2010-12-20 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / graphite-scop-detection.c
blob6beddc361b029568d0012c76f0a6fe7349e34716
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "sese.h"
45 #ifdef HAVE_cloog
46 #include "ppl_c.h"
47 #include "graphite-ppl.h"
48 #include "graphite.h"
49 #include "graphite-poly.h"
50 #include "graphite-scop-detection.h"
52 /* The type of the analyzed basic block. */
54 typedef enum gbb_type {
55 GBB_UNKNOWN,
56 GBB_LOOP_SING_EXIT_HEADER,
57 GBB_LOOP_MULT_EXIT_HEADER,
58 GBB_LOOP_EXIT,
59 GBB_COND_HEADER,
60 GBB_SIMPLE,
61 GBB_LAST
62 } gbb_type;
64 /* Detect the type of BB. Loop headers are only marked, if they are
65 new. This means their loop_father is different to LAST_LOOP.
66 Otherwise they are treated like any other bb and their type can be
67 any other type. */
69 static gbb_type
70 get_bb_type (basic_block bb, struct loop *last_loop)
72 VEC (basic_block, heap) *dom;
73 int nb_dom, nb_suc;
74 struct loop *loop = bb->loop_father;
76 /* Check, if we entry into a new loop. */
77 if (loop != last_loop)
79 if (single_exit (loop) != NULL)
80 return GBB_LOOP_SING_EXIT_HEADER;
81 else if (loop->num != 0)
82 return GBB_LOOP_MULT_EXIT_HEADER;
83 else
84 return GBB_COND_HEADER;
87 dom = get_dominated_by (CDI_DOMINATORS, bb);
88 nb_dom = VEC_length (basic_block, dom);
89 VEC_free (basic_block, heap, dom);
91 if (nb_dom == 0)
92 return GBB_LAST;
94 nb_suc = VEC_length (edge, bb->succs);
96 if (nb_dom == 1 && nb_suc == 1)
97 return GBB_SIMPLE;
99 return GBB_COND_HEADER;
102 /* A SCoP detection region, defined using bbs as borders.
104 All control flow touching this region, comes in passing basic_block
105 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
106 edges for the borders we are able to represent also regions that do
107 not have a single entry or exit edge.
109 But as they have a single entry basic_block and a single exit
110 basic_block, we are able to generate for every sd_region a single
111 entry and exit edge.
115 3 <- entry
118 / \ This region contains: {3, 4, 5, 6, 7, 8}
123 9 <- exit */
126 typedef struct sd_region_p
128 /* The entry bb dominates all bbs in the sd_region. It is part of
129 the region. */
130 basic_block entry;
132 /* The exit bb postdominates all bbs in the sd_region, but is not
133 part of the region. */
134 basic_block exit;
135 } sd_region;
137 DEF_VEC_O(sd_region);
138 DEF_VEC_ALLOC_O(sd_region, heap);
141 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
143 static void
144 move_sd_regions (VEC (sd_region, heap) **source,
145 VEC (sd_region, heap) **target)
147 sd_region *s;
148 int i;
150 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
151 VEC_safe_push (sd_region, heap, *target, s);
153 VEC_free (sd_region, heap, *source);
156 /* Something like "n * m" is not allowed. */
158 static bool
159 graphite_can_represent_init (tree e)
161 switch (TREE_CODE (e))
163 case POLYNOMIAL_CHREC:
164 return graphite_can_represent_init (CHREC_LEFT (e))
165 && graphite_can_represent_init (CHREC_RIGHT (e));
167 case MULT_EXPR:
168 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
169 return graphite_can_represent_init (TREE_OPERAND (e, 0))
170 && host_integerp (TREE_OPERAND (e, 1), 0);
171 else
172 return graphite_can_represent_init (TREE_OPERAND (e, 1))
173 && host_integerp (TREE_OPERAND (e, 0), 0);
175 case PLUS_EXPR:
176 case POINTER_PLUS_EXPR:
177 case MINUS_EXPR:
178 return graphite_can_represent_init (TREE_OPERAND (e, 0))
179 && graphite_can_represent_init (TREE_OPERAND (e, 1));
181 case NEGATE_EXPR:
182 case BIT_NOT_EXPR:
183 CASE_CONVERT:
184 case NON_LVALUE_EXPR:
185 return graphite_can_represent_init (TREE_OPERAND (e, 0));
187 default:
188 break;
191 return true;
194 /* Return true when SCEV can be represented in the polyhedral model.
196 An expression can be represented, if it can be expressed as an
197 affine expression. For loops (i, j) and parameters (m, n) all
198 affine expressions are of the form:
200 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
202 1 i + 20 j + (-2) m + 25
204 Something like "i * n" or "n * m" is not allowed. */
206 static bool
207 graphite_can_represent_scev (tree scev)
209 if (chrec_contains_undetermined (scev))
210 return false;
212 switch (TREE_CODE (scev))
214 case PLUS_EXPR:
215 case MINUS_EXPR:
216 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
217 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
219 case MULT_EXPR:
220 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
221 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
222 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
223 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
224 && graphite_can_represent_init (scev)
225 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
226 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
228 case POLYNOMIAL_CHREC:
229 /* Check for constant strides. With a non constant stride of
230 'n' we would have a value of 'iv * n'. Also check that the
231 initial value can represented: for example 'n * m' cannot be
232 represented. */
233 if (!evolution_function_right_is_integer_cst (scev)
234 || !graphite_can_represent_init (scev))
235 return false;
237 default:
238 break;
241 /* Only affine functions can be represented. */
242 if (!scev_is_linear_expression (scev))
243 return false;
245 return true;
249 /* Return true when EXPR can be represented in the polyhedral model.
251 This means an expression can be represented, if it is linear with
252 respect to the loops and the strides are non parametric.
253 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
254 entry of the region we analyse. */
256 static bool
257 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
258 tree expr)
260 tree scev = analyze_scalar_evolution (loop, expr);
262 scev = instantiate_scev (scop_entry, loop, scev);
264 return graphite_can_represent_scev (scev);
267 /* Return true if the data references of STMT can be represented by
268 Graphite. */
270 static bool
271 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
273 data_reference_p dr;
274 unsigned i;
275 int j;
276 bool res = true;
277 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
279 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
281 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
282 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
283 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
285 res = false;
286 goto done;
289 done:
290 free_data_refs (drs);
291 return res;
294 /* Return true only when STMT is simple enough for being handled by
295 Graphite. This depends on SCOP_ENTRY, as the parameters are
296 initialized relatively to this basic block, the linear functions
297 are initialized to OUTERMOST_LOOP and BB is the place where we try
298 to evaluate the STMT. */
300 static bool
301 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
302 gimple stmt, basic_block bb)
304 loop_p loop = bb->loop_father;
306 gcc_assert (scop_entry);
308 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
309 Calls have side-effects, except those to const or pure
310 functions. */
311 if (gimple_has_volatile_ops (stmt)
312 || (gimple_code (stmt) == GIMPLE_CALL
313 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
314 || (gimple_code (stmt) == GIMPLE_ASM))
315 return false;
317 if (is_gimple_debug (stmt))
318 return true;
320 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
321 return false;
323 switch (gimple_code (stmt))
325 case GIMPLE_RETURN:
326 case GIMPLE_LABEL:
327 return true;
329 case GIMPLE_COND:
331 tree op;
332 ssa_op_iter op_iter;
333 enum tree_code code = gimple_cond_code (stmt);
335 /* We can handle all binary comparisons. Inequalities are
336 also supported as they can be represented with union of
337 polyhedra. */
338 if (!(code == LT_EXPR
339 || code == GT_EXPR
340 || code == LE_EXPR
341 || code == GE_EXPR
342 || code == EQ_EXPR
343 || code == NE_EXPR))
344 return false;
346 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
347 if (!graphite_can_represent_expr (scop_entry, loop, op)
348 /* We can not handle REAL_TYPE. Failed for pr39260. */
349 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
350 return false;
352 return true;
355 case GIMPLE_ASSIGN:
356 case GIMPLE_CALL:
357 return true;
359 default:
360 /* These nodes cut a new scope. */
361 return false;
364 return false;
367 /* Returns the statement of BB that contains a harmful operation: that
368 can be a function call with side effects, the induction variables
369 are not linear with respect to SCOP_ENTRY, etc. The current open
370 scop should end before this statement. The evaluation is limited using
371 OUTERMOST_LOOP as outermost loop that may change. */
373 static gimple
374 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
376 gimple_stmt_iterator gsi;
378 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
379 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
380 return gsi_stmt (gsi);
382 return NULL;
385 /* Return true if LOOP can be represented in the polyhedral
386 representation. This is evaluated taking SCOP_ENTRY and
387 OUTERMOST_LOOP in mind. */
389 static bool
390 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
392 tree niter = number_of_latch_executions (loop);
394 /* Number of iterations unknown. */
395 if (chrec_contains_undetermined (niter))
396 return false;
398 /* Number of iterations not affine. */
399 if (!graphite_can_represent_expr (scop_entry, loop, niter))
400 return false;
402 return true;
405 /* Store information needed by scopdet_* functions. */
407 struct scopdet_info
409 /* Exit of the open scop would stop if the current BB is harmful. */
410 basic_block exit;
412 /* Where the next scop would start if the current BB is harmful. */
413 basic_block next;
415 /* The bb or one of its children contains open loop exits. That means
416 loop exit nodes that are not surrounded by a loop dominated by bb. */
417 bool exits;
419 /* The bb or one of its children contains only structures we can handle. */
420 bool difficult;
423 static struct scopdet_info build_scops_1 (basic_block, loop_p,
424 VEC (sd_region, heap) **, loop_p);
426 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
427 to SCOPS. TYPE is the gbb_type of BB. */
429 static struct scopdet_info
430 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
431 VEC (sd_region, heap) **scops, gbb_type type)
433 loop_p loop = bb->loop_father;
434 struct scopdet_info result;
435 gimple stmt;
437 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
438 basic_block entry_block = ENTRY_BLOCK_PTR;
439 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
440 result.difficult = (stmt != NULL);
441 result.exit = NULL;
443 switch (type)
445 case GBB_LAST:
446 result.next = NULL;
447 result.exits = false;
449 /* Mark bbs terminating a SESE region difficult, if they start
450 a condition. */
451 if (!single_succ_p (bb))
452 result.difficult = true;
453 else
454 result.exit = single_succ (bb);
456 break;
458 case GBB_SIMPLE:
459 result.next = single_succ (bb);
460 result.exits = false;
461 result.exit = single_succ (bb);
462 break;
464 case GBB_LOOP_SING_EXIT_HEADER:
466 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
467 struct scopdet_info sinfo;
468 edge exit_e = single_exit (loop);
470 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
472 if (!graphite_can_represent_loop (entry_block, loop))
473 result.difficult = true;
475 result.difficult |= sinfo.difficult;
477 /* Try again with another loop level. */
478 if (result.difficult
479 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
481 outermost_loop = loop;
483 VEC_free (sd_region, heap, regions);
484 regions = VEC_alloc (sd_region, heap, 3);
486 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
488 result = sinfo;
489 result.difficult = true;
491 if (sinfo.difficult)
492 move_sd_regions (&regions, scops);
493 else
495 sd_region open_scop;
496 open_scop.entry = bb;
497 open_scop.exit = exit_e->dest;
498 VEC_safe_push (sd_region, heap, *scops, &open_scop);
499 VEC_free (sd_region, heap, regions);
502 else
504 result.exit = exit_e->dest;
505 result.next = exit_e->dest;
507 /* If we do not dominate result.next, remove it. It's either
508 the EXIT_BLOCK_PTR, or another bb dominates it and will
509 call the scop detection for this bb. */
510 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
511 result.next = NULL;
513 if (exit_e->src->loop_father != loop)
514 result.next = NULL;
516 result.exits = false;
518 if (result.difficult)
519 move_sd_regions (&regions, scops);
520 else
521 VEC_free (sd_region, heap, regions);
524 break;
527 case GBB_LOOP_MULT_EXIT_HEADER:
529 /* XXX: For now we just do not join loops with multiple exits. If the
530 exits lead to the same bb it may be possible to join the loop. */
531 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
532 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
533 edge e;
534 int i;
535 build_scops_1 (bb, loop, &regions, loop);
537 /* Scan the code dominated by this loop. This means all bbs, that are
538 are dominated by a bb in this loop, but are not part of this loop.
540 The easiest case:
541 - The loop exit destination is dominated by the exit sources.
543 TODO: We miss here the more complex cases:
544 - The exit destinations are dominated by another bb inside
545 the loop.
546 - The loop dominates bbs, that are not exit destinations. */
547 FOR_EACH_VEC_ELT (edge, exits, i, e)
548 if (e->src->loop_father == loop
549 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
551 if (loop_outer (outermost_loop))
552 outermost_loop = loop_outer (outermost_loop);
554 /* Pass loop_outer to recognize e->dest as loop header in
555 build_scops_1. */
556 if (e->dest->loop_father->header == e->dest)
557 build_scops_1 (e->dest, outermost_loop, &regions,
558 loop_outer (e->dest->loop_father));
559 else
560 build_scops_1 (e->dest, outermost_loop, &regions,
561 e->dest->loop_father);
564 result.next = NULL;
565 result.exit = NULL;
566 result.difficult = true;
567 result.exits = false;
568 move_sd_regions (&regions, scops);
569 VEC_free (edge, heap, exits);
570 break;
572 case GBB_COND_HEADER:
574 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
575 struct scopdet_info sinfo;
576 VEC (basic_block, heap) *dominated;
577 int i;
578 basic_block dom_bb;
579 basic_block last_exit = NULL;
580 edge e;
581 result.exits = false;
583 /* First check the successors of BB, and check if it is
584 possible to join the different branches. */
585 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
587 /* Ignore loop exits. They will be handled after the loop
588 body. */
589 if (loop_exits_to_bb_p (loop, e->dest))
591 result.exits = true;
592 continue;
595 /* Do not follow edges that lead to the end of the
596 conditions block. For example, in
599 | /|\
600 | 1 2 |
601 | | | |
602 | 3 4 |
603 | \|/
606 the edge from 0 => 6. Only check if all paths lead to
607 the same node 6. */
609 if (!single_pred_p (e->dest))
611 /* Check, if edge leads directly to the end of this
612 condition. */
613 if (!last_exit)
614 last_exit = e->dest;
616 if (e->dest != last_exit)
617 result.difficult = true;
619 continue;
622 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
624 result.difficult = true;
625 continue;
628 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
630 result.exits |= sinfo.exits;
631 result.difficult |= sinfo.difficult;
633 /* Checks, if all branches end at the same point.
634 If that is true, the condition stays joinable.
635 Have a look at the example above. */
636 if (sinfo.exit)
638 if (!last_exit)
639 last_exit = sinfo.exit;
641 if (sinfo.exit != last_exit)
642 result.difficult = true;
644 else
645 result.difficult = true;
648 if (!last_exit)
649 result.difficult = true;
651 /* Join the branches of the condition if possible. */
652 if (!result.exits && !result.difficult)
654 /* Only return a next pointer if we dominate this pointer.
655 Otherwise it will be handled by the bb dominating it. */
656 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
657 && last_exit != bb)
658 result.next = last_exit;
659 else
660 result.next = NULL;
662 result.exit = last_exit;
664 VEC_free (sd_region, heap, regions);
665 break;
668 /* Scan remaining bbs dominated by BB. */
669 dominated = get_dominated_by (CDI_DOMINATORS, bb);
671 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
673 /* Ignore loop exits: they will be handled after the loop body. */
674 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
675 < loop_depth (loop))
677 result.exits = true;
678 continue;
681 /* Ignore the bbs processed above. */
682 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
683 continue;
685 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
686 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
687 loop_outer (loop));
688 else
689 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
691 result.exits |= sinfo.exits;
692 result.difficult = true;
693 result.exit = NULL;
696 VEC_free (basic_block, heap, dominated);
698 result.next = NULL;
699 move_sd_regions (&regions, scops);
701 break;
704 default:
705 gcc_unreachable ();
708 return result;
711 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
712 SCOPS. The analyse if a sd_region can be handled is based on the value
713 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
714 is the loop in which CURRENT is handled.
716 TODO: These functions got a little bit big. They definitely should be cleaned
717 up. */
719 static struct scopdet_info
720 build_scops_1 (basic_block current, loop_p outermost_loop,
721 VEC (sd_region, heap) **scops, loop_p loop)
723 bool in_scop = false;
724 sd_region open_scop;
725 struct scopdet_info sinfo;
727 /* Initialize result. */
728 struct scopdet_info result;
729 result.exits = false;
730 result.difficult = false;
731 result.next = NULL;
732 result.exit = NULL;
733 open_scop.entry = NULL;
734 open_scop.exit = NULL;
735 sinfo.exit = NULL;
737 /* Loop over the dominance tree. If we meet a difficult bb, close
738 the current SCoP. Loop and condition header start a new layer,
739 and can only be added if all bbs in deeper layers are simple. */
740 while (current != NULL)
742 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
743 get_bb_type (current, loop));
745 if (!in_scop && !(sinfo.exits || sinfo.difficult))
747 open_scop.entry = current;
748 open_scop.exit = NULL;
749 in_scop = true;
751 else if (in_scop && (sinfo.exits || sinfo.difficult))
753 open_scop.exit = current;
754 VEC_safe_push (sd_region, heap, *scops, &open_scop);
755 in_scop = false;
758 result.difficult |= sinfo.difficult;
759 result.exits |= sinfo.exits;
761 current = sinfo.next;
764 /* Try to close open_scop, if we are still in an open SCoP. */
765 if (in_scop)
767 open_scop.exit = sinfo.exit;
768 gcc_assert (open_scop.exit);
769 VEC_safe_push (sd_region, heap, *scops, &open_scop);
772 result.exit = sinfo.exit;
773 return result;
776 /* Checks if a bb is contained in REGION. */
778 static bool
779 bb_in_sd_region (basic_block bb, sd_region *region)
781 return bb_in_region (bb, region->entry, region->exit);
784 /* Returns the single entry edge of REGION, if it does not exits NULL. */
786 static edge
787 find_single_entry_edge (sd_region *region)
789 edge e;
790 edge_iterator ei;
791 edge entry = NULL;
793 FOR_EACH_EDGE (e, ei, region->entry->preds)
794 if (!bb_in_sd_region (e->src, region))
796 if (entry)
798 entry = NULL;
799 break;
802 else
803 entry = e;
806 return entry;
809 /* Returns the single exit edge of REGION, if it does not exits NULL. */
811 static edge
812 find_single_exit_edge (sd_region *region)
814 edge e;
815 edge_iterator ei;
816 edge exit = NULL;
818 FOR_EACH_EDGE (e, ei, region->exit->preds)
819 if (bb_in_sd_region (e->src, region))
821 if (exit)
823 exit = NULL;
824 break;
827 else
828 exit = e;
831 return exit;
834 /* Create a single entry edge for REGION. */
836 static void
837 create_single_entry_edge (sd_region *region)
839 if (find_single_entry_edge (region))
840 return;
842 /* There are multiple predecessors for bb_3
844 | 1 2
845 | | /
846 | |/
847 | 3 <- entry
848 | |\
849 | | |
850 | 4 ^
851 | | |
852 | |/
855 There are two edges (1->3, 2->3), that point from outside into the region,
856 and another one (5->3), a loop latch, lead to bb_3.
858 We split bb_3.
860 | 1 2
861 | | /
862 | |/
863 |3.0
864 | |\ (3.0 -> 3.1) = single entry edge
865 |3.1 | <- entry
866 | | |
867 | | |
868 | 4 ^
869 | | |
870 | |/
873 If the loop is part of the SCoP, we have to redirect the loop latches.
875 | 1 2
876 | | /
877 | |/
878 |3.0
879 | | (3.0 -> 3.1) = entry edge
880 |3.1 <- entry
881 | |\
882 | | |
883 | 4 ^
884 | | |
885 | |/
886 | 5 */
888 if (region->entry->loop_father->header != region->entry
889 || dominated_by_p (CDI_DOMINATORS,
890 loop_latch_edge (region->entry->loop_father)->src,
891 region->exit))
893 edge forwarder = split_block_after_labels (region->entry);
894 region->entry = forwarder->dest;
896 else
897 /* This case is never executed, as the loop headers seem always to have a
898 single edge pointing from outside into the loop. */
899 gcc_unreachable ();
901 gcc_checking_assert (find_single_entry_edge (region));
904 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
906 static bool
907 sd_region_without_exit (edge e)
909 sd_region *r = (sd_region *) e->aux;
911 if (r)
912 return r->exit == NULL;
913 else
914 return false;
917 /* Create a single exit edge for REGION. */
919 static void
920 create_single_exit_edge (sd_region *region)
922 edge e;
923 edge_iterator ei;
924 edge forwarder = NULL;
925 basic_block exit;
927 /* We create a forwarder bb (5) for all edges leaving this region
928 (3->5, 4->5). All other edges leading to the same bb, are moved
929 to a new bb (6). If these edges where part of another region (2->5)
930 we update the region->exit pointer, of this region.
932 To identify which edge belongs to which region we depend on the e->aux
933 pointer in every edge. It points to the region of the edge or to NULL,
934 if the edge is not part of any region.
936 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
937 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
938 5 <- exit
940 changes to
942 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
943 | | \/ 3->5 no region, 4->5 no region,
944 | | 5
945 \| / 5->6 region->exit = 6
948 Now there is only a single exit edge (5->6). */
949 exit = region->exit;
950 region->exit = NULL;
951 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
953 /* Unmark the edges, that are no longer exit edges. */
954 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
955 if (e->aux)
956 e->aux = NULL;
958 /* Mark the new exit edge. */
959 single_succ_edge (forwarder->src)->aux = region;
961 /* Update the exit bb of all regions, where exit edges lead to
962 forwarder->dest. */
963 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
964 if (e->aux)
965 ((sd_region *) e->aux)->exit = forwarder->dest;
967 gcc_checking_assert (find_single_exit_edge (region));
970 /* Unmark the exit edges of all REGIONS.
971 See comment in "create_single_exit_edge". */
973 static void
974 unmark_exit_edges (VEC (sd_region, heap) *regions)
976 int i;
977 sd_region *s;
978 edge e;
979 edge_iterator ei;
981 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
982 FOR_EACH_EDGE (e, ei, s->exit->preds)
983 e->aux = NULL;
987 /* Mark the exit edges of all REGIONS.
988 See comment in "create_single_exit_edge". */
990 static void
991 mark_exit_edges (VEC (sd_region, heap) *regions)
993 int i;
994 sd_region *s;
995 edge e;
996 edge_iterator ei;
998 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
999 FOR_EACH_EDGE (e, ei, s->exit->preds)
1000 if (bb_in_sd_region (e->src, s))
1001 e->aux = s;
1004 /* Create for all scop regions a single entry and a single exit edge. */
1006 static void
1007 create_sese_edges (VEC (sd_region, heap) *regions)
1009 int i;
1010 sd_region *s;
1012 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1013 create_single_entry_edge (s);
1015 mark_exit_edges (regions);
1017 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1018 /* Don't handle multiple edges exiting the function. */
1019 if (!find_single_exit_edge (s)
1020 && s->exit != EXIT_BLOCK_PTR)
1021 create_single_exit_edge (s);
1023 unmark_exit_edges (regions);
1025 fix_loop_structure (NULL);
1027 #ifdef ENABLE_CHECKING
1028 verify_loop_structure ();
1029 verify_dominators (CDI_DOMINATORS);
1030 verify_ssa (false);
1031 #endif
1034 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1036 static void
1037 build_graphite_scops (VEC (sd_region, heap) *regions,
1038 VEC (scop_p, heap) **scops)
1040 int i;
1041 sd_region *s;
1043 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1045 edge entry = find_single_entry_edge (s);
1046 edge exit = find_single_exit_edge (s);
1047 scop_p scop;
1049 if (!exit)
1050 continue;
1052 scop = new_scop (new_sese (entry, exit));
1053 VEC_safe_push (scop_p, heap, *scops, scop);
1055 /* Are there overlapping SCoPs? */
1056 #ifdef ENABLE_CHECKING
1058 int j;
1059 sd_region *s2;
1061 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1062 if (s != s2)
1063 gcc_assert (!bb_in_sd_region (s->entry, s2));
1065 #endif
1069 /* Returns true when BB contains only close phi nodes. */
1071 static bool
1072 contains_only_close_phi_nodes (basic_block bb)
1074 gimple_stmt_iterator gsi;
1076 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1077 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1078 return false;
1080 return true;
1083 /* Print statistics for SCOP to FILE. */
1085 static void
1086 print_graphite_scop_statistics (FILE* file, scop_p scop)
1088 long n_bbs = 0;
1089 long n_loops = 0;
1090 long n_stmts = 0;
1091 long n_conditions = 0;
1092 long n_p_bbs = 0;
1093 long n_p_loops = 0;
1094 long n_p_stmts = 0;
1095 long n_p_conditions = 0;
1097 basic_block bb;
1099 FOR_ALL_BB (bb)
1101 gimple_stmt_iterator psi;
1102 loop_p loop = bb->loop_father;
1104 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1105 continue;
1107 n_bbs++;
1108 n_p_bbs += bb->count;
1110 if (VEC_length (edge, bb->succs) > 1)
1112 n_conditions++;
1113 n_p_conditions += bb->count;
1116 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1118 n_stmts++;
1119 n_p_stmts += bb->count;
1122 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1124 n_loops++;
1125 n_p_loops += bb->count;
1130 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1131 fprintf (file, "BBS:%ld, ", n_bbs);
1132 fprintf (file, "LOOPS:%ld, ", n_loops);
1133 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1134 fprintf (file, "STMTS:%ld)\n", n_stmts);
1135 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1136 fprintf (file, "BBS:%ld, ", n_p_bbs);
1137 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1138 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1139 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1142 /* Print statistics for SCOPS to FILE. */
1144 static void
1145 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1147 int i;
1148 scop_p scop;
1150 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1151 print_graphite_scop_statistics (file, scop);
1154 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1156 Example:
1158 for (i |
1160 for (j | SCoP 1
1161 for (k |
1164 * SCoP frontier, as this line is not surrounded by any loop. *
1166 for (l | SCoP 2
1168 This is necessary as scalar evolution and parameter detection need a
1169 outermost loop to initialize parameters correctly.
1171 TODO: FIX scalar evolution and parameter detection to allow more flexible
1172 SCoP frontiers. */
1174 static void
1175 limit_scops (VEC (scop_p, heap) **scops)
1177 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1179 int i;
1180 scop_p scop;
1182 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1184 int j;
1185 loop_p loop;
1186 sese region = SCOP_REGION (scop);
1187 build_sese_loop_nests (region);
1189 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1190 if (!loop_in_sese_p (loop_outer (loop), region)
1191 && single_exit (loop))
1193 sd_region open_scop;
1194 open_scop.entry = loop->header;
1195 open_scop.exit = single_exit (loop)->dest;
1197 /* This is a hack on top of the limit_scops hack. The
1198 limit_scops hack should disappear all together. */
1199 if (single_succ_p (open_scop.exit)
1200 && contains_only_close_phi_nodes (open_scop.exit))
1201 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1203 VEC_safe_push (sd_region, heap, regions, &open_scop);
1207 free_scops (*scops);
1208 *scops = VEC_alloc (scop_p, heap, 3);
1210 create_sese_edges (regions);
1211 build_graphite_scops (regions, scops);
1212 VEC_free (sd_region, heap, regions);
1215 /* Transforms LOOP to the canonical loop closed SSA form. */
1217 static void
1218 canonicalize_loop_closed_ssa (loop_p loop)
1220 edge e = single_exit (loop);
1221 basic_block bb;
1223 if (!e || e->flags & EDGE_ABNORMAL)
1224 return;
1226 bb = e->dest;
1228 if (VEC_length (edge, bb->preds) == 1)
1229 split_block_after_labels (bb);
1230 else
1232 gimple_stmt_iterator psi;
1233 basic_block close = split_edge (e);
1235 e = single_succ_edge (close);
1237 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1239 gimple phi = gsi_stmt (psi);
1240 unsigned i;
1242 for (i = 0; i < gimple_phi_num_args (phi); i++)
1243 if (gimple_phi_arg_edge (phi, i) == e)
1245 tree res, arg = gimple_phi_arg_def (phi, i);
1246 use_operand_p use_p;
1247 gimple close_phi;
1249 if (TREE_CODE (arg) != SSA_NAME)
1250 continue;
1252 close_phi = create_phi_node (arg, close);
1253 res = create_new_def_for (gimple_phi_result (close_phi),
1254 close_phi,
1255 gimple_phi_result_ptr (close_phi));
1256 add_phi_arg (close_phi, arg,
1257 gimple_phi_arg_edge (close_phi, 0),
1258 UNKNOWN_LOCATION);
1259 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1260 replace_exp (use_p, res);
1261 update_stmt (phi);
1267 /* Converts the current loop closed SSA form to a canonical form
1268 expected by the Graphite code generation.
1270 The loop closed SSA form has the following invariant: a variable
1271 defined in a loop that is used outside the loop appears only in the
1272 phi nodes in the destination of the loop exit. These phi nodes are
1273 called close phi nodes.
1275 The canonical loop closed SSA form contains the extra invariants:
1277 - when the loop contains only one exit, the close phi nodes contain
1278 only one argument. That implies that the basic block that contains
1279 the close phi nodes has only one predecessor, that is a basic block
1280 in the loop.
1282 - the basic block containing the close phi nodes does not contain
1283 other statements.
1286 static void
1287 canonicalize_loop_closed_ssa_form (void)
1289 loop_iterator li;
1290 loop_p loop;
1292 #ifdef ENABLE_CHECKING
1293 verify_loop_closed_ssa (true);
1294 #endif
1296 FOR_EACH_LOOP (li, loop, 0)
1297 canonicalize_loop_closed_ssa (loop);
1299 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1300 update_ssa (TODO_update_ssa);
1302 #ifdef ENABLE_CHECKING
1303 verify_loop_closed_ssa (true);
1304 #endif
1307 /* Find Static Control Parts (SCoP) in the current function and pushes
1308 them to SCOPS. */
1310 void
1311 build_scops (VEC (scop_p, heap) **scops)
1313 struct loop *loop = current_loops->tree_root;
1314 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1316 canonicalize_loop_closed_ssa_form ();
1317 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1318 &regions, loop);
1319 create_sese_edges (regions);
1320 build_graphite_scops (regions, scops);
1322 if (dump_file && (dump_flags & TDF_DETAILS))
1323 print_graphite_statistics (dump_file, *scops);
1325 limit_scops (scops);
1326 VEC_free (sd_region, heap, regions);
1328 if (dump_file && (dump_flags & TDF_DETAILS))
1329 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1330 VEC_length (scop_p, *scops));
1333 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1334 different colors. If there are not enough colors, paint the
1335 remaining SCoPs in gray.
1337 Special nodes:
1338 - "*" after the node number denotes the entry of a SCoP,
1339 - "#" after the node number denotes the exit of a SCoP,
1340 - "()" around the node number denotes the entry or the
1341 exit nodes of the SCOP. These are not part of SCoP. */
1343 static void
1344 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1346 basic_block bb;
1347 edge e;
1348 edge_iterator ei;
1349 scop_p scop;
1350 const char* color;
1351 int i;
1353 /* Disable debugging while printing graph. */
1354 int tmp_dump_flags = dump_flags;
1355 dump_flags = 0;
1357 fprintf (file, "digraph all {\n");
1359 FOR_ALL_BB (bb)
1361 int part_of_scop = false;
1363 /* Use HTML for every bb label. So we are able to print bbs
1364 which are part of two different SCoPs, with two different
1365 background colors. */
1366 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1367 bb->index);
1368 fprintf (file, "CELLSPACING=\"0\">\n");
1370 /* Select color for SCoP. */
1371 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1373 sese region = SCOP_REGION (scop);
1374 if (bb_in_sese_p (bb, region)
1375 || (SESE_EXIT_BB (region) == bb)
1376 || (SESE_ENTRY_BB (region) == bb))
1378 switch (i % 17)
1380 case 0: /* red */
1381 color = "#e41a1c";
1382 break;
1383 case 1: /* blue */
1384 color = "#377eb8";
1385 break;
1386 case 2: /* green */
1387 color = "#4daf4a";
1388 break;
1389 case 3: /* purple */
1390 color = "#984ea3";
1391 break;
1392 case 4: /* orange */
1393 color = "#ff7f00";
1394 break;
1395 case 5: /* yellow */
1396 color = "#ffff33";
1397 break;
1398 case 6: /* brown */
1399 color = "#a65628";
1400 break;
1401 case 7: /* rose */
1402 color = "#f781bf";
1403 break;
1404 case 8:
1405 color = "#8dd3c7";
1406 break;
1407 case 9:
1408 color = "#ffffb3";
1409 break;
1410 case 10:
1411 color = "#bebada";
1412 break;
1413 case 11:
1414 color = "#fb8072";
1415 break;
1416 case 12:
1417 color = "#80b1d3";
1418 break;
1419 case 13:
1420 color = "#fdb462";
1421 break;
1422 case 14:
1423 color = "#b3de69";
1424 break;
1425 case 15:
1426 color = "#fccde5";
1427 break;
1428 case 16:
1429 color = "#bc80bd";
1430 break;
1431 default: /* gray */
1432 color = "#999999";
1435 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1437 if (!bb_in_sese_p (bb, region))
1438 fprintf (file, " (");
1440 if (bb == SESE_ENTRY_BB (region)
1441 && bb == SESE_EXIT_BB (region))
1442 fprintf (file, " %d*# ", bb->index);
1443 else if (bb == SESE_ENTRY_BB (region))
1444 fprintf (file, " %d* ", bb->index);
1445 else if (bb == SESE_EXIT_BB (region))
1446 fprintf (file, " %d# ", bb->index);
1447 else
1448 fprintf (file, " %d ", bb->index);
1450 if (!bb_in_sese_p (bb,region))
1451 fprintf (file, ")");
1453 fprintf (file, "</TD></TR>\n");
1454 part_of_scop = true;
1458 if (!part_of_scop)
1460 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1461 fprintf (file, " %d </TD></TR>\n", bb->index);
1463 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1466 FOR_ALL_BB (bb)
1468 FOR_EACH_EDGE (e, ei, bb->succs)
1469 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1472 fputs ("}\n\n", file);
1474 /* Enable debugging again. */
1475 dump_flags = tmp_dump_flags;
1478 /* Display all SCoPs using dotty. */
1480 DEBUG_FUNCTION void
1481 dot_all_scops (VEC (scop_p, heap) *scops)
1483 /* When debugging, enable the following code. This cannot be used
1484 in production compilers because it calls "system". */
1485 #if 0
1486 int x;
1487 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1488 gcc_assert (stream);
1490 dot_all_scops_1 (stream, scops);
1491 fclose (stream);
1493 x = system ("dotty /tmp/allscops.dot &");
1494 #else
1495 dot_all_scops_1 (stderr, scops);
1496 #endif
1499 /* Display all SCoPs using dotty. */
1501 DEBUG_FUNCTION void
1502 dot_scop (scop_p scop)
1504 VEC (scop_p, heap) *scops = NULL;
1506 if (scop)
1507 VEC_safe_push (scop_p, heap, scops, scop);
1509 /* When debugging, enable the following code. This cannot be used
1510 in production compilers because it calls "system". */
1511 #if 0
1513 int x;
1514 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1515 gcc_assert (stream);
1517 dot_all_scops_1 (stream, scops);
1518 fclose (stream);
1519 x = system ("dotty /tmp/allscops.dot &");
1521 #else
1522 dot_all_scops_1 (stderr, scops);
1523 #endif
1525 VEC_free (scop_p, heap, scops);
1528 #endif