* doc/extend.texi (Function Attributes): GNU C++ does now allow
[official-gcc.git] / gcc / regrename.c
blobc1ff6255316c62196e875276f4f1b334b974cfaa
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #define REG_OK_STRICT
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "reload.h"
34 #include "output.h"
35 #include "function.h"
36 #include "recog.h"
37 #include "flags.h"
38 #include "toplev.h"
39 #include "obstack.h"
41 #ifndef REG_MODE_OK_FOR_BASE_P
42 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
43 #endif
45 static const char *const reg_class_names[] = REG_CLASS_NAMES;
47 struct du_chain
49 struct du_chain *next_chain;
50 struct du_chain *next_use;
52 rtx insn;
53 rtx *loc;
54 ENUM_BITFIELD(reg_class) class : 16;
55 unsigned int need_caller_save_reg:1;
56 unsigned int earlyclobber:1;
59 enum scan_actions
61 terminate_all_read,
62 terminate_overlapping_read,
63 terminate_write,
64 terminate_dead,
65 mark_read,
66 mark_write
69 static const char * const scan_actions_name[] =
71 "terminate_all_read",
72 "terminate_overlapping_read",
73 "terminate_write",
74 "terminate_dead",
75 "mark_read",
76 "mark_write"
79 static struct obstack rename_obstack;
81 static void do_replace (struct du_chain *, int);
82 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
83 enum scan_actions, enum op_type, int);
84 static void scan_rtx_address (rtx, rtx *, enum reg_class,
85 enum scan_actions, enum machine_mode);
86 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
87 enum op_type, int);
88 static struct du_chain *build_def_use (basic_block);
89 static void dump_def_use_chain (struct du_chain *);
90 static void note_sets (rtx, rtx, void *);
91 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
92 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
93 struct du_chain *);
95 /* Called through note_stores from update_life. Find sets of registers, and
96 record them in *DATA (which is actually a HARD_REG_SET *). */
98 static void
99 note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
101 HARD_REG_SET *pset = (HARD_REG_SET *) data;
102 unsigned int regno;
103 int nregs;
104 if (GET_CODE (x) != REG)
105 return;
106 regno = REGNO (x);
107 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
109 /* There must not be pseudos at this point. */
110 if (regno + nregs > FIRST_PSEUDO_REGISTER)
111 abort ();
113 while (nregs-- > 0)
114 SET_HARD_REG_BIT (*pset, regno + nregs);
117 /* Clear all registers from *PSET for which a note of kind KIND can be found
118 in the list NOTES. */
120 static void
121 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
123 rtx note;
124 for (note = notes; note; note = XEXP (note, 1))
125 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
127 rtx reg = XEXP (note, 0);
128 unsigned int regno = REGNO (reg);
129 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
131 /* There must not be pseudos at this point. */
132 if (regno + nregs > FIRST_PSEUDO_REGISTER)
133 abort ();
135 while (nregs-- > 0)
136 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
140 /* For a def-use chain CHAIN in basic block B, find which registers overlap
141 its lifetime and set the corresponding bits in *PSET. */
143 static void
144 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
145 struct du_chain *chain)
147 struct du_chain *t = chain;
148 rtx insn;
149 HARD_REG_SET live;
151 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
152 insn = b->head;
153 while (t)
155 /* Search forward until the next reference to the register to be
156 renamed. */
157 while (insn != t->insn)
159 if (INSN_P (insn))
161 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
162 note_stores (PATTERN (insn), note_sets, (void *) &live);
163 /* Only record currently live regs if we are inside the
164 reg's live range. */
165 if (t != chain)
166 IOR_HARD_REG_SET (*pset, live);
167 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
169 insn = NEXT_INSN (insn);
172 IOR_HARD_REG_SET (*pset, live);
174 /* For the last reference, also merge in all registers set in the
175 same insn.
176 @@@ We only have take earlyclobbered sets into account. */
177 if (! t->next_use)
178 note_stores (PATTERN (insn), note_sets, (void *) pset);
180 t = t->next_use;
184 /* Perform register renaming on the current function. */
186 void
187 regrename_optimize (void)
189 int tick[FIRST_PSEUDO_REGISTER];
190 int this_tick = 0;
191 basic_block bb;
192 char *first_obj;
194 memset (tick, 0, sizeof tick);
196 gcc_obstack_init (&rename_obstack);
197 first_obj = obstack_alloc (&rename_obstack, 0);
199 FOR_EACH_BB (bb)
201 struct du_chain *all_chains = 0;
202 HARD_REG_SET unavailable;
203 HARD_REG_SET regs_seen;
205 CLEAR_HARD_REG_SET (unavailable);
207 if (rtl_dump_file)
208 fprintf (rtl_dump_file, "\nBasic block %d:\n", bb->index);
210 all_chains = build_def_use (bb);
212 if (rtl_dump_file)
213 dump_def_use_chain (all_chains);
215 CLEAR_HARD_REG_SET (unavailable);
216 /* Don't clobber traceback for noreturn functions. */
217 if (frame_pointer_needed)
219 int i;
221 for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
222 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
224 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
225 for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
226 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
227 #endif
230 CLEAR_HARD_REG_SET (regs_seen);
231 while (all_chains)
233 int new_reg, best_new_reg = -1;
234 int n_uses;
235 struct du_chain *this = all_chains;
236 struct du_chain *tmp, *last;
237 HARD_REG_SET this_unavailable;
238 int reg = REGNO (*this->loc);
239 int i;
241 all_chains = this->next_chain;
243 #if 0 /* This just disables optimization opportunities. */
244 /* Only rename once we've seen the reg more than once. */
245 if (! TEST_HARD_REG_BIT (regs_seen, reg))
247 SET_HARD_REG_BIT (regs_seen, reg);
248 continue;
250 #endif
252 if (fixed_regs[reg] || global_regs[reg]
253 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
254 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
255 #else
256 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
257 #endif
259 continue;
261 COPY_HARD_REG_SET (this_unavailable, unavailable);
263 /* Find last entry on chain (which has the need_caller_save bit),
264 count number of uses, and narrow the set of registers we can
265 use for renaming. */
266 n_uses = 0;
267 for (last = this; last->next_use; last = last->next_use)
269 n_uses++;
270 IOR_COMPL_HARD_REG_SET (this_unavailable,
271 reg_class_contents[last->class]);
273 if (n_uses < 1)
274 continue;
276 IOR_COMPL_HARD_REG_SET (this_unavailable,
277 reg_class_contents[last->class]);
279 if (this->need_caller_save_reg)
280 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
282 merge_overlapping_regs (bb, &this_unavailable, this);
284 /* Now potential_regs is a reasonable approximation, let's
285 have a closer look at each register still in there. */
286 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
288 int nregs = HARD_REGNO_NREGS (new_reg, GET_MODE (*this->loc));
290 for (i = nregs - 1; i >= 0; --i)
291 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
292 || fixed_regs[new_reg + i]
293 || global_regs[new_reg + i]
294 /* Can't use regs which aren't saved by the prologue. */
295 || (! regs_ever_live[new_reg + i]
296 && ! call_used_regs[new_reg + i])
297 #ifdef LEAF_REGISTERS
298 /* We can't use a non-leaf register if we're in a
299 leaf function. */
300 || (current_function_is_leaf
301 && !LEAF_REGISTERS[new_reg + i])
302 #endif
303 #ifdef HARD_REGNO_RENAME_OK
304 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
305 #endif
307 break;
308 if (i >= 0)
309 continue;
311 /* See whether it accepts all modes that occur in
312 definition and uses. */
313 for (tmp = this; tmp; tmp = tmp->next_use)
314 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
315 || (tmp->need_caller_save_reg
316 && ! (HARD_REGNO_CALL_PART_CLOBBERED
317 (reg, GET_MODE (*tmp->loc)))
318 && (HARD_REGNO_CALL_PART_CLOBBERED
319 (new_reg, GET_MODE (*tmp->loc)))))
320 break;
321 if (! tmp)
323 if (best_new_reg == -1
324 || tick[best_new_reg] > tick[new_reg])
325 best_new_reg = new_reg;
329 if (rtl_dump_file)
331 fprintf (rtl_dump_file, "Register %s in insn %d",
332 reg_names[reg], INSN_UID (last->insn));
333 if (last->need_caller_save_reg)
334 fprintf (rtl_dump_file, " crosses a call");
337 if (best_new_reg == -1)
339 if (rtl_dump_file)
340 fprintf (rtl_dump_file, "; no available registers\n");
341 continue;
344 do_replace (this, best_new_reg);
345 tick[best_new_reg] = this_tick++;
347 if (rtl_dump_file)
348 fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
351 obstack_free (&rename_obstack, first_obj);
354 obstack_free (&rename_obstack, NULL);
356 if (rtl_dump_file)
357 fputc ('\n', rtl_dump_file);
359 count_or_remove_death_notes (NULL, 1);
360 update_life_info (NULL, UPDATE_LIFE_LOCAL,
361 PROP_REG_INFO | PROP_DEATH_NOTES);
364 static void
365 do_replace (struct du_chain *chain, int reg)
367 while (chain)
369 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
370 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
372 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
373 if (regno >= FIRST_PSEUDO_REGISTER)
374 ORIGINAL_REGNO (*chain->loc) = regno;
375 REG_ATTRS (*chain->loc) = attr;
376 chain = chain->next_use;
381 static struct du_chain *open_chains;
382 static struct du_chain *closed_chains;
384 static void
385 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class class,
386 enum scan_actions action, enum op_type type, int earlyclobber)
388 struct du_chain **p;
389 rtx x = *loc;
390 enum machine_mode mode = GET_MODE (x);
391 int this_regno = REGNO (x);
392 int this_nregs = HARD_REGNO_NREGS (this_regno, mode);
394 if (action == mark_write)
396 if (type == OP_OUT)
398 struct du_chain *this
399 = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
400 this->next_use = 0;
401 this->next_chain = open_chains;
402 this->loc = loc;
403 this->insn = insn;
404 this->class = class;
405 this->need_caller_save_reg = 0;
406 this->earlyclobber = earlyclobber;
407 open_chains = this;
409 return;
412 if ((type == OP_OUT && action != terminate_write)
413 || (type != OP_OUT && action == terminate_write))
414 return;
416 for (p = &open_chains; *p;)
418 struct du_chain *this = *p;
420 /* Check if the chain has been terminated if it has then skip to
421 the next chain.
423 This can happen when we've already appended the location to
424 the chain in Step 3, but are trying to hide in-out operands
425 from terminate_write in Step 5. */
427 if (*this->loc == cc0_rtx)
428 p = &this->next_chain;
429 else
431 int regno = REGNO (*this->loc);
432 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
433 int exact_match = (regno == this_regno && nregs == this_nregs);
435 if (regno + nregs <= this_regno
436 || this_regno + this_nregs <= regno)
438 p = &this->next_chain;
439 continue;
442 if (action == mark_read)
444 if (! exact_match)
445 abort ();
447 /* ??? Class NO_REGS can happen if the md file makes use of
448 EXTRA_CONSTRAINTS to match registers. Which is arguably
449 wrong, but there we are. Since we know not what this may
450 be replaced with, terminate the chain. */
451 if (class != NO_REGS)
453 this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
454 this->next_use = 0;
455 this->next_chain = (*p)->next_chain;
456 this->loc = loc;
457 this->insn = insn;
458 this->class = class;
459 this->need_caller_save_reg = 0;
460 while (*p)
461 p = &(*p)->next_use;
462 *p = this;
463 return;
467 if (action != terminate_overlapping_read || ! exact_match)
469 struct du_chain *next = this->next_chain;
471 /* Whether the terminated chain can be used for renaming
472 depends on the action and this being an exact match.
473 In either case, we remove this element from open_chains. */
475 if ((action == terminate_dead || action == terminate_write)
476 && exact_match)
478 this->next_chain = closed_chains;
479 closed_chains = this;
480 if (rtl_dump_file)
481 fprintf (rtl_dump_file,
482 "Closing chain %s at insn %d (%s)\n",
483 reg_names[REGNO (*this->loc)], INSN_UID (insn),
484 scan_actions_name[(int) action]);
486 else
488 if (rtl_dump_file)
489 fprintf (rtl_dump_file,
490 "Discarding chain %s at insn %d (%s)\n",
491 reg_names[REGNO (*this->loc)], INSN_UID (insn),
492 scan_actions_name[(int) action]);
494 *p = next;
496 else
497 p = &this->next_chain;
502 /* Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
503 BASE_REG_CLASS depending on how the register is being considered. */
505 static void
506 scan_rtx_address (rtx insn, rtx *loc, enum reg_class class,
507 enum scan_actions action, enum machine_mode mode)
509 rtx x = *loc;
510 RTX_CODE code = GET_CODE (x);
511 const char *fmt;
512 int i, j;
514 if (action == mark_write)
515 return;
517 switch (code)
519 case PLUS:
521 rtx orig_op0 = XEXP (x, 0);
522 rtx orig_op1 = XEXP (x, 1);
523 RTX_CODE code0 = GET_CODE (orig_op0);
524 RTX_CODE code1 = GET_CODE (orig_op1);
525 rtx op0 = orig_op0;
526 rtx op1 = orig_op1;
527 rtx *locI = NULL;
528 rtx *locB = NULL;
530 if (GET_CODE (op0) == SUBREG)
532 op0 = SUBREG_REG (op0);
533 code0 = GET_CODE (op0);
536 if (GET_CODE (op1) == SUBREG)
538 op1 = SUBREG_REG (op1);
539 code1 = GET_CODE (op1);
542 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
543 || code0 == ZERO_EXTEND || code1 == MEM)
545 locI = &XEXP (x, 0);
546 locB = &XEXP (x, 1);
548 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
549 || code1 == ZERO_EXTEND || code0 == MEM)
551 locI = &XEXP (x, 1);
552 locB = &XEXP (x, 0);
554 else if (code0 == CONST_INT || code0 == CONST
555 || code0 == SYMBOL_REF || code0 == LABEL_REF)
556 locB = &XEXP (x, 1);
557 else if (code1 == CONST_INT || code1 == CONST
558 || code1 == SYMBOL_REF || code1 == LABEL_REF)
559 locB = &XEXP (x, 0);
560 else if (code0 == REG && code1 == REG)
562 int index_op;
564 if (REG_OK_FOR_INDEX_P (op0)
565 && REG_MODE_OK_FOR_BASE_P (op1, mode))
566 index_op = 0;
567 else if (REG_OK_FOR_INDEX_P (op1)
568 && REG_MODE_OK_FOR_BASE_P (op0, mode))
569 index_op = 1;
570 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
571 index_op = 0;
572 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
573 index_op = 1;
574 else if (REG_OK_FOR_INDEX_P (op1))
575 index_op = 1;
576 else
577 index_op = 0;
579 locI = &XEXP (x, index_op);
580 locB = &XEXP (x, !index_op);
582 else if (code0 == REG)
584 locI = &XEXP (x, 0);
585 locB = &XEXP (x, 1);
587 else if (code1 == REG)
589 locI = &XEXP (x, 1);
590 locB = &XEXP (x, 0);
593 if (locI)
594 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
595 if (locB)
596 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
597 return;
600 case POST_INC:
601 case POST_DEC:
602 case POST_MODIFY:
603 case PRE_INC:
604 case PRE_DEC:
605 case PRE_MODIFY:
606 #ifndef AUTO_INC_DEC
607 /* If the target doesn't claim to handle autoinc, this must be
608 something special, like a stack push. Kill this chain. */
609 action = terminate_all_read;
610 #endif
611 break;
613 case MEM:
614 scan_rtx_address (insn, &XEXP (x, 0),
615 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
616 GET_MODE (x));
617 return;
619 case REG:
620 scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
621 return;
623 default:
624 break;
627 fmt = GET_RTX_FORMAT (code);
628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
630 if (fmt[i] == 'e')
631 scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
632 else if (fmt[i] == 'E')
633 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
634 scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
638 static void
639 scan_rtx (rtx insn, rtx *loc, enum reg_class class,
640 enum scan_actions action, enum op_type type, int earlyclobber)
642 const char *fmt;
643 rtx x = *loc;
644 enum rtx_code code = GET_CODE (x);
645 int i, j;
647 code = GET_CODE (x);
648 switch (code)
650 case CONST:
651 case CONST_INT:
652 case CONST_DOUBLE:
653 case CONST_VECTOR:
654 case SYMBOL_REF:
655 case LABEL_REF:
656 case CC0:
657 case PC:
658 return;
660 case REG:
661 scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
662 return;
664 case MEM:
665 scan_rtx_address (insn, &XEXP (x, 0),
666 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
667 GET_MODE (x));
668 return;
670 case SET:
671 scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
672 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
673 return;
675 case STRICT_LOW_PART:
676 scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
677 return;
679 case ZERO_EXTRACT:
680 case SIGN_EXTRACT:
681 scan_rtx (insn, &XEXP (x, 0), class, action,
682 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
683 scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
684 scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
685 return;
687 case POST_INC:
688 case PRE_INC:
689 case POST_DEC:
690 case PRE_DEC:
691 case POST_MODIFY:
692 case PRE_MODIFY:
693 /* Should only happen inside MEM. */
694 abort ();
696 case CLOBBER:
697 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
698 return;
700 case EXPR_LIST:
701 scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
702 if (XEXP (x, 1))
703 scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
704 return;
706 default:
707 break;
710 fmt = GET_RTX_FORMAT (code);
711 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
713 if (fmt[i] == 'e')
714 scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
715 else if (fmt[i] == 'E')
716 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
717 scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
721 /* Build def/use chain. */
723 static struct du_chain *
724 build_def_use (basic_block bb)
726 rtx insn;
728 open_chains = closed_chains = NULL;
730 for (insn = bb->head; ; insn = NEXT_INSN (insn))
732 if (INSN_P (insn))
734 int n_ops;
735 rtx note;
736 rtx old_operands[MAX_RECOG_OPERANDS];
737 rtx old_dups[MAX_DUP_OPERANDS];
738 int i, icode;
739 int alt;
740 int predicated;
742 /* Process the insn, determining its effect on the def-use
743 chains. We perform the following steps with the register
744 references in the insn:
745 (1) Any read that overlaps an open chain, but doesn't exactly
746 match, causes that chain to be closed. We can't deal
747 with overlaps yet.
748 (2) Any read outside an operand causes any chain it overlaps
749 with to be closed, since we can't replace it.
750 (3) Any read inside an operand is added if there's already
751 an open chain for it.
752 (4) For any REG_DEAD note we find, close open chains that
753 overlap it.
754 (5) For any write we find, close open chains that overlap it.
755 (6) For any write we find in an operand, make a new chain.
756 (7) For any REG_UNUSED, close any chains we just opened. */
758 icode = recog_memoized (insn);
759 extract_insn (insn);
760 if (! constrain_operands (1))
761 fatal_insn_not_found (insn);
762 preprocess_constraints ();
763 alt = which_alternative;
764 n_ops = recog_data.n_operands;
766 /* Simplify the code below by rewriting things to reflect
767 matching constraints. Also promote OP_OUT to OP_INOUT
768 in predicated instructions. */
770 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
771 for (i = 0; i < n_ops; ++i)
773 int matches = recog_op_alt[i][alt].matches;
774 if (matches >= 0)
775 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
776 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
777 || (predicated && recog_data.operand_type[i] == OP_OUT))
778 recog_data.operand_type[i] = OP_INOUT;
781 /* Step 1: Close chains for which we have overlapping reads. */
782 for (i = 0; i < n_ops; i++)
783 scan_rtx (insn, recog_data.operand_loc[i],
784 NO_REGS, terminate_overlapping_read,
785 recog_data.operand_type[i], 0);
787 /* Step 2: Close chains for which we have reads outside operands.
788 We do this by munging all operands into CC0, and closing
789 everything remaining. */
791 for (i = 0; i < n_ops; i++)
793 old_operands[i] = recog_data.operand[i];
794 /* Don't squash match_operator or match_parallel here, since
795 we don't know that all of the contained registers are
796 reachable by proper operands. */
797 if (recog_data.constraints[i][0] == '\0')
798 continue;
799 *recog_data.operand_loc[i] = cc0_rtx;
801 for (i = 0; i < recog_data.n_dups; i++)
803 int dup_num = recog_data.dup_num[i];
805 old_dups[i] = *recog_data.dup_loc[i];
806 *recog_data.dup_loc[i] = cc0_rtx;
808 /* For match_dup of match_operator or match_parallel, share
809 them, so that we don't miss changes in the dup. */
810 if (icode >= 0
811 && insn_data[icode].operand[dup_num].eliminable == 0)
812 old_dups[i] = recog_data.operand[dup_num];
815 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
816 OP_IN, 0);
818 for (i = 0; i < recog_data.n_dups; i++)
819 *recog_data.dup_loc[i] = old_dups[i];
820 for (i = 0; i < n_ops; i++)
821 *recog_data.operand_loc[i] = old_operands[i];
823 /* Step 2B: Can't rename function call argument registers. */
824 if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
825 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
826 NO_REGS, terminate_all_read, OP_IN, 0);
828 /* Step 2C: Can't rename asm operands that were originally
829 hard registers. */
830 if (asm_noperands (PATTERN (insn)) > 0)
831 for (i = 0; i < n_ops; i++)
833 rtx *loc = recog_data.operand_loc[i];
834 rtx op = *loc;
836 if (GET_CODE (op) == REG
837 && REGNO (op) == ORIGINAL_REGNO (op)
838 && (recog_data.operand_type[i] == OP_IN
839 || recog_data.operand_type[i] == OP_INOUT))
840 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
843 /* Step 3: Append to chains for reads inside operands. */
844 for (i = 0; i < n_ops + recog_data.n_dups; i++)
846 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
847 rtx *loc = (i < n_ops
848 ? recog_data.operand_loc[opn]
849 : recog_data.dup_loc[i - n_ops]);
850 enum reg_class class = recog_op_alt[opn][alt].class;
851 enum op_type type = recog_data.operand_type[opn];
853 /* Don't scan match_operand here, since we've no reg class
854 information to pass down. Any operands that we could
855 substitute in will be represented elsewhere. */
856 if (recog_data.constraints[opn][0] == '\0')
857 continue;
859 if (recog_op_alt[opn][alt].is_address)
860 scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
861 else
862 scan_rtx (insn, loc, class, mark_read, type, 0);
865 /* Step 4: Close chains for registers that die here.
866 Also record updates for REG_INC notes. */
867 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
869 if (REG_NOTE_KIND (note) == REG_DEAD)
870 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
871 OP_IN, 0);
872 else if (REG_NOTE_KIND (note) == REG_INC)
873 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
874 OP_INOUT, 0);
877 /* Step 4B: If this is a call, any chain live at this point
878 requires a caller-saved reg. */
879 if (GET_CODE (insn) == CALL_INSN)
881 struct du_chain *p;
882 for (p = open_chains; p; p = p->next_chain)
883 p->need_caller_save_reg = 1;
886 /* Step 5: Close open chains that overlap writes. Similar to
887 step 2, we hide in-out operands, since we do not want to
888 close these chains. */
890 for (i = 0; i < n_ops; i++)
892 old_operands[i] = recog_data.operand[i];
893 if (recog_data.operand_type[i] == OP_INOUT)
894 *recog_data.operand_loc[i] = cc0_rtx;
896 for (i = 0; i < recog_data.n_dups; i++)
898 int opn = recog_data.dup_num[i];
899 old_dups[i] = *recog_data.dup_loc[i];
900 if (recog_data.operand_type[opn] == OP_INOUT)
901 *recog_data.dup_loc[i] = cc0_rtx;
904 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
906 for (i = 0; i < recog_data.n_dups; i++)
907 *recog_data.dup_loc[i] = old_dups[i];
908 for (i = 0; i < n_ops; i++)
909 *recog_data.operand_loc[i] = old_operands[i];
911 /* Step 6: Begin new chains for writes inside operands. */
912 /* ??? Many targets have output constraints on the SET_DEST
913 of a call insn, which is stupid, since these are certainly
914 ABI defined hard registers. Don't change calls at all.
915 Similarly take special care for asm statement that originally
916 referenced hard registers. */
917 if (asm_noperands (PATTERN (insn)) > 0)
919 for (i = 0; i < n_ops; i++)
920 if (recog_data.operand_type[i] == OP_OUT)
922 rtx *loc = recog_data.operand_loc[i];
923 rtx op = *loc;
924 enum reg_class class = recog_op_alt[i][alt].class;
926 if (GET_CODE (op) == REG
927 && REGNO (op) == ORIGINAL_REGNO (op))
928 continue;
930 scan_rtx (insn, loc, class, mark_write, OP_OUT,
931 recog_op_alt[i][alt].earlyclobber);
934 else if (GET_CODE (insn) != CALL_INSN)
935 for (i = 0; i < n_ops + recog_data.n_dups; i++)
937 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
938 rtx *loc = (i < n_ops
939 ? recog_data.operand_loc[opn]
940 : recog_data.dup_loc[i - n_ops]);
941 enum reg_class class = recog_op_alt[opn][alt].class;
943 if (recog_data.operand_type[opn] == OP_OUT)
944 scan_rtx (insn, loc, class, mark_write, OP_OUT,
945 recog_op_alt[opn][alt].earlyclobber);
948 /* Step 7: Close chains for registers that were never
949 really used here. */
950 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
951 if (REG_NOTE_KIND (note) == REG_UNUSED)
952 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
953 OP_IN, 0);
955 if (insn == bb->end)
956 break;
959 /* Since we close every chain when we find a REG_DEAD note, anything that
960 is still open lives past the basic block, so it can't be renamed. */
961 return closed_chains;
964 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE. They are
965 printed in reverse order as that's how we build them. */
967 static void
968 dump_def_use_chain (struct du_chain *chains)
970 while (chains)
972 struct du_chain *this = chains;
973 int r = REGNO (*this->loc);
974 int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
975 fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
976 while (this)
978 fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
979 reg_class_names[this->class]);
980 this = this->next_use;
982 fprintf (rtl_dump_file, "\n");
983 chains = chains->next_chain;
987 /* The following code does forward propagation of hard register copies.
988 The object is to eliminate as many dependencies as possible, so that
989 we have the most scheduling freedom. As a side effect, we also clean
990 up some silly register allocation decisions made by reload. This
991 code may be obsoleted by a new register allocator. */
993 /* For each register, we have a list of registers that contain the same
994 value. The OLDEST_REGNO field points to the head of the list, and
995 the NEXT_REGNO field runs through the list. The MODE field indicates
996 what mode the data is known to be in; this field is VOIDmode when the
997 register is not known to contain valid data. */
999 struct value_data_entry
1001 enum machine_mode mode;
1002 unsigned int oldest_regno;
1003 unsigned int next_regno;
1006 struct value_data
1008 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1009 unsigned int max_value_regs;
1012 static void kill_value_regno (unsigned, struct value_data *);
1013 static void kill_value (rtx, struct value_data *);
1014 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1015 static void init_value_data (struct value_data *);
1016 static void kill_clobbered_value (rtx, rtx, void *);
1017 static void kill_set_value (rtx, rtx, void *);
1018 static int kill_autoinc_value (rtx *, void *);
1019 static void copy_value (rtx, rtx, struct value_data *);
1020 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1021 unsigned int);
1022 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1023 enum machine_mode, unsigned int, unsigned int);
1024 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1025 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1026 struct value_data *);
1027 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1028 enum machine_mode, rtx,
1029 struct value_data *);
1030 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1031 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1032 extern void debug_value_data (struct value_data *);
1033 #ifdef ENABLE_CHECKING
1034 static void validate_value_data (struct value_data *);
1035 #endif
1037 /* Kill register REGNO. This involves removing it from any value lists,
1038 and resetting the value mode to VOIDmode. */
1040 static void
1041 kill_value_regno (unsigned int regno, struct value_data *vd)
1043 unsigned int i, next;
1045 if (vd->e[regno].oldest_regno != regno)
1047 for (i = vd->e[regno].oldest_regno;
1048 vd->e[i].next_regno != regno;
1049 i = vd->e[i].next_regno)
1050 continue;
1051 vd->e[i].next_regno = vd->e[regno].next_regno;
1053 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1055 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1056 vd->e[i].oldest_regno = next;
1059 vd->e[regno].mode = VOIDmode;
1060 vd->e[regno].oldest_regno = regno;
1061 vd->e[regno].next_regno = INVALID_REGNUM;
1063 #ifdef ENABLE_CHECKING
1064 validate_value_data (vd);
1065 #endif
1068 /* Kill X. This is a convenience function for kill_value_regno
1069 so that we mind the mode the register is in. */
1071 static void
1072 kill_value (rtx x, struct value_data *vd)
1074 /* SUBREGS are supposed to have been eliminated by now. But some
1075 ports, e.g. i386 sse, use them to smuggle vector type information
1076 through to instruction selection. Each such SUBREG should simplify,
1077 so if we get a NULL we've done something wrong elsewhere. */
1079 if (GET_CODE (x) == SUBREG)
1080 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1081 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1082 if (REG_P (x))
1084 unsigned int regno = REGNO (x);
1085 unsigned int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
1086 unsigned int i, j;
1088 /* Kill the value we're told to kill. */
1089 for (i = 0; i < n; ++i)
1090 kill_value_regno (regno + i, vd);
1092 /* Kill everything that overlapped what we're told to kill. */
1093 if (regno < vd->max_value_regs)
1094 j = 0;
1095 else
1096 j = regno - vd->max_value_regs;
1097 for (; j < regno; ++j)
1099 if (vd->e[j].mode == VOIDmode)
1100 continue;
1101 n = HARD_REGNO_NREGS (j, vd->e[j].mode);
1102 if (j + n > regno)
1103 for (i = 0; i < n; ++i)
1104 kill_value_regno (j + i, vd);
1109 /* Remember that REGNO is valid in MODE. */
1111 static void
1112 set_value_regno (unsigned int regno, enum machine_mode mode,
1113 struct value_data *vd)
1115 unsigned int nregs;
1117 vd->e[regno].mode = mode;
1119 nregs = HARD_REGNO_NREGS (regno, mode);
1120 if (nregs > vd->max_value_regs)
1121 vd->max_value_regs = nregs;
1124 /* Initialize VD such that there are no known relationships between regs. */
1126 static void
1127 init_value_data (struct value_data *vd)
1129 int i;
1130 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1132 vd->e[i].mode = VOIDmode;
1133 vd->e[i].oldest_regno = i;
1134 vd->e[i].next_regno = INVALID_REGNUM;
1136 vd->max_value_regs = 0;
1139 /* Called through note_stores. If X is clobbered, kill its value. */
1141 static void
1142 kill_clobbered_value (rtx x, rtx set, void *data)
1144 struct value_data *vd = data;
1145 if (GET_CODE (set) == CLOBBER)
1146 kill_value (x, vd);
1149 /* Called through note_stores. If X is set, not clobbered, kill its
1150 current value and install it as the root of its own value list. */
1152 static void
1153 kill_set_value (rtx x, rtx set, void *data)
1155 struct value_data *vd = data;
1156 if (GET_CODE (set) != CLOBBER)
1158 kill_value (x, vd);
1159 if (REG_P (x))
1160 set_value_regno (REGNO (x), GET_MODE (x), vd);
1164 /* Called through for_each_rtx. Kill any register used as the base of an
1165 auto-increment expression, and install that register as the root of its
1166 own value list. */
1168 static int
1169 kill_autoinc_value (rtx *px, void *data)
1171 rtx x = *px;
1172 struct value_data *vd = data;
1174 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
1176 x = XEXP (x, 0);
1177 kill_value (x, vd);
1178 set_value_regno (REGNO (x), Pmode, vd);
1179 return -1;
1182 return 0;
1185 /* Assert that SRC has been copied to DEST. Adjust the data structures
1186 to reflect that SRC contains an older copy of the shared value. */
1188 static void
1189 copy_value (rtx dest, rtx src, struct value_data *vd)
1191 unsigned int dr = REGNO (dest);
1192 unsigned int sr = REGNO (src);
1193 unsigned int dn, sn;
1194 unsigned int i;
1196 /* ??? At present, it's possible to see noop sets. It'd be nice if
1197 this were cleaned up beforehand... */
1198 if (sr == dr)
1199 return;
1201 /* Do not propagate copies to the stack pointer, as that can leave
1202 memory accesses with no scheduling dependency on the stack update. */
1203 if (dr == STACK_POINTER_REGNUM)
1204 return;
1206 /* Likewise with the frame pointer, if we're using one. */
1207 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1208 return;
1210 /* If SRC and DEST overlap, don't record anything. */
1211 dn = HARD_REGNO_NREGS (dr, GET_MODE (dest));
1212 sn = HARD_REGNO_NREGS (sr, GET_MODE (dest));
1213 if ((dr > sr && dr < sr + sn)
1214 || (sr > dr && sr < dr + dn))
1215 return;
1217 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1218 assign it now and assume the value came from an input argument
1219 or somesuch. */
1220 if (vd->e[sr].mode == VOIDmode)
1221 set_value_regno (sr, vd->e[dr].mode, vd);
1223 /* If we are narrowing the input to a smaller number of hard regs,
1224 and it is in big endian, we are really extracting a high part.
1225 Since we generally associate a low part of a value with the value itself,
1226 we must not do the same for the high part.
1227 Note we can still get low parts for the same mode combination through
1228 a two-step copy involving differently sized hard regs.
1229 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1230 (set (reg:DI r0) (reg:DI fr0))
1231 (set (reg:SI fr2) (reg:SI r0))
1232 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1233 (set (reg:SI fr2) (reg:SI fr0))
1234 loads the high part of (reg:DI fr0) into fr2.
1236 We can't properly represent the latter case in our tables, so don't
1237 record anything then. */
1238 else if (sn < (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode)
1239 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1240 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1241 return;
1243 /* If SRC had been assigned a mode narrower than the copy, we can't
1244 link DEST into the chain, because not all of the pieces of the
1245 copy came from oldest_regno. */
1246 else if (sn > (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode))
1247 return;
1249 /* Link DR at the end of the value chain used by SR. */
1251 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1253 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1254 continue;
1255 vd->e[i].next_regno = dr;
1257 #ifdef ENABLE_CHECKING
1258 validate_value_data (vd);
1259 #endif
1262 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1264 static bool
1265 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1266 unsigned int regno ATTRIBUTE_UNUSED)
1268 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1269 return false;
1271 #ifdef CANNOT_CHANGE_MODE_CLASS
1272 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1273 #endif
1275 return true;
1278 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1279 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1280 in NEW_MODE.
1281 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1283 static rtx
1284 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1285 enum machine_mode new_mode, unsigned int regno,
1286 unsigned int copy_regno ATTRIBUTE_UNUSED)
1288 if (orig_mode == new_mode)
1289 return gen_rtx_raw_REG (new_mode, regno);
1290 else if (mode_change_ok (orig_mode, new_mode, regno))
1292 int copy_nregs = HARD_REGNO_NREGS (copy_regno, copy_mode);
1293 int use_nregs = HARD_REGNO_NREGS (copy_regno, new_mode);
1294 int copy_offset
1295 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1296 int offset
1297 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1298 int byteoffset = offset % UNITS_PER_WORD;
1299 int wordoffset = offset - byteoffset;
1301 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1302 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1303 return gen_rtx_raw_REG (new_mode,
1304 regno + subreg_regno_offset (regno, orig_mode,
1305 offset,
1306 new_mode));
1308 return NULL_RTX;
1311 /* Find the oldest copy of the value contained in REGNO that is in
1312 register class CLASS and has mode MODE. If found, return an rtx
1313 of that oldest register, otherwise return NULL. */
1315 static rtx
1316 find_oldest_value_reg (enum reg_class class, rtx reg, struct value_data *vd)
1318 unsigned int regno = REGNO (reg);
1319 enum machine_mode mode = GET_MODE (reg);
1320 unsigned int i;
1322 /* If we are accessing REG in some mode other that what we set it in,
1323 make sure that the replacement is valid. In particular, consider
1324 (set (reg:DI r11) (...))
1325 (set (reg:SI r9) (reg:SI r11))
1326 (set (reg:SI r10) (...))
1327 (set (...) (reg:DI r9))
1328 Replacing r9 with r11 is invalid. */
1329 if (mode != vd->e[regno].mode)
1331 if (HARD_REGNO_NREGS (regno, mode)
1332 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1333 return NULL_RTX;
1336 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1338 enum machine_mode oldmode = vd->e[i].mode;
1339 rtx new;
1341 if (TEST_HARD_REG_BIT (reg_class_contents[class], i)
1342 && (new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i,
1343 regno)))
1345 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1346 REG_ATTRS (new) = REG_ATTRS (reg);
1347 return new;
1351 return NULL_RTX;
1354 /* If possible, replace the register at *LOC with the oldest register
1355 in register class CLASS. Return true if successfully replaced. */
1357 static bool
1358 replace_oldest_value_reg (rtx *loc, enum reg_class class, rtx insn,
1359 struct value_data *vd)
1361 rtx new = find_oldest_value_reg (class, *loc, vd);
1362 if (new)
1364 if (rtl_dump_file)
1365 fprintf (rtl_dump_file, "insn %u: replaced reg %u with %u\n",
1366 INSN_UID (insn), REGNO (*loc), REGNO (new));
1368 *loc = new;
1369 return true;
1371 return false;
1374 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1375 Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
1376 BASE_REG_CLASS depending on how the register is being considered. */
1378 static bool
1379 replace_oldest_value_addr (rtx *loc, enum reg_class class,
1380 enum machine_mode mode, rtx insn,
1381 struct value_data *vd)
1383 rtx x = *loc;
1384 RTX_CODE code = GET_CODE (x);
1385 const char *fmt;
1386 int i, j;
1387 bool changed = false;
1389 switch (code)
1391 case PLUS:
1393 rtx orig_op0 = XEXP (x, 0);
1394 rtx orig_op1 = XEXP (x, 1);
1395 RTX_CODE code0 = GET_CODE (orig_op0);
1396 RTX_CODE code1 = GET_CODE (orig_op1);
1397 rtx op0 = orig_op0;
1398 rtx op1 = orig_op1;
1399 rtx *locI = NULL;
1400 rtx *locB = NULL;
1402 if (GET_CODE (op0) == SUBREG)
1404 op0 = SUBREG_REG (op0);
1405 code0 = GET_CODE (op0);
1408 if (GET_CODE (op1) == SUBREG)
1410 op1 = SUBREG_REG (op1);
1411 code1 = GET_CODE (op1);
1414 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1415 || code0 == ZERO_EXTEND || code1 == MEM)
1417 locI = &XEXP (x, 0);
1418 locB = &XEXP (x, 1);
1420 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1421 || code1 == ZERO_EXTEND || code0 == MEM)
1423 locI = &XEXP (x, 1);
1424 locB = &XEXP (x, 0);
1426 else if (code0 == CONST_INT || code0 == CONST
1427 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1428 locB = &XEXP (x, 1);
1429 else if (code1 == CONST_INT || code1 == CONST
1430 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1431 locB = &XEXP (x, 0);
1432 else if (code0 == REG && code1 == REG)
1434 int index_op;
1436 if (REG_OK_FOR_INDEX_P (op0)
1437 && REG_MODE_OK_FOR_BASE_P (op1, mode))
1438 index_op = 0;
1439 else if (REG_OK_FOR_INDEX_P (op1)
1440 && REG_MODE_OK_FOR_BASE_P (op0, mode))
1441 index_op = 1;
1442 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1443 index_op = 0;
1444 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1445 index_op = 1;
1446 else if (REG_OK_FOR_INDEX_P (op1))
1447 index_op = 1;
1448 else
1449 index_op = 0;
1451 locI = &XEXP (x, index_op);
1452 locB = &XEXP (x, !index_op);
1454 else if (code0 == REG)
1456 locI = &XEXP (x, 0);
1457 locB = &XEXP (x, 1);
1459 else if (code1 == REG)
1461 locI = &XEXP (x, 1);
1462 locB = &XEXP (x, 0);
1465 if (locI)
1466 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1467 insn, vd);
1468 if (locB)
1469 changed |= replace_oldest_value_addr (locB,
1470 MODE_BASE_REG_CLASS (mode),
1471 mode, insn, vd);
1472 return changed;
1475 case POST_INC:
1476 case POST_DEC:
1477 case POST_MODIFY:
1478 case PRE_INC:
1479 case PRE_DEC:
1480 case PRE_MODIFY:
1481 return false;
1483 case MEM:
1484 return replace_oldest_value_mem (x, insn, vd);
1486 case REG:
1487 return replace_oldest_value_reg (loc, class, insn, vd);
1489 default:
1490 break;
1493 fmt = GET_RTX_FORMAT (code);
1494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1496 if (fmt[i] == 'e')
1497 changed |= replace_oldest_value_addr (&XEXP (x, i), class, mode,
1498 insn, vd);
1499 else if (fmt[i] == 'E')
1500 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1501 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), class,
1502 mode, insn, vd);
1505 return changed;
1508 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1510 static bool
1511 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1513 return replace_oldest_value_addr (&XEXP (x, 0),
1514 MODE_BASE_REG_CLASS (GET_MODE (x)),
1515 GET_MODE (x), insn, vd);
1518 /* Perform the forward copy propagation on basic block BB. */
1520 static bool
1521 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1523 bool changed = false;
1524 rtx insn;
1526 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1528 int n_ops, i, alt, predicated;
1529 bool is_asm;
1530 rtx set;
1532 if (! INSN_P (insn))
1534 if (insn == bb->end)
1535 break;
1536 else
1537 continue;
1540 set = single_set (insn);
1541 extract_insn (insn);
1542 if (! constrain_operands (1))
1543 fatal_insn_not_found (insn);
1544 preprocess_constraints ();
1545 alt = which_alternative;
1546 n_ops = recog_data.n_operands;
1547 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1549 /* Simplify the code below by rewriting things to reflect
1550 matching constraints. Also promote OP_OUT to OP_INOUT
1551 in predicated instructions. */
1553 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1554 for (i = 0; i < n_ops; ++i)
1556 int matches = recog_op_alt[i][alt].matches;
1557 if (matches >= 0)
1558 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
1559 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1560 || (predicated && recog_data.operand_type[i] == OP_OUT))
1561 recog_data.operand_type[i] = OP_INOUT;
1564 /* For each earlyclobber operand, zap the value data. */
1565 for (i = 0; i < n_ops; i++)
1566 if (recog_op_alt[i][alt].earlyclobber)
1567 kill_value (recog_data.operand[i], vd);
1569 /* Within asms, a clobber cannot overlap inputs or outputs.
1570 I wouldn't think this were true for regular insns, but
1571 scan_rtx treats them like that... */
1572 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1574 /* Kill all auto-incremented values. */
1575 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1576 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1578 /* Kill all early-clobbered operands. */
1579 for (i = 0; i < n_ops; i++)
1580 if (recog_op_alt[i][alt].earlyclobber)
1581 kill_value (recog_data.operand[i], vd);
1583 /* Special-case plain move instructions, since we may well
1584 be able to do the move from a different register class. */
1585 if (set && REG_P (SET_SRC (set)))
1587 rtx src = SET_SRC (set);
1588 unsigned int regno = REGNO (src);
1589 enum machine_mode mode = GET_MODE (src);
1590 unsigned int i;
1591 rtx new;
1593 /* If we are accessing SRC in some mode other that what we
1594 set it in, make sure that the replacement is valid. */
1595 if (mode != vd->e[regno].mode)
1597 if (HARD_REGNO_NREGS (regno, mode)
1598 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1599 goto no_move_special_case;
1602 /* If the destination is also a register, try to find a source
1603 register in the same class. */
1604 if (REG_P (SET_DEST (set)))
1606 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1607 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1609 if (rtl_dump_file)
1610 fprintf (rtl_dump_file,
1611 "insn %u: replaced reg %u with %u\n",
1612 INSN_UID (insn), regno, REGNO (new));
1613 changed = true;
1614 goto did_replacement;
1618 /* Otherwise, try all valid registers and see if its valid. */
1619 for (i = vd->e[regno].oldest_regno; i != regno;
1620 i = vd->e[i].next_regno)
1622 new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1623 mode, i, regno);
1624 if (new != NULL_RTX)
1626 if (validate_change (insn, &SET_SRC (set), new, 0))
1628 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1629 REG_ATTRS (new) = REG_ATTRS (src);
1630 if (rtl_dump_file)
1631 fprintf (rtl_dump_file,
1632 "insn %u: replaced reg %u with %u\n",
1633 INSN_UID (insn), regno, REGNO (new));
1634 changed = true;
1635 goto did_replacement;
1640 no_move_special_case:
1642 /* For each input operand, replace a hard register with the
1643 eldest live copy that's in an appropriate register class. */
1644 for (i = 0; i < n_ops; i++)
1646 bool replaced = false;
1648 /* Don't scan match_operand here, since we've no reg class
1649 information to pass down. Any operands that we could
1650 substitute in will be represented elsewhere. */
1651 if (recog_data.constraints[i][0] == '\0')
1652 continue;
1654 /* Don't replace in asms intentionally referencing hard regs. */
1655 if (is_asm && GET_CODE (recog_data.operand[i]) == REG
1656 && (REGNO (recog_data.operand[i])
1657 == ORIGINAL_REGNO (recog_data.operand[i])))
1658 continue;
1660 if (recog_data.operand_type[i] == OP_IN)
1662 if (recog_op_alt[i][alt].is_address)
1663 replaced
1664 = replace_oldest_value_addr (recog_data.operand_loc[i],
1665 recog_op_alt[i][alt].class,
1666 VOIDmode, insn, vd);
1667 else if (REG_P (recog_data.operand[i]))
1668 replaced
1669 = replace_oldest_value_reg (recog_data.operand_loc[i],
1670 recog_op_alt[i][alt].class,
1671 insn, vd);
1672 else if (GET_CODE (recog_data.operand[i]) == MEM)
1673 replaced = replace_oldest_value_mem (recog_data.operand[i],
1674 insn, vd);
1676 else if (GET_CODE (recog_data.operand[i]) == MEM)
1677 replaced = replace_oldest_value_mem (recog_data.operand[i],
1678 insn, vd);
1680 /* If we performed any replacement, update match_dups. */
1681 if (replaced)
1683 int j;
1684 rtx new;
1686 changed = true;
1688 new = *recog_data.operand_loc[i];
1689 recog_data.operand[i] = new;
1690 for (j = 0; j < recog_data.n_dups; j++)
1691 if (recog_data.dup_num[j] == i)
1692 *recog_data.dup_loc[j] = new;
1696 did_replacement:
1697 /* Clobber call-clobbered registers. */
1698 if (GET_CODE (insn) == CALL_INSN)
1699 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1700 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1701 kill_value_regno (i, vd);
1703 /* Notice stores. */
1704 note_stores (PATTERN (insn), kill_set_value, vd);
1706 /* Notice copies. */
1707 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1708 copy_value (SET_DEST (set), SET_SRC (set), vd);
1710 if (insn == bb->end)
1711 break;
1714 return changed;
1717 /* Main entry point for the forward copy propagation optimization. */
1719 void
1720 copyprop_hardreg_forward (void)
1722 struct value_data *all_vd;
1723 bool need_refresh;
1724 basic_block bb, bbp = 0;
1726 need_refresh = false;
1728 all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1730 FOR_EACH_BB (bb)
1732 /* If a block has a single predecessor, that we've already
1733 processed, begin with the value data that was live at
1734 the end of the predecessor block. */
1735 /* ??? Ought to use more intelligent queueing of blocks. */
1736 if (bb->pred)
1737 for (bbp = bb; bbp && bbp != bb->pred->src; bbp = bbp->prev_bb);
1738 if (bb->pred
1739 && ! bb->pred->pred_next
1740 && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1741 && bb->pred->src != ENTRY_BLOCK_PTR
1742 && bbp)
1743 all_vd[bb->index] = all_vd[bb->pred->src->index];
1744 else
1745 init_value_data (all_vd + bb->index);
1747 if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1748 need_refresh = true;
1751 if (need_refresh)
1753 if (rtl_dump_file)
1754 fputs ("\n\n", rtl_dump_file);
1756 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1757 to scan, so we have to do a life update with no initial set of
1758 blocks Just In Case. */
1759 delete_noop_moves (get_insns ());
1760 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1761 PROP_DEATH_NOTES
1762 | PROP_SCAN_DEAD_CODE
1763 | PROP_KILL_DEAD_CODE);
1766 free (all_vd);
1769 /* Dump the value chain data to stderr. */
1771 void
1772 debug_value_data (struct value_data *vd)
1774 HARD_REG_SET set;
1775 unsigned int i, j;
1777 CLEAR_HARD_REG_SET (set);
1779 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1780 if (vd->e[i].oldest_regno == i)
1782 if (vd->e[i].mode == VOIDmode)
1784 if (vd->e[i].next_regno != INVALID_REGNUM)
1785 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1786 i, vd->e[i].next_regno);
1787 continue;
1790 SET_HARD_REG_BIT (set, i);
1791 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1793 for (j = vd->e[i].next_regno;
1794 j != INVALID_REGNUM;
1795 j = vd->e[j].next_regno)
1797 if (TEST_HARD_REG_BIT (set, j))
1799 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1800 return;
1803 if (vd->e[j].oldest_regno != i)
1805 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1806 j, vd->e[j].oldest_regno);
1807 return;
1809 SET_HARD_REG_BIT (set, j);
1810 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1812 fputc ('\n', stderr);
1815 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1816 if (! TEST_HARD_REG_BIT (set, i)
1817 && (vd->e[i].mode != VOIDmode
1818 || vd->e[i].oldest_regno != i
1819 || vd->e[i].next_regno != INVALID_REGNUM))
1820 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1821 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1822 vd->e[i].next_regno);
1825 #ifdef ENABLE_CHECKING
1826 static void
1827 validate_value_data (struct value_data *vd)
1829 HARD_REG_SET set;
1830 unsigned int i, j;
1832 CLEAR_HARD_REG_SET (set);
1834 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1835 if (vd->e[i].oldest_regno == i)
1837 if (vd->e[i].mode == VOIDmode)
1839 if (vd->e[i].next_regno != INVALID_REGNUM)
1840 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1841 i, vd->e[i].next_regno);
1842 continue;
1845 SET_HARD_REG_BIT (set, i);
1847 for (j = vd->e[i].next_regno;
1848 j != INVALID_REGNUM;
1849 j = vd->e[j].next_regno)
1851 if (TEST_HARD_REG_BIT (set, j))
1852 internal_error ("validate_value_data: Loop in regno chain (%u)",
1854 if (vd->e[j].oldest_regno != i)
1855 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1856 j, vd->e[j].oldest_regno);
1858 SET_HARD_REG_BIT (set, j);
1862 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1863 if (! TEST_HARD_REG_BIT (set, i)
1864 && (vd->e[i].mode != VOIDmode
1865 || vd->e[i].oldest_regno != i
1866 || vd->e[i].next_regno != INVALID_REGNUM))
1867 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1868 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1869 vd->e[i].next_regno);
1871 #endif