Core issue 2310 - conversion to base of incomplete type.
[official-gcc.git] / gcc / lra-eliminations.c
blob21d8d5f8018d696bf54fc315fc0639e14c1e1760
1 /* Code for RTL register eliminations.
2 Copyright (C) 2010-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Eliminable registers (like a soft argument or frame pointer) are
22 widely used in RTL. These eliminable registers should be replaced
23 by real hard registers (like the stack pointer or hard frame
24 pointer) plus some offset. The offsets usually change whenever the
25 stack is expanded. We know the final offsets only at the very end
26 of LRA.
28 Within LRA, we usually keep the RTL in such a state that the
29 eliminable registers can be replaced by just the corresponding hard
30 register (without any offset). To achieve this we should add the
31 initial elimination offset at the beginning of LRA and update the
32 offsets whenever the stack is expanded. We need to do this before
33 every constraint pass because the choice of offset often affects
34 whether a particular address or memory constraint is satisfied.
36 We keep RTL code at most time in such state that the virtual
37 registers can be changed by just the corresponding hard registers
38 (with zero offsets) and we have the right RTL code. To achieve this
39 we should add initial offset at the beginning of LRA work and update
40 offsets after each stack expanding. But actually we update virtual
41 registers to the same virtual registers + corresponding offsets
42 before every constraint pass because it affects constraint
43 satisfaction (e.g. an address displacement became too big for some
44 target).
46 The final change of eliminable registers to the corresponding hard
47 registers are done at the very end of LRA when there were no change
48 in offsets anymore:
50 fp + 42 => sp + 42
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "target.h"
59 #include "rtl.h"
60 #include "tree.h"
61 #include "df.h"
62 #include "memmodel.h"
63 #include "tm_p.h"
64 #include "optabs.h"
65 #include "regs.h"
66 #include "ira.h"
67 #include "recog.h"
68 #include "output.h"
69 #include "rtl-error.h"
70 #include "lra-int.h"
72 /* This structure is used to record information about hard register
73 eliminations. */
74 struct lra_elim_table
76 /* Hard register number to be eliminated. */
77 int from;
78 /* Hard register number used as replacement. */
79 int to;
80 /* Difference between values of the two hard registers above on
81 previous iteration. */
82 poly_int64 previous_offset;
83 /* Difference between the values on the current iteration. */
84 poly_int64 offset;
85 /* Nonzero if this elimination can be done. */
86 bool can_eliminate;
87 /* CAN_ELIMINATE since the last check. */
88 bool prev_can_eliminate;
89 /* REG rtx for the register to be eliminated. We cannot simply
90 compare the number since we might then spuriously replace a hard
91 register corresponding to a pseudo assigned to the reg to be
92 eliminated. */
93 rtx from_rtx;
94 /* REG rtx for the replacement. */
95 rtx to_rtx;
98 /* The elimination table. Each array entry describes one possible way
99 of eliminating a register in favor of another. If there is more
100 than one way of eliminating a particular register, the most
101 preferred should be specified first. */
102 static struct lra_elim_table *reg_eliminate = 0;
104 /* This is an intermediate structure to initialize the table. It has
105 exactly the members provided by ELIMINABLE_REGS. */
106 static const struct elim_table_1
108 const int from;
109 const int to;
110 } reg_eliminate_1[] =
112 ELIMINABLE_REGS;
114 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
116 /* Print info about elimination table to file F. */
117 static void
118 print_elim_table (FILE *f)
120 struct lra_elim_table *ep;
122 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
124 fprintf (f, "%s eliminate %d to %d (offset=",
125 ep->can_eliminate ? "Can" : "Can't", ep->from, ep->to);
126 print_dec (ep->offset, f);
127 fprintf (f, ", prev_offset=");
128 print_dec (ep->previous_offset, f);
129 fprintf (f, ")\n");
133 /* Print info about elimination table to stderr. */
134 void
135 lra_debug_elim_table (void)
137 print_elim_table (stderr);
140 /* Setup possibility of elimination in elimination table element EP to
141 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
142 pointer to stack pointer is not possible anymore. */
143 static void
144 setup_can_eliminate (struct lra_elim_table *ep, bool value)
146 ep->can_eliminate = ep->prev_can_eliminate = value;
147 if (! value
148 && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
149 frame_pointer_needed = 1;
150 if (!frame_pointer_needed)
151 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 0;
154 /* Map: eliminable "from" register -> its current elimination,
155 or NULL if none. The elimination table may contain more than
156 one elimination for the same hard register, but this map specifies
157 the one that we are currently using. */
158 static struct lra_elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
160 /* When an eliminable hard register becomes not eliminable, we use the
161 following special structure to restore original offsets for the
162 register. */
163 static struct lra_elim_table self_elim_table;
165 /* Offsets should be used to restore original offsets for eliminable
166 hard register which just became not eliminable. Zero,
167 otherwise. */
168 static poly_int64_pod self_elim_offsets[FIRST_PSEUDO_REGISTER];
170 /* Map: hard regno -> RTL presentation. RTL presentations of all
171 potentially eliminable hard registers are stored in the map. */
172 static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
174 /* Set up ELIMINATION_MAP of the currently used eliminations. */
175 static void
176 setup_elimination_map (void)
178 int i;
179 struct lra_elim_table *ep;
181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
182 elimination_map[i] = NULL;
183 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
184 if (ep->can_eliminate && elimination_map[ep->from] == NULL)
185 elimination_map[ep->from] = ep;
190 /* Compute the sum of X and Y, making canonicalizations assumed in an
191 address, namely: sum constant integers, surround the sum of two
192 constants with a CONST, put the constant as the second operand, and
193 group the constant on the outermost sum.
195 This routine assumes both inputs are already in canonical form. */
196 static rtx
197 form_sum (rtx x, rtx y)
199 machine_mode mode = GET_MODE (x);
200 poly_int64 offset;
202 if (mode == VOIDmode)
203 mode = GET_MODE (y);
205 if (mode == VOIDmode)
206 mode = Pmode;
208 if (poly_int_rtx_p (x, &offset))
209 return plus_constant (mode, y, offset);
210 else if (poly_int_rtx_p (y, &offset))
211 return plus_constant (mode, x, offset);
212 else if (CONSTANT_P (x))
213 std::swap (x, y);
215 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
216 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
218 /* Note that if the operands of Y are specified in the opposite
219 order in the recursive calls below, infinite recursion will
220 occur. */
221 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
222 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
224 /* If both constant, encapsulate sum. Otherwise, just form sum. A
225 constant will have been placed second. */
226 if (CONSTANT_P (x) && CONSTANT_P (y))
228 if (GET_CODE (x) == CONST)
229 x = XEXP (x, 0);
230 if (GET_CODE (y) == CONST)
231 y = XEXP (y, 0);
233 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
236 return gen_rtx_PLUS (mode, x, y);
239 /* Return the current substitution hard register of the elimination of
240 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
242 lra_get_elimination_hard_regno (int hard_regno)
244 struct lra_elim_table *ep;
246 if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
247 return hard_regno;
248 if ((ep = elimination_map[hard_regno]) == NULL)
249 return hard_regno;
250 return ep->to;
253 /* Return elimination which will be used for hard reg REG, NULL
254 otherwise. */
255 static struct lra_elim_table *
256 get_elimination (rtx reg)
258 int hard_regno;
259 struct lra_elim_table *ep;
261 lra_assert (REG_P (reg));
262 if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
263 return NULL;
264 if ((ep = elimination_map[hard_regno]) != NULL)
265 return ep->from_rtx != reg ? NULL : ep;
266 poly_int64 offset = self_elim_offsets[hard_regno];
267 if (known_eq (offset, 0))
268 return NULL;
269 /* This is an iteration to restore offsets just after HARD_REGNO
270 stopped to be eliminable. */
271 self_elim_table.from = self_elim_table.to = hard_regno;
272 self_elim_table.from_rtx
273 = self_elim_table.to_rtx
274 = eliminable_reg_rtx[hard_regno];
275 lra_assert (self_elim_table.from_rtx != NULL);
276 self_elim_table.offset = offset;
277 return &self_elim_table;
280 /* Transform (subreg (plus reg const)) to (plus (subreg reg) const)
281 when it is possible. Return X or the transformation result if the
282 transformation is done. */
283 static rtx
284 move_plus_up (rtx x)
286 rtx subreg_reg;
287 machine_mode x_mode, subreg_reg_mode;
289 if (GET_CODE (x) != SUBREG || !subreg_lowpart_p (x))
290 return x;
291 subreg_reg = SUBREG_REG (x);
292 x_mode = GET_MODE (x);
293 subreg_reg_mode = GET_MODE (subreg_reg);
294 if (!paradoxical_subreg_p (x)
295 && GET_CODE (subreg_reg) == PLUS
296 && CONSTANT_P (XEXP (subreg_reg, 1))
297 && GET_MODE_CLASS (x_mode) == MODE_INT
298 && GET_MODE_CLASS (subreg_reg_mode) == MODE_INT)
300 rtx cst = simplify_subreg (x_mode, XEXP (subreg_reg, 1), subreg_reg_mode,
301 subreg_lowpart_offset (x_mode,
302 subreg_reg_mode));
303 if (cst && CONSTANT_P (cst))
304 return gen_rtx_PLUS (x_mode, lowpart_subreg (x_mode,
305 XEXP (subreg_reg, 0),
306 subreg_reg_mode), cst);
308 return x;
311 /* Scan X and replace any eliminable registers (such as fp) with a
312 replacement (such as sp) if SUBST_P, plus an offset. The offset is
313 a change in the offset between the eliminable register and its
314 substitution if UPDATE_P, or the full offset if FULL_P, or
315 otherwise zero. If FULL_P, we also use the SP offsets for
316 elimination to SP. If UPDATE_P, use UPDATE_SP_OFFSET for updating
317 offsets of register elimnable to SP. If UPDATE_SP_OFFSET is
318 non-zero, don't use difference of the offset and the previous
319 offset.
321 MEM_MODE is the mode of an enclosing MEM. We need this to know how
322 much to adjust a register for, e.g., PRE_DEC. Also, if we are
323 inside a MEM, we are allowed to replace a sum of a hard register
324 and the constant zero with the hard register, which we cannot do
325 outside a MEM. In addition, we need to record the fact that a
326 hard register is referenced outside a MEM.
328 If we make full substitution to SP for non-null INSN, add the insn
329 sp offset. */
331 lra_eliminate_regs_1 (rtx_insn *insn, rtx x, machine_mode mem_mode,
332 bool subst_p, bool update_p,
333 poly_int64 update_sp_offset, bool full_p)
335 enum rtx_code code = GET_CODE (x);
336 struct lra_elim_table *ep;
337 rtx new_rtx;
338 int i, j;
339 const char *fmt;
340 int copied = 0;
342 lra_assert (!update_p || !full_p);
343 lra_assert (known_eq (update_sp_offset, 0)
344 || (!subst_p && update_p && !full_p));
345 if (! current_function_decl)
346 return x;
348 switch (code)
350 CASE_CONST_ANY:
351 case CONST:
352 case SYMBOL_REF:
353 case CODE_LABEL:
354 case PC:
355 case CC0:
356 case ASM_INPUT:
357 case ADDR_VEC:
358 case ADDR_DIFF_VEC:
359 case RETURN:
360 return x;
362 case REG:
363 /* First handle the case where we encounter a bare hard register
364 that is eliminable. Replace it with a PLUS. */
365 if ((ep = get_elimination (x)) != NULL)
367 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
369 if (maybe_ne (update_sp_offset, 0))
371 if (ep->to_rtx == stack_pointer_rtx)
372 return plus_constant (Pmode, to, update_sp_offset);
373 return to;
375 else if (update_p)
376 return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
377 else if (full_p)
378 return plus_constant (Pmode, to,
379 ep->offset
380 - (insn != NULL_RTX
381 && ep->to_rtx == stack_pointer_rtx
382 ? lra_get_insn_recog_data (insn)->sp_offset
383 : 0));
384 else
385 return to;
387 return x;
389 case PLUS:
390 /* If this is the sum of an eliminable register and a constant, rework
391 the sum. */
392 if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
394 if ((ep = get_elimination (XEXP (x, 0))) != NULL)
396 poly_int64 offset, curr_offset;
397 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
399 if (! update_p && ! full_p)
400 return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
402 if (maybe_ne (update_sp_offset, 0))
403 offset = ep->to_rtx == stack_pointer_rtx ? update_sp_offset : 0;
404 else
405 offset = (update_p
406 ? ep->offset - ep->previous_offset : ep->offset);
407 if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
408 offset -= lra_get_insn_recog_data (insn)->sp_offset;
409 if (poly_int_rtx_p (XEXP (x, 1), &curr_offset)
410 && known_eq (curr_offset, -offset))
411 return to;
412 else
413 return gen_rtx_PLUS (Pmode, to,
414 plus_constant (Pmode,
415 XEXP (x, 1), offset));
418 /* If the hard register is not eliminable, we are done since
419 the other operand is a constant. */
420 return x;
423 /* If this is part of an address, we want to bring any constant
424 to the outermost PLUS. We will do this by doing hard
425 register replacement in our operands and seeing if a constant
426 shows up in one of them.
428 Note that there is no risk of modifying the structure of the
429 insn, since we only get called for its operands, thus we are
430 either modifying the address inside a MEM, or something like
431 an address operand of a load-address insn. */
434 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
435 subst_p, update_p,
436 update_sp_offset, full_p);
437 rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
438 subst_p, update_p,
439 update_sp_offset, full_p);
441 new0 = move_plus_up (new0);
442 new1 = move_plus_up (new1);
443 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
444 return form_sum (new0, new1);
446 return x;
448 case MULT:
449 /* If this is the product of an eliminable hard register and a
450 constant, apply the distribute law and move the constant out
451 so that we have (plus (mult ..) ..). This is needed in order
452 to keep load-address insns valid. This case is pathological.
453 We ignore the possibility of overflow here. */
454 if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
455 && (ep = get_elimination (XEXP (x, 0))) != NULL)
457 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
459 if (maybe_ne (update_sp_offset, 0))
461 if (ep->to_rtx == stack_pointer_rtx)
462 return plus_constant (Pmode,
463 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
464 update_sp_offset * INTVAL (XEXP (x, 1)));
465 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
467 else if (update_p)
468 return plus_constant (Pmode,
469 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
470 (ep->offset - ep->previous_offset)
471 * INTVAL (XEXP (x, 1)));
472 else if (full_p)
474 poly_int64 offset = ep->offset;
476 if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
477 offset -= lra_get_insn_recog_data (insn)->sp_offset;
478 return
479 plus_constant (Pmode,
480 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
481 offset * INTVAL (XEXP (x, 1)));
483 else
484 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
487 /* fall through */
489 case CALL:
490 case COMPARE:
491 /* See comments before PLUS about handling MINUS. */
492 case MINUS:
493 case DIV: case UDIV:
494 case MOD: case UMOD:
495 case AND: case IOR: case XOR:
496 case ROTATERT: case ROTATE:
497 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
498 case NE: case EQ:
499 case GE: case GT: case GEU: case GTU:
500 case LE: case LT: case LEU: case LTU:
502 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
503 subst_p, update_p,
504 update_sp_offset, full_p);
505 rtx new1 = XEXP (x, 1)
506 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
507 subst_p, update_p,
508 update_sp_offset, full_p) : 0;
510 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
511 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
513 return x;
515 case EXPR_LIST:
516 /* If we have something in XEXP (x, 0), the usual case,
517 eliminate it. */
518 if (XEXP (x, 0))
520 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
521 subst_p, update_p,
522 update_sp_offset, full_p);
523 if (new_rtx != XEXP (x, 0))
525 /* If this is a REG_DEAD note, it is not valid anymore.
526 Using the eliminated version could result in creating a
527 REG_DEAD note for the stack or frame pointer. */
528 if (REG_NOTE_KIND (x) == REG_DEAD)
529 return (XEXP (x, 1)
530 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
531 subst_p, update_p,
532 update_sp_offset, full_p)
533 : NULL_RTX);
535 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
539 /* fall through */
541 case INSN_LIST:
542 case INT_LIST:
543 /* Now do eliminations in the rest of the chain. If this was
544 an EXPR_LIST, this might result in allocating more memory than is
545 strictly needed, but it simplifies the code. */
546 if (XEXP (x, 1))
548 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
549 subst_p, update_p,
550 update_sp_offset, full_p);
551 if (new_rtx != XEXP (x, 1))
552 return
553 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
554 XEXP (x, 0), new_rtx);
556 return x;
558 case PRE_INC:
559 case POST_INC:
560 case PRE_DEC:
561 case POST_DEC:
562 /* We do not support elimination of a register that is modified.
563 elimination_effects has already make sure that this does not
564 happen. */
565 return x;
567 case PRE_MODIFY:
568 case POST_MODIFY:
569 /* We do not support elimination of a hard register that is
570 modified. LRA has already make sure that this does not
571 happen. The only remaining case we need to consider here is
572 that the increment value may be an eliminable register. */
573 if (GET_CODE (XEXP (x, 1)) == PLUS
574 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
576 rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
577 mem_mode, subst_p, update_p,
578 update_sp_offset, full_p);
580 if (new_rtx != XEXP (XEXP (x, 1), 1))
581 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
582 gen_rtx_PLUS (GET_MODE (x),
583 XEXP (x, 0), new_rtx));
585 return x;
587 case STRICT_LOW_PART:
588 case NEG: case NOT:
589 case SIGN_EXTEND: case ZERO_EXTEND:
590 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
591 case FLOAT: case FIX:
592 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
593 case ABS:
594 case SQRT:
595 case FFS:
596 case CLZ:
597 case CTZ:
598 case POPCOUNT:
599 case PARITY:
600 case BSWAP:
601 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
602 subst_p, update_p,
603 update_sp_offset, full_p);
604 if (new_rtx != XEXP (x, 0))
605 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
606 return x;
608 case SUBREG:
609 new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
610 subst_p, update_p,
611 update_sp_offset, full_p);
613 if (new_rtx != SUBREG_REG (x))
615 if (MEM_P (new_rtx) && !paradoxical_subreg_p (x))
617 SUBREG_REG (x) = new_rtx;
618 alter_subreg (&x, false);
619 return x;
621 else if (! subst_p)
623 /* LRA can transform subregs itself. So don't call
624 simplify_gen_subreg until LRA transformations are
625 finished. Function simplify_gen_subreg can do
626 non-trivial transformations (like truncation) which
627 might make LRA work to fail. */
628 SUBREG_REG (x) = new_rtx;
629 return x;
631 else
632 return simplify_gen_subreg (GET_MODE (x), new_rtx,
633 GET_MODE (new_rtx), SUBREG_BYTE (x));
636 return x;
638 case MEM:
639 /* Our only special processing is to pass the mode of the MEM to our
640 recursive call and copy the flags. While we are here, handle this
641 case more efficiently. */
642 return
643 replace_equiv_address_nv
645 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
646 subst_p, update_p, update_sp_offset, full_p));
648 case USE:
649 /* Handle insn_list USE that a call to a pure function may generate. */
650 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
651 subst_p, update_p, update_sp_offset, full_p);
652 if (new_rtx != XEXP (x, 0))
653 return gen_rtx_USE (GET_MODE (x), new_rtx);
654 return x;
656 case CLOBBER:
657 case SET:
658 gcc_unreachable ();
660 default:
661 break;
664 /* Process each of our operands recursively. If any have changed, make a
665 copy of the rtx. */
666 fmt = GET_RTX_FORMAT (code);
667 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
669 if (*fmt == 'e')
671 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
672 subst_p, update_p,
673 update_sp_offset, full_p);
674 if (new_rtx != XEXP (x, i) && ! copied)
676 x = shallow_copy_rtx (x);
677 copied = 1;
679 XEXP (x, i) = new_rtx;
681 else if (*fmt == 'E')
683 int copied_vec = 0;
684 for (j = 0; j < XVECLEN (x, i); j++)
686 new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
687 subst_p, update_p,
688 update_sp_offset, full_p);
689 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
691 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
692 XVEC (x, i)->elem);
693 if (! copied)
695 x = shallow_copy_rtx (x);
696 copied = 1;
698 XVEC (x, i) = new_v;
699 copied_vec = 1;
701 XVECEXP (x, i, j) = new_rtx;
706 return x;
709 /* This function is used externally in subsequent passes of GCC. It
710 always does a full elimination of X. */
712 lra_eliminate_regs (rtx x, machine_mode mem_mode,
713 rtx insn ATTRIBUTE_UNUSED)
715 return lra_eliminate_regs_1 (NULL, x, mem_mode, true, false, 0, true);
718 /* Stack pointer offset before the current insn relative to one at the
719 func start. RTL insns can change SP explicitly. We keep the
720 changes from one insn to another through this variable. */
721 static poly_int64 curr_sp_change;
723 /* Scan rtx X for references to elimination source or target registers
724 in contexts that would prevent the elimination from happening.
725 Update the table of eliminables to reflect the changed state.
726 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
727 within a MEM. */
728 static void
729 mark_not_eliminable (rtx x, machine_mode mem_mode)
731 enum rtx_code code = GET_CODE (x);
732 struct lra_elim_table *ep;
733 int i, j;
734 const char *fmt;
735 poly_int64 offset = 0;
737 switch (code)
739 case PRE_INC:
740 case POST_INC:
741 case PRE_DEC:
742 case POST_DEC:
743 case POST_MODIFY:
744 case PRE_MODIFY:
745 if (XEXP (x, 0) == stack_pointer_rtx
746 && ((code != PRE_MODIFY && code != POST_MODIFY)
747 || (GET_CODE (XEXP (x, 1)) == PLUS
748 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
749 && poly_int_rtx_p (XEXP (XEXP (x, 1), 1), &offset))))
751 poly_int64 size = GET_MODE_SIZE (mem_mode);
753 #ifdef PUSH_ROUNDING
754 /* If more bytes than MEM_MODE are pushed, account for
755 them. */
756 size = PUSH_ROUNDING (size);
757 #endif
758 if (code == PRE_DEC || code == POST_DEC)
759 curr_sp_change -= size;
760 else if (code == PRE_INC || code == POST_INC)
761 curr_sp_change += size;
762 else if (code == PRE_MODIFY || code == POST_MODIFY)
763 curr_sp_change += offset;
765 else if (REG_P (XEXP (x, 0))
766 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
768 /* If we modify the source of an elimination rule, disable
769 it. Do the same if it is the destination and not the
770 hard frame register. */
771 for (ep = reg_eliminate;
772 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
773 ep++)
774 if (ep->from_rtx == XEXP (x, 0)
775 || (ep->to_rtx == XEXP (x, 0)
776 && ep->to_rtx != hard_frame_pointer_rtx))
777 setup_can_eliminate (ep, false);
779 return;
781 case USE:
782 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
783 /* If using a hard register that is the source of an eliminate
784 we still think can be performed, note it cannot be
785 performed since we don't know how this hard register is
786 used. */
787 for (ep = reg_eliminate;
788 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
789 ep++)
790 if (ep->from_rtx == XEXP (x, 0)
791 && ep->to_rtx != hard_frame_pointer_rtx)
792 setup_can_eliminate (ep, false);
793 return;
795 case CLOBBER:
796 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
797 /* If clobbering a hard register that is the replacement
798 register for an elimination we still think can be
799 performed, note that it cannot be performed. Otherwise, we
800 need not be concerned about it. */
801 for (ep = reg_eliminate;
802 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
803 ep++)
804 if (ep->to_rtx == XEXP (x, 0)
805 && ep->to_rtx != hard_frame_pointer_rtx)
806 setup_can_eliminate (ep, false);
807 return;
809 case SET:
810 if (SET_DEST (x) == stack_pointer_rtx
811 && GET_CODE (SET_SRC (x)) == PLUS
812 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
813 && poly_int_rtx_p (XEXP (SET_SRC (x), 1), &offset))
815 curr_sp_change += offset;
816 return;
818 if (! REG_P (SET_DEST (x))
819 || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
820 mark_not_eliminable (SET_DEST (x), mem_mode);
821 else
823 /* See if this is setting the replacement hard register for
824 an elimination.
826 If DEST is the hard frame pointer, we do nothing because
827 we assume that all assignments to the frame pointer are
828 for non-local gotos and are being done at a time when
829 they are valid and do not disturb anything else. Some
830 machines want to eliminate a fake argument pointer (or
831 even a fake frame pointer) with either the real frame
832 pointer or the stack pointer. Assignments to the hard
833 frame pointer must not prevent this elimination. */
834 for (ep = reg_eliminate;
835 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
836 ep++)
837 if (ep->to_rtx == SET_DEST (x)
838 && SET_DEST (x) != hard_frame_pointer_rtx)
839 setup_can_eliminate (ep, false);
842 mark_not_eliminable (SET_SRC (x), mem_mode);
843 return;
845 case MEM:
846 /* Our only special processing is to pass the mode of the MEM to
847 our recursive call. */
848 mark_not_eliminable (XEXP (x, 0), GET_MODE (x));
849 return;
851 default:
852 break;
855 fmt = GET_RTX_FORMAT (code);
856 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
858 if (*fmt == 'e')
859 mark_not_eliminable (XEXP (x, i), mem_mode);
860 else if (*fmt == 'E')
861 for (j = 0; j < XVECLEN (x, i); j++)
862 mark_not_eliminable (XVECEXP (x, i, j), mem_mode);
868 #ifdef HARD_FRAME_POINTER_REGNUM
870 /* Search INSN's reg notes to see whether the destination is equal to
871 WHAT + C for some constant C. Return true if so, storing C in
872 *OFFSET_OUT and removing the reg note. */
873 static bool
874 remove_reg_equal_offset_note (rtx_insn *insn, rtx what, poly_int64 *offset_out)
876 rtx link, *link_loc;
878 for (link_loc = &REG_NOTES (insn);
879 (link = *link_loc) != NULL_RTX;
880 link_loc = &XEXP (link, 1))
881 if (REG_NOTE_KIND (link) == REG_EQUAL
882 && GET_CODE (XEXP (link, 0)) == PLUS
883 && XEXP (XEXP (link, 0), 0) == what
884 && poly_int_rtx_p (XEXP (XEXP (link, 0), 1), offset_out))
886 *link_loc = XEXP (link, 1);
887 return true;
889 return false;
892 #endif
894 /* Scan INSN and eliminate all eliminable hard registers in it.
896 If REPLACE_P is true, do the replacement destructively. Also
897 delete the insn as dead it if it is setting an eliminable register.
899 If REPLACE_P is false, just update the offsets while keeping the
900 base register the same. If FIRST_P, use the sp offset for
901 elimination to sp. Otherwise, use UPDATE_SP_OFFSET for this. If
902 UPDATE_SP_OFFSET is non-zero, don't use difference of the offset
903 and the previous offset. Attach the note about used elimination
904 for insns setting frame pointer to update elimination easy (without
905 parsing already generated elimination insns to find offset
906 previously used) in future. */
908 void
909 eliminate_regs_in_insn (rtx_insn *insn, bool replace_p, bool first_p,
910 poly_int64 update_sp_offset)
912 int icode = recog_memoized (insn);
913 rtx old_set = single_set (insn);
914 bool validate_p;
915 int i;
916 rtx substed_operand[MAX_RECOG_OPERANDS];
917 rtx orig_operand[MAX_RECOG_OPERANDS];
918 struct lra_elim_table *ep;
919 rtx plus_src, plus_cst_src;
920 lra_insn_recog_data_t id;
921 struct lra_static_insn_data *static_id;
923 if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
925 lra_assert (GET_CODE (PATTERN (insn)) == USE
926 || GET_CODE (PATTERN (insn)) == CLOBBER
927 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
928 return;
931 /* Check for setting an eliminable register. */
932 if (old_set != 0 && REG_P (SET_DEST (old_set))
933 && (ep = get_elimination (SET_DEST (old_set))) != NULL)
935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
936 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
938 bool delete_p = replace_p;
940 #ifdef HARD_FRAME_POINTER_REGNUM
941 if (ep->from == FRAME_POINTER_REGNUM
942 && ep->to == HARD_FRAME_POINTER_REGNUM)
943 /* If this is setting the frame pointer register to the
944 hardware frame pointer register and this is an
945 elimination that will be done (tested above), this
946 insn is really adjusting the frame pointer downward
947 to compensate for the adjustment done before a
948 nonlocal goto. */
950 rtx src = SET_SRC (old_set);
951 poly_int64 offset = 0;
953 /* We should never process such insn with non-zero
954 UPDATE_SP_OFFSET. */
955 lra_assert (known_eq (update_sp_offset, 0));
957 if (remove_reg_equal_offset_note (insn, ep->to_rtx, &offset)
958 || strip_offset (src, &offset) == ep->to_rtx)
960 if (replace_p)
962 SET_DEST (old_set) = ep->to_rtx;
963 lra_update_insn_recog_data (insn);
964 return;
966 offset -= (ep->offset - ep->previous_offset);
967 src = plus_constant (Pmode, ep->to_rtx, offset);
969 /* First see if this insn remains valid when we
970 make the change. If not, keep the INSN_CODE
971 the same and let the constraint pass fit it
972 up. */
973 validate_change (insn, &SET_SRC (old_set), src, 1);
974 validate_change (insn, &SET_DEST (old_set),
975 ep->from_rtx, 1);
976 if (! apply_change_group ())
978 SET_SRC (old_set) = src;
979 SET_DEST (old_set) = ep->from_rtx;
981 lra_update_insn_recog_data (insn);
982 /* Add offset note for future updates. */
983 add_reg_note (insn, REG_EQUAL, copy_rtx (src));
984 return;
987 #endif
989 /* This insn isn't serving a useful purpose. We delete it
990 when REPLACE is set. */
991 if (delete_p)
992 lra_delete_dead_insn (insn);
993 return;
997 /* We allow one special case which happens to work on all machines we
998 currently support: a single set with the source or a REG_EQUAL
999 note being a PLUS of an eliminable register and a constant. */
1000 plus_src = plus_cst_src = 0;
1001 poly_int64 offset = 0;
1002 if (old_set && REG_P (SET_DEST (old_set)))
1004 if (GET_CODE (SET_SRC (old_set)) == PLUS)
1005 plus_src = SET_SRC (old_set);
1006 /* First see if the source is of the form (plus (...) CST). */
1007 if (plus_src && poly_int_rtx_p (XEXP (plus_src, 1), &offset))
1008 plus_cst_src = plus_src;
1009 /* Check that the first operand of the PLUS is a hard reg or
1010 the lowpart subreg of one. */
1011 if (plus_cst_src)
1013 rtx reg = XEXP (plus_cst_src, 0);
1015 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
1016 reg = SUBREG_REG (reg);
1018 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1019 plus_cst_src = 0;
1022 if (plus_cst_src)
1024 rtx reg = XEXP (plus_cst_src, 0);
1026 if (GET_CODE (reg) == SUBREG)
1027 reg = SUBREG_REG (reg);
1029 if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
1031 rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
1033 if (! replace_p)
1035 if (known_eq (update_sp_offset, 0))
1036 offset += (ep->offset - ep->previous_offset);
1037 if (ep->to_rtx == stack_pointer_rtx)
1039 if (first_p)
1040 offset -= lra_get_insn_recog_data (insn)->sp_offset;
1041 else
1042 offset += update_sp_offset;
1044 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
1047 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
1048 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
1049 /* If we have a nonzero offset, and the source is already a
1050 simple REG, the following transformation would increase
1051 the cost of the insn by replacing a simple REG with (plus
1052 (reg sp) CST). So try only when we already had a PLUS
1053 before. */
1054 if (known_eq (offset, 0) || plus_src)
1056 rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
1058 old_set = single_set (insn);
1060 /* First see if this insn remains valid when we make the
1061 change. If not, try to replace the whole pattern
1062 with a simple set (this may help if the original insn
1063 was a PARALLEL that was only recognized as single_set
1064 due to REG_UNUSED notes). If this isn't valid
1065 either, keep the INSN_CODE the same and let the
1066 constraint pass fix it up. */
1067 if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
1069 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
1071 if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
1072 SET_SRC (old_set) = new_src;
1074 lra_update_insn_recog_data (insn);
1075 /* This can't have an effect on elimination offsets, so skip
1076 right to the end. */
1077 return;
1082 /* Eliminate all eliminable registers occurring in operands that
1083 can be handled by the constraint pass. */
1084 id = lra_get_insn_recog_data (insn);
1085 static_id = id->insn_static_data;
1086 validate_p = false;
1087 for (i = 0; i < static_id->n_operands; i++)
1089 orig_operand[i] = *id->operand_loc[i];
1090 substed_operand[i] = *id->operand_loc[i];
1092 /* For an asm statement, every operand is eliminable. */
1093 if (icode < 0 || insn_data[icode].operand[i].eliminable)
1095 /* Check for setting a hard register that we know about. */
1096 if (static_id->operand[i].type != OP_IN
1097 && REG_P (orig_operand[i]))
1099 /* If we are assigning to a hard register that can be
1100 eliminated, it must be as part of a PARALLEL, since
1101 the code above handles single SETs. This reg can not
1102 be longer eliminated -- it is forced by
1103 mark_not_eliminable. */
1104 for (ep = reg_eliminate;
1105 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
1106 ep++)
1107 lra_assert (ep->from_rtx != orig_operand[i]
1108 || ! ep->can_eliminate);
1111 /* Companion to the above plus substitution, we can allow
1112 invariants as the source of a plain move. */
1113 substed_operand[i]
1114 = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
1115 replace_p, ! replace_p && ! first_p,
1116 update_sp_offset, first_p);
1117 if (substed_operand[i] != orig_operand[i])
1118 validate_p = true;
1122 if (! validate_p)
1123 return;
1125 /* Substitute the operands; the new values are in the substed_operand
1126 array. */
1127 for (i = 0; i < static_id->n_operands; i++)
1128 *id->operand_loc[i] = substed_operand[i];
1129 for (i = 0; i < static_id->n_dups; i++)
1130 *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
1132 /* If we had a move insn but now we don't, re-recognize it.
1133 This will cause spurious re-recognition if the old move had a
1134 PARALLEL since the new one still will, but we can't call
1135 single_set without having put new body into the insn and the
1136 re-recognition won't hurt in this rare case. */
1137 id = lra_update_insn_recog_data (insn);
1138 static_id = id->insn_static_data;
1141 /* Spill pseudos which are assigned to hard registers in SET. Add
1142 affected insns for processing in the subsequent constraint
1143 pass. */
1144 static void
1145 spill_pseudos (HARD_REG_SET set)
1147 int i;
1148 bitmap_head to_process;
1149 rtx_insn *insn;
1151 if (hard_reg_set_empty_p (set))
1152 return;
1153 if (lra_dump_file != NULL)
1155 fprintf (lra_dump_file, " Spilling non-eliminable hard regs:");
1156 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1157 if (TEST_HARD_REG_BIT (set, i))
1158 fprintf (lra_dump_file, " %d", i);
1159 fprintf (lra_dump_file, "\n");
1161 bitmap_initialize (&to_process, &reg_obstack);
1162 for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1163 if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1164 && overlaps_hard_reg_set_p (set,
1165 PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1167 if (lra_dump_file != NULL)
1168 fprintf (lra_dump_file, " Spilling r%d(%d)\n",
1169 i, reg_renumber[i]);
1170 reg_renumber[i] = -1;
1171 bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1173 IOR_HARD_REG_SET (lra_no_alloc_regs, set);
1174 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1175 if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1177 lra_push_insn (insn);
1178 lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
1180 bitmap_clear (&to_process);
1183 /* Update all offsets and possibility for elimination on eliminable
1184 registers. Spill pseudos assigned to registers which are
1185 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1186 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1187 registers whose offsets should be changed. Return true if any
1188 elimination offset changed. */
1189 static bool
1190 update_reg_eliminate (bitmap insns_with_changed_offsets)
1192 bool prev, result;
1193 struct lra_elim_table *ep, *ep1;
1194 HARD_REG_SET temp_hard_reg_set;
1196 targetm.compute_frame_layout ();
1198 /* Clear self elimination offsets. */
1199 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1200 self_elim_offsets[ep->from] = 0;
1201 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1203 /* If it is a currently used elimination: update the previous
1204 offset. */
1205 if (elimination_map[ep->from] == ep)
1206 ep->previous_offset = ep->offset;
1208 prev = ep->prev_can_eliminate;
1209 setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1210 if (ep->can_eliminate && ! prev)
1212 /* It is possible that not eliminable register becomes
1213 eliminable because we took other reasons into account to
1214 set up eliminable regs in the initial set up. Just
1215 ignore new eliminable registers. */
1216 setup_can_eliminate (ep, false);
1217 continue;
1219 if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1221 /* We cannot use this elimination anymore -- find another
1222 one. */
1223 if (lra_dump_file != NULL)
1224 fprintf (lra_dump_file,
1225 " Elimination %d to %d is not possible anymore\n",
1226 ep->from, ep->to);
1227 /* If after processing RTL we decides that SP can be used as
1228 a result of elimination, it can not be changed. */
1229 gcc_assert ((ep->to_rtx != stack_pointer_rtx)
1230 || (ep->from < FIRST_PSEUDO_REGISTER
1231 && fixed_regs [ep->from]));
1232 /* Mark that is not eliminable anymore. */
1233 elimination_map[ep->from] = NULL;
1234 for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1235 if (ep1->can_eliminate && ep1->from == ep->from)
1236 break;
1237 if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1239 if (lra_dump_file != NULL)
1240 fprintf (lra_dump_file, " Using elimination %d to %d now\n",
1241 ep1->from, ep1->to);
1242 lra_assert (known_eq (ep1->previous_offset, 0));
1243 ep1->previous_offset = ep->offset;
1245 else
1247 /* There is no elimination anymore just use the hard
1248 register `from' itself. Setup self elimination
1249 offset to restore the original offset values. */
1250 if (lra_dump_file != NULL)
1251 fprintf (lra_dump_file, " %d is not eliminable at all\n",
1252 ep->from);
1253 self_elim_offsets[ep->from] = -ep->offset;
1254 if (maybe_ne (ep->offset, 0))
1255 bitmap_ior_into (insns_with_changed_offsets,
1256 &lra_reg_info[ep->from].insn_bitmap);
1260 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
1262 setup_elimination_map ();
1263 result = false;
1264 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1265 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1266 if (elimination_map[ep->from] == NULL)
1267 SET_HARD_REG_BIT (temp_hard_reg_set, ep->from);
1268 else if (elimination_map[ep->from] == ep)
1270 /* Prevent the hard register into which we eliminate from
1271 the usage for pseudos. */
1272 if (ep->from != ep->to)
1273 SET_HARD_REG_BIT (temp_hard_reg_set, ep->to);
1274 if (maybe_ne (ep->previous_offset, ep->offset))
1276 bitmap_ior_into (insns_with_changed_offsets,
1277 &lra_reg_info[ep->from].insn_bitmap);
1279 /* Update offset when the eliminate offset have been
1280 changed. */
1281 lra_update_reg_val_offset (lra_reg_info[ep->from].val,
1282 ep->offset - ep->previous_offset);
1283 result = true;
1286 IOR_HARD_REG_SET (lra_no_alloc_regs, temp_hard_reg_set);
1287 AND_COMPL_HARD_REG_SET (eliminable_regset, temp_hard_reg_set);
1288 spill_pseudos (temp_hard_reg_set);
1289 return result;
1292 /* Initialize the table of hard registers to eliminate.
1293 Pre-condition: global flag frame_pointer_needed has been set before
1294 calling this function. */
1295 static void
1296 init_elim_table (void)
1298 struct lra_elim_table *ep;
1299 bool value_p;
1300 const struct elim_table_1 *ep1;
1302 if (!reg_eliminate)
1303 reg_eliminate = XCNEWVEC (struct lra_elim_table, NUM_ELIMINABLE_REGS);
1305 memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1306 /* Initiate member values which will be never changed. */
1307 self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1308 self_elim_table.previous_offset = 0;
1310 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1311 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1313 ep->offset = ep->previous_offset = 0;
1314 ep->from = ep1->from;
1315 ep->to = ep1->to;
1316 value_p = (targetm.can_eliminate (ep->from, ep->to)
1317 && ! (ep->to == STACK_POINTER_REGNUM
1318 && frame_pointer_needed
1319 && (! SUPPORTS_STACK_ALIGNMENT
1320 || ! stack_realign_fp)));
1321 setup_can_eliminate (ep, value_p);
1324 /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG
1325 will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1326 equal stack_pointer_rtx. We depend on this. Threfore we switch
1327 off that we are in LRA temporarily. */
1328 lra_in_progress = 0;
1329 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1331 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1332 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1333 eliminable_reg_rtx[ep->from] = ep->from_rtx;
1335 lra_in_progress = 1;
1338 /* Function for initialization of elimination once per function. It
1339 sets up sp offset for each insn. */
1340 static void
1341 init_elimination (void)
1343 bool stop_to_sp_elimination_p;
1344 basic_block bb;
1345 rtx_insn *insn;
1346 struct lra_elim_table *ep;
1348 init_elim_table ();
1349 FOR_EACH_BB_FN (bb, cfun)
1351 curr_sp_change = 0;
1352 stop_to_sp_elimination_p = false;
1353 FOR_BB_INSNS (bb, insn)
1354 if (INSN_P (insn))
1356 lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change;
1357 if (NONDEBUG_INSN_P (insn))
1359 mark_not_eliminable (PATTERN (insn), VOIDmode);
1360 if (maybe_ne (curr_sp_change, 0)
1361 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
1362 stop_to_sp_elimination_p = true;
1365 if (! frame_pointer_needed
1366 && (maybe_ne (curr_sp_change, 0) || stop_to_sp_elimination_p)
1367 && bb->succs && bb->succs->length () != 0)
1368 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1369 if (ep->to == STACK_POINTER_REGNUM)
1370 setup_can_eliminate (ep, false);
1372 setup_elimination_map ();
1375 /* Eliminate hard reg given by its location LOC. */
1376 void
1377 lra_eliminate_reg_if_possible (rtx *loc)
1379 int regno;
1380 struct lra_elim_table *ep;
1382 lra_assert (REG_P (*loc));
1383 if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1384 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1385 return;
1386 if ((ep = get_elimination (*loc)) != NULL)
1387 *loc = ep->to_rtx;
1390 /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add
1391 the insn for subsequent processing in the constraint pass, update
1392 the insn info. */
1393 static void
1394 process_insn_for_elimination (rtx_insn *insn, bool final_p, bool first_p)
1396 eliminate_regs_in_insn (insn, final_p, first_p, 0);
1397 if (! final_p)
1399 /* Check that insn changed its code. This is a case when a move
1400 insn becomes an add insn and we do not want to process the
1401 insn as a move anymore. */
1402 int icode = recog (PATTERN (insn), insn, 0);
1404 if (icode >= 0 && icode != INSN_CODE (insn))
1406 INSN_CODE (insn) = icode;
1407 lra_update_insn_recog_data (insn);
1409 lra_update_insn_regno_info (insn);
1410 lra_push_insn (insn);
1411 lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
1415 /* Entry function to do final elimination if FINAL_P or to update
1416 elimination register offsets (FIRST_P if we are doing it the first
1417 time). */
1418 void
1419 lra_eliminate (bool final_p, bool first_p)
1421 unsigned int uid;
1422 bitmap_head insns_with_changed_offsets;
1423 bitmap_iterator bi;
1424 struct lra_elim_table *ep;
1426 gcc_assert (! final_p || ! first_p);
1428 timevar_push (TV_LRA_ELIMINATE);
1430 if (first_p)
1431 init_elimination ();
1433 bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1434 if (final_p)
1436 if (flag_checking)
1438 update_reg_eliminate (&insns_with_changed_offsets);
1439 gcc_assert (bitmap_empty_p (&insns_with_changed_offsets));
1441 /* We change eliminable hard registers in insns so we should do
1442 this for all insns containing any eliminable hard
1443 register. */
1444 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1445 if (elimination_map[ep->from] != NULL)
1446 bitmap_ior_into (&insns_with_changed_offsets,
1447 &lra_reg_info[ep->from].insn_bitmap);
1449 else if (! update_reg_eliminate (&insns_with_changed_offsets))
1450 goto lra_eliminate_done;
1451 if (lra_dump_file != NULL)
1453 fprintf (lra_dump_file, "New elimination table:\n");
1454 print_elim_table (lra_dump_file);
1456 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
1457 /* A dead insn can be deleted in process_insn_for_elimination. */
1458 if (lra_insn_recog_data[uid] != NULL)
1459 process_insn_for_elimination (lra_insn_recog_data[uid]->insn,
1460 final_p, first_p);
1461 bitmap_clear (&insns_with_changed_offsets);
1463 lra_eliminate_done:
1464 timevar_pop (TV_LRA_ELIMINATE);