2013-06-12 Richard Biener <rguenther@suse.de>
[official-gcc.git] / libsanitizer / asan / asan_allocator2.cc
blob1ff120e555c74eeb00a0f5946e70437570bc29bb
1 //===-- asan_allocator2.cc ------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of AddressSanitizer, an address sanity checker.
9 //
10 // Implementation of ASan's memory allocator, 2-nd version.
11 // This variant uses the allocator from sanitizer_common, i.e. the one shared
12 // with ThreadSanitizer and MemorySanitizer.
14 // Status: under development, not enabled by default yet.
15 //===----------------------------------------------------------------------===//
16 #include "asan_allocator.h"
17 #if ASAN_ALLOCATOR_VERSION == 2
19 #include "asan_mapping.h"
20 #include "asan_report.h"
21 #include "asan_thread.h"
22 #include "asan_thread_registry.h"
23 #include "sanitizer_common/sanitizer_allocator.h"
24 #include "sanitizer_common/sanitizer_internal_defs.h"
25 #include "sanitizer_common/sanitizer_list.h"
26 #include "sanitizer_common/sanitizer_stackdepot.h"
27 #include "sanitizer_common/sanitizer_quarantine.h"
29 namespace __asan {
31 struct AsanMapUnmapCallback {
32 void OnMap(uptr p, uptr size) const {
33 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
34 // Statistics.
35 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
36 thread_stats.mmaps++;
37 thread_stats.mmaped += size;
39 void OnUnmap(uptr p, uptr size) const {
40 PoisonShadow(p, size, 0);
41 // We are about to unmap a chunk of user memory.
42 // Mark the corresponding shadow memory as not needed.
43 // Since asan's mapping is compacting, the shadow chunk may be
44 // not page-aligned, so we only flush the page-aligned portion.
45 uptr page_size = GetPageSizeCached();
46 uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
47 uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
48 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
49 // Statistics.
50 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
51 thread_stats.munmaps++;
52 thread_stats.munmaped += size;
56 #if SANITIZER_WORDSIZE == 64
57 #if defined(__powerpc64__)
58 const uptr kAllocatorSpace = 0xa0000000000ULL;
59 #else
60 const uptr kAllocatorSpace = 0x600000000000ULL;
61 #endif
62 const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
63 typedef DefaultSizeClassMap SizeClassMap;
64 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
65 SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
66 #elif SANITIZER_WORDSIZE == 32
67 static const u64 kAddressSpaceSize = 1ULL << 32;
68 typedef CompactSizeClassMap SizeClassMap;
69 typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
70 SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
71 #endif
73 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
74 typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
75 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
76 SecondaryAllocator> Allocator;
78 // We can not use THREADLOCAL because it is not supported on some of the
79 // platforms we care about (OSX 10.6, Android).
80 // static THREADLOCAL AllocatorCache cache;
81 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
82 CHECK(ms);
83 CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
84 return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
87 static Allocator allocator;
89 static const uptr kMaxAllowedMallocSize =
90 FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
92 static const uptr kMaxThreadLocalQuarantine =
93 FIRST_32_SECOND_64(1 << 18, 1 << 20);
95 // Every chunk of memory allocated by this allocator can be in one of 3 states:
96 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
97 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
98 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
99 enum {
100 CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
101 CHUNK_ALLOCATED = 2,
102 CHUNK_QUARANTINE = 3
105 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
106 // We use adaptive redzones: for larger allocation larger redzones are used.
107 static u32 RZLog2Size(u32 rz_log) {
108 CHECK_LT(rz_log, 8);
109 return 16 << rz_log;
112 static u32 RZSize2Log(u32 rz_size) {
113 CHECK_GE(rz_size, 16);
114 CHECK_LE(rz_size, 2048);
115 CHECK(IsPowerOfTwo(rz_size));
116 u32 res = Log2(rz_size) - 4;
117 CHECK_EQ(rz_size, RZLog2Size(res));
118 return res;
121 static uptr ComputeRZLog(uptr user_requested_size) {
122 u32 rz_log =
123 user_requested_size <= 64 - 16 ? 0 :
124 user_requested_size <= 128 - 32 ? 1 :
125 user_requested_size <= 512 - 64 ? 2 :
126 user_requested_size <= 4096 - 128 ? 3 :
127 user_requested_size <= (1 << 14) - 256 ? 4 :
128 user_requested_size <= (1 << 15) - 512 ? 5 :
129 user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
130 return Max(rz_log, RZSize2Log(flags()->redzone));
133 // The memory chunk allocated from the underlying allocator looks like this:
134 // L L L L L L H H U U U U U U R R
135 // L -- left redzone words (0 or more bytes)
136 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
137 // U -- user memory.
138 // R -- right redzone (0 or more bytes)
139 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
140 // memory.
142 // If a memory chunk is allocated by memalign and we had to increase the
143 // allocation size to achieve the proper alignment, then we store this magic
144 // value in the first uptr word of the memory block and store the address of
145 // ChunkBase in the next uptr.
146 // M B ? ? ? L L L L L L H H U U U U U U
147 // M -- magic value kMemalignMagic
148 // B -- address of ChunkHeader pointing to the first 'H'
149 static const uptr kMemalignMagic = 0xCC6E96B9;
151 struct ChunkHeader {
152 // 1-st 8 bytes.
153 u32 chunk_state : 8; // Must be first.
154 u32 alloc_tid : 24;
156 u32 free_tid : 24;
157 u32 from_memalign : 1;
158 u32 alloc_type : 2;
159 u32 rz_log : 3;
160 // 2-nd 8 bytes
161 // This field is used for small sizes. For large sizes it is equal to
162 // SizeClassMap::kMaxSize and the actual size is stored in the
163 // SecondaryAllocator's metadata.
164 u32 user_requested_size;
165 u32 alloc_context_id;
168 struct ChunkBase : ChunkHeader {
169 // Header2, intersects with user memory.
170 AsanChunk *next;
171 u32 free_context_id;
174 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
175 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
176 COMPILER_CHECK(kChunkHeaderSize == 16);
177 COMPILER_CHECK(kChunkHeader2Size <= 16);
179 struct AsanChunk: ChunkBase {
180 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
181 uptr UsedSize() {
182 if (user_requested_size != SizeClassMap::kMaxSize)
183 return user_requested_size;
184 return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
186 void *AllocBeg() {
187 if (from_memalign)
188 return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
189 return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
191 // We store the alloc/free stack traces in the chunk itself.
192 u32 *AllocStackBeg() {
193 return (u32*)(Beg() - RZLog2Size(rz_log));
195 uptr AllocStackSize() {
196 CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
197 return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
199 u32 *FreeStackBeg() {
200 return (u32*)(Beg() + kChunkHeader2Size);
202 uptr FreeStackSize() {
203 if (user_requested_size < kChunkHeader2Size) return 0;
204 uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
205 return (available - kChunkHeader2Size) / sizeof(u32);
209 uptr AsanChunkView::Beg() { return chunk_->Beg(); }
210 uptr AsanChunkView::End() { return Beg() + UsedSize(); }
211 uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
212 uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
213 uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
215 static void GetStackTraceFromId(u32 id, StackTrace *stack) {
216 CHECK(id);
217 uptr size = 0;
218 const uptr *trace = StackDepotGet(id, &size);
219 CHECK_LT(size, kStackTraceMax);
220 internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
221 stack->size = size;
224 void AsanChunkView::GetAllocStack(StackTrace *stack) {
225 if (flags()->use_stack_depot)
226 GetStackTraceFromId(chunk_->alloc_context_id, stack);
227 else
228 StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
229 chunk_->AllocStackSize());
232 void AsanChunkView::GetFreeStack(StackTrace *stack) {
233 if (flags()->use_stack_depot)
234 GetStackTraceFromId(chunk_->free_context_id, stack);
235 else
236 StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
237 chunk_->FreeStackSize());
240 struct QuarantineCallback;
241 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
242 typedef AsanQuarantine::Cache QuarantineCache;
243 static AsanQuarantine quarantine(LINKER_INITIALIZED);
244 static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
245 static AllocatorCache fallback_allocator_cache;
246 static SpinMutex fallback_mutex;
248 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
249 CHECK(ms);
250 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
251 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
254 struct QuarantineCallback {
255 explicit QuarantineCallback(AllocatorCache *cache)
256 : cache_(cache) {
259 void Recycle(AsanChunk *m) {
260 CHECK(m->chunk_state == CHUNK_QUARANTINE);
261 m->chunk_state = CHUNK_AVAILABLE;
262 CHECK_NE(m->alloc_tid, kInvalidTid);
263 CHECK_NE(m->free_tid, kInvalidTid);
264 PoisonShadow(m->Beg(),
265 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
266 kAsanHeapLeftRedzoneMagic);
267 void *p = reinterpret_cast<void *>(m->AllocBeg());
268 if (m->from_memalign) {
269 uptr *memalign_magic = reinterpret_cast<uptr *>(p);
270 CHECK_EQ(memalign_magic[0], kMemalignMagic);
271 CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
274 // Statistics.
275 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
276 thread_stats.real_frees++;
277 thread_stats.really_freed += m->UsedSize();
279 allocator.Deallocate(cache_, p);
282 void *Allocate(uptr size) {
283 return allocator.Allocate(cache_, size, 1, false);
286 void Deallocate(void *p) {
287 allocator.Deallocate(cache_, p);
290 AllocatorCache *cache_;
293 void InitializeAllocator() {
294 allocator.Init();
295 quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
298 static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
299 AllocType alloc_type) {
300 if (!asan_inited)
301 __asan_init();
302 CHECK(stack);
303 const uptr min_alignment = SHADOW_GRANULARITY;
304 if (alignment < min_alignment)
305 alignment = min_alignment;
306 if (size == 0) {
307 // We'd be happy to avoid allocating memory for zero-size requests, but
308 // some programs/tests depend on this behavior and assume that malloc would
309 // not return NULL even for zero-size allocations. Moreover, it looks like
310 // operator new should never return NULL, and results of consecutive "new"
311 // calls must be different even if the allocated size is zero.
312 size = 1;
314 CHECK(IsPowerOfTwo(alignment));
315 uptr rz_log = ComputeRZLog(size);
316 uptr rz_size = RZLog2Size(rz_log);
317 uptr rounded_size = RoundUpTo(size, alignment);
318 if (rounded_size < kChunkHeader2Size)
319 rounded_size = kChunkHeader2Size;
320 uptr needed_size = rounded_size + rz_size;
321 if (alignment > min_alignment)
322 needed_size += alignment;
323 bool using_primary_allocator = true;
324 // If we are allocating from the secondary allocator, there will be no
325 // automatic right redzone, so add the right redzone manually.
326 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
327 needed_size += rz_size;
328 using_primary_allocator = false;
330 CHECK(IsAligned(needed_size, min_alignment));
331 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
332 Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
333 (void*)size);
334 return 0;
337 AsanThread *t = asanThreadRegistry().GetCurrent();
338 void *allocated;
339 if (t) {
340 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
341 allocated = allocator.Allocate(cache, needed_size, 8, false);
342 } else {
343 SpinMutexLock l(&fallback_mutex);
344 AllocatorCache *cache = &fallback_allocator_cache;
345 allocated = allocator.Allocate(cache, needed_size, 8, false);
347 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
348 // Clear the first allocated word (an old kMemalignMagic may still be there).
349 reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
350 uptr alloc_end = alloc_beg + needed_size;
351 uptr beg_plus_redzone = alloc_beg + rz_size;
352 uptr user_beg = beg_plus_redzone;
353 if (!IsAligned(user_beg, alignment))
354 user_beg = RoundUpTo(user_beg, alignment);
355 uptr user_end = user_beg + size;
356 CHECK_LE(user_end, alloc_end);
357 uptr chunk_beg = user_beg - kChunkHeaderSize;
358 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
359 m->chunk_state = CHUNK_ALLOCATED;
360 m->alloc_type = alloc_type;
361 m->rz_log = rz_log;
362 u32 alloc_tid = t ? t->tid() : 0;
363 m->alloc_tid = alloc_tid;
364 CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
365 m->free_tid = kInvalidTid;
366 m->from_memalign = user_beg != beg_plus_redzone;
367 if (m->from_memalign) {
368 CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
369 uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
370 memalign_magic[0] = kMemalignMagic;
371 memalign_magic[1] = chunk_beg;
373 if (using_primary_allocator) {
374 CHECK(size);
375 m->user_requested_size = size;
376 CHECK(allocator.FromPrimary(allocated));
377 } else {
378 CHECK(!allocator.FromPrimary(allocated));
379 m->user_requested_size = SizeClassMap::kMaxSize;
380 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
381 meta[0] = size;
382 meta[1] = chunk_beg;
385 if (flags()->use_stack_depot) {
386 m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
387 } else {
388 m->alloc_context_id = 0;
389 StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
392 uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
393 // Unpoison the bulk of the memory region.
394 if (size_rounded_down_to_granularity)
395 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
396 // Deal with the end of the region if size is not aligned to granularity.
397 if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
398 u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
399 *shadow = size & (SHADOW_GRANULARITY - 1);
402 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
403 thread_stats.mallocs++;
404 thread_stats.malloced += size;
405 thread_stats.malloced_redzones += needed_size - size;
406 uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
407 thread_stats.malloced_by_size[class_id]++;
408 if (needed_size > SizeClassMap::kMaxSize)
409 thread_stats.malloc_large++;
411 void *res = reinterpret_cast<void *>(user_beg);
412 ASAN_MALLOC_HOOK(res, size);
413 return res;
416 static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
417 uptr p = reinterpret_cast<uptr>(ptr);
418 if (p == 0) return;
419 ASAN_FREE_HOOK(ptr);
420 uptr chunk_beg = p - kChunkHeaderSize;
421 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
423 // Flip the chunk_state atomically to avoid race on double-free.
424 u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
425 memory_order_relaxed);
427 if (old_chunk_state == CHUNK_QUARANTINE)
428 ReportDoubleFree((uptr)ptr, stack);
429 else if (old_chunk_state != CHUNK_ALLOCATED)
430 ReportFreeNotMalloced((uptr)ptr, stack);
431 CHECK(old_chunk_state == CHUNK_ALLOCATED);
432 if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
433 ReportAllocTypeMismatch((uptr)ptr, stack,
434 (AllocType)m->alloc_type, (AllocType)alloc_type);
436 CHECK_GE(m->alloc_tid, 0);
437 if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
438 CHECK_EQ(m->free_tid, kInvalidTid);
439 AsanThread *t = asanThreadRegistry().GetCurrent();
440 m->free_tid = t ? t->tid() : 0;
441 if (flags()->use_stack_depot) {
442 m->free_context_id = StackDepotPut(stack->trace, stack->size);
443 } else {
444 m->free_context_id = 0;
445 StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
447 CHECK(m->chunk_state == CHUNK_QUARANTINE);
448 // Poison the region.
449 PoisonShadow(m->Beg(),
450 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
451 kAsanHeapFreeMagic);
453 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
454 thread_stats.frees++;
455 thread_stats.freed += m->UsedSize();
457 // Push into quarantine.
458 if (t) {
459 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
460 AllocatorCache *ac = GetAllocatorCache(ms);
461 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
462 m, m->UsedSize());
463 } else {
464 SpinMutexLock l(&fallback_mutex);
465 AllocatorCache *ac = &fallback_allocator_cache;
466 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
467 m, m->UsedSize());
471 static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
472 CHECK(old_ptr && new_size);
473 uptr p = reinterpret_cast<uptr>(old_ptr);
474 uptr chunk_beg = p - kChunkHeaderSize;
475 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
477 AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
478 thread_stats.reallocs++;
479 thread_stats.realloced += new_size;
481 CHECK(m->chunk_state == CHUNK_ALLOCATED);
482 uptr old_size = m->UsedSize();
483 uptr memcpy_size = Min(new_size, old_size);
484 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
485 if (new_ptr) {
486 CHECK(REAL(memcpy) != 0);
487 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
488 Deallocate(old_ptr, stack, FROM_MALLOC);
490 return new_ptr;
493 static AsanChunk *GetAsanChunkByAddr(uptr p) {
494 void *ptr = reinterpret_cast<void *>(p);
495 uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
496 if (!alloc_beg) return 0;
497 uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
498 if (memalign_magic[0] == kMemalignMagic) {
499 AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
500 CHECK(m->from_memalign);
501 return m;
503 if (!allocator.FromPrimary(ptr)) {
504 uptr *meta = reinterpret_cast<uptr *>(
505 allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
506 AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
507 return m;
509 uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
510 CHECK_LE(actual_size, SizeClassMap::kMaxSize);
511 // We know the actually allocted size, but we don't know the redzone size.
512 // Just try all possible redzone sizes.
513 for (u32 rz_log = 0; rz_log < 8; rz_log++) {
514 u32 rz_size = RZLog2Size(rz_log);
515 uptr max_possible_size = actual_size - rz_size;
516 if (ComputeRZLog(max_possible_size) != rz_log)
517 continue;
518 return reinterpret_cast<AsanChunk *>(
519 alloc_beg + rz_size - kChunkHeaderSize);
521 return 0;
524 static uptr AllocationSize(uptr p) {
525 AsanChunk *m = GetAsanChunkByAddr(p);
526 if (!m) return 0;
527 if (m->chunk_state != CHUNK_ALLOCATED) return 0;
528 if (m->Beg() != p) return 0;
529 return m->UsedSize();
532 // We have an address between two chunks, and we want to report just one.
533 AsanChunk *ChooseChunk(uptr addr,
534 AsanChunk *left_chunk, AsanChunk *right_chunk) {
535 // Prefer an allocated chunk over freed chunk and freed chunk
536 // over available chunk.
537 if (left_chunk->chunk_state != right_chunk->chunk_state) {
538 if (left_chunk->chunk_state == CHUNK_ALLOCATED)
539 return left_chunk;
540 if (right_chunk->chunk_state == CHUNK_ALLOCATED)
541 return right_chunk;
542 if (left_chunk->chunk_state == CHUNK_QUARANTINE)
543 return left_chunk;
544 if (right_chunk->chunk_state == CHUNK_QUARANTINE)
545 return right_chunk;
547 // Same chunk_state: choose based on offset.
548 sptr l_offset = 0, r_offset = 0;
549 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
550 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
551 if (l_offset < r_offset)
552 return left_chunk;
553 return right_chunk;
556 AsanChunkView FindHeapChunkByAddress(uptr addr) {
557 AsanChunk *m1 = GetAsanChunkByAddr(addr);
558 if (!m1) return AsanChunkView(m1);
559 sptr offset = 0;
560 if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
561 // The address is in the chunk's left redzone, so maybe it is actually
562 // a right buffer overflow from the other chunk to the left.
563 // Search a bit to the left to see if there is another chunk.
564 AsanChunk *m2 = 0;
565 for (uptr l = 1; l < GetPageSizeCached(); l++) {
566 m2 = GetAsanChunkByAddr(addr - l);
567 if (m2 == m1) continue; // Still the same chunk.
568 break;
570 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
571 m1 = ChooseChunk(addr, m2, m1);
573 return AsanChunkView(m1);
576 void AsanThreadLocalMallocStorage::CommitBack() {
577 AllocatorCache *ac = GetAllocatorCache(this);
578 quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
579 allocator.SwallowCache(GetAllocatorCache(this));
582 void PrintInternalAllocatorStats() {
583 allocator.PrintStats();
586 SANITIZER_INTERFACE_ATTRIBUTE
587 void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
588 AllocType alloc_type) {
589 return Allocate(size, alignment, stack, alloc_type);
592 SANITIZER_INTERFACE_ATTRIBUTE
593 void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
594 Deallocate(ptr, stack, alloc_type);
597 SANITIZER_INTERFACE_ATTRIBUTE
598 void *asan_malloc(uptr size, StackTrace *stack) {
599 return Allocate(size, 8, stack, FROM_MALLOC);
602 void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
603 if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
604 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
605 if (ptr)
606 REAL(memset)(ptr, 0, nmemb * size);
607 return ptr;
610 void *asan_realloc(void *p, uptr size, StackTrace *stack) {
611 if (p == 0)
612 return Allocate(size, 8, stack, FROM_MALLOC);
613 if (size == 0) {
614 Deallocate(p, stack, FROM_MALLOC);
615 return 0;
617 return Reallocate(p, size, stack);
620 void *asan_valloc(uptr size, StackTrace *stack) {
621 return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
624 void *asan_pvalloc(uptr size, StackTrace *stack) {
625 uptr PageSize = GetPageSizeCached();
626 size = RoundUpTo(size, PageSize);
627 if (size == 0) {
628 // pvalloc(0) should allocate one page.
629 size = PageSize;
631 return Allocate(size, PageSize, stack, FROM_MALLOC);
634 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
635 StackTrace *stack) {
636 void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
637 CHECK(IsAligned((uptr)ptr, alignment));
638 *memptr = ptr;
639 return 0;
642 uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
643 CHECK(stack);
644 if (ptr == 0) return 0;
645 uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
646 if (flags()->check_malloc_usable_size && (usable_size == 0))
647 ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
648 return usable_size;
651 uptr asan_mz_size(const void *ptr) {
652 return AllocationSize(reinterpret_cast<uptr>(ptr));
655 void asan_mz_force_lock() {
656 allocator.ForceLock();
657 fallback_mutex.Lock();
660 void asan_mz_force_unlock() {
661 fallback_mutex.Unlock();
662 allocator.ForceUnlock();
665 } // namespace __asan
667 // ---------------------- Interface ---------------- {{{1
668 using namespace __asan; // NOLINT
670 // ASan allocator doesn't reserve extra bytes, so normally we would
671 // just return "size". We don't want to expose our redzone sizes, etc here.
672 uptr __asan_get_estimated_allocated_size(uptr size) {
673 return size;
676 bool __asan_get_ownership(const void *p) {
677 uptr ptr = reinterpret_cast<uptr>(p);
678 return (AllocationSize(ptr) > 0);
681 uptr __asan_get_allocated_size(const void *p) {
682 if (p == 0) return 0;
683 uptr ptr = reinterpret_cast<uptr>(p);
684 uptr allocated_size = AllocationSize(ptr);
685 // Die if p is not malloced or if it is already freed.
686 if (allocated_size == 0) {
687 GET_STACK_TRACE_FATAL_HERE;
688 ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
690 return allocated_size;
693 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
694 // Provide default (no-op) implementation of malloc hooks.
695 extern "C" {
696 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
697 void __asan_malloc_hook(void *ptr, uptr size) {
698 (void)ptr;
699 (void)size;
701 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
702 void __asan_free_hook(void *ptr) {
703 (void)ptr;
705 } // extern "C"
706 #endif
709 #endif // ASAN_ALLOCATOR_VERSION