1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "double-int.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
42 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
48 #include "statistics.h"
50 #include "fixed-value.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
59 #include "insn-codes.h"
64 #include "typeclass.h"
66 #include "langhooks.h"
69 #include "tree-iterator.h"
71 #include "dominance.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
79 #include "gimple-ssa.h"
81 #include "plugin-api.h"
84 #include "tree-ssanames.h"
86 #include "common/common-target.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
97 #include "tree-chkp.h"
101 #ifndef STACK_PUSH_CODE
102 #ifdef STACK_GROWS_DOWNWARD
103 #define STACK_PUSH_CODE PRE_DEC
105 #define STACK_PUSH_CODE PRE_INC
110 /* If this is nonzero, we do not bother generating VOLATILE
111 around volatile memory references, and we are willing to
112 output indirect addresses. If cse is to follow, we reject
113 indirect addresses so a useful potential cse is generated;
114 if it is used only once, instruction combination will produce
115 the same indirect address eventually. */
116 int cse_not_expected
;
118 /* This structure is used by move_by_pieces to describe the move to
120 struct move_by_pieces_d
129 int explicit_inc_from
;
130 unsigned HOST_WIDE_INT len
;
131 HOST_WIDE_INT offset
;
135 /* This structure is used by store_by_pieces to describe the clear to
138 struct store_by_pieces_d
144 unsigned HOST_WIDE_INT len
;
145 HOST_WIDE_INT offset
;
146 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
);
151 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
152 struct move_by_pieces_d
*);
153 static bool block_move_libcall_safe_for_call_parm (void);
154 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
155 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
156 unsigned HOST_WIDE_INT
);
157 static tree
emit_block_move_libcall_fn (int);
158 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
159 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, machine_mode
);
160 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
161 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
162 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
163 struct store_by_pieces_d
*);
164 static tree
clear_storage_libcall_fn (int);
165 static rtx_insn
*compress_float_constant (rtx
, rtx
);
166 static rtx
get_subtarget (rtx
);
167 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
168 HOST_WIDE_INT
, machine_mode
,
169 tree
, int, alias_set_type
);
170 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
171 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
172 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
173 machine_mode
, tree
, alias_set_type
, bool);
175 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
177 static int is_aligning_offset (const_tree
, const_tree
);
178 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
179 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
181 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
183 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
, int);
184 static rtx
const_vector_from_tree (tree
);
185 static tree
tree_expr_size (const_tree
);
186 static HOST_WIDE_INT
int_expr_size (tree
);
189 /* This is run to set up which modes can be used
190 directly in memory and to initialize the block move optab. It is run
191 at the beginning of compilation and when the target is reinitialized. */
194 init_expr_target (void)
202 /* Try indexing by frame ptr and try by stack ptr.
203 It is known that on the Convex the stack ptr isn't a valid index.
204 With luck, one or the other is valid on any machine. */
205 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
206 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
208 /* A scratch register we can modify in-place below to avoid
209 useless RTL allocations. */
210 reg
= gen_rtx_REG (VOIDmode
, -1);
212 insn
= rtx_alloc (INSN
);
213 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
214 PATTERN (insn
) = pat
;
216 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
217 mode
= (machine_mode
) ((int) mode
+ 1))
221 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
222 PUT_MODE (mem
, mode
);
223 PUT_MODE (mem1
, mode
);
224 PUT_MODE (reg
, mode
);
226 /* See if there is some register that can be used in this mode and
227 directly loaded or stored from memory. */
229 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
230 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
231 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
234 if (! HARD_REGNO_MODE_OK (regno
, mode
))
237 SET_REGNO (reg
, regno
);
240 SET_DEST (pat
) = reg
;
241 if (recog (pat
, insn
, &num_clobbers
) >= 0)
242 direct_load
[(int) mode
] = 1;
244 SET_SRC (pat
) = mem1
;
245 SET_DEST (pat
) = reg
;
246 if (recog (pat
, insn
, &num_clobbers
) >= 0)
247 direct_load
[(int) mode
] = 1;
250 SET_DEST (pat
) = mem
;
251 if (recog (pat
, insn
, &num_clobbers
) >= 0)
252 direct_store
[(int) mode
] = 1;
255 SET_DEST (pat
) = mem1
;
256 if (recog (pat
, insn
, &num_clobbers
) >= 0)
257 direct_store
[(int) mode
] = 1;
261 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
263 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
264 mode
= GET_MODE_WIDER_MODE (mode
))
266 machine_mode srcmode
;
267 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
268 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
272 ic
= can_extend_p (mode
, srcmode
, 0);
273 if (ic
== CODE_FOR_nothing
)
276 PUT_MODE (mem
, srcmode
);
278 if (insn_operand_matches (ic
, 1, mem
))
279 float_extend_from_mem
[mode
][srcmode
] = true;
284 /* This is run at the start of compiling a function. */
289 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
292 /* Copy data from FROM to TO, where the machine modes are not the same.
293 Both modes may be integer, or both may be floating, or both may be
295 UNSIGNEDP should be nonzero if FROM is an unsigned type.
296 This causes zero-extension instead of sign-extension. */
299 convert_move (rtx to
, rtx from
, int unsignedp
)
301 machine_mode to_mode
= GET_MODE (to
);
302 machine_mode from_mode
= GET_MODE (from
);
303 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
304 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
308 /* rtx code for making an equivalent value. */
309 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
310 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
313 gcc_assert (to_real
== from_real
);
314 gcc_assert (to_mode
!= BLKmode
);
315 gcc_assert (from_mode
!= BLKmode
);
317 /* If the source and destination are already the same, then there's
322 /* If FROM is a SUBREG that indicates that we have already done at least
323 the required extension, strip it. We don't handle such SUBREGs as
326 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
327 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
328 >= GET_MODE_PRECISION (to_mode
))
329 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
330 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
332 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
334 if (to_mode
== from_mode
335 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
337 emit_move_insn (to
, from
);
341 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
343 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
345 if (VECTOR_MODE_P (to_mode
))
346 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
348 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
350 emit_move_insn (to
, from
);
354 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
356 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
357 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
367 gcc_assert ((GET_MODE_PRECISION (from_mode
)
368 != GET_MODE_PRECISION (to_mode
))
369 || (DECIMAL_FLOAT_MODE_P (from_mode
)
370 != DECIMAL_FLOAT_MODE_P (to_mode
)));
372 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
373 /* Conversion between decimal float and binary float, same size. */
374 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
375 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
380 /* Try converting directly if the insn is supported. */
382 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
383 if (code
!= CODE_FOR_nothing
)
385 emit_unop_insn (code
, to
, from
,
386 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
390 /* Otherwise use a libcall. */
391 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall
);
397 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
399 insns
= get_insns ();
401 emit_libcall_block (insns
, to
, value
,
402 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
404 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
413 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
420 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
423 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
429 /* Targets are expected to provide conversion insns between PxImode and
430 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
431 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
433 machine_mode full_mode
434 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
436 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
437 != CODE_FOR_nothing
);
439 if (full_mode
!= from_mode
)
440 from
= convert_to_mode (full_mode
, from
, unsignedp
);
441 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
445 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
448 machine_mode full_mode
449 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
450 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
451 enum insn_code icode
;
453 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
454 gcc_assert (icode
!= CODE_FOR_nothing
);
456 if (to_mode
== full_mode
)
458 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
462 new_from
= gen_reg_rtx (full_mode
);
463 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
465 /* else proceed to integer conversions below. */
466 from_mode
= full_mode
;
470 /* Make sure both are fixed-point modes or both are not. */
471 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
472 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
473 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
475 /* If we widen from_mode to to_mode and they are in the same class,
476 we won't saturate the result.
477 Otherwise, always saturate the result to play safe. */
478 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
479 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
480 expand_fixed_convert (to
, from
, 0, 0);
482 expand_fixed_convert (to
, from
, 0, 1);
486 /* Now both modes are integers. */
488 /* Handle expanding beyond a word. */
489 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
490 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
497 machine_mode lowpart_mode
;
498 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
500 /* Try converting directly if the insn is supported. */
501 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
504 /* If FROM is a SUBREG, put it into a register. Do this
505 so that we always generate the same set of insns for
506 better cse'ing; if an intermediate assignment occurred,
507 we won't be doing the operation directly on the SUBREG. */
508 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
509 from
= force_reg (from_mode
, from
);
510 emit_unop_insn (code
, to
, from
, equiv_code
);
513 /* Next, try converting via full word. */
514 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
515 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
516 != CODE_FOR_nothing
))
518 rtx word_to
= gen_reg_rtx (word_mode
);
521 if (reg_overlap_mentioned_p (to
, from
))
522 from
= force_reg (from_mode
, from
);
525 convert_move (word_to
, from
, unsignedp
);
526 emit_unop_insn (code
, to
, word_to
, equiv_code
);
530 /* No special multiword conversion insn; do it by hand. */
533 /* Since we will turn this into a no conflict block, we must ensure the
534 the source does not overlap the target so force it into an isolated
535 register when maybe so. Likewise for any MEM input, since the
536 conversion sequence might require several references to it and we
537 must ensure we're getting the same value every time. */
539 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
540 from
= force_reg (from_mode
, from
);
542 /* Get a copy of FROM widened to a word, if necessary. */
543 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
544 lowpart_mode
= word_mode
;
546 lowpart_mode
= from_mode
;
548 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
550 lowpart
= gen_lowpart (lowpart_mode
, to
);
551 emit_move_insn (lowpart
, lowfrom
);
553 /* Compute the value to put in each remaining word. */
555 fill_value
= const0_rtx
;
557 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
558 LT
, lowfrom
, const0_rtx
,
559 lowpart_mode
, 0, -1);
561 /* Fill the remaining words. */
562 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
564 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
565 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
567 gcc_assert (subword
);
569 if (fill_value
!= subword
)
570 emit_move_insn (subword
, fill_value
);
573 insns
= get_insns ();
580 /* Truncating multi-word to a word or less. */
581 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
582 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
585 && ! MEM_VOLATILE_P (from
)
586 && direct_load
[(int) to_mode
]
587 && ! mode_dependent_address_p (XEXP (from
, 0),
588 MEM_ADDR_SPACE (from
)))
590 || GET_CODE (from
) == SUBREG
))
591 from
= force_reg (from_mode
, from
);
592 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
596 /* Now follow all the conversions between integers
597 no more than a word long. */
599 /* For truncation, usually we can just refer to FROM in a narrower mode. */
600 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
601 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
604 && ! MEM_VOLATILE_P (from
)
605 && direct_load
[(int) to_mode
]
606 && ! mode_dependent_address_p (XEXP (from
, 0),
607 MEM_ADDR_SPACE (from
)))
609 || GET_CODE (from
) == SUBREG
))
610 from
= force_reg (from_mode
, from
);
611 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
612 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
613 from
= copy_to_reg (from
);
614 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
618 /* Handle extension. */
619 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
621 /* Convert directly if that works. */
622 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
625 emit_unop_insn (code
, to
, from
, equiv_code
);
630 machine_mode intermediate
;
634 /* Search for a mode to convert via. */
635 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
636 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
637 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
639 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
640 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
641 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
642 != CODE_FOR_nothing
))
644 convert_move (to
, convert_to_mode (intermediate
, from
,
645 unsignedp
), unsignedp
);
649 /* No suitable intermediate mode.
650 Generate what we need with shifts. */
651 shift_amount
= (GET_MODE_PRECISION (to_mode
)
652 - GET_MODE_PRECISION (from_mode
));
653 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
654 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
656 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
659 emit_move_insn (to
, tmp
);
664 /* Support special truncate insns for certain modes. */
665 if (convert_optab_handler (trunc_optab
, to_mode
,
666 from_mode
) != CODE_FOR_nothing
)
668 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
673 /* Handle truncation of volatile memrefs, and so on;
674 the things that couldn't be truncated directly,
675 and for which there was no special instruction.
677 ??? Code above formerly short-circuited this, for most integer
678 mode pairs, with a force_reg in from_mode followed by a recursive
679 call to this routine. Appears always to have been wrong. */
680 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
682 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
683 emit_move_insn (to
, temp
);
687 /* Mode combination is not recognized. */
691 /* Return an rtx for a value that would result
692 from converting X to mode MODE.
693 Both X and MODE may be floating, or both integer.
694 UNSIGNEDP is nonzero if X is an unsigned value.
695 This can be done by referring to a part of X in place
696 or by copying to a new temporary with conversion. */
699 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
701 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
704 /* Return an rtx for a value that would result
705 from converting X from mode OLDMODE to mode MODE.
706 Both modes may be floating, or both integer.
707 UNSIGNEDP is nonzero if X is an unsigned value.
709 This can be done by referring to a part of X in place
710 or by copying to a new temporary with conversion.
712 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
715 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
719 /* If FROM is a SUBREG that indicates that we have already done at least
720 the required extension, strip it. */
722 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
723 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
724 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
725 x
= gen_lowpart (mode
, SUBREG_REG (x
));
727 if (GET_MODE (x
) != VOIDmode
)
728 oldmode
= GET_MODE (x
);
733 if (CONST_SCALAR_INT_P (x
) && GET_MODE_CLASS (mode
) == MODE_INT
)
735 /* If the caller did not tell us the old mode, then there is not
736 much to do with respect to canonicalization. We have to
737 assume that all the bits are significant. */
738 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
739 oldmode
= MAX_MODE_INT
;
740 wide_int w
= wide_int::from (std::make_pair (x
, oldmode
),
741 GET_MODE_PRECISION (mode
),
742 unsignedp
? UNSIGNED
: SIGNED
);
743 return immed_wide_int_const (w
, mode
);
746 /* We can do this with a gen_lowpart if both desired and current modes
747 are integer, and this is either a constant integer, a register, or a
749 if (GET_MODE_CLASS (mode
) == MODE_INT
750 && GET_MODE_CLASS (oldmode
) == MODE_INT
751 && GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
752 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) mode
])
754 && (!HARD_REGISTER_P (x
)
755 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
756 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
)))))
758 return gen_lowpart (mode
, x
);
760 /* Converting from integer constant into mode is always equivalent to an
762 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
764 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
765 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
768 temp
= gen_reg_rtx (mode
);
769 convert_move (temp
, x
, unsignedp
);
773 /* Return the largest alignment we can use for doing a move (or store)
774 of MAX_PIECES. ALIGN is the largest alignment we could use. */
777 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
781 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
782 if (align
>= GET_MODE_ALIGNMENT (tmode
))
783 align
= GET_MODE_ALIGNMENT (tmode
);
786 machine_mode tmode
, xmode
;
788 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
790 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
791 if (GET_MODE_SIZE (tmode
) > max_pieces
792 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
795 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
801 /* Return the widest integer mode no wider than SIZE. If no such mode
802 can be found, return VOIDmode. */
805 widest_int_mode_for_size (unsigned int size
)
807 machine_mode tmode
, mode
= VOIDmode
;
809 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
810 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
811 if (GET_MODE_SIZE (tmode
) < size
)
817 /* Determine whether the LEN bytes can be moved by using several move
818 instructions. Return nonzero if a call to move_by_pieces should
822 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
825 return targetm
.use_by_pieces_infrastructure_p (len
, align
, MOVE_BY_PIECES
,
826 optimize_insn_for_speed_p ());
829 /* Generate several move instructions to copy LEN bytes from block FROM to
830 block TO. (These are MEM rtx's with BLKmode).
832 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
833 used to push FROM to the stack.
835 ALIGN is maximum stack alignment we can assume.
837 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
838 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
842 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
843 unsigned int align
, int endp
)
845 struct move_by_pieces_d data
;
846 machine_mode to_addr_mode
;
847 machine_mode from_addr_mode
= get_address_mode (from
);
848 rtx to_addr
, from_addr
= XEXP (from
, 0);
849 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
850 enum insn_code icode
;
852 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
855 data
.from_addr
= from_addr
;
858 to_addr_mode
= get_address_mode (to
);
859 to_addr
= XEXP (to
, 0);
862 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
863 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
865 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
869 to_addr_mode
= VOIDmode
;
873 #ifdef STACK_GROWS_DOWNWARD
879 data
.to_addr
= to_addr
;
882 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
883 || GET_CODE (from_addr
) == POST_INC
884 || GET_CODE (from_addr
) == POST_DEC
);
886 data
.explicit_inc_from
= 0;
887 data
.explicit_inc_to
= 0;
888 if (data
.reverse
) data
.offset
= len
;
891 /* If copying requires more than two move insns,
892 copy addresses to registers (to make displacements shorter)
893 and use post-increment if available. */
894 if (!(data
.autinc_from
&& data
.autinc_to
)
895 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
897 /* Find the mode of the largest move...
898 MODE might not be used depending on the definitions of the
899 USE_* macros below. */
900 machine_mode mode ATTRIBUTE_UNUSED
901 = widest_int_mode_for_size (max_size
);
903 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
905 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
906 plus_constant (from_addr_mode
,
908 data
.autinc_from
= 1;
909 data
.explicit_inc_from
= -1;
911 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
913 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
914 data
.autinc_from
= 1;
915 data
.explicit_inc_from
= 1;
917 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
918 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
919 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
921 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
922 plus_constant (to_addr_mode
,
925 data
.explicit_inc_to
= -1;
927 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
929 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
931 data
.explicit_inc_to
= 1;
933 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
934 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
937 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
939 /* First move what we can in the largest integer mode, then go to
940 successively smaller modes. */
942 while (max_size
> 1 && data
.len
> 0)
944 machine_mode mode
= widest_int_mode_for_size (max_size
);
946 if (mode
== VOIDmode
)
949 icode
= optab_handler (mov_optab
, mode
);
950 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
951 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
953 max_size
= GET_MODE_SIZE (mode
);
956 /* The code above should have handled everything. */
957 gcc_assert (!data
.len
);
963 gcc_assert (!data
.reverse
);
968 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
969 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
971 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
972 plus_constant (to_addr_mode
,
976 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
983 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
994 unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
996 unsigned int max_size
)
998 unsigned HOST_WIDE_INT n_insns
= 0;
1000 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1002 while (max_size
> 1 && l
> 0)
1005 enum insn_code icode
;
1007 mode
= widest_int_mode_for_size (max_size
);
1009 if (mode
== VOIDmode
)
1012 icode
= optab_handler (mov_optab
, mode
);
1013 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1014 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1016 max_size
= GET_MODE_SIZE (mode
);
1023 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1024 with move instructions for mode MODE. GENFUN is the gen_... function
1025 to make a move insn for that mode. DATA has all the other info. */
1028 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1029 struct move_by_pieces_d
*data
)
1031 unsigned int size
= GET_MODE_SIZE (mode
);
1032 rtx to1
= NULL_RTX
, from1
;
1034 while (data
->len
>= size
)
1037 data
->offset
-= size
;
1041 if (data
->autinc_to
)
1042 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1045 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1048 if (data
->autinc_from
)
1049 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1052 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1054 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1055 emit_insn (gen_add2_insn (data
->to_addr
,
1056 gen_int_mode (-(HOST_WIDE_INT
) size
,
1057 GET_MODE (data
->to_addr
))));
1058 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1059 emit_insn (gen_add2_insn (data
->from_addr
,
1060 gen_int_mode (-(HOST_WIDE_INT
) size
,
1061 GET_MODE (data
->from_addr
))));
1064 emit_insn ((*genfun
) (to1
, from1
));
1067 #ifdef PUSH_ROUNDING
1068 emit_single_push_insn (mode
, from1
, NULL
);
1074 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1075 emit_insn (gen_add2_insn (data
->to_addr
,
1077 GET_MODE (data
->to_addr
))));
1078 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1079 emit_insn (gen_add2_insn (data
->from_addr
,
1081 GET_MODE (data
->from_addr
))));
1083 if (! data
->reverse
)
1084 data
->offset
+= size
;
1090 /* Emit code to move a block Y to a block X. This may be done with
1091 string-move instructions, with multiple scalar move instructions,
1092 or with a library call.
1094 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1095 SIZE is an rtx that says how long they are.
1096 ALIGN is the maximum alignment we can assume they have.
1097 METHOD describes what kind of copy this is, and what mechanisms may be used.
1098 MIN_SIZE is the minimal size of block to move
1099 MAX_SIZE is the maximal size of block to move, if it can not be represented
1100 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1102 Return the address of the new block, if memcpy is called and returns it,
1106 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1107 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1108 unsigned HOST_WIDE_INT min_size
,
1109 unsigned HOST_WIDE_INT max_size
,
1110 unsigned HOST_WIDE_INT probable_max_size
)
1117 if (CONST_INT_P (size
)
1118 && INTVAL (size
) == 0)
1123 case BLOCK_OP_NORMAL
:
1124 case BLOCK_OP_TAILCALL
:
1125 may_use_call
= true;
1128 case BLOCK_OP_CALL_PARM
:
1129 may_use_call
= block_move_libcall_safe_for_call_parm ();
1131 /* Make inhibit_defer_pop nonzero around the library call
1132 to force it to pop the arguments right away. */
1136 case BLOCK_OP_NO_LIBCALL
:
1137 may_use_call
= false;
1144 gcc_assert (MEM_P (x
) && MEM_P (y
));
1145 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1146 gcc_assert (align
>= BITS_PER_UNIT
);
1148 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1149 block copy is more efficient for other large modes, e.g. DCmode. */
1150 x
= adjust_address (x
, BLKmode
, 0);
1151 y
= adjust_address (y
, BLKmode
, 0);
1153 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1154 can be incorrect is coming from __builtin_memcpy. */
1155 if (CONST_INT_P (size
))
1157 x
= shallow_copy_rtx (x
);
1158 y
= shallow_copy_rtx (y
);
1159 set_mem_size (x
, INTVAL (size
));
1160 set_mem_size (y
, INTVAL (size
));
1163 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1164 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1165 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1166 expected_align
, expected_size
,
1167 min_size
, max_size
, probable_max_size
))
1169 else if (may_use_call
1170 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1171 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1173 /* Since x and y are passed to a libcall, mark the corresponding
1174 tree EXPR as addressable. */
1175 tree y_expr
= MEM_EXPR (y
);
1176 tree x_expr
= MEM_EXPR (x
);
1178 mark_addressable (y_expr
);
1180 mark_addressable (x_expr
);
1181 retval
= emit_block_move_via_libcall (x
, y
, size
,
1182 method
== BLOCK_OP_TAILCALL
);
1186 emit_block_move_via_loop (x
, y
, size
, align
);
1188 if (method
== BLOCK_OP_CALL_PARM
)
1195 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1197 unsigned HOST_WIDE_INT max
, min
= 0;
1198 if (GET_CODE (size
) == CONST_INT
)
1199 min
= max
= UINTVAL (size
);
1201 max
= GET_MODE_MASK (GET_MODE (size
));
1202 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1206 /* A subroutine of emit_block_move. Returns true if calling the
1207 block move libcall will not clobber any parameters which may have
1208 already been placed on the stack. */
1211 block_move_libcall_safe_for_call_parm (void)
1213 #if defined (REG_PARM_STACK_SPACE)
1217 /* If arguments are pushed on the stack, then they're safe. */
1221 /* If registers go on the stack anyway, any argument is sure to clobber
1222 an outgoing argument. */
1223 #if defined (REG_PARM_STACK_SPACE)
1224 fn
= emit_block_move_libcall_fn (false);
1225 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1226 depend on its argument. */
1228 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1229 && REG_PARM_STACK_SPACE (fn
) != 0)
1233 /* If any argument goes in memory, then it might clobber an outgoing
1236 CUMULATIVE_ARGS args_so_far_v
;
1237 cumulative_args_t args_so_far
;
1240 fn
= emit_block_move_libcall_fn (false);
1241 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1242 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1244 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1245 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1247 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1248 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1250 if (!tmp
|| !REG_P (tmp
))
1252 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1254 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1261 /* A subroutine of emit_block_move. Expand a movmem pattern;
1262 return true if successful. */
1265 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1266 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1267 unsigned HOST_WIDE_INT min_size
,
1268 unsigned HOST_WIDE_INT max_size
,
1269 unsigned HOST_WIDE_INT probable_max_size
)
1271 int save_volatile_ok
= volatile_ok
;
1274 if (expected_align
< align
)
1275 expected_align
= align
;
1276 if (expected_size
!= -1)
1278 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1279 expected_size
= probable_max_size
;
1280 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1281 expected_size
= min_size
;
1284 /* Since this is a move insn, we don't care about volatility. */
1287 /* Try the most limited insn first, because there's no point
1288 including more than one in the machine description unless
1289 the more limited one has some advantage. */
1291 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1292 mode
= GET_MODE_WIDER_MODE (mode
))
1294 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1296 if (code
!= CODE_FOR_nothing
1297 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1298 here because if SIZE is less than the mode mask, as it is
1299 returned by the macro, it will definitely be less than the
1300 actual mode mask. Since SIZE is within the Pmode address
1301 space, we limit MODE to Pmode. */
1302 && ((CONST_INT_P (size
)
1303 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1304 <= (GET_MODE_MASK (mode
) >> 1)))
1305 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1306 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1308 struct expand_operand ops
[9];
1311 /* ??? When called via emit_block_move_for_call, it'd be
1312 nice if there were some way to inform the backend, so
1313 that it doesn't fail the expansion because it thinks
1314 emitting the libcall would be more efficient. */
1315 nops
= insn_data
[(int) code
].n_generator_args
;
1316 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1318 create_fixed_operand (&ops
[0], x
);
1319 create_fixed_operand (&ops
[1], y
);
1320 /* The check above guarantees that this size conversion is valid. */
1321 create_convert_operand_to (&ops
[2], size
, mode
, true);
1322 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1325 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1326 create_integer_operand (&ops
[5], expected_size
);
1330 create_integer_operand (&ops
[6], min_size
);
1331 /* If we can not represent the maximal size,
1332 make parameter NULL. */
1333 if ((HOST_WIDE_INT
) max_size
!= -1)
1334 create_integer_operand (&ops
[7], max_size
);
1336 create_fixed_operand (&ops
[7], NULL
);
1340 /* If we can not represent the maximal size,
1341 make parameter NULL. */
1342 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1343 create_integer_operand (&ops
[8], probable_max_size
);
1345 create_fixed_operand (&ops
[8], NULL
);
1347 if (maybe_expand_insn (code
, nops
, ops
))
1349 volatile_ok
= save_volatile_ok
;
1355 volatile_ok
= save_volatile_ok
;
1359 /* A subroutine of emit_block_move. Expand a call to memcpy.
1360 Return the return value from memcpy, 0 otherwise. */
1363 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1365 rtx dst_addr
, src_addr
;
1366 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1367 machine_mode size_mode
;
1370 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1371 pseudos. We can then place those new pseudos into a VAR_DECL and
1374 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1375 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1377 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1378 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1380 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1381 src_tree
= make_tree (ptr_type_node
, src_addr
);
1383 size_mode
= TYPE_MODE (sizetype
);
1385 size
= convert_to_mode (size_mode
, size
, 1);
1386 size
= copy_to_mode_reg (size_mode
, size
);
1388 /* It is incorrect to use the libcall calling conventions to call
1389 memcpy in this context. This could be a user call to memcpy and
1390 the user may wish to examine the return value from memcpy. For
1391 targets where libcalls and normal calls have different conventions
1392 for returning pointers, we could end up generating incorrect code. */
1394 size_tree
= make_tree (sizetype
, size
);
1396 fn
= emit_block_move_libcall_fn (true);
1397 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1398 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1400 retval
= expand_normal (call_expr
);
1405 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1406 for the function we use for block copies. */
1408 static GTY(()) tree block_move_fn
;
1411 init_block_move_fn (const char *asmspec
)
1415 tree args
, fn
, attrs
, attr_args
;
1417 fn
= get_identifier ("memcpy");
1418 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1419 const_ptr_type_node
, sizetype
,
1422 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1423 DECL_EXTERNAL (fn
) = 1;
1424 TREE_PUBLIC (fn
) = 1;
1425 DECL_ARTIFICIAL (fn
) = 1;
1426 TREE_NOTHROW (fn
) = 1;
1427 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1428 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1430 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1431 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1433 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1439 set_user_assembler_name (block_move_fn
, asmspec
);
1443 emit_block_move_libcall_fn (int for_call
)
1445 static bool emitted_extern
;
1448 init_block_move_fn (NULL
);
1450 if (for_call
&& !emitted_extern
)
1452 emitted_extern
= true;
1453 make_decl_rtl (block_move_fn
);
1456 return block_move_fn
;
1459 /* A subroutine of emit_block_move. Copy the data via an explicit
1460 loop. This is used only when libcalls are forbidden. */
1461 /* ??? It'd be nice to copy in hunks larger than QImode. */
1464 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1465 unsigned int align ATTRIBUTE_UNUSED
)
1467 rtx_code_label
*cmp_label
, *top_label
;
1468 rtx iter
, x_addr
, y_addr
, tmp
;
1469 machine_mode x_addr_mode
= get_address_mode (x
);
1470 machine_mode y_addr_mode
= get_address_mode (y
);
1471 machine_mode iter_mode
;
1473 iter_mode
= GET_MODE (size
);
1474 if (iter_mode
== VOIDmode
)
1475 iter_mode
= word_mode
;
1477 top_label
= gen_label_rtx ();
1478 cmp_label
= gen_label_rtx ();
1479 iter
= gen_reg_rtx (iter_mode
);
1481 emit_move_insn (iter
, const0_rtx
);
1483 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1484 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1485 do_pending_stack_adjust ();
1487 emit_jump (cmp_label
);
1488 emit_label (top_label
);
1490 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1491 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1493 if (x_addr_mode
!= y_addr_mode
)
1494 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1495 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1497 x
= change_address (x
, QImode
, x_addr
);
1498 y
= change_address (y
, QImode
, y_addr
);
1500 emit_move_insn (x
, y
);
1502 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1503 true, OPTAB_LIB_WIDEN
);
1505 emit_move_insn (iter
, tmp
);
1507 emit_label (cmp_label
);
1509 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1510 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1513 /* Copy all or part of a value X into registers starting at REGNO.
1514 The number of registers to be filled is NREGS. */
1517 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
1520 #ifdef HAVE_load_multiple
1528 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1529 x
= validize_mem (force_const_mem (mode
, x
));
1531 /* See if the machine can do this with a load multiple insn. */
1532 #ifdef HAVE_load_multiple
1533 if (HAVE_load_multiple
)
1535 last
= get_last_insn ();
1536 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1544 delete_insns_since (last
);
1548 for (i
= 0; i
< nregs
; i
++)
1549 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1550 operand_subword_force (x
, i
, mode
));
1553 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1554 The number of registers to be filled is NREGS. */
1557 move_block_from_reg (int regno
, rtx x
, int nregs
)
1564 /* See if the machine can do this with a store multiple insn. */
1565 #ifdef HAVE_store_multiple
1566 if (HAVE_store_multiple
)
1568 rtx_insn
*last
= get_last_insn ();
1569 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1577 delete_insns_since (last
);
1581 for (i
= 0; i
< nregs
; i
++)
1583 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1587 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1591 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1592 ORIG, where ORIG is a non-consecutive group of registers represented by
1593 a PARALLEL. The clone is identical to the original except in that the
1594 original set of registers is replaced by a new set of pseudo registers.
1595 The new set has the same modes as the original set. */
1598 gen_group_rtx (rtx orig
)
1603 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1605 length
= XVECLEN (orig
, 0);
1606 tmps
= XALLOCAVEC (rtx
, length
);
1608 /* Skip a NULL entry in first slot. */
1609 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1614 for (; i
< length
; i
++)
1616 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1617 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1619 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1622 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1625 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1626 except that values are placed in TMPS[i], and must later be moved
1627 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1630 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1634 machine_mode m
= GET_MODE (orig_src
);
1636 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1639 && !SCALAR_INT_MODE_P (m
)
1640 && !MEM_P (orig_src
)
1641 && GET_CODE (orig_src
) != CONCAT
)
1643 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1644 if (imode
== BLKmode
)
1645 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1647 src
= gen_reg_rtx (imode
);
1648 if (imode
!= BLKmode
)
1649 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1650 emit_move_insn (src
, orig_src
);
1651 /* ...and back again. */
1652 if (imode
!= BLKmode
)
1653 src
= gen_lowpart (imode
, src
);
1654 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1658 /* Check for a NULL entry, used to indicate that the parameter goes
1659 both on the stack and in registers. */
1660 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1665 /* Process the pieces. */
1666 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1668 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1669 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1670 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1673 /* Handle trailing fragments that run over the size of the struct. */
1674 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1676 /* Arrange to shift the fragment to where it belongs.
1677 extract_bit_field loads to the lsb of the reg. */
1679 #ifdef BLOCK_REG_PADDING
1680 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1681 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1686 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1687 bytelen
= ssize
- bytepos
;
1688 gcc_assert (bytelen
> 0);
1691 /* If we won't be loading directly from memory, protect the real source
1692 from strange tricks we might play; but make sure that the source can
1693 be loaded directly into the destination. */
1695 if (!MEM_P (orig_src
)
1696 && (!CONSTANT_P (orig_src
)
1697 || (GET_MODE (orig_src
) != mode
1698 && GET_MODE (orig_src
) != VOIDmode
)))
1700 if (GET_MODE (orig_src
) == VOIDmode
)
1701 src
= gen_reg_rtx (mode
);
1703 src
= gen_reg_rtx (GET_MODE (orig_src
));
1705 emit_move_insn (src
, orig_src
);
1708 /* Optimize the access just a bit. */
1710 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1711 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1712 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1713 && bytelen
== GET_MODE_SIZE (mode
))
1715 tmps
[i
] = gen_reg_rtx (mode
);
1716 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1718 else if (COMPLEX_MODE_P (mode
)
1719 && GET_MODE (src
) == mode
1720 && bytelen
== GET_MODE_SIZE (mode
))
1721 /* Let emit_move_complex do the bulk of the work. */
1723 else if (GET_CODE (src
) == CONCAT
)
1725 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1726 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1728 if ((bytepos
== 0 && bytelen
== slen0
)
1729 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1731 /* The following assumes that the concatenated objects all
1732 have the same size. In this case, a simple calculation
1733 can be used to determine the object and the bit field
1735 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1736 if (! CONSTANT_P (tmps
[i
])
1737 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1738 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1739 (bytepos
% slen0
) * BITS_PER_UNIT
,
1740 1, NULL_RTX
, mode
, mode
);
1746 gcc_assert (!bytepos
);
1747 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1748 emit_move_insn (mem
, src
);
1749 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1750 0, 1, NULL_RTX
, mode
, mode
);
1753 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1754 SIMD register, which is currently broken. While we get GCC
1755 to emit proper RTL for these cases, let's dump to memory. */
1756 else if (VECTOR_MODE_P (GET_MODE (dst
))
1759 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1762 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1763 emit_move_insn (mem
, src
);
1764 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1766 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1767 && XVECLEN (dst
, 0) > 1)
1768 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1769 else if (CONSTANT_P (src
))
1771 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1779 /* TODO: const_wide_int can have sizes other than this... */
1780 gcc_assert (2 * len
== ssize
);
1781 split_double (src
, &first
, &second
);
1788 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1791 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1792 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1796 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1801 /* Emit code to move a block SRC of type TYPE to a block DST,
1802 where DST is non-consecutive registers represented by a PARALLEL.
1803 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1807 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1812 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1813 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1815 /* Copy the extracted pieces into the proper (probable) hard regs. */
1816 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1818 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1821 emit_move_insn (d
, tmps
[i
]);
1825 /* Similar, but load SRC into new pseudos in a format that looks like
1826 PARALLEL. This can later be fed to emit_group_move to get things
1827 in the right place. */
1830 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1835 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1836 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1838 /* Convert the vector to look just like the original PARALLEL, except
1839 with the computed values. */
1840 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1842 rtx e
= XVECEXP (parallel
, 0, i
);
1843 rtx d
= XEXP (e
, 0);
1847 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1848 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1850 RTVEC_ELT (vec
, i
) = e
;
1853 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1856 /* Emit code to move a block SRC to block DST, where SRC and DST are
1857 non-consecutive groups of registers, each represented by a PARALLEL. */
1860 emit_group_move (rtx dst
, rtx src
)
1864 gcc_assert (GET_CODE (src
) == PARALLEL
1865 && GET_CODE (dst
) == PARALLEL
1866 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1868 /* Skip first entry if NULL. */
1869 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1870 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1871 XEXP (XVECEXP (src
, 0, i
), 0));
1874 /* Move a group of registers represented by a PARALLEL into pseudos. */
1877 emit_group_move_into_temps (rtx src
)
1879 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1882 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1884 rtx e
= XVECEXP (src
, 0, i
);
1885 rtx d
= XEXP (e
, 0);
1888 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1889 RTVEC_ELT (vec
, i
) = e
;
1892 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1895 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1896 where SRC is non-consecutive registers represented by a PARALLEL.
1897 SSIZE represents the total size of block ORIG_DST, or -1 if not
1901 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1904 int start
, finish
, i
;
1905 machine_mode m
= GET_MODE (orig_dst
);
1907 gcc_assert (GET_CODE (src
) == PARALLEL
);
1909 if (!SCALAR_INT_MODE_P (m
)
1910 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1912 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1913 if (imode
== BLKmode
)
1914 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1916 dst
= gen_reg_rtx (imode
);
1917 emit_group_store (dst
, src
, type
, ssize
);
1918 if (imode
!= BLKmode
)
1919 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1920 emit_move_insn (orig_dst
, dst
);
1924 /* Check for a NULL entry, used to indicate that the parameter goes
1925 both on the stack and in registers. */
1926 if (XEXP (XVECEXP (src
, 0, 0), 0))
1930 finish
= XVECLEN (src
, 0);
1932 tmps
= XALLOCAVEC (rtx
, finish
);
1934 /* Copy the (probable) hard regs into pseudos. */
1935 for (i
= start
; i
< finish
; i
++)
1937 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1938 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1940 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1941 emit_move_insn (tmps
[i
], reg
);
1947 /* If we won't be storing directly into memory, protect the real destination
1948 from strange tricks we might play. */
1950 if (GET_CODE (dst
) == PARALLEL
)
1954 /* We can get a PARALLEL dst if there is a conditional expression in
1955 a return statement. In that case, the dst and src are the same,
1956 so no action is necessary. */
1957 if (rtx_equal_p (dst
, src
))
1960 /* It is unclear if we can ever reach here, but we may as well handle
1961 it. Allocate a temporary, and split this into a store/load to/from
1963 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1964 emit_group_store (temp
, src
, type
, ssize
);
1965 emit_group_load (dst
, temp
, type
, ssize
);
1968 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1970 machine_mode outer
= GET_MODE (dst
);
1972 HOST_WIDE_INT bytepos
;
1976 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1977 dst
= gen_reg_rtx (outer
);
1979 /* Make life a bit easier for combine. */
1980 /* If the first element of the vector is the low part
1981 of the destination mode, use a paradoxical subreg to
1982 initialize the destination. */
1985 inner
= GET_MODE (tmps
[start
]);
1986 bytepos
= subreg_lowpart_offset (inner
, outer
);
1987 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1989 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1993 emit_move_insn (dst
, temp
);
2000 /* If the first element wasn't the low part, try the last. */
2002 && start
< finish
- 1)
2004 inner
= GET_MODE (tmps
[finish
- 1]);
2005 bytepos
= subreg_lowpart_offset (inner
, outer
);
2006 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2008 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2012 emit_move_insn (dst
, temp
);
2019 /* Otherwise, simply initialize the result to zero. */
2021 emit_move_insn (dst
, CONST0_RTX (outer
));
2024 /* Process the pieces. */
2025 for (i
= start
; i
< finish
; i
++)
2027 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2028 machine_mode mode
= GET_MODE (tmps
[i
]);
2029 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2030 unsigned int adj_bytelen
;
2033 /* Handle trailing fragments that run over the size of the struct. */
2034 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2035 adj_bytelen
= ssize
- bytepos
;
2037 adj_bytelen
= bytelen
;
2039 if (GET_CODE (dst
) == CONCAT
)
2041 if (bytepos
+ adj_bytelen
2042 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2043 dest
= XEXP (dst
, 0);
2044 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2046 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2047 dest
= XEXP (dst
, 1);
2051 machine_mode dest_mode
= GET_MODE (dest
);
2052 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2054 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2056 if (GET_MODE_ALIGNMENT (dest_mode
)
2057 >= GET_MODE_ALIGNMENT (tmp_mode
))
2059 dest
= assign_stack_temp (dest_mode
,
2060 GET_MODE_SIZE (dest_mode
));
2061 emit_move_insn (adjust_address (dest
,
2069 dest
= assign_stack_temp (tmp_mode
,
2070 GET_MODE_SIZE (tmp_mode
));
2071 emit_move_insn (dest
, tmps
[i
]);
2072 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2078 /* Handle trailing fragments that run over the size of the struct. */
2079 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2081 /* store_bit_field always takes its value from the lsb.
2082 Move the fragment to the lsb if it's not already there. */
2084 #ifdef BLOCK_REG_PADDING
2085 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2086 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2092 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2093 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2097 /* Make sure not to write past the end of the struct. */
2098 store_bit_field (dest
,
2099 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2100 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2104 /* Optimize the access just a bit. */
2105 else if (MEM_P (dest
)
2106 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2107 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2108 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2109 && bytelen
== GET_MODE_SIZE (mode
))
2110 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2113 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2114 0, 0, mode
, tmps
[i
]);
2117 /* Copy from the pseudo into the (probable) hard reg. */
2118 if (orig_dst
!= dst
)
2119 emit_move_insn (orig_dst
, dst
);
2122 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2123 of the value stored in X. */
2126 maybe_emit_group_store (rtx x
, tree type
)
2128 machine_mode mode
= TYPE_MODE (type
);
2129 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2130 if (GET_CODE (x
) == PARALLEL
)
2132 rtx result
= gen_reg_rtx (mode
);
2133 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2139 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2141 This is used on targets that return BLKmode values in registers. */
2144 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2146 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2147 rtx src
= NULL
, dst
= NULL
;
2148 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2149 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2150 machine_mode mode
= GET_MODE (srcreg
);
2151 machine_mode tmode
= GET_MODE (target
);
2152 machine_mode copy_mode
;
2154 /* BLKmode registers created in the back-end shouldn't have survived. */
2155 gcc_assert (mode
!= BLKmode
);
2157 /* If the structure doesn't take up a whole number of words, see whether
2158 SRCREG is padded on the left or on the right. If it's on the left,
2159 set PADDING_CORRECTION to the number of bits to skip.
2161 In most ABIs, the structure will be returned at the least end of
2162 the register, which translates to right padding on little-endian
2163 targets and left padding on big-endian targets. The opposite
2164 holds if the structure is returned at the most significant
2165 end of the register. */
2166 if (bytes
% UNITS_PER_WORD
!= 0
2167 && (targetm
.calls
.return_in_msb (type
)
2169 : BYTES_BIG_ENDIAN
))
2171 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2173 /* We can use a single move if we have an exact mode for the size. */
2174 else if (MEM_P (target
)
2175 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2176 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2177 && bytes
== GET_MODE_SIZE (mode
))
2179 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2183 /* And if we additionally have the same mode for a register. */
2184 else if (REG_P (target
)
2185 && GET_MODE (target
) == mode
2186 && bytes
== GET_MODE_SIZE (mode
))
2188 emit_move_insn (target
, srcreg
);
2192 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2193 into a new pseudo which is a full word. */
2194 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2196 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2200 /* Copy the structure BITSIZE bits at a time. If the target lives in
2201 memory, take care of not reading/writing past its end by selecting
2202 a copy mode suited to BITSIZE. This should always be possible given
2205 If the target lives in register, make sure not to select a copy mode
2206 larger than the mode of the register.
2208 We could probably emit more efficient code for machines which do not use
2209 strict alignment, but it doesn't seem worth the effort at the current
2212 copy_mode
= word_mode
;
2215 machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2216 if (mem_mode
!= BLKmode
)
2217 copy_mode
= mem_mode
;
2219 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2222 for (bitpos
= 0, xbitpos
= padding_correction
;
2223 bitpos
< bytes
* BITS_PER_UNIT
;
2224 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2226 /* We need a new source operand each time xbitpos is on a
2227 word boundary and when xbitpos == padding_correction
2228 (the first time through). */
2229 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2230 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2232 /* We need a new destination operand each time bitpos is on
2234 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2236 else if (bitpos
% BITS_PER_WORD
== 0)
2237 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2239 /* Use xbitpos for the source extraction (right justified) and
2240 bitpos for the destination store (left justified). */
2241 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2242 extract_bit_field (src
, bitsize
,
2243 xbitpos
% BITS_PER_WORD
, 1,
2244 NULL_RTX
, copy_mode
, copy_mode
));
2248 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2249 register if it contains any data, otherwise return null.
2251 This is used on targets that return BLKmode values in registers. */
2254 copy_blkmode_to_reg (machine_mode mode
, tree src
)
2257 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2258 unsigned int bitsize
;
2259 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2260 machine_mode dst_mode
;
2262 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2264 x
= expand_normal (src
);
2266 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2270 /* If the structure doesn't take up a whole number of words, see
2271 whether the register value should be padded on the left or on
2272 the right. Set PADDING_CORRECTION to the number of padding
2273 bits needed on the left side.
2275 In most ABIs, the structure will be returned at the least end of
2276 the register, which translates to right padding on little-endian
2277 targets and left padding on big-endian targets. The opposite
2278 holds if the structure is returned at the most significant
2279 end of the register. */
2280 if (bytes
% UNITS_PER_WORD
!= 0
2281 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2283 : BYTES_BIG_ENDIAN
))
2284 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2287 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2288 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2289 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2291 /* Copy the structure BITSIZE bits at a time. */
2292 for (bitpos
= 0, xbitpos
= padding_correction
;
2293 bitpos
< bytes
* BITS_PER_UNIT
;
2294 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2296 /* We need a new destination pseudo each time xbitpos is
2297 on a word boundary and when xbitpos == padding_correction
2298 (the first time through). */
2299 if (xbitpos
% BITS_PER_WORD
== 0
2300 || xbitpos
== padding_correction
)
2302 /* Generate an appropriate register. */
2303 dst_word
= gen_reg_rtx (word_mode
);
2304 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2306 /* Clear the destination before we move anything into it. */
2307 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2310 /* We need a new source operand each time bitpos is on a word
2312 if (bitpos
% BITS_PER_WORD
== 0)
2313 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2315 /* Use bitpos for the source extraction (left justified) and
2316 xbitpos for the destination store (right justified). */
2317 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2319 extract_bit_field (src_word
, bitsize
,
2320 bitpos
% BITS_PER_WORD
, 1,
2321 NULL_RTX
, word_mode
, word_mode
));
2324 if (mode
== BLKmode
)
2326 /* Find the smallest integer mode large enough to hold the
2327 entire structure. */
2328 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2330 mode
= GET_MODE_WIDER_MODE (mode
))
2331 /* Have we found a large enough mode? */
2332 if (GET_MODE_SIZE (mode
) >= bytes
)
2335 /* A suitable mode should have been found. */
2336 gcc_assert (mode
!= VOIDmode
);
2339 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2340 dst_mode
= word_mode
;
2343 dst
= gen_reg_rtx (dst_mode
);
2345 for (i
= 0; i
< n_regs
; i
++)
2346 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2348 if (mode
!= dst_mode
)
2349 dst
= gen_lowpart (mode
, dst
);
2354 /* Add a USE expression for REG to the (possibly empty) list pointed
2355 to by CALL_FUSAGE. REG must denote a hard register. */
2358 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2360 gcc_assert (REG_P (reg
));
2362 if (!HARD_REGISTER_P (reg
))
2366 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2369 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2370 to by CALL_FUSAGE. REG must denote a hard register. */
2373 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2375 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2378 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2381 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2382 starting at REGNO. All of these registers must be hard registers. */
2385 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2389 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2391 for (i
= 0; i
< nregs
; i
++)
2392 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2395 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2396 PARALLEL REGS. This is for calls that pass values in multiple
2397 non-contiguous locations. The Irix 6 ABI has examples of this. */
2400 use_group_regs (rtx
*call_fusage
, rtx regs
)
2404 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2406 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2408 /* A NULL entry means the parameter goes both on the stack and in
2409 registers. This can also be a MEM for targets that pass values
2410 partially on the stack and partially in registers. */
2411 if (reg
!= 0 && REG_P (reg
))
2412 use_reg (call_fusage
, reg
);
2416 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2417 assigment and the code of the expresion on the RHS is CODE. Return
2421 get_def_for_expr (tree name
, enum tree_code code
)
2425 if (TREE_CODE (name
) != SSA_NAME
)
2428 def_stmt
= get_gimple_for_ssa_name (name
);
2430 || gimple_assign_rhs_code (def_stmt
) != code
)
2436 #ifdef HAVE_conditional_move
2437 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2438 assigment and the class of the expresion on the RHS is CLASS. Return
2442 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2446 if (TREE_CODE (name
) != SSA_NAME
)
2449 def_stmt
= get_gimple_for_ssa_name (name
);
2451 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2459 /* Determine whether the LEN bytes generated by CONSTFUN can be
2460 stored to memory using several move instructions. CONSTFUNDATA is
2461 a pointer which will be passed as argument in every CONSTFUN call.
2462 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2463 a memset operation and false if it's a copy of a constant string.
2464 Return nonzero if a call to store_by_pieces should succeed. */
2467 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2468 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2469 void *constfundata
, unsigned int align
, bool memsetp
)
2471 unsigned HOST_WIDE_INT l
;
2472 unsigned int max_size
;
2473 HOST_WIDE_INT offset
= 0;
2475 enum insn_code icode
;
2477 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2478 rtx cst ATTRIBUTE_UNUSED
;
2483 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
2487 optimize_insn_for_speed_p ()))
2490 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2492 /* We would first store what we can in the largest integer mode, then go to
2493 successively smaller modes. */
2496 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2500 max_size
= STORE_MAX_PIECES
+ 1;
2501 while (max_size
> 1 && l
> 0)
2503 mode
= widest_int_mode_for_size (max_size
);
2505 if (mode
== VOIDmode
)
2508 icode
= optab_handler (mov_optab
, mode
);
2509 if (icode
!= CODE_FOR_nothing
2510 && align
>= GET_MODE_ALIGNMENT (mode
))
2512 unsigned int size
= GET_MODE_SIZE (mode
);
2519 cst
= (*constfun
) (constfundata
, offset
, mode
);
2520 if (!targetm
.legitimate_constant_p (mode
, cst
))
2530 max_size
= GET_MODE_SIZE (mode
);
2533 /* The code above should have handled everything. */
2540 /* Generate several move instructions to store LEN bytes generated by
2541 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2542 pointer which will be passed as argument in every CONSTFUN call.
2543 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2544 a memset operation and false if it's a copy of a constant string.
2545 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2546 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2550 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2551 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2552 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2554 machine_mode to_addr_mode
= get_address_mode (to
);
2555 struct store_by_pieces_d data
;
2559 gcc_assert (endp
!= 2);
2563 gcc_assert (targetm
.use_by_pieces_infrastructure_p
2568 optimize_insn_for_speed_p ()));
2570 data
.constfun
= constfun
;
2571 data
.constfundata
= constfundata
;
2574 store_by_pieces_1 (&data
, align
);
2579 gcc_assert (!data
.reverse
);
2584 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2585 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2587 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2588 plus_constant (to_addr_mode
,
2592 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2599 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2607 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2608 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2611 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2613 struct store_by_pieces_d data
;
2618 data
.constfun
= clear_by_pieces_1
;
2619 data
.constfundata
= NULL
;
2622 store_by_pieces_1 (&data
, align
);
2625 /* Callback routine for clear_by_pieces.
2626 Return const0_rtx unconditionally. */
2629 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2630 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2631 machine_mode mode ATTRIBUTE_UNUSED
)
2636 /* Subroutine of clear_by_pieces and store_by_pieces.
2637 Generate several move instructions to store LEN bytes of block TO. (A MEM
2638 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2641 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2642 unsigned int align ATTRIBUTE_UNUSED
)
2644 machine_mode to_addr_mode
= get_address_mode (data
->to
);
2645 rtx to_addr
= XEXP (data
->to
, 0);
2646 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2647 enum insn_code icode
;
2650 data
->to_addr
= to_addr
;
2652 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2653 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2655 data
->explicit_inc_to
= 0;
2657 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2659 data
->offset
= data
->len
;
2661 /* If storing requires more than two move insns,
2662 copy addresses to registers (to make displacements shorter)
2663 and use post-increment if available. */
2664 if (!data
->autinc_to
2665 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2667 /* Determine the main mode we'll be using.
2668 MODE might not be used depending on the definitions of the
2669 USE_* macros below. */
2670 machine_mode mode ATTRIBUTE_UNUSED
2671 = widest_int_mode_for_size (max_size
);
2673 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2675 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2676 plus_constant (to_addr_mode
,
2679 data
->autinc_to
= 1;
2680 data
->explicit_inc_to
= -1;
2683 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2684 && ! data
->autinc_to
)
2686 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2687 data
->autinc_to
= 1;
2688 data
->explicit_inc_to
= 1;
2691 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2692 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2695 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2697 /* First store what we can in the largest integer mode, then go to
2698 successively smaller modes. */
2700 while (max_size
> 1 && data
->len
> 0)
2702 machine_mode mode
= widest_int_mode_for_size (max_size
);
2704 if (mode
== VOIDmode
)
2707 icode
= optab_handler (mov_optab
, mode
);
2708 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2709 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2711 max_size
= GET_MODE_SIZE (mode
);
2714 /* The code above should have handled everything. */
2715 gcc_assert (!data
->len
);
2718 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2719 with move instructions for mode MODE. GENFUN is the gen_... function
2720 to make a move insn for that mode. DATA has all the other info. */
2723 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2724 struct store_by_pieces_d
*data
)
2726 unsigned int size
= GET_MODE_SIZE (mode
);
2729 while (data
->len
>= size
)
2732 data
->offset
-= size
;
2734 if (data
->autinc_to
)
2735 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2738 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2740 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2741 emit_insn (gen_add2_insn (data
->to_addr
,
2742 gen_int_mode (-(HOST_WIDE_INT
) size
,
2743 GET_MODE (data
->to_addr
))));
2745 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2746 emit_insn ((*genfun
) (to1
, cst
));
2748 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2749 emit_insn (gen_add2_insn (data
->to_addr
,
2751 GET_MODE (data
->to_addr
))));
2753 if (! data
->reverse
)
2754 data
->offset
+= size
;
2760 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2761 its length in bytes. */
2764 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2765 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2766 unsigned HOST_WIDE_INT min_size
,
2767 unsigned HOST_WIDE_INT max_size
,
2768 unsigned HOST_WIDE_INT probable_max_size
)
2770 machine_mode mode
= GET_MODE (object
);
2773 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2775 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2776 just move a zero. Otherwise, do this a piece at a time. */
2778 && CONST_INT_P (size
)
2779 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2781 rtx zero
= CONST0_RTX (mode
);
2784 emit_move_insn (object
, zero
);
2788 if (COMPLEX_MODE_P (mode
))
2790 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2793 write_complex_part (object
, zero
, 0);
2794 write_complex_part (object
, zero
, 1);
2800 if (size
== const0_rtx
)
2803 align
= MEM_ALIGN (object
);
2805 if (CONST_INT_P (size
)
2806 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
2808 optimize_insn_for_speed_p ()))
2809 clear_by_pieces (object
, INTVAL (size
), align
);
2810 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2811 expected_align
, expected_size
,
2812 min_size
, max_size
, probable_max_size
))
2814 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2815 return set_storage_via_libcall (object
, size
, const0_rtx
,
2816 method
== BLOCK_OP_TAILCALL
);
2824 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2826 unsigned HOST_WIDE_INT max
, min
= 0;
2827 if (GET_CODE (size
) == CONST_INT
)
2828 min
= max
= UINTVAL (size
);
2830 max
= GET_MODE_MASK (GET_MODE (size
));
2831 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2835 /* A subroutine of clear_storage. Expand a call to memset.
2836 Return the return value of memset, 0 otherwise. */
2839 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2841 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2842 machine_mode size_mode
;
2845 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2846 place those into new pseudos into a VAR_DECL and use them later. */
2848 object
= copy_addr_to_reg (XEXP (object
, 0));
2850 size_mode
= TYPE_MODE (sizetype
);
2851 size
= convert_to_mode (size_mode
, size
, 1);
2852 size
= copy_to_mode_reg (size_mode
, size
);
2854 /* It is incorrect to use the libcall calling conventions to call
2855 memset in this context. This could be a user call to memset and
2856 the user may wish to examine the return value from memset. For
2857 targets where libcalls and normal calls have different conventions
2858 for returning pointers, we could end up generating incorrect code. */
2860 object_tree
= make_tree (ptr_type_node
, object
);
2861 if (!CONST_INT_P (val
))
2862 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2863 size_tree
= make_tree (sizetype
, size
);
2864 val_tree
= make_tree (integer_type_node
, val
);
2866 fn
= clear_storage_libcall_fn (true);
2867 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2868 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2870 retval
= expand_normal (call_expr
);
2875 /* A subroutine of set_storage_via_libcall. Create the tree node
2876 for the function we use for block clears. */
2878 tree block_clear_fn
;
2881 init_block_clear_fn (const char *asmspec
)
2883 if (!block_clear_fn
)
2887 fn
= get_identifier ("memset");
2888 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2889 integer_type_node
, sizetype
,
2892 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2893 DECL_EXTERNAL (fn
) = 1;
2894 TREE_PUBLIC (fn
) = 1;
2895 DECL_ARTIFICIAL (fn
) = 1;
2896 TREE_NOTHROW (fn
) = 1;
2897 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2898 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2900 block_clear_fn
= fn
;
2904 set_user_assembler_name (block_clear_fn
, asmspec
);
2908 clear_storage_libcall_fn (int for_call
)
2910 static bool emitted_extern
;
2912 if (!block_clear_fn
)
2913 init_block_clear_fn (NULL
);
2915 if (for_call
&& !emitted_extern
)
2917 emitted_extern
= true;
2918 make_decl_rtl (block_clear_fn
);
2921 return block_clear_fn
;
2924 /* Expand a setmem pattern; return true if successful. */
2927 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2928 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2929 unsigned HOST_WIDE_INT min_size
,
2930 unsigned HOST_WIDE_INT max_size
,
2931 unsigned HOST_WIDE_INT probable_max_size
)
2933 /* Try the most limited insn first, because there's no point
2934 including more than one in the machine description unless
2935 the more limited one has some advantage. */
2939 if (expected_align
< align
)
2940 expected_align
= align
;
2941 if (expected_size
!= -1)
2943 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2944 expected_size
= max_size
;
2945 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2946 expected_size
= min_size
;
2949 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2950 mode
= GET_MODE_WIDER_MODE (mode
))
2952 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2954 if (code
!= CODE_FOR_nothing
2955 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2956 here because if SIZE is less than the mode mask, as it is
2957 returned by the macro, it will definitely be less than the
2958 actual mode mask. Since SIZE is within the Pmode address
2959 space, we limit MODE to Pmode. */
2960 && ((CONST_INT_P (size
)
2961 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2962 <= (GET_MODE_MASK (mode
) >> 1)))
2963 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2964 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2966 struct expand_operand ops
[9];
2969 nops
= insn_data
[(int) code
].n_generator_args
;
2970 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2972 create_fixed_operand (&ops
[0], object
);
2973 /* The check above guarantees that this size conversion is valid. */
2974 create_convert_operand_to (&ops
[1], size
, mode
, true);
2975 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2976 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2979 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2980 create_integer_operand (&ops
[5], expected_size
);
2984 create_integer_operand (&ops
[6], min_size
);
2985 /* If we can not represent the maximal size,
2986 make parameter NULL. */
2987 if ((HOST_WIDE_INT
) max_size
!= -1)
2988 create_integer_operand (&ops
[7], max_size
);
2990 create_fixed_operand (&ops
[7], NULL
);
2994 /* If we can not represent the maximal size,
2995 make parameter NULL. */
2996 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2997 create_integer_operand (&ops
[8], probable_max_size
);
2999 create_fixed_operand (&ops
[8], NULL
);
3001 if (maybe_expand_insn (code
, nops
, ops
))
3010 /* Write to one of the components of the complex value CPLX. Write VAL to
3011 the real part if IMAG_P is false, and the imaginary part if its true. */
3014 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3020 if (GET_CODE (cplx
) == CONCAT
)
3022 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3026 cmode
= GET_MODE (cplx
);
3027 imode
= GET_MODE_INNER (cmode
);
3028 ibitsize
= GET_MODE_BITSIZE (imode
);
3030 /* For MEMs simplify_gen_subreg may generate an invalid new address
3031 because, e.g., the original address is considered mode-dependent
3032 by the target, which restricts simplify_subreg from invoking
3033 adjust_address_nv. Instead of preparing fallback support for an
3034 invalid address, we call adjust_address_nv directly. */
3037 emit_move_insn (adjust_address_nv (cplx
, imode
,
3038 imag_p
? GET_MODE_SIZE (imode
) : 0),
3043 /* If the sub-object is at least word sized, then we know that subregging
3044 will work. This special case is important, since store_bit_field
3045 wants to operate on integer modes, and there's rarely an OImode to
3046 correspond to TCmode. */
3047 if (ibitsize
>= BITS_PER_WORD
3048 /* For hard regs we have exact predicates. Assume we can split
3049 the original object if it spans an even number of hard regs.
3050 This special case is important for SCmode on 64-bit platforms
3051 where the natural size of floating-point regs is 32-bit. */
3053 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3054 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3056 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3057 imag_p
? GET_MODE_SIZE (imode
) : 0);
3060 emit_move_insn (part
, val
);
3064 /* simplify_gen_subreg may fail for sub-word MEMs. */
3065 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3068 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3071 /* Extract one of the components of the complex value CPLX. Extract the
3072 real part if IMAG_P is false, and the imaginary part if it's true. */
3075 read_complex_part (rtx cplx
, bool imag_p
)
3077 machine_mode cmode
, imode
;
3080 if (GET_CODE (cplx
) == CONCAT
)
3081 return XEXP (cplx
, imag_p
);
3083 cmode
= GET_MODE (cplx
);
3084 imode
= GET_MODE_INNER (cmode
);
3085 ibitsize
= GET_MODE_BITSIZE (imode
);
3087 /* Special case reads from complex constants that got spilled to memory. */
3088 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3090 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3091 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3093 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3094 if (CONSTANT_CLASS_P (part
))
3095 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3099 /* For MEMs simplify_gen_subreg may generate an invalid new address
3100 because, e.g., the original address is considered mode-dependent
3101 by the target, which restricts simplify_subreg from invoking
3102 adjust_address_nv. Instead of preparing fallback support for an
3103 invalid address, we call adjust_address_nv directly. */
3105 return adjust_address_nv (cplx
, imode
,
3106 imag_p
? GET_MODE_SIZE (imode
) : 0);
3108 /* If the sub-object is at least word sized, then we know that subregging
3109 will work. This special case is important, since extract_bit_field
3110 wants to operate on integer modes, and there's rarely an OImode to
3111 correspond to TCmode. */
3112 if (ibitsize
>= BITS_PER_WORD
3113 /* For hard regs we have exact predicates. Assume we can split
3114 the original object if it spans an even number of hard regs.
3115 This special case is important for SCmode on 64-bit platforms
3116 where the natural size of floating-point regs is 32-bit. */
3118 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3119 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3121 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3122 imag_p
? GET_MODE_SIZE (imode
) : 0);
3126 /* simplify_gen_subreg may fail for sub-word MEMs. */
3127 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3130 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3131 true, NULL_RTX
, imode
, imode
);
3134 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3135 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3136 represented in NEW_MODE. If FORCE is true, this will never happen, as
3137 we'll force-create a SUBREG if needed. */
3140 emit_move_change_mode (machine_mode new_mode
,
3141 machine_mode old_mode
, rtx x
, bool force
)
3145 if (push_operand (x
, GET_MODE (x
)))
3147 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3148 MEM_COPY_ATTRIBUTES (ret
, x
);
3152 /* We don't have to worry about changing the address since the
3153 size in bytes is supposed to be the same. */
3154 if (reload_in_progress
)
3156 /* Copy the MEM to change the mode and move any
3157 substitutions from the old MEM to the new one. */
3158 ret
= adjust_address_nv (x
, new_mode
, 0);
3159 copy_replacements (x
, ret
);
3162 ret
= adjust_address (x
, new_mode
, 0);
3166 /* Note that we do want simplify_subreg's behavior of validating
3167 that the new mode is ok for a hard register. If we were to use
3168 simplify_gen_subreg, we would create the subreg, but would
3169 probably run into the target not being able to implement it. */
3170 /* Except, of course, when FORCE is true, when this is exactly what
3171 we want. Which is needed for CCmodes on some targets. */
3173 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3175 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3181 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3182 an integer mode of the same size as MODE. Returns the instruction
3183 emitted, or NULL if such a move could not be generated. */
3186 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3189 enum insn_code code
;
3191 /* There must exist a mode of the exact size we require. */
3192 imode
= int_mode_for_mode (mode
);
3193 if (imode
== BLKmode
)
3196 /* The target must support moves in this mode. */
3197 code
= optab_handler (mov_optab
, imode
);
3198 if (code
== CODE_FOR_nothing
)
3201 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3204 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3207 return emit_insn (GEN_FCN (code
) (x
, y
));
3210 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3211 Return an equivalent MEM that does not use an auto-increment. */
3214 emit_move_resolve_push (machine_mode mode
, rtx x
)
3216 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3217 HOST_WIDE_INT adjust
;
3220 adjust
= GET_MODE_SIZE (mode
);
3221 #ifdef PUSH_ROUNDING
3222 adjust
= PUSH_ROUNDING (adjust
);
3224 if (code
== PRE_DEC
|| code
== POST_DEC
)
3226 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3228 rtx expr
= XEXP (XEXP (x
, 0), 1);
3231 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3232 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3233 val
= INTVAL (XEXP (expr
, 1));
3234 if (GET_CODE (expr
) == MINUS
)
3236 gcc_assert (adjust
== val
|| adjust
== -val
);
3240 /* Do not use anti_adjust_stack, since we don't want to update
3241 stack_pointer_delta. */
3242 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3243 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3244 0, OPTAB_LIB_WIDEN
);
3245 if (temp
!= stack_pointer_rtx
)
3246 emit_move_insn (stack_pointer_rtx
, temp
);
3253 temp
= stack_pointer_rtx
;
3258 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3264 return replace_equiv_address (x
, temp
);
3267 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3268 X is known to satisfy push_operand, and MODE is known to be complex.
3269 Returns the last instruction emitted. */
3272 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3274 machine_mode submode
= GET_MODE_INNER (mode
);
3277 #ifdef PUSH_ROUNDING
3278 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3280 /* In case we output to the stack, but the size is smaller than the
3281 machine can push exactly, we need to use move instructions. */
3282 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3284 x
= emit_move_resolve_push (mode
, x
);
3285 return emit_move_insn (x
, y
);
3289 /* Note that the real part always precedes the imag part in memory
3290 regardless of machine's endianness. */
3291 switch (GET_CODE (XEXP (x
, 0)))
3305 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3306 read_complex_part (y
, imag_first
));
3307 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3308 read_complex_part (y
, !imag_first
));
3311 /* A subroutine of emit_move_complex. Perform the move from Y to X
3312 via two moves of the parts. Returns the last instruction emitted. */
3315 emit_move_complex_parts (rtx x
, rtx y
)
3317 /* Show the output dies here. This is necessary for SUBREGs
3318 of pseudos since we cannot track their lifetimes correctly;
3319 hard regs shouldn't appear here except as return values. */
3320 if (!reload_completed
&& !reload_in_progress
3321 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3324 write_complex_part (x
, read_complex_part (y
, false), false);
3325 write_complex_part (x
, read_complex_part (y
, true), true);
3327 return get_last_insn ();
3330 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3331 MODE is known to be complex. Returns the last instruction emitted. */
3334 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3338 /* Need to take special care for pushes, to maintain proper ordering
3339 of the data, and possibly extra padding. */
3340 if (push_operand (x
, mode
))
3341 return emit_move_complex_push (mode
, x
, y
);
3343 /* See if we can coerce the target into moving both values at once, except
3344 for floating point where we favor moving as parts if this is easy. */
3345 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3346 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3348 && HARD_REGISTER_P (x
)
3349 && hard_regno_nregs
[REGNO (x
)][mode
] == 1)
3351 && HARD_REGISTER_P (y
)
3352 && hard_regno_nregs
[REGNO (y
)][mode
] == 1))
3354 /* Not possible if the values are inherently not adjacent. */
3355 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3357 /* Is possible if both are registers (or subregs of registers). */
3358 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3360 /* If one of the operands is a memory, and alignment constraints
3361 are friendly enough, we may be able to do combined memory operations.
3362 We do not attempt this if Y is a constant because that combination is
3363 usually better with the by-parts thing below. */
3364 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3365 && (!STRICT_ALIGNMENT
3366 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3375 /* For memory to memory moves, optimal behavior can be had with the
3376 existing block move logic. */
3377 if (MEM_P (x
) && MEM_P (y
))
3379 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3380 BLOCK_OP_NO_LIBCALL
);
3381 return get_last_insn ();
3384 ret
= emit_move_via_integer (mode
, x
, y
, true);
3389 return emit_move_complex_parts (x
, y
);
3392 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3393 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3396 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3400 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3403 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3404 if (code
!= CODE_FOR_nothing
)
3406 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3407 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3408 return emit_insn (GEN_FCN (code
) (x
, y
));
3412 /* Otherwise, find the MODE_INT mode of the same width. */
3413 ret
= emit_move_via_integer (mode
, x
, y
, false);
3414 gcc_assert (ret
!= NULL
);
3418 /* Return true if word I of OP lies entirely in the
3419 undefined bits of a paradoxical subreg. */
3422 undefined_operand_subword_p (const_rtx op
, int i
)
3424 machine_mode innermode
, innermostmode
;
3426 if (GET_CODE (op
) != SUBREG
)
3428 innermode
= GET_MODE (op
);
3429 innermostmode
= GET_MODE (SUBREG_REG (op
));
3430 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3431 /* The SUBREG_BYTE represents offset, as if the value were stored in
3432 memory, except for a paradoxical subreg where we define
3433 SUBREG_BYTE to be 0; undo this exception as in
3435 if (SUBREG_BYTE (op
) == 0
3436 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3438 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3439 if (WORDS_BIG_ENDIAN
)
3440 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3441 if (BYTES_BIG_ENDIAN
)
3442 offset
+= difference
% UNITS_PER_WORD
;
3444 if (offset
>= GET_MODE_SIZE (innermostmode
)
3445 || offset
<= -GET_MODE_SIZE (word_mode
))
3450 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3451 MODE is any multi-word or full-word mode that lacks a move_insn
3452 pattern. Note that you will get better code if you define such
3453 patterns, even if they must turn into multiple assembler instructions. */
3456 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3458 rtx_insn
*last_insn
= 0;
3464 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3466 /* If X is a push on the stack, do the push now and replace
3467 X with a reference to the stack pointer. */
3468 if (push_operand (x
, mode
))
3469 x
= emit_move_resolve_push (mode
, x
);
3471 /* If we are in reload, see if either operand is a MEM whose address
3472 is scheduled for replacement. */
3473 if (reload_in_progress
&& MEM_P (x
)
3474 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3475 x
= replace_equiv_address_nv (x
, inner
);
3476 if (reload_in_progress
&& MEM_P (y
)
3477 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3478 y
= replace_equiv_address_nv (y
, inner
);
3482 need_clobber
= false;
3484 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3487 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3490 /* Do not generate code for a move if it would come entirely
3491 from the undefined bits of a paradoxical subreg. */
3492 if (undefined_operand_subword_p (y
, i
))
3495 ypart
= operand_subword (y
, i
, 1, mode
);
3497 /* If we can't get a part of Y, put Y into memory if it is a
3498 constant. Otherwise, force it into a register. Then we must
3499 be able to get a part of Y. */
3500 if (ypart
== 0 && CONSTANT_P (y
))
3502 y
= use_anchored_address (force_const_mem (mode
, y
));
3503 ypart
= operand_subword (y
, i
, 1, mode
);
3505 else if (ypart
== 0)
3506 ypart
= operand_subword_force (y
, i
, mode
);
3508 gcc_assert (xpart
&& ypart
);
3510 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3512 last_insn
= emit_move_insn (xpart
, ypart
);
3518 /* Show the output dies here. This is necessary for SUBREGs
3519 of pseudos since we cannot track their lifetimes correctly;
3520 hard regs shouldn't appear here except as return values.
3521 We never want to emit such a clobber after reload. */
3523 && ! (reload_in_progress
|| reload_completed
)
3524 && need_clobber
!= 0)
3532 /* Low level part of emit_move_insn.
3533 Called just like emit_move_insn, but assumes X and Y
3534 are basically valid. */
3537 emit_move_insn_1 (rtx x
, rtx y
)
3539 machine_mode mode
= GET_MODE (x
);
3540 enum insn_code code
;
3542 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3544 code
= optab_handler (mov_optab
, mode
);
3545 if (code
!= CODE_FOR_nothing
)
3546 return emit_insn (GEN_FCN (code
) (x
, y
));
3548 /* Expand complex moves by moving real part and imag part. */
3549 if (COMPLEX_MODE_P (mode
))
3550 return emit_move_complex (mode
, x
, y
);
3552 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3553 || ALL_FIXED_POINT_MODE_P (mode
))
3555 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3557 /* If we can't find an integer mode, use multi words. */
3561 return emit_move_multi_word (mode
, x
, y
);
3564 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3565 return emit_move_ccmode (mode
, x
, y
);
3567 /* Try using a move pattern for the corresponding integer mode. This is
3568 only safe when simplify_subreg can convert MODE constants into integer
3569 constants. At present, it can only do this reliably if the value
3570 fits within a HOST_WIDE_INT. */
3571 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3573 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3577 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3582 return emit_move_multi_word (mode
, x
, y
);
3585 /* Generate code to copy Y into X.
3586 Both Y and X must have the same mode, except that
3587 Y can be a constant with VOIDmode.
3588 This mode cannot be BLKmode; use emit_block_move for that.
3590 Return the last instruction emitted. */
3593 emit_move_insn (rtx x
, rtx y
)
3595 machine_mode mode
= GET_MODE (x
);
3596 rtx y_cst
= NULL_RTX
;
3597 rtx_insn
*last_insn
;
3600 gcc_assert (mode
!= BLKmode
3601 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3606 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3607 && (last_insn
= compress_float_constant (x
, y
)))
3612 if (!targetm
.legitimate_constant_p (mode
, y
))
3614 y
= force_const_mem (mode
, y
);
3616 /* If the target's cannot_force_const_mem prevented the spill,
3617 assume that the target's move expanders will also take care
3618 of the non-legitimate constant. */
3622 y
= use_anchored_address (y
);
3626 /* If X or Y are memory references, verify that their addresses are valid
3629 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3631 && ! push_operand (x
, GET_MODE (x
))))
3632 x
= validize_mem (x
);
3635 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3636 MEM_ADDR_SPACE (y
)))
3637 y
= validize_mem (y
);
3639 gcc_assert (mode
!= BLKmode
);
3641 last_insn
= emit_move_insn_1 (x
, y
);
3643 if (y_cst
&& REG_P (x
)
3644 && (set
= single_set (last_insn
)) != NULL_RTX
3645 && SET_DEST (set
) == x
3646 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3647 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3652 /* Generate the body of an instruction to copy Y into X.
3653 It may be a list of insns, if one insn isn't enough. */
3656 gen_move_insn (rtx x
, rtx y
)
3661 emit_move_insn_1 (x
, y
);
3667 /* If Y is representable exactly in a narrower mode, and the target can
3668 perform the extension directly from constant or memory, then emit the
3669 move as an extension. */
3672 compress_float_constant (rtx x
, rtx y
)
3674 machine_mode dstmode
= GET_MODE (x
);
3675 machine_mode orig_srcmode
= GET_MODE (y
);
3676 machine_mode srcmode
;
3678 int oldcost
, newcost
;
3679 bool speed
= optimize_insn_for_speed_p ();
3681 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3683 if (targetm
.legitimate_constant_p (dstmode
, y
))
3684 oldcost
= set_src_cost (y
, speed
);
3686 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3688 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3689 srcmode
!= orig_srcmode
;
3690 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3694 rtx_insn
*last_insn
;
3696 /* Skip if the target can't extend this way. */
3697 ic
= can_extend_p (dstmode
, srcmode
, 0);
3698 if (ic
== CODE_FOR_nothing
)
3701 /* Skip if the narrowed value isn't exact. */
3702 if (! exact_real_truncate (srcmode
, &r
))
3705 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3707 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3709 /* Skip if the target needs extra instructions to perform
3711 if (!insn_operand_matches (ic
, 1, trunc_y
))
3713 /* This is valid, but may not be cheaper than the original. */
3714 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3716 if (oldcost
< newcost
)
3719 else if (float_extend_from_mem
[dstmode
][srcmode
])
3721 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3722 /* This is valid, but may not be cheaper than the original. */
3723 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3725 if (oldcost
< newcost
)
3727 trunc_y
= validize_mem (trunc_y
);
3732 /* For CSE's benefit, force the compressed constant pool entry
3733 into a new pseudo. This constant may be used in different modes,
3734 and if not, combine will put things back together for us. */
3735 trunc_y
= force_reg (srcmode
, trunc_y
);
3737 /* If x is a hard register, perform the extension into a pseudo,
3738 so that e.g. stack realignment code is aware of it. */
3740 if (REG_P (x
) && HARD_REGISTER_P (x
))
3741 target
= gen_reg_rtx (dstmode
);
3743 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3744 last_insn
= get_last_insn ();
3747 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3750 return emit_move_insn (x
, target
);
3757 /* Pushing data onto the stack. */
3759 /* Push a block of length SIZE (perhaps variable)
3760 and return an rtx to address the beginning of the block.
3761 The value may be virtual_outgoing_args_rtx.
3763 EXTRA is the number of bytes of padding to push in addition to SIZE.
3764 BELOW nonzero means this padding comes at low addresses;
3765 otherwise, the padding comes at high addresses. */
3768 push_block (rtx size
, int extra
, int below
)
3772 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3773 if (CONSTANT_P (size
))
3774 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3775 else if (REG_P (size
) && extra
== 0)
3776 anti_adjust_stack (size
);
3779 temp
= copy_to_mode_reg (Pmode
, size
);
3781 temp
= expand_binop (Pmode
, add_optab
, temp
,
3782 gen_int_mode (extra
, Pmode
),
3783 temp
, 0, OPTAB_LIB_WIDEN
);
3784 anti_adjust_stack (temp
);
3787 #ifndef STACK_GROWS_DOWNWARD
3793 temp
= virtual_outgoing_args_rtx
;
3794 if (extra
!= 0 && below
)
3795 temp
= plus_constant (Pmode
, temp
, extra
);
3799 if (CONST_INT_P (size
))
3800 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3801 -INTVAL (size
) - (below
? 0 : extra
));
3802 else if (extra
!= 0 && !below
)
3803 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3804 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3807 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3808 negate_rtx (Pmode
, size
));
3811 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3814 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3817 mem_autoinc_base (rtx mem
)
3821 rtx addr
= XEXP (mem
, 0);
3822 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3823 return XEXP (addr
, 0);
3828 /* A utility routine used here, in reload, and in try_split. The insns
3829 after PREV up to and including LAST are known to adjust the stack,
3830 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3831 placing notes as appropriate. PREV may be NULL, indicating the
3832 entire insn sequence prior to LAST should be scanned.
3834 The set of allowed stack pointer modifications is small:
3835 (1) One or more auto-inc style memory references (aka pushes),
3836 (2) One or more addition/subtraction with the SP as destination,
3837 (3) A single move insn with the SP as destination,
3838 (4) A call_pop insn,
3839 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3841 Insns in the sequence that do not modify the SP are ignored,
3842 except for noreturn calls.
3844 The return value is the amount of adjustment that can be trivially
3845 verified, via immediate operand or auto-inc. If the adjustment
3846 cannot be trivially extracted, the return value is INT_MIN. */
3849 find_args_size_adjust (rtx_insn
*insn
)
3854 pat
= PATTERN (insn
);
3857 /* Look for a call_pop pattern. */
3860 /* We have to allow non-call_pop patterns for the case
3861 of emit_single_push_insn of a TLS address. */
3862 if (GET_CODE (pat
) != PARALLEL
)
3865 /* All call_pop have a stack pointer adjust in the parallel.
3866 The call itself is always first, and the stack adjust is
3867 usually last, so search from the end. */
3868 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3870 set
= XVECEXP (pat
, 0, i
);
3871 if (GET_CODE (set
) != SET
)
3873 dest
= SET_DEST (set
);
3874 if (dest
== stack_pointer_rtx
)
3877 /* We'd better have found the stack pointer adjust. */
3880 /* Fall through to process the extracted SET and DEST
3881 as if it was a standalone insn. */
3883 else if (GET_CODE (pat
) == SET
)
3885 else if ((set
= single_set (insn
)) != NULL
)
3887 else if (GET_CODE (pat
) == PARALLEL
)
3889 /* ??? Some older ports use a parallel with a stack adjust
3890 and a store for a PUSH_ROUNDING pattern, rather than a
3891 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3892 /* ??? See h8300 and m68k, pushqi1. */
3893 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3895 set
= XVECEXP (pat
, 0, i
);
3896 if (GET_CODE (set
) != SET
)
3898 dest
= SET_DEST (set
);
3899 if (dest
== stack_pointer_rtx
)
3902 /* We do not expect an auto-inc of the sp in the parallel. */
3903 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3904 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3905 != stack_pointer_rtx
);
3913 dest
= SET_DEST (set
);
3915 /* Look for direct modifications of the stack pointer. */
3916 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3918 /* Look for a trivial adjustment, otherwise assume nothing. */
3919 /* Note that the SPU restore_stack_block pattern refers to
3920 the stack pointer in V4SImode. Consider that non-trivial. */
3921 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3922 && GET_CODE (SET_SRC (set
)) == PLUS
3923 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3924 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3925 return INTVAL (XEXP (SET_SRC (set
), 1));
3926 /* ??? Reload can generate no-op moves, which will be cleaned
3927 up later. Recognize it and continue searching. */
3928 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3931 return HOST_WIDE_INT_MIN
;
3937 /* Otherwise only think about autoinc patterns. */
3938 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3941 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3942 != stack_pointer_rtx
);
3944 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3945 mem
= SET_SRC (set
);
3949 addr
= XEXP (mem
, 0);
3950 switch (GET_CODE (addr
))
3954 return GET_MODE_SIZE (GET_MODE (mem
));
3957 return -GET_MODE_SIZE (GET_MODE (mem
));
3960 addr
= XEXP (addr
, 1);
3961 gcc_assert (GET_CODE (addr
) == PLUS
);
3962 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3963 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3964 return INTVAL (XEXP (addr
, 1));
3972 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
, int end_args_size
)
3974 int args_size
= end_args_size
;
3975 bool saw_unknown
= false;
3978 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3980 HOST_WIDE_INT this_delta
;
3982 if (!NONDEBUG_INSN_P (insn
))
3985 this_delta
= find_args_size_adjust (insn
);
3986 if (this_delta
== 0)
3989 || ACCUMULATE_OUTGOING_ARGS
3990 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3994 gcc_assert (!saw_unknown
);
3995 if (this_delta
== HOST_WIDE_INT_MIN
)
3998 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3999 #ifdef STACK_GROWS_DOWNWARD
4000 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
4002 args_size
-= this_delta
;
4005 return saw_unknown
? INT_MIN
: args_size
;
4008 #ifdef PUSH_ROUNDING
4009 /* Emit single push insn. */
4012 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4015 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4017 enum insn_code icode
;
4019 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4020 /* If there is push pattern, use it. Otherwise try old way of throwing
4021 MEM representing push operation to move expander. */
4022 icode
= optab_handler (push_optab
, mode
);
4023 if (icode
!= CODE_FOR_nothing
)
4025 struct expand_operand ops
[1];
4027 create_input_operand (&ops
[0], x
, mode
);
4028 if (maybe_expand_insn (icode
, 1, ops
))
4031 if (GET_MODE_SIZE (mode
) == rounded_size
)
4032 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4033 /* If we are to pad downward, adjust the stack pointer first and
4034 then store X into the stack location using an offset. This is
4035 because emit_move_insn does not know how to pad; it does not have
4037 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4039 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4040 HOST_WIDE_INT offset
;
4042 emit_move_insn (stack_pointer_rtx
,
4043 expand_binop (Pmode
,
4044 #ifdef STACK_GROWS_DOWNWARD
4050 gen_int_mode (rounded_size
, Pmode
),
4051 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4053 offset
= (HOST_WIDE_INT
) padding_size
;
4054 #ifdef STACK_GROWS_DOWNWARD
4055 if (STACK_PUSH_CODE
== POST_DEC
)
4056 /* We have already decremented the stack pointer, so get the
4058 offset
+= (HOST_WIDE_INT
) rounded_size
;
4060 if (STACK_PUSH_CODE
== POST_INC
)
4061 /* We have already incremented the stack pointer, so get the
4063 offset
-= (HOST_WIDE_INT
) rounded_size
;
4065 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4066 gen_int_mode (offset
, Pmode
));
4070 #ifdef STACK_GROWS_DOWNWARD
4071 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4072 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4073 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4076 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4077 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4078 gen_int_mode (rounded_size
, Pmode
));
4080 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4083 dest
= gen_rtx_MEM (mode
, dest_addr
);
4087 set_mem_attributes (dest
, type
, 1);
4089 if (cfun
->tail_call_marked
)
4090 /* Function incoming arguments may overlap with sibling call
4091 outgoing arguments and we cannot allow reordering of reads
4092 from function arguments with stores to outgoing arguments
4093 of sibling calls. */
4094 set_mem_alias_set (dest
, 0);
4096 emit_move_insn (dest
, x
);
4099 /* Emit and annotate a single push insn. */
4102 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4104 int delta
, old_delta
= stack_pointer_delta
;
4105 rtx_insn
*prev
= get_last_insn ();
4108 emit_single_push_insn_1 (mode
, x
, type
);
4110 last
= get_last_insn ();
4112 /* Notice the common case where we emitted exactly one insn. */
4113 if (PREV_INSN (last
) == prev
)
4115 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4119 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4120 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4124 /* Generate code to push X onto the stack, assuming it has mode MODE and
4126 MODE is redundant except when X is a CONST_INT (since they don't
4128 SIZE is an rtx for the size of data to be copied (in bytes),
4129 needed only if X is BLKmode.
4131 ALIGN (in bits) is maximum alignment we can assume.
4133 If PARTIAL and REG are both nonzero, then copy that many of the first
4134 bytes of X into registers starting with REG, and push the rest of X.
4135 The amount of space pushed is decreased by PARTIAL bytes.
4136 REG must be a hard register in this case.
4137 If REG is zero but PARTIAL is not, take any all others actions for an
4138 argument partially in registers, but do not actually load any
4141 EXTRA is the amount in bytes of extra space to leave next to this arg.
4142 This is ignored if an argument block has already been allocated.
4144 On a machine that lacks real push insns, ARGS_ADDR is the address of
4145 the bottom of the argument block for this call. We use indexing off there
4146 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4147 argument block has not been preallocated.
4149 ARGS_SO_FAR is the size of args previously pushed for this call.
4151 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4152 for arguments passed in registers. If nonzero, it will be the number
4153 of bytes required. */
4156 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4157 unsigned int align
, int partial
, rtx reg
, int extra
,
4158 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4162 enum direction stack_direction
4163 #ifdef STACK_GROWS_DOWNWARD
4169 /* Decide where to pad the argument: `downward' for below,
4170 `upward' for above, or `none' for don't pad it.
4171 Default is below for small data on big-endian machines; else above. */
4172 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4174 /* Invert direction if stack is post-decrement.
4176 if (STACK_PUSH_CODE
== POST_DEC
)
4177 if (where_pad
!= none
)
4178 where_pad
= (where_pad
== downward
? upward
: downward
);
4183 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4185 /* Copy a block into the stack, entirely or partially. */
4192 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4193 used
= partial
- offset
;
4195 if (mode
!= BLKmode
)
4197 /* A value is to be stored in an insufficiently aligned
4198 stack slot; copy via a suitably aligned slot if
4200 size
= GEN_INT (GET_MODE_SIZE (mode
));
4201 if (!MEM_P (xinner
))
4203 temp
= assign_temp (type
, 1, 1);
4204 emit_move_insn (temp
, xinner
);
4211 /* USED is now the # of bytes we need not copy to the stack
4212 because registers will take care of them. */
4215 xinner
= adjust_address (xinner
, BLKmode
, used
);
4217 /* If the partial register-part of the arg counts in its stack size,
4218 skip the part of stack space corresponding to the registers.
4219 Otherwise, start copying to the beginning of the stack space,
4220 by setting SKIP to 0. */
4221 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4223 #ifdef PUSH_ROUNDING
4224 /* Do it with several push insns if that doesn't take lots of insns
4225 and if there is no difficulty with push insns that skip bytes
4226 on the stack for alignment purposes. */
4229 && CONST_INT_P (size
)
4231 && MEM_ALIGN (xinner
) >= align
4232 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4233 /* Here we avoid the case of a structure whose weak alignment
4234 forces many pushes of a small amount of data,
4235 and such small pushes do rounding that causes trouble. */
4236 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4237 || align
>= BIGGEST_ALIGNMENT
4238 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4239 == (align
/ BITS_PER_UNIT
)))
4240 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4242 /* Push padding now if padding above and stack grows down,
4243 or if padding below and stack grows up.
4244 But if space already allocated, this has already been done. */
4245 if (extra
&& args_addr
== 0
4246 && where_pad
!= none
&& where_pad
!= stack_direction
)
4247 anti_adjust_stack (GEN_INT (extra
));
4249 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4252 #endif /* PUSH_ROUNDING */
4256 /* Otherwise make space on the stack and copy the data
4257 to the address of that space. */
4259 /* Deduct words put into registers from the size we must copy. */
4262 if (CONST_INT_P (size
))
4263 size
= GEN_INT (INTVAL (size
) - used
);
4265 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4266 gen_int_mode (used
, GET_MODE (size
)),
4267 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4270 /* Get the address of the stack space.
4271 In this case, we do not deal with EXTRA separately.
4272 A single stack adjust will do. */
4275 temp
= push_block (size
, extra
, where_pad
== downward
);
4278 else if (CONST_INT_P (args_so_far
))
4279 temp
= memory_address (BLKmode
,
4280 plus_constant (Pmode
, args_addr
,
4281 skip
+ INTVAL (args_so_far
)));
4283 temp
= memory_address (BLKmode
,
4284 plus_constant (Pmode
,
4285 gen_rtx_PLUS (Pmode
,
4290 if (!ACCUMULATE_OUTGOING_ARGS
)
4292 /* If the source is referenced relative to the stack pointer,
4293 copy it to another register to stabilize it. We do not need
4294 to do this if we know that we won't be changing sp. */
4296 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4297 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4298 temp
= copy_to_reg (temp
);
4301 target
= gen_rtx_MEM (BLKmode
, temp
);
4303 /* We do *not* set_mem_attributes here, because incoming arguments
4304 may overlap with sibling call outgoing arguments and we cannot
4305 allow reordering of reads from function arguments with stores
4306 to outgoing arguments of sibling calls. We do, however, want
4307 to record the alignment of the stack slot. */
4308 /* ALIGN may well be better aligned than TYPE, e.g. due to
4309 PARM_BOUNDARY. Assume the caller isn't lying. */
4310 set_mem_align (target
, align
);
4312 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4315 else if (partial
> 0)
4317 /* Scalar partly in registers. */
4319 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4322 /* # bytes of start of argument
4323 that we must make space for but need not store. */
4324 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4325 int args_offset
= INTVAL (args_so_far
);
4328 /* Push padding now if padding above and stack grows down,
4329 or if padding below and stack grows up.
4330 But if space already allocated, this has already been done. */
4331 if (extra
&& args_addr
== 0
4332 && where_pad
!= none
&& where_pad
!= stack_direction
)
4333 anti_adjust_stack (GEN_INT (extra
));
4335 /* If we make space by pushing it, we might as well push
4336 the real data. Otherwise, we can leave OFFSET nonzero
4337 and leave the space uninitialized. */
4341 /* Now NOT_STACK gets the number of words that we don't need to
4342 allocate on the stack. Convert OFFSET to words too. */
4343 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4344 offset
/= UNITS_PER_WORD
;
4346 /* If the partial register-part of the arg counts in its stack size,
4347 skip the part of stack space corresponding to the registers.
4348 Otherwise, start copying to the beginning of the stack space,
4349 by setting SKIP to 0. */
4350 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4352 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4353 x
= validize_mem (force_const_mem (mode
, x
));
4355 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4356 SUBREGs of such registers are not allowed. */
4357 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4358 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4359 x
= copy_to_reg (x
);
4361 /* Loop over all the words allocated on the stack for this arg. */
4362 /* We can do it by words, because any scalar bigger than a word
4363 has a size a multiple of a word. */
4364 for (i
= size
- 1; i
>= not_stack
; i
--)
4365 if (i
>= not_stack
+ offset
)
4366 emit_push_insn (operand_subword_force (x
, i
, mode
),
4367 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4369 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4371 reg_parm_stack_space
, alignment_pad
);
4378 /* Push padding now if padding above and stack grows down,
4379 or if padding below and stack grows up.
4380 But if space already allocated, this has already been done. */
4381 if (extra
&& args_addr
== 0
4382 && where_pad
!= none
&& where_pad
!= stack_direction
)
4383 anti_adjust_stack (GEN_INT (extra
));
4385 #ifdef PUSH_ROUNDING
4386 if (args_addr
== 0 && PUSH_ARGS
)
4387 emit_single_push_insn (mode
, x
, type
);
4391 if (CONST_INT_P (args_so_far
))
4393 = memory_address (mode
,
4394 plus_constant (Pmode
, args_addr
,
4395 INTVAL (args_so_far
)));
4397 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4399 dest
= gen_rtx_MEM (mode
, addr
);
4401 /* We do *not* set_mem_attributes here, because incoming arguments
4402 may overlap with sibling call outgoing arguments and we cannot
4403 allow reordering of reads from function arguments with stores
4404 to outgoing arguments of sibling calls. We do, however, want
4405 to record the alignment of the stack slot. */
4406 /* ALIGN may well be better aligned than TYPE, e.g. due to
4407 PARM_BOUNDARY. Assume the caller isn't lying. */
4408 set_mem_align (dest
, align
);
4410 emit_move_insn (dest
, x
);
4414 /* If part should go in registers, copy that part
4415 into the appropriate registers. Do this now, at the end,
4416 since mem-to-mem copies above may do function calls. */
4417 if (partial
> 0 && reg
!= 0)
4419 /* Handle calls that pass values in multiple non-contiguous locations.
4420 The Irix 6 ABI has examples of this. */
4421 if (GET_CODE (reg
) == PARALLEL
)
4422 emit_group_load (reg
, x
, type
, -1);
4425 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4426 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4430 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4431 anti_adjust_stack (GEN_INT (extra
));
4433 if (alignment_pad
&& args_addr
== 0)
4434 anti_adjust_stack (alignment_pad
);
4437 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4441 get_subtarget (rtx x
)
4445 /* Only registers can be subtargets. */
4447 /* Don't use hard regs to avoid extending their life. */
4448 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4452 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4453 FIELD is a bitfield. Returns true if the optimization was successful,
4454 and there's nothing else to do. */
4457 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4458 unsigned HOST_WIDE_INT bitpos
,
4459 unsigned HOST_WIDE_INT bitregion_start
,
4460 unsigned HOST_WIDE_INT bitregion_end
,
4461 machine_mode mode1
, rtx str_rtx
,
4464 machine_mode str_mode
= GET_MODE (str_rtx
);
4465 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4470 enum tree_code code
;
4472 if (mode1
!= VOIDmode
4473 || bitsize
>= BITS_PER_WORD
4474 || str_bitsize
> BITS_PER_WORD
4475 || TREE_SIDE_EFFECTS (to
)
4476 || TREE_THIS_VOLATILE (to
))
4480 if (TREE_CODE (src
) != SSA_NAME
)
4482 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4485 srcstmt
= get_gimple_for_ssa_name (src
);
4487 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4490 code
= gimple_assign_rhs_code (srcstmt
);
4492 op0
= gimple_assign_rhs1 (srcstmt
);
4494 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4495 to find its initialization. Hopefully the initialization will
4496 be from a bitfield load. */
4497 if (TREE_CODE (op0
) == SSA_NAME
)
4499 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4501 /* We want to eventually have OP0 be the same as TO, which
4502 should be a bitfield. */
4504 || !is_gimple_assign (op0stmt
)
4505 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4507 op0
= gimple_assign_rhs1 (op0stmt
);
4510 op1
= gimple_assign_rhs2 (srcstmt
);
4512 if (!operand_equal_p (to
, op0
, 0))
4515 if (MEM_P (str_rtx
))
4517 unsigned HOST_WIDE_INT offset1
;
4519 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4520 str_mode
= word_mode
;
4521 str_mode
= get_best_mode (bitsize
, bitpos
,
4522 bitregion_start
, bitregion_end
,
4523 MEM_ALIGN (str_rtx
), str_mode
, 0);
4524 if (str_mode
== VOIDmode
)
4526 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4529 bitpos
%= str_bitsize
;
4530 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4531 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4533 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4536 /* If the bit field covers the whole REG/MEM, store_field
4537 will likely generate better code. */
4538 if (bitsize
>= str_bitsize
)
4541 /* We can't handle fields split across multiple entities. */
4542 if (bitpos
+ bitsize
> str_bitsize
)
4545 if (BYTES_BIG_ENDIAN
)
4546 bitpos
= str_bitsize
- bitpos
- bitsize
;
4552 /* For now, just optimize the case of the topmost bitfield
4553 where we don't need to do any masking and also
4554 1 bit bitfields where xor can be used.
4555 We might win by one instruction for the other bitfields
4556 too if insv/extv instructions aren't used, so that
4557 can be added later. */
4558 if (bitpos
+ bitsize
!= str_bitsize
4559 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4562 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4563 value
= convert_modes (str_mode
,
4564 TYPE_MODE (TREE_TYPE (op1
)), value
,
4565 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4567 /* We may be accessing data outside the field, which means
4568 we can alias adjacent data. */
4569 if (MEM_P (str_rtx
))
4571 str_rtx
= shallow_copy_rtx (str_rtx
);
4572 set_mem_alias_set (str_rtx
, 0);
4573 set_mem_expr (str_rtx
, 0);
4576 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4577 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4579 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4582 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4583 result
= expand_binop (str_mode
, binop
, str_rtx
,
4584 value
, str_rtx
, 1, OPTAB_WIDEN
);
4585 if (result
!= str_rtx
)
4586 emit_move_insn (str_rtx
, result
);
4591 if (TREE_CODE (op1
) != INTEGER_CST
)
4593 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4594 value
= convert_modes (str_mode
,
4595 TYPE_MODE (TREE_TYPE (op1
)), value
,
4596 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4598 /* We may be accessing data outside the field, which means
4599 we can alias adjacent data. */
4600 if (MEM_P (str_rtx
))
4602 str_rtx
= shallow_copy_rtx (str_rtx
);
4603 set_mem_alias_set (str_rtx
, 0);
4604 set_mem_expr (str_rtx
, 0);
4607 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4608 if (bitpos
+ bitsize
!= str_bitsize
)
4610 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4612 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4614 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4615 result
= expand_binop (str_mode
, binop
, str_rtx
,
4616 value
, str_rtx
, 1, OPTAB_WIDEN
);
4617 if (result
!= str_rtx
)
4618 emit_move_insn (str_rtx
, result
);
4628 /* In the C++ memory model, consecutive bit fields in a structure are
4629 considered one memory location.
4631 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4632 returns the bit range of consecutive bits in which this COMPONENT_REF
4633 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4634 and *OFFSET may be adjusted in the process.
4636 If the access does not need to be restricted, 0 is returned in both
4637 *BITSTART and *BITEND. */
4640 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4641 unsigned HOST_WIDE_INT
*bitend
,
4643 HOST_WIDE_INT
*bitpos
,
4646 HOST_WIDE_INT bitoffset
;
4649 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4651 field
= TREE_OPERAND (exp
, 1);
4652 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4653 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4654 need to limit the range we can access. */
4657 *bitstart
= *bitend
= 0;
4661 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4662 part of a larger bit field, then the representative does not serve any
4663 useful purpose. This can occur in Ada. */
4664 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4667 HOST_WIDE_INT rbitsize
, rbitpos
;
4671 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4672 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4673 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4675 *bitstart
= *bitend
= 0;
4680 /* Compute the adjustment to bitpos from the offset of the field
4681 relative to the representative. DECL_FIELD_OFFSET of field and
4682 repr are the same by construction if they are not constants,
4683 see finish_bitfield_layout. */
4684 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4685 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4686 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4687 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4690 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4691 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4693 /* If the adjustment is larger than bitpos, we would have a negative bit
4694 position for the lower bound and this may wreak havoc later. Adjust
4695 offset and bitpos to make the lower bound non-negative in that case. */
4696 if (bitoffset
> *bitpos
)
4698 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4699 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4702 if (*offset
== NULL_TREE
)
4703 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4706 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4710 *bitstart
= *bitpos
- bitoffset
;
4712 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4715 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4716 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4717 DECL_RTL was not set yet, return NORTL. */
4720 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4722 if (TREE_CODE (addr
) != ADDR_EXPR
)
4725 tree base
= TREE_OPERAND (addr
, 0);
4728 || TREE_ADDRESSABLE (base
)
4729 || DECL_MODE (base
) == BLKmode
)
4732 if (!DECL_RTL_SET_P (base
))
4735 return (!MEM_P (DECL_RTL (base
)));
4738 /* Returns true if the MEM_REF REF refers to an object that does not
4739 reside in memory and has non-BLKmode. */
4742 mem_ref_refers_to_non_mem_p (tree ref
)
4744 tree base
= TREE_OPERAND (ref
, 0);
4745 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4748 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4749 is true, try generating a nontemporal store. */
4752 expand_assignment (tree to
, tree from
, bool nontemporal
)
4758 enum insn_code icode
;
4760 /* Don't crash if the lhs of the assignment was erroneous. */
4761 if (TREE_CODE (to
) == ERROR_MARK
)
4763 expand_normal (from
);
4767 /* Optimize away no-op moves without side-effects. */
4768 if (operand_equal_p (to
, from
, 0))
4771 /* Handle misaligned stores. */
4772 mode
= TYPE_MODE (TREE_TYPE (to
));
4773 if ((TREE_CODE (to
) == MEM_REF
4774 || TREE_CODE (to
) == TARGET_MEM_REF
)
4776 && !mem_ref_refers_to_non_mem_p (to
)
4777 && ((align
= get_object_alignment (to
))
4778 < GET_MODE_ALIGNMENT (mode
))
4779 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4780 != CODE_FOR_nothing
)
4781 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4785 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4786 reg
= force_not_mem (reg
);
4787 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4789 if (icode
!= CODE_FOR_nothing
)
4791 struct expand_operand ops
[2];
4793 create_fixed_operand (&ops
[0], mem
);
4794 create_input_operand (&ops
[1], reg
, mode
);
4795 /* The movmisalign<mode> pattern cannot fail, else the assignment
4796 would silently be omitted. */
4797 expand_insn (icode
, 2, ops
);
4800 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4804 /* Assignment of a structure component needs special treatment
4805 if the structure component's rtx is not simply a MEM.
4806 Assignment of an array element at a constant index, and assignment of
4807 an array element in an unaligned packed structure field, has the same
4808 problem. Same for (partially) storing into a non-memory object. */
4809 if (handled_component_p (to
)
4810 || (TREE_CODE (to
) == MEM_REF
4811 && mem_ref_refers_to_non_mem_p (to
))
4812 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4815 HOST_WIDE_INT bitsize
, bitpos
;
4816 unsigned HOST_WIDE_INT bitregion_start
= 0;
4817 unsigned HOST_WIDE_INT bitregion_end
= 0;
4824 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4825 &unsignedp
, &volatilep
, true);
4827 /* Make sure bitpos is not negative, it can wreak havoc later. */
4830 gcc_assert (offset
== NULL_TREE
);
4831 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4832 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4833 bitpos
&= BITS_PER_UNIT
- 1;
4836 if (TREE_CODE (to
) == COMPONENT_REF
4837 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4838 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4839 /* The C++ memory model naturally applies to byte-aligned fields.
4840 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4841 BITSIZE are not byte-aligned, there is no need to limit the range
4842 we can access. This can occur with packed structures in Ada. */
4843 else if (bitsize
> 0
4844 && bitsize
% BITS_PER_UNIT
== 0
4845 && bitpos
% BITS_PER_UNIT
== 0)
4847 bitregion_start
= bitpos
;
4848 bitregion_end
= bitpos
+ bitsize
- 1;
4851 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4853 /* If the field has a mode, we want to access it in the
4854 field's mode, not the computed mode.
4855 If a MEM has VOIDmode (external with incomplete type),
4856 use BLKmode for it instead. */
4859 if (mode1
!= VOIDmode
)
4860 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4861 else if (GET_MODE (to_rtx
) == VOIDmode
)
4862 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4867 machine_mode address_mode
;
4870 if (!MEM_P (to_rtx
))
4872 /* We can get constant negative offsets into arrays with broken
4873 user code. Translate this to a trap instead of ICEing. */
4874 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4875 expand_builtin_trap ();
4876 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4879 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4880 address_mode
= get_address_mode (to_rtx
);
4881 if (GET_MODE (offset_rtx
) != address_mode
)
4882 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4884 /* If we have an expression in OFFSET_RTX and a non-zero
4885 byte offset in BITPOS, adding the byte offset before the
4886 OFFSET_RTX results in better intermediate code, which makes
4887 later rtl optimization passes perform better.
4889 We prefer intermediate code like this:
4891 r124:DI=r123:DI+0x18
4896 r124:DI=r123:DI+0x10
4897 [r124:DI+0x8]=r121:DI
4899 This is only done for aligned data values, as these can
4900 be expected to result in single move instructions. */
4901 if (mode1
!= VOIDmode
4904 && (bitpos
% bitsize
) == 0
4905 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4906 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
4908 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4909 bitregion_start
= 0;
4910 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4911 bitregion_end
-= bitpos
;
4915 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4916 highest_pow2_factor_for_target (to
,
4920 /* No action is needed if the target is not a memory and the field
4921 lies completely outside that target. This can occur if the source
4922 code contains an out-of-bounds access to a small array. */
4924 && GET_MODE (to_rtx
) != BLKmode
4925 && (unsigned HOST_WIDE_INT
) bitpos
4926 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4928 expand_normal (from
);
4931 /* Handle expand_expr of a complex value returning a CONCAT. */
4932 else if (GET_CODE (to_rtx
) == CONCAT
)
4934 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4935 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4937 && bitsize
== mode_bitsize
)
4938 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4939 else if (bitsize
== mode_bitsize
/ 2
4940 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4941 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4943 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4944 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4945 bitregion_start
, bitregion_end
,
4947 get_alias_set (to
), nontemporal
);
4948 else if (bitpos
>= mode_bitsize
/ 2)
4949 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4950 bitpos
- mode_bitsize
/ 2,
4951 bitregion_start
, bitregion_end
,
4953 get_alias_set (to
), nontemporal
);
4954 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4957 result
= expand_normal (from
);
4958 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4959 TYPE_MODE (TREE_TYPE (from
)), 0);
4960 emit_move_insn (XEXP (to_rtx
, 0),
4961 read_complex_part (from_rtx
, false));
4962 emit_move_insn (XEXP (to_rtx
, 1),
4963 read_complex_part (from_rtx
, true));
4967 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4968 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4969 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4970 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4971 result
= store_field (temp
, bitsize
, bitpos
,
4972 bitregion_start
, bitregion_end
,
4974 get_alias_set (to
), nontemporal
);
4975 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4976 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4983 /* If the field is at offset zero, we could have been given the
4984 DECL_RTX of the parent struct. Don't munge it. */
4985 to_rtx
= shallow_copy_rtx (to_rtx
);
4986 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4988 MEM_VOLATILE_P (to_rtx
) = 1;
4991 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4992 bitregion_start
, bitregion_end
,
4997 result
= store_field (to_rtx
, bitsize
, bitpos
,
4998 bitregion_start
, bitregion_end
,
5000 get_alias_set (to
), nontemporal
);
5004 preserve_temp_slots (result
);
5009 /* If the rhs is a function call and its value is not an aggregate,
5010 call the function before we start to compute the lhs.
5011 This is needed for correct code for cases such as
5012 val = setjmp (buf) on machines where reference to val
5013 requires loading up part of an address in a separate insn.
5015 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5016 since it might be a promoted variable where the zero- or sign- extension
5017 needs to be done. Handling this in the normal way is safe because no
5018 computation is done before the call. The same is true for SSA names. */
5019 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5020 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5021 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5022 && ! (((TREE_CODE (to
) == VAR_DECL
5023 || TREE_CODE (to
) == PARM_DECL
5024 || TREE_CODE (to
) == RESULT_DECL
)
5025 && REG_P (DECL_RTL (to
)))
5026 || TREE_CODE (to
) == SSA_NAME
))
5032 value
= expand_normal (from
);
5034 /* Split value and bounds to store them separately. */
5035 chkp_split_slot (value
, &value
, &bounds
);
5038 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5040 /* Handle calls that return values in multiple non-contiguous locations.
5041 The Irix 6 ABI has examples of this. */
5042 if (GET_CODE (to_rtx
) == PARALLEL
)
5044 if (GET_CODE (value
) == PARALLEL
)
5045 emit_group_move (to_rtx
, value
);
5047 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5048 int_size_in_bytes (TREE_TYPE (from
)));
5050 else if (GET_CODE (value
) == PARALLEL
)
5051 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5052 int_size_in_bytes (TREE_TYPE (from
)));
5053 else if (GET_MODE (to_rtx
) == BLKmode
)
5055 /* Handle calls that return BLKmode values in registers. */
5057 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5059 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5063 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5064 value
= convert_memory_address_addr_space
5065 (GET_MODE (to_rtx
), value
,
5066 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5068 emit_move_insn (to_rtx
, value
);
5071 /* Store bounds if required. */
5073 && (BOUNDED_P (to
) || chkp_type_has_pointer (TREE_TYPE (to
))))
5075 gcc_assert (MEM_P (to_rtx
));
5076 chkp_emit_bounds_store (bounds
, value
, to_rtx
);
5079 preserve_temp_slots (to_rtx
);
5084 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5085 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5087 /* Don't move directly into a return register. */
5088 if (TREE_CODE (to
) == RESULT_DECL
5089 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5095 /* If the source is itself a return value, it still is in a pseudo at
5096 this point so we can move it back to the return register directly. */
5098 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5099 && TREE_CODE (from
) != CALL_EXPR
)
5100 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5102 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5104 /* Handle calls that return values in multiple non-contiguous locations.
5105 The Irix 6 ABI has examples of this. */
5106 if (GET_CODE (to_rtx
) == PARALLEL
)
5108 if (GET_CODE (temp
) == PARALLEL
)
5109 emit_group_move (to_rtx
, temp
);
5111 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5112 int_size_in_bytes (TREE_TYPE (from
)));
5115 emit_move_insn (to_rtx
, temp
);
5117 preserve_temp_slots (to_rtx
);
5122 /* In case we are returning the contents of an object which overlaps
5123 the place the value is being stored, use a safe function when copying
5124 a value through a pointer into a structure value return block. */
5125 if (TREE_CODE (to
) == RESULT_DECL
5126 && TREE_CODE (from
) == INDIRECT_REF
5127 && ADDR_SPACE_GENERIC_P
5128 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5129 && refs_may_alias_p (to
, from
)
5130 && cfun
->returns_struct
5131 && !cfun
->returns_pcc_struct
)
5136 size
= expr_size (from
);
5137 from_rtx
= expand_normal (from
);
5139 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5140 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5141 XEXP (from_rtx
, 0), Pmode
,
5142 convert_to_mode (TYPE_MODE (sizetype
),
5143 size
, TYPE_UNSIGNED (sizetype
)),
5144 TYPE_MODE (sizetype
));
5146 preserve_temp_slots (to_rtx
);
5151 /* Compute FROM and store the value in the rtx we got. */
5154 result
= store_expr_with_bounds (from
, to_rtx
, 0, nontemporal
, to
);
5155 preserve_temp_slots (result
);
5160 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5161 succeeded, false otherwise. */
5164 emit_storent_insn (rtx to
, rtx from
)
5166 struct expand_operand ops
[2];
5167 machine_mode mode
= GET_MODE (to
);
5168 enum insn_code code
= optab_handler (storent_optab
, mode
);
5170 if (code
== CODE_FOR_nothing
)
5173 create_fixed_operand (&ops
[0], to
);
5174 create_input_operand (&ops
[1], from
, mode
);
5175 return maybe_expand_insn (code
, 2, ops
);
5178 /* Generate code for computing expression EXP,
5179 and storing the value into TARGET.
5181 If the mode is BLKmode then we may return TARGET itself.
5182 It turns out that in BLKmode it doesn't cause a problem.
5183 because C has no operators that could combine two different
5184 assignments into the same BLKmode object with different values
5185 with no sequence point. Will other languages need this to
5188 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5189 stack, and block moves may need to be treated specially.
5191 If NONTEMPORAL is true, try using a nontemporal store instruction.
5193 If BTARGET is not NULL then computed bounds of EXP are
5194 associated with BTARGET. */
5197 store_expr_with_bounds (tree exp
, rtx target
, int call_param_p
,
5198 bool nontemporal
, tree btarget
)
5201 rtx alt_rtl
= NULL_RTX
;
5202 location_t loc
= curr_insn_location ();
5204 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5206 /* C++ can generate ?: expressions with a throw expression in one
5207 branch and an rvalue in the other. Here, we resolve attempts to
5208 store the throw expression's nonexistent result. */
5209 gcc_assert (!call_param_p
);
5210 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5213 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5215 /* Perform first part of compound expression, then assign from second
5217 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5218 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5219 return store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
,
5220 call_param_p
, nontemporal
, btarget
);
5222 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5224 /* For conditional expression, get safe form of the target. Then
5225 test the condition, doing the appropriate assignment on either
5226 side. This avoids the creation of unnecessary temporaries.
5227 For non-BLKmode, it is more efficient not to do this. */
5229 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5231 do_pending_stack_adjust ();
5233 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5234 store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5235 nontemporal
, btarget
);
5236 emit_jump_insn (gen_jump (lab2
));
5239 store_expr_with_bounds (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5240 nontemporal
, btarget
);
5246 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5247 /* If this is a scalar in a register that is stored in a wider mode
5248 than the declared mode, compute the result into its declared mode
5249 and then convert to the wider mode. Our value is the computed
5252 rtx inner_target
= 0;
5254 /* We can do the conversion inside EXP, which will often result
5255 in some optimizations. Do the conversion in two steps: first
5256 change the signedness, if needed, then the extend. But don't
5257 do this if the type of EXP is a subtype of something else
5258 since then the conversion might involve more than just
5259 converting modes. */
5260 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5261 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5262 && GET_MODE_PRECISION (GET_MODE (target
))
5263 == TYPE_PRECISION (TREE_TYPE (exp
)))
5265 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5266 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5268 /* Some types, e.g. Fortran's logical*4, won't have a signed
5269 version, so use the mode instead. */
5271 = (signed_or_unsigned_type_for
5272 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5274 ntype
= lang_hooks
.types
.type_for_mode
5275 (TYPE_MODE (TREE_TYPE (exp
)),
5276 SUBREG_PROMOTED_SIGN (target
));
5278 exp
= fold_convert_loc (loc
, ntype
, exp
);
5281 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5282 (GET_MODE (SUBREG_REG (target
)),
5283 SUBREG_PROMOTED_SIGN (target
)),
5286 inner_target
= SUBREG_REG (target
);
5289 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5290 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5292 /* Handle bounds returned by call. */
5293 if (TREE_CODE (exp
) == CALL_EXPR
)
5296 chkp_split_slot (temp
, &temp
, &bounds
);
5297 if (bounds
&& btarget
)
5299 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5300 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5301 chkp_set_rtl_bounds (btarget
, tmp
);
5305 /* If TEMP is a VOIDmode constant, use convert_modes to make
5306 sure that we properly convert it. */
5307 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5309 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5310 temp
, SUBREG_PROMOTED_SIGN (target
));
5311 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5312 GET_MODE (target
), temp
,
5313 SUBREG_PROMOTED_SIGN (target
));
5316 convert_move (SUBREG_REG (target
), temp
,
5317 SUBREG_PROMOTED_SIGN (target
));
5321 else if ((TREE_CODE (exp
) == STRING_CST
5322 || (TREE_CODE (exp
) == MEM_REF
5323 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5324 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5326 && integer_zerop (TREE_OPERAND (exp
, 1))))
5327 && !nontemporal
&& !call_param_p
5330 /* Optimize initialization of an array with a STRING_CST. */
5331 HOST_WIDE_INT exp_len
, str_copy_len
;
5333 tree str
= TREE_CODE (exp
) == STRING_CST
5334 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5336 exp_len
= int_expr_size (exp
);
5340 if (TREE_STRING_LENGTH (str
) <= 0)
5343 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5344 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5347 str_copy_len
= TREE_STRING_LENGTH (str
);
5348 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5349 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5351 str_copy_len
+= STORE_MAX_PIECES
- 1;
5352 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5354 str_copy_len
= MIN (str_copy_len
, exp_len
);
5355 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5356 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5357 MEM_ALIGN (target
), false))
5362 dest_mem
= store_by_pieces (dest_mem
,
5363 str_copy_len
, builtin_strncpy_read_str
,
5365 TREE_STRING_POINTER (str
)),
5366 MEM_ALIGN (target
), false,
5367 exp_len
> str_copy_len
? 1 : 0);
5368 if (exp_len
> str_copy_len
)
5369 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5370 GEN_INT (exp_len
- str_copy_len
),
5379 /* If we want to use a nontemporal store, force the value to
5381 tmp_target
= nontemporal
? NULL_RTX
: target
;
5382 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5384 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5387 /* Handle bounds returned by call. */
5388 if (TREE_CODE (exp
) == CALL_EXPR
)
5391 chkp_split_slot (temp
, &temp
, &bounds
);
5392 if (bounds
&& btarget
)
5394 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5395 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5396 chkp_set_rtl_bounds (btarget
, tmp
);
5401 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5402 the same as that of TARGET, adjust the constant. This is needed, for
5403 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5404 only a word-sized value. */
5405 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5406 && TREE_CODE (exp
) != ERROR_MARK
5407 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5408 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5409 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5411 /* If value was not generated in the target, store it there.
5412 Convert the value to TARGET's type first if necessary and emit the
5413 pending incrementations that have been queued when expanding EXP.
5414 Note that we cannot emit the whole queue blindly because this will
5415 effectively disable the POST_INC optimization later.
5417 If TEMP and TARGET compare equal according to rtx_equal_p, but
5418 one or both of them are volatile memory refs, we have to distinguish
5420 - expand_expr has used TARGET. In this case, we must not generate
5421 another copy. This can be detected by TARGET being equal according
5423 - expand_expr has not used TARGET - that means that the source just
5424 happens to have the same RTX form. Since temp will have been created
5425 by expand_expr, it will compare unequal according to == .
5426 We must generate a copy in this case, to reach the correct number
5427 of volatile memory references. */
5429 if ((! rtx_equal_p (temp
, target
)
5430 || (temp
!= target
&& (side_effects_p (temp
)
5431 || side_effects_p (target
))))
5432 && TREE_CODE (exp
) != ERROR_MARK
5433 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5434 but TARGET is not valid memory reference, TEMP will differ
5435 from TARGET although it is really the same location. */
5437 && rtx_equal_p (alt_rtl
, target
)
5438 && !side_effects_p (alt_rtl
)
5439 && !side_effects_p (target
))
5440 /* If there's nothing to copy, don't bother. Don't call
5441 expr_size unless necessary, because some front-ends (C++)
5442 expr_size-hook must not be given objects that are not
5443 supposed to be bit-copied or bit-initialized. */
5444 && expr_size (exp
) != const0_rtx
)
5446 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5448 if (GET_MODE (target
) == BLKmode
)
5450 /* Handle calls that return BLKmode values in registers. */
5451 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5452 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5454 store_bit_field (target
,
5455 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5456 0, 0, 0, GET_MODE (temp
), temp
);
5459 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5462 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5464 /* Handle copying a string constant into an array. The string
5465 constant may be shorter than the array. So copy just the string's
5466 actual length, and clear the rest. First get the size of the data
5467 type of the string, which is actually the size of the target. */
5468 rtx size
= expr_size (exp
);
5470 if (CONST_INT_P (size
)
5471 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5472 emit_block_move (target
, temp
, size
,
5474 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5477 machine_mode pointer_mode
5478 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5479 machine_mode address_mode
= get_address_mode (target
);
5481 /* Compute the size of the data to copy from the string. */
5483 = size_binop_loc (loc
, MIN_EXPR
,
5484 make_tree (sizetype
, size
),
5485 size_int (TREE_STRING_LENGTH (exp
)));
5487 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5489 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5490 rtx_code_label
*label
= 0;
5492 /* Copy that much. */
5493 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5494 TYPE_UNSIGNED (sizetype
));
5495 emit_block_move (target
, temp
, copy_size_rtx
,
5497 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5499 /* Figure out how much is left in TARGET that we have to clear.
5500 Do all calculations in pointer_mode. */
5501 if (CONST_INT_P (copy_size_rtx
))
5503 size
= plus_constant (address_mode
, size
,
5504 -INTVAL (copy_size_rtx
));
5505 target
= adjust_address (target
, BLKmode
,
5506 INTVAL (copy_size_rtx
));
5510 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5511 copy_size_rtx
, NULL_RTX
, 0,
5514 if (GET_MODE (copy_size_rtx
) != address_mode
)
5515 copy_size_rtx
= convert_to_mode (address_mode
,
5517 TYPE_UNSIGNED (sizetype
));
5519 target
= offset_address (target
, copy_size_rtx
,
5520 highest_pow2_factor (copy_size
));
5521 label
= gen_label_rtx ();
5522 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5523 GET_MODE (size
), 0, label
);
5526 if (size
!= const0_rtx
)
5527 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5533 /* Handle calls that return values in multiple non-contiguous locations.
5534 The Irix 6 ABI has examples of this. */
5535 else if (GET_CODE (target
) == PARALLEL
)
5537 if (GET_CODE (temp
) == PARALLEL
)
5538 emit_group_move (target
, temp
);
5540 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5541 int_size_in_bytes (TREE_TYPE (exp
)));
5543 else if (GET_CODE (temp
) == PARALLEL
)
5544 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5545 int_size_in_bytes (TREE_TYPE (exp
)));
5546 else if (GET_MODE (temp
) == BLKmode
)
5547 emit_block_move (target
, temp
, expr_size (exp
),
5549 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5550 /* If we emit a nontemporal store, there is nothing else to do. */
5551 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5555 temp
= force_operand (temp
, target
);
5557 emit_move_insn (target
, temp
);
5564 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5566 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5568 return store_expr_with_bounds (exp
, target
, call_param_p
, nontemporal
, NULL
);
5571 /* Return true if field F of structure TYPE is a flexible array. */
5574 flexible_array_member_p (const_tree f
, const_tree type
)
5579 return (DECL_CHAIN (f
) == NULL
5580 && TREE_CODE (tf
) == ARRAY_TYPE
5582 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5583 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5584 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5585 && int_size_in_bytes (type
) >= 0);
5588 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5589 must have in order for it to completely initialize a value of type TYPE.
5590 Return -1 if the number isn't known.
5592 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5594 static HOST_WIDE_INT
5595 count_type_elements (const_tree type
, bool for_ctor_p
)
5597 switch (TREE_CODE (type
))
5603 nelts
= array_type_nelts (type
);
5604 if (nelts
&& tree_fits_uhwi_p (nelts
))
5606 unsigned HOST_WIDE_INT n
;
5608 n
= tree_to_uhwi (nelts
) + 1;
5609 if (n
== 0 || for_ctor_p
)
5612 return n
* count_type_elements (TREE_TYPE (type
), false);
5614 return for_ctor_p
? -1 : 1;
5619 unsigned HOST_WIDE_INT n
;
5623 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5624 if (TREE_CODE (f
) == FIELD_DECL
)
5627 n
+= count_type_elements (TREE_TYPE (f
), false);
5628 else if (!flexible_array_member_p (f
, type
))
5629 /* Don't count flexible arrays, which are not supposed
5630 to be initialized. */
5638 case QUAL_UNION_TYPE
:
5643 gcc_assert (!for_ctor_p
);
5644 /* Estimate the number of scalars in each field and pick the
5645 maximum. Other estimates would do instead; the idea is simply
5646 to make sure that the estimate is not sensitive to the ordering
5649 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5650 if (TREE_CODE (f
) == FIELD_DECL
)
5652 m
= count_type_elements (TREE_TYPE (f
), false);
5653 /* If the field doesn't span the whole union, add an extra
5654 scalar for the rest. */
5655 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5656 TYPE_SIZE (type
)) != 1)
5668 return TYPE_VECTOR_SUBPARTS (type
);
5672 case FIXED_POINT_TYPE
:
5677 case REFERENCE_TYPE
:
5693 /* Helper for categorize_ctor_elements. Identical interface. */
5696 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5697 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5699 unsigned HOST_WIDE_INT idx
;
5700 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5701 tree value
, purpose
, elt_type
;
5703 /* Whether CTOR is a valid constant initializer, in accordance with what
5704 initializer_constant_valid_p does. If inferred from the constructor
5705 elements, true until proven otherwise. */
5706 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5707 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5712 elt_type
= NULL_TREE
;
5714 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5716 HOST_WIDE_INT mult
= 1;
5718 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5720 tree lo_index
= TREE_OPERAND (purpose
, 0);
5721 tree hi_index
= TREE_OPERAND (purpose
, 1);
5723 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5724 mult
= (tree_to_uhwi (hi_index
)
5725 - tree_to_uhwi (lo_index
) + 1);
5728 elt_type
= TREE_TYPE (value
);
5730 switch (TREE_CODE (value
))
5734 HOST_WIDE_INT nz
= 0, ic
= 0;
5736 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5739 nz_elts
+= mult
* nz
;
5740 init_elts
+= mult
* ic
;
5742 if (const_from_elts_p
&& const_p
)
5743 const_p
= const_elt_p
;
5750 if (!initializer_zerop (value
))
5756 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5757 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5761 if (!initializer_zerop (TREE_REALPART (value
)))
5763 if (!initializer_zerop (TREE_IMAGPART (value
)))
5771 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5773 tree v
= VECTOR_CST_ELT (value
, i
);
5774 if (!initializer_zerop (v
))
5783 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5784 nz_elts
+= mult
* tc
;
5785 init_elts
+= mult
* tc
;
5787 if (const_from_elts_p
&& const_p
)
5788 const_p
= initializer_constant_valid_p (value
, elt_type
)
5795 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5796 num_fields
, elt_type
))
5797 *p_complete
= false;
5799 *p_nz_elts
+= nz_elts
;
5800 *p_init_elts
+= init_elts
;
5805 /* Examine CTOR to discover:
5806 * how many scalar fields are set to nonzero values,
5807 and place it in *P_NZ_ELTS;
5808 * how many scalar fields in total are in CTOR,
5809 and place it in *P_ELT_COUNT.
5810 * whether the constructor is complete -- in the sense that every
5811 meaningful byte is explicitly given a value --
5812 and place it in *P_COMPLETE.
5814 Return whether or not CTOR is a valid static constant initializer, the same
5815 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5818 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5819 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5825 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5828 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5829 of which had type LAST_TYPE. Each element was itself a complete
5830 initializer, in the sense that every meaningful byte was explicitly
5831 given a value. Return true if the same is true for the constructor
5835 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5836 const_tree last_type
)
5838 if (TREE_CODE (type
) == UNION_TYPE
5839 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5844 gcc_assert (num_elts
== 1 && last_type
);
5846 /* ??? We could look at each element of the union, and find the
5847 largest element. Which would avoid comparing the size of the
5848 initialized element against any tail padding in the union.
5849 Doesn't seem worth the effort... */
5850 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5853 return count_type_elements (type
, true) == num_elts
;
5856 /* Return 1 if EXP contains mostly (3/4) zeros. */
5859 mostly_zeros_p (const_tree exp
)
5861 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5863 HOST_WIDE_INT nz_elts
, init_elts
;
5866 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5867 return !complete_p
|| nz_elts
< init_elts
/ 4;
5870 return initializer_zerop (exp
);
5873 /* Return 1 if EXP contains all zeros. */
5876 all_zeros_p (const_tree exp
)
5878 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5880 HOST_WIDE_INT nz_elts
, init_elts
;
5883 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5884 return nz_elts
== 0;
5887 return initializer_zerop (exp
);
5890 /* Helper function for store_constructor.
5891 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5892 CLEARED is as for store_constructor.
5893 ALIAS_SET is the alias set to use for any stores.
5895 This provides a recursive shortcut back to store_constructor when it isn't
5896 necessary to go through store_field. This is so that we can pass through
5897 the cleared field to let store_constructor know that we may not have to
5898 clear a substructure if the outer structure has already been cleared. */
5901 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5902 HOST_WIDE_INT bitpos
, machine_mode mode
,
5903 tree exp
, int cleared
, alias_set_type alias_set
)
5905 if (TREE_CODE (exp
) == CONSTRUCTOR
5906 /* We can only call store_constructor recursively if the size and
5907 bit position are on a byte boundary. */
5908 && bitpos
% BITS_PER_UNIT
== 0
5909 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5910 /* If we have a nonzero bitpos for a register target, then we just
5911 let store_field do the bitfield handling. This is unlikely to
5912 generate unnecessary clear instructions anyways. */
5913 && (bitpos
== 0 || MEM_P (target
)))
5917 = adjust_address (target
,
5918 GET_MODE (target
) == BLKmode
5920 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5921 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5924 /* Update the alias set, if required. */
5925 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5926 && MEM_ALIAS_SET (target
) != 0)
5928 target
= copy_rtx (target
);
5929 set_mem_alias_set (target
, alias_set
);
5932 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5935 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5939 /* Returns the number of FIELD_DECLs in TYPE. */
5942 fields_length (const_tree type
)
5944 tree t
= TYPE_FIELDS (type
);
5947 for (; t
; t
= DECL_CHAIN (t
))
5948 if (TREE_CODE (t
) == FIELD_DECL
)
5955 /* Store the value of constructor EXP into the rtx TARGET.
5956 TARGET is either a REG or a MEM; we know it cannot conflict, since
5957 safe_from_p has been called.
5958 CLEARED is true if TARGET is known to have been zero'd.
5959 SIZE is the number of bytes of TARGET we are allowed to modify: this
5960 may not be the same as the size of EXP if we are assigning to a field
5961 which has been packed to exclude padding bits. */
5964 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5966 tree type
= TREE_TYPE (exp
);
5967 #ifdef WORD_REGISTER_OPERATIONS
5968 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5971 switch (TREE_CODE (type
))
5975 case QUAL_UNION_TYPE
:
5977 unsigned HOST_WIDE_INT idx
;
5980 /* If size is zero or the target is already cleared, do nothing. */
5981 if (size
== 0 || cleared
)
5983 /* We either clear the aggregate or indicate the value is dead. */
5984 else if ((TREE_CODE (type
) == UNION_TYPE
5985 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5986 && ! CONSTRUCTOR_ELTS (exp
))
5987 /* If the constructor is empty, clear the union. */
5989 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5993 /* If we are building a static constructor into a register,
5994 set the initial value as zero so we can fold the value into
5995 a constant. But if more than one register is involved,
5996 this probably loses. */
5997 else if (REG_P (target
) && TREE_STATIC (exp
)
5998 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
6000 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6004 /* If the constructor has fewer fields than the structure or
6005 if we are initializing the structure to mostly zeros, clear
6006 the whole structure first. Don't do this if TARGET is a
6007 register whose mode size isn't equal to SIZE since
6008 clear_storage can't handle this case. */
6010 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
6011 != fields_length (type
))
6012 || mostly_zeros_p (exp
))
6014 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
6017 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6021 if (REG_P (target
) && !cleared
)
6022 emit_clobber (target
);
6024 /* Store each element of the constructor into the
6025 corresponding field of TARGET. */
6026 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6029 HOST_WIDE_INT bitsize
;
6030 HOST_WIDE_INT bitpos
= 0;
6032 rtx to_rtx
= target
;
6034 /* Just ignore missing fields. We cleared the whole
6035 structure, above, if any fields are missing. */
6039 if (cleared
&& initializer_zerop (value
))
6042 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6043 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6047 mode
= DECL_MODE (field
);
6048 if (DECL_BIT_FIELD (field
))
6051 offset
= DECL_FIELD_OFFSET (field
);
6052 if (tree_fits_shwi_p (offset
)
6053 && tree_fits_shwi_p (bit_position (field
)))
6055 bitpos
= int_bit_position (field
);
6059 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
6063 machine_mode address_mode
;
6067 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
6068 make_tree (TREE_TYPE (exp
),
6071 offset_rtx
= expand_normal (offset
);
6072 gcc_assert (MEM_P (to_rtx
));
6074 address_mode
= get_address_mode (to_rtx
);
6075 if (GET_MODE (offset_rtx
) != address_mode
)
6076 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6078 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6079 highest_pow2_factor (offset
));
6082 #ifdef WORD_REGISTER_OPERATIONS
6083 /* If this initializes a field that is smaller than a
6084 word, at the start of a word, try to widen it to a full
6085 word. This special case allows us to output C++ member
6086 function initializations in a form that the optimizers
6089 && bitsize
< BITS_PER_WORD
6090 && bitpos
% BITS_PER_WORD
== 0
6091 && GET_MODE_CLASS (mode
) == MODE_INT
6092 && TREE_CODE (value
) == INTEGER_CST
6094 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6096 tree type
= TREE_TYPE (value
);
6098 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6100 type
= lang_hooks
.types
.type_for_mode
6101 (word_mode
, TYPE_UNSIGNED (type
));
6102 value
= fold_convert (type
, value
);
6105 if (BYTES_BIG_ENDIAN
)
6107 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6108 build_int_cst (type
,
6109 BITS_PER_WORD
- bitsize
));
6110 bitsize
= BITS_PER_WORD
;
6115 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6116 && DECL_NONADDRESSABLE_P (field
))
6118 to_rtx
= copy_rtx (to_rtx
);
6119 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6122 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6124 get_alias_set (TREE_TYPE (field
)));
6131 unsigned HOST_WIDE_INT i
;
6134 tree elttype
= TREE_TYPE (type
);
6136 HOST_WIDE_INT minelt
= 0;
6137 HOST_WIDE_INT maxelt
= 0;
6139 domain
= TYPE_DOMAIN (type
);
6140 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6141 && TYPE_MAX_VALUE (domain
)
6142 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6143 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6145 /* If we have constant bounds for the range of the type, get them. */
6148 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6149 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6152 /* If the constructor has fewer elements than the array, clear
6153 the whole array first. Similarly if this is static
6154 constructor of a non-BLKmode object. */
6157 else if (REG_P (target
) && TREE_STATIC (exp
))
6161 unsigned HOST_WIDE_INT idx
;
6163 HOST_WIDE_INT count
= 0, zero_count
= 0;
6164 need_to_clear
= ! const_bounds_p
;
6166 /* This loop is a more accurate version of the loop in
6167 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6168 is also needed to check for missing elements. */
6169 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6171 HOST_WIDE_INT this_node_count
;
6176 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6178 tree lo_index
= TREE_OPERAND (index
, 0);
6179 tree hi_index
= TREE_OPERAND (index
, 1);
6181 if (! tree_fits_uhwi_p (lo_index
)
6182 || ! tree_fits_uhwi_p (hi_index
))
6188 this_node_count
= (tree_to_uhwi (hi_index
)
6189 - tree_to_uhwi (lo_index
) + 1);
6192 this_node_count
= 1;
6194 count
+= this_node_count
;
6195 if (mostly_zeros_p (value
))
6196 zero_count
+= this_node_count
;
6199 /* Clear the entire array first if there are any missing
6200 elements, or if the incidence of zero elements is >=
6203 && (count
< maxelt
- minelt
+ 1
6204 || 4 * zero_count
>= 3 * count
))
6208 if (need_to_clear
&& size
> 0)
6211 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6213 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6217 if (!cleared
&& REG_P (target
))
6218 /* Inform later passes that the old value is dead. */
6219 emit_clobber (target
);
6221 /* Store each element of the constructor into the
6222 corresponding element of TARGET, determined by counting the
6224 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6227 HOST_WIDE_INT bitsize
;
6228 HOST_WIDE_INT bitpos
;
6229 rtx xtarget
= target
;
6231 if (cleared
&& initializer_zerop (value
))
6234 mode
= TYPE_MODE (elttype
);
6235 if (mode
== BLKmode
)
6236 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6237 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6240 bitsize
= GET_MODE_BITSIZE (mode
);
6242 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6244 tree lo_index
= TREE_OPERAND (index
, 0);
6245 tree hi_index
= TREE_OPERAND (index
, 1);
6246 rtx index_r
, pos_rtx
;
6247 HOST_WIDE_INT lo
, hi
, count
;
6250 /* If the range is constant and "small", unroll the loop. */
6252 && tree_fits_shwi_p (lo_index
)
6253 && tree_fits_shwi_p (hi_index
)
6254 && (lo
= tree_to_shwi (lo_index
),
6255 hi
= tree_to_shwi (hi_index
),
6256 count
= hi
- lo
+ 1,
6259 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6260 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6263 lo
-= minelt
; hi
-= minelt
;
6264 for (; lo
<= hi
; lo
++)
6266 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6269 && !MEM_KEEP_ALIAS_SET_P (target
)
6270 && TREE_CODE (type
) == ARRAY_TYPE
6271 && TYPE_NONALIASED_COMPONENT (type
))
6273 target
= copy_rtx (target
);
6274 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6277 store_constructor_field
6278 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6279 get_alias_set (elttype
));
6284 rtx_code_label
*loop_start
= gen_label_rtx ();
6285 rtx_code_label
*loop_end
= gen_label_rtx ();
6288 expand_normal (hi_index
);
6290 index
= build_decl (EXPR_LOCATION (exp
),
6291 VAR_DECL
, NULL_TREE
, domain
);
6292 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6293 SET_DECL_RTL (index
, index_r
);
6294 store_expr (lo_index
, index_r
, 0, false);
6296 /* Build the head of the loop. */
6297 do_pending_stack_adjust ();
6298 emit_label (loop_start
);
6300 /* Assign value to element index. */
6302 fold_convert (ssizetype
,
6303 fold_build2 (MINUS_EXPR
,
6306 TYPE_MIN_VALUE (domain
)));
6309 size_binop (MULT_EXPR
, position
,
6310 fold_convert (ssizetype
,
6311 TYPE_SIZE_UNIT (elttype
)));
6313 pos_rtx
= expand_normal (position
);
6314 xtarget
= offset_address (target
, pos_rtx
,
6315 highest_pow2_factor (position
));
6316 xtarget
= adjust_address (xtarget
, mode
, 0);
6317 if (TREE_CODE (value
) == CONSTRUCTOR
)
6318 store_constructor (value
, xtarget
, cleared
,
6319 bitsize
/ BITS_PER_UNIT
);
6321 store_expr (value
, xtarget
, 0, false);
6323 /* Generate a conditional jump to exit the loop. */
6324 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6326 jumpif (exit_cond
, loop_end
, -1);
6328 /* Update the loop counter, and jump to the head of
6330 expand_assignment (index
,
6331 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6332 index
, integer_one_node
),
6335 emit_jump (loop_start
);
6337 /* Build the end of the loop. */
6338 emit_label (loop_end
);
6341 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6342 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6347 index
= ssize_int (1);
6350 index
= fold_convert (ssizetype
,
6351 fold_build2 (MINUS_EXPR
,
6354 TYPE_MIN_VALUE (domain
)));
6357 size_binop (MULT_EXPR
, index
,
6358 fold_convert (ssizetype
,
6359 TYPE_SIZE_UNIT (elttype
)));
6360 xtarget
= offset_address (target
,
6361 expand_normal (position
),
6362 highest_pow2_factor (position
));
6363 xtarget
= adjust_address (xtarget
, mode
, 0);
6364 store_expr (value
, xtarget
, 0, false);
6369 bitpos
= ((tree_to_shwi (index
) - minelt
)
6370 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6372 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6374 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6375 && TREE_CODE (type
) == ARRAY_TYPE
6376 && TYPE_NONALIASED_COMPONENT (type
))
6378 target
= copy_rtx (target
);
6379 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6381 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6382 cleared
, get_alias_set (elttype
));
6390 unsigned HOST_WIDE_INT idx
;
6391 constructor_elt
*ce
;
6394 int icode
= CODE_FOR_nothing
;
6395 tree elttype
= TREE_TYPE (type
);
6396 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6397 machine_mode eltmode
= TYPE_MODE (elttype
);
6398 HOST_WIDE_INT bitsize
;
6399 HOST_WIDE_INT bitpos
;
6400 rtvec vector
= NULL
;
6402 alias_set_type alias
;
6404 gcc_assert (eltmode
!= BLKmode
);
6406 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6407 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6409 machine_mode mode
= GET_MODE (target
);
6411 icode
= (int) optab_handler (vec_init_optab
, mode
);
6412 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6413 if (icode
!= CODE_FOR_nothing
)
6417 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6418 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6420 icode
= CODE_FOR_nothing
;
6424 if (icode
!= CODE_FOR_nothing
)
6428 vector
= rtvec_alloc (n_elts
);
6429 for (i
= 0; i
< n_elts
; i
++)
6430 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6434 /* If the constructor has fewer elements than the vector,
6435 clear the whole array first. Similarly if this is static
6436 constructor of a non-BLKmode object. */
6439 else if (REG_P (target
) && TREE_STATIC (exp
))
6443 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6446 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6448 int n_elts_here
= tree_to_uhwi
6449 (int_const_binop (TRUNC_DIV_EXPR
,
6450 TYPE_SIZE (TREE_TYPE (value
)),
6451 TYPE_SIZE (elttype
)));
6453 count
+= n_elts_here
;
6454 if (mostly_zeros_p (value
))
6455 zero_count
+= n_elts_here
;
6458 /* Clear the entire vector first if there are any missing elements,
6459 or if the incidence of zero elements is >= 75%. */
6460 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6463 if (need_to_clear
&& size
> 0 && !vector
)
6466 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6468 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6472 /* Inform later passes that the old value is dead. */
6473 if (!cleared
&& !vector
&& REG_P (target
))
6474 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6477 alias
= MEM_ALIAS_SET (target
);
6479 alias
= get_alias_set (elttype
);
6481 /* Store each element of the constructor into the corresponding
6482 element of TARGET, determined by counting the elements. */
6483 for (idx
= 0, i
= 0;
6484 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6485 idx
++, i
+= bitsize
/ elt_size
)
6487 HOST_WIDE_INT eltpos
;
6488 tree value
= ce
->value
;
6490 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6491 if (cleared
&& initializer_zerop (value
))
6495 eltpos
= tree_to_uhwi (ce
->index
);
6501 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6503 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6504 RTVEC_ELT (vector
, eltpos
)
6505 = expand_normal (value
);
6509 machine_mode value_mode
=
6510 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6511 ? TYPE_MODE (TREE_TYPE (value
))
6513 bitpos
= eltpos
* elt_size
;
6514 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6515 value
, cleared
, alias
);
6520 emit_insn (GEN_FCN (icode
)
6522 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6531 /* Store the value of EXP (an expression tree)
6532 into a subfield of TARGET which has mode MODE and occupies
6533 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6534 If MODE is VOIDmode, it means that we are storing into a bit-field.
6536 BITREGION_START is bitpos of the first bitfield in this region.
6537 BITREGION_END is the bitpos of the ending bitfield in this region.
6538 These two fields are 0, if the C++ memory model does not apply,
6539 or we are not interested in keeping track of bitfield regions.
6541 Always return const0_rtx unless we have something particular to
6544 ALIAS_SET is the alias set for the destination. This value will
6545 (in general) be different from that for TARGET, since TARGET is a
6546 reference to the containing structure.
6548 If NONTEMPORAL is true, try generating a nontemporal store. */
6551 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6552 unsigned HOST_WIDE_INT bitregion_start
,
6553 unsigned HOST_WIDE_INT bitregion_end
,
6554 machine_mode mode
, tree exp
,
6555 alias_set_type alias_set
, bool nontemporal
)
6557 if (TREE_CODE (exp
) == ERROR_MARK
)
6560 /* If we have nothing to store, do nothing unless the expression has
6563 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6565 if (GET_CODE (target
) == CONCAT
)
6567 /* We're storing into a struct containing a single __complex. */
6569 gcc_assert (!bitpos
);
6570 return store_expr (exp
, target
, 0, nontemporal
);
6573 /* If the structure is in a register or if the component
6574 is a bit field, we cannot use addressing to access it.
6575 Use bit-field techniques or SUBREG to store in it. */
6577 if (mode
== VOIDmode
6578 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6579 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6580 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6582 || GET_CODE (target
) == SUBREG
6583 /* If the field isn't aligned enough to store as an ordinary memref,
6584 store it as a bit field. */
6586 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6587 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6588 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6589 || (bitpos
% BITS_PER_UNIT
!= 0)))
6590 || (bitsize
>= 0 && mode
!= BLKmode
6591 && GET_MODE_BITSIZE (mode
) > bitsize
)
6592 /* If the RHS and field are a constant size and the size of the
6593 RHS isn't the same size as the bitfield, we must use bitfield
6596 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6597 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6598 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6599 decl we must use bitfield operations. */
6601 && TREE_CODE (exp
) == MEM_REF
6602 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6603 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6604 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6605 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6610 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6611 implies a mask operation. If the precision is the same size as
6612 the field we're storing into, that mask is redundant. This is
6613 particularly common with bit field assignments generated by the
6615 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6618 tree type
= TREE_TYPE (exp
);
6619 if (INTEGRAL_TYPE_P (type
)
6620 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6621 && bitsize
== TYPE_PRECISION (type
))
6623 tree op
= gimple_assign_rhs1 (nop_def
);
6624 type
= TREE_TYPE (op
);
6625 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6630 temp
= expand_normal (exp
);
6632 /* If BITSIZE is narrower than the size of the type of EXP
6633 we will be narrowing TEMP. Normally, what's wanted are the
6634 low-order bits. However, if EXP's type is a record and this is
6635 big-endian machine, we want the upper BITSIZE bits. */
6636 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6637 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6638 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6639 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6640 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6643 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6644 if (mode
!= VOIDmode
&& mode
!= BLKmode
6645 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6646 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6648 /* If the modes of TEMP and TARGET are both BLKmode, both
6649 must be in memory and BITPOS must be aligned on a byte
6650 boundary. If so, we simply do a block copy. Likewise
6651 for a BLKmode-like TARGET. */
6652 if (GET_MODE (temp
) == BLKmode
6653 && (GET_MODE (target
) == BLKmode
6655 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6656 && (bitpos
% BITS_PER_UNIT
) == 0
6657 && (bitsize
% BITS_PER_UNIT
) == 0)))
6659 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6660 && (bitpos
% BITS_PER_UNIT
) == 0);
6662 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6663 emit_block_move (target
, temp
,
6664 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6671 /* Handle calls that return values in multiple non-contiguous locations.
6672 The Irix 6 ABI has examples of this. */
6673 if (GET_CODE (temp
) == PARALLEL
)
6675 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6677 if (mode
== BLKmode
|| mode
== VOIDmode
)
6678 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6679 temp_target
= gen_reg_rtx (mode
);
6680 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6683 else if (mode
== BLKmode
)
6685 /* Handle calls that return BLKmode values in registers. */
6686 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6688 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6689 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6694 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6696 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6697 temp_target
= gen_reg_rtx (mode
);
6699 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6700 temp_target
, mode
, mode
);
6705 /* Store the value in the bitfield. */
6706 store_bit_field (target
, bitsize
, bitpos
,
6707 bitregion_start
, bitregion_end
,
6714 /* Now build a reference to just the desired component. */
6715 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6717 if (to_rtx
== target
)
6718 to_rtx
= copy_rtx (to_rtx
);
6720 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6721 set_mem_alias_set (to_rtx
, alias_set
);
6723 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6727 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6728 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6729 codes and find the ultimate containing object, which we return.
6731 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6732 bit position, and *PUNSIGNEDP to the signedness of the field.
6733 If the position of the field is variable, we store a tree
6734 giving the variable offset (in units) in *POFFSET.
6735 This offset is in addition to the bit position.
6736 If the position is not variable, we store 0 in *POFFSET.
6738 If any of the extraction expressions is volatile,
6739 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6741 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6742 Otherwise, it is a mode that can be used to access the field.
6744 If the field describes a variable-sized object, *PMODE is set to
6745 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6746 this case, but the address of the object can be found.
6748 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6749 look through nodes that serve as markers of a greater alignment than
6750 the one that can be deduced from the expression. These nodes make it
6751 possible for front-ends to prevent temporaries from being created by
6752 the middle-end on alignment considerations. For that purpose, the
6753 normal operating mode at high-level is to always pass FALSE so that
6754 the ultimate containing object is really returned; moreover, the
6755 associated predicate handled_component_p will always return TRUE
6756 on these nodes, thus indicating that they are essentially handled
6757 by get_inner_reference. TRUE should only be passed when the caller
6758 is scanning the expression in order to build another representation
6759 and specifically knows how to handle these nodes; as such, this is
6760 the normal operating mode in the RTL expanders. */
6763 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6764 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6765 machine_mode
*pmode
, int *punsignedp
,
6766 int *pvolatilep
, bool keep_aligning
)
6769 machine_mode mode
= VOIDmode
;
6770 bool blkmode_bitfield
= false;
6771 tree offset
= size_zero_node
;
6772 offset_int bit_offset
= 0;
6774 /* First get the mode, signedness, and size. We do this from just the
6775 outermost expression. */
6777 if (TREE_CODE (exp
) == COMPONENT_REF
)
6779 tree field
= TREE_OPERAND (exp
, 1);
6780 size_tree
= DECL_SIZE (field
);
6781 if (flag_strict_volatile_bitfields
> 0
6782 && TREE_THIS_VOLATILE (exp
)
6783 && DECL_BIT_FIELD_TYPE (field
)
6784 && DECL_MODE (field
) != BLKmode
)
6785 /* Volatile bitfields should be accessed in the mode of the
6786 field's type, not the mode computed based on the bit
6788 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6789 else if (!DECL_BIT_FIELD (field
))
6790 mode
= DECL_MODE (field
);
6791 else if (DECL_MODE (field
) == BLKmode
)
6792 blkmode_bitfield
= true;
6794 *punsignedp
= DECL_UNSIGNED (field
);
6796 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6798 size_tree
= TREE_OPERAND (exp
, 1);
6799 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6800 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6802 /* For vector types, with the correct size of access, use the mode of
6804 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6805 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6806 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6807 mode
= TYPE_MODE (TREE_TYPE (exp
));
6811 mode
= TYPE_MODE (TREE_TYPE (exp
));
6812 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6814 if (mode
== BLKmode
)
6815 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6817 *pbitsize
= GET_MODE_BITSIZE (mode
);
6822 if (! tree_fits_uhwi_p (size_tree
))
6823 mode
= BLKmode
, *pbitsize
= -1;
6825 *pbitsize
= tree_to_uhwi (size_tree
);
6828 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6829 and find the ultimate containing object. */
6832 switch (TREE_CODE (exp
))
6835 bit_offset
+= wi::to_offset (TREE_OPERAND (exp
, 2));
6840 tree field
= TREE_OPERAND (exp
, 1);
6841 tree this_offset
= component_ref_field_offset (exp
);
6843 /* If this field hasn't been filled in yet, don't go past it.
6844 This should only happen when folding expressions made during
6845 type construction. */
6846 if (this_offset
== 0)
6849 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6850 bit_offset
+= wi::to_offset (DECL_FIELD_BIT_OFFSET (field
));
6852 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6857 case ARRAY_RANGE_REF
:
6859 tree index
= TREE_OPERAND (exp
, 1);
6860 tree low_bound
= array_ref_low_bound (exp
);
6861 tree unit_size
= array_ref_element_size (exp
);
6863 /* We assume all arrays have sizes that are a multiple of a byte.
6864 First subtract the lower bound, if any, in the type of the
6865 index, then convert to sizetype and multiply by the size of
6866 the array element. */
6867 if (! integer_zerop (low_bound
))
6868 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6871 offset
= size_binop (PLUS_EXPR
, offset
,
6872 size_binop (MULT_EXPR
,
6873 fold_convert (sizetype
, index
),
6882 bit_offset
+= *pbitsize
;
6885 case VIEW_CONVERT_EXPR
:
6886 if (keep_aligning
&& STRICT_ALIGNMENT
6887 && (TYPE_ALIGN (TREE_TYPE (exp
))
6888 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6889 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6890 < BIGGEST_ALIGNMENT
)
6891 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6892 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6897 /* Hand back the decl for MEM[&decl, off]. */
6898 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6900 tree off
= TREE_OPERAND (exp
, 1);
6901 if (!integer_zerop (off
))
6903 offset_int boff
, coff
= mem_ref_offset (exp
);
6904 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
6907 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6915 /* If any reference in the chain is volatile, the effect is volatile. */
6916 if (TREE_THIS_VOLATILE (exp
))
6919 exp
= TREE_OPERAND (exp
, 0);
6923 /* If OFFSET is constant, see if we can return the whole thing as a
6924 constant bit position. Make sure to handle overflow during
6926 if (TREE_CODE (offset
) == INTEGER_CST
)
6928 offset_int tem
= wi::sext (wi::to_offset (offset
),
6929 TYPE_PRECISION (sizetype
));
6930 tem
= wi::lshift (tem
, LOG2_BITS_PER_UNIT
);
6932 if (wi::fits_shwi_p (tem
))
6934 *pbitpos
= tem
.to_shwi ();
6935 *poffset
= offset
= NULL_TREE
;
6939 /* Otherwise, split it up. */
6942 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6943 if (wi::neg_p (bit_offset
))
6945 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
6946 offset_int tem
= bit_offset
.and_not (mask
);
6947 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6948 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6950 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
6951 offset
= size_binop (PLUS_EXPR
, offset
,
6952 wide_int_to_tree (sizetype
, tem
));
6955 *pbitpos
= bit_offset
.to_shwi ();
6959 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6960 if (mode
== VOIDmode
6962 && (*pbitpos
% BITS_PER_UNIT
) == 0
6963 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6971 /* Return a tree of sizetype representing the size, in bytes, of the element
6972 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6975 array_ref_element_size (tree exp
)
6977 tree aligned_size
= TREE_OPERAND (exp
, 3);
6978 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6979 location_t loc
= EXPR_LOCATION (exp
);
6981 /* If a size was specified in the ARRAY_REF, it's the size measured
6982 in alignment units of the element type. So multiply by that value. */
6985 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6986 sizetype from another type of the same width and signedness. */
6987 if (TREE_TYPE (aligned_size
) != sizetype
)
6988 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6989 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6990 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6993 /* Otherwise, take the size from that of the element type. Substitute
6994 any PLACEHOLDER_EXPR that we have. */
6996 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6999 /* Return a tree representing the lower bound of the array mentioned in
7000 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7003 array_ref_low_bound (tree exp
)
7005 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7007 /* If a lower bound is specified in EXP, use it. */
7008 if (TREE_OPERAND (exp
, 2))
7009 return TREE_OPERAND (exp
, 2);
7011 /* Otherwise, if there is a domain type and it has a lower bound, use it,
7012 substituting for a PLACEHOLDER_EXPR as needed. */
7013 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
7014 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
7016 /* Otherwise, return a zero of the appropriate type. */
7017 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
7020 /* Returns true if REF is an array reference to an array at the end of
7021 a structure. If this is the case, the array may be allocated larger
7022 than its upper bound implies. */
7025 array_at_struct_end_p (tree ref
)
7027 if (TREE_CODE (ref
) != ARRAY_REF
7028 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
7031 while (handled_component_p (ref
))
7033 /* If the reference chain contains a component reference to a
7034 non-union type and there follows another field the reference
7035 is not at the end of a structure. */
7036 if (TREE_CODE (ref
) == COMPONENT_REF
7037 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
7039 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
7040 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
7041 nextf
= DECL_CHAIN (nextf
);
7046 ref
= TREE_OPERAND (ref
, 0);
7049 /* If the reference is based on a declared entity, the size of the array
7050 is constrained by its given domain. */
7057 /* Return a tree representing the upper bound of the array mentioned in
7058 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7061 array_ref_up_bound (tree exp
)
7063 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7065 /* If there is a domain type and it has an upper bound, use it, substituting
7066 for a PLACEHOLDER_EXPR as needed. */
7067 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
7068 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
7070 /* Otherwise fail. */
7074 /* Return a tree representing the offset, in bytes, of the field referenced
7075 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7078 component_ref_field_offset (tree exp
)
7080 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7081 tree field
= TREE_OPERAND (exp
, 1);
7082 location_t loc
= EXPR_LOCATION (exp
);
7084 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7085 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7089 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7090 sizetype from another type of the same width and signedness. */
7091 if (TREE_TYPE (aligned_offset
) != sizetype
)
7092 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7093 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7094 size_int (DECL_OFFSET_ALIGN (field
)
7098 /* Otherwise, take the offset from that of the field. Substitute
7099 any PLACEHOLDER_EXPR that we have. */
7101 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7104 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7106 static unsigned HOST_WIDE_INT
7107 target_align (const_tree target
)
7109 /* We might have a chain of nested references with intermediate misaligning
7110 bitfields components, so need to recurse to find out. */
7112 unsigned HOST_WIDE_INT this_align
, outer_align
;
7114 switch (TREE_CODE (target
))
7120 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7121 outer_align
= target_align (TREE_OPERAND (target
, 0));
7122 return MIN (this_align
, outer_align
);
7125 case ARRAY_RANGE_REF
:
7126 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7127 outer_align
= target_align (TREE_OPERAND (target
, 0));
7128 return MIN (this_align
, outer_align
);
7131 case NON_LVALUE_EXPR
:
7132 case VIEW_CONVERT_EXPR
:
7133 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7134 outer_align
= target_align (TREE_OPERAND (target
, 0));
7135 return MAX (this_align
, outer_align
);
7138 return TYPE_ALIGN (TREE_TYPE (target
));
7143 /* Given an rtx VALUE that may contain additions and multiplications, return
7144 an equivalent value that just refers to a register, memory, or constant.
7145 This is done by generating instructions to perform the arithmetic and
7146 returning a pseudo-register containing the value.
7148 The returned value may be a REG, SUBREG, MEM or constant. */
7151 force_operand (rtx value
, rtx target
)
7154 /* Use subtarget as the target for operand 0 of a binary operation. */
7155 rtx subtarget
= get_subtarget (target
);
7156 enum rtx_code code
= GET_CODE (value
);
7158 /* Check for subreg applied to an expression produced by loop optimizer. */
7160 && !REG_P (SUBREG_REG (value
))
7161 && !MEM_P (SUBREG_REG (value
)))
7164 = simplify_gen_subreg (GET_MODE (value
),
7165 force_reg (GET_MODE (SUBREG_REG (value
)),
7166 force_operand (SUBREG_REG (value
),
7168 GET_MODE (SUBREG_REG (value
)),
7169 SUBREG_BYTE (value
));
7170 code
= GET_CODE (value
);
7173 /* Check for a PIC address load. */
7174 if ((code
== PLUS
|| code
== MINUS
)
7175 && XEXP (value
, 0) == pic_offset_table_rtx
7176 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7177 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7178 || GET_CODE (XEXP (value
, 1)) == CONST
))
7181 subtarget
= gen_reg_rtx (GET_MODE (value
));
7182 emit_move_insn (subtarget
, value
);
7186 if (ARITHMETIC_P (value
))
7188 op2
= XEXP (value
, 1);
7189 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7191 if (code
== MINUS
&& CONST_INT_P (op2
))
7194 op2
= negate_rtx (GET_MODE (value
), op2
);
7197 /* Check for an addition with OP2 a constant integer and our first
7198 operand a PLUS of a virtual register and something else. In that
7199 case, we want to emit the sum of the virtual register and the
7200 constant first and then add the other value. This allows virtual
7201 register instantiation to simply modify the constant rather than
7202 creating another one around this addition. */
7203 if (code
== PLUS
&& CONST_INT_P (op2
)
7204 && GET_CODE (XEXP (value
, 0)) == PLUS
7205 && REG_P (XEXP (XEXP (value
, 0), 0))
7206 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7207 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7209 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7210 XEXP (XEXP (value
, 0), 0), op2
,
7211 subtarget
, 0, OPTAB_LIB_WIDEN
);
7212 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7213 force_operand (XEXP (XEXP (value
,
7215 target
, 0, OPTAB_LIB_WIDEN
);
7218 op1
= force_operand (XEXP (value
, 0), subtarget
);
7219 op2
= force_operand (op2
, NULL_RTX
);
7223 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7225 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7226 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7227 target
, 1, OPTAB_LIB_WIDEN
);
7229 return expand_divmod (0,
7230 FLOAT_MODE_P (GET_MODE (value
))
7231 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7232 GET_MODE (value
), op1
, op2
, target
, 0);
7234 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7237 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7240 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7243 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7244 target
, 0, OPTAB_LIB_WIDEN
);
7246 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7247 target
, 1, OPTAB_LIB_WIDEN
);
7250 if (UNARY_P (value
))
7253 target
= gen_reg_rtx (GET_MODE (value
));
7254 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7261 case FLOAT_TRUNCATE
:
7262 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7267 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7271 case UNSIGNED_FLOAT
:
7272 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7276 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7280 #ifdef INSN_SCHEDULING
7281 /* On machines that have insn scheduling, we want all memory reference to be
7282 explicit, so we need to deal with such paradoxical SUBREGs. */
7283 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7285 = simplify_gen_subreg (GET_MODE (value
),
7286 force_reg (GET_MODE (SUBREG_REG (value
)),
7287 force_operand (SUBREG_REG (value
),
7289 GET_MODE (SUBREG_REG (value
)),
7290 SUBREG_BYTE (value
));
7296 /* Subroutine of expand_expr: return nonzero iff there is no way that
7297 EXP can reference X, which is being modified. TOP_P is nonzero if this
7298 call is going to be used to determine whether we need a temporary
7299 for EXP, as opposed to a recursive call to this function.
7301 It is always safe for this routine to return zero since it merely
7302 searches for optimization opportunities. */
7305 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7311 /* If EXP has varying size, we MUST use a target since we currently
7312 have no way of allocating temporaries of variable size
7313 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7314 So we assume here that something at a higher level has prevented a
7315 clash. This is somewhat bogus, but the best we can do. Only
7316 do this when X is BLKmode and when we are at the top level. */
7317 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7318 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7319 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7320 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7321 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7323 && GET_MODE (x
) == BLKmode
)
7324 /* If X is in the outgoing argument area, it is always safe. */
7326 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7327 || (GET_CODE (XEXP (x
, 0)) == PLUS
7328 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7331 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7332 find the underlying pseudo. */
7333 if (GET_CODE (x
) == SUBREG
)
7336 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7340 /* Now look at our tree code and possibly recurse. */
7341 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7343 case tcc_declaration
:
7344 exp_rtl
= DECL_RTL_IF_SET (exp
);
7350 case tcc_exceptional
:
7351 if (TREE_CODE (exp
) == TREE_LIST
)
7355 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7357 exp
= TREE_CHAIN (exp
);
7360 if (TREE_CODE (exp
) != TREE_LIST
)
7361 return safe_from_p (x
, exp
, 0);
7364 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7366 constructor_elt
*ce
;
7367 unsigned HOST_WIDE_INT idx
;
7369 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7370 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7371 || !safe_from_p (x
, ce
->value
, 0))
7375 else if (TREE_CODE (exp
) == ERROR_MARK
)
7376 return 1; /* An already-visited SAVE_EXPR? */
7381 /* The only case we look at here is the DECL_INITIAL inside a
7383 return (TREE_CODE (exp
) != DECL_EXPR
7384 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7385 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7386 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7389 case tcc_comparison
:
7390 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7395 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7397 case tcc_expression
:
7400 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7401 the expression. If it is set, we conflict iff we are that rtx or
7402 both are in memory. Otherwise, we check all operands of the
7403 expression recursively. */
7405 switch (TREE_CODE (exp
))
7408 /* If the operand is static or we are static, we can't conflict.
7409 Likewise if we don't conflict with the operand at all. */
7410 if (staticp (TREE_OPERAND (exp
, 0))
7411 || TREE_STATIC (exp
)
7412 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7415 /* Otherwise, the only way this can conflict is if we are taking
7416 the address of a DECL a that address if part of X, which is
7418 exp
= TREE_OPERAND (exp
, 0);
7421 if (!DECL_RTL_SET_P (exp
)
7422 || !MEM_P (DECL_RTL (exp
)))
7425 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7431 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7432 get_alias_set (exp
)))
7437 /* Assume that the call will clobber all hard registers and
7439 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7444 case WITH_CLEANUP_EXPR
:
7445 case CLEANUP_POINT_EXPR
:
7446 /* Lowered by gimplify.c. */
7450 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7456 /* If we have an rtx, we do not need to scan our operands. */
7460 nops
= TREE_OPERAND_LENGTH (exp
);
7461 for (i
= 0; i
< nops
; i
++)
7462 if (TREE_OPERAND (exp
, i
) != 0
7463 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7469 /* Should never get a type here. */
7473 /* If we have an rtl, find any enclosed object. Then see if we conflict
7477 if (GET_CODE (exp_rtl
) == SUBREG
)
7479 exp_rtl
= SUBREG_REG (exp_rtl
);
7481 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7485 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7486 are memory and they conflict. */
7487 return ! (rtx_equal_p (x
, exp_rtl
)
7488 || (MEM_P (x
) && MEM_P (exp_rtl
)
7489 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7492 /* If we reach here, it is safe. */
7497 /* Return the highest power of two that EXP is known to be a multiple of.
7498 This is used in updating alignment of MEMs in array references. */
7500 unsigned HOST_WIDE_INT
7501 highest_pow2_factor (const_tree exp
)
7503 unsigned HOST_WIDE_INT ret
;
7504 int trailing_zeros
= tree_ctz (exp
);
7505 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7506 return BIGGEST_ALIGNMENT
;
7507 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7508 if (ret
> BIGGEST_ALIGNMENT
)
7509 return BIGGEST_ALIGNMENT
;
7513 /* Similar, except that the alignment requirements of TARGET are
7514 taken into account. Assume it is at least as aligned as its
7515 type, unless it is a COMPONENT_REF in which case the layout of
7516 the structure gives the alignment. */
7518 static unsigned HOST_WIDE_INT
7519 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7521 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7522 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7524 return MAX (factor
, talign
);
7527 #ifdef HAVE_conditional_move
7528 /* Convert the tree comparison code TCODE to the rtl one where the
7529 signedness is UNSIGNEDP. */
7531 static enum rtx_code
7532 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7544 code
= unsignedp
? LTU
: LT
;
7547 code
= unsignedp
? LEU
: LE
;
7550 code
= unsignedp
? GTU
: GT
;
7553 code
= unsignedp
? GEU
: GE
;
7555 case UNORDERED_EXPR
:
7587 /* Subroutine of expand_expr. Expand the two operands of a binary
7588 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7589 The value may be stored in TARGET if TARGET is nonzero. The
7590 MODIFIER argument is as documented by expand_expr. */
7593 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7594 enum expand_modifier modifier
)
7596 if (! safe_from_p (target
, exp1
, 1))
7598 if (operand_equal_p (exp0
, exp1
, 0))
7600 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7601 *op1
= copy_rtx (*op0
);
7605 /* If we need to preserve evaluation order, copy exp0 into its own
7606 temporary variable so that it can't be clobbered by exp1. */
7607 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7608 exp0
= save_expr (exp0
);
7609 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7610 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7615 /* Return a MEM that contains constant EXP. DEFER is as for
7616 output_constant_def and MODIFIER is as for expand_expr. */
7619 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7623 mem
= output_constant_def (exp
, defer
);
7624 if (modifier
!= EXPAND_INITIALIZER
)
7625 mem
= use_anchored_address (mem
);
7629 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7630 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7633 expand_expr_addr_expr_1 (tree exp
, rtx target
, machine_mode tmode
,
7634 enum expand_modifier modifier
, addr_space_t as
)
7636 rtx result
, subtarget
;
7638 HOST_WIDE_INT bitsize
, bitpos
;
7639 int volatilep
, unsignedp
;
7642 /* If we are taking the address of a constant and are at the top level,
7643 we have to use output_constant_def since we can't call force_const_mem
7645 /* ??? This should be considered a front-end bug. We should not be
7646 generating ADDR_EXPR of something that isn't an LVALUE. The only
7647 exception here is STRING_CST. */
7648 if (CONSTANT_CLASS_P (exp
))
7650 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7651 if (modifier
< EXPAND_SUM
)
7652 result
= force_operand (result
, target
);
7656 /* Everything must be something allowed by is_gimple_addressable. */
7657 switch (TREE_CODE (exp
))
7660 /* This case will happen via recursion for &a->b. */
7661 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7665 tree tem
= TREE_OPERAND (exp
, 0);
7666 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7667 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7668 return expand_expr (tem
, target
, tmode
, modifier
);
7672 /* Expand the initializer like constants above. */
7673 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7675 if (modifier
< EXPAND_SUM
)
7676 result
= force_operand (result
, target
);
7680 /* The real part of the complex number is always first, therefore
7681 the address is the same as the address of the parent object. */
7684 inner
= TREE_OPERAND (exp
, 0);
7688 /* The imaginary part of the complex number is always second.
7689 The expression is therefore always offset by the size of the
7692 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7693 inner
= TREE_OPERAND (exp
, 0);
7696 case COMPOUND_LITERAL_EXPR
:
7697 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7698 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7699 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7700 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7701 the initializers aren't gimplified. */
7702 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7703 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7704 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7705 target
, tmode
, modifier
, as
);
7708 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7709 expand_expr, as that can have various side effects; LABEL_DECLs for
7710 example, may not have their DECL_RTL set yet. Expand the rtl of
7711 CONSTRUCTORs too, which should yield a memory reference for the
7712 constructor's contents. Assume language specific tree nodes can
7713 be expanded in some interesting way. */
7714 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7716 || TREE_CODE (exp
) == CONSTRUCTOR
7717 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7719 result
= expand_expr (exp
, target
, tmode
,
7720 modifier
== EXPAND_INITIALIZER
7721 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7723 /* If the DECL isn't in memory, then the DECL wasn't properly
7724 marked TREE_ADDRESSABLE, which will be either a front-end
7725 or a tree optimizer bug. */
7727 if (TREE_ADDRESSABLE (exp
)
7729 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7731 error ("local frame unavailable (naked function?)");
7735 gcc_assert (MEM_P (result
));
7736 result
= XEXP (result
, 0);
7738 /* ??? Is this needed anymore? */
7740 TREE_USED (exp
) = 1;
7742 if (modifier
!= EXPAND_INITIALIZER
7743 && modifier
!= EXPAND_CONST_ADDRESS
7744 && modifier
!= EXPAND_SUM
)
7745 result
= force_operand (result
, target
);
7749 /* Pass FALSE as the last argument to get_inner_reference although
7750 we are expanding to RTL. The rationale is that we know how to
7751 handle "aligning nodes" here: we can just bypass them because
7752 they won't change the final object whose address will be returned
7753 (they actually exist only for that purpose). */
7754 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7755 &mode1
, &unsignedp
, &volatilep
, false);
7759 /* We must have made progress. */
7760 gcc_assert (inner
!= exp
);
7762 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7763 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7764 inner alignment, force the inner to be sufficiently aligned. */
7765 if (CONSTANT_CLASS_P (inner
)
7766 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7768 inner
= copy_node (inner
);
7769 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7770 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7771 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7773 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7779 if (modifier
!= EXPAND_NORMAL
)
7780 result
= force_operand (result
, NULL
);
7781 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7782 modifier
== EXPAND_INITIALIZER
7783 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7785 /* expand_expr is allowed to return an object in a mode other
7786 than TMODE. If it did, we need to convert. */
7787 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7788 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7789 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7790 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7791 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7793 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7794 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7797 subtarget
= bitpos
? NULL_RTX
: target
;
7798 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7799 1, OPTAB_LIB_WIDEN
);
7805 /* Someone beforehand should have rejected taking the address
7806 of such an object. */
7807 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7809 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7810 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7811 if (modifier
< EXPAND_SUM
)
7812 result
= force_operand (result
, target
);
7818 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7819 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7822 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
7823 enum expand_modifier modifier
)
7825 addr_space_t as
= ADDR_SPACE_GENERIC
;
7826 machine_mode address_mode
= Pmode
;
7827 machine_mode pointer_mode
= ptr_mode
;
7831 /* Target mode of VOIDmode says "whatever's natural". */
7832 if (tmode
== VOIDmode
)
7833 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7835 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7837 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7838 address_mode
= targetm
.addr_space
.address_mode (as
);
7839 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7842 /* We can get called with some Weird Things if the user does silliness
7843 like "(short) &a". In that case, convert_memory_address won't do
7844 the right thing, so ignore the given target mode. */
7845 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7846 tmode
= address_mode
;
7848 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7849 tmode
, modifier
, as
);
7851 /* Despite expand_expr claims concerning ignoring TMODE when not
7852 strictly convenient, stuff breaks if we don't honor it. Note
7853 that combined with the above, we only do this for pointer modes. */
7854 rmode
= GET_MODE (result
);
7855 if (rmode
== VOIDmode
)
7858 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7863 /* Generate code for computing CONSTRUCTOR EXP.
7864 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7865 is TRUE, instead of creating a temporary variable in memory
7866 NULL is returned and the caller needs to handle it differently. */
7869 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7870 bool avoid_temp_mem
)
7872 tree type
= TREE_TYPE (exp
);
7873 machine_mode mode
= TYPE_MODE (type
);
7875 /* Try to avoid creating a temporary at all. This is possible
7876 if all of the initializer is zero.
7877 FIXME: try to handle all [0..255] initializers we can handle
7879 if (TREE_STATIC (exp
)
7880 && !TREE_ADDRESSABLE (exp
)
7881 && target
!= 0 && mode
== BLKmode
7882 && all_zeros_p (exp
))
7884 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7888 /* All elts simple constants => refer to a constant in memory. But
7889 if this is a non-BLKmode mode, let it store a field at a time
7890 since that should make a CONST_INT, CONST_WIDE_INT or
7891 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7892 use, it is best to store directly into the target unless the type
7893 is large enough that memcpy will be used. If we are making an
7894 initializer and all operands are constant, put it in memory as
7897 FIXME: Avoid trying to fill vector constructors piece-meal.
7898 Output them with output_constant_def below unless we're sure
7899 they're zeros. This should go away when vector initializers
7900 are treated like VECTOR_CST instead of arrays. */
7901 if ((TREE_STATIC (exp
)
7902 && ((mode
== BLKmode
7903 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7904 || TREE_ADDRESSABLE (exp
)
7905 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7906 && (! can_move_by_pieces
7907 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7909 && ! mostly_zeros_p (exp
))))
7910 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7911 && TREE_CONSTANT (exp
)))
7918 constructor
= expand_expr_constant (exp
, 1, modifier
);
7920 if (modifier
!= EXPAND_CONST_ADDRESS
7921 && modifier
!= EXPAND_INITIALIZER
7922 && modifier
!= EXPAND_SUM
)
7923 constructor
= validize_mem (constructor
);
7928 /* Handle calls that pass values in multiple non-contiguous
7929 locations. The Irix 6 ABI has examples of this. */
7930 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7931 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7936 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
7939 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7944 /* expand_expr: generate code for computing expression EXP.
7945 An rtx for the computed value is returned. The value is never null.
7946 In the case of a void EXP, const0_rtx is returned.
7948 The value may be stored in TARGET if TARGET is nonzero.
7949 TARGET is just a suggestion; callers must assume that
7950 the rtx returned may not be the same as TARGET.
7952 If TARGET is CONST0_RTX, it means that the value will be ignored.
7954 If TMODE is not VOIDmode, it suggests generating the
7955 result in mode TMODE. But this is done only when convenient.
7956 Otherwise, TMODE is ignored and the value generated in its natural mode.
7957 TMODE is just a suggestion; callers must assume that
7958 the rtx returned may not have mode TMODE.
7960 Note that TARGET may have neither TMODE nor MODE. In that case, it
7961 probably will not be used.
7963 If MODIFIER is EXPAND_SUM then when EXP is an addition
7964 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7965 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7966 products as above, or REG or MEM, or constant.
7967 Ordinarily in such cases we would output mul or add instructions
7968 and then return a pseudo reg containing the sum.
7970 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7971 it also marks a label as absolutely required (it can't be dead).
7972 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7973 This is used for outputting expressions used in initializers.
7975 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7976 with a constant address even if that address is not normally legitimate.
7977 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7979 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7980 a call parameter. Such targets require special care as we haven't yet
7981 marked TARGET so that it's safe from being trashed by libcalls. We
7982 don't want to use TARGET for anything but the final result;
7983 Intermediate values must go elsewhere. Additionally, calls to
7984 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7986 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7987 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7988 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7989 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7992 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7993 In this case, we don't adjust a returned MEM rtx that wouldn't be
7994 sufficiently aligned for its mode; instead, it's up to the caller
7995 to deal with it afterwards. This is used to make sure that unaligned
7996 base objects for which out-of-bounds accesses are supported, for
7997 example record types with trailing arrays, aren't realigned behind
7998 the back of the caller.
7999 The normal operating mode is to pass FALSE for this parameter. */
8002 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8003 enum expand_modifier modifier
, rtx
*alt_rtl
,
8004 bool inner_reference_p
)
8008 /* Handle ERROR_MARK before anybody tries to access its type. */
8009 if (TREE_CODE (exp
) == ERROR_MARK
8010 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8012 ret
= CONST0_RTX (tmode
);
8013 return ret
? ret
: const0_rtx
;
8016 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8021 /* Try to expand the conditional expression which is represented by
8022 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8023 return the rtl reg which repsents the result. Otherwise return
8027 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8028 tree treeop1 ATTRIBUTE_UNUSED
,
8029 tree treeop2 ATTRIBUTE_UNUSED
)
8031 #ifdef HAVE_conditional_move
8033 rtx op00
, op01
, op1
, op2
;
8034 enum rtx_code comparison_code
;
8035 machine_mode comparison_mode
;
8038 tree type
= TREE_TYPE (treeop1
);
8039 int unsignedp
= TYPE_UNSIGNED (type
);
8040 machine_mode mode
= TYPE_MODE (type
);
8041 machine_mode orig_mode
= mode
;
8043 /* If we cannot do a conditional move on the mode, try doing it
8044 with the promoted mode. */
8045 if (!can_conditionally_move_p (mode
))
8047 mode
= promote_mode (type
, mode
, &unsignedp
);
8048 if (!can_conditionally_move_p (mode
))
8050 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8053 temp
= assign_temp (type
, 0, 1);
8056 expand_operands (treeop1
, treeop2
,
8057 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8059 if (TREE_CODE (treeop0
) == SSA_NAME
8060 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8062 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8063 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8064 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8065 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8066 comparison_mode
= TYPE_MODE (type
);
8067 unsignedp
= TYPE_UNSIGNED (type
);
8068 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8070 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
8072 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8073 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8074 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8075 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8076 unsignedp
= TYPE_UNSIGNED (type
);
8077 comparison_mode
= TYPE_MODE (type
);
8078 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8082 op00
= expand_normal (treeop0
);
8084 comparison_code
= NE
;
8085 comparison_mode
= GET_MODE (op00
);
8086 if (comparison_mode
== VOIDmode
)
8087 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8090 if (GET_MODE (op1
) != mode
)
8091 op1
= gen_lowpart (mode
, op1
);
8093 if (GET_MODE (op2
) != mode
)
8094 op2
= gen_lowpart (mode
, op2
);
8096 /* Try to emit the conditional move. */
8097 insn
= emit_conditional_move (temp
, comparison_code
,
8098 op00
, op01
, comparison_mode
,
8102 /* If we could do the conditional move, emit the sequence,
8106 rtx_insn
*seq
= get_insns ();
8109 return convert_modes (orig_mode
, mode
, temp
, 0);
8112 /* Otherwise discard the sequence and fall back to code with
8120 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8121 enum expand_modifier modifier
)
8123 rtx op0
, op1
, op2
, temp
;
8127 enum tree_code code
= ops
->code
;
8129 rtx subtarget
, original_target
;
8131 bool reduce_bit_field
;
8132 location_t loc
= ops
->location
;
8133 tree treeop0
, treeop1
, treeop2
;
8134 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8135 ? reduce_to_bit_field_precision ((expr), \
8141 mode
= TYPE_MODE (type
);
8142 unsignedp
= TYPE_UNSIGNED (type
);
8148 /* We should be called only on simple (binary or unary) expressions,
8149 exactly those that are valid in gimple expressions that aren't
8150 GIMPLE_SINGLE_RHS (or invalid). */
8151 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8152 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8153 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8155 ignore
= (target
== const0_rtx
8156 || ((CONVERT_EXPR_CODE_P (code
)
8157 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8158 && TREE_CODE (type
) == VOID_TYPE
));
8160 /* We should be called only if we need the result. */
8161 gcc_assert (!ignore
);
8163 /* An operation in what may be a bit-field type needs the
8164 result to be reduced to the precision of the bit-field type,
8165 which is narrower than that of the type's mode. */
8166 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8167 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8169 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8172 /* Use subtarget as the target for operand 0 of a binary operation. */
8173 subtarget
= get_subtarget (target
);
8174 original_target
= target
;
8178 case NON_LVALUE_EXPR
:
8181 if (treeop0
== error_mark_node
)
8184 if (TREE_CODE (type
) == UNION_TYPE
)
8186 tree valtype
= TREE_TYPE (treeop0
);
8188 /* If both input and output are BLKmode, this conversion isn't doing
8189 anything except possibly changing memory attribute. */
8190 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8192 rtx result
= expand_expr (treeop0
, target
, tmode
,
8195 result
= copy_rtx (result
);
8196 set_mem_attributes (result
, type
, 0);
8202 if (TYPE_MODE (type
) != BLKmode
)
8203 target
= gen_reg_rtx (TYPE_MODE (type
));
8205 target
= assign_temp (type
, 1, 1);
8209 /* Store data into beginning of memory target. */
8210 store_expr (treeop0
,
8211 adjust_address (target
, TYPE_MODE (valtype
), 0),
8212 modifier
== EXPAND_STACK_PARM
,
8217 gcc_assert (REG_P (target
));
8219 /* Store this field into a union of the proper type. */
8220 store_field (target
,
8221 MIN ((int_size_in_bytes (TREE_TYPE
8224 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8225 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8228 /* Return the entire union. */
8232 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8234 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8237 /* If the signedness of the conversion differs and OP0 is
8238 a promoted SUBREG, clear that indication since we now
8239 have to do the proper extension. */
8240 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8241 && GET_CODE (op0
) == SUBREG
)
8242 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8244 return REDUCE_BIT_FIELD (op0
);
8247 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8248 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8249 if (GET_MODE (op0
) == mode
)
8252 /* If OP0 is a constant, just convert it into the proper mode. */
8253 else if (CONSTANT_P (op0
))
8255 tree inner_type
= TREE_TYPE (treeop0
);
8256 machine_mode inner_mode
= GET_MODE (op0
);
8258 if (inner_mode
== VOIDmode
)
8259 inner_mode
= TYPE_MODE (inner_type
);
8261 if (modifier
== EXPAND_INITIALIZER
)
8262 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8263 subreg_lowpart_offset (mode
,
8266 op0
= convert_modes (mode
, inner_mode
, op0
,
8267 TYPE_UNSIGNED (inner_type
));
8270 else if (modifier
== EXPAND_INITIALIZER
)
8271 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8273 else if (target
== 0)
8274 op0
= convert_to_mode (mode
, op0
,
8275 TYPE_UNSIGNED (TREE_TYPE
8279 convert_move (target
, op0
,
8280 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8284 return REDUCE_BIT_FIELD (op0
);
8286 case ADDR_SPACE_CONVERT_EXPR
:
8288 tree treeop0_type
= TREE_TYPE (treeop0
);
8290 addr_space_t as_from
;
8292 gcc_assert (POINTER_TYPE_P (type
));
8293 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8295 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8296 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8298 /* Conversions between pointers to the same address space should
8299 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8300 gcc_assert (as_to
!= as_from
);
8302 /* Ask target code to handle conversion between pointers
8303 to overlapping address spaces. */
8304 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8305 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8307 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8308 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8313 /* For disjoint address spaces, converting anything but
8314 a null pointer invokes undefined behaviour. We simply
8315 always return a null pointer here. */
8316 return CONST0_RTX (mode
);
8319 case POINTER_PLUS_EXPR
:
8320 /* Even though the sizetype mode and the pointer's mode can be different
8321 expand is able to handle this correctly and get the correct result out
8322 of the PLUS_EXPR code. */
8323 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8324 if sizetype precision is smaller than pointer precision. */
8325 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8326 treeop1
= fold_convert_loc (loc
, type
,
8327 fold_convert_loc (loc
, ssizetype
,
8329 /* If sizetype precision is larger than pointer precision, truncate the
8330 offset to have matching modes. */
8331 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8332 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8335 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8336 something else, make sure we add the register to the constant and
8337 then to the other thing. This case can occur during strength
8338 reduction and doing it this way will produce better code if the
8339 frame pointer or argument pointer is eliminated.
8341 fold-const.c will ensure that the constant is always in the inner
8342 PLUS_EXPR, so the only case we need to do anything about is if
8343 sp, ap, or fp is our second argument, in which case we must swap
8344 the innermost first argument and our second argument. */
8346 if (TREE_CODE (treeop0
) == PLUS_EXPR
8347 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8348 && TREE_CODE (treeop1
) == VAR_DECL
8349 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8350 || DECL_RTL (treeop1
) == stack_pointer_rtx
8351 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8356 /* If the result is to be ptr_mode and we are adding an integer to
8357 something, we might be forming a constant. So try to use
8358 plus_constant. If it produces a sum and we can't accept it,
8359 use force_operand. This allows P = &ARR[const] to generate
8360 efficient code on machines where a SYMBOL_REF is not a valid
8363 If this is an EXPAND_SUM call, always return the sum. */
8364 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8365 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8367 if (modifier
== EXPAND_STACK_PARM
)
8369 if (TREE_CODE (treeop0
) == INTEGER_CST
8370 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8371 && TREE_CONSTANT (treeop1
))
8375 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8377 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8379 /* Use wi::shwi to ensure that the constant is
8380 truncated according to the mode of OP1, then sign extended
8381 to a HOST_WIDE_INT. Using the constant directly can result
8382 in non-canonical RTL in a 64x32 cross compile. */
8383 wc
= TREE_INT_CST_LOW (treeop0
);
8385 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8386 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8387 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8388 op1
= force_operand (op1
, target
);
8389 return REDUCE_BIT_FIELD (op1
);
8392 else if (TREE_CODE (treeop1
) == INTEGER_CST
8393 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8394 && TREE_CONSTANT (treeop0
))
8398 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8400 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8401 (modifier
== EXPAND_INITIALIZER
8402 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8403 if (! CONSTANT_P (op0
))
8405 op1
= expand_expr (treeop1
, NULL_RTX
,
8406 VOIDmode
, modifier
);
8407 /* Return a PLUS if modifier says it's OK. */
8408 if (modifier
== EXPAND_SUM
8409 || modifier
== EXPAND_INITIALIZER
)
8410 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8413 /* Use wi::shwi to ensure that the constant is
8414 truncated according to the mode of OP1, then sign extended
8415 to a HOST_WIDE_INT. Using the constant directly can result
8416 in non-canonical RTL in a 64x32 cross compile. */
8417 wc
= TREE_INT_CST_LOW (treeop1
);
8419 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8420 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8421 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8422 op0
= force_operand (op0
, target
);
8423 return REDUCE_BIT_FIELD (op0
);
8427 /* Use TER to expand pointer addition of a negated value
8428 as pointer subtraction. */
8429 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8430 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8431 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8432 && TREE_CODE (treeop1
) == SSA_NAME
8433 && TYPE_MODE (TREE_TYPE (treeop0
))
8434 == TYPE_MODE (TREE_TYPE (treeop1
)))
8436 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8439 treeop1
= gimple_assign_rhs1 (def
);
8445 /* No sense saving up arithmetic to be done
8446 if it's all in the wrong mode to form part of an address.
8447 And force_operand won't know whether to sign-extend or
8449 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8450 || mode
!= ptr_mode
)
8452 expand_operands (treeop0
, treeop1
,
8453 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8454 if (op0
== const0_rtx
)
8456 if (op1
== const0_rtx
)
8461 expand_operands (treeop0
, treeop1
,
8462 subtarget
, &op0
, &op1
, modifier
);
8463 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8467 /* For initializers, we are allowed to return a MINUS of two
8468 symbolic constants. Here we handle all cases when both operands
8470 /* Handle difference of two symbolic constants,
8471 for the sake of an initializer. */
8472 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8473 && really_constant_p (treeop0
)
8474 && really_constant_p (treeop1
))
8476 expand_operands (treeop0
, treeop1
,
8477 NULL_RTX
, &op0
, &op1
, modifier
);
8479 /* If the last operand is a CONST_INT, use plus_constant of
8480 the negated constant. Else make the MINUS. */
8481 if (CONST_INT_P (op1
))
8482 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8485 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8488 /* No sense saving up arithmetic to be done
8489 if it's all in the wrong mode to form part of an address.
8490 And force_operand won't know whether to sign-extend or
8492 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8493 || mode
!= ptr_mode
)
8496 expand_operands (treeop0
, treeop1
,
8497 subtarget
, &op0
, &op1
, modifier
);
8499 /* Convert A - const to A + (-const). */
8500 if (CONST_INT_P (op1
))
8502 op1
= negate_rtx (mode
, op1
);
8503 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8508 case WIDEN_MULT_PLUS_EXPR
:
8509 case WIDEN_MULT_MINUS_EXPR
:
8510 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8511 op2
= expand_normal (treeop2
);
8512 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8516 case WIDEN_MULT_EXPR
:
8517 /* If first operand is constant, swap them.
8518 Thus the following special case checks need only
8519 check the second operand. */
8520 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8527 /* First, check if we have a multiplication of one signed and one
8528 unsigned operand. */
8529 if (TREE_CODE (treeop1
) != INTEGER_CST
8530 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8531 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8533 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8534 this_optab
= usmul_widen_optab
;
8535 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8536 != CODE_FOR_nothing
)
8538 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8539 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8542 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8544 /* op0 and op1 might still be constant, despite the above
8545 != INTEGER_CST check. Handle it. */
8546 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8548 op0
= convert_modes (innermode
, mode
, op0
, true);
8549 op1
= convert_modes (innermode
, mode
, op1
, false);
8550 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8551 target
, unsignedp
));
8556 /* Check for a multiplication with matching signedness. */
8557 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8558 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8559 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8560 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8562 tree op0type
= TREE_TYPE (treeop0
);
8563 machine_mode innermode
= TYPE_MODE (op0type
);
8564 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8565 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8566 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8568 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8570 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8571 != CODE_FOR_nothing
)
8573 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8575 /* op0 and op1 might still be constant, despite the above
8576 != INTEGER_CST check. Handle it. */
8577 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8580 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8582 = convert_modes (innermode
, mode
, op1
,
8583 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8584 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8588 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8589 unsignedp
, this_optab
);
8590 return REDUCE_BIT_FIELD (temp
);
8592 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8594 && innermode
== word_mode
)
8597 op0
= expand_normal (treeop0
);
8598 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8599 op1
= convert_modes (innermode
, mode
,
8600 expand_normal (treeop1
),
8601 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8603 op1
= expand_normal (treeop1
);
8604 /* op0 and op1 might still be constant, despite the above
8605 != INTEGER_CST check. Handle it. */
8606 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8607 goto widen_mult_const
;
8608 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8609 unsignedp
, OPTAB_LIB_WIDEN
);
8610 hipart
= gen_highpart (innermode
, temp
);
8611 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8615 emit_move_insn (hipart
, htem
);
8616 return REDUCE_BIT_FIELD (temp
);
8620 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8621 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8622 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8623 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8627 optab opt
= fma_optab
;
8630 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8632 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8634 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8637 gcc_assert (fn
!= NULL_TREE
);
8638 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8639 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8642 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8643 /* The multiplication is commutative - look at its 2nd operand
8644 if the first isn't fed by a negate. */
8647 def0
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8648 /* Swap operands if the 2nd operand is fed by a negate. */
8656 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8661 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8664 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8665 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8668 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8671 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8674 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8677 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8681 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8683 op2
= expand_normal (treeop2
);
8684 op1
= expand_normal (treeop1
);
8686 return expand_ternary_op (TYPE_MODE (type
), opt
,
8687 op0
, op1
, op2
, target
, 0);
8691 /* If this is a fixed-point operation, then we cannot use the code
8692 below because "expand_mult" doesn't support sat/no-sat fixed-point
8694 if (ALL_FIXED_POINT_MODE_P (mode
))
8697 /* If first operand is constant, swap them.
8698 Thus the following special case checks need only
8699 check the second operand. */
8700 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8707 /* Attempt to return something suitable for generating an
8708 indexed address, for machines that support that. */
8710 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8711 && tree_fits_shwi_p (treeop1
))
8713 tree exp1
= treeop1
;
8715 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8719 op0
= force_operand (op0
, NULL_RTX
);
8721 op0
= copy_to_mode_reg (mode
, op0
);
8723 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8724 gen_int_mode (tree_to_shwi (exp1
),
8725 TYPE_MODE (TREE_TYPE (exp1
)))));
8728 if (modifier
== EXPAND_STACK_PARM
)
8731 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8732 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8734 case TRUNC_DIV_EXPR
:
8735 case FLOOR_DIV_EXPR
:
8737 case ROUND_DIV_EXPR
:
8738 case EXACT_DIV_EXPR
:
8739 /* If this is a fixed-point operation, then we cannot use the code
8740 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8742 if (ALL_FIXED_POINT_MODE_P (mode
))
8745 if (modifier
== EXPAND_STACK_PARM
)
8747 /* Possible optimization: compute the dividend with EXPAND_SUM
8748 then if the divisor is constant can optimize the case
8749 where some terms of the dividend have coeffs divisible by it. */
8750 expand_operands (treeop0
, treeop1
,
8751 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8752 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8757 case MULT_HIGHPART_EXPR
:
8758 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8759 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8763 case TRUNC_MOD_EXPR
:
8764 case FLOOR_MOD_EXPR
:
8766 case ROUND_MOD_EXPR
:
8767 if (modifier
== EXPAND_STACK_PARM
)
8769 expand_operands (treeop0
, treeop1
,
8770 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8771 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8773 case FIXED_CONVERT_EXPR
:
8774 op0
= expand_normal (treeop0
);
8775 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8776 target
= gen_reg_rtx (mode
);
8778 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8779 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8780 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8781 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8783 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8786 case FIX_TRUNC_EXPR
:
8787 op0
= expand_normal (treeop0
);
8788 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8789 target
= gen_reg_rtx (mode
);
8790 expand_fix (target
, op0
, unsignedp
);
8794 op0
= expand_normal (treeop0
);
8795 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8796 target
= gen_reg_rtx (mode
);
8797 /* expand_float can't figure out what to do if FROM has VOIDmode.
8798 So give it the correct mode. With -O, cse will optimize this. */
8799 if (GET_MODE (op0
) == VOIDmode
)
8800 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8802 expand_float (target
, op0
,
8803 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8807 op0
= expand_expr (treeop0
, subtarget
,
8808 VOIDmode
, EXPAND_NORMAL
);
8809 if (modifier
== EXPAND_STACK_PARM
)
8811 temp
= expand_unop (mode
,
8812 optab_for_tree_code (NEGATE_EXPR
, type
,
8816 return REDUCE_BIT_FIELD (temp
);
8819 op0
= expand_expr (treeop0
, subtarget
,
8820 VOIDmode
, EXPAND_NORMAL
);
8821 if (modifier
== EXPAND_STACK_PARM
)
8824 /* ABS_EXPR is not valid for complex arguments. */
8825 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8826 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8828 /* Unsigned abs is simply the operand. Testing here means we don't
8829 risk generating incorrect code below. */
8830 if (TYPE_UNSIGNED (type
))
8833 return expand_abs (mode
, op0
, target
, unsignedp
,
8834 safe_from_p (target
, treeop0
, 1));
8838 target
= original_target
;
8840 || modifier
== EXPAND_STACK_PARM
8841 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8842 || GET_MODE (target
) != mode
8844 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8845 target
= gen_reg_rtx (mode
);
8846 expand_operands (treeop0
, treeop1
,
8847 target
, &op0
, &op1
, EXPAND_NORMAL
);
8849 /* First try to do it with a special MIN or MAX instruction.
8850 If that does not win, use a conditional jump to select the proper
8852 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8853 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8858 /* At this point, a MEM target is no longer useful; we will get better
8861 if (! REG_P (target
))
8862 target
= gen_reg_rtx (mode
);
8864 /* If op1 was placed in target, swap op0 and op1. */
8865 if (target
!= op0
&& target
== op1
)
8872 /* We generate better code and avoid problems with op1 mentioning
8873 target by forcing op1 into a pseudo if it isn't a constant. */
8874 if (! CONSTANT_P (op1
))
8875 op1
= force_reg (mode
, op1
);
8878 enum rtx_code comparison_code
;
8881 if (code
== MAX_EXPR
)
8882 comparison_code
= unsignedp
? GEU
: GE
;
8884 comparison_code
= unsignedp
? LEU
: LE
;
8886 /* Canonicalize to comparisons against 0. */
8887 if (op1
== const1_rtx
)
8889 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8890 or (a != 0 ? a : 1) for unsigned.
8891 For MIN we are safe converting (a <= 1 ? a : 1)
8892 into (a <= 0 ? a : 1) */
8893 cmpop1
= const0_rtx
;
8894 if (code
== MAX_EXPR
)
8895 comparison_code
= unsignedp
? NE
: GT
;
8897 if (op1
== constm1_rtx
&& !unsignedp
)
8899 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8900 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8901 cmpop1
= const0_rtx
;
8902 if (code
== MIN_EXPR
)
8903 comparison_code
= LT
;
8905 #ifdef HAVE_conditional_move
8906 /* Use a conditional move if possible. */
8907 if (can_conditionally_move_p (mode
))
8913 /* Try to emit the conditional move. */
8914 insn
= emit_conditional_move (target
, comparison_code
,
8919 /* If we could do the conditional move, emit the sequence,
8923 rtx_insn
*seq
= get_insns ();
8929 /* Otherwise discard the sequence and fall back to code with
8935 emit_move_insn (target
, op0
);
8937 temp
= gen_label_rtx ();
8938 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8939 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8942 emit_move_insn (target
, op1
);
8947 op0
= expand_expr (treeop0
, subtarget
,
8948 VOIDmode
, EXPAND_NORMAL
);
8949 if (modifier
== EXPAND_STACK_PARM
)
8951 /* In case we have to reduce the result to bitfield precision
8952 for unsigned bitfield expand this as XOR with a proper constant
8954 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8956 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
8957 false, GET_MODE_PRECISION (mode
));
8959 temp
= expand_binop (mode
, xor_optab
, op0
,
8960 immed_wide_int_const (mask
, mode
),
8961 target
, 1, OPTAB_LIB_WIDEN
);
8964 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8968 /* ??? Can optimize bitwise operations with one arg constant.
8969 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8970 and (a bitwise1 b) bitwise2 b (etc)
8971 but that is probably not worth while. */
8980 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8981 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8982 == TYPE_PRECISION (type
)));
8987 /* If this is a fixed-point operation, then we cannot use the code
8988 below because "expand_shift" doesn't support sat/no-sat fixed-point
8990 if (ALL_FIXED_POINT_MODE_P (mode
))
8993 if (! safe_from_p (subtarget
, treeop1
, 1))
8995 if (modifier
== EXPAND_STACK_PARM
)
8997 op0
= expand_expr (treeop0
, subtarget
,
8998 VOIDmode
, EXPAND_NORMAL
);
8999 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
9001 if (code
== LSHIFT_EXPR
)
9002 temp
= REDUCE_BIT_FIELD (temp
);
9005 /* Could determine the answer when only additive constants differ. Also,
9006 the addition of one can be handled by changing the condition. */
9013 case UNORDERED_EXPR
:
9021 temp
= do_store_flag (ops
,
9022 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9023 tmode
!= VOIDmode
? tmode
: mode
);
9027 /* Use a compare and a jump for BLKmode comparisons, or for function
9028 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9031 || modifier
== EXPAND_STACK_PARM
9032 || ! safe_from_p (target
, treeop0
, 1)
9033 || ! safe_from_p (target
, treeop1
, 1)
9034 /* Make sure we don't have a hard reg (such as function's return
9035 value) live across basic blocks, if not optimizing. */
9036 || (!optimize
&& REG_P (target
)
9037 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9038 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9040 emit_move_insn (target
, const0_rtx
);
9042 op1
= gen_label_rtx ();
9043 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
9045 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9046 emit_move_insn (target
, constm1_rtx
);
9048 emit_move_insn (target
, const1_rtx
);
9054 /* Get the rtx code of the operands. */
9055 op0
= expand_normal (treeop0
);
9056 op1
= expand_normal (treeop1
);
9059 target
= gen_reg_rtx (TYPE_MODE (type
));
9061 /* If target overlaps with op1, then either we need to force
9062 op1 into a pseudo (if target also overlaps with op0),
9063 or write the complex parts in reverse order. */
9064 switch (GET_CODE (target
))
9067 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9069 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9071 complex_expr_force_op1
:
9072 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9073 emit_move_insn (temp
, op1
);
9077 complex_expr_swap_order
:
9078 /* Move the imaginary (op1) and real (op0) parts to their
9080 write_complex_part (target
, op1
, true);
9081 write_complex_part (target
, op0
, false);
9087 temp
= adjust_address_nv (target
,
9088 GET_MODE_INNER (GET_MODE (target
)), 0);
9089 if (reg_overlap_mentioned_p (temp
, op1
))
9091 machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9092 temp
= adjust_address_nv (target
, imode
,
9093 GET_MODE_SIZE (imode
));
9094 if (reg_overlap_mentioned_p (temp
, op0
))
9095 goto complex_expr_force_op1
;
9096 goto complex_expr_swap_order
;
9100 if (reg_overlap_mentioned_p (target
, op1
))
9102 if (reg_overlap_mentioned_p (target
, op0
))
9103 goto complex_expr_force_op1
;
9104 goto complex_expr_swap_order
;
9109 /* Move the real (op0) and imaginary (op1) parts to their location. */
9110 write_complex_part (target
, op0
, false);
9111 write_complex_part (target
, op1
, true);
9115 case WIDEN_SUM_EXPR
:
9117 tree oprnd0
= treeop0
;
9118 tree oprnd1
= treeop1
;
9120 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9121 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9126 case REDUC_MAX_EXPR
:
9127 case REDUC_MIN_EXPR
:
9128 case REDUC_PLUS_EXPR
:
9130 op0
= expand_normal (treeop0
);
9131 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9132 machine_mode vec_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9134 if (optab_handler (this_optab
, vec_mode
) != CODE_FOR_nothing
)
9136 struct expand_operand ops
[2];
9137 enum insn_code icode
= optab_handler (this_optab
, vec_mode
);
9139 create_output_operand (&ops
[0], target
, mode
);
9140 create_input_operand (&ops
[1], op0
, vec_mode
);
9141 if (maybe_expand_insn (icode
, 2, ops
))
9143 target
= ops
[0].value
;
9144 if (GET_MODE (target
) != mode
)
9145 return gen_lowpart (tmode
, target
);
9149 /* Fall back to optab with vector result, and then extract scalar. */
9150 this_optab
= scalar_reduc_to_vector (this_optab
, type
);
9151 temp
= expand_unop (vec_mode
, this_optab
, op0
, NULL_RTX
, unsignedp
);
9153 /* The tree code produces a scalar result, but (somewhat by convention)
9154 the optab produces a vector with the result in element 0 if
9155 little-endian, or element N-1 if big-endian. So pull the scalar
9156 result out of that element. */
9157 int index
= BYTES_BIG_ENDIAN
? GET_MODE_NUNITS (vec_mode
) - 1 : 0;
9158 int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode
));
9159 temp
= extract_bit_field (temp
, bitsize
, bitsize
* index
, unsignedp
,
9160 target
, mode
, mode
);
9165 case VEC_UNPACK_HI_EXPR
:
9166 case VEC_UNPACK_LO_EXPR
:
9168 op0
= expand_normal (treeop0
);
9169 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9175 case VEC_UNPACK_FLOAT_HI_EXPR
:
9176 case VEC_UNPACK_FLOAT_LO_EXPR
:
9178 op0
= expand_normal (treeop0
);
9179 /* The signedness is determined from input operand. */
9180 temp
= expand_widen_pattern_expr
9181 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9182 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9188 case VEC_WIDEN_MULT_HI_EXPR
:
9189 case VEC_WIDEN_MULT_LO_EXPR
:
9190 case VEC_WIDEN_MULT_EVEN_EXPR
:
9191 case VEC_WIDEN_MULT_ODD_EXPR
:
9192 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9193 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9194 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9195 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9197 gcc_assert (target
);
9200 case VEC_PACK_TRUNC_EXPR
:
9201 case VEC_PACK_SAT_EXPR
:
9202 case VEC_PACK_FIX_TRUNC_EXPR
:
9203 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9207 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9208 op2
= expand_normal (treeop2
);
9210 /* Careful here: if the target doesn't support integral vector modes,
9211 a constant selection vector could wind up smooshed into a normal
9212 integral constant. */
9213 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9215 tree sel_type
= TREE_TYPE (treeop2
);
9217 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9218 TYPE_VECTOR_SUBPARTS (sel_type
));
9219 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9220 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9221 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9224 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9226 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9232 tree oprnd0
= treeop0
;
9233 tree oprnd1
= treeop1
;
9234 tree oprnd2
= treeop2
;
9237 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9238 op2
= expand_normal (oprnd2
);
9239 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9246 tree oprnd0
= treeop0
;
9247 tree oprnd1
= treeop1
;
9248 tree oprnd2
= treeop2
;
9251 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9252 op2
= expand_normal (oprnd2
);
9253 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9258 case REALIGN_LOAD_EXPR
:
9260 tree oprnd0
= treeop0
;
9261 tree oprnd1
= treeop1
;
9262 tree oprnd2
= treeop2
;
9265 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9266 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9267 op2
= expand_normal (oprnd2
);
9268 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9275 /* A COND_EXPR with its type being VOID_TYPE represents a
9276 conditional jump and is handled in
9277 expand_gimple_cond_expr. */
9278 gcc_assert (!VOID_TYPE_P (type
));
9280 /* Note that COND_EXPRs whose type is a structure or union
9281 are required to be constructed to contain assignments of
9282 a temporary variable, so that we can evaluate them here
9283 for side effect only. If type is void, we must do likewise. */
9285 gcc_assert (!TREE_ADDRESSABLE (type
)
9287 && TREE_TYPE (treeop1
) != void_type_node
9288 && TREE_TYPE (treeop2
) != void_type_node
);
9290 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9294 /* If we are not to produce a result, we have no target. Otherwise,
9295 if a target was specified use it; it will not be used as an
9296 intermediate target unless it is safe. If no target, use a
9299 if (modifier
!= EXPAND_STACK_PARM
9301 && safe_from_p (original_target
, treeop0
, 1)
9302 && GET_MODE (original_target
) == mode
9303 && !MEM_P (original_target
))
9304 temp
= original_target
;
9306 temp
= assign_temp (type
, 0, 1);
9308 do_pending_stack_adjust ();
9310 op0
= gen_label_rtx ();
9311 op1
= gen_label_rtx ();
9312 jumpifnot (treeop0
, op0
, -1);
9313 store_expr (treeop1
, temp
,
9314 modifier
== EXPAND_STACK_PARM
,
9317 emit_jump_insn (gen_jump (op1
));
9320 store_expr (treeop2
, temp
,
9321 modifier
== EXPAND_STACK_PARM
,
9329 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9336 /* Here to do an ordinary binary operator. */
9338 expand_operands (treeop0
, treeop1
,
9339 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9341 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9343 if (modifier
== EXPAND_STACK_PARM
)
9345 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9346 unsignedp
, OPTAB_LIB_WIDEN
);
9348 /* Bitwise operations do not need bitfield reduction as we expect their
9349 operands being properly truncated. */
9350 if (code
== BIT_XOR_EXPR
9351 || code
== BIT_AND_EXPR
9352 || code
== BIT_IOR_EXPR
)
9354 return REDUCE_BIT_FIELD (temp
);
9356 #undef REDUCE_BIT_FIELD
9359 /* Return TRUE if expression STMT is suitable for replacement.
9360 Never consider memory loads as replaceable, because those don't ever lead
9361 into constant expressions. */
9364 stmt_is_replaceable_p (gimple stmt
)
9366 if (ssa_is_replaceable_p (stmt
))
9368 /* Don't move around loads. */
9369 if (!gimple_assign_single_p (stmt
)
9370 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9377 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9378 enum expand_modifier modifier
, rtx
*alt_rtl
,
9379 bool inner_reference_p
)
9381 rtx op0
, op1
, temp
, decl_rtl
;
9385 enum tree_code code
= TREE_CODE (exp
);
9386 rtx subtarget
, original_target
;
9389 bool reduce_bit_field
;
9390 location_t loc
= EXPR_LOCATION (exp
);
9391 struct separate_ops ops
;
9392 tree treeop0
, treeop1
, treeop2
;
9393 tree ssa_name
= NULL_TREE
;
9396 type
= TREE_TYPE (exp
);
9397 mode
= TYPE_MODE (type
);
9398 unsignedp
= TYPE_UNSIGNED (type
);
9400 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9401 if (!VL_EXP_CLASS_P (exp
))
9402 switch (TREE_CODE_LENGTH (code
))
9405 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9406 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9407 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9417 ignore
= (target
== const0_rtx
9418 || ((CONVERT_EXPR_CODE_P (code
)
9419 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9420 && TREE_CODE (type
) == VOID_TYPE
));
9422 /* An operation in what may be a bit-field type needs the
9423 result to be reduced to the precision of the bit-field type,
9424 which is narrower than that of the type's mode. */
9425 reduce_bit_field
= (!ignore
9426 && INTEGRAL_TYPE_P (type
)
9427 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9429 /* If we are going to ignore this result, we need only do something
9430 if there is a side-effect somewhere in the expression. If there
9431 is, short-circuit the most common cases here. Note that we must
9432 not call expand_expr with anything but const0_rtx in case this
9433 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9437 if (! TREE_SIDE_EFFECTS (exp
))
9440 /* Ensure we reference a volatile object even if value is ignored, but
9441 don't do this if all we are doing is taking its address. */
9442 if (TREE_THIS_VOLATILE (exp
)
9443 && TREE_CODE (exp
) != FUNCTION_DECL
9444 && mode
!= VOIDmode
&& mode
!= BLKmode
9445 && modifier
!= EXPAND_CONST_ADDRESS
)
9447 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9453 if (TREE_CODE_CLASS (code
) == tcc_unary
9454 || code
== BIT_FIELD_REF
9455 || code
== COMPONENT_REF
9456 || code
== INDIRECT_REF
)
9457 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9460 else if (TREE_CODE_CLASS (code
) == tcc_binary
9461 || TREE_CODE_CLASS (code
) == tcc_comparison
9462 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9464 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9465 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9472 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9475 /* Use subtarget as the target for operand 0 of a binary operation. */
9476 subtarget
= get_subtarget (target
);
9477 original_target
= target
;
9483 tree function
= decl_function_context (exp
);
9485 temp
= label_rtx (exp
);
9486 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9488 if (function
!= current_function_decl
9490 LABEL_REF_NONLOCAL_P (temp
) = 1;
9492 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9497 /* ??? ivopts calls expander, without any preparation from
9498 out-of-ssa. So fake instructions as if this was an access to the
9499 base variable. This unnecessarily allocates a pseudo, see how we can
9500 reuse it, if partition base vars have it set already. */
9501 if (!currently_expanding_to_rtl
)
9503 tree var
= SSA_NAME_VAR (exp
);
9504 if (var
&& DECL_RTL_SET_P (var
))
9505 return DECL_RTL (var
);
9506 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9507 LAST_VIRTUAL_REGISTER
+ 1);
9510 g
= get_gimple_for_ssa_name (exp
);
9511 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9513 && modifier
== EXPAND_INITIALIZER
9514 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9515 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9516 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9517 g
= SSA_NAME_DEF_STMT (exp
);
9521 ops
.code
= gimple_assign_rhs_code (g
);
9522 switch (get_gimple_rhs_class (ops
.code
))
9524 case GIMPLE_TERNARY_RHS
:
9525 ops
.op2
= gimple_assign_rhs3 (g
);
9527 case GIMPLE_BINARY_RHS
:
9528 ops
.op1
= gimple_assign_rhs2 (g
);
9530 /* Try to expand conditonal compare. */
9531 if (targetm
.gen_ccmp_first
)
9533 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9534 r
= expand_ccmp_expr (g
);
9539 case GIMPLE_UNARY_RHS
:
9540 ops
.op0
= gimple_assign_rhs1 (g
);
9541 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9542 ops
.location
= gimple_location (g
);
9543 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9545 case GIMPLE_SINGLE_RHS
:
9547 location_t saved_loc
= curr_insn_location ();
9548 set_curr_insn_location (gimple_location (g
));
9549 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9550 tmode
, modifier
, NULL
, inner_reference_p
);
9551 set_curr_insn_location (saved_loc
);
9557 if (REG_P (r
) && !REG_EXPR (r
))
9558 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9563 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9564 exp
= SSA_NAME_VAR (ssa_name
);
9565 goto expand_decl_rtl
;
9569 /* If a static var's type was incomplete when the decl was written,
9570 but the type is complete now, lay out the decl now. */
9571 if (DECL_SIZE (exp
) == 0
9572 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9573 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9574 layout_decl (exp
, 0);
9576 /* ... fall through ... */
9580 decl_rtl
= DECL_RTL (exp
);
9582 gcc_assert (decl_rtl
);
9583 decl_rtl
= copy_rtx (decl_rtl
);
9584 /* Record writes to register variables. */
9585 if (modifier
== EXPAND_WRITE
9587 && HARD_REGISTER_P (decl_rtl
))
9588 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9589 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9591 /* Ensure variable marked as used even if it doesn't go through
9592 a parser. If it hasn't be used yet, write out an external
9594 TREE_USED (exp
) = 1;
9596 /* Show we haven't gotten RTL for this yet. */
9599 /* Variables inherited from containing functions should have
9600 been lowered by this point. */
9601 context
= decl_function_context (exp
);
9602 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9603 || context
== current_function_decl
9604 || TREE_STATIC (exp
)
9605 || DECL_EXTERNAL (exp
)
9606 /* ??? C++ creates functions that are not TREE_STATIC. */
9607 || TREE_CODE (exp
) == FUNCTION_DECL
);
9609 /* This is the case of an array whose size is to be determined
9610 from its initializer, while the initializer is still being parsed.
9611 ??? We aren't parsing while expanding anymore. */
9613 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9614 temp
= validize_mem (decl_rtl
);
9616 /* If DECL_RTL is memory, we are in the normal case and the
9617 address is not valid, get the address into a register. */
9619 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9622 *alt_rtl
= decl_rtl
;
9623 decl_rtl
= use_anchored_address (decl_rtl
);
9624 if (modifier
!= EXPAND_CONST_ADDRESS
9625 && modifier
!= EXPAND_SUM
9626 && !memory_address_addr_space_p (DECL_MODE (exp
),
9628 MEM_ADDR_SPACE (decl_rtl
)))
9629 temp
= replace_equiv_address (decl_rtl
,
9630 copy_rtx (XEXP (decl_rtl
, 0)));
9633 /* If we got something, return it. But first, set the alignment
9634 if the address is a register. */
9637 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9638 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9643 /* If the mode of DECL_RTL does not match that of the decl,
9644 there are two cases: we are dealing with a BLKmode value
9645 that is returned in a register, or we are dealing with
9646 a promoted value. In the latter case, return a SUBREG
9647 of the wanted mode, but mark it so that we know that it
9648 was already extended. */
9649 if (REG_P (decl_rtl
)
9650 && DECL_MODE (exp
) != BLKmode
9651 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9655 /* Get the signedness to be used for this variable. Ensure we get
9656 the same mode we got when the variable was declared. */
9657 if (code
== SSA_NAME
9658 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9659 && gimple_code (g
) == GIMPLE_CALL
9660 && !gimple_call_internal_p (g
))
9661 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9662 gimple_call_fntype (g
),
9665 pmode
= promote_decl_mode (exp
, &unsignedp
);
9666 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9668 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9669 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9670 SUBREG_PROMOTED_SET (temp
, unsignedp
);
9677 /* Given that TYPE_PRECISION (type) is not always equal to
9678 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9679 the former to the latter according to the signedness of the
9681 temp
= immed_wide_int_const (wide_int::from
9683 GET_MODE_PRECISION (TYPE_MODE (type
)),
9690 tree tmp
= NULL_TREE
;
9691 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9692 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9693 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9694 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9695 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9696 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9697 return const_vector_from_tree (exp
);
9698 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9700 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9702 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9706 vec
<constructor_elt
, va_gc
> *v
;
9708 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9709 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9710 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9711 tmp
= build_constructor (type
, v
);
9713 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9718 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9721 /* If optimized, generate immediate CONST_DOUBLE
9722 which will be turned into memory by reload if necessary.
9724 We used to force a register so that loop.c could see it. But
9725 this does not allow gen_* patterns to perform optimizations with
9726 the constants. It also produces two insns in cases like "x = 1.0;".
9727 On most machines, floating-point constants are not permitted in
9728 many insns, so we'd end up copying it to a register in any case.
9730 Now, we do the copying in expand_binop, if appropriate. */
9731 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9732 TYPE_MODE (TREE_TYPE (exp
)));
9735 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9736 TYPE_MODE (TREE_TYPE (exp
)));
9739 /* Handle evaluating a complex constant in a CONCAT target. */
9740 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9742 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9745 rtarg
= XEXP (original_target
, 0);
9746 itarg
= XEXP (original_target
, 1);
9748 /* Move the real and imaginary parts separately. */
9749 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9750 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9753 emit_move_insn (rtarg
, op0
);
9755 emit_move_insn (itarg
, op1
);
9757 return original_target
;
9760 /* ... fall through ... */
9763 temp
= expand_expr_constant (exp
, 1, modifier
);
9765 /* temp contains a constant address.
9766 On RISC machines where a constant address isn't valid,
9767 make some insns to get that address into a register. */
9768 if (modifier
!= EXPAND_CONST_ADDRESS
9769 && modifier
!= EXPAND_INITIALIZER
9770 && modifier
!= EXPAND_SUM
9771 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9772 MEM_ADDR_SPACE (temp
)))
9773 return replace_equiv_address (temp
,
9774 copy_rtx (XEXP (temp
, 0)));
9780 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9783 if (!SAVE_EXPR_RESOLVED_P (exp
))
9785 /* We can indeed still hit this case, typically via builtin
9786 expanders calling save_expr immediately before expanding
9787 something. Assume this means that we only have to deal
9788 with non-BLKmode values. */
9789 gcc_assert (GET_MODE (ret
) != BLKmode
);
9791 val
= build_decl (curr_insn_location (),
9792 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9793 DECL_ARTIFICIAL (val
) = 1;
9794 DECL_IGNORED_P (val
) = 1;
9796 TREE_OPERAND (exp
, 0) = treeop0
;
9797 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9799 if (!CONSTANT_P (ret
))
9800 ret
= copy_to_reg (ret
);
9801 SET_DECL_RTL (val
, ret
);
9809 /* If we don't need the result, just ensure we evaluate any
9813 unsigned HOST_WIDE_INT idx
;
9816 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9817 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9822 return expand_constructor (exp
, target
, modifier
, false);
9824 case TARGET_MEM_REF
:
9827 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9828 enum insn_code icode
;
9831 op0
= addr_for_mem_ref (exp
, as
, true);
9832 op0
= memory_address_addr_space (mode
, op0
, as
);
9833 temp
= gen_rtx_MEM (mode
, op0
);
9834 set_mem_attributes (temp
, exp
, 0);
9835 set_mem_addr_space (temp
, as
);
9836 align
= get_object_alignment (exp
);
9837 if (modifier
!= EXPAND_WRITE
9838 && modifier
!= EXPAND_MEMORY
9840 && align
< GET_MODE_ALIGNMENT (mode
)
9841 /* If the target does not have special handling for unaligned
9842 loads of mode then it can use regular moves for them. */
9843 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9844 != CODE_FOR_nothing
))
9846 struct expand_operand ops
[2];
9848 /* We've already validated the memory, and we're creating a
9849 new pseudo destination. The predicates really can't fail,
9850 nor can the generator. */
9851 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9852 create_fixed_operand (&ops
[1], temp
);
9853 expand_insn (icode
, 2, ops
);
9854 temp
= ops
[0].value
;
9862 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9863 machine_mode address_mode
;
9864 tree base
= TREE_OPERAND (exp
, 0);
9866 enum insn_code icode
;
9868 /* Handle expansion of non-aliased memory with non-BLKmode. That
9869 might end up in a register. */
9870 if (mem_ref_refers_to_non_mem_p (exp
))
9872 HOST_WIDE_INT offset
= mem_ref_offset (exp
).to_short_addr ();
9873 base
= TREE_OPERAND (base
, 0);
9875 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9876 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9877 == tree_to_uhwi (TYPE_SIZE (type
))))
9878 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9879 target
, tmode
, modifier
);
9880 if (TYPE_MODE (type
) == BLKmode
)
9882 temp
= assign_stack_temp (DECL_MODE (base
),
9883 GET_MODE_SIZE (DECL_MODE (base
)));
9884 store_expr (base
, temp
, 0, false);
9885 temp
= adjust_address (temp
, BLKmode
, offset
);
9886 set_mem_size (temp
, int_size_in_bytes (type
));
9889 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9890 bitsize_int (offset
* BITS_PER_UNIT
));
9891 return expand_expr (exp
, target
, tmode
, modifier
);
9893 address_mode
= targetm
.addr_space
.address_mode (as
);
9894 base
= TREE_OPERAND (exp
, 0);
9895 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9897 tree mask
= gimple_assign_rhs2 (def_stmt
);
9898 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9899 gimple_assign_rhs1 (def_stmt
), mask
);
9900 TREE_OPERAND (exp
, 0) = base
;
9902 align
= get_object_alignment (exp
);
9903 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9904 op0
= memory_address_addr_space (mode
, op0
, as
);
9905 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9907 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
9908 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9909 op0
= memory_address_addr_space (mode
, op0
, as
);
9911 temp
= gen_rtx_MEM (mode
, op0
);
9912 set_mem_attributes (temp
, exp
, 0);
9913 set_mem_addr_space (temp
, as
);
9914 if (TREE_THIS_VOLATILE (exp
))
9915 MEM_VOLATILE_P (temp
) = 1;
9916 if (modifier
!= EXPAND_WRITE
9917 && modifier
!= EXPAND_MEMORY
9918 && !inner_reference_p
9920 && align
< GET_MODE_ALIGNMENT (mode
))
9922 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9923 != CODE_FOR_nothing
)
9925 struct expand_operand ops
[2];
9927 /* We've already validated the memory, and we're creating a
9928 new pseudo destination. The predicates really can't fail,
9929 nor can the generator. */
9930 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9931 create_fixed_operand (&ops
[1], temp
);
9932 expand_insn (icode
, 2, ops
);
9933 temp
= ops
[0].value
;
9935 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9936 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9937 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9938 (modifier
== EXPAND_STACK_PARM
9939 ? NULL_RTX
: target
),
9948 tree array
= treeop0
;
9949 tree index
= treeop1
;
9952 /* Fold an expression like: "foo"[2].
9953 This is not done in fold so it won't happen inside &.
9954 Don't fold if this is for wide characters since it's too
9955 difficult to do correctly and this is a very rare case. */
9957 if (modifier
!= EXPAND_CONST_ADDRESS
9958 && modifier
!= EXPAND_INITIALIZER
9959 && modifier
!= EXPAND_MEMORY
)
9961 tree t
= fold_read_from_constant_string (exp
);
9964 return expand_expr (t
, target
, tmode
, modifier
);
9967 /* If this is a constant index into a constant array,
9968 just get the value from the array. Handle both the cases when
9969 we have an explicit constructor and when our operand is a variable
9970 that was declared const. */
9972 if (modifier
!= EXPAND_CONST_ADDRESS
9973 && modifier
!= EXPAND_INITIALIZER
9974 && modifier
!= EXPAND_MEMORY
9975 && TREE_CODE (array
) == CONSTRUCTOR
9976 && ! TREE_SIDE_EFFECTS (array
)
9977 && TREE_CODE (index
) == INTEGER_CST
)
9979 unsigned HOST_WIDE_INT ix
;
9982 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9984 if (tree_int_cst_equal (field
, index
))
9986 if (!TREE_SIDE_EFFECTS (value
))
9987 return expand_expr (fold (value
), target
, tmode
, modifier
);
9992 else if (optimize
>= 1
9993 && modifier
!= EXPAND_CONST_ADDRESS
9994 && modifier
!= EXPAND_INITIALIZER
9995 && modifier
!= EXPAND_MEMORY
9996 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9997 && TREE_CODE (index
) == INTEGER_CST
9998 && (TREE_CODE (array
) == VAR_DECL
9999 || TREE_CODE (array
) == CONST_DECL
)
10000 && (init
= ctor_for_folding (array
)) != error_mark_node
)
10002 if (init
== NULL_TREE
)
10004 tree value
= build_zero_cst (type
);
10005 if (TREE_CODE (value
) == CONSTRUCTOR
)
10007 /* If VALUE is a CONSTRUCTOR, this optimization is only
10008 useful if this doesn't store the CONSTRUCTOR into
10009 memory. If it does, it is more efficient to just
10010 load the data from the array directly. */
10011 rtx ret
= expand_constructor (value
, target
,
10013 if (ret
== NULL_RTX
)
10018 return expand_expr (value
, target
, tmode
, modifier
);
10020 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10022 unsigned HOST_WIDE_INT ix
;
10025 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10027 if (tree_int_cst_equal (field
, index
))
10029 if (TREE_SIDE_EFFECTS (value
))
10032 if (TREE_CODE (value
) == CONSTRUCTOR
)
10034 /* If VALUE is a CONSTRUCTOR, this
10035 optimization is only useful if
10036 this doesn't store the CONSTRUCTOR
10037 into memory. If it does, it is more
10038 efficient to just load the data from
10039 the array directly. */
10040 rtx ret
= expand_constructor (value
, target
,
10042 if (ret
== NULL_RTX
)
10047 expand_expr (fold (value
), target
, tmode
, modifier
);
10050 else if (TREE_CODE (init
) == STRING_CST
)
10052 tree low_bound
= array_ref_low_bound (exp
);
10053 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10055 /* Optimize the special case of a zero lower bound.
10057 We convert the lower bound to sizetype to avoid problems
10058 with constant folding. E.g. suppose the lower bound is
10059 1 and its mode is QI. Without the conversion
10060 (ARRAY + (INDEX - (unsigned char)1))
10062 (ARRAY + (-(unsigned char)1) + INDEX)
10064 (ARRAY + 255 + INDEX). Oops! */
10065 if (!integer_zerop (low_bound
))
10066 index1
= size_diffop_loc (loc
, index1
,
10067 fold_convert_loc (loc
, sizetype
,
10070 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10072 tree type
= TREE_TYPE (TREE_TYPE (init
));
10073 machine_mode mode
= TYPE_MODE (type
);
10075 if (GET_MODE_CLASS (mode
) == MODE_INT
10076 && GET_MODE_SIZE (mode
) == 1)
10077 return gen_int_mode (TREE_STRING_POINTER (init
)
10078 [TREE_INT_CST_LOW (index1
)],
10084 goto normal_inner_ref
;
10086 case COMPONENT_REF
:
10087 /* If the operand is a CONSTRUCTOR, we can just extract the
10088 appropriate field if it is present. */
10089 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10091 unsigned HOST_WIDE_INT idx
;
10094 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10096 if (field
== treeop1
10097 /* We can normally use the value of the field in the
10098 CONSTRUCTOR. However, if this is a bitfield in
10099 an integral mode that we can fit in a HOST_WIDE_INT,
10100 we must mask only the number of bits in the bitfield,
10101 since this is done implicitly by the constructor. If
10102 the bitfield does not meet either of those conditions,
10103 we can't do this optimization. */
10104 && (! DECL_BIT_FIELD (field
)
10105 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
10106 && (GET_MODE_PRECISION (DECL_MODE (field
))
10107 <= HOST_BITS_PER_WIDE_INT
))))
10109 if (DECL_BIT_FIELD (field
)
10110 && modifier
== EXPAND_STACK_PARM
)
10112 op0
= expand_expr (value
, target
, tmode
, modifier
);
10113 if (DECL_BIT_FIELD (field
))
10115 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10116 machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
10118 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10120 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
10122 op0
= expand_and (imode
, op0
, op1
, target
);
10126 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10128 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10130 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10138 goto normal_inner_ref
;
10140 case BIT_FIELD_REF
:
10141 case ARRAY_RANGE_REF
:
10144 machine_mode mode1
, mode2
;
10145 HOST_WIDE_INT bitsize
, bitpos
;
10147 int volatilep
= 0, must_force_mem
;
10148 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
10149 &mode1
, &unsignedp
, &volatilep
, true);
10150 rtx orig_op0
, memloc
;
10151 bool clear_mem_expr
= false;
10153 /* If we got back the original object, something is wrong. Perhaps
10154 we are evaluating an expression too early. In any event, don't
10155 infinitely recurse. */
10156 gcc_assert (tem
!= exp
);
10158 /* If TEM's type is a union of variable size, pass TARGET to the inner
10159 computation, since it will need a temporary and TARGET is known
10160 to have to do. This occurs in unchecked conversion in Ada. */
10162 = expand_expr_real (tem
,
10163 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10164 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10165 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10167 && modifier
!= EXPAND_STACK_PARM
10168 ? target
: NULL_RTX
),
10170 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10173 /* If the field has a mode, we want to access it in the
10174 field's mode, not the computed mode.
10175 If a MEM has VOIDmode (external with incomplete type),
10176 use BLKmode for it instead. */
10179 if (mode1
!= VOIDmode
)
10180 op0
= adjust_address (op0
, mode1
, 0);
10181 else if (GET_MODE (op0
) == VOIDmode
)
10182 op0
= adjust_address (op0
, BLKmode
, 0);
10186 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10188 /* If we have either an offset, a BLKmode result, or a reference
10189 outside the underlying object, we must force it to memory.
10190 Such a case can occur in Ada if we have unchecked conversion
10191 of an expression from a scalar type to an aggregate type or
10192 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10193 passed a partially uninitialized object or a view-conversion
10194 to a larger size. */
10195 must_force_mem
= (offset
10196 || mode1
== BLKmode
10197 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10199 /* Handle CONCAT first. */
10200 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10203 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10206 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10209 op0
= XEXP (op0
, 0);
10210 mode2
= GET_MODE (op0
);
10212 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10213 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10217 op0
= XEXP (op0
, 1);
10219 mode2
= GET_MODE (op0
);
10222 /* Otherwise force into memory. */
10223 must_force_mem
= 1;
10226 /* If this is a constant, put it in a register if it is a legitimate
10227 constant and we don't need a memory reference. */
10228 if (CONSTANT_P (op0
)
10229 && mode2
!= BLKmode
10230 && targetm
.legitimate_constant_p (mode2
, op0
)
10231 && !must_force_mem
)
10232 op0
= force_reg (mode2
, op0
);
10234 /* Otherwise, if this is a constant, try to force it to the constant
10235 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10236 is a legitimate constant. */
10237 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10238 op0
= validize_mem (memloc
);
10240 /* Otherwise, if this is a constant or the object is not in memory
10241 and need be, put it there. */
10242 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10244 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10245 emit_move_insn (memloc
, op0
);
10247 clear_mem_expr
= true;
10252 machine_mode address_mode
;
10253 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10256 gcc_assert (MEM_P (op0
));
10258 address_mode
= get_address_mode (op0
);
10259 if (GET_MODE (offset_rtx
) != address_mode
)
10260 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10262 /* See the comment in expand_assignment for the rationale. */
10263 if (mode1
!= VOIDmode
10266 && (bitpos
% bitsize
) == 0
10267 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10268 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10270 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10274 op0
= offset_address (op0
, offset_rtx
,
10275 highest_pow2_factor (offset
));
10278 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10279 record its alignment as BIGGEST_ALIGNMENT. */
10280 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10281 && is_aligning_offset (offset
, tem
))
10282 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10284 /* Don't forget about volatility even if this is a bitfield. */
10285 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10287 if (op0
== orig_op0
)
10288 op0
= copy_rtx (op0
);
10290 MEM_VOLATILE_P (op0
) = 1;
10293 /* In cases where an aligned union has an unaligned object
10294 as a field, we might be extracting a BLKmode value from
10295 an integer-mode (e.g., SImode) object. Handle this case
10296 by doing the extract into an object as wide as the field
10297 (which we know to be the width of a basic mode), then
10298 storing into memory, and changing the mode to BLKmode. */
10299 if (mode1
== VOIDmode
10300 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10301 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10302 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10303 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10304 && modifier
!= EXPAND_CONST_ADDRESS
10305 && modifier
!= EXPAND_INITIALIZER
10306 && modifier
!= EXPAND_MEMORY
)
10307 /* If the bitfield is volatile and the bitsize
10308 is narrower than the access size of the bitfield,
10309 we need to extract bitfields from the access. */
10310 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10311 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10312 && mode1
!= BLKmode
10313 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10314 /* If the field isn't aligned enough to fetch as a memref,
10315 fetch it as a bit field. */
10316 || (mode1
!= BLKmode
10317 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10318 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10320 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10321 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10322 && modifier
!= EXPAND_MEMORY
10323 && ((modifier
== EXPAND_CONST_ADDRESS
10324 || modifier
== EXPAND_INITIALIZER
)
10326 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10327 || (bitpos
% BITS_PER_UNIT
!= 0)))
10328 /* If the type and the field are a constant size and the
10329 size of the type isn't the same size as the bitfield,
10330 we must use bitfield operations. */
10332 && TYPE_SIZE (TREE_TYPE (exp
))
10333 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10334 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10337 machine_mode ext_mode
= mode
;
10339 if (ext_mode
== BLKmode
10340 && ! (target
!= 0 && MEM_P (op0
)
10342 && bitpos
% BITS_PER_UNIT
== 0))
10343 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10345 if (ext_mode
== BLKmode
)
10348 target
= assign_temp (type
, 1, 1);
10350 /* ??? Unlike the similar test a few lines below, this one is
10351 very likely obsolete. */
10355 /* In this case, BITPOS must start at a byte boundary and
10356 TARGET, if specified, must be a MEM. */
10357 gcc_assert (MEM_P (op0
)
10358 && (!target
|| MEM_P (target
))
10359 && !(bitpos
% BITS_PER_UNIT
));
10361 emit_block_move (target
,
10362 adjust_address (op0
, VOIDmode
,
10363 bitpos
/ BITS_PER_UNIT
),
10364 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10366 (modifier
== EXPAND_STACK_PARM
10367 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10372 /* If we have nothing to extract, the result will be 0 for targets
10373 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10374 return 0 for the sake of consistency, as reading a zero-sized
10375 bitfield is valid in Ada and the value is fully specified. */
10379 op0
= validize_mem (op0
);
10381 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10382 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10384 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10385 (modifier
== EXPAND_STACK_PARM
10386 ? NULL_RTX
: target
),
10387 ext_mode
, ext_mode
);
10389 /* If the result is a record type and BITSIZE is narrower than
10390 the mode of OP0, an integral mode, and this is a big endian
10391 machine, we must put the field into the high-order bits. */
10392 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10393 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10394 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10395 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10396 GET_MODE_BITSIZE (GET_MODE (op0
))
10397 - bitsize
, op0
, 1);
10399 /* If the result type is BLKmode, store the data into a temporary
10400 of the appropriate type, but with the mode corresponding to the
10401 mode for the data we have (op0's mode). */
10402 if (mode
== BLKmode
)
10405 = assign_stack_temp_for_type (ext_mode
,
10406 GET_MODE_BITSIZE (ext_mode
),
10408 emit_move_insn (new_rtx
, op0
);
10409 op0
= copy_rtx (new_rtx
);
10410 PUT_MODE (op0
, BLKmode
);
10416 /* If the result is BLKmode, use that to access the object
10418 if (mode
== BLKmode
)
10421 /* Get a reference to just this component. */
10422 if (modifier
== EXPAND_CONST_ADDRESS
10423 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10424 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10426 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10428 if (op0
== orig_op0
)
10429 op0
= copy_rtx (op0
);
10431 set_mem_attributes (op0
, exp
, 0);
10433 if (REG_P (XEXP (op0
, 0)))
10434 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10436 /* If op0 is a temporary because the original expressions was forced
10437 to memory, clear MEM_EXPR so that the original expression cannot
10438 be marked as addressable through MEM_EXPR of the temporary. */
10439 if (clear_mem_expr
)
10440 set_mem_expr (op0
, NULL_TREE
);
10442 MEM_VOLATILE_P (op0
) |= volatilep
;
10443 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10444 || modifier
== EXPAND_CONST_ADDRESS
10445 || modifier
== EXPAND_INITIALIZER
)
10449 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10451 convert_move (target
, op0
, unsignedp
);
10456 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10459 /* All valid uses of __builtin_va_arg_pack () are removed during
10461 if (CALL_EXPR_VA_ARG_PACK (exp
))
10462 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10464 tree fndecl
= get_callee_fndecl (exp
), attr
;
10467 && (attr
= lookup_attribute ("error",
10468 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10469 error ("%Kcall to %qs declared with attribute error: %s",
10470 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10471 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10473 && (attr
= lookup_attribute ("warning",
10474 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10475 warning_at (tree_nonartificial_location (exp
),
10476 0, "%Kcall to %qs declared with attribute warning: %s",
10477 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10478 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10480 /* Check for a built-in function. */
10481 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10483 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10484 if (CALL_WITH_BOUNDS_P (exp
))
10485 return expand_builtin_with_bounds (exp
, target
, subtarget
,
10488 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10491 return expand_call (exp
, target
, ignore
);
10493 case VIEW_CONVERT_EXPR
:
10496 /* If we are converting to BLKmode, try to avoid an intermediate
10497 temporary by fetching an inner memory reference. */
10498 if (mode
== BLKmode
10499 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10500 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10501 && handled_component_p (treeop0
))
10503 machine_mode mode1
;
10504 HOST_WIDE_INT bitsize
, bitpos
;
10509 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10510 &offset
, &mode1
, &unsignedp
, &volatilep
,
10514 /* ??? We should work harder and deal with non-zero offsets. */
10516 && (bitpos
% BITS_PER_UNIT
) == 0
10518 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10520 /* See the normal_inner_ref case for the rationale. */
10522 = expand_expr_real (tem
,
10523 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10524 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10526 && modifier
!= EXPAND_STACK_PARM
10527 ? target
: NULL_RTX
),
10529 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10532 if (MEM_P (orig_op0
))
10536 /* Get a reference to just this component. */
10537 if (modifier
== EXPAND_CONST_ADDRESS
10538 || modifier
== EXPAND_SUM
10539 || modifier
== EXPAND_INITIALIZER
)
10540 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10542 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10544 if (op0
== orig_op0
)
10545 op0
= copy_rtx (op0
);
10547 set_mem_attributes (op0
, treeop0
, 0);
10548 if (REG_P (XEXP (op0
, 0)))
10549 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10551 MEM_VOLATILE_P (op0
) |= volatilep
;
10557 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10558 NULL
, inner_reference_p
);
10560 /* If the input and output modes are both the same, we are done. */
10561 if (mode
== GET_MODE (op0
))
10563 /* If neither mode is BLKmode, and both modes are the same size
10564 then we can use gen_lowpart. */
10565 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10566 && (GET_MODE_PRECISION (mode
)
10567 == GET_MODE_PRECISION (GET_MODE (op0
)))
10568 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10570 if (GET_CODE (op0
) == SUBREG
)
10571 op0
= force_reg (GET_MODE (op0
), op0
);
10572 temp
= gen_lowpart_common (mode
, op0
);
10577 if (!REG_P (op0
) && !MEM_P (op0
))
10578 op0
= force_reg (GET_MODE (op0
), op0
);
10579 op0
= gen_lowpart (mode
, op0
);
10582 /* If both types are integral, convert from one mode to the other. */
10583 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10584 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10585 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10586 /* If the output type is a bit-field type, do an extraction. */
10587 else if (reduce_bit_field
)
10588 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10589 TYPE_UNSIGNED (type
), NULL_RTX
,
10591 /* As a last resort, spill op0 to memory, and reload it in a
10593 else if (!MEM_P (op0
))
10595 /* If the operand is not a MEM, force it into memory. Since we
10596 are going to be changing the mode of the MEM, don't call
10597 force_const_mem for constants because we don't allow pool
10598 constants to change mode. */
10599 tree inner_type
= TREE_TYPE (treeop0
);
10601 gcc_assert (!TREE_ADDRESSABLE (exp
));
10603 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10605 = assign_stack_temp_for_type
10606 (TYPE_MODE (inner_type
),
10607 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10609 emit_move_insn (target
, op0
);
10613 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10614 output type is such that the operand is known to be aligned, indicate
10615 that it is. Otherwise, we need only be concerned about alignment for
10616 non-BLKmode results. */
10619 enum insn_code icode
;
10621 if (TYPE_ALIGN_OK (type
))
10623 /* ??? Copying the MEM without substantially changing it might
10624 run afoul of the code handling volatile memory references in
10625 store_expr, which assumes that TARGET is returned unmodified
10626 if it has been used. */
10627 op0
= copy_rtx (op0
);
10628 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10630 else if (modifier
!= EXPAND_WRITE
10631 && modifier
!= EXPAND_MEMORY
10632 && !inner_reference_p
10634 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10636 /* If the target does have special handling for unaligned
10637 loads of mode then use them. */
10638 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10639 != CODE_FOR_nothing
)
10643 op0
= adjust_address (op0
, mode
, 0);
10644 /* We've already validated the memory, and we're creating a
10645 new pseudo destination. The predicates really can't
10647 reg
= gen_reg_rtx (mode
);
10649 /* Nor can the insn generator. */
10650 insn
= GEN_FCN (icode
) (reg
, op0
);
10654 else if (STRICT_ALIGNMENT
)
10656 tree inner_type
= TREE_TYPE (treeop0
);
10657 HOST_WIDE_INT temp_size
10658 = MAX (int_size_in_bytes (inner_type
),
10659 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10661 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10662 rtx new_with_op0_mode
10663 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10665 gcc_assert (!TREE_ADDRESSABLE (exp
));
10667 if (GET_MODE (op0
) == BLKmode
)
10668 emit_block_move (new_with_op0_mode
, op0
,
10669 GEN_INT (GET_MODE_SIZE (mode
)),
10670 (modifier
== EXPAND_STACK_PARM
10671 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10673 emit_move_insn (new_with_op0_mode
, op0
);
10679 op0
= adjust_address (op0
, mode
, 0);
10686 tree lhs
= treeop0
;
10687 tree rhs
= treeop1
;
10688 gcc_assert (ignore
);
10690 /* Check for |= or &= of a bitfield of size one into another bitfield
10691 of size 1. In this case, (unless we need the result of the
10692 assignment) we can do this more efficiently with a
10693 test followed by an assignment, if necessary.
10695 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10696 things change so we do, this code should be enhanced to
10698 if (TREE_CODE (lhs
) == COMPONENT_REF
10699 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10700 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10701 && TREE_OPERAND (rhs
, 0) == lhs
10702 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10703 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10704 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10706 rtx_code_label
*label
= gen_label_rtx ();
10707 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10708 do_jump (TREE_OPERAND (rhs
, 1),
10710 value
? 0 : label
, -1);
10711 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10713 do_pending_stack_adjust ();
10714 emit_label (label
);
10718 expand_assignment (lhs
, rhs
, false);
10723 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10725 case REALPART_EXPR
:
10726 op0
= expand_normal (treeop0
);
10727 return read_complex_part (op0
, false);
10729 case IMAGPART_EXPR
:
10730 op0
= expand_normal (treeop0
);
10731 return read_complex_part (op0
, true);
10738 /* Expanded in cfgexpand.c. */
10739 gcc_unreachable ();
10741 case TRY_CATCH_EXPR
:
10743 case EH_FILTER_EXPR
:
10744 case TRY_FINALLY_EXPR
:
10745 /* Lowered by tree-eh.c. */
10746 gcc_unreachable ();
10748 case WITH_CLEANUP_EXPR
:
10749 case CLEANUP_POINT_EXPR
:
10751 case CASE_LABEL_EXPR
:
10756 case COMPOUND_EXPR
:
10757 case PREINCREMENT_EXPR
:
10758 case PREDECREMENT_EXPR
:
10759 case POSTINCREMENT_EXPR
:
10760 case POSTDECREMENT_EXPR
:
10763 case COMPOUND_LITERAL_EXPR
:
10764 /* Lowered by gimplify.c. */
10765 gcc_unreachable ();
10768 /* Function descriptors are not valid except for as
10769 initialization constants, and should not be expanded. */
10770 gcc_unreachable ();
10772 case WITH_SIZE_EXPR
:
10773 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10774 have pulled out the size to use in whatever context it needed. */
10775 return expand_expr_real (treeop0
, original_target
, tmode
,
10776 modifier
, alt_rtl
, inner_reference_p
);
10779 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10783 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10784 signedness of TYPE), possibly returning the result in TARGET. */
10786 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10788 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10789 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10791 /* For constant values, reduce using build_int_cst_type. */
10792 if (CONST_INT_P (exp
))
10794 HOST_WIDE_INT value
= INTVAL (exp
);
10795 tree t
= build_int_cst_type (type
, value
);
10796 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10798 else if (TYPE_UNSIGNED (type
))
10800 machine_mode mode
= GET_MODE (exp
);
10801 rtx mask
= immed_wide_int_const
10802 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
10803 return expand_and (mode
, exp
, mask
, target
);
10807 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10808 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10809 exp
, count
, target
, 0);
10810 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10811 exp
, count
, target
, 0);
10815 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10816 when applied to the address of EXP produces an address known to be
10817 aligned more than BIGGEST_ALIGNMENT. */
10820 is_aligning_offset (const_tree offset
, const_tree exp
)
10822 /* Strip off any conversions. */
10823 while (CONVERT_EXPR_P (offset
))
10824 offset
= TREE_OPERAND (offset
, 0);
10826 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10827 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10828 if (TREE_CODE (offset
) != BIT_AND_EXPR
10829 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10830 || compare_tree_int (TREE_OPERAND (offset
, 1),
10831 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10832 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10835 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10836 It must be NEGATE_EXPR. Then strip any more conversions. */
10837 offset
= TREE_OPERAND (offset
, 0);
10838 while (CONVERT_EXPR_P (offset
))
10839 offset
= TREE_OPERAND (offset
, 0);
10841 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10844 offset
= TREE_OPERAND (offset
, 0);
10845 while (CONVERT_EXPR_P (offset
))
10846 offset
= TREE_OPERAND (offset
, 0);
10848 /* This must now be the address of EXP. */
10849 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10852 /* Return the tree node if an ARG corresponds to a string constant or zero
10853 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10854 in bytes within the string that ARG is accessing. The type of the
10855 offset will be `sizetype'. */
10858 string_constant (tree arg
, tree
*ptr_offset
)
10860 tree array
, offset
, lower_bound
;
10863 if (TREE_CODE (arg
) == ADDR_EXPR
)
10865 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10867 *ptr_offset
= size_zero_node
;
10868 return TREE_OPERAND (arg
, 0);
10870 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10872 array
= TREE_OPERAND (arg
, 0);
10873 offset
= size_zero_node
;
10875 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10877 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10878 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10879 if (TREE_CODE (array
) != STRING_CST
10880 && TREE_CODE (array
) != VAR_DECL
)
10883 /* Check if the array has a nonzero lower bound. */
10884 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10885 if (!integer_zerop (lower_bound
))
10887 /* If the offset and base aren't both constants, return 0. */
10888 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10890 if (TREE_CODE (offset
) != INTEGER_CST
)
10892 /* Adjust offset by the lower bound. */
10893 offset
= size_diffop (fold_convert (sizetype
, offset
),
10894 fold_convert (sizetype
, lower_bound
));
10897 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10899 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10900 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10901 if (TREE_CODE (array
) != ADDR_EXPR
)
10903 array
= TREE_OPERAND (array
, 0);
10904 if (TREE_CODE (array
) != STRING_CST
10905 && TREE_CODE (array
) != VAR_DECL
)
10911 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10913 tree arg0
= TREE_OPERAND (arg
, 0);
10914 tree arg1
= TREE_OPERAND (arg
, 1);
10919 if (TREE_CODE (arg0
) == ADDR_EXPR
10920 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10921 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10923 array
= TREE_OPERAND (arg0
, 0);
10926 else if (TREE_CODE (arg1
) == ADDR_EXPR
10927 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10928 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10930 array
= TREE_OPERAND (arg1
, 0);
10939 if (TREE_CODE (array
) == STRING_CST
)
10941 *ptr_offset
= fold_convert (sizetype
, offset
);
10944 else if (TREE_CODE (array
) == VAR_DECL
10945 || TREE_CODE (array
) == CONST_DECL
)
10948 tree init
= ctor_for_folding (array
);
10950 /* Variables initialized to string literals can be handled too. */
10951 if (init
== error_mark_node
10953 || TREE_CODE (init
) != STRING_CST
)
10956 /* Avoid const char foo[4] = "abcde"; */
10957 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10958 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10959 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10960 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10963 /* If variable is bigger than the string literal, OFFSET must be constant
10964 and inside of the bounds of the string literal. */
10965 offset
= fold_convert (sizetype
, offset
);
10966 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10967 && (! tree_fits_uhwi_p (offset
)
10968 || compare_tree_int (offset
, length
) >= 0))
10971 *ptr_offset
= offset
;
10978 /* Generate code to calculate OPS, and exploded expression
10979 using a store-flag instruction and return an rtx for the result.
10980 OPS reflects a comparison.
10982 If TARGET is nonzero, store the result there if convenient.
10984 Return zero if there is no suitable set-flag instruction
10985 available on this machine.
10987 Once expand_expr has been called on the arguments of the comparison,
10988 we are committed to doing the store flag, since it is not safe to
10989 re-evaluate the expression. We emit the store-flag insn by calling
10990 emit_store_flag, but only expand the arguments if we have a reason
10991 to believe that emit_store_flag will be successful. If we think that
10992 it will, but it isn't, we have to simulate the store-flag with a
10993 set/jump/set sequence. */
10996 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
10998 enum rtx_code code
;
10999 tree arg0
, arg1
, type
;
11001 machine_mode operand_mode
;
11004 rtx subtarget
= target
;
11005 location_t loc
= ops
->location
;
11010 /* Don't crash if the comparison was erroneous. */
11011 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
11014 type
= TREE_TYPE (arg0
);
11015 operand_mode
= TYPE_MODE (type
);
11016 unsignedp
= TYPE_UNSIGNED (type
);
11018 /* We won't bother with BLKmode store-flag operations because it would mean
11019 passing a lot of information to emit_store_flag. */
11020 if (operand_mode
== BLKmode
)
11023 /* We won't bother with store-flag operations involving function pointers
11024 when function pointers must be canonicalized before comparisons. */
11025 #ifdef HAVE_canonicalize_funcptr_for_compare
11026 if (HAVE_canonicalize_funcptr_for_compare
11027 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
11028 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
11030 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
11031 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
11032 == FUNCTION_TYPE
))))
11039 /* For vector typed comparisons emit code to generate the desired
11040 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11041 expander for this. */
11042 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
11044 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
11045 tree if_true
= constant_boolean_node (true, ops
->type
);
11046 tree if_false
= constant_boolean_node (false, ops
->type
);
11047 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
11050 /* Get the rtx comparison code to use. We know that EXP is a comparison
11051 operation of some type. Some comparisons against 1 and -1 can be
11052 converted to comparisons with zero. Do so here so that the tests
11053 below will be aware that we have a comparison with zero. These
11054 tests will not catch constants in the first operand, but constants
11055 are rarely passed as the first operand. */
11066 if (integer_onep (arg1
))
11067 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
11069 code
= unsignedp
? LTU
: LT
;
11072 if (! unsignedp
&& integer_all_onesp (arg1
))
11073 arg1
= integer_zero_node
, code
= LT
;
11075 code
= unsignedp
? LEU
: LE
;
11078 if (! unsignedp
&& integer_all_onesp (arg1
))
11079 arg1
= integer_zero_node
, code
= GE
;
11081 code
= unsignedp
? GTU
: GT
;
11084 if (integer_onep (arg1
))
11085 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
11087 code
= unsignedp
? GEU
: GE
;
11090 case UNORDERED_EXPR
:
11116 gcc_unreachable ();
11119 /* Put a constant second. */
11120 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11121 || TREE_CODE (arg0
) == FIXED_CST
)
11123 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
11124 code
= swap_condition (code
);
11127 /* If this is an equality or inequality test of a single bit, we can
11128 do this by shifting the bit being tested to the low-order bit and
11129 masking the result with the constant 1. If the condition was EQ,
11130 we xor it with 1. This does not require an scc insn and is faster
11131 than an scc insn even if we have it.
11133 The code to make this transformation was moved into fold_single_bit_test,
11134 so we just call into the folder and expand its result. */
11136 if ((code
== NE
|| code
== EQ
)
11137 && integer_zerop (arg1
)
11138 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11140 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11142 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11144 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11145 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11146 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11147 gimple_assign_rhs1 (srcstmt
),
11148 gimple_assign_rhs2 (srcstmt
));
11149 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11151 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11155 if (! get_subtarget (target
)
11156 || GET_MODE (subtarget
) != operand_mode
)
11159 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11162 target
= gen_reg_rtx (mode
);
11164 /* Try a cstore if possible. */
11165 return emit_store_flag_force (target
, code
, op0
, op1
,
11166 operand_mode
, unsignedp
,
11167 (TYPE_PRECISION (ops
->type
) == 1
11168 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11172 /* Stubs in case we haven't got a casesi insn. */
11173 #ifndef HAVE_casesi
11174 # define HAVE_casesi 0
11175 # define gen_casesi(a, b, c, d, e) (0)
11176 # define CODE_FOR_casesi CODE_FOR_nothing
11179 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11180 0 otherwise (i.e. if there is no casesi instruction).
11182 DEFAULT_PROBABILITY is the probability of jumping to the default
11185 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11186 rtx table_label
, rtx default_label
, rtx fallback_label
,
11187 int default_probability
)
11189 struct expand_operand ops
[5];
11190 machine_mode index_mode
= SImode
;
11191 rtx op1
, op2
, index
;
11196 /* Convert the index to SImode. */
11197 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11199 machine_mode omode
= TYPE_MODE (index_type
);
11200 rtx rangertx
= expand_normal (range
);
11202 /* We must handle the endpoints in the original mode. */
11203 index_expr
= build2 (MINUS_EXPR
, index_type
,
11204 index_expr
, minval
);
11205 minval
= integer_zero_node
;
11206 index
= expand_normal (index_expr
);
11208 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11209 omode
, 1, default_label
,
11210 default_probability
);
11211 /* Now we can safely truncate. */
11212 index
= convert_to_mode (index_mode
, index
, 0);
11216 if (TYPE_MODE (index_type
) != index_mode
)
11218 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11219 index_expr
= fold_convert (index_type
, index_expr
);
11222 index
= expand_normal (index_expr
);
11225 do_pending_stack_adjust ();
11227 op1
= expand_normal (minval
);
11228 op2
= expand_normal (range
);
11230 create_input_operand (&ops
[0], index
, index_mode
);
11231 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11232 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11233 create_fixed_operand (&ops
[3], table_label
);
11234 create_fixed_operand (&ops
[4], (default_label
11236 : fallback_label
));
11237 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11241 /* Attempt to generate a tablejump instruction; same concept. */
11242 #ifndef HAVE_tablejump
11243 #define HAVE_tablejump 0
11244 #define gen_tablejump(x, y) (0)
11247 /* Subroutine of the next function.
11249 INDEX is the value being switched on, with the lowest value
11250 in the table already subtracted.
11251 MODE is its expected mode (needed if INDEX is constant).
11252 RANGE is the length of the jump table.
11253 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11255 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11256 index value is out of range.
11257 DEFAULT_PROBABILITY is the probability of jumping to
11258 the default label. */
11261 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11262 rtx default_label
, int default_probability
)
11266 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11267 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11269 /* Do an unsigned comparison (in the proper mode) between the index
11270 expression and the value which represents the length of the range.
11271 Since we just finished subtracting the lower bound of the range
11272 from the index expression, this comparison allows us to simultaneously
11273 check that the original index expression value is both greater than
11274 or equal to the minimum value of the range and less than or equal to
11275 the maximum value of the range. */
11278 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11279 default_label
, default_probability
);
11282 /* If index is in range, it must fit in Pmode.
11283 Convert to Pmode so we can index with it. */
11285 index
= convert_to_mode (Pmode
, index
, 1);
11287 /* Don't let a MEM slip through, because then INDEX that comes
11288 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11289 and break_out_memory_refs will go to work on it and mess it up. */
11290 #ifdef PIC_CASE_VECTOR_ADDRESS
11291 if (flag_pic
&& !REG_P (index
))
11292 index
= copy_to_mode_reg (Pmode
, index
);
11295 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11296 GET_MODE_SIZE, because this indicates how large insns are. The other
11297 uses should all be Pmode, because they are addresses. This code
11298 could fail if addresses and insns are not the same size. */
11299 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11300 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11302 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11303 gen_rtx_LABEL_REF (Pmode
, table_label
));
11305 #ifdef PIC_CASE_VECTOR_ADDRESS
11307 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11310 index
= memory_address (CASE_VECTOR_MODE
, index
);
11311 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11312 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11313 convert_move (temp
, vector
, 0);
11315 emit_jump_insn (gen_tablejump (temp
, table_label
));
11317 /* If we are generating PIC code or if the table is PC-relative, the
11318 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11319 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11324 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11325 rtx table_label
, rtx default_label
, int default_probability
)
11329 if (! HAVE_tablejump
)
11332 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11333 fold_convert (index_type
, index_expr
),
11334 fold_convert (index_type
, minval
));
11335 index
= expand_normal (index_expr
);
11336 do_pending_stack_adjust ();
11338 do_tablejump (index
, TYPE_MODE (index_type
),
11339 convert_modes (TYPE_MODE (index_type
),
11340 TYPE_MODE (TREE_TYPE (range
)),
11341 expand_normal (range
),
11342 TYPE_UNSIGNED (TREE_TYPE (range
))),
11343 table_label
, default_label
, default_probability
);
11347 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11349 const_vector_from_tree (tree exp
)
11355 machine_mode inner
, mode
;
11357 mode
= TYPE_MODE (TREE_TYPE (exp
));
11359 if (initializer_zerop (exp
))
11360 return CONST0_RTX (mode
);
11362 units
= GET_MODE_NUNITS (mode
);
11363 inner
= GET_MODE_INNER (mode
);
11365 v
= rtvec_alloc (units
);
11367 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11369 elt
= VECTOR_CST_ELT (exp
, i
);
11371 if (TREE_CODE (elt
) == REAL_CST
)
11372 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11374 else if (TREE_CODE (elt
) == FIXED_CST
)
11375 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11378 RTVEC_ELT (v
, i
) = immed_wide_int_const (elt
, inner
);
11381 return gen_rtx_CONST_VECTOR (mode
, v
);
11384 /* Build a decl for a personality function given a language prefix. */
11387 build_personality_function (const char *lang
)
11389 const char *unwind_and_version
;
11393 switch (targetm_common
.except_unwind_info (&global_options
))
11398 unwind_and_version
= "_sj0";
11402 unwind_and_version
= "_v0";
11405 unwind_and_version
= "_seh0";
11408 gcc_unreachable ();
11411 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11413 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11414 long_long_unsigned_type_node
,
11415 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11416 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11417 get_identifier (name
), type
);
11418 DECL_ARTIFICIAL (decl
) = 1;
11419 DECL_EXTERNAL (decl
) = 1;
11420 TREE_PUBLIC (decl
) = 1;
11422 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11423 are the flags assigned by targetm.encode_section_info. */
11424 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11429 /* Extracts the personality function of DECL and returns the corresponding
11433 get_personality_function (tree decl
)
11435 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11436 enum eh_personality_kind pk
;
11438 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11439 if (pk
== eh_personality_none
)
11443 && pk
== eh_personality_any
)
11444 personality
= lang_hooks
.eh_personality ();
11446 if (pk
== eh_personality_lang
)
11447 gcc_assert (personality
!= NULL_TREE
);
11449 return XEXP (DECL_RTL (personality
), 0);
11452 /* Returns a tree for the size of EXP in bytes. */
11455 tree_expr_size (const_tree exp
)
11458 && DECL_SIZE_UNIT (exp
) != 0)
11459 return DECL_SIZE_UNIT (exp
);
11461 return size_in_bytes (TREE_TYPE (exp
));
11464 /* Return an rtx for the size in bytes of the value of EXP. */
11467 expr_size (tree exp
)
11471 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11472 size
= TREE_OPERAND (exp
, 1);
11475 size
= tree_expr_size (exp
);
11477 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
11480 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
11483 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11484 if the size can vary or is larger than an integer. */
11486 static HOST_WIDE_INT
11487 int_expr_size (tree exp
)
11491 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11492 size
= TREE_OPERAND (exp
, 1);
11495 size
= tree_expr_size (exp
);
11499 if (size
== 0 || !tree_fits_shwi_p (size
))
11502 return tree_to_shwi (size
);
11505 #include "gt-expr.h"