1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
43 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
55 #include "dominance.h"
58 #include "basic-block.h"
60 #include "statistics.h"
61 #include "double-int.h"
63 #include "fixed-value.h"
77 #include "diagnostic-core.h"
79 #include "tree-pass.h"
83 /* Optimize jump y; x: ... y: jumpif... x?
84 Don't know if it is worth bothering with. */
85 /* Optimize two cases of conditional jump to conditional jump?
86 This can never delete any instruction or make anything dead,
87 or even change what is live at any point.
88 So perhaps let combiner do it. */
90 static void init_label_info (rtx_insn
*);
91 static void mark_all_labels (rtx_insn
*);
92 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
93 static void mark_jump_label_asm (rtx
, rtx_insn
*);
94 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
95 static int invert_exp_1 (rtx
, rtx
);
97 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
99 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
103 timevar_push (TV_REBUILD_JUMP
);
107 /* Keep track of labels used from static data; we don't track them
108 closely enough to delete them here, so make sure their reference
109 count doesn't drop to zero. */
112 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
113 if (LABEL_P (insn
->insn ()))
114 LABEL_NUSES (insn
->insn ())++;
115 timevar_pop (TV_REBUILD_JUMP
);
118 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
119 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
120 instructions and jumping insns that have labels as operands
121 (e.g. cbranchsi4). */
123 rebuild_jump_labels (rtx_insn
*f
)
125 rebuild_jump_labels_1 (f
, true);
128 /* This function is like rebuild_jump_labels, but doesn't run over
129 forced_labels. It can be used on insn chains that aren't the
130 main function chain. */
132 rebuild_jump_labels_chain (rtx_insn
*chain
)
134 rebuild_jump_labels_1 (chain
, false);
137 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
138 non-fallthru insn. This is not generally true, as multiple barriers
139 may have crept in, or the BARRIER may be separated from the last
140 real insn by one or more NOTEs.
142 This simple pass moves barriers and removes duplicates so that the
146 cleanup_barriers (void)
149 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
151 if (BARRIER_P (insn
))
153 rtx_insn
*prev
= prev_nonnote_insn (insn
);
159 /* Make sure we do not split a call and its corresponding
160 CALL_ARG_LOCATION note. */
161 rtx_insn
*next
= NEXT_INSN (prev
);
164 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
168 if (BARRIER_P (prev
))
170 else if (prev
!= PREV_INSN (insn
))
172 basic_block bb
= BLOCK_FOR_INSN (prev
);
173 rtx_insn
*end
= PREV_INSN (insn
);
174 reorder_insns_nobb (insn
, insn
, prev
);
177 /* If the backend called in machine reorg compute_bb_for_insn
178 and didn't free_bb_for_insn again, preserve basic block
179 boundaries. Move the end of basic block to PREV since
180 it is followed by a barrier now, and clear BLOCK_FOR_INSN
181 on the following notes.
182 ??? Maybe the proper solution for the targets that have
183 cfg around after machine reorg is not to run cleanup_barriers
188 prev
= NEXT_INSN (prev
);
189 if (prev
!= insn
&& BLOCK_FOR_INSN (prev
) == bb
)
190 BLOCK_FOR_INSN (prev
) = NULL
;
202 const pass_data pass_data_cleanup_barriers
=
205 "barriers", /* name */
206 OPTGROUP_NONE
, /* optinfo_flags */
208 0, /* properties_required */
209 0, /* properties_provided */
210 0, /* properties_destroyed */
211 0, /* todo_flags_start */
212 0, /* todo_flags_finish */
215 class pass_cleanup_barriers
: public rtl_opt_pass
218 pass_cleanup_barriers (gcc::context
*ctxt
)
219 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
222 /* opt_pass methods: */
223 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
225 }; // class pass_cleanup_barriers
230 make_pass_cleanup_barriers (gcc::context
*ctxt
)
232 return new pass_cleanup_barriers (ctxt
);
236 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
237 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
238 notes whose labels don't occur in the insn any more. */
241 init_label_info (rtx_insn
*f
)
245 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
248 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
250 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
251 sticky and not reset here; that way we won't lose association
252 with a label when e.g. the source for a target register
253 disappears out of reach for targets that may use jump-target
254 registers. Jump transformations are supposed to transform
255 any REG_LABEL_TARGET notes. The target label reference in a
256 branch may disappear from the branch (and from the
257 instruction before it) for other reasons, like register
264 for (note
= REG_NOTES (insn
); note
; note
= next
)
266 next
= XEXP (note
, 1);
267 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
268 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
269 remove_note (insn
, note
);
275 /* A subroutine of mark_all_labels. Trivially propagate a simple label
276 load into a jump_insn that uses it. */
279 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
281 rtx label_note
, pc
, pc_src
;
283 pc
= pc_set (jump_insn
);
284 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
285 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
287 /* If the previous non-jump insn sets something to a label,
288 something that this jump insn uses, make that label the primary
289 target of this insn if we don't yet have any. That previous
290 insn must be a single_set and not refer to more than one label.
291 The jump insn must not refer to other labels as jump targets
292 and must be a plain (set (pc) ...), maybe in a parallel, and
293 may refer to the item being set only directly or as one of the
294 arms in an IF_THEN_ELSE. */
296 if (label_note
!= NULL
&& pc_src
!= NULL
)
298 rtx label_set
= single_set (prev_nonjump_insn
);
299 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
301 if (label_set
!= NULL
302 /* The source must be the direct LABEL_REF, not a
303 PLUS, UNSPEC, IF_THEN_ELSE etc. */
304 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
305 && (rtx_equal_p (label_dest
, pc_src
)
306 || (GET_CODE (pc_src
) == IF_THEN_ELSE
307 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
308 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
310 /* The CODE_LABEL referred to in the note must be the
311 CODE_LABEL in the LABEL_REF of the "set". We can
312 conveniently use it for the marker function, which
313 requires a LABEL_REF wrapping. */
314 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
316 mark_jump_label_1 (label_set
, jump_insn
, false, true);
318 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
323 /* Mark the label each jump jumps to.
324 Combine consecutive labels, and count uses of labels. */
327 mark_all_labels (rtx_insn
*f
)
331 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
334 FOR_EACH_BB_FN (bb
, cfun
)
336 /* In cfglayout mode, we don't bother with trivial next-insn
337 propagation of LABEL_REFs into JUMP_LABEL. This will be
338 handled by other optimizers using better algorithms. */
339 FOR_BB_INSNS (bb
, insn
)
341 gcc_assert (! insn
->deleted ());
342 if (NONDEBUG_INSN_P (insn
))
343 mark_jump_label (PATTERN (insn
), insn
, 0);
346 /* In cfglayout mode, there may be non-insns between the
347 basic blocks. If those non-insns represent tablejump data,
348 they contain label references that we must record. */
349 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
350 if (JUMP_TABLE_DATA_P (insn
))
351 mark_jump_label (PATTERN (insn
), insn
, 0);
352 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
353 if (JUMP_TABLE_DATA_P (insn
))
354 mark_jump_label (PATTERN (insn
), insn
, 0);
359 rtx_insn
*prev_nonjump_insn
= NULL
;
360 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
362 if (insn
->deleted ())
364 else if (LABEL_P (insn
))
365 prev_nonjump_insn
= NULL
;
366 else if (JUMP_TABLE_DATA_P (insn
))
367 mark_jump_label (PATTERN (insn
), insn
, 0);
368 else if (NONDEBUG_INSN_P (insn
))
370 mark_jump_label (PATTERN (insn
), insn
, 0);
373 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
374 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
377 prev_nonjump_insn
= insn
;
383 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
384 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
385 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
386 know whether it's source is floating point or integer comparison. Machine
387 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
388 to help this function avoid overhead in these cases. */
390 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
391 const_rtx arg1
, const_rtx insn
)
395 /* If this is not actually a comparison, we can't reverse it. */
396 if (GET_RTX_CLASS (code
) != RTX_COMPARE
397 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
400 mode
= GET_MODE (arg0
);
401 if (mode
== VOIDmode
)
402 mode
= GET_MODE (arg1
);
404 /* First see if machine description supplies us way to reverse the
405 comparison. Give it priority over everything else to allow
406 machine description to do tricks. */
407 if (GET_MODE_CLASS (mode
) == MODE_CC
408 && REVERSIBLE_CC_MODE (mode
))
410 #ifdef REVERSE_CONDITION
411 return REVERSE_CONDITION (code
, mode
);
413 return reverse_condition (code
);
417 /* Try a few special cases based on the comparison code. */
426 /* It is always safe to reverse EQ and NE, even for the floating
427 point. Similarly the unsigned comparisons are never used for
428 floating point so we can reverse them in the default way. */
429 return reverse_condition (code
);
434 /* In case we already see unordered comparison, we can be sure to
435 be dealing with floating point so we don't need any more tests. */
436 return reverse_condition_maybe_unordered (code
);
441 /* We don't have safe way to reverse these yet. */
447 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
450 /* Try to search for the comparison to determine the real mode.
451 This code is expensive, but with sane machine description it
452 will be never used, since REVERSIBLE_CC_MODE will return true
457 /* These CONST_CAST's are okay because prev_nonnote_insn just
458 returns its argument and we assign it to a const_rtx
460 for (prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
461 prev
!= 0 && !LABEL_P (prev
);
462 prev
= prev_nonnote_insn (CONST_CAST_RTX (prev
)))
464 const_rtx set
= set_of (arg0
, prev
);
465 if (set
&& GET_CODE (set
) == SET
466 && rtx_equal_p (SET_DEST (set
), arg0
))
468 rtx src
= SET_SRC (set
);
470 if (GET_CODE (src
) == COMPARE
)
472 rtx comparison
= src
;
473 arg0
= XEXP (src
, 0);
474 mode
= GET_MODE (arg0
);
475 if (mode
== VOIDmode
)
476 mode
= GET_MODE (XEXP (comparison
, 1));
479 /* We can get past reg-reg moves. This may be useful for model
480 of i387 comparisons that first move flag registers around. */
487 /* If register is clobbered in some ununderstandable way,
494 /* Test for an integer condition, or a floating-point comparison
495 in which NaNs can be ignored. */
496 if (CONST_INT_P (arg0
)
497 || (GET_MODE (arg0
) != VOIDmode
498 && GET_MODE_CLASS (mode
) != MODE_CC
499 && !HONOR_NANS (mode
)))
500 return reverse_condition (code
);
505 /* A wrapper around the previous function to take COMPARISON as rtx
506 expression. This simplifies many callers. */
508 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
510 if (!COMPARISON_P (comparison
))
512 return reversed_comparison_code_parts (GET_CODE (comparison
),
513 XEXP (comparison
, 0),
514 XEXP (comparison
, 1), insn
);
517 /* Return comparison with reversed code of EXP.
518 Return NULL_RTX in case we fail to do the reversal. */
520 reversed_comparison (const_rtx exp
, machine_mode mode
)
522 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
523 if (reversed_code
== UNKNOWN
)
526 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
527 XEXP (exp
, 0), XEXP (exp
, 1));
531 /* Given an rtx-code for a comparison, return the code for the negated
532 comparison. If no such code exists, return UNKNOWN.
534 WATCH OUT! reverse_condition is not safe to use on a jump that might
535 be acting on the results of an IEEE floating point comparison, because
536 of the special treatment of non-signaling nans in comparisons.
537 Use reversed_comparison_code instead. */
540 reverse_condition (enum rtx_code code
)
582 /* Similar, but we're allowed to generate unordered comparisons, which
583 makes it safe for IEEE floating-point. Of course, we have to recognize
584 that the target will support them too... */
587 reverse_condition_maybe_unordered (enum rtx_code code
)
625 /* Similar, but return the code when two operands of a comparison are swapped.
626 This IS safe for IEEE floating-point. */
629 swap_condition (enum rtx_code code
)
671 /* Given a comparison CODE, return the corresponding unsigned comparison.
672 If CODE is an equality comparison or already an unsigned comparison,
676 unsigned_condition (enum rtx_code code
)
702 /* Similarly, return the signed version of a comparison. */
705 signed_condition (enum rtx_code code
)
731 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
732 truth of CODE1 implies the truth of CODE2. */
735 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
737 /* UNKNOWN comparison codes can happen as a result of trying to revert
739 They can't match anything, so we have to reject them here. */
740 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
749 if (code2
== UNLE
|| code2
== UNGE
)
754 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
760 if (code2
== UNLE
|| code2
== NE
)
765 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
770 if (code2
== UNGE
|| code2
== NE
)
775 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
781 if (code2
== ORDERED
)
786 if (code2
== NE
|| code2
== ORDERED
)
791 if (code2
== LEU
|| code2
== NE
)
796 if (code2
== GEU
|| code2
== NE
)
801 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
802 || code2
== UNGE
|| code2
== UNGT
)
813 /* Return 1 if INSN is an unconditional jump and nothing else. */
816 simplejump_p (const rtx_insn
*insn
)
818 return (JUMP_P (insn
)
819 && GET_CODE (PATTERN (insn
)) == SET
820 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
821 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
824 /* Return nonzero if INSN is a (possibly) conditional jump
827 Use of this function is deprecated, since we need to support combined
828 branch and compare insns. Use any_condjump_p instead whenever possible. */
831 condjump_p (const rtx_insn
*insn
)
833 const_rtx x
= PATTERN (insn
);
835 if (GET_CODE (x
) != SET
836 || GET_CODE (SET_DEST (x
)) != PC
)
840 if (GET_CODE (x
) == LABEL_REF
)
843 return (GET_CODE (x
) == IF_THEN_ELSE
844 && ((GET_CODE (XEXP (x
, 2)) == PC
845 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
846 || ANY_RETURN_P (XEXP (x
, 1))))
847 || (GET_CODE (XEXP (x
, 1)) == PC
848 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
849 || ANY_RETURN_P (XEXP (x
, 2))))));
852 /* Return nonzero if INSN is a (possibly) conditional jump inside a
855 Use this function is deprecated, since we need to support combined
856 branch and compare insns. Use any_condjump_p instead whenever possible. */
859 condjump_in_parallel_p (const rtx_insn
*insn
)
861 const_rtx x
= PATTERN (insn
);
863 if (GET_CODE (x
) != PARALLEL
)
866 x
= XVECEXP (x
, 0, 0);
868 if (GET_CODE (x
) != SET
)
870 if (GET_CODE (SET_DEST (x
)) != PC
)
872 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
874 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
876 if (XEXP (SET_SRC (x
), 2) == pc_rtx
877 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
878 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
880 if (XEXP (SET_SRC (x
), 1) == pc_rtx
881 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
882 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
887 /* Return set of PC, otherwise NULL. */
890 pc_set (const rtx_insn
*insn
)
895 pat
= PATTERN (insn
);
897 /* The set is allowed to appear either as the insn pattern or
898 the first set in a PARALLEL. */
899 if (GET_CODE (pat
) == PARALLEL
)
900 pat
= XVECEXP (pat
, 0, 0);
901 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
907 /* Return true when insn is an unconditional direct jump,
908 possibly bundled inside a PARALLEL. */
911 any_uncondjump_p (const rtx_insn
*insn
)
913 const_rtx x
= pc_set (insn
);
916 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
918 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
923 /* Return true when insn is a conditional jump. This function works for
924 instructions containing PC sets in PARALLELs. The instruction may have
925 various other effects so before removing the jump you must verify
928 Note that unlike condjump_p it returns false for unconditional jumps. */
931 any_condjump_p (const rtx_insn
*insn
)
933 const_rtx x
= pc_set (insn
);
938 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
941 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
942 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
944 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
946 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
949 /* Return the label of a conditional jump. */
952 condjump_label (const rtx_insn
*insn
)
954 rtx x
= pc_set (insn
);
959 if (GET_CODE (x
) == LABEL_REF
)
961 if (GET_CODE (x
) != IF_THEN_ELSE
)
963 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
965 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
970 /* Return TRUE if INSN is a return jump. */
973 returnjump_p (const rtx_insn
*insn
)
977 subrtx_iterator::array_type array
;
978 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
981 switch (GET_CODE (x
))
989 if (SET_IS_RETURN_P (x
))
1001 /* Return true if INSN is a (possibly conditional) return insn. */
1004 eh_returnjump_p (rtx_insn
*insn
)
1008 subrtx_iterator::array_type array
;
1009 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
1010 if (GET_CODE (*iter
) == EH_RETURN
)
1016 /* Return true if INSN is a jump that only transfers control and
1020 onlyjump_p (const rtx_insn
*insn
)
1027 set
= single_set (insn
);
1030 if (GET_CODE (SET_DEST (set
)) != PC
)
1032 if (side_effects_p (SET_SRC (set
)))
1038 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1039 NULL or a return. */
1041 jump_to_label_p (const rtx_insn
*insn
)
1043 return (JUMP_P (insn
)
1044 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1049 /* Return nonzero if X is an RTX that only sets the condition codes
1050 and has no side effects. */
1053 only_sets_cc0_p (const_rtx x
)
1061 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1064 /* Return 1 if X is an RTX that does nothing but set the condition codes
1065 and CLOBBER or USE registers.
1066 Return -1 if X does explicitly set the condition codes,
1067 but also does other things. */
1070 sets_cc0_p (const_rtx x
)
1078 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1080 if (GET_CODE (x
) == PARALLEL
)
1084 int other_things
= 0;
1085 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1087 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1088 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1090 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1093 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1099 /* Find all CODE_LABELs referred to in X, and increment their use
1100 counts. If INSN is a JUMP_INSN and there is at least one
1101 CODE_LABEL referenced in INSN as a jump target, then store the last
1102 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1103 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1104 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1105 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1106 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1107 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1109 Note that two labels separated by a loop-beginning note
1110 must be kept distinct if we have not yet done loop-optimization,
1111 because the gap between them is where loop-optimize
1112 will want to move invariant code to. CROSS_JUMP tells us
1113 that loop-optimization is done with. */
1116 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1118 rtx asmop
= extract_asm_operands (x
);
1120 mark_jump_label_asm (asmop
, insn
);
1122 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1123 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1126 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1127 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1128 jump-target; when the JUMP_LABEL field of INSN should be set or a
1129 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1133 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1135 RTX_CODE code
= GET_CODE (x
);
1152 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1153 JUMP_LABEL (insn
) = x
;
1163 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1164 for (i
= 0; i
< seq
->len (); i
++)
1165 mark_jump_label (PATTERN (seq
->insn (i
)),
1174 /* If this is a constant-pool reference, see if it is a label. */
1175 if (CONSTANT_POOL_ADDRESS_P (x
))
1176 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1179 /* Handle operands in the condition of an if-then-else as for a
1184 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1185 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1186 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1191 rtx label
= LABEL_REF_LABEL (x
);
1193 /* Ignore remaining references to unreachable labels that
1194 have been deleted. */
1196 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1199 gcc_assert (LABEL_P (label
));
1201 /* Ignore references to labels of containing functions. */
1202 if (LABEL_REF_NONLOCAL_P (x
))
1205 LABEL_REF_LABEL (x
) = label
;
1206 if (! insn
|| ! insn
->deleted ())
1207 ++LABEL_NUSES (label
);
1212 /* Do not change a previous setting of JUMP_LABEL. If the
1213 JUMP_LABEL slot is occupied by a different label,
1214 create a note for this label. */
1215 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1216 JUMP_LABEL (insn
) = label
;
1220 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1222 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1223 for LABEL unless there already is one. All uses of
1224 a label, except for the primary target of a jump,
1225 must have such a note. */
1226 if (! find_reg_note (insn
, kind
, label
))
1227 add_reg_note (insn
, kind
, label
);
1233 /* Do walk the labels in a vector, but not the first operand of an
1234 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1237 if (! insn
->deleted ())
1239 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1241 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1242 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1251 fmt
= GET_RTX_FORMAT (code
);
1253 /* The primary target of a tablejump is the label of the ADDR_VEC,
1254 which is canonically mentioned *last* in the insn. To get it
1255 marked as JUMP_LABEL, we iterate over items in reverse order. */
1256 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1259 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1260 else if (fmt
[i
] == 'E')
1264 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1265 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1271 /* Worker function for mark_jump_label. Handle asm insns specially.
1272 In particular, output operands need not be considered so we can
1273 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1274 need to be considered targets. */
1277 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1281 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1282 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1284 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1285 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1288 /* Delete insn INSN from the chain of insns and update label ref counts
1289 and delete insns now unreachable.
1291 Returns the first insn after INSN that was not deleted.
1293 Usage of this instruction is deprecated. Use delete_insn instead and
1294 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1297 delete_related_insns (rtx uncast_insn
)
1299 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1300 int was_code_label
= (LABEL_P (insn
));
1302 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1304 while (next
&& next
->deleted ())
1305 next
= NEXT_INSN (next
);
1307 /* This insn is already deleted => return first following nondeleted. */
1308 if (insn
->deleted ())
1313 /* If instruction is followed by a barrier,
1314 delete the barrier too. */
1316 if (next
!= 0 && BARRIER_P (next
))
1319 /* If this is a call, then we have to remove the var tracking note
1320 for the call arguments. */
1323 || (NONJUMP_INSN_P (insn
)
1324 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1325 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1329 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1332 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1339 /* If deleting a jump, decrement the count of the label,
1340 and delete the label if it is now unused. */
1342 if (jump_to_label_p (insn
))
1344 rtx lab
= JUMP_LABEL (insn
);
1345 rtx_jump_table_data
*lab_next
;
1347 if (LABEL_NUSES (lab
) == 0)
1348 /* This can delete NEXT or PREV,
1349 either directly if NEXT is JUMP_LABEL (INSN),
1350 or indirectly through more levels of jumps. */
1351 delete_related_insns (lab
);
1352 else if (tablejump_p (insn
, NULL
, &lab_next
))
1354 /* If we're deleting the tablejump, delete the dispatch table.
1355 We may not be able to kill the label immediately preceding
1356 just yet, as it might be referenced in code leading up to
1358 delete_related_insns (lab_next
);
1362 /* Likewise if we're deleting a dispatch table. */
1364 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1366 rtvec labels
= table
->get_labels ();
1368 int len
= GET_NUM_ELEM (labels
);
1370 for (i
= 0; i
< len
; i
++)
1371 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1372 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1373 while (next
&& next
->deleted ())
1374 next
= NEXT_INSN (next
);
1378 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1379 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1381 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1382 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1383 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1384 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1385 && LABEL_P (XEXP (note
, 0)))
1386 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1387 delete_related_insns (XEXP (note
, 0));
1389 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1390 prev
= PREV_INSN (prev
);
1392 /* If INSN was a label and a dispatch table follows it,
1393 delete the dispatch table. The tablejump must have gone already.
1394 It isn't useful to fall through into a table. */
1397 && NEXT_INSN (insn
) != 0
1398 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1399 next
= delete_related_insns (NEXT_INSN (insn
));
1401 /* If INSN was a label, delete insns following it if now unreachable. */
1403 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1408 code
= GET_CODE (next
);
1410 next
= NEXT_INSN (next
);
1411 /* Keep going past other deleted labels to delete what follows. */
1412 else if (code
== CODE_LABEL
&& next
->deleted ())
1413 next
= NEXT_INSN (next
);
1414 /* Keep the (use (insn))s created by dbr_schedule, which needs
1415 them in order to track liveness relative to a previous
1417 else if (INSN_P (next
)
1418 && GET_CODE (PATTERN (next
)) == USE
1419 && INSN_P (XEXP (PATTERN (next
), 0)))
1420 next
= NEXT_INSN (next
);
1421 else if (code
== BARRIER
|| INSN_P (next
))
1422 /* Note: if this deletes a jump, it can cause more
1423 deletion of unreachable code, after a different label.
1424 As long as the value from this recursive call is correct,
1425 this invocation functions correctly. */
1426 next
= delete_related_insns (next
);
1432 /* I feel a little doubtful about this loop,
1433 but I see no clean and sure alternative way
1434 to find the first insn after INSN that is not now deleted.
1435 I hope this works. */
1436 while (next
&& next
->deleted ())
1437 next
= NEXT_INSN (next
);
1441 /* Delete a range of insns from FROM to TO, inclusive.
1442 This is for the sake of peephole optimization, so assume
1443 that whatever these insns do will still be done by a new
1444 peephole insn that will replace them. */
1447 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1449 rtx_insn
*insn
= from
;
1453 rtx_insn
*next
= NEXT_INSN (insn
);
1454 rtx_insn
*prev
= PREV_INSN (insn
);
1458 insn
->set_deleted();
1460 /* Patch this insn out of the chain. */
1461 /* We don't do this all at once, because we
1462 must preserve all NOTEs. */
1464 SET_NEXT_INSN (prev
) = next
;
1467 SET_PREV_INSN (next
) = prev
;
1475 /* Note that if TO is an unconditional jump
1476 we *do not* delete the BARRIER that follows,
1477 since the peephole that replaces this sequence
1478 is also an unconditional jump in that case. */
1481 /* A helper function for redirect_exp_1; examines its input X and returns
1482 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1484 redirect_target (rtx x
)
1488 if (!ANY_RETURN_P (x
))
1489 return gen_rtx_LABEL_REF (Pmode
, x
);
1493 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1494 NLABEL as a return. Accrue modifications into the change group. */
1497 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1500 RTX_CODE code
= GET_CODE (x
);
1504 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1507 x
= redirect_target (nlabel
);
1508 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1509 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1510 validate_change (insn
, loc
, x
, 1);
1514 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1515 && ANY_RETURN_P (nlabel
)
1516 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1517 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1519 validate_change (insn
, loc
, nlabel
, 1);
1523 if (code
== IF_THEN_ELSE
)
1525 /* Skip the condition of an IF_THEN_ELSE. We only want to
1526 change jump destinations, not eventual label comparisons. */
1527 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1528 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1532 fmt
= GET_RTX_FORMAT (code
);
1533 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1536 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1537 else if (fmt
[i
] == 'E')
1540 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1541 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1546 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1547 the modifications into the change group. Return false if we did
1548 not see how to do that. */
1551 redirect_jump_1 (rtx jump
, rtx nlabel
)
1553 int ochanges
= num_validated_changes ();
1556 gcc_assert (nlabel
!= NULL_RTX
);
1557 asmop
= extract_asm_operands (PATTERN (jump
));
1562 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1563 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1565 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1566 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1568 loc
= &PATTERN (jump
);
1570 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1571 return num_validated_changes () > ochanges
;
1574 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1575 jump target label is unused as a result, it and the code following
1578 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1579 in that case we are to turn the jump into a (possibly conditional)
1582 The return value will be 1 if the change was made, 0 if it wasn't
1583 (this can only occur when trying to produce return insns). */
1586 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1588 rtx olabel
= JUMP_LABEL (jump
);
1592 /* If there is no label, we are asked to redirect to the EXIT block.
1593 When before the epilogue is emitted, return/simple_return cannot be
1594 created so we return 0 immediately. After the epilogue is emitted,
1595 we always expect a label, either a non-null label, or a
1596 return/simple_return RTX. */
1598 if (!epilogue_completed
)
1603 if (nlabel
== olabel
)
1606 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1609 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1613 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1615 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1616 count has dropped to zero. */
1618 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1623 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1625 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1626 moving FUNCTION_END note. Just sanity check that no user still worry
1628 gcc_assert (delete_unused
>= 0);
1629 JUMP_LABEL (jump
) = nlabel
;
1630 if (!ANY_RETURN_P (nlabel
))
1631 ++LABEL_NUSES (nlabel
);
1633 /* Update labels in any REG_EQUAL note. */
1634 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1636 if (ANY_RETURN_P (nlabel
)
1637 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1638 remove_note (jump
, note
);
1641 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1642 confirm_change_group ();
1646 /* Handle the case where we had a conditional crossing jump to a return
1647 label and are now changing it into a direct conditional return.
1648 The jump is no longer crossing in that case. */
1649 if (ANY_RETURN_P (nlabel
))
1650 CROSSING_JUMP_P (jump
) = 0;
1652 if (!ANY_RETURN_P (olabel
)
1653 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1654 /* Undefined labels will remain outside the insn stream. */
1655 && INSN_UID (olabel
))
1656 delete_related_insns (olabel
);
1658 invert_br_probabilities (jump
);
1661 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1662 modifications into the change group. Return nonzero for success. */
1664 invert_exp_1 (rtx x
, rtx insn
)
1666 RTX_CODE code
= GET_CODE (x
);
1668 if (code
== IF_THEN_ELSE
)
1670 rtx comp
= XEXP (x
, 0);
1672 enum rtx_code reversed_code
;
1674 /* We can do this in two ways: The preferable way, which can only
1675 be done if this is not an integer comparison, is to reverse
1676 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1677 of the IF_THEN_ELSE. If we can't do either, fail. */
1679 reversed_code
= reversed_comparison_code (comp
, insn
);
1681 if (reversed_code
!= UNKNOWN
)
1683 validate_change (insn
, &XEXP (x
, 0),
1684 gen_rtx_fmt_ee (reversed_code
,
1685 GET_MODE (comp
), XEXP (comp
, 0),
1692 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1693 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1700 /* Invert the condition of the jump JUMP, and make it jump to label
1701 NLABEL instead of where it jumps now. Accrue changes into the
1702 change group. Return false if we didn't see how to perform the
1703 inversion and redirection. */
1706 invert_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1708 rtx x
= pc_set (jump
);
1712 ochanges
= num_validated_changes ();
1715 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1718 if (num_validated_changes () == ochanges
)
1721 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1722 in Pmode, so checking this is not merely an optimization. */
1723 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1726 /* Invert the condition of the jump JUMP, and make it jump to label
1727 NLABEL instead of where it jumps now. Return true if successful. */
1730 invert_jump (rtx_insn
*jump
, rtx nlabel
, int delete_unused
)
1732 rtx olabel
= JUMP_LABEL (jump
);
1734 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1736 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1744 /* Like rtx_equal_p except that it considers two REGs as equal
1745 if they renumber to the same value and considers two commutative
1746 operations to be the same if the order of the operands has been
1750 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1753 const enum rtx_code code
= GET_CODE (x
);
1759 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1760 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1761 && REG_P (SUBREG_REG (y
)))))
1763 int reg_x
= -1, reg_y
= -1;
1764 int byte_x
= 0, byte_y
= 0;
1765 struct subreg_info info
;
1767 if (GET_MODE (x
) != GET_MODE (y
))
1770 /* If we haven't done any renumbering, don't
1771 make any assumptions. */
1772 if (reg_renumber
== 0)
1773 return rtx_equal_p (x
, y
);
1777 reg_x
= REGNO (SUBREG_REG (x
));
1778 byte_x
= SUBREG_BYTE (x
);
1780 if (reg_renumber
[reg_x
] >= 0)
1782 subreg_get_info (reg_renumber
[reg_x
],
1783 GET_MODE (SUBREG_REG (x
)), byte_x
,
1784 GET_MODE (x
), &info
);
1785 if (!info
.representable_p
)
1787 reg_x
= info
.offset
;
1794 if (reg_renumber
[reg_x
] >= 0)
1795 reg_x
= reg_renumber
[reg_x
];
1798 if (GET_CODE (y
) == SUBREG
)
1800 reg_y
= REGNO (SUBREG_REG (y
));
1801 byte_y
= SUBREG_BYTE (y
);
1803 if (reg_renumber
[reg_y
] >= 0)
1805 subreg_get_info (reg_renumber
[reg_y
],
1806 GET_MODE (SUBREG_REG (y
)), byte_y
,
1807 GET_MODE (y
), &info
);
1808 if (!info
.representable_p
)
1810 reg_y
= info
.offset
;
1817 if (reg_renumber
[reg_y
] >= 0)
1818 reg_y
= reg_renumber
[reg_y
];
1821 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1824 /* Now we have disposed of all the cases
1825 in which different rtx codes can match. */
1826 if (code
!= GET_CODE (y
))
1839 /* We can't assume nonlocal labels have their following insns yet. */
1840 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1841 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1843 /* Two label-refs are equivalent if they point at labels
1844 in the same position in the instruction stream. */
1845 return (next_real_insn (LABEL_REF_LABEL (x
))
1846 == next_real_insn (LABEL_REF_LABEL (y
)));
1849 return XSTR (x
, 0) == XSTR (y
, 0);
1852 /* If we didn't match EQ equality above, they aren't the same. */
1859 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1861 if (GET_MODE (x
) != GET_MODE (y
))
1864 /* MEMs referring to different address space are not equivalent. */
1865 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1868 /* For commutative operations, the RTX match if the operand match in any
1869 order. Also handle the simple binary and unary cases without a loop. */
1870 if (targetm
.commutative_p (x
, UNKNOWN
))
1871 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1872 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1873 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1874 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1875 else if (NON_COMMUTATIVE_P (x
))
1876 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1877 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1878 else if (UNARY_P (x
))
1879 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1881 /* Compare the elements. If any pair of corresponding elements
1882 fail to match, return 0 for the whole things. */
1884 fmt
= GET_RTX_FORMAT (code
);
1885 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1891 if (XWINT (x
, i
) != XWINT (y
, i
))
1896 if (XINT (x
, i
) != XINT (y
, i
))
1898 if (((code
== ASM_OPERANDS
&& i
== 6)
1899 || (code
== ASM_INPUT
&& i
== 1)))
1906 if (XTREE (x
, i
) != XTREE (y
, i
))
1911 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1916 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1921 if (XEXP (x
, i
) != XEXP (y
, i
))
1928 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1930 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1931 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1942 /* If X is a hard register or equivalent to one or a subregister of one,
1943 return the hard register number. If X is a pseudo register that was not
1944 assigned a hard register, return the pseudo register number. Otherwise,
1945 return -1. Any rtx is valid for X. */
1948 true_regnum (const_rtx x
)
1952 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1953 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1954 return reg_renumber
[REGNO (x
)];
1957 if (GET_CODE (x
) == SUBREG
)
1959 int base
= true_regnum (SUBREG_REG (x
));
1961 && base
< FIRST_PSEUDO_REGISTER
)
1963 struct subreg_info info
;
1965 subreg_get_info (lra_in_progress
1966 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1967 GET_MODE (SUBREG_REG (x
)),
1968 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1970 if (info
.representable_p
)
1971 return base
+ info
.offset
;
1977 /* Return regno of the register REG and handle subregs too. */
1979 reg_or_subregno (const_rtx reg
)
1981 if (GET_CODE (reg
) == SUBREG
)
1982 reg
= SUBREG_REG (reg
);
1983 gcc_assert (REG_P (reg
));