re PR fortran/64943 (No error on ultimate allocatable components in IO list)
[official-gcc.git] / gcc / jump.c
blob34b3b7b893297d8577d56fc29e2d34a8c101f1fd
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "hashtab.h"
49 #include "hash-set.h"
50 #include "vec.h"
51 #include "machmode.h"
52 #include "input.h"
53 #include "function.h"
54 #include "predict.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "cfgrtl.h"
58 #include "basic-block.h"
59 #include "symtab.h"
60 #include "statistics.h"
61 #include "double-int.h"
62 #include "real.h"
63 #include "fixed-value.h"
64 #include "alias.h"
65 #include "wide-int.h"
66 #include "inchash.h"
67 #include "tree.h"
68 #include "expmed.h"
69 #include "dojump.h"
70 #include "explow.h"
71 #include "calls.h"
72 #include "emit-rtl.h"
73 #include "varasm.h"
74 #include "stmt.h"
75 #include "expr.h"
76 #include "except.h"
77 #include "diagnostic-core.h"
78 #include "reload.h"
79 #include "tree-pass.h"
80 #include "target.h"
81 #include "rtl-iter.h"
83 /* Optimize jump y; x: ... y: jumpif... x?
84 Don't know if it is worth bothering with. */
85 /* Optimize two cases of conditional jump to conditional jump?
86 This can never delete any instruction or make anything dead,
87 or even change what is live at any point.
88 So perhaps let combiner do it. */
90 static void init_label_info (rtx_insn *);
91 static void mark_all_labels (rtx_insn *);
92 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
93 static void mark_jump_label_asm (rtx, rtx_insn *);
94 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
95 static int invert_exp_1 (rtx, rtx);
97 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
98 static void
99 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
101 rtx_insn_list *insn;
103 timevar_push (TV_REBUILD_JUMP);
104 init_label_info (f);
105 mark_all_labels (f);
107 /* Keep track of labels used from static data; we don't track them
108 closely enough to delete them here, so make sure their reference
109 count doesn't drop to zero. */
111 if (count_forced)
112 for (insn = forced_labels; insn; insn = insn->next ())
113 if (LABEL_P (insn->insn ()))
114 LABEL_NUSES (insn->insn ())++;
115 timevar_pop (TV_REBUILD_JUMP);
118 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
119 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
120 instructions and jumping insns that have labels as operands
121 (e.g. cbranchsi4). */
122 void
123 rebuild_jump_labels (rtx_insn *f)
125 rebuild_jump_labels_1 (f, true);
128 /* This function is like rebuild_jump_labels, but doesn't run over
129 forced_labels. It can be used on insn chains that aren't the
130 main function chain. */
131 void
132 rebuild_jump_labels_chain (rtx_insn *chain)
134 rebuild_jump_labels_1 (chain, false);
137 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
138 non-fallthru insn. This is not generally true, as multiple barriers
139 may have crept in, or the BARRIER may be separated from the last
140 real insn by one or more NOTEs.
142 This simple pass moves barriers and removes duplicates so that the
143 old code is happy.
145 static unsigned int
146 cleanup_barriers (void)
148 rtx_insn *insn;
149 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
151 if (BARRIER_P (insn))
153 rtx_insn *prev = prev_nonnote_insn (insn);
154 if (!prev)
155 continue;
157 if (CALL_P (prev))
159 /* Make sure we do not split a call and its corresponding
160 CALL_ARG_LOCATION note. */
161 rtx_insn *next = NEXT_INSN (prev);
163 if (NOTE_P (next)
164 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
165 prev = next;
168 if (BARRIER_P (prev))
169 delete_insn (insn);
170 else if (prev != PREV_INSN (insn))
172 basic_block bb = BLOCK_FOR_INSN (prev);
173 rtx_insn *end = PREV_INSN (insn);
174 reorder_insns_nobb (insn, insn, prev);
175 if (bb)
177 /* If the backend called in machine reorg compute_bb_for_insn
178 and didn't free_bb_for_insn again, preserve basic block
179 boundaries. Move the end of basic block to PREV since
180 it is followed by a barrier now, and clear BLOCK_FOR_INSN
181 on the following notes.
182 ??? Maybe the proper solution for the targets that have
183 cfg around after machine reorg is not to run cleanup_barriers
184 pass at all. */
185 BB_END (bb) = prev;
188 prev = NEXT_INSN (prev);
189 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
190 BLOCK_FOR_INSN (prev) = NULL;
192 while (prev != end);
197 return 0;
200 namespace {
202 const pass_data pass_data_cleanup_barriers =
204 RTL_PASS, /* type */
205 "barriers", /* name */
206 OPTGROUP_NONE, /* optinfo_flags */
207 TV_NONE, /* tv_id */
208 0, /* properties_required */
209 0, /* properties_provided */
210 0, /* properties_destroyed */
211 0, /* todo_flags_start */
212 0, /* todo_flags_finish */
215 class pass_cleanup_barriers : public rtl_opt_pass
217 public:
218 pass_cleanup_barriers (gcc::context *ctxt)
219 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
222 /* opt_pass methods: */
223 virtual unsigned int execute (function *) { return cleanup_barriers (); }
225 }; // class pass_cleanup_barriers
227 } // anon namespace
229 rtl_opt_pass *
230 make_pass_cleanup_barriers (gcc::context *ctxt)
232 return new pass_cleanup_barriers (ctxt);
236 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
237 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
238 notes whose labels don't occur in the insn any more. */
240 static void
241 init_label_info (rtx_insn *f)
243 rtx_insn *insn;
245 for (insn = f; insn; insn = NEXT_INSN (insn))
247 if (LABEL_P (insn))
248 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
250 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
251 sticky and not reset here; that way we won't lose association
252 with a label when e.g. the source for a target register
253 disappears out of reach for targets that may use jump-target
254 registers. Jump transformations are supposed to transform
255 any REG_LABEL_TARGET notes. The target label reference in a
256 branch may disappear from the branch (and from the
257 instruction before it) for other reasons, like register
258 allocation. */
260 if (INSN_P (insn))
262 rtx note, next;
264 for (note = REG_NOTES (insn); note; note = next)
266 next = XEXP (note, 1);
267 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
268 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
269 remove_note (insn, note);
275 /* A subroutine of mark_all_labels. Trivially propagate a simple label
276 load into a jump_insn that uses it. */
278 static void
279 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
281 rtx label_note, pc, pc_src;
283 pc = pc_set (jump_insn);
284 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
285 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
287 /* If the previous non-jump insn sets something to a label,
288 something that this jump insn uses, make that label the primary
289 target of this insn if we don't yet have any. That previous
290 insn must be a single_set and not refer to more than one label.
291 The jump insn must not refer to other labels as jump targets
292 and must be a plain (set (pc) ...), maybe in a parallel, and
293 may refer to the item being set only directly or as one of the
294 arms in an IF_THEN_ELSE. */
296 if (label_note != NULL && pc_src != NULL)
298 rtx label_set = single_set (prev_nonjump_insn);
299 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
301 if (label_set != NULL
302 /* The source must be the direct LABEL_REF, not a
303 PLUS, UNSPEC, IF_THEN_ELSE etc. */
304 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
305 && (rtx_equal_p (label_dest, pc_src)
306 || (GET_CODE (pc_src) == IF_THEN_ELSE
307 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
308 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
310 /* The CODE_LABEL referred to in the note must be the
311 CODE_LABEL in the LABEL_REF of the "set". We can
312 conveniently use it for the marker function, which
313 requires a LABEL_REF wrapping. */
314 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
316 mark_jump_label_1 (label_set, jump_insn, false, true);
318 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
323 /* Mark the label each jump jumps to.
324 Combine consecutive labels, and count uses of labels. */
326 static void
327 mark_all_labels (rtx_insn *f)
329 rtx_insn *insn;
331 if (current_ir_type () == IR_RTL_CFGLAYOUT)
333 basic_block bb;
334 FOR_EACH_BB_FN (bb, cfun)
336 /* In cfglayout mode, we don't bother with trivial next-insn
337 propagation of LABEL_REFs into JUMP_LABEL. This will be
338 handled by other optimizers using better algorithms. */
339 FOR_BB_INSNS (bb, insn)
341 gcc_assert (! insn->deleted ());
342 if (NONDEBUG_INSN_P (insn))
343 mark_jump_label (PATTERN (insn), insn, 0);
346 /* In cfglayout mode, there may be non-insns between the
347 basic blocks. If those non-insns represent tablejump data,
348 they contain label references that we must record. */
349 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
350 if (JUMP_TABLE_DATA_P (insn))
351 mark_jump_label (PATTERN (insn), insn, 0);
352 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
353 if (JUMP_TABLE_DATA_P (insn))
354 mark_jump_label (PATTERN (insn), insn, 0);
357 else
359 rtx_insn *prev_nonjump_insn = NULL;
360 for (insn = f; insn; insn = NEXT_INSN (insn))
362 if (insn->deleted ())
364 else if (LABEL_P (insn))
365 prev_nonjump_insn = NULL;
366 else if (JUMP_TABLE_DATA_P (insn))
367 mark_jump_label (PATTERN (insn), insn, 0);
368 else if (NONDEBUG_INSN_P (insn))
370 mark_jump_label (PATTERN (insn), insn, 0);
371 if (JUMP_P (insn))
373 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
374 maybe_propagate_label_ref (insn, prev_nonjump_insn);
376 else
377 prev_nonjump_insn = insn;
383 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
384 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
385 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
386 know whether it's source is floating point or integer comparison. Machine
387 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
388 to help this function avoid overhead in these cases. */
389 enum rtx_code
390 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
391 const_rtx arg1, const_rtx insn)
393 machine_mode mode;
395 /* If this is not actually a comparison, we can't reverse it. */
396 if (GET_RTX_CLASS (code) != RTX_COMPARE
397 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
398 return UNKNOWN;
400 mode = GET_MODE (arg0);
401 if (mode == VOIDmode)
402 mode = GET_MODE (arg1);
404 /* First see if machine description supplies us way to reverse the
405 comparison. Give it priority over everything else to allow
406 machine description to do tricks. */
407 if (GET_MODE_CLASS (mode) == MODE_CC
408 && REVERSIBLE_CC_MODE (mode))
410 #ifdef REVERSE_CONDITION
411 return REVERSE_CONDITION (code, mode);
412 #else
413 return reverse_condition (code);
414 #endif
417 /* Try a few special cases based on the comparison code. */
418 switch (code)
420 case GEU:
421 case GTU:
422 case LEU:
423 case LTU:
424 case NE:
425 case EQ:
426 /* It is always safe to reverse EQ and NE, even for the floating
427 point. Similarly the unsigned comparisons are never used for
428 floating point so we can reverse them in the default way. */
429 return reverse_condition (code);
430 case ORDERED:
431 case UNORDERED:
432 case LTGT:
433 case UNEQ:
434 /* In case we already see unordered comparison, we can be sure to
435 be dealing with floating point so we don't need any more tests. */
436 return reverse_condition_maybe_unordered (code);
437 case UNLT:
438 case UNLE:
439 case UNGT:
440 case UNGE:
441 /* We don't have safe way to reverse these yet. */
442 return UNKNOWN;
443 default:
444 break;
447 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
449 const_rtx prev;
450 /* Try to search for the comparison to determine the real mode.
451 This code is expensive, but with sane machine description it
452 will be never used, since REVERSIBLE_CC_MODE will return true
453 in all cases. */
454 if (! insn)
455 return UNKNOWN;
457 /* These CONST_CAST's are okay because prev_nonnote_insn just
458 returns its argument and we assign it to a const_rtx
459 variable. */
460 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
461 prev != 0 && !LABEL_P (prev);
462 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
464 const_rtx set = set_of (arg0, prev);
465 if (set && GET_CODE (set) == SET
466 && rtx_equal_p (SET_DEST (set), arg0))
468 rtx src = SET_SRC (set);
470 if (GET_CODE (src) == COMPARE)
472 rtx comparison = src;
473 arg0 = XEXP (src, 0);
474 mode = GET_MODE (arg0);
475 if (mode == VOIDmode)
476 mode = GET_MODE (XEXP (comparison, 1));
477 break;
479 /* We can get past reg-reg moves. This may be useful for model
480 of i387 comparisons that first move flag registers around. */
481 if (REG_P (src))
483 arg0 = src;
484 continue;
487 /* If register is clobbered in some ununderstandable way,
488 give up. */
489 if (set)
490 return UNKNOWN;
494 /* Test for an integer condition, or a floating-point comparison
495 in which NaNs can be ignored. */
496 if (CONST_INT_P (arg0)
497 || (GET_MODE (arg0) != VOIDmode
498 && GET_MODE_CLASS (mode) != MODE_CC
499 && !HONOR_NANS (mode)))
500 return reverse_condition (code);
502 return UNKNOWN;
505 /* A wrapper around the previous function to take COMPARISON as rtx
506 expression. This simplifies many callers. */
507 enum rtx_code
508 reversed_comparison_code (const_rtx comparison, const_rtx insn)
510 if (!COMPARISON_P (comparison))
511 return UNKNOWN;
512 return reversed_comparison_code_parts (GET_CODE (comparison),
513 XEXP (comparison, 0),
514 XEXP (comparison, 1), insn);
517 /* Return comparison with reversed code of EXP.
518 Return NULL_RTX in case we fail to do the reversal. */
520 reversed_comparison (const_rtx exp, machine_mode mode)
522 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
523 if (reversed_code == UNKNOWN)
524 return NULL_RTX;
525 else
526 return simplify_gen_relational (reversed_code, mode, VOIDmode,
527 XEXP (exp, 0), XEXP (exp, 1));
531 /* Given an rtx-code for a comparison, return the code for the negated
532 comparison. If no such code exists, return UNKNOWN.
534 WATCH OUT! reverse_condition is not safe to use on a jump that might
535 be acting on the results of an IEEE floating point comparison, because
536 of the special treatment of non-signaling nans in comparisons.
537 Use reversed_comparison_code instead. */
539 enum rtx_code
540 reverse_condition (enum rtx_code code)
542 switch (code)
544 case EQ:
545 return NE;
546 case NE:
547 return EQ;
548 case GT:
549 return LE;
550 case GE:
551 return LT;
552 case LT:
553 return GE;
554 case LE:
555 return GT;
556 case GTU:
557 return LEU;
558 case GEU:
559 return LTU;
560 case LTU:
561 return GEU;
562 case LEU:
563 return GTU;
564 case UNORDERED:
565 return ORDERED;
566 case ORDERED:
567 return UNORDERED;
569 case UNLT:
570 case UNLE:
571 case UNGT:
572 case UNGE:
573 case UNEQ:
574 case LTGT:
575 return UNKNOWN;
577 default:
578 gcc_unreachable ();
582 /* Similar, but we're allowed to generate unordered comparisons, which
583 makes it safe for IEEE floating-point. Of course, we have to recognize
584 that the target will support them too... */
586 enum rtx_code
587 reverse_condition_maybe_unordered (enum rtx_code code)
589 switch (code)
591 case EQ:
592 return NE;
593 case NE:
594 return EQ;
595 case GT:
596 return UNLE;
597 case GE:
598 return UNLT;
599 case LT:
600 return UNGE;
601 case LE:
602 return UNGT;
603 case LTGT:
604 return UNEQ;
605 case UNORDERED:
606 return ORDERED;
607 case ORDERED:
608 return UNORDERED;
609 case UNLT:
610 return GE;
611 case UNLE:
612 return GT;
613 case UNGT:
614 return LE;
615 case UNGE:
616 return LT;
617 case UNEQ:
618 return LTGT;
620 default:
621 gcc_unreachable ();
625 /* Similar, but return the code when two operands of a comparison are swapped.
626 This IS safe for IEEE floating-point. */
628 enum rtx_code
629 swap_condition (enum rtx_code code)
631 switch (code)
633 case EQ:
634 case NE:
635 case UNORDERED:
636 case ORDERED:
637 case UNEQ:
638 case LTGT:
639 return code;
641 case GT:
642 return LT;
643 case GE:
644 return LE;
645 case LT:
646 return GT;
647 case LE:
648 return GE;
649 case GTU:
650 return LTU;
651 case GEU:
652 return LEU;
653 case LTU:
654 return GTU;
655 case LEU:
656 return GEU;
657 case UNLT:
658 return UNGT;
659 case UNLE:
660 return UNGE;
661 case UNGT:
662 return UNLT;
663 case UNGE:
664 return UNLE;
666 default:
667 gcc_unreachable ();
671 /* Given a comparison CODE, return the corresponding unsigned comparison.
672 If CODE is an equality comparison or already an unsigned comparison,
673 CODE is returned. */
675 enum rtx_code
676 unsigned_condition (enum rtx_code code)
678 switch (code)
680 case EQ:
681 case NE:
682 case GTU:
683 case GEU:
684 case LTU:
685 case LEU:
686 return code;
688 case GT:
689 return GTU;
690 case GE:
691 return GEU;
692 case LT:
693 return LTU;
694 case LE:
695 return LEU;
697 default:
698 gcc_unreachable ();
702 /* Similarly, return the signed version of a comparison. */
704 enum rtx_code
705 signed_condition (enum rtx_code code)
707 switch (code)
709 case EQ:
710 case NE:
711 case GT:
712 case GE:
713 case LT:
714 case LE:
715 return code;
717 case GTU:
718 return GT;
719 case GEU:
720 return GE;
721 case LTU:
722 return LT;
723 case LEU:
724 return LE;
726 default:
727 gcc_unreachable ();
731 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
732 truth of CODE1 implies the truth of CODE2. */
735 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
737 /* UNKNOWN comparison codes can happen as a result of trying to revert
738 comparison codes.
739 They can't match anything, so we have to reject them here. */
740 if (code1 == UNKNOWN || code2 == UNKNOWN)
741 return 0;
743 if (code1 == code2)
744 return 1;
746 switch (code1)
748 case UNEQ:
749 if (code2 == UNLE || code2 == UNGE)
750 return 1;
751 break;
753 case EQ:
754 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
755 || code2 == ORDERED)
756 return 1;
757 break;
759 case UNLT:
760 if (code2 == UNLE || code2 == NE)
761 return 1;
762 break;
764 case LT:
765 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
766 return 1;
767 break;
769 case UNGT:
770 if (code2 == UNGE || code2 == NE)
771 return 1;
772 break;
774 case GT:
775 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
776 return 1;
777 break;
779 case GE:
780 case LE:
781 if (code2 == ORDERED)
782 return 1;
783 break;
785 case LTGT:
786 if (code2 == NE || code2 == ORDERED)
787 return 1;
788 break;
790 case LTU:
791 if (code2 == LEU || code2 == NE)
792 return 1;
793 break;
795 case GTU:
796 if (code2 == GEU || code2 == NE)
797 return 1;
798 break;
800 case UNORDERED:
801 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
802 || code2 == UNGE || code2 == UNGT)
803 return 1;
804 break;
806 default:
807 break;
810 return 0;
813 /* Return 1 if INSN is an unconditional jump and nothing else. */
816 simplejump_p (const rtx_insn *insn)
818 return (JUMP_P (insn)
819 && GET_CODE (PATTERN (insn)) == SET
820 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
821 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
824 /* Return nonzero if INSN is a (possibly) conditional jump
825 and nothing more.
827 Use of this function is deprecated, since we need to support combined
828 branch and compare insns. Use any_condjump_p instead whenever possible. */
831 condjump_p (const rtx_insn *insn)
833 const_rtx x = PATTERN (insn);
835 if (GET_CODE (x) != SET
836 || GET_CODE (SET_DEST (x)) != PC)
837 return 0;
839 x = SET_SRC (x);
840 if (GET_CODE (x) == LABEL_REF)
841 return 1;
842 else
843 return (GET_CODE (x) == IF_THEN_ELSE
844 && ((GET_CODE (XEXP (x, 2)) == PC
845 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
846 || ANY_RETURN_P (XEXP (x, 1))))
847 || (GET_CODE (XEXP (x, 1)) == PC
848 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
849 || ANY_RETURN_P (XEXP (x, 2))))));
852 /* Return nonzero if INSN is a (possibly) conditional jump inside a
853 PARALLEL.
855 Use this function is deprecated, since we need to support combined
856 branch and compare insns. Use any_condjump_p instead whenever possible. */
859 condjump_in_parallel_p (const rtx_insn *insn)
861 const_rtx x = PATTERN (insn);
863 if (GET_CODE (x) != PARALLEL)
864 return 0;
865 else
866 x = XVECEXP (x, 0, 0);
868 if (GET_CODE (x) != SET)
869 return 0;
870 if (GET_CODE (SET_DEST (x)) != PC)
871 return 0;
872 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
873 return 1;
874 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
875 return 0;
876 if (XEXP (SET_SRC (x), 2) == pc_rtx
877 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
878 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
879 return 1;
880 if (XEXP (SET_SRC (x), 1) == pc_rtx
881 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
882 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
883 return 1;
884 return 0;
887 /* Return set of PC, otherwise NULL. */
890 pc_set (const rtx_insn *insn)
892 rtx pat;
893 if (!JUMP_P (insn))
894 return NULL_RTX;
895 pat = PATTERN (insn);
897 /* The set is allowed to appear either as the insn pattern or
898 the first set in a PARALLEL. */
899 if (GET_CODE (pat) == PARALLEL)
900 pat = XVECEXP (pat, 0, 0);
901 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
902 return pat;
904 return NULL_RTX;
907 /* Return true when insn is an unconditional direct jump,
908 possibly bundled inside a PARALLEL. */
911 any_uncondjump_p (const rtx_insn *insn)
913 const_rtx x = pc_set (insn);
914 if (!x)
915 return 0;
916 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
917 return 0;
918 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
919 return 0;
920 return 1;
923 /* Return true when insn is a conditional jump. This function works for
924 instructions containing PC sets in PARALLELs. The instruction may have
925 various other effects so before removing the jump you must verify
926 onlyjump_p.
928 Note that unlike condjump_p it returns false for unconditional jumps. */
931 any_condjump_p (const rtx_insn *insn)
933 const_rtx x = pc_set (insn);
934 enum rtx_code a, b;
936 if (!x)
937 return 0;
938 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
939 return 0;
941 a = GET_CODE (XEXP (SET_SRC (x), 1));
942 b = GET_CODE (XEXP (SET_SRC (x), 2));
944 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
945 || (a == PC
946 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
949 /* Return the label of a conditional jump. */
952 condjump_label (const rtx_insn *insn)
954 rtx x = pc_set (insn);
956 if (!x)
957 return NULL_RTX;
958 x = SET_SRC (x);
959 if (GET_CODE (x) == LABEL_REF)
960 return x;
961 if (GET_CODE (x) != IF_THEN_ELSE)
962 return NULL_RTX;
963 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
964 return XEXP (x, 1);
965 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
966 return XEXP (x, 2);
967 return NULL_RTX;
970 /* Return TRUE if INSN is a return jump. */
973 returnjump_p (const rtx_insn *insn)
975 if (JUMP_P (insn))
977 subrtx_iterator::array_type array;
978 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
980 const_rtx x = *iter;
981 switch (GET_CODE (x))
983 case RETURN:
984 case SIMPLE_RETURN:
985 case EH_RETURN:
986 return true;
988 case SET:
989 if (SET_IS_RETURN_P (x))
990 return true;
991 break;
993 default:
994 break;
998 return false;
1001 /* Return true if INSN is a (possibly conditional) return insn. */
1004 eh_returnjump_p (rtx_insn *insn)
1006 if (JUMP_P (insn))
1008 subrtx_iterator::array_type array;
1009 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
1010 if (GET_CODE (*iter) == EH_RETURN)
1011 return true;
1013 return false;
1016 /* Return true if INSN is a jump that only transfers control and
1017 nothing more. */
1020 onlyjump_p (const rtx_insn *insn)
1022 rtx set;
1024 if (!JUMP_P (insn))
1025 return 0;
1027 set = single_set (insn);
1028 if (set == NULL)
1029 return 0;
1030 if (GET_CODE (SET_DEST (set)) != PC)
1031 return 0;
1032 if (side_effects_p (SET_SRC (set)))
1033 return 0;
1035 return 1;
1038 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1039 NULL or a return. */
1040 bool
1041 jump_to_label_p (const rtx_insn *insn)
1043 return (JUMP_P (insn)
1044 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1047 #ifdef HAVE_cc0
1049 /* Return nonzero if X is an RTX that only sets the condition codes
1050 and has no side effects. */
1053 only_sets_cc0_p (const_rtx x)
1055 if (! x)
1056 return 0;
1058 if (INSN_P (x))
1059 x = PATTERN (x);
1061 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1064 /* Return 1 if X is an RTX that does nothing but set the condition codes
1065 and CLOBBER or USE registers.
1066 Return -1 if X does explicitly set the condition codes,
1067 but also does other things. */
1070 sets_cc0_p (const_rtx x)
1072 if (! x)
1073 return 0;
1075 if (INSN_P (x))
1076 x = PATTERN (x);
1078 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1079 return 1;
1080 if (GET_CODE (x) == PARALLEL)
1082 int i;
1083 int sets_cc0 = 0;
1084 int other_things = 0;
1085 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1087 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1088 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1089 sets_cc0 = 1;
1090 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1091 other_things = 1;
1093 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1095 return 0;
1097 #endif
1099 /* Find all CODE_LABELs referred to in X, and increment their use
1100 counts. If INSN is a JUMP_INSN and there is at least one
1101 CODE_LABEL referenced in INSN as a jump target, then store the last
1102 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1103 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1104 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1105 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1106 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1107 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1109 Note that two labels separated by a loop-beginning note
1110 must be kept distinct if we have not yet done loop-optimization,
1111 because the gap between them is where loop-optimize
1112 will want to move invariant code to. CROSS_JUMP tells us
1113 that loop-optimization is done with. */
1115 void
1116 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1118 rtx asmop = extract_asm_operands (x);
1119 if (asmop)
1120 mark_jump_label_asm (asmop, insn);
1121 else
1122 mark_jump_label_1 (x, insn, in_mem != 0,
1123 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1126 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1127 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1128 jump-target; when the JUMP_LABEL field of INSN should be set or a
1129 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1130 note. */
1132 static void
1133 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1135 RTX_CODE code = GET_CODE (x);
1136 int i;
1137 const char *fmt;
1139 switch (code)
1141 case PC:
1142 case CC0:
1143 case REG:
1144 case CLOBBER:
1145 case CALL:
1146 return;
1148 case RETURN:
1149 case SIMPLE_RETURN:
1150 if (is_target)
1152 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1153 JUMP_LABEL (insn) = x;
1155 return;
1157 case MEM:
1158 in_mem = true;
1159 break;
1161 case SEQUENCE:
1163 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1164 for (i = 0; i < seq->len (); i++)
1165 mark_jump_label (PATTERN (seq->insn (i)),
1166 seq->insn (i), 0);
1168 return;
1170 case SYMBOL_REF:
1171 if (!in_mem)
1172 return;
1174 /* If this is a constant-pool reference, see if it is a label. */
1175 if (CONSTANT_POOL_ADDRESS_P (x))
1176 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1177 break;
1179 /* Handle operands in the condition of an if-then-else as for a
1180 non-jump insn. */
1181 case IF_THEN_ELSE:
1182 if (!is_target)
1183 break;
1184 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1185 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1186 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1187 return;
1189 case LABEL_REF:
1191 rtx label = LABEL_REF_LABEL (x);
1193 /* Ignore remaining references to unreachable labels that
1194 have been deleted. */
1195 if (NOTE_P (label)
1196 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1197 break;
1199 gcc_assert (LABEL_P (label));
1201 /* Ignore references to labels of containing functions. */
1202 if (LABEL_REF_NONLOCAL_P (x))
1203 break;
1205 LABEL_REF_LABEL (x) = label;
1206 if (! insn || ! insn->deleted ())
1207 ++LABEL_NUSES (label);
1209 if (insn)
1211 if (is_target
1212 /* Do not change a previous setting of JUMP_LABEL. If the
1213 JUMP_LABEL slot is occupied by a different label,
1214 create a note for this label. */
1215 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1216 JUMP_LABEL (insn) = label;
1217 else
1219 enum reg_note kind
1220 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1222 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1223 for LABEL unless there already is one. All uses of
1224 a label, except for the primary target of a jump,
1225 must have such a note. */
1226 if (! find_reg_note (insn, kind, label))
1227 add_reg_note (insn, kind, label);
1230 return;
1233 /* Do walk the labels in a vector, but not the first operand of an
1234 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1235 case ADDR_VEC:
1236 case ADDR_DIFF_VEC:
1237 if (! insn->deleted ())
1239 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1241 for (i = 0; i < XVECLEN (x, eltnum); i++)
1242 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1243 is_target);
1245 return;
1247 default:
1248 break;
1251 fmt = GET_RTX_FORMAT (code);
1253 /* The primary target of a tablejump is the label of the ADDR_VEC,
1254 which is canonically mentioned *last* in the insn. To get it
1255 marked as JUMP_LABEL, we iterate over items in reverse order. */
1256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1258 if (fmt[i] == 'e')
1259 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1260 else if (fmt[i] == 'E')
1262 int j;
1264 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1265 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1266 is_target);
1271 /* Worker function for mark_jump_label. Handle asm insns specially.
1272 In particular, output operands need not be considered so we can
1273 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1274 need to be considered targets. */
1276 static void
1277 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1279 int i;
1281 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1282 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1284 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1285 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1288 /* Delete insn INSN from the chain of insns and update label ref counts
1289 and delete insns now unreachable.
1291 Returns the first insn after INSN that was not deleted.
1293 Usage of this instruction is deprecated. Use delete_insn instead and
1294 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1296 rtx_insn *
1297 delete_related_insns (rtx uncast_insn)
1299 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1300 int was_code_label = (LABEL_P (insn));
1301 rtx note;
1302 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1304 while (next && next->deleted ())
1305 next = NEXT_INSN (next);
1307 /* This insn is already deleted => return first following nondeleted. */
1308 if (insn->deleted ())
1309 return next;
1311 delete_insn (insn);
1313 /* If instruction is followed by a barrier,
1314 delete the barrier too. */
1316 if (next != 0 && BARRIER_P (next))
1317 delete_insn (next);
1319 /* If this is a call, then we have to remove the var tracking note
1320 for the call arguments. */
1322 if (CALL_P (insn)
1323 || (NONJUMP_INSN_P (insn)
1324 && GET_CODE (PATTERN (insn)) == SEQUENCE
1325 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1327 rtx_insn *p;
1329 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1330 p && NOTE_P (p);
1331 p = NEXT_INSN (p))
1332 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1334 remove_insn (p);
1335 break;
1339 /* If deleting a jump, decrement the count of the label,
1340 and delete the label if it is now unused. */
1342 if (jump_to_label_p (insn))
1344 rtx lab = JUMP_LABEL (insn);
1345 rtx_jump_table_data *lab_next;
1347 if (LABEL_NUSES (lab) == 0)
1348 /* This can delete NEXT or PREV,
1349 either directly if NEXT is JUMP_LABEL (INSN),
1350 or indirectly through more levels of jumps. */
1351 delete_related_insns (lab);
1352 else if (tablejump_p (insn, NULL, &lab_next))
1354 /* If we're deleting the tablejump, delete the dispatch table.
1355 We may not be able to kill the label immediately preceding
1356 just yet, as it might be referenced in code leading up to
1357 the tablejump. */
1358 delete_related_insns (lab_next);
1362 /* Likewise if we're deleting a dispatch table. */
1364 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1366 rtvec labels = table->get_labels ();
1367 int i;
1368 int len = GET_NUM_ELEM (labels);
1370 for (i = 0; i < len; i++)
1371 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1372 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1373 while (next && next->deleted ())
1374 next = NEXT_INSN (next);
1375 return next;
1378 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1379 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1380 if (INSN_P (insn))
1381 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1382 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1383 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1384 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1385 && LABEL_P (XEXP (note, 0)))
1386 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1387 delete_related_insns (XEXP (note, 0));
1389 while (prev && (prev->deleted () || NOTE_P (prev)))
1390 prev = PREV_INSN (prev);
1392 /* If INSN was a label and a dispatch table follows it,
1393 delete the dispatch table. The tablejump must have gone already.
1394 It isn't useful to fall through into a table. */
1396 if (was_code_label
1397 && NEXT_INSN (insn) != 0
1398 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1399 next = delete_related_insns (NEXT_INSN (insn));
1401 /* If INSN was a label, delete insns following it if now unreachable. */
1403 if (was_code_label && prev && BARRIER_P (prev))
1405 enum rtx_code code;
1406 while (next)
1408 code = GET_CODE (next);
1409 if (code == NOTE)
1410 next = NEXT_INSN (next);
1411 /* Keep going past other deleted labels to delete what follows. */
1412 else if (code == CODE_LABEL && next->deleted ())
1413 next = NEXT_INSN (next);
1414 /* Keep the (use (insn))s created by dbr_schedule, which needs
1415 them in order to track liveness relative to a previous
1416 barrier. */
1417 else if (INSN_P (next)
1418 && GET_CODE (PATTERN (next)) == USE
1419 && INSN_P (XEXP (PATTERN (next), 0)))
1420 next = NEXT_INSN (next);
1421 else if (code == BARRIER || INSN_P (next))
1422 /* Note: if this deletes a jump, it can cause more
1423 deletion of unreachable code, after a different label.
1424 As long as the value from this recursive call is correct,
1425 this invocation functions correctly. */
1426 next = delete_related_insns (next);
1427 else
1428 break;
1432 /* I feel a little doubtful about this loop,
1433 but I see no clean and sure alternative way
1434 to find the first insn after INSN that is not now deleted.
1435 I hope this works. */
1436 while (next && next->deleted ())
1437 next = NEXT_INSN (next);
1438 return next;
1441 /* Delete a range of insns from FROM to TO, inclusive.
1442 This is for the sake of peephole optimization, so assume
1443 that whatever these insns do will still be done by a new
1444 peephole insn that will replace them. */
1446 void
1447 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1449 rtx_insn *insn = from;
1451 while (1)
1453 rtx_insn *next = NEXT_INSN (insn);
1454 rtx_insn *prev = PREV_INSN (insn);
1456 if (!NOTE_P (insn))
1458 insn->set_deleted();
1460 /* Patch this insn out of the chain. */
1461 /* We don't do this all at once, because we
1462 must preserve all NOTEs. */
1463 if (prev)
1464 SET_NEXT_INSN (prev) = next;
1466 if (next)
1467 SET_PREV_INSN (next) = prev;
1470 if (insn == to)
1471 break;
1472 insn = next;
1475 /* Note that if TO is an unconditional jump
1476 we *do not* delete the BARRIER that follows,
1477 since the peephole that replaces this sequence
1478 is also an unconditional jump in that case. */
1481 /* A helper function for redirect_exp_1; examines its input X and returns
1482 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1483 static rtx
1484 redirect_target (rtx x)
1486 if (x == NULL_RTX)
1487 return ret_rtx;
1488 if (!ANY_RETURN_P (x))
1489 return gen_rtx_LABEL_REF (Pmode, x);
1490 return x;
1493 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1494 NLABEL as a return. Accrue modifications into the change group. */
1496 static void
1497 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1499 rtx x = *loc;
1500 RTX_CODE code = GET_CODE (x);
1501 int i;
1502 const char *fmt;
1504 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1505 || x == olabel)
1507 x = redirect_target (nlabel);
1508 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1509 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1510 validate_change (insn, loc, x, 1);
1511 return;
1514 if (code == SET && SET_DEST (x) == pc_rtx
1515 && ANY_RETURN_P (nlabel)
1516 && GET_CODE (SET_SRC (x)) == LABEL_REF
1517 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1519 validate_change (insn, loc, nlabel, 1);
1520 return;
1523 if (code == IF_THEN_ELSE)
1525 /* Skip the condition of an IF_THEN_ELSE. We only want to
1526 change jump destinations, not eventual label comparisons. */
1527 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1528 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1529 return;
1532 fmt = GET_RTX_FORMAT (code);
1533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1535 if (fmt[i] == 'e')
1536 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1537 else if (fmt[i] == 'E')
1539 int j;
1540 for (j = 0; j < XVECLEN (x, i); j++)
1541 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1546 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1547 the modifications into the change group. Return false if we did
1548 not see how to do that. */
1551 redirect_jump_1 (rtx jump, rtx nlabel)
1553 int ochanges = num_validated_changes ();
1554 rtx *loc, asmop;
1556 gcc_assert (nlabel != NULL_RTX);
1557 asmop = extract_asm_operands (PATTERN (jump));
1558 if (asmop)
1560 if (nlabel == NULL)
1561 return 0;
1562 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1563 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1565 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1566 loc = &XVECEXP (PATTERN (jump), 0, 0);
1567 else
1568 loc = &PATTERN (jump);
1570 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1571 return num_validated_changes () > ochanges;
1574 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1575 jump target label is unused as a result, it and the code following
1576 it may be deleted.
1578 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1579 in that case we are to turn the jump into a (possibly conditional)
1580 return insn.
1582 The return value will be 1 if the change was made, 0 if it wasn't
1583 (this can only occur when trying to produce return insns). */
1586 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1588 rtx olabel = JUMP_LABEL (jump);
1590 if (!nlabel)
1592 /* If there is no label, we are asked to redirect to the EXIT block.
1593 When before the epilogue is emitted, return/simple_return cannot be
1594 created so we return 0 immediately. After the epilogue is emitted,
1595 we always expect a label, either a non-null label, or a
1596 return/simple_return RTX. */
1598 if (!epilogue_completed)
1599 return 0;
1600 gcc_unreachable ();
1603 if (nlabel == olabel)
1604 return 1;
1606 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1607 return 0;
1609 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1610 return 1;
1613 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1614 NLABEL in JUMP.
1615 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1616 count has dropped to zero. */
1617 void
1618 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1619 int invert)
1621 rtx note;
1623 gcc_assert (JUMP_LABEL (jump) == olabel);
1625 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1626 moving FUNCTION_END note. Just sanity check that no user still worry
1627 about this. */
1628 gcc_assert (delete_unused >= 0);
1629 JUMP_LABEL (jump) = nlabel;
1630 if (!ANY_RETURN_P (nlabel))
1631 ++LABEL_NUSES (nlabel);
1633 /* Update labels in any REG_EQUAL note. */
1634 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1636 if (ANY_RETURN_P (nlabel)
1637 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1638 remove_note (jump, note);
1639 else
1641 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1642 confirm_change_group ();
1646 /* Handle the case where we had a conditional crossing jump to a return
1647 label and are now changing it into a direct conditional return.
1648 The jump is no longer crossing in that case. */
1649 if (ANY_RETURN_P (nlabel))
1650 CROSSING_JUMP_P (jump) = 0;
1652 if (!ANY_RETURN_P (olabel)
1653 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1654 /* Undefined labels will remain outside the insn stream. */
1655 && INSN_UID (olabel))
1656 delete_related_insns (olabel);
1657 if (invert)
1658 invert_br_probabilities (jump);
1661 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1662 modifications into the change group. Return nonzero for success. */
1663 static int
1664 invert_exp_1 (rtx x, rtx insn)
1666 RTX_CODE code = GET_CODE (x);
1668 if (code == IF_THEN_ELSE)
1670 rtx comp = XEXP (x, 0);
1671 rtx tem;
1672 enum rtx_code reversed_code;
1674 /* We can do this in two ways: The preferable way, which can only
1675 be done if this is not an integer comparison, is to reverse
1676 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1677 of the IF_THEN_ELSE. If we can't do either, fail. */
1679 reversed_code = reversed_comparison_code (comp, insn);
1681 if (reversed_code != UNKNOWN)
1683 validate_change (insn, &XEXP (x, 0),
1684 gen_rtx_fmt_ee (reversed_code,
1685 GET_MODE (comp), XEXP (comp, 0),
1686 XEXP (comp, 1)),
1688 return 1;
1691 tem = XEXP (x, 1);
1692 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1693 validate_change (insn, &XEXP (x, 2), tem, 1);
1694 return 1;
1696 else
1697 return 0;
1700 /* Invert the condition of the jump JUMP, and make it jump to label
1701 NLABEL instead of where it jumps now. Accrue changes into the
1702 change group. Return false if we didn't see how to perform the
1703 inversion and redirection. */
1706 invert_jump_1 (rtx_insn *jump, rtx nlabel)
1708 rtx x = pc_set (jump);
1709 int ochanges;
1710 int ok;
1712 ochanges = num_validated_changes ();
1713 if (x == NULL)
1714 return 0;
1715 ok = invert_exp_1 (SET_SRC (x), jump);
1716 gcc_assert (ok);
1718 if (num_validated_changes () == ochanges)
1719 return 0;
1721 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1722 in Pmode, so checking this is not merely an optimization. */
1723 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1726 /* Invert the condition of the jump JUMP, and make it jump to label
1727 NLABEL instead of where it jumps now. Return true if successful. */
1730 invert_jump (rtx_insn *jump, rtx nlabel, int delete_unused)
1732 rtx olabel = JUMP_LABEL (jump);
1734 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1736 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1737 return 1;
1739 cancel_changes (0);
1740 return 0;
1744 /* Like rtx_equal_p except that it considers two REGs as equal
1745 if they renumber to the same value and considers two commutative
1746 operations to be the same if the order of the operands has been
1747 reversed. */
1750 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1752 int i;
1753 const enum rtx_code code = GET_CODE (x);
1754 const char *fmt;
1756 if (x == y)
1757 return 1;
1759 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1760 && (REG_P (y) || (GET_CODE (y) == SUBREG
1761 && REG_P (SUBREG_REG (y)))))
1763 int reg_x = -1, reg_y = -1;
1764 int byte_x = 0, byte_y = 0;
1765 struct subreg_info info;
1767 if (GET_MODE (x) != GET_MODE (y))
1768 return 0;
1770 /* If we haven't done any renumbering, don't
1771 make any assumptions. */
1772 if (reg_renumber == 0)
1773 return rtx_equal_p (x, y);
1775 if (code == SUBREG)
1777 reg_x = REGNO (SUBREG_REG (x));
1778 byte_x = SUBREG_BYTE (x);
1780 if (reg_renumber[reg_x] >= 0)
1782 subreg_get_info (reg_renumber[reg_x],
1783 GET_MODE (SUBREG_REG (x)), byte_x,
1784 GET_MODE (x), &info);
1785 if (!info.representable_p)
1786 return 0;
1787 reg_x = info.offset;
1788 byte_x = 0;
1791 else
1793 reg_x = REGNO (x);
1794 if (reg_renumber[reg_x] >= 0)
1795 reg_x = reg_renumber[reg_x];
1798 if (GET_CODE (y) == SUBREG)
1800 reg_y = REGNO (SUBREG_REG (y));
1801 byte_y = SUBREG_BYTE (y);
1803 if (reg_renumber[reg_y] >= 0)
1805 subreg_get_info (reg_renumber[reg_y],
1806 GET_MODE (SUBREG_REG (y)), byte_y,
1807 GET_MODE (y), &info);
1808 if (!info.representable_p)
1809 return 0;
1810 reg_y = info.offset;
1811 byte_y = 0;
1814 else
1816 reg_y = REGNO (y);
1817 if (reg_renumber[reg_y] >= 0)
1818 reg_y = reg_renumber[reg_y];
1821 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1824 /* Now we have disposed of all the cases
1825 in which different rtx codes can match. */
1826 if (code != GET_CODE (y))
1827 return 0;
1829 switch (code)
1831 case PC:
1832 case CC0:
1833 case ADDR_VEC:
1834 case ADDR_DIFF_VEC:
1835 CASE_CONST_UNIQUE:
1836 return 0;
1838 case LABEL_REF:
1839 /* We can't assume nonlocal labels have their following insns yet. */
1840 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1841 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1843 /* Two label-refs are equivalent if they point at labels
1844 in the same position in the instruction stream. */
1845 return (next_real_insn (LABEL_REF_LABEL (x))
1846 == next_real_insn (LABEL_REF_LABEL (y)));
1848 case SYMBOL_REF:
1849 return XSTR (x, 0) == XSTR (y, 0);
1851 case CODE_LABEL:
1852 /* If we didn't match EQ equality above, they aren't the same. */
1853 return 0;
1855 default:
1856 break;
1859 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1861 if (GET_MODE (x) != GET_MODE (y))
1862 return 0;
1864 /* MEMs referring to different address space are not equivalent. */
1865 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1866 return 0;
1868 /* For commutative operations, the RTX match if the operand match in any
1869 order. Also handle the simple binary and unary cases without a loop. */
1870 if (targetm.commutative_p (x, UNKNOWN))
1871 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1872 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1873 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1874 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1875 else if (NON_COMMUTATIVE_P (x))
1876 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1877 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1878 else if (UNARY_P (x))
1879 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1881 /* Compare the elements. If any pair of corresponding elements
1882 fail to match, return 0 for the whole things. */
1884 fmt = GET_RTX_FORMAT (code);
1885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1887 int j;
1888 switch (fmt[i])
1890 case 'w':
1891 if (XWINT (x, i) != XWINT (y, i))
1892 return 0;
1893 break;
1895 case 'i':
1896 if (XINT (x, i) != XINT (y, i))
1898 if (((code == ASM_OPERANDS && i == 6)
1899 || (code == ASM_INPUT && i == 1)))
1900 break;
1901 return 0;
1903 break;
1905 case 't':
1906 if (XTREE (x, i) != XTREE (y, i))
1907 return 0;
1908 break;
1910 case 's':
1911 if (strcmp (XSTR (x, i), XSTR (y, i)))
1912 return 0;
1913 break;
1915 case 'e':
1916 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1917 return 0;
1918 break;
1920 case 'u':
1921 if (XEXP (x, i) != XEXP (y, i))
1922 return 0;
1923 /* Fall through. */
1924 case '0':
1925 break;
1927 case 'E':
1928 if (XVECLEN (x, i) != XVECLEN (y, i))
1929 return 0;
1930 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1931 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1932 return 0;
1933 break;
1935 default:
1936 gcc_unreachable ();
1939 return 1;
1942 /* If X is a hard register or equivalent to one or a subregister of one,
1943 return the hard register number. If X is a pseudo register that was not
1944 assigned a hard register, return the pseudo register number. Otherwise,
1945 return -1. Any rtx is valid for X. */
1948 true_regnum (const_rtx x)
1950 if (REG_P (x))
1952 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1953 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1954 return reg_renumber[REGNO (x)];
1955 return REGNO (x);
1957 if (GET_CODE (x) == SUBREG)
1959 int base = true_regnum (SUBREG_REG (x));
1960 if (base >= 0
1961 && base < FIRST_PSEUDO_REGISTER)
1963 struct subreg_info info;
1965 subreg_get_info (lra_in_progress
1966 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1967 GET_MODE (SUBREG_REG (x)),
1968 SUBREG_BYTE (x), GET_MODE (x), &info);
1970 if (info.representable_p)
1971 return base + info.offset;
1974 return -1;
1977 /* Return regno of the register REG and handle subregs too. */
1978 unsigned int
1979 reg_or_subregno (const_rtx reg)
1981 if (GET_CODE (reg) == SUBREG)
1982 reg = SUBREG_REG (reg);
1983 gcc_assert (REG_P (reg));
1984 return REGNO (reg);