2010-12-20 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / graphite-interchange.c
blobaafb94ae151fee4873faa05d2b990080533192b9
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "output.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "timevar.h"
36 #include "cfgloop.h"
37 #include "tree-chrec.h"
38 #include "tree-data-ref.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-pass.h"
41 #include "domwalk.h"
42 #include "value-prof.h"
43 #include "pointer-set.h"
44 #include "gimple.h"
45 #include "params.h"
47 #ifdef HAVE_cloog
48 #include "ppl_c.h"
49 #include "sese.h"
50 #include "graphite-ppl.h"
51 #include "graphite.h"
52 #include "graphite-poly.h"
54 /* Builds a linear expression, of dimension DIM, representing PDR's
55 memory access:
57 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
59 For an array A[10][20] with two subscript locations s0 and s1, the
60 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
61 corresponds to a memory stride of 20.
63 OFFSET is a number of dimensions to prepend before the
64 subscript dimensions: s_0, s_1, ..., s_n.
66 Thus, the final linear expression has the following format:
67 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
68 where the expression itself is:
69 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
71 static ppl_Linear_Expression_t
72 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
74 ppl_Linear_Expression_t res;
75 ppl_Linear_Expression_t le;
76 ppl_dimension_type i;
77 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
78 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
79 mpz_t size, sub_size;
80 graphite_dim_t dim = offset + pdr_dim (pdr);
82 ppl_new_Linear_Expression_with_dimension (&res, dim);
84 mpz_init (size);
85 mpz_set_si (size, 1);
86 mpz_init (sub_size);
87 mpz_set_si (sub_size, 1);
89 for (i = last - 1; i >= first; i--)
91 ppl_set_coef_gmp (res, i + offset, size);
93 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
94 ppl_set_coef (le, i, 1);
95 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
96 mpz_mul (size, size, sub_size);
97 ppl_delete_Linear_Expression (le);
100 mpz_clear (sub_size);
101 mpz_clear (size);
102 return res;
105 /* Builds a partial difference equations and inserts them
106 into pointset powerset polyhedron P. Polyhedron is assumed
107 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
109 TIME_DEPTH is the time dimension w.r.t. which we are
110 differentiating.
111 OFFSET represents the number of dimensions between
112 columns t_{time_depth} and t'_{time_depth}.
113 DIM_SCTR is the number of scattering dimensions. It is
114 essentially the dimensionality of the T vector.
116 The following equations are inserted into the polyhedron P:
117 | t_1 = t_1'
118 | ...
119 | t_{time_depth-1} = t'_{time_depth-1}
120 | t_{time_depth} = t'_{time_depth} + 1
121 | t_{time_depth+1} = t'_{time_depth + 1}
122 | ...
123 | t_{dim_sctr} = t'_{dim_sctr}. */
125 static void
126 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
127 ppl_dimension_type time_depth,
128 ppl_dimension_type offset,
129 ppl_dimension_type dim_sctr)
131 ppl_Constraint_t new_cstr;
132 ppl_Linear_Expression_t le;
133 ppl_dimension_type i;
134 ppl_dimension_type dim;
135 ppl_Pointset_Powerset_C_Polyhedron_t temp;
137 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
138 This is the core part of this alogrithm, since this
139 constraint asks for the memory access stride (difference)
140 between two consecutive points in time dimensions. */
142 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
143 ppl_new_Linear_Expression_with_dimension (&le, dim);
144 ppl_set_coef (le, time_depth, 1);
145 ppl_set_coef (le, time_depth + offset, -1);
146 ppl_set_inhomogeneous (le, 1);
147 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
148 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
149 ppl_delete_Linear_Expression (le);
150 ppl_delete_Constraint (new_cstr);
152 /* Add equalities:
153 | t1 = t1'
154 | ...
155 | t_{time_depth-1} = t'_{time_depth-1}
156 | t_{time_depth+1} = t'_{time_depth+1}
157 | ...
158 | t_{dim_sctr} = t'_{dim_sctr}
160 This means that all the time dimensions are equal except for
161 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
162 step. More to this: we should be carefull not to add equalities
163 to the 'coupled' dimensions, which happens when the one dimension
164 is stripmined dimension, and the other dimension corresponds
165 to the point loop inside stripmined dimension. */
167 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
169 for (i = 0; i < dim_sctr; i++)
170 if (i != time_depth)
172 ppl_new_Linear_Expression_with_dimension (&le, dim);
173 ppl_set_coef (le, i, 1);
174 ppl_set_coef (le, i + offset, -1);
175 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
176 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
178 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
180 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
181 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
183 else
184 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
185 ppl_delete_Linear_Expression (le);
186 ppl_delete_Constraint (new_cstr);
189 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
193 /* Set STRIDE to the stride of PDR in memory by advancing by one in
194 the loop at DEPTH. */
196 static void
197 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
199 ppl_dimension_type time_depth;
200 ppl_Linear_Expression_t le, lma;
201 ppl_Constraint_t new_cstr;
202 ppl_dimension_type i, *map;
203 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
204 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
205 poly_bb_p pbb = PDR_PBB (pdr);
206 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
207 + pbb_nb_local_vars (pbb)
208 + pbb_dim_iter_domain (pbb);
209 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
210 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
211 + pbb_nb_local_vars (pbb);
212 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
213 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
214 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
216 /* The resulting polyhedron should have the following format:
217 T|I|T'|I'|G|S|S'|l1|l2
218 where:
219 | T = t_1..t_{dim_sctr}
220 | I = i_1..i_{dim_iter_domain}
221 | T'= t'_1..t'_{dim_sctr}
222 | I'= i'_1..i'_{dim_iter_domain}
223 | G = g_1..g_{nb_params}
224 | S = s_1..s_{nb_subscripts}
225 | S'= s'_1..s'_{nb_subscripts}
226 | l1 and l2 are scalars.
228 Some invariants:
229 offset = dim_sctr + dim_iter_domain + nb_local_vars
230 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
232 /* Construct the T|I|0|0|G|0|0|0|0 part. */
234 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
235 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
236 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
237 (sctr, 2 * nb_subscripts + 2);
238 ppl_insert_dimensions_pointset (sctr, offset, offset);
241 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
243 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
244 (&p1, PDR_ACCESSES (pdr));
245 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
246 (p1, nb_subscripts + 2);
247 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
248 ppl_insert_dimensions_pointset (p1, offset, offset);
251 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
253 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
254 ppl_set_coef (lma, dim_L1, -1);
255 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
256 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
257 ppl_delete_Linear_Expression (lma);
258 ppl_delete_Constraint (new_cstr);
261 /* Now intersect all the parts to get the polyhedron P1:
262 T|I|0|0|G|0|0|0 |0
263 0|I|0|0|G|S|0|0 |0
264 0|0|0|0|0|S|0|l1|0
265 ------------------
266 T|I|0|0|G|S|0|l1|0. */
268 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
269 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
271 /* Build P2, which would have the following form:
272 0|0|T'|I'|G|0|S'|0|l2
274 P2 is built, by remapping the P1 polyhedron:
275 T|I|0|0|G|S|0|l1|0
277 using the following mapping:
278 T->T'
279 I->I'
280 S->S'
281 l1->l2. */
283 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
284 (&p2, p1);
286 map = ppl_new_id_map (new_dim);
288 /* TI -> T'I'. */
289 for (i = 0; i < offset; i++)
290 ppl_interchange (map, i, i + offset);
292 /* l1 -> l2. */
293 ppl_interchange (map, dim_L1, dim_L2);
295 /* S -> S'. */
296 for (i = 0; i < nb_subscripts; i++)
297 ppl_interchange (map, offset + offsetg + i,
298 offset + offsetg + nb_subscripts + i);
300 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
301 free (map);
304 time_depth = psct_dynamic_dim (pbb, depth);
306 /* P1 = P1 inter P2. */
307 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
308 build_partial_difference (&p1, time_depth, offset, dim_sctr);
310 /* Maximise the expression L2 - L1. */
312 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
313 ppl_set_coef (le, dim_L2, 1);
314 ppl_set_coef (le, dim_L1, -1);
315 ppl_max_for_le_pointset (p1, le, stride);
318 if (dump_file && (dump_flags & TDF_DETAILS))
320 char *str;
321 void (*gmp_free) (void *, size_t);
323 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
324 pbb_index (pbb), PDR_ID (pdr), (int) depth);
325 str = mpz_get_str (0, 10, stride);
326 fprintf (dump_file, " %s ", str);
327 mp_get_memory_functions (NULL, NULL, &gmp_free);
328 (*gmp_free) (str, strlen (str) + 1);
331 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
332 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
333 ppl_delete_Linear_Expression (le);
337 /* Sets STRIDES to the sum of all the strides of the data references
338 accessed in LOOP at DEPTH. */
340 static void
341 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
343 int i, j;
344 lst_p l;
345 poly_dr_p pdr;
346 mpz_t s, n;
348 mpz_init (s);
349 mpz_init (n);
351 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), j, l)
352 if (LST_LOOP_P (l))
353 memory_strides_in_loop_1 (l, depth, strides);
354 else
355 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr)
357 pdr_stride_in_loop (s, depth, pdr);
358 mpz_set_si (n, PDR_NB_REFS (pdr));
359 mpz_mul (s, s, n);
360 mpz_add (strides, strides, s);
363 mpz_clear (s);
364 mpz_clear (n);
367 /* Sets STRIDES to the sum of all the strides of the data references
368 accessed in LOOP at DEPTH. */
370 static void
371 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
373 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
375 mpz_set_si (strides, 0);
376 memory_strides_in_loop_1 (loop, depth, strides);
378 else
379 mpz_set (strides, loop->memory_strides);
382 /* Return true when the interchange of loops LOOP1 and LOOP2 is
383 profitable.
385 Example:
387 | int a[100][100];
389 | int
390 | foo (int N)
392 | int j;
393 | int i;
395 | for (i = 0; i < N; i++)
396 | for (j = 0; j < N; j++)
397 | a[j][2 * i] += 1;
399 | return a[N][12];
402 The data access A[j][i] is described like this:
404 | i j N a s0 s1 1
405 | 0 0 0 1 0 0 -5 = 0
406 | 0 -1 0 0 1 0 0 = 0
407 |-2 0 0 0 0 1 0 = 0
408 | 0 0 0 0 1 0 0 >= 0
409 | 0 0 0 0 0 1 0 >= 0
410 | 0 0 0 0 -1 0 100 >= 0
411 | 0 0 0 0 0 -1 100 >= 0
413 The linearized memory access L to A[100][100] is:
415 | i j N a s0 s1 1
416 | 0 0 0 0 100 1 0
418 TODO: the shown format is not valid as it does not show the fact
419 that the iteration domain "i j" is transformed using the scattering.
421 Next, to measure the impact of iterating once in loop "i", we build
422 a maximization problem: first, we add to DR accesses the dimensions
423 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
424 L1 and L2 are the linearized memory access functions.
426 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
427 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
428 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
429 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
430 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
431 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
432 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
433 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
434 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
436 Then, we generate the polyhedron P2 by interchanging the dimensions
437 (s0, s2), (s1, s3), (L1, L2), (k, i)
439 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
440 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
441 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
442 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
443 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
444 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
445 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
446 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
447 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
449 then we add to P2 the equality k = i + 1:
451 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
453 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
455 Similarly, to determine the impact of one iteration on loop "j", we
456 interchange (k, j), we add "k = j + 1", and we compute D2 the
457 maximal value of the difference.
459 Finally, the profitability test is D1 < D2: if in the outer loop
460 the strides are smaller than in the inner loop, then it is
461 profitable to interchange the loops at DEPTH1 and DEPTH2. */
463 static bool
464 lst_interchange_profitable_p (lst_p loop1, lst_p loop2)
466 mpz_t d1, d2;
467 bool res;
469 gcc_assert (loop1 && loop2
470 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2)
471 && lst_depth (loop1) < lst_depth (loop2));
473 mpz_init (d1);
474 mpz_init (d2);
476 memory_strides_in_loop (loop1, lst_depth (loop1), d1);
477 memory_strides_in_loop (loop2, lst_depth (loop2), d2);
479 res = mpz_cmp (d1, d2) < 0;
481 mpz_clear (d1);
482 mpz_clear (d2);
484 return res;
487 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
488 scattering and assigns the resulting polyhedron to the transformed
489 scattering. */
491 static void
492 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
493 poly_bb_p pbb)
495 ppl_dimension_type i, dim;
496 ppl_dimension_type *map;
497 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
498 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
499 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
501 ppl_Polyhedron_space_dimension (poly, &dim);
502 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
504 for (i = 0; i < dim; i++)
505 map[i] = i;
507 map[dim1] = dim2;
508 map[dim2] = dim1;
510 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
511 free (map);
514 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
515 the statements below LST. */
517 static void
518 lst_apply_interchange (lst_p lst, int depth1, int depth2)
520 if (!lst)
521 return;
523 if (LST_LOOP_P (lst))
525 int i;
526 lst_p l;
528 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
529 lst_apply_interchange (l, depth1, depth2);
531 else
532 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
535 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
536 perfect: i.e. there are no sequence of statements. */
538 static bool
539 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
541 if (loop1 == loop2)
542 return true;
544 if (!LST_LOOP_P (loop1))
545 return false;
547 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
548 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
551 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
552 nest. To continue the naming tradition, this function is called
553 after perfect_nestify. NEST is set to the perfectly nested loop
554 that is created. BEFORE/AFTER are set to the loops distributed
555 before/after the loop NEST. */
557 static void
558 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
559 lst_p *nest, lst_p *after)
561 poly_bb_p first, last;
563 gcc_assert (loop1 && loop2
564 && loop1 != loop2
565 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
567 first = LST_PBB (lst_find_first_pbb (loop2));
568 last = LST_PBB (lst_find_last_pbb (loop2));
570 *before = copy_lst (loop1);
571 *nest = copy_lst (loop1);
572 *after = copy_lst (loop1);
574 lst_remove_all_before_including_pbb (*before, first, false);
575 lst_remove_all_before_including_pbb (*after, last, true);
577 lst_remove_all_before_excluding_pbb (*nest, first, true);
578 lst_remove_all_before_excluding_pbb (*nest, last, false);
580 if (lst_empty_p (*before))
582 free_lst (*before);
583 *before = NULL;
585 if (lst_empty_p (*after))
587 free_lst (*after);
588 *after = NULL;
590 if (lst_empty_p (*nest))
592 free_lst (*nest);
593 *nest = NULL;
597 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
598 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
599 interchange. */
601 static bool
602 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
604 int depth1 = lst_depth (loop1);
605 int depth2 = lst_depth (loop2);
606 lst_p transformed;
608 lst_p before = NULL, nest = NULL, after = NULL;
610 if (!lst_interchange_profitable_p (loop1, loop2))
611 return false;
613 if (!lst_perfectly_nested_p (loop1, loop2))
614 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
616 lst_apply_interchange (loop2, depth1, depth2);
618 /* Sync the transformed LST information and the PBB scatterings
619 before using the scatterings in the data dependence analysis. */
620 if (before || nest || after)
622 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
623 before, nest, after);
624 lst_update_scattering (transformed);
625 free_lst (transformed);
628 if (graphite_legal_transform (scop))
630 if (dump_file && (dump_flags & TDF_DETAILS))
631 fprintf (dump_file,
632 "Loops at depths %d and %d will be interchanged.\n",
633 depth1, depth2);
635 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
636 lst_insert_in_sequence (before, loop1, true);
637 lst_insert_in_sequence (after, loop1, false);
639 if (nest)
641 lst_replace (loop1, nest);
642 free_lst (loop1);
645 return true;
648 /* Undo the transform. */
649 free_lst (before);
650 free_lst (nest);
651 free_lst (after);
652 lst_apply_interchange (loop2, depth2, depth1);
653 return false;
656 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
657 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
659 static bool
660 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
661 lst_p inner_father)
663 int inner;
664 lst_p loop1, loop2;
666 gcc_assert (outer_father
667 && LST_LOOP_P (outer_father)
668 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
669 && inner_father
670 && LST_LOOP_P (inner_father));
672 loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
674 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner_father), inner, loop2)
675 if (LST_LOOP_P (loop2)
676 && (lst_try_interchange_loops (scop, loop1, loop2)
677 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
678 return true;
680 return false;
683 /* Interchanges all the loops of LOOP and the loops of its body that
684 are considered profitable to interchange. Return true if it did
685 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
686 points to the next outer loop to be considered for interchange. */
688 static bool
689 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
691 lst_p l;
692 bool res = false;
693 int i = 0;
694 lst_p father;
696 if (!loop || !LST_LOOP_P (loop))
697 return false;
699 father = LST_LOOP_FATHER (loop);
700 if (father)
702 while (lst_interchange_select_inner (scop, father, outer, loop))
704 res = true;
705 loop = VEC_index (lst_p, LST_SEQ (father), outer);
709 if (LST_LOOP_P (loop))
710 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), i, l)
711 if (LST_LOOP_P (l))
712 res |= lst_interchange_select_outer (scop, l, i);
714 return res;
717 /* Interchanges all the loop depths that are considered profitable for SCOP. */
719 bool
720 scop_do_interchange (scop_p scop)
722 bool res = lst_interchange_select_outer
723 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
725 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
727 return res;
731 #endif