2010-12-20 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / ada / a-tifiio.adb
blob82aeb8a83e6632b3264d2919b3ab538bfcecae54
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- A D A . T E X T _ I O . F I X E D _ I O --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- Fixed point I/O
33 -- ---------------
35 -- The following documents implementation details of the fixed point
36 -- input/output routines in the GNAT run time. The first part describes
37 -- general properties of fixed point types as defined by the Ada 95 standard,
38 -- including the Information Systems Annex.
40 -- Subsequently these are reduced to implementation constraints and the impact
41 -- of these constraints on a few possible approaches to I/O are given.
42 -- Based on this analysis, a specific implementation is selected for use in
43 -- the GNAT run time. Finally, the chosen algorithm is analyzed numerically in
44 -- order to provide user-level documentation on limits for range and precision
45 -- of fixed point types as well as accuracy of input/output conversions.
47 -- -------------------------------------------
48 -- - General Properties of Fixed Point Types -
49 -- -------------------------------------------
51 -- Operations on fixed point values, other than input and output, are not
52 -- important for the purposes of this document. Only the set of values that a
53 -- fixed point type can represent and the input and output operations are
54 -- significant.
56 -- Values
57 -- ------
59 -- Set set of values of a fixed point type comprise the integral
60 -- multiples of a number called the small of the type. The small can
61 -- either be a power of ten, a power of two or (if the implementation
62 -- allows) an arbitrary strictly positive real value.
64 -- Implementations need to support fixed-point types with a precision
65 -- of at least 24 bits, and (in order to comply with the Information
66 -- Systems Annex) decimal types need to support at least digits 18.
67 -- For the rest, however, no requirements exist for the minimal small
68 -- and range that need to be supported.
70 -- Operations
71 -- ----------
73 -- 'Image and 'Wide_Image (see RM 3.5(34))
75 -- These attributes return a decimal real literal best approximating
76 -- the value (rounded away from zero if halfway between) with a
77 -- single leading character that is either a minus sign or a space,
78 -- one or more digits before the decimal point (with no redundant
79 -- leading zeros), a decimal point, and N digits after the decimal
80 -- point. For a subtype S, the value of N is S'Aft, the smallest
81 -- positive integer such that (10**N)*S'Delta is greater or equal to
82 -- one, see RM 3.5.10(5).
84 -- For an arbitrary small, this means large number arithmetic needs
85 -- to be performed.
87 -- Put (see RM A.10.9(22-26))
89 -- The requirements for Put add no extra constraints over the image
90 -- attributes, although it would be nice to be able to output more
91 -- than S'Aft digits after the decimal point for values of subtype S.
93 -- 'Value and 'Wide_Value attribute (RM 3.5(40-55))
95 -- Since the input can be given in any base in the range 2..16,
96 -- accurate conversion to a fixed point number may require
97 -- arbitrary precision arithmetic if there is no limit on the
98 -- magnitude of the small of the fixed point type.
100 -- Get (see RM A.10.9(12-21))
102 -- The requirements for Get are identical to those of the Value
103 -- attribute.
105 -- ------------------------------
106 -- - Implementation Constraints -
107 -- ------------------------------
109 -- The requirements listed above for the input/output operations lead to
110 -- significant complexity, if no constraints are put on supported smalls.
112 -- Implementation Strategies
113 -- -------------------------
115 -- * Float arithmetic
116 -- * Arbitrary-precision integer arithmetic
117 -- * Fixed-precision integer arithmetic
119 -- Although it seems convenient to convert fixed point numbers to floating-
120 -- point and then print them, this leads to a number of restrictions.
121 -- The first one is precision. The widest floating-point type generally
122 -- available has 53 bits of mantissa. This means that Fine_Delta cannot
123 -- be less than 2.0**(-53).
125 -- In GNAT, Fine_Delta is 2.0**(-63), and Duration for example is a
126 -- 64-bit type. It would still be possible to use multi-precision
127 -- floating-point to perform calculations using longer mantissas,
128 -- but this is a much harder approach.
130 -- The base conversions needed for input and output of (non-decimal)
131 -- fixed point types can be seen as pairs of integer multiplications
132 -- and divisions.
134 -- Arbitrary-precision integer arithmetic would be suitable for the job
135 -- at hand, but has the draw-back that it is very heavy implementation-wise.
136 -- Especially in embedded systems, where fixed point types are often used,
137 -- it may not be desirable to require large amounts of storage and time
138 -- for fixed I/O operations.
140 -- Fixed-precision integer arithmetic has the advantage of simplicity and
141 -- speed. For the most common fixed point types this would be a perfect
142 -- solution. The downside however may be a too limited set of acceptable
143 -- fixed point types.
145 -- Extra Precision
146 -- ---------------
148 -- Using a scaled divide which truncates and returns a remainder R,
149 -- another E trailing digits can be calculated by computing the value
150 -- (R * (10.0**E)) / Z using another scaled divide. This procedure
151 -- can be repeated to compute an arbitrary number of digits in linear
152 -- time and storage. The last scaled divide should be rounded, with
153 -- a possible carry propagating to the more significant digits, to
154 -- ensure correct rounding of the unit in the last place.
156 -- An extension of this technique is to limit the value of Q to 9 decimal
157 -- digits, since 32-bit integers can be much more efficient than 64-bit
158 -- integers to output.
160 with Interfaces; use Interfaces;
161 with System.Arith_64; use System.Arith_64;
162 with System.Img_Real; use System.Img_Real;
163 with Ada.Text_IO; use Ada.Text_IO;
164 with Ada.Text_IO.Float_Aux;
165 with Ada.Text_IO.Generic_Aux;
167 package body Ada.Text_IO.Fixed_IO is
169 -- Note: we still use the floating-point I/O routines for input of
170 -- ordinary fixed-point and output using exponent format. This will
171 -- result in inaccuracies for fixed point types with a small that is
172 -- not a power of two, and for types that require more precision than
173 -- is available in Long_Long_Float.
175 package Aux renames Ada.Text_IO.Float_Aux;
177 Extra_Layout_Space : constant Field := 5 + Num'Fore;
178 -- Extra space that may be needed for output of sign, decimal point,
179 -- exponent indication and mandatory decimals after and before the
180 -- decimal point. A string with length
182 -- Fore + Aft + Exp + Extra_Layout_Space
184 -- is always long enough for formatting any fixed point number
186 -- Implementation of Put routines
188 -- The following section describes a specific implementation choice for
189 -- performing base conversions needed for output of values of a fixed
190 -- point type T with small T'Small. The goal is to be able to output
191 -- all values of types with a precision of 64 bits and a delta of at
192 -- least 2.0**(-63), as these are current GNAT limitations already.
194 -- The chosen algorithm uses fixed precision integer arithmetic for
195 -- reasons of simplicity and efficiency. It is important to understand
196 -- in what ways the most simple and accurate approach to fixed point I/O
197 -- is limiting, before considering more complicated schemes.
199 -- Without loss of generality assume T has a range (-2.0**63) * T'Small
200 -- .. (2.0**63 - 1) * T'Small, and is output with Aft digits after the
201 -- decimal point and T'Fore - 1 before. If T'Small is integer, or
202 -- 1.0 / T'Small is integer, let S = T'Small and E = 0. For other T'Small,
203 -- let S and E be integers such that S / 10**E best approximates T'Small
204 -- and S is in the range 10**17 .. 10**18 - 1. The extra decimal scaling
205 -- factor 10**E can be trivially handled during final output, by adjusting
206 -- the decimal point or exponent.
208 -- Convert a value X * S of type T to a 64-bit integer value Q equal
209 -- to 10.0**D * (X * S) rounded to the nearest integer.
210 -- This conversion is a scaled integer divide of the form
212 -- Q := (X * Y) / Z,
214 -- where all variables are 64-bit signed integers using 2's complement,
215 -- and both the multiplication and division are done using full
216 -- intermediate precision. The final decimal value to be output is
218 -- Q * 10**(E-D)
220 -- This value can be written to the output file or to the result string
221 -- according to the format described in RM A.3.10. The details of this
222 -- operation are omitted here.
224 -- A 64-bit value can contain all integers with 18 decimal digits, but
225 -- not all with 19 decimal digits. If the total number of requested output
226 -- digits (Fore - 1) + Aft is greater than 18, for purposes of the
227 -- conversion Aft is adjusted to 18 - (Fore - 1). In that case, or
228 -- when Fore > 19, trailing zeros can complete the output after writing
229 -- the first 18 significant digits, or the technique described in the
230 -- next section can be used.
232 -- The final expression for D is
234 -- D := Integer'Max (-18, Integer'Min (Aft, 18 - (Fore - 1)));
236 -- For Y and Z the following expressions can be derived:
238 -- Q / (10.0**D) = X * S
240 -- Q = X * S * (10.0**D) = (X * Y) / Z
242 -- S * 10.0**D = Y / Z;
244 -- If S is an integer greater than or equal to one, then Fore must be at
245 -- least 20 in order to print T'First, which is at most -2.0**63.
246 -- This means D < 0, so use
248 -- (1) Y = -S and Z = -10**(-D)
250 -- If 1.0 / S is an integer greater than one, use
252 -- (2) Y = -10**D and Z = -(1.0 / S), for D >= 0
254 -- or
256 -- (3) Y = 1 and Z = (1.0 / S) * 10**(-D), for D < 0
258 -- Negative values are used for nominator Y and denominator Z, so that S
259 -- can have a maximum value of 2.0**63 and a minimum of 2.0**(-63).
260 -- For Z in -1 .. -9, Fore will still be 20, and D will be negative, as
261 -- (-2.0**63) / -9 is greater than 10**18. In these cases there is room
262 -- in the denominator for the extra decimal scaling required, so case (3)
263 -- will not overflow.
265 pragma Assert (System.Fine_Delta >= 2.0**(-63));
266 pragma Assert (Num'Small in 2.0**(-63) .. 2.0**63);
267 pragma Assert (Num'Fore <= 37);
268 -- These assertions need to be relaxed to allow for a Small of
269 -- 2.0**(-64) at least, since there is an ACATS test for this ???
271 Max_Digits : constant := 18;
272 -- Maximum number of decimal digits that can be represented in a
273 -- 64-bit signed number, see above
275 -- The constants E0 .. E5 implement a binary search for the appropriate
276 -- power of ten to scale the small so that it has one digit before the
277 -- decimal point.
279 subtype Int is Integer;
280 E0 : constant Int := -(20 * Boolean'Pos (Num'Small >= 1.0E1));
281 E1 : constant Int := E0 + 10 * Boolean'Pos (Num'Small * 10.0**E0 < 1.0E-10);
282 E2 : constant Int := E1 + 5 * Boolean'Pos (Num'Small * 10.0**E1 < 1.0E-5);
283 E3 : constant Int := E2 + 3 * Boolean'Pos (Num'Small * 10.0**E2 < 1.0E-3);
284 E4 : constant Int := E3 + 2 * Boolean'Pos (Num'Small * 10.0**E3 < 1.0E-1);
285 E5 : constant Int := E4 + 1 * Boolean'Pos (Num'Small * 10.0**E4 < 1.0E-0);
287 Scale : constant Integer := E5;
289 pragma Assert (Num'Small * 10.0**Scale >= 1.0
290 and then Num'Small * 10.0**Scale < 10.0);
292 Exact : constant Boolean :=
293 Float'Floor (Num'Small) = Float'Ceiling (Num'Small)
294 or else Float'Floor (1.0 / Num'Small) =
295 Float'Ceiling (1.0 / Num'Small)
296 or else Num'Small >= 10.0**Max_Digits;
297 -- True iff a numerator and denominator can be calculated such that
298 -- their ratio exactly represents the small of Num.
300 procedure Put
301 (To : out String;
302 Last : out Natural;
303 Item : Num;
304 Fore : Integer;
305 Aft : Field;
306 Exp : Field);
307 -- Actual output function, used internally by all other Put routines.
308 -- The formal Fore is an Integer, not a Field, because the routine is
309 -- also called from the version of Put that performs I/O to a string,
310 -- where the starting position depends on the size of the String, and
311 -- bears no relation to the bounds of Field.
313 ---------
314 -- Get --
315 ---------
317 procedure Get
318 (File : File_Type;
319 Item : out Num;
320 Width : Field := 0)
322 pragma Unsuppress (Range_Check);
323 begin
324 Aux.Get (File, Long_Long_Float (Item), Width);
325 exception
326 when Constraint_Error => raise Data_Error;
327 end Get;
329 procedure Get
330 (Item : out Num;
331 Width : Field := 0)
333 pragma Unsuppress (Range_Check);
334 begin
335 Aux.Get (Current_In, Long_Long_Float (Item), Width);
336 exception
337 when Constraint_Error => raise Data_Error;
338 end Get;
340 procedure Get
341 (From : String;
342 Item : out Num;
343 Last : out Positive)
345 pragma Unsuppress (Range_Check);
346 begin
347 Aux.Gets (From, Long_Long_Float (Item), Last);
348 exception
349 when Constraint_Error => raise Data_Error;
350 end Get;
352 ---------
353 -- Put --
354 ---------
356 procedure Put
357 (File : File_Type;
358 Item : Num;
359 Fore : Field := Default_Fore;
360 Aft : Field := Default_Aft;
361 Exp : Field := Default_Exp)
363 S : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
364 Last : Natural;
365 begin
366 Put (S, Last, Item, Fore, Aft, Exp);
367 Generic_Aux.Put_Item (File, S (1 .. Last));
368 end Put;
370 procedure Put
371 (Item : Num;
372 Fore : Field := Default_Fore;
373 Aft : Field := Default_Aft;
374 Exp : Field := Default_Exp)
376 S : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
377 Last : Natural;
378 begin
379 Put (S, Last, Item, Fore, Aft, Exp);
380 Generic_Aux.Put_Item (Text_IO.Current_Out, S (1 .. Last));
381 end Put;
383 procedure Put
384 (To : out String;
385 Item : Num;
386 Aft : Field := Default_Aft;
387 Exp : Field := Default_Exp)
389 Fore : constant Integer :=
390 To'Length
391 - 1 -- Decimal point
392 - Field'Max (1, Aft) -- Decimal part
393 - Boolean'Pos (Exp /= 0) -- Exponent indicator
394 - Exp; -- Exponent
396 Last : Natural;
398 begin
399 if Fore - Boolean'Pos (Item < 0.0) < 1 then
400 raise Layout_Error;
401 end if;
403 Put (To, Last, Item, Fore, Aft, Exp);
405 if Last /= To'Last then
406 raise Layout_Error;
407 end if;
408 end Put;
410 procedure Put
411 (To : out String;
412 Last : out Natural;
413 Item : Num;
414 Fore : Integer;
415 Aft : Field;
416 Exp : Field)
418 subtype Digit is Int64 range 0 .. 9;
420 X : constant Int64 := Int64'Integer_Value (Item);
421 A : constant Field := Field'Max (Aft, 1);
422 Neg : constant Boolean := (Item < 0.0);
423 Pos : Integer := 0; -- Next digit X has value X * 10.0**Pos;
425 procedure Put_Character (C : Character);
426 pragma Inline (Put_Character);
427 -- Add C to the output string To, updating Last
429 procedure Put_Digit (X : Digit);
430 -- Add digit X to the output string (going from left to right), updating
431 -- Last and Pos, and inserting the sign, leading zeros or a decimal
432 -- point when necessary. After outputting the first digit, Pos must not
433 -- be changed outside Put_Digit anymore.
435 procedure Put_Int64 (X : Int64; Scale : Integer);
436 -- Output the decimal number abs X * 10**Scale
438 procedure Put_Scaled
439 (X, Y, Z : Int64;
440 A : Field;
441 E : Integer);
442 -- Output the decimal number (X * Y / Z) * 10**E, producing A digits
443 -- after the decimal point and rounding the final digit. The value
444 -- X * Y / Z is computed with full precision, but must be in the
445 -- range of Int64.
447 -------------------
448 -- Put_Character --
449 -------------------
451 procedure Put_Character (C : Character) is
452 begin
453 Last := Last + 1;
455 -- Never put a character outside of string To. Exception Layout_Error
456 -- will be raised later if Last is greater than To'Last.
458 if Last <= To'Last then
459 To (Last) := C;
460 end if;
461 end Put_Character;
463 ---------------
464 -- Put_Digit --
465 ---------------
467 procedure Put_Digit (X : Digit) is
468 Digs : constant array (Digit) of Character := "0123456789";
470 begin
471 if Last = To'First - 1 then
472 if X /= 0 or else Pos <= 0 then
474 -- Before outputting first digit, include leading space,
475 -- possible minus sign and, if the first digit is fractional,
476 -- decimal seperator and leading zeros.
478 -- The Fore part has Pos + 1 + Boolean'Pos (Neg) characters,
479 -- if Pos >= 0 and otherwise has a single zero digit plus minus
480 -- sign if negative. Add leading space if necessary.
482 for J in Integer'Max (0, Pos) + 2 + Boolean'Pos (Neg) .. Fore
483 loop
484 Put_Character (' ');
485 end loop;
487 -- Output minus sign, if number is negative
489 if Neg then
490 Put_Character ('-');
491 end if;
493 -- If starting with fractional digit, output leading zeros
495 if Pos < 0 then
496 Put_Character ('0');
497 Put_Character ('.');
499 for J in Pos .. -2 loop
500 Put_Character ('0');
501 end loop;
502 end if;
504 Put_Character (Digs (X));
505 end if;
507 else
508 -- This is not the first digit to be output, so the only
509 -- special handling is that for the decimal point
511 if Pos = -1 then
512 Put_Character ('.');
513 end if;
515 Put_Character (Digs (X));
516 end if;
518 Pos := Pos - 1;
519 end Put_Digit;
521 ---------------
522 -- Put_Int64 --
523 ---------------
525 procedure Put_Int64 (X : Int64; Scale : Integer) is
526 begin
527 if X = 0 then
528 return;
529 end if;
531 if X not in -9 .. 9 then
532 Put_Int64 (X / 10, Scale + 1);
533 end if;
535 -- Use Put_Digit to advance Pos. This fixes a case where the second
536 -- or later Scaled_Divide would omit leading zeroes, resulting in
537 -- too few digits produced and a Layout_Error as result.
539 while Pos > Scale loop
540 Put_Digit (0);
541 end loop;
543 -- If and only if more than one digit is output before the decimal
544 -- point, pos will be unequal to scale when outputting the first
545 -- digit.
547 pragma Assert (Pos = Scale or else Last = To'First - 1);
549 Pos := Scale;
551 Put_Digit (abs (X rem 10));
552 end Put_Int64;
554 ----------------
555 -- Put_Scaled --
556 ----------------
558 procedure Put_Scaled
559 (X, Y, Z : Int64;
560 A : Field;
561 E : Integer)
563 pragma Assert (E >= -Max_Digits);
564 AA : constant Field := E + A;
565 N : constant Natural := (AA + Max_Digits - 1) / Max_Digits + 1;
567 Q : array (0 .. N - 1) of Int64 := (others => 0);
568 -- Each element of Q has Max_Digits decimal digits, except the
569 -- last, which has eAA rem Max_Digits. Only Q (Q'First) may have an
570 -- absolute value equal to or larger than 10**Max_Digits. Only the
571 -- absolute value of the elements is not significant, not the sign.
573 XX : Int64 := X;
574 YY : Int64 := Y;
576 begin
577 for J in Q'Range loop
578 exit when XX = 0;
580 if J > 0 then
581 YY := 10**(Integer'Min (Max_Digits, AA - (J - 1) * Max_Digits));
582 end if;
584 Scaled_Divide (XX, YY, Z, Q (J), R => XX, Round => False);
585 end loop;
587 if -E > A then
588 pragma Assert (N = 1);
590 Discard_Extra_Digits : declare
591 Factor : constant Int64 := 10**(-E - A);
593 begin
594 -- The scaling factors were such that the first division
595 -- produced more digits than requested. So divide away extra
596 -- digits and compute new remainder for later rounding.
598 if abs (Q (0) rem Factor) >= Factor / 2 then
599 Q (0) := abs (Q (0) / Factor) + 1;
600 else
601 Q (0) := Q (0) / Factor;
602 end if;
604 XX := 0;
605 end Discard_Extra_Digits;
606 end if;
608 -- At this point XX is a remainder and we need to determine if the
609 -- quotient in Q must be rounded away from zero.
611 -- As XX is less than the divisor, it is safe to take its absolute
612 -- without chance of overflow. The check to see if XX is at least
613 -- half the absolute value of the divisor must be done carefully to
614 -- avoid overflow or lose precision.
616 XX := abs XX;
618 if XX >= 2**62
619 or else (Z < 0 and then (-XX) * 2 <= Z)
620 or else (Z >= 0 and then XX * 2 >= Z)
621 then
622 -- OK, rounding is necessary. As the sign is not significant,
623 -- take advantage of the fact that an extra negative value will
624 -- always be available when propagating the carry.
626 Q (Q'Last) := -abs Q (Q'Last) - 1;
628 Propagate_Carry :
629 for J in reverse 1 .. Q'Last loop
630 if Q (J) = YY or else Q (J) = -YY then
631 Q (J) := 0;
632 Q (J - 1) := -abs Q (J - 1) - 1;
634 else
635 exit Propagate_Carry;
636 end if;
637 end loop Propagate_Carry;
638 end if;
640 for J in Q'First .. Q'Last - 1 loop
641 Put_Int64 (Q (J), E - J * Max_Digits);
642 end loop;
644 Put_Int64 (Q (Q'Last), -A);
645 end Put_Scaled;
647 -- Start of processing for Put
649 begin
650 Last := To'First - 1;
652 if Exp /= 0 then
654 -- With the Exp format, it is not known how many output digits to
655 -- generate, as leading zeros must be ignored. Computing too many
656 -- digits and then truncating the output will not give the closest
657 -- output, it is necessary to round at the correct digit.
659 -- The general approach is as follows: as long as no digits have
660 -- been generated, compute the Aft next digits (without rounding).
661 -- Once a non-zero digit is generated, determine the exact number
662 -- of digits remaining and compute them with rounding.
664 -- Since a large number of iterations might be necessary in case
665 -- of Aft = 1, the following optimization would be desirable.
667 -- Count the number Z of leading zero bits in the integer
668 -- representation of X, and start with producing Aft + Z * 1000 /
669 -- 3322 digits in the first scaled division.
671 -- However, the floating-point routines are still used now ???
673 System.Img_Real.Set_Image_Real (Long_Long_Float (Item), To, Last,
674 Fore, Aft, Exp);
675 return;
676 end if;
678 if Exact then
679 declare
680 D : constant Integer := Integer'Min (A, Max_Digits
681 - (Num'Fore - 1));
682 Y : constant Int64 := Int64'Min (Int64 (-Num'Small), -1)
683 * 10**Integer'Max (0, D);
684 Z : constant Int64 := Int64'Min (Int64 (-(1.0 / Num'Small)), -1)
685 * 10**Integer'Max (0, -D);
686 begin
687 Put_Scaled (X, Y, Z, A, -D);
688 end;
690 else -- not Exact
691 declare
692 E : constant Integer := Max_Digits - 1 + Scale;
693 D : constant Integer := Scale - 1;
694 Y : constant Int64 := Int64 (-Num'Small * 10.0**E);
695 Z : constant Int64 := -10**Max_Digits;
696 begin
697 Put_Scaled (X, Y, Z, A, -D);
698 end;
699 end if;
701 -- If only zero digits encountered, unit digit has not been output yet
703 if Last < To'First then
704 Pos := 0;
706 elsif Last > To'Last then
707 raise Layout_Error; -- Not enough room in the output variable
708 end if;
710 -- Always output digits up to the first one after the decimal point
712 while Pos >= -A loop
713 Put_Digit (0);
714 end loop;
715 end Put;
717 end Ada.Text_IO.Fixed_IO;