_SIGN (itype);
3600 REAL_VALUE_TYPE imin, imax;
3601 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3602 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3604 REAL_VALUE_TYPE icst;
3605 if (cmp == GT_EXPR || cmp == GE_EXPR)
3606 real_ceil (&icst, fmt, cst);
3607 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3608 real_floor (&icst, fmt, cst);
3610 real_trunc (&icst, fmt, cst);
3612 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3614 bool overflow_p = false;
3616 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3619 /* Optimize cases when CST is outside of ITYPE's range. */
3620 (if (real_compare (LT_EXPR, cst, &imin))
3621 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3623 (if (real_compare (GT_EXPR, cst, &imax))
3624 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3626 /* Remove cast if CST is an integer representable by ITYPE. */
3628 (cmp @0 { gcc_assert (!overflow_p);
3629 wide_int_to_tree (itype, icst_val); })
3631 /* When CST is fractional, optimize
3632 (FTYPE) N == CST -> 0
3633 (FTYPE) N != CST -> 1. */
3634 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3635 { constant_boolean_node (cmp == NE_EXPR, type); })
3636 /* Otherwise replace with sensible integer constant. */
3639 gcc_checking_assert (!overflow_p);
3641 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3643 /* Fold A /[ex] B CMP C to A CMP B * C. */
3646 (cmp (exact_div @0 @1) INTEGER_CST@2)
3647 (if (!integer_zerop (@1))
3648 (if (wi::to_wide (@2) == 0)
3650 (if (TREE_CODE (@1) == INTEGER_CST)
3653 wi::overflow_type ovf;
3654 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3655 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3658 { constant_boolean_node (cmp == NE_EXPR, type); }
3659 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3660 (for cmp (lt le gt ge)
3662 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3663 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3666 wi::overflow_type ovf;
3667 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3668 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3671 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3672 TYPE_SIGN (TREE_TYPE (@2)))
3673 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3674 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3676 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
3678 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
3679 For large C (more than min/B+2^size), this is also true, with the
3680 multiplication computed modulo 2^size.
3681 For intermediate C, this just tests the sign of A. */
3682 (for cmp (lt le gt ge)
3685 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
3686 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
3687 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
3688 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3691 tree utype = TREE_TYPE (@2);
3692 wide_int denom = wi::to_wide (@1);
3693 wide_int right = wi::to_wide (@2);
3694 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
3695 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
3696 bool small = wi::leu_p (right, smax);
3697 bool large = wi::geu_p (right, smin);
3699 (if (small || large)
3700 (cmp (convert:utype @0) (mult @2 (convert @1)))
3701 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
3703 /* Unordered tests if either argument is a NaN. */
3705 (bit_ior (unordered @0 @0) (unordered @1 @1))
3706 (if (types_match (@0, @1))
3709 (bit_and (ordered @0 @0) (ordered @1 @1))
3710 (if (types_match (@0, @1))
3713 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3716 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3719 /* Simple range test simplifications. */
3720 /* A < B || A >= B -> true. */
3721 (for test1 (lt le le le ne ge)
3722 test2 (ge gt ge ne eq ne)
3724 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3725 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3726 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3727 { constant_boolean_node (true, type); })))
3728 /* A < B && A >= B -> false. */
3729 (for test1 (lt lt lt le ne eq)
3730 test2 (ge gt eq gt eq gt)
3732 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3733 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3734 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3735 { constant_boolean_node (false, type); })))
3737 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3738 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3740 Note that comparisons
3741 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3742 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3743 will be canonicalized to above so there's no need to
3750 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3751 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3754 tree ty = TREE_TYPE (@0);
3755 unsigned prec = TYPE_PRECISION (ty);
3756 wide_int mask = wi::to_wide (@2, prec);
3757 wide_int rhs = wi::to_wide (@3, prec);
3758 signop sgn = TYPE_SIGN (ty);
3760 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3761 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3762 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3763 { build_zero_cst (ty); }))))))
3765 /* -A CMP -B -> B CMP A. */
3766 (for cmp (tcc_comparison)
3767 scmp (swapped_tcc_comparison)
3769 (cmp (negate @0) (negate @1))
3770 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3771 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3772 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3775 (cmp (negate @0) CONSTANT_CLASS_P@1)
3776 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3777 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3778 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3779 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3780 (if (tem && !TREE_OVERFLOW (tem))
3781 (scmp @0 { tem; }))))))
3783 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3786 (op (abs @0) zerop@1)
3789 /* From fold_sign_changed_comparison and fold_widened_comparison.
3790 FIXME: the lack of symmetry is disturbing. */
3791 (for cmp (simple_comparison)
3793 (cmp (convert@0 @00) (convert?@1 @10))
3794 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3795 /* Disable this optimization if we're casting a function pointer
3796 type on targets that require function pointer canonicalization. */
3797 && !(targetm.have_canonicalize_funcptr_for_compare ()
3798 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3799 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3800 || (POINTER_TYPE_P (TREE_TYPE (@10))
3801 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3803 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3804 && (TREE_CODE (@10) == INTEGER_CST
3806 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3809 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3810 /* ??? The special-casing of INTEGER_CST conversion was in the original
3811 code and here to avoid a spurious overflow flag on the resulting
3812 constant which fold_convert produces. */
3813 (if (TREE_CODE (@1) == INTEGER_CST)
3814 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3815 TREE_OVERFLOW (@1)); })
3816 (cmp @00 (convert @1)))
3818 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3819 /* If possible, express the comparison in the shorter mode. */
3820 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3821 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3822 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3823 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3824 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3825 || ((TYPE_PRECISION (TREE_TYPE (@00))
3826 >= TYPE_PRECISION (TREE_TYPE (@10)))
3827 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3828 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3829 || (TREE_CODE (@10) == INTEGER_CST
3830 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3831 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3832 (cmp @00 (convert @10))
3833 (if (TREE_CODE (@10) == INTEGER_CST
3834 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3835 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3838 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3839 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3840 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3841 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3843 (if (above || below)
3844 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3845 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3846 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3847 { constant_boolean_node (above ? true : false, type); }
3848 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3849 { constant_boolean_node (above ? false : true, type); }))))))))))))
3852 /* A local variable can never be pointed to by
3853 the default SSA name of an incoming parameter.
3854 SSA names are canonicalized to 2nd place. */
3856 (cmp addr@0 SSA_NAME@1)
3857 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3858 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3859 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3860 (if (TREE_CODE (base) == VAR_DECL
3861 && auto_var_in_fn_p (base, current_function_decl))
3862 (if (cmp == NE_EXPR)
3863 { constant_boolean_node (true, type); }
3864 { constant_boolean_node (false, type); }))))))
3866 /* Equality compare simplifications from fold_binary */
3869 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3870 Similarly for NE_EXPR. */
3872 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3873 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3874 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3875 { constant_boolean_node (cmp == NE_EXPR, type); }))
3877 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3879 (cmp (bit_xor @0 @1) integer_zerop)
3882 /* (X ^ Y) == Y becomes X == 0.
3883 Likewise (X ^ Y) == X becomes Y == 0. */
3885 (cmp:c (bit_xor:c @0 @1) @0)
3886 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3888 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3890 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3891 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3892 (cmp @0 (bit_xor @1 (convert @2)))))
3895 (cmp (convert? addr@0) integer_zerop)
3896 (if (tree_single_nonzero_warnv_p (@0, NULL))
3897 { constant_boolean_node (cmp == NE_EXPR, type); })))
3899 /* If we have (A & C) == C where C is a power of 2, convert this into
3900 (A & C) != 0. Similarly for NE_EXPR. */
3904 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3905 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3907 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3908 convert this into a shift followed by ANDing with D. */
3911 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3912 INTEGER_CST@2 integer_zerop)
3913 (if (integer_pow2p (@2))
3915 int shift = (wi::exact_log2 (wi::to_wide (@2))
3916 - wi::exact_log2 (wi::to_wide (@1)));
3920 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3922 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3925 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3926 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3930 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3931 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3932 && type_has_mode_precision_p (TREE_TYPE (@0))
3933 && element_precision (@2) >= element_precision (@0)
3934 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3935 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3936 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3938 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3939 this into a right shift or sign extension followed by ANDing with C. */
3942 (lt @0 integer_zerop)
3943 INTEGER_CST@1 integer_zerop)
3944 (if (integer_pow2p (@1)
3945 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3947 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3951 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3953 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3954 sign extension followed by AND with C will achieve the effect. */
3955 (bit_and (convert @0) @1)))))
3957 /* When the addresses are not directly of decls compare base and offset.
3958 This implements some remaining parts of fold_comparison address
3959 comparisons but still no complete part of it. Still it is good
3960 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3961 (for cmp (simple_comparison)
3963 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3966 poly_int64 off0, off1;
3967 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3968 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3969 if (base0 && TREE_CODE (base0) == MEM_REF)
3971 off0 += mem_ref_offset (base0).force_shwi ();
3972 base0 = TREE_OPERAND (base0, 0);
3974 if (base1 && TREE_CODE (base1) == MEM_REF)
3976 off1 += mem_ref_offset (base1).force_shwi ();
3977 base1 = TREE_OPERAND (base1, 0);
3980 (if (base0 && base1)
3984 /* Punt in GENERIC on variables with value expressions;
3985 the value expressions might point to fields/elements
3986 of other vars etc. */
3988 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3989 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3991 else if (decl_in_symtab_p (base0)
3992 && decl_in_symtab_p (base1))
3993 equal = symtab_node::get_create (base0)
3994 ->equal_address_to (symtab_node::get_create (base1));
3995 else if ((DECL_P (base0)
3996 || TREE_CODE (base0) == SSA_NAME
3997 || TREE_CODE (base0) == STRING_CST)
3999 || TREE_CODE (base1) == SSA_NAME
4000 || TREE_CODE (base1) == STRING_CST))
4001 equal = (base0 == base1);
4004 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4005 off0.is_constant (&ioff0);
4006 off1.is_constant (&ioff1);
4007 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4008 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4009 || (TREE_CODE (base0) == STRING_CST
4010 && TREE_CODE (base1) == STRING_CST
4011 && ioff0 >= 0 && ioff1 >= 0
4012 && ioff0 < TREE_STRING_LENGTH (base0)
4013 && ioff1 < TREE_STRING_LENGTH (base1)
4014 /* This is a too conservative test that the STRING_CSTs
4015 will not end up being string-merged. */
4016 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4017 TREE_STRING_POINTER (base1) + ioff1,
4018 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4019 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4021 else if (!DECL_P (base0) || !DECL_P (base1))
4023 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4025 /* If this is a pointer comparison, ignore for now even
4026 valid equalities where one pointer is the offset zero
4027 of one object and the other to one past end of another one. */
4028 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4030 /* Assume that automatic variables can't be adjacent to global
4032 else if (is_global_var (base0) != is_global_var (base1))
4036 tree sz0 = DECL_SIZE_UNIT (base0);
4037 tree sz1 = DECL_SIZE_UNIT (base1);
4038 /* If sizes are unknown, e.g. VLA or not representable,
4040 if (!tree_fits_poly_int64_p (sz0)
4041 || !tree_fits_poly_int64_p (sz1))
4045 poly_int64 size0 = tree_to_poly_int64 (sz0);
4046 poly_int64 size1 = tree_to_poly_int64 (sz1);
4047 /* If one offset is pointing (or could be) to the beginning
4048 of one object and the other is pointing to one past the
4049 last byte of the other object, punt. */
4050 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4052 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4054 /* If both offsets are the same, there are some cases
4055 we know that are ok. Either if we know they aren't
4056 zero, or if we know both sizes are no zero. */
4058 && known_eq (off0, off1)
4059 && (known_ne (off0, 0)
4060 || (known_ne (size0, 0) && known_ne (size1, 0))))
4067 && (cmp == EQ_EXPR || cmp == NE_EXPR
4068 /* If the offsets are equal we can ignore overflow. */
4069 || known_eq (off0, off1)
4070 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4071 /* Or if we compare using pointers to decls or strings. */
4072 || (POINTER_TYPE_P (TREE_TYPE (@2))
4073 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4075 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4076 { constant_boolean_node (known_eq (off0, off1), type); })
4077 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4078 { constant_boolean_node (known_ne (off0, off1), type); })
4079 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4080 { constant_boolean_node (known_lt (off0, off1), type); })
4081 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4082 { constant_boolean_node (known_le (off0, off1), type); })
4083 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4084 { constant_boolean_node (known_ge (off0, off1), type); })
4085 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4086 { constant_boolean_node (known_gt (off0, off1), type); }))
4089 (if (cmp == EQ_EXPR)
4090 { constant_boolean_node (false, type); })
4091 (if (cmp == NE_EXPR)
4092 { constant_boolean_node (true, type); })))))))))
4094 /* Simplify pointer equality compares using PTA. */
4098 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4099 && ptrs_compare_unequal (@0, @1))
4100 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4102 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4103 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4104 Disable the transform if either operand is pointer to function.
4105 This broke pr22051-2.c for arm where function pointer
4106 canonicalizaion is not wanted. */
4110 (cmp (convert @0) INTEGER_CST@1)
4111 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4112 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4113 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4114 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4115 && POINTER_TYPE_P (TREE_TYPE (@1))
4116 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4117 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4118 (cmp @0 (convert @1)))))
4120 /* Non-equality compare simplifications from fold_binary */
4121 (for cmp (lt gt le ge)
4122 /* Comparisons with the highest or lowest possible integer of
4123 the specified precision will have known values. */
4125 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4126 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4127 || POINTER_TYPE_P (TREE_TYPE (@1))
4128 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4129 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4132 tree cst = uniform_integer_cst_p (@1);
4133 tree arg1_type = TREE_TYPE (cst);
4134 unsigned int prec = TYPE_PRECISION (arg1_type);
4135 wide_int max = wi::max_value (arg1_type);
4136 wide_int signed_max = wi::max_value (prec, SIGNED);
4137 wide_int min = wi::min_value (arg1_type);
4140 (if (wi::to_wide (cst) == max)
4142 (if (cmp == GT_EXPR)
4143 { constant_boolean_node (false, type); })
4144 (if (cmp == GE_EXPR)
4146 (if (cmp == LE_EXPR)
4147 { constant_boolean_node (true, type); })
4148 (if (cmp == LT_EXPR)
4150 (if (wi::to_wide (cst) == min)
4152 (if (cmp == LT_EXPR)
4153 { constant_boolean_node (false, type); })
4154 (if (cmp == LE_EXPR)
4156 (if (cmp == GE_EXPR)
4157 { constant_boolean_node (true, type); })
4158 (if (cmp == GT_EXPR)
4160 (if (wi::to_wide (cst) == max - 1)
4162 (if (cmp == GT_EXPR)
4163 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4164 wide_int_to_tree (TREE_TYPE (cst),
4167 (if (cmp == LE_EXPR)
4168 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4169 wide_int_to_tree (TREE_TYPE (cst),
4172 (if (wi::to_wide (cst) == min + 1)
4174 (if (cmp == GE_EXPR)
4175 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4176 wide_int_to_tree (TREE_TYPE (cst),
4179 (if (cmp == LT_EXPR)
4180 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4181 wide_int_to_tree (TREE_TYPE (cst),
4184 (if (wi::to_wide (cst) == signed_max
4185 && TYPE_UNSIGNED (arg1_type)
4186 /* We will flip the signedness of the comparison operator
4187 associated with the mode of @1, so the sign bit is
4188 specified by this mode. Check that @1 is the signed
4189 max associated with this sign bit. */
4190 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4191 /* signed_type does not work on pointer types. */
4192 && INTEGRAL_TYPE_P (arg1_type))
4193 /* The following case also applies to X < signed_max+1
4194 and X >= signed_max+1 because previous transformations. */
4195 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4196 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4198 (if (cst == @1 && cmp == LE_EXPR)
4199 (ge (convert:st @0) { build_zero_cst (st); }))
4200 (if (cst == @1 && cmp == GT_EXPR)
4201 (lt (convert:st @0) { build_zero_cst (st); }))
4202 (if (cmp == LE_EXPR)
4203 (ge (view_convert:st @0) { build_zero_cst (st); }))
4204 (if (cmp == GT_EXPR)
4205 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4207 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4208 /* If the second operand is NaN, the result is constant. */
4211 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4212 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4213 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4214 ? false : true, type); })))
4216 /* bool_var != 0 becomes bool_var. */
4218 (ne @0 integer_zerop)
4219 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4220 && types_match (type, TREE_TYPE (@0)))
4222 /* bool_var == 1 becomes bool_var. */
4224 (eq @0 integer_onep)
4225 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4226 && types_match (type, TREE_TYPE (@0)))
4229 bool_var == 0 becomes !bool_var or
4230 bool_var != 1 becomes !bool_var
4231 here because that only is good in assignment context as long
4232 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4233 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4234 clearly less optimal and which we'll transform again in forwprop. */
4236 /* When one argument is a constant, overflow detection can be simplified.
4237 Currently restricted to single use so as not to interfere too much with
4238 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4239 A + CST CMP A -> A CMP' CST' */
4240 (for cmp (lt le ge gt)
4243 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4244 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4245 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4246 && wi::to_wide (@1) != 0
4248 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4249 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4250 wi::max_value (prec, UNSIGNED)
4251 - wi::to_wide (@1)); })))))
4253 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4254 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4255 expects the long form, so we restrict the transformation for now. */
4258 (cmp:c (minus@2 @0 @1) @0)
4259 (if (single_use (@2)
4260 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4261 && TYPE_UNSIGNED (TREE_TYPE (@0))
4262 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4265 /* Testing for overflow is unnecessary if we already know the result. */
4270 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4271 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4272 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4273 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4278 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4279 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4280 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4281 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4283 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4284 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4288 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4289 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4290 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4291 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4293 /* Simplification of math builtins. These rules must all be optimizations
4294 as well as IL simplifications. If there is a possibility that the new
4295 form could be a pessimization, the rule should go in the canonicalization
4296 section that follows this one.
4298 Rules can generally go in this section if they satisfy one of
4301 - the rule describes an identity
4303 - the rule replaces calls with something as simple as addition or
4306 - the rule contains unary calls only and simplifies the surrounding
4307 arithmetic. (The idea here is to exclude non-unary calls in which
4308 one operand is constant and in which the call is known to be cheap
4309 when the operand has that value.) */
4311 (if (flag_unsafe_math_optimizations)
4312 /* Simplify sqrt(x) * sqrt(x) -> x. */
4314 (mult (SQRT_ALL@1 @0) @1)
4315 (if (!HONOR_SNANS (type))
4318 (for op (plus minus)
4319 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4323 (rdiv (op @0 @2) @1)))
4325 (for cmp (lt le gt ge)
4326 neg_cmp (gt ge lt le)
4327 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4329 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4331 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4333 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4334 || (real_zerop (tem) && !real_zerop (@1))))
4336 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4338 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4339 (neg_cmp @0 { tem; })))))))
4341 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4342 (for root (SQRT CBRT)
4344 (mult (root:s @0) (root:s @1))
4345 (root (mult @0 @1))))
4347 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4348 (for exps (EXP EXP2 EXP10 POW10)
4350 (mult (exps:s @0) (exps:s @1))
4351 (exps (plus @0 @1))))
4353 /* Simplify a/root(b/c) into a*root(c/b). */
4354 (for root (SQRT CBRT)
4356 (rdiv @0 (root:s (rdiv:s @1 @2)))
4357 (mult @0 (root (rdiv @2 @1)))))
4359 /* Simplify x/expN(y) into x*expN(-y). */
4360 (for exps (EXP EXP2 EXP10 POW10)
4362 (rdiv @0 (exps:s @1))
4363 (mult @0 (exps (negate @1)))))
4365 (for logs (LOG LOG2 LOG10 LOG10)
4366 exps (EXP EXP2 EXP10 POW10)
4367 /* logN(expN(x)) -> x. */
4371 /* expN(logN(x)) -> x. */
4376 /* Optimize logN(func()) for various exponential functions. We
4377 want to determine the value "x" and the power "exponent" in
4378 order to transform logN(x**exponent) into exponent*logN(x). */
4379 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4380 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4383 (if (SCALAR_FLOAT_TYPE_P (type))
4389 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4390 x = build_real_truncate (type, dconst_e ());
4393 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4394 x = build_real (type, dconst2);
4398 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4400 REAL_VALUE_TYPE dconst10;
4401 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4402 x = build_real (type, dconst10);
4409 (mult (logs { x; }) @0)))))
4417 (if (SCALAR_FLOAT_TYPE_P (type))
4423 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4424 x = build_real (type, dconsthalf);
4427 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4428 x = build_real_truncate (type, dconst_third ());
4434 (mult { x; } (logs @0))))))
4436 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4437 (for logs (LOG LOG2 LOG10)
4441 (mult @1 (logs @0))))
4443 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4444 or if C is a positive power of 2,
4445 pow(C,x) -> exp2(log2(C)*x). */
4453 (pows REAL_CST@0 @1)
4454 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4455 && real_isfinite (TREE_REAL_CST_PTR (@0))
4456 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4457 the use_exp2 case until after vectorization. It seems actually
4458 beneficial for all constants to postpone this until later,
4459 because exp(log(C)*x), while faster, will have worse precision
4460 and if x folds into a constant too, that is unnecessary
4462 && canonicalize_math_after_vectorization_p ())
4464 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4465 bool use_exp2 = false;
4466 if (targetm.libc_has_function (function_c99_misc)
4467 && value->cl == rvc_normal)
4469 REAL_VALUE_TYPE frac_rvt = *value;
4470 SET_REAL_EXP (&frac_rvt, 1);
4471 if (real_equal (&frac_rvt, &dconst1))
4476 (if (optimize_pow_to_exp (@0, @1))
4477 (exps (mult (logs @0) @1)))
4478 (exp2s (mult (log2s @0) @1)))))))
4481 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4483 exps (EXP EXP2 EXP10 POW10)
4484 logs (LOG LOG2 LOG10 LOG10)
4486 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4487 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4488 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4489 (exps (plus (mult (logs @0) @1) @2)))))
4494 exps (EXP EXP2 EXP10 POW10)
4495 /* sqrt(expN(x)) -> expN(x*0.5). */
4498 (exps (mult @0 { build_real (type, dconsthalf); })))
4499 /* cbrt(expN(x)) -> expN(x/3). */
4502 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4503 /* pow(expN(x), y) -> expN(x*y). */
4506 (exps (mult @0 @1))))
4508 /* tan(atan(x)) -> x. */
4515 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4519 copysigns (COPYSIGN)
4524 REAL_VALUE_TYPE r_cst;
4525 build_sinatan_real (&r_cst, type);
4526 tree t_cst = build_real (type, r_cst);
4527 tree t_one = build_one_cst (type);
4529 (if (SCALAR_FLOAT_TYPE_P (type))
4530 (cond (lt (abs @0) { t_cst; })
4531 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4532 (copysigns { t_one; } @0))))))
4534 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4538 copysigns (COPYSIGN)
4543 REAL_VALUE_TYPE r_cst;
4544 build_sinatan_real (&r_cst, type);
4545 tree t_cst = build_real (type, r_cst);
4546 tree t_one = build_one_cst (type);
4547 tree t_zero = build_zero_cst (type);
4549 (if (SCALAR_FLOAT_TYPE_P (type))
4550 (cond (lt (abs @0) { t_cst; })
4551 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4552 (copysigns { t_zero; } @0))))))
4554 (if (!flag_errno_math)
4555 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4560 (sinhs (atanhs:s @0))
4561 (with { tree t_one = build_one_cst (type); }
4562 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4564 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4569 (coshs (atanhs:s @0))
4570 (with { tree t_one = build_one_cst (type); }
4571 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4573 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4575 (CABS (complex:C @0 real_zerop@1))
4578 /* trunc(trunc(x)) -> trunc(x), etc. */
4579 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4583 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4584 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4586 (fns integer_valued_real_p@0)
4589 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4591 (HYPOT:c @0 real_zerop@1)
4594 /* pow(1,x) -> 1. */
4596 (POW real_onep@0 @1)
4600 /* copysign(x,x) -> x. */
4601 (COPYSIGN_ALL @0 @0)
4605 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4606 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4609 (for scale (LDEXP SCALBN SCALBLN)
4610 /* ldexp(0, x) -> 0. */
4612 (scale real_zerop@0 @1)
4614 /* ldexp(x, 0) -> x. */
4616 (scale @0 integer_zerop@1)
4618 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4620 (scale REAL_CST@0 @1)
4621 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4624 /* Canonicalization of sequences of math builtins. These rules represent
4625 IL simplifications but are not necessarily optimizations.
4627 The sincos pass is responsible for picking "optimal" implementations
4628 of math builtins, which may be more complicated and can sometimes go
4629 the other way, e.g. converting pow into a sequence of sqrts.
4630 We only want to do these canonicalizations before the pass has run. */
4632 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4633 /* Simplify tan(x) * cos(x) -> sin(x). */
4635 (mult:c (TAN:s @0) (COS:s @0))
4638 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4640 (mult:c @0 (POW:s @0 REAL_CST@1))
4641 (if (!TREE_OVERFLOW (@1))
4642 (POW @0 (plus @1 { build_one_cst (type); }))))
4644 /* Simplify sin(x) / cos(x) -> tan(x). */
4646 (rdiv (SIN:s @0) (COS:s @0))
4649 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4651 (rdiv (COS:s @0) (SIN:s @0))
4652 (rdiv { build_one_cst (type); } (TAN @0)))
4654 /* Simplify sin(x) / tan(x) -> cos(x). */
4656 (rdiv (SIN:s @0) (TAN:s @0))
4657 (if (! HONOR_NANS (@0)
4658 && ! HONOR_INFINITIES (@0))
4661 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4663 (rdiv (TAN:s @0) (SIN:s @0))
4664 (if (! HONOR_NANS (@0)
4665 && ! HONOR_INFINITIES (@0))
4666 (rdiv { build_one_cst (type); } (COS @0))))
4668 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4670 (mult (POW:s @0 @1) (POW:s @0 @2))
4671 (POW @0 (plus @1 @2)))
4673 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4675 (mult (POW:s @0 @1) (POW:s @2 @1))
4676 (POW (mult @0 @2) @1))
4678 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4680 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4681 (POWI (mult @0 @2) @1))
4683 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4685 (rdiv (POW:s @0 REAL_CST@1) @0)
4686 (if (!TREE_OVERFLOW (@1))
4687 (POW @0 (minus @1 { build_one_cst (type); }))))
4689 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4691 (rdiv @0 (POW:s @1 @2))
4692 (mult @0 (POW @1 (negate @2))))
4697 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4700 (pows @0 { build_real (type, dconst_quarter ()); }))
4701 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4704 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4705 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4708 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4709 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4711 (cbrts (cbrts tree_expr_nonnegative_p@0))
4712 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4713 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4715 (sqrts (pows @0 @1))
4716 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4717 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4719 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4720 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4721 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4723 (pows (sqrts @0) @1)
4724 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4725 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4727 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4728 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4729 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4731 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4732 (pows @0 (mult @1 @2))))
4734 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4736 (CABS (complex @0 @0))
4737 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4739 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4742 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4744 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4749 (cexps compositional_complex@0)
4750 (if (targetm.libc_has_function (function_c99_math_complex))
4752 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4753 (mult @1 (imagpart @2)))))))
4755 (if (canonicalize_math_p ())
4756 /* floor(x) -> trunc(x) if x is nonnegative. */
4757 (for floors (FLOOR_ALL)
4760 (floors tree_expr_nonnegative_p@0)
4763 (match double_value_p
4765 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4766 (for froms (BUILT_IN_TRUNCL
4778 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4779 (if (optimize && canonicalize_math_p ())
4781 (froms (convert double_value_p@0))
4782 (convert (tos @0)))))
4784 (match float_value_p
4786 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4787 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4788 BUILT_IN_FLOORL BUILT_IN_FLOOR
4789 BUILT_IN_CEILL BUILT_IN_CEIL
4790 BUILT_IN_ROUNDL BUILT_IN_ROUND
4791 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4792 BUILT_IN_RINTL BUILT_IN_RINT)
4793 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4794 BUILT_IN_FLOORF BUILT_IN_FLOORF
4795 BUILT_IN_CEILF BUILT_IN_CEILF
4796 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4797 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4798 BUILT_IN_RINTF BUILT_IN_RINTF)
4799 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4801 (if (optimize && canonicalize_math_p ()
4802 && targetm.libc_has_function (function_c99_misc))
4804 (froms (convert float_value_p@0))
4805 (convert (tos @0)))))
4807 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4808 tos (XFLOOR XCEIL XROUND XRINT)
4809 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4810 (if (optimize && canonicalize_math_p ())
4812 (froms (convert double_value_p@0))
4815 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4816 XFLOOR XCEIL XROUND XRINT)
4817 tos (XFLOORF XCEILF XROUNDF XRINTF)
4818 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4820 (if (optimize && canonicalize_math_p ())
4822 (froms (convert float_value_p@0))
4825 (if (canonicalize_math_p ())
4826 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4827 (for floors (IFLOOR LFLOOR LLFLOOR)
4829 (floors tree_expr_nonnegative_p@0)
4832 (if (canonicalize_math_p ())
4833 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4834 (for fns (IFLOOR LFLOOR LLFLOOR
4836 IROUND LROUND LLROUND)
4838 (fns integer_valued_real_p@0)
4840 (if (!flag_errno_math)
4841 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4842 (for rints (IRINT LRINT LLRINT)
4844 (rints integer_valued_real_p@0)
4847 (if (canonicalize_math_p ())
4848 (for ifn (IFLOOR ICEIL IROUND IRINT)
4849 lfn (LFLOOR LCEIL LROUND LRINT)
4850 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4851 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4852 sizeof (int) == sizeof (long). */
4853 (if (TYPE_PRECISION (integer_type_node)
4854 == TYPE_PRECISION (long_integer_type_node))
4857 (lfn:long_integer_type_node @0)))
4858 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4859 sizeof (long long) == sizeof (long). */
4860 (if (TYPE_PRECISION (long_long_integer_type_node)
4861 == TYPE_PRECISION (long_integer_type_node))
4864 (lfn:long_integer_type_node @0)))))
4866 /* cproj(x) -> x if we're ignoring infinities. */
4869 (if (!HONOR_INFINITIES (type))
4872 /* If the real part is inf and the imag part is known to be
4873 nonnegative, return (inf + 0i). */
4875 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4876 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4877 { build_complex_inf (type, false); }))
4879 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4881 (CPROJ (complex @0 REAL_CST@1))
4882 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4883 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4889 (pows @0 REAL_CST@1)
4891 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4892 REAL_VALUE_TYPE tmp;
4895 /* pow(x,0) -> 1. */
4896 (if (real_equal (value, &dconst0))
4897 { build_real (type, dconst1); })
4898 /* pow(x,1) -> x. */
4899 (if (real_equal (value, &dconst1))
4901 /* pow(x,-1) -> 1/x. */
4902 (if (real_equal (value, &dconstm1))
4903 (rdiv { build_real (type, dconst1); } @0))
4904 /* pow(x,0.5) -> sqrt(x). */
4905 (if (flag_unsafe_math_optimizations
4906 && canonicalize_math_p ()
4907 && real_equal (value, &dconsthalf))
4909 /* pow(x,1/3) -> cbrt(x). */
4910 (if (flag_unsafe_math_optimizations
4911 && canonicalize_math_p ()
4912 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4913 real_equal (value, &tmp)))
4916 /* powi(1,x) -> 1. */
4918 (POWI real_onep@0 @1)
4922 (POWI @0 INTEGER_CST@1)
4924 /* powi(x,0) -> 1. */
4925 (if (wi::to_wide (@1) == 0)
4926 { build_real (type, dconst1); })
4927 /* powi(x,1) -> x. */
4928 (if (wi::to_wide (@1) == 1)
4930 /* powi(x,-1) -> 1/x. */
4931 (if (wi::to_wide (@1) == -1)
4932 (rdiv { build_real (type, dconst1); } @0))))
4934 /* Narrowing of arithmetic and logical operations.
4936 These are conceptually similar to the transformations performed for
4937 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4938 term we want to move all that code out of the front-ends into here. */
4940 /* If we have a narrowing conversion of an arithmetic operation where
4941 both operands are widening conversions from the same type as the outer
4942 narrowing conversion. Then convert the innermost operands to a suitable
4943 unsigned type (to avoid introducing undefined behavior), perform the
4944 operation and convert the result to the desired type. */
4945 (for op (plus minus)
4947 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4948 (if (INTEGRAL_TYPE_P (type)
4949 /* We check for type compatibility between @0 and @1 below,
4950 so there's no need to check that @1/@3 are integral types. */
4951 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4952 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4953 /* The precision of the type of each operand must match the
4954 precision of the mode of each operand, similarly for the
4956 && type_has_mode_precision_p (TREE_TYPE (@0))
4957 && type_has_mode_precision_p (TREE_TYPE (@1))
4958 && type_has_mode_precision_p (type)
4959 /* The inner conversion must be a widening conversion. */
4960 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4961 && types_match (@0, type)
4962 && (types_match (@0, @1)
4963 /* Or the second operand is const integer or converted const
4964 integer from valueize. */
4965 || TREE_CODE (@1) == INTEGER_CST))
4966 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4967 (op @0 (convert @1))
4968 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4969 (convert (op (convert:utype @0)
4970 (convert:utype @1))))))))
4972 /* This is another case of narrowing, specifically when there's an outer
4973 BIT_AND_EXPR which masks off bits outside the type of the innermost
4974 operands. Like the previous case we have to convert the operands
4975 to unsigned types to avoid introducing undefined behavior for the
4976 arithmetic operation. */
4977 (for op (minus plus)
4979 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4980 (if (INTEGRAL_TYPE_P (type)
4981 /* We check for type compatibility between @0 and @1 below,
4982 so there's no need to check that @1/@3 are integral types. */
4983 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4984 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4985 /* The precision of the type of each operand must match the
4986 precision of the mode of each operand, similarly for the
4988 && type_has_mode_precision_p (TREE_TYPE (@0))
4989 && type_has_mode_precision_p (TREE_TYPE (@1))
4990 && type_has_mode_precision_p (type)
4991 /* The inner conversion must be a widening conversion. */
4992 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4993 && types_match (@0, @1)
4994 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4995 <= TYPE_PRECISION (TREE_TYPE (@0)))
4996 && (wi::to_wide (@4)
4997 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4998 true, TYPE_PRECISION (type))) == 0)
4999 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5000 (with { tree ntype = TREE_TYPE (@0); }
5001 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5002 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5003 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5004 (convert:utype @4))))))))
5006 /* Transform (@0 < @1 and @0 < @2) to use min,
5007 (@0 > @1 and @0 > @2) to use max */
5008 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5009 op (lt le gt ge lt le gt ge )
5010 ext (min min max max max max min min )
5012 (logic (op:cs @0 @1) (op:cs @0 @2))
5013 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5014 && TREE_CODE (@0) != INTEGER_CST)
5015 (op @0 (ext @1 @2)))))
5018 /* signbit(x) -> 0 if x is nonnegative. */
5019 (SIGNBIT tree_expr_nonnegative_p@0)
5020 { integer_zero_node; })
5023 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5025 (if (!HONOR_SIGNED_ZEROS (@0))
5026 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5028 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5030 (for op (plus minus)
5033 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5034 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5035 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5036 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5037 && !TYPE_SATURATING (TREE_TYPE (@0)))
5038 (with { tree res = int_const_binop (rop, @2, @1); }
5039 (if (TREE_OVERFLOW (res)
5040 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5041 { constant_boolean_node (cmp == NE_EXPR, type); }
5042 (if (single_use (@3))
5043 (cmp @0 { TREE_OVERFLOW (res)
5044 ? drop_tree_overflow (res) : res; }))))))))
5045 (for cmp (lt le gt ge)
5046 (for op (plus minus)
5049 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5050 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5051 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5052 (with { tree res = int_const_binop (rop, @2, @1); }
5053 (if (TREE_OVERFLOW (res))
5055 fold_overflow_warning (("assuming signed overflow does not occur "
5056 "when simplifying conditional to constant"),
5057 WARN_STRICT_OVERFLOW_CONDITIONAL);
5058 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5059 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5060 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5061 TYPE_SIGN (TREE_TYPE (@1)))
5062 != (op == MINUS_EXPR);
5063 constant_boolean_node (less == ovf_high, type);
5065 (if (single_use (@3))
5068 fold_overflow_warning (("assuming signed overflow does not occur "
5069 "when changing X +- C1 cmp C2 to "
5071 WARN_STRICT_OVERFLOW_COMPARISON);
5073 (cmp @0 { res; })))))))))
5075 /* Canonicalizations of BIT_FIELD_REFs. */
5078 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5079 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5082 (BIT_FIELD_REF (view_convert @0) @1 @2)
5083 (BIT_FIELD_REF @0 @1 @2))
5086 (BIT_FIELD_REF @0 @1 integer_zerop)
5087 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5091 (BIT_FIELD_REF @0 @1 @2)
5093 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5094 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5096 (if (integer_zerop (@2))
5097 (view_convert (realpart @0)))
5098 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5099 (view_convert (imagpart @0)))))
5100 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5101 && INTEGRAL_TYPE_P (type)
5102 /* On GIMPLE this should only apply to register arguments. */
5103 && (! GIMPLE || is_gimple_reg (@0))
5104 /* A bit-field-ref that referenced the full argument can be stripped. */
5105 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5106 && integer_zerop (@2))
5107 /* Low-parts can be reduced to integral conversions.
5108 ??? The following doesn't work for PDP endian. */
5109 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5110 /* Don't even think about BITS_BIG_ENDIAN. */
5111 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5112 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5113 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5114 ? (TYPE_PRECISION (TREE_TYPE (@0))
5115 - TYPE_PRECISION (type))
5119 /* Simplify vector extracts. */
5122 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5123 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5124 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5125 || (VECTOR_TYPE_P (type)
5126 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5129 tree ctor = (TREE_CODE (@0) == SSA_NAME
5130 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5131 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5132 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5133 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5134 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5137 && (idx % width) == 0
5139 && known_le ((idx + n) / width,
5140 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5145 /* Constructor elements can be subvectors. */
5147 if (CONSTRUCTOR_NELTS (ctor) != 0)
5149 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5150 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5151 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5153 unsigned HOST_WIDE_INT elt, count, const_k;
5156 /* We keep an exact subset of the constructor elements. */
5157 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5158 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5159 { build_constructor (type, NULL); }
5161 (if (elt < CONSTRUCTOR_NELTS (ctor))
5162 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5163 { build_zero_cst (type); })
5165 vec<constructor_elt, va_gc> *vals;
5166 vec_alloc (vals, count);
5167 for (unsigned i = 0;
5168 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5169 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5170 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5171 build_constructor (type, vals);
5173 /* The bitfield references a single constructor element. */
5174 (if (k.is_constant (&const_k)
5175 && idx + n <= (idx / const_k + 1) * const_k)
5177 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5178 { build_zero_cst (type); })
5180 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5181 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5182 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5184 /* Simplify a bit extraction from a bit insertion for the cases with
5185 the inserted element fully covering the extraction or the insertion
5186 not touching the extraction. */
5188 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5191 unsigned HOST_WIDE_INT isize;
5192 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5193 isize = TYPE_PRECISION (TREE_TYPE (@1));
5195 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5198 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5199 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5200 wi::to_wide (@ipos) + isize))
5201 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5203 - wi::to_wide (@ipos)); }))
5204 (if (wi::geu_p (wi::to_wide (@ipos),
5205 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5206 || wi::geu_p (wi::to_wide (@rpos),
5207 wi::to_wide (@ipos) + isize))
5208 (BIT_FIELD_REF @0 @rsize @rpos)))))
5210 (if (canonicalize_math_after_vectorization_p ())
5213 (fmas:c (negate @0) @1 @2)
5214 (IFN_FNMA @0 @1 @2))
5216 (fmas @0 @1 (negate @2))
5219 (fmas:c (negate @0) @1 (negate @2))
5220 (IFN_FNMS @0 @1 @2))
5222 (negate (fmas@3 @0 @1 @2))
5223 (if (single_use (@3))
5224 (IFN_FNMS @0 @1 @2))))
5227 (IFN_FMS:c (negate @0) @1 @2)
5228 (IFN_FNMS @0 @1 @2))
5230 (IFN_FMS @0 @1 (negate @2))
5233 (IFN_FMS:c (negate @0) @1 (negate @2))
5234 (IFN_FNMA @0 @1 @2))
5236 (negate (IFN_FMS@3 @0 @1 @2))
5237 (if (single_use (@3))
5238 (IFN_FNMA @0 @1 @2)))
5241 (IFN_FNMA:c (negate @0) @1 @2)
5244 (IFN_FNMA @0 @1 (negate @2))
5245 (IFN_FNMS @0 @1 @2))
5247 (IFN_FNMA:c (negate @0) @1 (negate @2))
5250 (negate (IFN_FNMA@3 @0 @1 @2))
5251 (if (single_use (@3))
5252 (IFN_FMS @0 @1 @2)))
5255 (IFN_FNMS:c (negate @0) @1 @2)
5258 (IFN_FNMS @0 @1 (negate @2))
5259 (IFN_FNMA @0 @1 @2))
5261 (IFN_FNMS:c (negate @0) @1 (negate @2))
5264 (negate (IFN_FNMS@3 @0 @1 @2))
5265 (if (single_use (@3))
5266 (IFN_FMA @0 @1 @2))))
5268 /* POPCOUNT simplifications. */
5269 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5270 BUILT_IN_POPCOUNTIMAX)
5271 /* popcount(X&1) is nop_expr(X&1). */
5274 (if (tree_nonzero_bits (@0) == 1)
5276 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5278 (plus (popcount:s @0) (popcount:s @1))
5279 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5280 (popcount (bit_ior @0 @1))))
5281 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5282 (for cmp (le eq ne gt)
5285 (cmp (popcount @0) integer_zerop)
5286 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5295 r = c ? a1 op a2 : b;
5297 if the target can do it in one go. This makes the operation conditional
5298 on c, so could drop potentially-trapping arithmetic, but that's a valid
5299 simplification if the result of the operation isn't needed.
5301 Avoid speculatively generating a stand-alone vector comparison
5302 on targets that might not support them. Any target implementing
5303 conditional internal functions must support the same comparisons
5304 inside and outside a VEC_COND_EXPR. */
5307 (for uncond_op (UNCOND_BINARY)
5308 cond_op (COND_BINARY)
5310 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5311 (with { tree op_type = TREE_TYPE (@4); }
5312 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5313 && element_precision (type) == element_precision (op_type))
5314 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5316 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5317 (with { tree op_type = TREE_TYPE (@4); }
5318 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5319 && element_precision (type) == element_precision (op_type))
5320 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5322 /* Same for ternary operations. */
5323 (for uncond_op (UNCOND_TERNARY)
5324 cond_op (COND_TERNARY)
5326 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5327 (with { tree op_type = TREE_TYPE (@5); }
5328 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5329 && element_precision (type) == element_precision (op_type))
5330 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5332 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5333 (with { tree op_type = TREE_TYPE (@5); }
5334 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5335 && element_precision (type) == element_precision (op_type))
5336 (view_convert (cond_op (bit_not @0) @2 @3 @4
5337 (view_convert:op_type @1)))))))
5340 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5341 "else" value of an IFN_COND_*. */
5342 (for cond_op (COND_BINARY)
5344 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5345 (with { tree op_type = TREE_TYPE (@3); }
5346 (if (element_precision (type) == element_precision (op_type))
5347 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5349 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5350 (with { tree op_type = TREE_TYPE (@5); }
5351 (if (inverse_conditions_p (@0, @2)
5352 && element_precision (type) == element_precision (op_type))
5353 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5355 /* Same for ternary operations. */
5356 (for cond_op (COND_TERNARY)
5358 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5359 (with { tree op_type = TREE_TYPE (@4); }
5360 (if (element_precision (type) == element_precision (op_type))
5361 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5363 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5364 (with { tree op_type = TREE_TYPE (@6); }
5365 (if (inverse_conditions_p (@0, @2)
5366 && element_precision (type) == element_precision (op_type))
5367 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5369 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5372 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5373 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5375 If pointers are known not to wrap, B checks whether @1 bytes starting
5376 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5377 bytes. A is more efficiently tested as:
5379 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5381 The equivalent expression for B is given by replacing @1 with @1 - 1:
5383 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5385 @0 and @2 can be swapped in both expressions without changing the result.
5387 The folds rely on sizetype's being unsigned (which is always true)
5388 and on its being the same width as the pointer (which we have to check).
5390 The fold replaces two pointer_plus expressions, two comparisons and
5391 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5392 the best case it's a saving of two operations. The A fold retains one
5393 of the original pointer_pluses, so is a win even if both pointer_pluses
5394 are used elsewhere. The B fold is a wash if both pointer_pluses are
5395 used elsewhere, since all we end up doing is replacing a comparison with
5396 a pointer_plus. We do still apply the fold under those circumstances
5397 though, in case applying it to other conditions eventually makes one of the
5398 pointer_pluses dead. */
5399 (for ior (truth_orif truth_or bit_ior)
5402 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5403 (cmp:cs (pointer_plus@4 @2 @1) @0))
5404 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5405 && TYPE_OVERFLOW_WRAPS (sizetype)
5406 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5407 /* Calculate the rhs constant. */
5408 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5409 offset_int rhs = off * 2; }
5410 /* Always fails for negative values. */
5411 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5412 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5413 pick a canonical order. This increases the chances of using the
5414 same pointer_plus in multiple checks. */
5415 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5416 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5417 (if (cmp == LT_EXPR)
5418 (gt (convert:sizetype
5419 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5420 { swap_p ? @0 : @2; }))
5422 (gt (convert:sizetype
5423 (pointer_diff:ssizetype
5424 (pointer_plus { swap_p ? @2 : @0; }
5425 { wide_int_to_tree (sizetype, off); })
5426 { swap_p ? @0 : @2; }))
5427 { rhs_tree; })))))))))
5429 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5431 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5432 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5433 (with { int i = single_nonzero_element (@1); }
5435 (with { tree elt = vector_cst_elt (@1, i);
5436 tree elt_type = TREE_TYPE (elt);
5437 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5438 tree size = bitsize_int (elt_bits);
5439 tree pos = bitsize_int (elt_bits * i); }
5442 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5446 (vec_perm @0 @1 VECTOR_CST@2)
5449 tree op0 = @0, op1 = @1, op2 = @2;
5451 /* Build a vector of integers from the tree mask. */
5452 vec_perm_builder builder;
5453 if (!tree_to_vec_perm_builder (&builder, op2))
5456 /* Create a vec_perm_indices for the integer vector. */
5457 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5458 bool single_arg = (op0 == op1);
5459 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5461 (if (sel.series_p (0, 1, 0, 1))
5463 (if (sel.series_p (0, 1, nelts, 1))
5469 if (sel.all_from_input_p (0))
5471 else if (sel.all_from_input_p (1))
5474 sel.rotate_inputs (1);
5476 else if (known_ge (poly_uint64 (sel[0]), nelts))
5478 std::swap (op0, op1);
5479 sel.rotate_inputs (1);
5483 tree cop0 = op0, cop1 = op1;
5484 if (TREE_CODE (op0) == SSA_NAME
5485 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
5486 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5487 cop0 = gimple_assign_rhs1 (def);
5488 if (TREE_CODE (op1) == SSA_NAME
5489 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
5490 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5491 cop1 = gimple_assign_rhs1 (def);
5495 (if ((TREE_CODE (cop0) == VECTOR_CST
5496 || TREE_CODE (cop0) == CONSTRUCTOR)
5497 && (TREE_CODE (cop1) == VECTOR_CST
5498 || TREE_CODE (cop1) == CONSTRUCTOR)
5499 && (t = fold_vec_perm (type, cop0, cop1, sel)))
5503 bool changed = (op0 == op1 && !single_arg);
5504 tree ins = NULL_TREE;
5507 /* See if the permutation is performing a single element
5508 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
5509 in that case. But only if the vector mode is supported,
5510 otherwise this is invalid GIMPLE. */
5511 if (TYPE_MODE (type) != BLKmode
5512 && (TREE_CODE (cop0) == VECTOR_CST
5513 || TREE_CODE (cop0) == CONSTRUCTOR
5514 || TREE_CODE (cop1) == VECTOR_CST
5515 || TREE_CODE (cop1) == CONSTRUCTOR))
5517 if (sel.series_p (1, 1, nelts + 1, 1))
5519 /* After canonicalizing the first elt to come from the
5520 first vector we only can insert the first elt from
5521 the first vector. */
5523 if ((ins = fold_read_from_vector (cop0, 0)))
5528 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
5529 for (at = 0; at < encoded_nelts; ++at)
5530 if (maybe_ne (sel[at], at))
5532 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
5534 if (known_lt (at, nelts))
5535 ins = fold_read_from_vector (cop0, sel[at]);
5537 ins = fold_read_from_vector (cop1, sel[at] - nelts);
5542 /* Generate a canonical form of the selector. */
5543 if (!ins && sel.encoding () != builder)
5545 /* Some targets are deficient and fail to expand a single
5546 argument permutation while still allowing an equivalent
5547 2-argument version. */
5549 if (sel.ninputs () == 2
5550 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
5551 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5554 vec_perm_indices sel2 (builder, 2, nelts);
5555 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
5556 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
5558 /* Not directly supported with either encoding,
5559 so use the preferred form. */
5560 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5562 if (!operand_equal_p (op2, oldop2, 0))
5567 (bit_insert { op0; } { ins; }
5568 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
5570 (vec_perm { op0; } { op1; } { op2; }))))))))))