gccrs: dump: Fix module dumping
[official-gcc.git] / gcc / real.cc
blob126695bf2e222a60c49784d2c22410e41b5e99a5
1 /* real.cc - software floating point emulation.
2 Copyright (C) 1993-2023 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "realmpfr.h"
29 #include "dfp.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
35 Specifically
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
39 where
40 s = sign (+- 1)
41 b = base or radix, here always 2
42 e = exponent
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
48 range [0.5, 1.0).
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
54 in a normalized form.
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
66 #endif
68 static void get_zero (REAL_VALUE_TYPE *, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
71 static void get_inf (REAL_VALUE_TYPE *, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
73 const REAL_VALUE_TYPE *, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
75 unsigned int);
76 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
77 unsigned int);
78 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
79 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
80 const REAL_VALUE_TYPE *);
81 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, int);
83 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
84 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
86 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *);
92 static void normalize (REAL_VALUE_TYPE *);
94 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
95 const REAL_VALUE_TYPE *, int);
96 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
97 const REAL_VALUE_TYPE *);
98 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
99 const REAL_VALUE_TYPE *);
100 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
104 static void decimal_from_integer (REAL_VALUE_TYPE *);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
106 size_t);
108 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE * real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE *, int);
113 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
115 /* Determine whether a floating-point value X is a denormal. R is
116 expected to be in denormal form, so this function is only
117 meaningful after a call to round_for_format. */
119 static inline bool
120 real_isdenormal (const REAL_VALUE_TYPE *r)
122 return r->cl == rvc_normal && (r->sig[SIGSZ-1] & SIG_MSB) == 0;
125 /* Initialize R with a positive zero. */
127 static inline void
128 get_zero (REAL_VALUE_TYPE *r, int sign)
130 memset (r, 0, sizeof (*r));
131 r->sign = sign;
134 /* Initialize R with the canonical quiet NaN. */
136 static inline void
137 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
139 memset (r, 0, sizeof (*r));
140 r->cl = rvc_nan;
141 r->sign = sign;
142 r->canonical = 1;
145 static inline void
146 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
148 memset (r, 0, sizeof (*r));
149 r->cl = rvc_nan;
150 r->sign = sign;
151 r->signalling = 1;
152 r->canonical = 1;
155 static inline void
156 get_inf (REAL_VALUE_TYPE *r, int sign)
158 memset (r, 0, sizeof (*r));
159 r->cl = rvc_inf;
160 r->sign = sign;
164 /* Right-shift the significand of A by N bits; put the result in the
165 significand of R. If any one bits are shifted out, return true. */
167 static bool
168 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
169 unsigned int n)
171 unsigned long sticky = 0;
172 unsigned int i, ofs = 0;
174 if (n >= HOST_BITS_PER_LONG)
176 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
177 sticky |= a->sig[i];
178 n &= HOST_BITS_PER_LONG - 1;
181 if (n != 0)
183 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
184 for (i = 0; i < SIGSZ; ++i)
186 r->sig[i]
187 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
188 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
189 << (HOST_BITS_PER_LONG - n)));
192 else
194 for (i = 0; ofs + i < SIGSZ; ++i)
195 r->sig[i] = a->sig[ofs + i];
196 for (; i < SIGSZ; ++i)
197 r->sig[i] = 0;
200 return sticky != 0;
203 /* Right-shift the significand of A by N bits; put the result in the
204 significand of R. */
206 static void
207 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
208 unsigned int n)
210 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
212 n &= HOST_BITS_PER_LONG - 1;
213 if (n != 0)
215 for (i = 0; i < SIGSZ; ++i)
217 r->sig[i]
218 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
219 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
220 << (HOST_BITS_PER_LONG - n)));
223 else
225 for (i = 0; ofs + i < SIGSZ; ++i)
226 r->sig[i] = a->sig[ofs + i];
227 for (; i < SIGSZ; ++i)
228 r->sig[i] = 0;
232 /* Left-shift the significand of A by N bits; put the result in the
233 significand of R. */
235 static void
236 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
237 unsigned int n)
239 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
241 n &= HOST_BITS_PER_LONG - 1;
242 if (n == 0)
244 for (i = 0; ofs + i < SIGSZ; ++i)
245 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
246 for (; i < SIGSZ; ++i)
247 r->sig[SIGSZ-1-i] = 0;
249 else
250 for (i = 0; i < SIGSZ; ++i)
252 r->sig[SIGSZ-1-i]
253 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
254 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
255 >> (HOST_BITS_PER_LONG - n)));
259 /* Likewise, but N is specialized to 1. */
261 static inline void
262 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
264 unsigned int i;
266 for (i = SIGSZ - 1; i > 0; --i)
267 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
268 r->sig[0] = a->sig[0] << 1;
271 /* Add the significands of A and B, placing the result in R. Return
272 true if there was carry out of the most significant word. */
274 static inline bool
275 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
276 const REAL_VALUE_TYPE *b)
278 bool carry = false;
279 int i;
281 for (i = 0; i < SIGSZ; ++i)
283 unsigned long ai = a->sig[i];
284 unsigned long ri = ai + b->sig[i];
286 if (carry)
288 carry = ri < ai;
289 carry |= ++ri == 0;
291 else
292 carry = ri < ai;
294 r->sig[i] = ri;
297 return carry;
300 /* Subtract the significands of A and B, placing the result in R. CARRY is
301 true if there's a borrow incoming to the least significant word.
302 Return true if there was borrow out of the most significant word. */
304 static inline bool
305 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
306 const REAL_VALUE_TYPE *b, int carry)
308 int i;
310 for (i = 0; i < SIGSZ; ++i)
312 unsigned long ai = a->sig[i];
313 unsigned long ri = ai - b->sig[i];
315 if (carry)
317 carry = ri > ai;
318 carry |= ~--ri == 0;
320 else
321 carry = ri > ai;
323 r->sig[i] = ri;
326 return carry;
329 /* Negate the significand A, placing the result in R. */
331 static inline void
332 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
334 bool carry = true;
335 int i;
337 for (i = 0; i < SIGSZ; ++i)
339 unsigned long ri, ai = a->sig[i];
341 if (carry)
343 if (ai)
345 ri = -ai;
346 carry = false;
348 else
349 ri = ai;
351 else
352 ri = ~ai;
354 r->sig[i] = ri;
358 /* Compare significands. Return tri-state vs zero. */
360 static inline int
361 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
363 int i;
365 for (i = SIGSZ - 1; i >= 0; --i)
367 unsigned long ai = a->sig[i];
368 unsigned long bi = b->sig[i];
370 if (ai > bi)
371 return 1;
372 if (ai < bi)
373 return -1;
376 return 0;
379 /* Return true if A is nonzero. */
381 static inline int
382 cmp_significand_0 (const REAL_VALUE_TYPE *a)
384 int i;
386 for (i = SIGSZ - 1; i >= 0; --i)
387 if (a->sig[i])
388 return 1;
390 return 0;
393 /* Set bit N of the significand of R. */
395 static inline void
396 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
398 r->sig[n / HOST_BITS_PER_LONG]
399 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
402 /* Clear bit N of the significand of R. */
404 static inline void
405 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
407 r->sig[n / HOST_BITS_PER_LONG]
408 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
411 /* Test bit N of the significand of R. */
413 static inline bool
414 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
416 /* ??? Compiler bug here if we return this expression directly.
417 The conversion to bool strips the "&1" and we wind up testing
418 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
419 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
420 return t;
423 /* Clear bits 0..N-1 of the significand of R. */
425 static void
426 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
428 int i, w = n / HOST_BITS_PER_LONG;
430 for (i = 0; i < w; ++i)
431 r->sig[i] = 0;
433 /* We are actually passing N == SIGNIFICAND_BITS which would result
434 in an out-of-bound access below. */
435 if (n % HOST_BITS_PER_LONG != 0)
436 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
439 /* Divide the significands of A and B, placing the result in R. Return
440 true if the division was inexact. */
442 static inline bool
443 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
444 const REAL_VALUE_TYPE *b)
446 REAL_VALUE_TYPE u;
447 int i, bit = SIGNIFICAND_BITS - 1;
448 unsigned long msb, inexact;
450 u = *a;
451 memset (r->sig, 0, sizeof (r->sig));
453 msb = 0;
454 goto start;
457 msb = u.sig[SIGSZ-1] & SIG_MSB;
458 lshift_significand_1 (&u, &u);
459 start:
460 if (msb || cmp_significands (&u, b) >= 0)
462 sub_significands (&u, &u, b, 0);
463 set_significand_bit (r, bit);
466 while (--bit >= 0);
468 for (i = 0, inexact = 0; i < SIGSZ; i++)
469 inexact |= u.sig[i];
471 return inexact != 0;
474 /* Adjust the exponent and significand of R such that the most
475 significant bit is set. We underflow to zero and overflow to
476 infinity here, without denormals. (The intermediate representation
477 exponent is large enough to handle target denormals normalized.) */
479 static void
480 normalize (REAL_VALUE_TYPE *r)
482 int shift = 0, exp;
483 int i, j;
485 if (r->decimal)
486 return;
488 /* Find the first word that is nonzero. */
489 for (i = SIGSZ - 1; i >= 0; i--)
490 if (r->sig[i] == 0)
491 shift += HOST_BITS_PER_LONG;
492 else
493 break;
495 /* Zero significand flushes to zero. */
496 if (i < 0)
498 r->cl = rvc_zero;
499 SET_REAL_EXP (r, 0);
500 return;
503 /* Find the first bit that is nonzero. */
504 for (j = 0; ; j++)
505 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
506 break;
507 shift += j;
509 if (shift > 0)
511 exp = REAL_EXP (r) - shift;
512 if (exp > MAX_EXP)
513 get_inf (r, r->sign);
514 else if (exp < -MAX_EXP)
515 get_zero (r, r->sign);
516 else
518 SET_REAL_EXP (r, exp);
519 lshift_significand (r, r, shift);
524 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
525 result may be inexact due to a loss of precision. */
527 static bool
528 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
529 const REAL_VALUE_TYPE *b, int subtract_p)
531 int dexp, sign, exp;
532 REAL_VALUE_TYPE t;
533 bool inexact = false;
535 /* Determine if we need to add or subtract. */
536 sign = a->sign;
537 subtract_p = (sign ^ b->sign) ^ subtract_p;
539 switch (CLASS2 (a->cl, b->cl))
541 case CLASS2 (rvc_zero, rvc_zero):
542 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
543 get_zero (r, sign & !subtract_p);
544 return false;
546 case CLASS2 (rvc_zero, rvc_normal):
547 case CLASS2 (rvc_zero, rvc_inf):
548 case CLASS2 (rvc_zero, rvc_nan):
549 /* 0 + ANY = ANY. */
550 case CLASS2 (rvc_normal, rvc_nan):
551 case CLASS2 (rvc_inf, rvc_nan):
552 case CLASS2 (rvc_nan, rvc_nan):
553 /* ANY + NaN = NaN. */
554 case CLASS2 (rvc_normal, rvc_inf):
555 /* R + Inf = Inf. */
556 *r = *b;
557 /* Make resulting NaN value to be qNaN. The caller has the
558 responsibility to avoid the operation if flag_signaling_nans
559 is on. */
560 r->signalling = 0;
561 r->sign = sign ^ subtract_p;
562 return false;
564 case CLASS2 (rvc_normal, rvc_zero):
565 case CLASS2 (rvc_inf, rvc_zero):
566 case CLASS2 (rvc_nan, rvc_zero):
567 /* ANY + 0 = ANY. */
568 case CLASS2 (rvc_nan, rvc_normal):
569 case CLASS2 (rvc_nan, rvc_inf):
570 /* NaN + ANY = NaN. */
571 case CLASS2 (rvc_inf, rvc_normal):
572 /* Inf + R = Inf. */
573 *r = *a;
574 /* Make resulting NaN value to be qNaN. The caller has the
575 responsibility to avoid the operation if flag_signaling_nans
576 is on. */
577 r->signalling = 0;
578 return false;
580 case CLASS2 (rvc_inf, rvc_inf):
581 if (subtract_p)
582 /* Inf - Inf = NaN. */
583 get_canonical_qnan (r, 0);
584 else
585 /* Inf + Inf = Inf. */
586 *r = *a;
587 return false;
589 case CLASS2 (rvc_normal, rvc_normal):
590 break;
592 default:
593 gcc_unreachable ();
596 /* Swap the arguments such that A has the larger exponent. */
597 dexp = REAL_EXP (a) - REAL_EXP (b);
598 if (dexp < 0)
600 const REAL_VALUE_TYPE *t;
601 t = a, a = b, b = t;
602 dexp = -dexp;
603 sign ^= subtract_p;
605 exp = REAL_EXP (a);
607 /* If the exponents are not identical, we need to shift the
608 significand of B down. */
609 if (dexp > 0)
611 /* If the exponents are too far apart, the significands
612 do not overlap, which makes the subtraction a noop. */
613 if (dexp >= SIGNIFICAND_BITS)
615 *r = *a;
616 r->sign = sign;
617 return true;
620 inexact |= sticky_rshift_significand (&t, b, dexp);
621 b = &t;
624 if (subtract_p)
626 if (sub_significands (r, a, b, inexact))
628 /* We got a borrow out of the subtraction. That means that
629 A and B had the same exponent, and B had the larger
630 significand. We need to swap the sign and negate the
631 significand. */
632 sign ^= 1;
633 neg_significand (r, r);
636 else
638 if (add_significands (r, a, b))
640 /* We got carry out of the addition. This means we need to
641 shift the significand back down one bit and increase the
642 exponent. */
643 inexact |= sticky_rshift_significand (r, r, 1);
644 r->sig[SIGSZ-1] |= SIG_MSB;
645 if (++exp > MAX_EXP)
647 get_inf (r, sign);
648 return true;
653 r->cl = rvc_normal;
654 r->sign = sign;
655 SET_REAL_EXP (r, exp);
656 /* Zero out the remaining fields. */
657 r->signalling = 0;
658 r->canonical = 0;
659 r->decimal = 0;
661 /* Re-normalize the result. */
662 normalize (r);
664 /* Special case: if the subtraction results in zero, the result
665 is positive. */
666 if (r->cl == rvc_zero)
667 r->sign = 0;
668 else
669 r->sig[0] |= inexact;
671 return inexact;
674 /* Calculate R = A * B. Return true if the result may be inexact. */
676 static bool
677 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
678 const REAL_VALUE_TYPE *b)
680 REAL_VALUE_TYPE u, t, *rr;
681 unsigned int i, j, k;
682 int sign = a->sign ^ b->sign;
683 bool inexact = false;
685 switch (CLASS2 (a->cl, b->cl))
687 case CLASS2 (rvc_zero, rvc_zero):
688 case CLASS2 (rvc_zero, rvc_normal):
689 case CLASS2 (rvc_normal, rvc_zero):
690 /* +-0 * ANY = 0 with appropriate sign. */
691 get_zero (r, sign);
692 return false;
694 case CLASS2 (rvc_zero, rvc_nan):
695 case CLASS2 (rvc_normal, rvc_nan):
696 case CLASS2 (rvc_inf, rvc_nan):
697 case CLASS2 (rvc_nan, rvc_nan):
698 /* ANY * NaN = NaN. */
699 *r = *b;
700 /* Make resulting NaN value to be qNaN. The caller has the
701 responsibility to avoid the operation if flag_signaling_nans
702 is on. */
703 r->signalling = 0;
704 r->sign = sign;
705 return false;
707 case CLASS2 (rvc_nan, rvc_zero):
708 case CLASS2 (rvc_nan, rvc_normal):
709 case CLASS2 (rvc_nan, rvc_inf):
710 /* NaN * ANY = NaN. */
711 *r = *a;
712 /* Make resulting NaN value to be qNaN. The caller has the
713 responsibility to avoid the operation if flag_signaling_nans
714 is on. */
715 r->signalling = 0;
716 r->sign = sign;
717 return false;
719 case CLASS2 (rvc_zero, rvc_inf):
720 case CLASS2 (rvc_inf, rvc_zero):
721 /* 0 * Inf = NaN */
722 get_canonical_qnan (r, sign);
723 return false;
725 case CLASS2 (rvc_inf, rvc_inf):
726 case CLASS2 (rvc_normal, rvc_inf):
727 case CLASS2 (rvc_inf, rvc_normal):
728 /* Inf * Inf = Inf, R * Inf = Inf */
729 get_inf (r, sign);
730 return false;
732 case CLASS2 (rvc_normal, rvc_normal):
733 break;
735 default:
736 gcc_unreachable ();
739 if (r == a || r == b)
740 rr = &t;
741 else
742 rr = r;
743 get_zero (rr, 0);
745 /* Collect all the partial products. Since we don't have sure access
746 to a widening multiply, we split each long into two half-words.
748 Consider the long-hand form of a four half-word multiplication:
750 A B C D
751 * E F G H
752 --------------
753 DE DF DG DH
754 CE CF CG CH
755 BE BF BG BH
756 AE AF AG AH
758 We construct partial products of the widened half-word products
759 that are known to not overlap, e.g. DF+DH. Each such partial
760 product is given its proper exponent, which allows us to sum them
761 and obtain the finished product. */
763 for (i = 0; i < SIGSZ * 2; ++i)
765 unsigned long ai = a->sig[i / 2];
766 if (i & 1)
767 ai >>= HOST_BITS_PER_LONG / 2;
768 else
769 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
771 if (ai == 0)
772 continue;
774 for (j = 0; j < 2; ++j)
776 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
777 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
779 if (exp > MAX_EXP)
781 get_inf (r, sign);
782 return true;
784 if (exp < -MAX_EXP)
786 /* Would underflow to zero, which we shouldn't bother adding. */
787 inexact = true;
788 continue;
791 memset (&u, 0, sizeof (u));
792 u.cl = rvc_normal;
793 SET_REAL_EXP (&u, exp);
795 for (k = j; k < SIGSZ * 2; k += 2)
797 unsigned long bi = b->sig[k / 2];
798 if (k & 1)
799 bi >>= HOST_BITS_PER_LONG / 2;
800 else
801 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
803 u.sig[k / 2] = ai * bi;
806 normalize (&u);
807 inexact |= do_add (rr, rr, &u, 0);
811 rr->sign = sign;
812 if (rr != r)
813 *r = t;
815 return inexact;
818 /* Calculate R = A / B. Return true if the result may be inexact. */
820 static bool
821 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
822 const REAL_VALUE_TYPE *b)
824 int exp, sign = a->sign ^ b->sign;
825 REAL_VALUE_TYPE t, *rr;
826 bool inexact;
828 switch (CLASS2 (a->cl, b->cl))
830 case CLASS2 (rvc_zero, rvc_zero):
831 /* 0 / 0 = NaN. */
832 case CLASS2 (rvc_inf, rvc_inf):
833 /* Inf / Inf = NaN. */
834 get_canonical_qnan (r, sign);
835 return false;
837 case CLASS2 (rvc_zero, rvc_normal):
838 case CLASS2 (rvc_zero, rvc_inf):
839 /* 0 / ANY = 0. */
840 case CLASS2 (rvc_normal, rvc_inf):
841 /* R / Inf = 0. */
842 get_zero (r, sign);
843 return false;
845 case CLASS2 (rvc_normal, rvc_zero):
846 /* R / 0 = Inf. */
847 case CLASS2 (rvc_inf, rvc_zero):
848 /* Inf / 0 = Inf. */
849 get_inf (r, sign);
850 return false;
852 case CLASS2 (rvc_zero, rvc_nan):
853 case CLASS2 (rvc_normal, rvc_nan):
854 case CLASS2 (rvc_inf, rvc_nan):
855 case CLASS2 (rvc_nan, rvc_nan):
856 /* ANY / NaN = NaN. */
857 *r = *b;
858 /* Make resulting NaN value to be qNaN. The caller has the
859 responsibility to avoid the operation if flag_signaling_nans
860 is on. */
861 r->signalling = 0;
862 r->sign = sign;
863 return false;
865 case CLASS2 (rvc_nan, rvc_zero):
866 case CLASS2 (rvc_nan, rvc_normal):
867 case CLASS2 (rvc_nan, rvc_inf):
868 /* NaN / ANY = NaN. */
869 *r = *a;
870 /* Make resulting NaN value to be qNaN. The caller has the
871 responsibility to avoid the operation if flag_signaling_nans
872 is on. */
873 r->signalling = 0;
874 r->sign = sign;
875 return false;
877 case CLASS2 (rvc_inf, rvc_normal):
878 /* Inf / R = Inf. */
879 get_inf (r, sign);
880 return false;
882 case CLASS2 (rvc_normal, rvc_normal):
883 break;
885 default:
886 gcc_unreachable ();
889 if (r == a || r == b)
890 rr = &t;
891 else
892 rr = r;
894 /* Make sure all fields in the result are initialized. */
895 get_zero (rr, 0);
896 rr->cl = rvc_normal;
897 rr->sign = sign;
899 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
900 if (exp > MAX_EXP)
902 get_inf (r, sign);
903 return true;
905 if (exp < -MAX_EXP)
907 get_zero (r, sign);
908 return true;
910 SET_REAL_EXP (rr, exp);
912 inexact = div_significands (rr, a, b);
914 /* Re-normalize the result. */
915 normalize (rr);
916 rr->sig[0] |= inexact;
918 if (rr != r)
919 *r = t;
921 return inexact;
924 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
925 one of the two operands is a NaN. */
927 static int
928 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
929 int nan_result)
931 int ret;
933 switch (CLASS2 (a->cl, b->cl))
935 case CLASS2 (rvc_zero, rvc_zero):
936 /* Sign of zero doesn't matter for compares. */
937 return 0;
939 case CLASS2 (rvc_normal, rvc_zero):
940 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
941 if (a->decimal)
942 return decimal_do_compare (a, b, nan_result);
943 /* Fall through. */
944 case CLASS2 (rvc_inf, rvc_zero):
945 case CLASS2 (rvc_inf, rvc_normal):
946 return (a->sign ? -1 : 1);
948 case CLASS2 (rvc_inf, rvc_inf):
949 return -a->sign - -b->sign;
951 case CLASS2 (rvc_zero, rvc_normal):
952 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
953 if (b->decimal)
954 return decimal_do_compare (a, b, nan_result);
955 /* Fall through. */
956 case CLASS2 (rvc_zero, rvc_inf):
957 case CLASS2 (rvc_normal, rvc_inf):
958 return (b->sign ? 1 : -1);
960 case CLASS2 (rvc_zero, rvc_nan):
961 case CLASS2 (rvc_normal, rvc_nan):
962 case CLASS2 (rvc_inf, rvc_nan):
963 case CLASS2 (rvc_nan, rvc_nan):
964 case CLASS2 (rvc_nan, rvc_zero):
965 case CLASS2 (rvc_nan, rvc_normal):
966 case CLASS2 (rvc_nan, rvc_inf):
967 return nan_result;
969 case CLASS2 (rvc_normal, rvc_normal):
970 break;
972 default:
973 gcc_unreachable ();
976 if (a->decimal || b->decimal)
977 return decimal_do_compare (a, b, nan_result);
979 if (a->sign != b->sign)
980 return -a->sign - -b->sign;
982 if (REAL_EXP (a) > REAL_EXP (b))
983 ret = 1;
984 else if (REAL_EXP (a) < REAL_EXP (b))
985 ret = -1;
986 else
987 ret = cmp_significands (a, b);
989 return (a->sign ? -ret : ret);
992 /* Return A truncated to an integral value toward zero. */
994 static void
995 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
997 *r = *a;
999 switch (r->cl)
1001 case rvc_zero:
1002 case rvc_inf:
1003 case rvc_nan:
1004 /* Make resulting NaN value to be qNaN. The caller has the
1005 responsibility to avoid the operation if flag_signaling_nans
1006 is on. */
1007 r->signalling = 0;
1008 break;
1010 case rvc_normal:
1011 if (r->decimal)
1013 decimal_do_fix_trunc (r, a);
1014 return;
1016 if (REAL_EXP (r) <= 0)
1017 get_zero (r, r->sign);
1018 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
1019 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
1020 break;
1022 default:
1023 gcc_unreachable ();
1027 /* Perform the binary or unary operation described by CODE.
1028 For a unary operation, leave OP1 NULL. This function returns
1029 true if the result may be inexact due to loss of precision. */
1031 bool
1032 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
1033 const REAL_VALUE_TYPE *op1)
1035 enum tree_code code = (enum tree_code) icode;
1037 if (op0->decimal || (op1 && op1->decimal))
1038 return decimal_real_arithmetic (r, code, op0, op1);
1040 switch (code)
1042 case PLUS_EXPR:
1043 /* Clear any padding areas in *r if it isn't equal to one of the
1044 operands so that we can later do bitwise comparisons later on. */
1045 if (r != op0 && r != op1)
1046 memset (r, '\0', sizeof (*r));
1047 return do_add (r, op0, op1, 0);
1049 case MINUS_EXPR:
1050 if (r != op0 && r != op1)
1051 memset (r, '\0', sizeof (*r));
1052 return do_add (r, op0, op1, 1);
1054 case MULT_EXPR:
1055 if (r != op0 && r != op1)
1056 memset (r, '\0', sizeof (*r));
1057 return do_multiply (r, op0, op1);
1059 case RDIV_EXPR:
1060 if (r != op0 && r != op1)
1061 memset (r, '\0', sizeof (*r));
1062 return do_divide (r, op0, op1);
1064 case MIN_EXPR:
1065 if (op1->cl == rvc_nan)
1067 *r = *op1;
1068 /* Make resulting NaN value to be qNaN. The caller has the
1069 responsibility to avoid the operation if flag_signaling_nans
1070 is on. */
1071 r->signalling = 0;
1073 else if (do_compare (op0, op1, -1) < 0)
1074 *r = *op0;
1075 else
1076 *r = *op1;
1077 break;
1079 case MAX_EXPR:
1080 if (op1->cl == rvc_nan)
1082 *r = *op1;
1083 /* Make resulting NaN value to be qNaN. The caller has the
1084 responsibility to avoid the operation if flag_signaling_nans
1085 is on. */
1086 r->signalling = 0;
1088 else if (do_compare (op0, op1, 1) < 0)
1089 *r = *op1;
1090 else
1091 *r = *op0;
1092 break;
1094 case NEGATE_EXPR:
1095 *r = *op0;
1096 r->sign ^= 1;
1097 break;
1099 case ABS_EXPR:
1100 *r = *op0;
1101 r->sign = 0;
1102 break;
1104 case FIX_TRUNC_EXPR:
1105 do_fix_trunc (r, op0);
1106 break;
1108 default:
1109 gcc_unreachable ();
1111 return false;
1114 REAL_VALUE_TYPE
1115 real_value_negate (const REAL_VALUE_TYPE *op0)
1117 REAL_VALUE_TYPE r;
1118 real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
1119 return r;
1122 REAL_VALUE_TYPE
1123 real_value_abs (const REAL_VALUE_TYPE *op0)
1125 REAL_VALUE_TYPE r;
1126 real_arithmetic (&r, ABS_EXPR, op0, NULL);
1127 return r;
1130 /* Return whether OP0 == OP1. */
1132 bool
1133 real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1135 return do_compare (op0, op1, -1) == 0;
1138 /* Return whether OP0 < OP1. */
1140 bool
1141 real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1143 return do_compare (op0, op1, 1) < 0;
1146 bool
1147 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1148 const REAL_VALUE_TYPE *op1)
1150 enum tree_code code = (enum tree_code) icode;
1152 switch (code)
1154 case LT_EXPR:
1155 return real_less (op0, op1);
1156 case LE_EXPR:
1157 return do_compare (op0, op1, 1) <= 0;
1158 case GT_EXPR:
1159 return do_compare (op0, op1, -1) > 0;
1160 case GE_EXPR:
1161 return do_compare (op0, op1, -1) >= 0;
1162 case EQ_EXPR:
1163 return real_equal (op0, op1);
1164 case NE_EXPR:
1165 return do_compare (op0, op1, -1) != 0;
1166 case UNORDERED_EXPR:
1167 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1168 case ORDERED_EXPR:
1169 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1170 case UNLT_EXPR:
1171 return do_compare (op0, op1, -1) < 0;
1172 case UNLE_EXPR:
1173 return do_compare (op0, op1, -1) <= 0;
1174 case UNGT_EXPR:
1175 return do_compare (op0, op1, 1) > 0;
1176 case UNGE_EXPR:
1177 return do_compare (op0, op1, 1) >= 0;
1178 case UNEQ_EXPR:
1179 return do_compare (op0, op1, 0) == 0;
1180 case LTGT_EXPR:
1181 return do_compare (op0, op1, 0) != 0;
1183 default:
1184 gcc_unreachable ();
1188 /* Return floor log2(R). */
1191 real_exponent (const REAL_VALUE_TYPE *r)
1193 switch (r->cl)
1195 case rvc_zero:
1196 return 0;
1197 case rvc_inf:
1198 case rvc_nan:
1199 return (unsigned int)-1 >> 1;
1200 case rvc_normal:
1201 return REAL_EXP (r);
1202 default:
1203 gcc_unreachable ();
1207 /* R = OP0 * 2**EXP. */
1209 void
1210 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1212 *r = *op0;
1213 switch (r->cl)
1215 case rvc_zero:
1216 case rvc_inf:
1217 case rvc_nan:
1218 /* Make resulting NaN value to be qNaN. The caller has the
1219 responsibility to avoid the operation if flag_signaling_nans
1220 is on. */
1221 r->signalling = 0;
1222 break;
1224 case rvc_normal:
1225 exp += REAL_EXP (op0);
1226 if (exp > MAX_EXP)
1227 get_inf (r, r->sign);
1228 else if (exp < -MAX_EXP)
1229 get_zero (r, r->sign);
1230 else
1231 SET_REAL_EXP (r, exp);
1232 break;
1234 default:
1235 gcc_unreachable ();
1239 /* Determine whether a floating-point value X is infinite. */
1241 bool
1242 real_isinf (const REAL_VALUE_TYPE *r)
1244 return (r->cl == rvc_inf);
1247 /* Determine whether a floating-point value X is infinite with SIGN. */
1249 bool
1250 real_isinf (const REAL_VALUE_TYPE *r, bool sign)
1252 return real_isinf (r) && r->sign == sign;
1255 /* Determine whether a floating-point value X is a NaN. */
1257 bool
1258 real_isnan (const REAL_VALUE_TYPE *r)
1260 return (r->cl == rvc_nan);
1263 /* Determine whether a floating-point value X is a signaling NaN. */
1264 bool real_issignaling_nan (const REAL_VALUE_TYPE *r)
1266 return real_isnan (r) && r->signalling;
1269 /* Determine whether a floating-point value X is finite. */
1271 bool
1272 real_isfinite (const REAL_VALUE_TYPE *r)
1274 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1277 /* Determine whether a floating-point value X is negative. */
1279 bool
1280 real_isneg (const REAL_VALUE_TYPE *r)
1282 return r->sign;
1285 /* Determine whether a floating-point value X is plus or minus zero. */
1287 bool
1288 real_iszero (const REAL_VALUE_TYPE *r)
1290 return r->cl == rvc_zero;
1293 /* Determine whether a floating-point value X is zero with SIGN. */
1295 bool
1296 real_iszero (const REAL_VALUE_TYPE *r, bool sign)
1298 return real_iszero (r) && r->sign == sign;
1301 /* Determine whether a floating-point value X is minus zero. */
1303 bool
1304 real_isnegzero (const REAL_VALUE_TYPE *r)
1306 return r->sign && r->cl == rvc_zero;
1309 /* Compare two floating-point objects for bitwise identity. */
1311 bool
1312 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1314 int i;
1316 if (a->cl != b->cl)
1317 return false;
1318 if (a->sign != b->sign)
1319 return false;
1321 switch (a->cl)
1323 case rvc_zero:
1324 case rvc_inf:
1325 return true;
1327 case rvc_normal:
1328 if (a->decimal != b->decimal)
1329 return false;
1330 if (REAL_EXP (a) != REAL_EXP (b))
1331 return false;
1332 break;
1334 case rvc_nan:
1335 if (a->signalling != b->signalling)
1336 return false;
1337 /* The significand is ignored for canonical NaNs. */
1338 if (a->canonical || b->canonical)
1339 return a->canonical == b->canonical;
1340 break;
1342 default:
1343 gcc_unreachable ();
1346 for (i = 0; i < SIGSZ; ++i)
1347 if (a->sig[i] != b->sig[i])
1348 return false;
1350 return true;
1353 /* Try to change R into its exact multiplicative inverse in format FMT.
1354 Return true if successful. */
1356 bool
1357 exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
1359 const REAL_VALUE_TYPE *one = real_digit (1);
1360 REAL_VALUE_TYPE u;
1361 int i;
1363 if (r->cl != rvc_normal)
1364 return false;
1366 /* Check for a power of two: all significand bits zero except the MSB. */
1367 for (i = 0; i < SIGSZ-1; ++i)
1368 if (r->sig[i] != 0)
1369 return false;
1370 if (r->sig[SIGSZ-1] != SIG_MSB)
1371 return false;
1373 /* Find the inverse and truncate to the required format. */
1374 do_divide (&u, one, r);
1375 real_convert (&u, fmt, &u);
1377 /* The rounding may have overflowed. */
1378 if (u.cl != rvc_normal)
1379 return false;
1380 for (i = 0; i < SIGSZ-1; ++i)
1381 if (u.sig[i] != 0)
1382 return false;
1383 if (u.sig[SIGSZ-1] != SIG_MSB)
1384 return false;
1386 *r = u;
1387 return true;
1390 /* Return true if arithmetic on values in IMODE that were promoted
1391 from values in TMODE is equivalent to direct arithmetic on values
1392 in TMODE. */
1394 bool
1395 real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
1397 const struct real_format *tfmt, *ifmt;
1398 tfmt = REAL_MODE_FORMAT (tmode);
1399 ifmt = REAL_MODE_FORMAT (imode);
1400 /* These conditions are conservative rather than trying to catch the
1401 exact boundary conditions; the main case to allow is IEEE float
1402 and double. */
1403 return (ifmt->b == tfmt->b
1404 && ifmt->p > 2 * tfmt->p
1405 && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1406 && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1407 && ifmt->emax > 2 * tfmt->emax + 2
1408 && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1409 && ifmt->round_towards_zero == tfmt->round_towards_zero
1410 && (ifmt->has_sign_dependent_rounding
1411 == tfmt->has_sign_dependent_rounding)
1412 && ifmt->has_nans >= tfmt->has_nans
1413 && ifmt->has_inf >= tfmt->has_inf
1414 && ifmt->has_signed_zero >= tfmt->has_signed_zero
1415 && !MODE_COMPOSITE_P (tmode)
1416 && !MODE_COMPOSITE_P (imode));
1419 /* Render R as an integer. */
1421 HOST_WIDE_INT
1422 real_to_integer (const REAL_VALUE_TYPE *r)
1424 unsigned HOST_WIDE_INT i;
1426 switch (r->cl)
1428 case rvc_zero:
1429 underflow:
1430 return 0;
1432 case rvc_inf:
1433 case rvc_nan:
1434 overflow:
1435 i = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
1436 if (!r->sign)
1437 i--;
1438 return i;
1440 case rvc_normal:
1441 if (r->decimal)
1442 return decimal_real_to_integer (r);
1444 if (REAL_EXP (r) <= 0)
1445 goto underflow;
1446 /* Only force overflow for unsigned overflow. Signed overflow is
1447 undefined, so it doesn't matter what we return, and some callers
1448 expect to be able to use this routine for both signed and
1449 unsigned conversions. */
1450 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1451 goto overflow;
1453 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1454 i = r->sig[SIGSZ-1];
1455 else
1457 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1458 i = r->sig[SIGSZ-1];
1459 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1460 i |= r->sig[SIGSZ-2];
1463 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1465 if (r->sign)
1466 i = -i;
1467 return i;
1469 default:
1470 gcc_unreachable ();
1474 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1475 be represented in precision, *FAIL is set to TRUE. */
1477 wide_int
1478 real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
1480 HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
1481 int exp;
1482 int words, w;
1483 wide_int result;
1485 switch (r->cl)
1487 case rvc_zero:
1488 underflow:
1489 return wi::zero (precision);
1491 case rvc_inf:
1492 case rvc_nan:
1493 overflow:
1494 *fail = true;
1496 if (r->sign)
1497 return wi::set_bit_in_zero (precision - 1, precision);
1498 else
1499 return ~wi::set_bit_in_zero (precision - 1, precision);
1501 case rvc_normal:
1502 if (r->decimal)
1503 return decimal_real_to_integer (r, fail, precision);
1505 exp = REAL_EXP (r);
1506 if (exp <= 0)
1507 goto underflow;
1508 /* Only force overflow for unsigned overflow. Signed overflow is
1509 undefined, so it doesn't matter what we return, and some callers
1510 expect to be able to use this routine for both signed and
1511 unsigned conversions. */
1512 if (exp > precision)
1513 goto overflow;
1515 /* Put the significand into a wide_int that has precision W, which
1516 is the smallest HWI-multiple that has at least PRECISION bits.
1517 This ensures that the top bit of the significand is in the
1518 top bit of the wide_int. */
1519 words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
1520 w = words * HOST_BITS_PER_WIDE_INT;
1522 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1523 for (int i = 0; i < words; i++)
1525 int j = SIGSZ - words + i;
1526 val[i] = (j < 0) ? 0 : r->sig[j];
1528 #else
1529 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1530 for (int i = 0; i < words; i++)
1532 int j = SIGSZ - (words * 2) + (i * 2);
1533 if (j < 0)
1534 val[i] = 0;
1535 else
1536 val[i] = r->sig[j];
1537 j += 1;
1538 if (j >= 0)
1539 val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
1541 #endif
1542 /* Shift the value into place and truncate to the desired precision. */
1543 result = wide_int::from_array (val, words, w);
1544 result = wi::lrshift (result, w - exp);
1545 result = wide_int::from (result, precision, UNSIGNED);
1547 if (r->sign)
1548 return -result;
1549 else
1550 return result;
1552 default:
1553 gcc_unreachable ();
1557 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1558 of NUM / DEN. Return the quotient and place the remainder in NUM.
1559 It is expected that NUM / DEN are close enough that the quotient is
1560 small. */
1562 static unsigned long
1563 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1565 unsigned long q, msb;
1566 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1568 if (expn < expd)
1569 return 0;
1571 q = msb = 0;
1572 goto start;
1575 msb = num->sig[SIGSZ-1] & SIG_MSB;
1576 q <<= 1;
1577 lshift_significand_1 (num, num);
1578 start:
1579 if (msb || cmp_significands (num, den) >= 0)
1581 sub_significands (num, num, den, 0);
1582 q |= 1;
1585 while (--expn >= expd);
1587 SET_REAL_EXP (num, expd);
1588 normalize (num);
1590 return q;
1593 /* Render R as a decimal floating point constant. Emit DIGITS significant
1594 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1595 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1596 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1597 to a string that, when parsed back in mode MODE, yields the same value. */
1599 #define M_LOG10_2 0.30102999566398119521
1601 void
1602 real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1603 size_t buf_size, size_t digits,
1604 int crop_trailing_zeros, machine_mode mode)
1606 const struct real_format *fmt = NULL;
1607 const REAL_VALUE_TYPE *one, *ten;
1608 REAL_VALUE_TYPE r, pten, u, v;
1609 int dec_exp, cmp_one, digit;
1610 size_t max_digits;
1611 char *p, *first, *last;
1612 bool sign;
1613 bool round_up;
1615 if (mode != VOIDmode)
1617 fmt = REAL_MODE_FORMAT (mode);
1618 gcc_assert (fmt);
1621 r = *r_orig;
1622 switch (r.cl)
1624 case rvc_zero:
1625 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1626 return;
1627 case rvc_normal:
1628 break;
1629 case rvc_inf:
1630 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1631 return;
1632 case rvc_nan:
1633 /* ??? Print the significand as well, if not canonical? */
1634 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1635 (r_orig->signalling ? 'S' : 'Q'));
1636 return;
1637 default:
1638 gcc_unreachable ();
1641 if (r.decimal)
1643 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1644 return;
1647 /* Bound the number of digits printed by the size of the representation. */
1648 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1649 if (digits == 0 || digits > max_digits)
1650 digits = max_digits;
1652 /* Estimate the decimal exponent, and compute the length of the string it
1653 will print as. Be conservative and add one to account for possible
1654 overflow or rounding error. */
1655 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1656 for (max_digits = 1; dec_exp ; max_digits++)
1657 dec_exp /= 10;
1659 /* Bound the number of digits printed by the size of the output buffer. */
1660 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1661 gcc_assert (max_digits <= buf_size);
1662 if (digits > max_digits)
1663 digits = max_digits;
1665 one = real_digit (1);
1666 ten = ten_to_ptwo (0);
1668 sign = r.sign;
1669 r.sign = 0;
1671 dec_exp = 0;
1672 pten = *one;
1674 cmp_one = do_compare (&r, one, 0);
1675 if (cmp_one > 0)
1677 int m;
1679 /* Number is greater than one. Convert significand to an integer
1680 and strip trailing decimal zeros. */
1682 u = r;
1683 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1685 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1686 m = floor_log2 (max_digits);
1688 /* Iterate over the bits of the possible powers of 10 that might
1689 be present in U and eliminate them. That is, if we find that
1690 10**2**M divides U evenly, keep the division and increase
1691 DEC_EXP by 2**M. */
1694 REAL_VALUE_TYPE t;
1696 do_divide (&t, &u, ten_to_ptwo (m));
1697 do_fix_trunc (&v, &t);
1698 if (cmp_significands (&v, &t) == 0)
1700 u = t;
1701 dec_exp += 1 << m;
1704 while (--m >= 0);
1706 /* Revert the scaling to integer that we performed earlier. */
1707 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1708 - (SIGNIFICAND_BITS - 1));
1709 r = u;
1711 /* Find power of 10. Do this by dividing out 10**2**M when
1712 this is larger than the current remainder. Fill PTEN with
1713 the power of 10 that we compute. */
1714 if (REAL_EXP (&r) > 0)
1716 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1719 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1720 if (do_compare (&u, ptentwo, 0) >= 0)
1722 do_divide (&u, &u, ptentwo);
1723 do_multiply (&pten, &pten, ptentwo);
1724 dec_exp += 1 << m;
1727 while (--m >= 0);
1729 else
1730 /* We managed to divide off enough tens in the above reduction
1731 loop that we've now got a negative exponent. Fall into the
1732 less-than-one code to compute the proper value for PTEN. */
1733 cmp_one = -1;
1735 if (cmp_one < 0)
1737 int m;
1739 /* Number is less than one. Pad significand with leading
1740 decimal zeros. */
1742 v = r;
1743 while (1)
1745 /* Stop if we'd shift bits off the bottom. */
1746 if (v.sig[0] & 7)
1747 break;
1749 do_multiply (&u, &v, ten);
1751 /* Stop if we're now >= 1 or zero. */
1752 if (REAL_EXP (&u) > 0 || u.cl == rvc_zero)
1753 break;
1755 v = u;
1756 dec_exp -= 1;
1758 r = v;
1760 /* Find power of 10. Do this by multiplying in P=10**2**M when
1761 the current remainder is smaller than 1/P. Fill PTEN with the
1762 power of 10 that we compute. */
1763 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1766 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1767 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1769 if (do_compare (&v, ptenmtwo, 0) <= 0)
1771 do_multiply (&v, &v, ptentwo);
1772 do_multiply (&pten, &pten, ptentwo);
1773 dec_exp -= 1 << m;
1776 while (--m >= 0);
1778 /* Invert the positive power of 10 that we've collected so far. */
1779 do_divide (&pten, one, &pten);
1782 p = str;
1783 if (sign)
1784 *p++ = '-';
1785 first = p++;
1787 /* At this point, PTEN should contain the nearest power of 10 smaller
1788 than R, such that this division produces the first digit.
1790 Using a divide-step primitive that returns the complete integral
1791 remainder avoids the rounding error that would be produced if
1792 we were to use do_divide here and then simply multiply by 10 for
1793 each subsequent digit. */
1795 digit = rtd_divmod (&r, &pten);
1797 /* Be prepared for error in that division via underflow ... */
1798 if (digit == 0 && cmp_significand_0 (&r))
1800 /* Multiply by 10 and try again. */
1801 do_multiply (&r, &r, ten);
1802 digit = rtd_divmod (&r, &pten);
1803 dec_exp -= 1;
1804 gcc_assert (digit != 0);
1807 /* ... or overflow. */
1808 if (digit == 10)
1810 *p++ = '1';
1811 if (--digits > 0)
1812 *p++ = '0';
1813 dec_exp += 1;
1815 else
1817 gcc_assert (digit <= 10);
1818 *p++ = digit + '0';
1821 /* Generate subsequent digits. */
1822 while (--digits > 0)
1824 do_multiply (&r, &r, ten);
1825 digit = rtd_divmod (&r, &pten);
1826 *p++ = digit + '0';
1828 last = p;
1830 /* Generate one more digit with which to do rounding. */
1831 do_multiply (&r, &r, ten);
1832 digit = rtd_divmod (&r, &pten);
1834 /* Round the result. */
1835 if (fmt && fmt->round_towards_zero)
1837 /* If the format uses round towards zero when parsing the string
1838 back in, we need to always round away from zero here. */
1839 if (cmp_significand_0 (&r))
1840 digit++;
1841 round_up = digit > 0;
1843 else
1845 if (digit == 5)
1847 /* Round to nearest. If R is nonzero there are additional
1848 nonzero digits to be extracted. */
1849 if (cmp_significand_0 (&r))
1850 digit++;
1851 /* Round to even. */
1852 else if ((p[-1] - '0') & 1)
1853 digit++;
1856 round_up = digit > 5;
1859 if (round_up)
1861 while (p > first)
1863 digit = *--p;
1864 if (digit == '9')
1865 *p = '0';
1866 else
1868 *p = digit + 1;
1869 break;
1873 /* Carry out of the first digit. This means we had all 9's and
1874 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1875 if (p == first)
1877 first[1] = '1';
1878 dec_exp++;
1882 /* Insert the decimal point. */
1883 first[0] = first[1];
1884 first[1] = '.';
1886 /* If requested, drop trailing zeros. Never crop past "1.0". */
1887 if (crop_trailing_zeros)
1888 while (last > first + 3 && last[-1] == '0')
1889 last--;
1891 /* Append the exponent. */
1892 sprintf (last, "e%+d", dec_exp);
1894 /* Verify that we can read the original value back in. */
1895 if (flag_checking && mode != VOIDmode)
1897 real_from_string (&r, str);
1898 real_convert (&r, mode, &r);
1899 gcc_assert (real_identical (&r, r_orig));
1903 /* Likewise, except always uses round-to-nearest. */
1905 void
1906 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1907 size_t digits, int crop_trailing_zeros)
1909 real_to_decimal_for_mode (str, r_orig, buf_size,
1910 digits, crop_trailing_zeros, VOIDmode);
1913 DEBUG_FUNCTION void
1914 debug (const REAL_VALUE_TYPE &r)
1916 char s[60];
1917 real_to_hexadecimal (s, &r, sizeof (s), 0, 1);
1918 fprintf (stderr, "%s\n", s);
1921 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1922 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1923 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1924 strip trailing zeros. */
1926 void
1927 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1928 size_t digits, int crop_trailing_zeros)
1930 int i, j, exp = REAL_EXP (r);
1931 char *p, *first;
1932 char exp_buf[16];
1933 size_t max_digits;
1935 switch (r->cl)
1937 case rvc_zero:
1938 exp = 0;
1939 break;
1940 case rvc_normal:
1941 break;
1942 case rvc_inf:
1943 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1944 return;
1945 case rvc_nan:
1946 /* ??? Print the significand as well, if not canonical? */
1947 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1948 (r->signalling ? 'S' : 'Q'));
1949 return;
1950 default:
1951 gcc_unreachable ();
1954 if (r->decimal)
1956 /* Hexadecimal format for decimal floats is not interesting. */
1957 strcpy (str, "N/A");
1958 return;
1961 if (digits == 0)
1962 digits = SIGNIFICAND_BITS / 4;
1964 /* Bound the number of digits printed by the size of the output buffer. */
1966 sprintf (exp_buf, "p%+d", exp);
1967 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1968 gcc_assert (max_digits <= buf_size);
1969 if (digits > max_digits)
1970 digits = max_digits;
1972 p = str;
1973 if (r->sign)
1974 *p++ = '-';
1975 *p++ = '0';
1976 *p++ = 'x';
1977 *p++ = '0';
1978 *p++ = '.';
1979 first = p;
1981 for (i = SIGSZ - 1; i >= 0; --i)
1982 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1984 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1985 if (--digits == 0)
1986 goto out;
1989 out:
1990 if (crop_trailing_zeros)
1991 while (p > first + 1 && p[-1] == '0')
1992 p--;
1994 sprintf (p, "p%+d", exp);
1997 /* Initialize R from a decimal or hexadecimal string. The string is
1998 assumed to have been syntax checked already. Return -1 if the
1999 value underflows, +1 if overflows, and 0 otherwise. */
2002 real_from_string (REAL_VALUE_TYPE *r, const char *str)
2004 int exp = 0;
2005 bool sign = false;
2007 get_zero (r, 0);
2009 if (*str == '-')
2011 sign = true;
2012 str++;
2014 else if (*str == '+')
2015 str++;
2017 if (startswith (str, "QNaN"))
2019 get_canonical_qnan (r, sign);
2020 return 0;
2022 else if (startswith (str, "SNaN"))
2024 get_canonical_snan (r, sign);
2025 return 0;
2027 else if (startswith (str, "Inf"))
2029 get_inf (r, sign);
2030 return 0;
2033 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
2035 /* Hexadecimal floating point. */
2036 int pos = SIGNIFICAND_BITS - 4, d;
2038 str += 2;
2040 while (*str == '0')
2041 str++;
2042 while (1)
2044 d = hex_value (*str);
2045 if (d == _hex_bad)
2046 break;
2047 if (pos >= 0)
2049 r->sig[pos / HOST_BITS_PER_LONG]
2050 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2051 pos -= 4;
2053 else if (d)
2054 /* Ensure correct rounding by setting last bit if there is
2055 a subsequent nonzero digit. */
2056 r->sig[0] |= 1;
2057 exp += 4;
2058 str++;
2060 if (*str == '.')
2062 str++;
2063 if (pos == SIGNIFICAND_BITS - 4)
2065 while (*str == '0')
2066 str++, exp -= 4;
2068 while (1)
2070 d = hex_value (*str);
2071 if (d == _hex_bad)
2072 break;
2073 if (pos >= 0)
2075 r->sig[pos / HOST_BITS_PER_LONG]
2076 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2077 pos -= 4;
2079 else if (d)
2080 /* Ensure correct rounding by setting last bit if there is
2081 a subsequent nonzero digit. */
2082 r->sig[0] |= 1;
2083 str++;
2087 /* If the mantissa is zero, ignore the exponent. */
2088 if (!cmp_significand_0 (r))
2089 goto is_a_zero;
2091 if (*str == 'p' || *str == 'P')
2093 bool exp_neg = false;
2095 str++;
2096 if (*str == '-')
2098 exp_neg = true;
2099 str++;
2101 else if (*str == '+')
2102 str++;
2104 d = 0;
2105 while (ISDIGIT (*str))
2107 d *= 10;
2108 d += *str - '0';
2109 if (d > MAX_EXP)
2111 /* Overflowed the exponent. */
2112 if (exp_neg)
2113 goto underflow;
2114 else
2115 goto overflow;
2117 str++;
2119 if (exp_neg)
2120 d = -d;
2122 exp += d;
2125 r->cl = rvc_normal;
2126 SET_REAL_EXP (r, exp);
2128 normalize (r);
2130 else
2132 /* Decimal floating point. */
2133 const char *cstr = str;
2134 mpfr_t m;
2135 bool inexact;
2137 while (*cstr == '0')
2138 cstr++;
2139 if (*cstr == '.')
2141 cstr++;
2142 while (*cstr == '0')
2143 cstr++;
2146 /* If the mantissa is zero, ignore the exponent. */
2147 if (!ISDIGIT (*cstr))
2148 goto is_a_zero;
2150 /* Nonzero value, possibly overflowing or underflowing. */
2151 mpfr_init2 (m, SIGNIFICAND_BITS);
2152 inexact = mpfr_strtofr (m, str, NULL, 10, MPFR_RNDZ);
2153 /* The result should never be a NaN, and because the rounding is
2154 toward zero should never be an infinity. */
2155 gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
2156 if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
2158 mpfr_clear (m);
2159 goto underflow;
2161 else if (mpfr_get_exp (m) > MAX_EXP - 4)
2163 mpfr_clear (m);
2164 goto overflow;
2166 else
2168 real_from_mpfr (r, m, NULL_TREE, MPFR_RNDZ);
2169 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2170 because the hex digits used in real_from_mpfr did not
2171 start with a digit 8 to f, but the exponent bounds above
2172 should have avoided underflow or overflow. */
2173 gcc_assert (r->cl == rvc_normal);
2174 /* Set a sticky bit if mpfr_strtofr was inexact. */
2175 r->sig[0] |= inexact;
2176 mpfr_clear (m);
2180 r->sign = sign;
2181 return 0;
2183 is_a_zero:
2184 get_zero (r, sign);
2185 return 0;
2187 underflow:
2188 get_zero (r, sign);
2189 return -1;
2191 overflow:
2192 get_inf (r, sign);
2193 return 1;
2196 /* Legacy. Similar, but return the result directly. */
2198 REAL_VALUE_TYPE
2199 real_from_string2 (const char *s, format_helper fmt)
2201 REAL_VALUE_TYPE r;
2203 real_from_string (&r, s);
2204 if (fmt)
2205 real_convert (&r, fmt, &r);
2207 return r;
2210 /* Initialize R from string S and desired format FMT. */
2212 void
2213 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
2215 if (fmt.decimal_p ())
2216 decimal_real_from_string (r, s);
2217 else
2218 real_from_string (r, s);
2220 if (fmt)
2221 real_convert (r, fmt, r);
2224 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2225 FMT is nonnull. */
2227 void
2228 real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
2229 const wide_int_ref &val_in, signop sgn)
2231 if (val_in == 0)
2232 get_zero (r, 0);
2233 else
2235 unsigned int len = val_in.get_precision ();
2236 int i, j, e = 0;
2237 int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
2238 const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
2239 * HOST_BITS_PER_WIDE_INT);
2241 memset (r, 0, sizeof (*r));
2242 r->cl = rvc_normal;
2243 r->sign = wi::neg_p (val_in, sgn);
2245 /* We have to ensure we can negate the largest negative number. */
2246 wide_int val = wide_int::from (val_in, maxbitlen, sgn);
2248 if (r->sign)
2249 val = -val;
2251 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2252 won't work with precisions that are not a multiple of
2253 HOST_BITS_PER_WIDE_INT. */
2254 len += HOST_BITS_PER_WIDE_INT - 1;
2256 /* Ensure we can represent the largest negative number. */
2257 len += 1;
2259 len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
2261 /* Cap the size to the size allowed by real.h. */
2262 if (len > realmax)
2264 HOST_WIDE_INT cnt_l_z;
2265 cnt_l_z = wi::clz (val);
2267 if (maxbitlen - cnt_l_z > realmax)
2269 e = maxbitlen - cnt_l_z - realmax;
2271 /* This value is too large, we must shift it right to
2272 preserve all the bits we can, and then bump the
2273 exponent up by that amount. */
2274 val = wi::lrshift (val, e);
2276 len = realmax;
2279 /* Clear out top bits so elt will work with precisions that aren't
2280 a multiple of HOST_BITS_PER_WIDE_INT. */
2281 val = wide_int::from (val, len, sgn);
2282 len = len / HOST_BITS_PER_WIDE_INT;
2284 SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
2286 j = SIGSZ - 1;
2287 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2288 for (i = len - 1; i >= 0; i--)
2290 r->sig[j--] = val.elt (i);
2291 if (j < 0)
2292 break;
2294 else
2296 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2297 for (i = len - 1; i >= 0; i--)
2299 HOST_WIDE_INT e = val.elt (i);
2300 r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
2301 if (j < 0)
2302 break;
2303 r->sig[j--] = e;
2304 if (j < 0)
2305 break;
2309 normalize (r);
2312 if (fmt.decimal_p ())
2313 decimal_from_integer (r);
2314 if (fmt)
2315 real_convert (r, fmt, r);
2318 /* Render R, an integral value, as a floating point constant with no
2319 specified exponent. */
2321 static void
2322 decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2323 size_t buf_size)
2325 int dec_exp, digit, digits;
2326 REAL_VALUE_TYPE r, pten;
2327 char *p;
2328 bool sign;
2330 r = *r_orig;
2332 if (r.cl == rvc_zero)
2334 strcpy (str, "0.");
2335 return;
2338 sign = r.sign;
2339 r.sign = 0;
2341 dec_exp = REAL_EXP (&r) * M_LOG10_2;
2342 digits = dec_exp + 1;
2343 gcc_assert ((digits + 2) < (int)buf_size);
2345 pten = *real_digit (1);
2346 times_pten (&pten, dec_exp);
2348 p = str;
2349 if (sign)
2350 *p++ = '-';
2352 digit = rtd_divmod (&r, &pten);
2353 gcc_assert (digit >= 0 && digit <= 9);
2354 *p++ = digit + '0';
2355 while (--digits > 0)
2357 times_pten (&r, 1);
2358 digit = rtd_divmod (&r, &pten);
2359 *p++ = digit + '0';
2361 *p++ = '.';
2362 *p++ = '\0';
2365 /* Convert a real with an integral value to decimal float. */
2367 static void
2368 decimal_from_integer (REAL_VALUE_TYPE *r)
2370 char str[256];
2372 decimal_integer_string (str, r, sizeof (str) - 1);
2373 decimal_real_from_string (r, str);
2376 /* Returns 10**2**N. */
2378 static const REAL_VALUE_TYPE *
2379 ten_to_ptwo (int n)
2381 static REAL_VALUE_TYPE tens[EXP_BITS];
2383 gcc_assert (n >= 0);
2384 gcc_assert (n < EXP_BITS);
2386 if (tens[n].cl == rvc_zero)
2388 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2390 HOST_WIDE_INT t = 10;
2391 int i;
2393 for (i = 0; i < n; ++i)
2394 t *= t;
2396 real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
2398 else
2400 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2401 do_multiply (&tens[n], t, t);
2405 return &tens[n];
2408 /* Returns 10**(-2**N). */
2410 static const REAL_VALUE_TYPE *
2411 ten_to_mptwo (int n)
2413 static REAL_VALUE_TYPE tens[EXP_BITS];
2415 gcc_assert (n >= 0);
2416 gcc_assert (n < EXP_BITS);
2418 if (tens[n].cl == rvc_zero)
2419 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2421 return &tens[n];
2424 /* Returns N. */
2426 static const REAL_VALUE_TYPE *
2427 real_digit (int n)
2429 static REAL_VALUE_TYPE num[10];
2431 gcc_assert (n >= 0);
2432 gcc_assert (n <= 9);
2434 if (n > 0 && num[n].cl == rvc_zero)
2435 real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
2437 return &num[n];
2440 /* Multiply R by 10**EXP. */
2442 static void
2443 times_pten (REAL_VALUE_TYPE *r, int exp)
2445 REAL_VALUE_TYPE pten, *rr;
2446 bool negative = (exp < 0);
2447 int i;
2449 if (negative)
2451 exp = -exp;
2452 pten = *real_digit (1);
2453 rr = &pten;
2455 else
2456 rr = r;
2458 for (i = 0; exp > 0; ++i, exp >>= 1)
2459 if (exp & 1)
2460 do_multiply (rr, rr, ten_to_ptwo (i));
2462 if (negative)
2463 do_divide (r, r, &pten);
2466 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2468 const REAL_VALUE_TYPE *
2469 dconst_e_ptr (void)
2471 static REAL_VALUE_TYPE value;
2473 /* Initialize mathematical constants for constant folding builtins.
2474 These constants need to be given to at least 160 bits precision. */
2475 if (value.cl == rvc_zero)
2477 mpfr_t m;
2478 mpfr_init2 (m, SIGNIFICAND_BITS);
2479 mpfr_set_ui (m, 1, MPFR_RNDN);
2480 mpfr_exp (m, m, MPFR_RNDN);
2481 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2482 mpfr_clear (m);
2485 return &value;
2488 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2490 #define CACHED_FRACTION(NAME, N) \
2491 const REAL_VALUE_TYPE * \
2492 NAME (void) \
2494 static REAL_VALUE_TYPE value; \
2496 /* Initialize mathematical constants for constant folding builtins. \
2497 These constants need to be given to at least 160 bits \
2498 precision. */ \
2499 if (value.cl == rvc_zero) \
2500 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2501 return &value; \
2504 CACHED_FRACTION (dconst_third_ptr, 3)
2505 CACHED_FRACTION (dconst_quarter_ptr, 4)
2506 CACHED_FRACTION (dconst_sixth_ptr, 6)
2507 CACHED_FRACTION (dconst_ninth_ptr, 9)
2509 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2511 const REAL_VALUE_TYPE *
2512 dconst_sqrt2_ptr (void)
2514 static REAL_VALUE_TYPE value;
2516 /* Initialize mathematical constants for constant folding builtins.
2517 These constants need to be given to at least 160 bits precision. */
2518 if (value.cl == rvc_zero)
2520 mpfr_t m;
2521 mpfr_init2 (m, SIGNIFICAND_BITS);
2522 mpfr_sqrt_ui (m, 2, MPFR_RNDN);
2523 real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
2524 mpfr_clear (m);
2526 return &value;
2529 /* Fills R with Inf with SIGN. */
2531 void
2532 real_inf (REAL_VALUE_TYPE *r, bool sign)
2534 get_inf (r, sign);
2537 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2538 we force a QNaN, else we force an SNaN. The string, if not empty,
2539 is parsed as a number and placed in the significand. Return true
2540 if the string was successfully parsed. */
2542 bool
2543 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2544 format_helper fmt)
2546 if (*str == 0)
2548 if (quiet)
2549 get_canonical_qnan (r, 0);
2550 else
2551 get_canonical_snan (r, 0);
2553 else
2555 int base = 10, d;
2557 memset (r, 0, sizeof (*r));
2558 r->cl = rvc_nan;
2560 /* Parse akin to strtol into the significand of R. */
2562 while (ISSPACE (*str))
2563 str++;
2564 if (*str == '-')
2565 str++;
2566 else if (*str == '+')
2567 str++;
2568 if (*str == '0')
2570 str++;
2571 if (*str == 'x' || *str == 'X')
2573 base = 16;
2574 str++;
2576 else
2577 base = 8;
2580 while ((d = hex_value (*str)) < base)
2582 REAL_VALUE_TYPE u;
2584 switch (base)
2586 case 8:
2587 lshift_significand (r, r, 3);
2588 break;
2589 case 16:
2590 lshift_significand (r, r, 4);
2591 break;
2592 case 10:
2593 lshift_significand_1 (&u, r);
2594 lshift_significand (r, r, 3);
2595 add_significands (r, r, &u);
2596 break;
2597 default:
2598 gcc_unreachable ();
2601 get_zero (&u, 0);
2602 u.sig[0] = d;
2603 add_significands (r, r, &u);
2605 str++;
2608 /* Must have consumed the entire string for success. */
2609 if (*str != 0)
2610 return false;
2612 /* Shift the significand into place such that the bits
2613 are in the most significant bits for the format. */
2614 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2616 /* Our MSB is always unset for NaNs. */
2617 r->sig[SIGSZ-1] &= ~SIG_MSB;
2619 /* Force quiet or signaling NaN. */
2620 r->signalling = !quiet;
2623 return true;
2626 /* Fills R with the largest finite value representable in mode MODE.
2627 If SIGN is nonzero, R is set to the most negative finite value. */
2629 void
2630 real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
2632 const struct real_format *fmt;
2633 int np2;
2635 fmt = REAL_MODE_FORMAT (mode);
2636 gcc_assert (fmt);
2637 memset (r, 0, sizeof (*r));
2639 if (fmt->b == 10)
2640 decimal_real_maxval (r, sign, mode);
2641 else
2643 r->cl = rvc_normal;
2644 r->sign = sign;
2645 SET_REAL_EXP (r, fmt->emax);
2647 np2 = SIGNIFICAND_BITS - fmt->p;
2648 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2649 clear_significand_below (r, np2);
2651 if (fmt->pnan < fmt->p)
2652 /* This is an IBM extended double format made up of two IEEE
2653 doubles. The value of the long double is the sum of the
2654 values of the two parts. The most significant part is
2655 required to be the value of the long double rounded to the
2656 nearest double. Rounding means we need a slightly smaller
2657 value for LDBL_MAX. */
2658 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2662 /* Fills R with 2**N. */
2664 void
2665 real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
2667 memset (r, 0, sizeof (*r));
2669 n++;
2670 if (n > MAX_EXP)
2671 r->cl = rvc_inf;
2672 else if (n < -MAX_EXP)
2674 else
2676 r->cl = rvc_normal;
2677 SET_REAL_EXP (r, n);
2678 r->sig[SIGSZ-1] = SIG_MSB;
2680 if (fmt.decimal_p ())
2681 decimal_real_convert (r, fmt, r);
2685 static void
2686 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2688 int p2, np2, i, w;
2689 int emin2m1, emax2;
2690 bool round_up = false;
2692 if (r->decimal)
2694 if (fmt->b == 10)
2696 decimal_round_for_format (fmt, r);
2697 return;
2699 /* FIXME. We can come here via fp_easy_constant
2700 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2701 investigated whether this convert needs to be here, or
2702 something else is missing. */
2703 decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
2706 p2 = fmt->p;
2707 emin2m1 = fmt->emin - 1;
2708 emax2 = fmt->emax;
2710 np2 = SIGNIFICAND_BITS - p2;
2711 switch (r->cl)
2713 underflow:
2714 get_zero (r, r->sign);
2715 /* FALLTHRU */
2716 case rvc_zero:
2717 if (!fmt->has_signed_zero)
2718 r->sign = 0;
2719 return;
2721 overflow:
2722 get_inf (r, r->sign);
2723 case rvc_inf:
2724 return;
2726 case rvc_nan:
2727 clear_significand_below (r, np2);
2728 return;
2730 case rvc_normal:
2731 break;
2733 default:
2734 gcc_unreachable ();
2737 /* Check the range of the exponent. If we're out of range,
2738 either underflow or overflow. */
2739 if (REAL_EXP (r) > emax2)
2740 goto overflow;
2741 else if (REAL_EXP (r) <= emin2m1)
2743 int diff;
2745 if (!fmt->has_denorm)
2747 /* Don't underflow completely until we've had a chance to round. */
2748 if (REAL_EXP (r) < emin2m1)
2749 goto underflow;
2751 else
2753 diff = emin2m1 - REAL_EXP (r) + 1;
2754 if (diff > p2)
2755 goto underflow;
2757 /* De-normalize the significand. */
2758 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2759 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2763 if (!fmt->round_towards_zero)
2765 /* There are P2 true significand bits, followed by one guard bit,
2766 followed by one sticky bit, followed by stuff. Fold nonzero
2767 stuff into the sticky bit. */
2768 unsigned long sticky;
2769 bool guard, lsb;
2771 sticky = 0;
2772 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2773 sticky |= r->sig[i];
2774 sticky |= r->sig[w]
2775 & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2777 guard = test_significand_bit (r, np2 - 1);
2778 lsb = test_significand_bit (r, np2);
2780 /* Round to even. */
2781 round_up = guard && (sticky || lsb);
2784 if (round_up)
2786 REAL_VALUE_TYPE u;
2787 get_zero (&u, 0);
2788 set_significand_bit (&u, np2);
2790 if (add_significands (r, r, &u))
2792 /* Overflow. Means the significand had been all ones, and
2793 is now all zeros. Need to increase the exponent, and
2794 possibly re-normalize it. */
2795 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2796 if (REAL_EXP (r) > emax2)
2797 goto overflow;
2798 r->sig[SIGSZ-1] = SIG_MSB;
2802 /* Catch underflow that we deferred until after rounding. */
2803 if (REAL_EXP (r) <= emin2m1)
2804 goto underflow;
2806 /* Clear out trailing garbage. */
2807 clear_significand_below (r, np2);
2810 /* Extend or truncate to a new format. */
2812 void
2813 real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
2814 const REAL_VALUE_TYPE *a)
2816 *r = *a;
2818 if (a->decimal || fmt->b == 10)
2819 decimal_real_convert (r, fmt, a);
2821 round_for_format (fmt, r);
2823 /* Make resulting NaN value to be qNaN. The caller has the
2824 responsibility to avoid the operation if flag_signaling_nans
2825 is on. */
2826 if (r->cl == rvc_nan)
2827 r->signalling = 0;
2829 /* round_for_format de-normalizes denormals. Undo just that part. */
2830 if (r->cl == rvc_normal)
2831 normalize (r);
2834 /* Legacy. Likewise, except return the struct directly. */
2836 REAL_VALUE_TYPE
2837 real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
2839 REAL_VALUE_TYPE r;
2840 real_convert (&r, fmt, &a);
2841 return r;
2844 /* Return true if truncating to FMT is exact. */
2846 bool
2847 exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
2849 REAL_VALUE_TYPE t;
2850 int emin2m1;
2852 /* Don't allow conversion to denormals. */
2853 emin2m1 = fmt->emin - 1;
2854 if (REAL_EXP (a) <= emin2m1)
2855 return false;
2857 /* After conversion to the new format, the value must be identical. */
2858 real_convert (&t, fmt, a);
2859 return real_identical (&t, a);
2862 /* Write R to the given target format. Place the words of the result
2863 in target word order in BUF. There are always 32 bits in each
2864 long, no matter the size of the host long.
2866 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2868 long
2869 real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
2870 format_helper fmt)
2872 REAL_VALUE_TYPE r;
2873 long buf1;
2875 r = *r_orig;
2876 round_for_format (fmt, &r);
2878 if (!buf)
2879 buf = &buf1;
2880 (*fmt->encode) (fmt, buf, &r);
2882 return *buf;
2885 /* Read R from the given target format. Read the words of the result
2886 in target word order in BUF. There are always 32 bits in each
2887 long, no matter the size of the host long. */
2889 void
2890 real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
2892 (*fmt->decode) (fmt, r, buf);
2895 /* Return the number of bits of the largest binary value that the
2896 significand of FMT will hold. */
2897 /* ??? Legacy. Should get access to real_format directly. */
2900 significand_size (format_helper fmt)
2902 if (fmt == NULL)
2903 return 0;
2905 if (fmt->b == 10)
2907 /* Return the size in bits of the largest binary value that can be
2908 held by the decimal coefficient for this format. This is one more
2909 than the number of bits required to hold the largest coefficient
2910 of this format. */
2911 double log2_10 = 3.3219281;
2912 return fmt->p * log2_10;
2914 return fmt->p;
2917 /* Return a hash value for the given real value. */
2918 /* ??? The "unsigned int" return value is intended to be hashval_t,
2919 but I didn't want to pull hashtab.h into real.h. */
2921 unsigned int
2922 real_hash (const REAL_VALUE_TYPE *r)
2924 unsigned int h;
2925 size_t i;
2927 h = r->cl | (r->sign << 2);
2928 switch (r->cl)
2930 case rvc_zero:
2931 case rvc_inf:
2932 return h;
2934 case rvc_normal:
2935 h |= (unsigned int)REAL_EXP (r) << 3;
2936 break;
2938 case rvc_nan:
2939 if (r->signalling)
2940 h ^= (unsigned int)-1;
2941 if (r->canonical)
2942 return h;
2943 break;
2945 default:
2946 gcc_unreachable ();
2949 if (sizeof (unsigned long) > sizeof (unsigned int))
2950 for (i = 0; i < SIGSZ; ++i)
2952 unsigned long s = r->sig[i];
2953 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2955 else
2956 for (i = 0; i < SIGSZ; ++i)
2957 h ^= r->sig[i];
2959 return h;
2962 /* IEEE single-precision format. */
2964 static void encode_ieee_single (const struct real_format *fmt,
2965 long *, const REAL_VALUE_TYPE *);
2966 static void decode_ieee_single (const struct real_format *,
2967 REAL_VALUE_TYPE *, const long *);
2969 static void
2970 encode_ieee_single (const struct real_format *fmt, long *buf,
2971 const REAL_VALUE_TYPE *r)
2973 unsigned long image, sig, exp;
2974 unsigned long sign = r->sign;
2976 image = sign << 31;
2977 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2979 switch (r->cl)
2981 case rvc_zero:
2982 break;
2984 case rvc_inf:
2985 if (fmt->has_inf)
2986 image |= 255 << 23;
2987 else
2988 image |= 0x7fffffff;
2989 break;
2991 case rvc_nan:
2992 if (fmt->has_nans)
2994 if (r->canonical)
2995 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2996 if (r->signalling == fmt->qnan_msb_set)
2997 sig &= ~(1 << 22);
2998 else
2999 sig |= 1 << 22;
3000 if (sig == 0)
3001 sig = 1 << 21;
3003 image |= 255 << 23;
3004 image |= sig;
3006 else
3007 image |= 0x7fffffff;
3008 break;
3010 case rvc_normal:
3011 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3012 whereas the intermediate representation is 0.F x 2**exp.
3013 Which means we're off by one. */
3014 if (real_isdenormal (r))
3015 exp = 0;
3016 else
3017 exp = REAL_EXP (r) + 127 - 1;
3018 image |= exp << 23;
3019 image |= sig;
3020 break;
3022 default:
3023 gcc_unreachable ();
3026 buf[0] = image;
3029 static void
3030 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3031 const long *buf)
3033 unsigned long image = buf[0] & 0xffffffff;
3034 bool sign = (image >> 31) & 1;
3035 int exp = (image >> 23) & 0xff;
3037 memset (r, 0, sizeof (*r));
3038 image <<= HOST_BITS_PER_LONG - 24;
3039 image &= ~SIG_MSB;
3041 if (exp == 0)
3043 if (image && fmt->has_denorm)
3045 r->cl = rvc_normal;
3046 r->sign = sign;
3047 SET_REAL_EXP (r, -126);
3048 r->sig[SIGSZ-1] = image << 1;
3049 normalize (r);
3051 else if (fmt->has_signed_zero)
3052 r->sign = sign;
3054 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
3056 if (image)
3058 r->cl = rvc_nan;
3059 r->sign = sign;
3060 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
3061 ^ fmt->qnan_msb_set);
3062 r->sig[SIGSZ-1] = image;
3064 else
3066 r->cl = rvc_inf;
3067 r->sign = sign;
3070 else
3072 r->cl = rvc_normal;
3073 r->sign = sign;
3074 SET_REAL_EXP (r, exp - 127 + 1);
3075 r->sig[SIGSZ-1] = image | SIG_MSB;
3079 const struct real_format ieee_single_format =
3081 encode_ieee_single,
3082 decode_ieee_single,
3086 -125,
3087 128,
3091 false,
3092 true,
3093 true,
3094 true,
3095 true,
3096 true,
3097 true,
3098 false,
3099 "ieee_single"
3102 const struct real_format mips_single_format =
3104 encode_ieee_single,
3105 decode_ieee_single,
3109 -125,
3110 128,
3114 false,
3115 true,
3116 true,
3117 true,
3118 true,
3119 true,
3120 false,
3121 true,
3122 "mips_single"
3125 const struct real_format motorola_single_format =
3127 encode_ieee_single,
3128 decode_ieee_single,
3132 -125,
3133 128,
3137 false,
3138 true,
3139 true,
3140 true,
3141 true,
3142 true,
3143 true,
3144 true,
3145 "motorola_single"
3148 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3149 single precision with the following differences:
3150 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3151 are generated.
3152 - NaNs are not supported.
3153 - The range of non-zero numbers in binary is
3154 (001)[1.]000...000 to (255)[1.]111...111.
3155 - Denormals can be represented, but are treated as +0.0 when
3156 used as an operand and are never generated as a result.
3157 - -0.0 can be represented, but a zero result is always +0.0.
3158 - the only supported rounding mode is trunction (towards zero). */
3159 const struct real_format spu_single_format =
3161 encode_ieee_single,
3162 decode_ieee_single,
3166 -125,
3167 129,
3171 true,
3172 false,
3173 false,
3174 false,
3175 true,
3176 true,
3177 false,
3178 false,
3179 "spu_single"
3182 /* IEEE double-precision format. */
3184 static void encode_ieee_double (const struct real_format *fmt,
3185 long *, const REAL_VALUE_TYPE *);
3186 static void decode_ieee_double (const struct real_format *,
3187 REAL_VALUE_TYPE *, const long *);
3189 static void
3190 encode_ieee_double (const struct real_format *fmt, long *buf,
3191 const REAL_VALUE_TYPE *r)
3193 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3194 unsigned long sign = r->sign;
3196 image_hi = sign << 31;
3197 image_lo = 0;
3199 if (HOST_BITS_PER_LONG == 64)
3201 sig_hi = r->sig[SIGSZ-1];
3202 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3203 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3205 else
3207 sig_hi = r->sig[SIGSZ-1];
3208 sig_lo = r->sig[SIGSZ-2];
3209 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3210 sig_hi = (sig_hi >> 11) & 0xfffff;
3213 switch (r->cl)
3215 case rvc_zero:
3216 break;
3218 case rvc_inf:
3219 if (fmt->has_inf)
3220 image_hi |= 2047 << 20;
3221 else
3223 image_hi |= 0x7fffffff;
3224 image_lo = 0xffffffff;
3226 break;
3228 case rvc_nan:
3229 if (fmt->has_nans)
3231 if (r->canonical)
3233 if (fmt->canonical_nan_lsbs_set)
3235 sig_hi = (1 << 19) - 1;
3236 sig_lo = 0xffffffff;
3238 else
3240 sig_hi = 0;
3241 sig_lo = 0;
3244 if (r->signalling == fmt->qnan_msb_set)
3245 sig_hi &= ~(1 << 19);
3246 else
3247 sig_hi |= 1 << 19;
3248 if (sig_hi == 0 && sig_lo == 0)
3249 sig_hi = 1 << 18;
3251 image_hi |= 2047 << 20;
3252 image_hi |= sig_hi;
3253 image_lo = sig_lo;
3255 else
3257 image_hi |= 0x7fffffff;
3258 image_lo = 0xffffffff;
3260 break;
3262 case rvc_normal:
3263 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3264 whereas the intermediate representation is 0.F x 2**exp.
3265 Which means we're off by one. */
3266 if (real_isdenormal (r))
3267 exp = 0;
3268 else
3269 exp = REAL_EXP (r) + 1023 - 1;
3270 image_hi |= exp << 20;
3271 image_hi |= sig_hi;
3272 image_lo = sig_lo;
3273 break;
3275 default:
3276 gcc_unreachable ();
3279 if (FLOAT_WORDS_BIG_ENDIAN)
3280 buf[0] = image_hi, buf[1] = image_lo;
3281 else
3282 buf[0] = image_lo, buf[1] = image_hi;
3285 static void
3286 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3287 const long *buf)
3289 unsigned long image_hi, image_lo;
3290 bool sign;
3291 int exp;
3293 if (FLOAT_WORDS_BIG_ENDIAN)
3294 image_hi = buf[0], image_lo = buf[1];
3295 else
3296 image_lo = buf[0], image_hi = buf[1];
3297 image_lo &= 0xffffffff;
3298 image_hi &= 0xffffffff;
3300 sign = (image_hi >> 31) & 1;
3301 exp = (image_hi >> 20) & 0x7ff;
3303 memset (r, 0, sizeof (*r));
3305 image_hi <<= 32 - 21;
3306 image_hi |= image_lo >> 21;
3307 image_hi &= 0x7fffffff;
3308 image_lo <<= 32 - 21;
3310 if (exp == 0)
3312 if ((image_hi || image_lo) && fmt->has_denorm)
3314 r->cl = rvc_normal;
3315 r->sign = sign;
3316 SET_REAL_EXP (r, -1022);
3317 if (HOST_BITS_PER_LONG == 32)
3319 image_hi = (image_hi << 1) | (image_lo >> 31);
3320 image_lo <<= 1;
3321 r->sig[SIGSZ-1] = image_hi;
3322 r->sig[SIGSZ-2] = image_lo;
3324 else
3326 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3327 r->sig[SIGSZ-1] = image_hi;
3329 normalize (r);
3331 else if (fmt->has_signed_zero)
3332 r->sign = sign;
3334 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3336 if (image_hi || image_lo)
3338 r->cl = rvc_nan;
3339 r->sign = sign;
3340 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3341 if (HOST_BITS_PER_LONG == 32)
3343 r->sig[SIGSZ-1] = image_hi;
3344 r->sig[SIGSZ-2] = image_lo;
3346 else
3347 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3349 else
3351 r->cl = rvc_inf;
3352 r->sign = sign;
3355 else
3357 r->cl = rvc_normal;
3358 r->sign = sign;
3359 SET_REAL_EXP (r, exp - 1023 + 1);
3360 if (HOST_BITS_PER_LONG == 32)
3362 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3363 r->sig[SIGSZ-2] = image_lo;
3365 else
3366 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3370 const struct real_format ieee_double_format =
3372 encode_ieee_double,
3373 decode_ieee_double,
3377 -1021,
3378 1024,
3382 false,
3383 true,
3384 true,
3385 true,
3386 true,
3387 true,
3388 true,
3389 false,
3390 "ieee_double"
3393 const struct real_format mips_double_format =
3395 encode_ieee_double,
3396 decode_ieee_double,
3400 -1021,
3401 1024,
3405 false,
3406 true,
3407 true,
3408 true,
3409 true,
3410 true,
3411 false,
3412 true,
3413 "mips_double"
3416 const struct real_format motorola_double_format =
3418 encode_ieee_double,
3419 decode_ieee_double,
3423 -1021,
3424 1024,
3428 false,
3429 true,
3430 true,
3431 true,
3432 true,
3433 true,
3434 true,
3435 true,
3436 "motorola_double"
3439 /* IEEE extended real format. This comes in three flavors: Intel's as
3440 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3441 12- and 16-byte images may be big- or little endian; Motorola's is
3442 always big endian. */
3444 /* Helper subroutine which converts from the internal format to the
3445 12-byte little-endian Intel format. Functions below adjust this
3446 for the other possible formats. */
3447 static void
3448 encode_ieee_extended (const struct real_format *fmt, long *buf,
3449 const REAL_VALUE_TYPE *r)
3451 unsigned long image_hi, sig_hi, sig_lo;
3453 image_hi = r->sign << 15;
3454 sig_hi = sig_lo = 0;
3456 switch (r->cl)
3458 case rvc_zero:
3459 break;
3461 case rvc_inf:
3462 if (fmt->has_inf)
3464 image_hi |= 32767;
3466 /* Intel requires the explicit integer bit to be set, otherwise
3467 it considers the value a "pseudo-infinity". Motorola docs
3468 say it doesn't care. */
3469 sig_hi = 0x80000000;
3471 else
3473 image_hi |= 32767;
3474 sig_lo = sig_hi = 0xffffffff;
3476 break;
3478 case rvc_nan:
3479 if (fmt->has_nans)
3481 image_hi |= 32767;
3482 if (r->canonical)
3484 if (fmt->canonical_nan_lsbs_set)
3486 sig_hi = (1 << 30) - 1;
3487 sig_lo = 0xffffffff;
3490 else if (HOST_BITS_PER_LONG == 32)
3492 sig_hi = r->sig[SIGSZ-1];
3493 sig_lo = r->sig[SIGSZ-2];
3495 else
3497 sig_lo = r->sig[SIGSZ-1];
3498 sig_hi = sig_lo >> 31 >> 1;
3499 sig_lo &= 0xffffffff;
3501 if (r->signalling == fmt->qnan_msb_set)
3502 sig_hi &= ~(1 << 30);
3503 else
3504 sig_hi |= 1 << 30;
3505 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3506 sig_hi = 1 << 29;
3508 /* Intel requires the explicit integer bit to be set, otherwise
3509 it considers the value a "pseudo-nan". Motorola docs say it
3510 doesn't care. */
3511 sig_hi |= 0x80000000;
3513 else
3515 image_hi |= 32767;
3516 sig_lo = sig_hi = 0xffffffff;
3518 break;
3520 case rvc_normal:
3522 int exp = REAL_EXP (r);
3524 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3525 whereas the intermediate representation is 0.F x 2**exp.
3526 Which means we're off by one.
3528 Except for Motorola, which consider exp=0 and explicit
3529 integer bit set to continue to be normalized. In theory
3530 this discrepancy has been taken care of by the difference
3531 in fmt->emin in round_for_format. */
3533 if (real_isdenormal (r))
3534 exp = 0;
3535 else
3537 exp += 16383 - 1;
3538 gcc_assert (exp >= 0);
3540 image_hi |= exp;
3542 if (HOST_BITS_PER_LONG == 32)
3544 sig_hi = r->sig[SIGSZ-1];
3545 sig_lo = r->sig[SIGSZ-2];
3547 else
3549 sig_lo = r->sig[SIGSZ-1];
3550 sig_hi = sig_lo >> 31 >> 1;
3551 sig_lo &= 0xffffffff;
3554 break;
3556 default:
3557 gcc_unreachable ();
3560 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3563 /* Convert from the internal format to the 12-byte Motorola format
3564 for an IEEE extended real. */
3565 static void
3566 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3567 const REAL_VALUE_TYPE *r)
3569 long intermed[3];
3570 encode_ieee_extended (fmt, intermed, r);
3572 if (r->cl == rvc_inf)
3573 /* For infinity clear the explicit integer bit again, so that the
3574 format matches the canonical infinity generated by the FPU. */
3575 intermed[1] = 0;
3577 /* Motorola chips are assumed always to be big-endian. Also, the
3578 padding in a Motorola extended real goes between the exponent and
3579 the mantissa. At this point the mantissa is entirely within
3580 elements 0 and 1 of intermed, and the exponent entirely within
3581 element 2, so all we have to do is swap the order around, and
3582 shift element 2 left 16 bits. */
3583 buf[0] = intermed[2] << 16;
3584 buf[1] = intermed[1];
3585 buf[2] = intermed[0];
3588 /* Convert from the internal format to the 12-byte Intel format for
3589 an IEEE extended real. */
3590 static void
3591 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3592 const REAL_VALUE_TYPE *r)
3594 if (FLOAT_WORDS_BIG_ENDIAN)
3596 /* All the padding in an Intel-format extended real goes at the high
3597 end, which in this case is after the mantissa, not the exponent.
3598 Therefore we must shift everything down 16 bits. */
3599 long intermed[3];
3600 encode_ieee_extended (fmt, intermed, r);
3601 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3602 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3603 buf[2] = (intermed[0] << 16);
3605 else
3606 /* encode_ieee_extended produces what we want directly. */
3607 encode_ieee_extended (fmt, buf, r);
3610 /* Convert from the internal format to the 16-byte Intel format for
3611 an IEEE extended real. */
3612 static void
3613 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3614 const REAL_VALUE_TYPE *r)
3616 /* All the padding in an Intel-format extended real goes at the high end. */
3617 encode_ieee_extended_intel_96 (fmt, buf, r);
3618 buf[3] = 0;
3621 /* As above, we have a helper function which converts from 12-byte
3622 little-endian Intel format to internal format. Functions below
3623 adjust for the other possible formats. */
3624 static void
3625 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3626 const long *buf)
3628 unsigned long image_hi, sig_hi, sig_lo;
3629 bool sign;
3630 int exp;
3632 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3633 sig_lo &= 0xffffffff;
3634 sig_hi &= 0xffffffff;
3635 image_hi &= 0xffffffff;
3637 sign = (image_hi >> 15) & 1;
3638 exp = image_hi & 0x7fff;
3640 memset (r, 0, sizeof (*r));
3642 if (exp == 0)
3644 if ((sig_hi || sig_lo) && fmt->has_denorm)
3646 r->cl = rvc_normal;
3647 r->sign = sign;
3649 /* When the IEEE format contains a hidden bit, we know that
3650 it's zero at this point, and so shift up the significand
3651 and decrease the exponent to match. In this case, Motorola
3652 defines the explicit integer bit to be valid, so we don't
3653 know whether the msb is set or not. */
3654 SET_REAL_EXP (r, fmt->emin);
3655 if (HOST_BITS_PER_LONG == 32)
3657 r->sig[SIGSZ-1] = sig_hi;
3658 r->sig[SIGSZ-2] = sig_lo;
3660 else
3661 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3663 normalize (r);
3665 else if (fmt->has_signed_zero)
3666 r->sign = sign;
3668 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3670 /* See above re "pseudo-infinities" and "pseudo-nans".
3671 Short summary is that the MSB will likely always be
3672 set, and that we don't care about it. */
3673 sig_hi &= 0x7fffffff;
3675 if (sig_hi || sig_lo)
3677 r->cl = rvc_nan;
3678 r->sign = sign;
3679 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3680 if (HOST_BITS_PER_LONG == 32)
3682 r->sig[SIGSZ-1] = sig_hi;
3683 r->sig[SIGSZ-2] = sig_lo;
3685 else
3686 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3688 else
3690 r->cl = rvc_inf;
3691 r->sign = sign;
3694 else
3696 r->cl = rvc_normal;
3697 r->sign = sign;
3698 SET_REAL_EXP (r, exp - 16383 + 1);
3699 if (HOST_BITS_PER_LONG == 32)
3701 r->sig[SIGSZ-1] = sig_hi;
3702 r->sig[SIGSZ-2] = sig_lo;
3704 else
3705 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3709 /* Convert from the internal format to the 12-byte Motorola format
3710 for an IEEE extended real. */
3711 static void
3712 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3713 const long *buf)
3715 long intermed[3];
3717 /* Motorola chips are assumed always to be big-endian. Also, the
3718 padding in a Motorola extended real goes between the exponent and
3719 the mantissa; remove it. */
3720 intermed[0] = buf[2];
3721 intermed[1] = buf[1];
3722 intermed[2] = (unsigned long)buf[0] >> 16;
3724 decode_ieee_extended (fmt, r, intermed);
3727 /* Convert from the internal format to the 12-byte Intel format for
3728 an IEEE extended real. */
3729 static void
3730 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3731 const long *buf)
3733 if (FLOAT_WORDS_BIG_ENDIAN)
3735 /* All the padding in an Intel-format extended real goes at the high
3736 end, which in this case is after the mantissa, not the exponent.
3737 Therefore we must shift everything up 16 bits. */
3738 long intermed[3];
3740 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3741 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3742 intermed[2] = ((unsigned long)buf[0] >> 16);
3744 decode_ieee_extended (fmt, r, intermed);
3746 else
3747 /* decode_ieee_extended produces what we want directly. */
3748 decode_ieee_extended (fmt, r, buf);
3751 /* Convert from the internal format to the 16-byte Intel format for
3752 an IEEE extended real. */
3753 static void
3754 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3755 const long *buf)
3757 /* All the padding in an Intel-format extended real goes at the high end. */
3758 decode_ieee_extended_intel_96 (fmt, r, buf);
3761 const struct real_format ieee_extended_motorola_format =
3763 encode_ieee_extended_motorola,
3764 decode_ieee_extended_motorola,
3768 -16382,
3769 16384,
3773 false,
3774 true,
3775 true,
3776 true,
3777 true,
3778 true,
3779 true,
3780 true,
3781 "ieee_extended_motorola"
3784 const struct real_format ieee_extended_intel_96_format =
3786 encode_ieee_extended_intel_96,
3787 decode_ieee_extended_intel_96,
3791 -16381,
3792 16384,
3796 false,
3797 true,
3798 true,
3799 true,
3800 true,
3801 true,
3802 true,
3803 false,
3804 "ieee_extended_intel_96"
3807 const struct real_format ieee_extended_intel_128_format =
3809 encode_ieee_extended_intel_128,
3810 decode_ieee_extended_intel_128,
3814 -16381,
3815 16384,
3819 false,
3820 true,
3821 true,
3822 true,
3823 true,
3824 true,
3825 true,
3826 false,
3827 "ieee_extended_intel_128"
3830 /* The following caters to i386 systems that set the rounding precision
3831 to 53 bits instead of 64, e.g. FreeBSD. */
3832 const struct real_format ieee_extended_intel_96_round_53_format =
3834 encode_ieee_extended_intel_96,
3835 decode_ieee_extended_intel_96,
3839 -16381,
3840 16384,
3844 false,
3845 true,
3846 true,
3847 true,
3848 true,
3849 true,
3850 true,
3851 false,
3852 "ieee_extended_intel_96_round_53"
3855 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3856 numbers whose sum is equal to the extended precision value. The number
3857 with greater magnitude is first. This format has the same magnitude
3858 range as an IEEE double precision value, but effectively 106 bits of
3859 significand precision. Infinity and NaN are represented by their IEEE
3860 double precision value stored in the first number, the second number is
3861 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3863 static void encode_ibm_extended (const struct real_format *fmt,
3864 long *, const REAL_VALUE_TYPE *);
3865 static void decode_ibm_extended (const struct real_format *,
3866 REAL_VALUE_TYPE *, const long *);
3868 static void
3869 encode_ibm_extended (const struct real_format *fmt, long *buf,
3870 const REAL_VALUE_TYPE *r)
3872 REAL_VALUE_TYPE u, normr, v;
3873 const struct real_format *base_fmt;
3875 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3877 /* Renormalize R before doing any arithmetic on it. */
3878 normr = *r;
3879 if (normr.cl == rvc_normal)
3880 normalize (&normr);
3882 /* u = IEEE double precision portion of significand. */
3883 u = normr;
3884 round_for_format (base_fmt, &u);
3885 encode_ieee_double (base_fmt, &buf[0], &u);
3887 if (u.cl == rvc_normal)
3889 do_add (&v, &normr, &u, 1);
3890 /* Call round_for_format since we might need to denormalize. */
3891 round_for_format (base_fmt, &v);
3892 encode_ieee_double (base_fmt, &buf[2], &v);
3894 else
3896 /* Inf, NaN, 0 are all representable as doubles, so the
3897 least-significant part can be 0.0. */
3898 buf[2] = 0;
3899 buf[3] = 0;
3903 static void
3904 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3905 const long *buf)
3907 REAL_VALUE_TYPE u, v;
3908 const struct real_format *base_fmt;
3910 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3911 decode_ieee_double (base_fmt, &u, &buf[0]);
3913 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3915 decode_ieee_double (base_fmt, &v, &buf[2]);
3916 do_add (r, &u, &v, 0);
3918 else
3919 *r = u;
3922 const struct real_format ibm_extended_format =
3924 encode_ibm_extended,
3925 decode_ibm_extended,
3927 53 + 53,
3929 -1021 + 53,
3930 1024,
3931 127,
3934 false,
3935 true,
3936 true,
3937 true,
3938 true,
3939 true,
3940 true,
3941 false,
3942 "ibm_extended"
3945 const struct real_format mips_extended_format =
3947 encode_ibm_extended,
3948 decode_ibm_extended,
3950 53 + 53,
3952 -1021 + 53,
3953 1024,
3954 127,
3957 false,
3958 true,
3959 true,
3960 true,
3961 true,
3962 true,
3963 false,
3964 true,
3965 "mips_extended"
3969 /* IEEE quad precision format. */
3971 static void encode_ieee_quad (const struct real_format *fmt,
3972 long *, const REAL_VALUE_TYPE *);
3973 static void decode_ieee_quad (const struct real_format *,
3974 REAL_VALUE_TYPE *, const long *);
3976 static void
3977 encode_ieee_quad (const struct real_format *fmt, long *buf,
3978 const REAL_VALUE_TYPE *r)
3980 unsigned long image3, image2, image1, image0, exp;
3981 unsigned long sign = r->sign;
3982 REAL_VALUE_TYPE u;
3984 image3 = sign << 31;
3985 image2 = 0;
3986 image1 = 0;
3987 image0 = 0;
3989 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3991 switch (r->cl)
3993 case rvc_zero:
3994 break;
3996 case rvc_inf:
3997 if (fmt->has_inf)
3998 image3 |= 32767 << 16;
3999 else
4001 image3 |= 0x7fffffff;
4002 image2 = 0xffffffff;
4003 image1 = 0xffffffff;
4004 image0 = 0xffffffff;
4006 break;
4008 case rvc_nan:
4009 if (fmt->has_nans)
4011 image3 |= 32767 << 16;
4013 if (r->canonical)
4015 if (fmt->canonical_nan_lsbs_set)
4017 image3 |= 0x7fff;
4018 image2 = image1 = image0 = 0xffffffff;
4021 else if (HOST_BITS_PER_LONG == 32)
4023 image0 = u.sig[0];
4024 image1 = u.sig[1];
4025 image2 = u.sig[2];
4026 image3 |= u.sig[3] & 0xffff;
4028 else
4030 image0 = u.sig[0];
4031 image1 = image0 >> 31 >> 1;
4032 image2 = u.sig[1];
4033 image3 |= (image2 >> 31 >> 1) & 0xffff;
4034 image0 &= 0xffffffff;
4035 image2 &= 0xffffffff;
4037 if (r->signalling == fmt->qnan_msb_set)
4038 image3 &= ~0x8000;
4039 else
4040 image3 |= 0x8000;
4041 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
4042 image3 |= 0x4000;
4044 else
4046 image3 |= 0x7fffffff;
4047 image2 = 0xffffffff;
4048 image1 = 0xffffffff;
4049 image0 = 0xffffffff;
4051 break;
4053 case rvc_normal:
4054 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4055 whereas the intermediate representation is 0.F x 2**exp.
4056 Which means we're off by one. */
4057 if (real_isdenormal (r))
4058 exp = 0;
4059 else
4060 exp = REAL_EXP (r) + 16383 - 1;
4061 image3 |= exp << 16;
4063 if (HOST_BITS_PER_LONG == 32)
4065 image0 = u.sig[0];
4066 image1 = u.sig[1];
4067 image2 = u.sig[2];
4068 image3 |= u.sig[3] & 0xffff;
4070 else
4072 image0 = u.sig[0];
4073 image1 = image0 >> 31 >> 1;
4074 image2 = u.sig[1];
4075 image3 |= (image2 >> 31 >> 1) & 0xffff;
4076 image0 &= 0xffffffff;
4077 image2 &= 0xffffffff;
4079 break;
4081 default:
4082 gcc_unreachable ();
4085 if (FLOAT_WORDS_BIG_ENDIAN)
4087 buf[0] = image3;
4088 buf[1] = image2;
4089 buf[2] = image1;
4090 buf[3] = image0;
4092 else
4094 buf[0] = image0;
4095 buf[1] = image1;
4096 buf[2] = image2;
4097 buf[3] = image3;
4101 static void
4102 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4103 const long *buf)
4105 unsigned long image3, image2, image1, image0;
4106 bool sign;
4107 int exp;
4109 if (FLOAT_WORDS_BIG_ENDIAN)
4111 image3 = buf[0];
4112 image2 = buf[1];
4113 image1 = buf[2];
4114 image0 = buf[3];
4116 else
4118 image0 = buf[0];
4119 image1 = buf[1];
4120 image2 = buf[2];
4121 image3 = buf[3];
4123 image0 &= 0xffffffff;
4124 image1 &= 0xffffffff;
4125 image2 &= 0xffffffff;
4127 sign = (image3 >> 31) & 1;
4128 exp = (image3 >> 16) & 0x7fff;
4129 image3 &= 0xffff;
4131 memset (r, 0, sizeof (*r));
4133 if (exp == 0)
4135 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4137 r->cl = rvc_normal;
4138 r->sign = sign;
4140 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4141 if (HOST_BITS_PER_LONG == 32)
4143 r->sig[0] = image0;
4144 r->sig[1] = image1;
4145 r->sig[2] = image2;
4146 r->sig[3] = image3;
4148 else
4150 r->sig[0] = (image1 << 31 << 1) | image0;
4151 r->sig[1] = (image3 << 31 << 1) | image2;
4154 normalize (r);
4156 else if (fmt->has_signed_zero)
4157 r->sign = sign;
4159 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4161 if (image3 | image2 | image1 | image0)
4163 r->cl = rvc_nan;
4164 r->sign = sign;
4165 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4167 if (HOST_BITS_PER_LONG == 32)
4169 r->sig[0] = image0;
4170 r->sig[1] = image1;
4171 r->sig[2] = image2;
4172 r->sig[3] = image3;
4174 else
4176 r->sig[0] = (image1 << 31 << 1) | image0;
4177 r->sig[1] = (image3 << 31 << 1) | image2;
4179 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4181 else
4183 r->cl = rvc_inf;
4184 r->sign = sign;
4187 else
4189 r->cl = rvc_normal;
4190 r->sign = sign;
4191 SET_REAL_EXP (r, exp - 16383 + 1);
4193 if (HOST_BITS_PER_LONG == 32)
4195 r->sig[0] = image0;
4196 r->sig[1] = image1;
4197 r->sig[2] = image2;
4198 r->sig[3] = image3;
4200 else
4202 r->sig[0] = (image1 << 31 << 1) | image0;
4203 r->sig[1] = (image3 << 31 << 1) | image2;
4205 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4206 r->sig[SIGSZ-1] |= SIG_MSB;
4210 const struct real_format ieee_quad_format =
4212 encode_ieee_quad,
4213 decode_ieee_quad,
4215 113,
4216 113,
4217 -16381,
4218 16384,
4219 127,
4220 127,
4221 128,
4222 false,
4223 true,
4224 true,
4225 true,
4226 true,
4227 true,
4228 true,
4229 false,
4230 "ieee_quad"
4233 const struct real_format mips_quad_format =
4235 encode_ieee_quad,
4236 decode_ieee_quad,
4238 113,
4239 113,
4240 -16381,
4241 16384,
4242 127,
4243 127,
4244 128,
4245 false,
4246 true,
4247 true,
4248 true,
4249 true,
4250 true,
4251 false,
4252 true,
4253 "mips_quad"
4256 /* Descriptions of VAX floating point formats can be found beginning at
4258 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4260 The thing to remember is that they're almost IEEE, except for word
4261 order, exponent bias, and the lack of infinities, nans, and denormals.
4263 We don't implement the H_floating format here, simply because neither
4264 the VAX or Alpha ports use it. */
4266 static void encode_vax_f (const struct real_format *fmt,
4267 long *, const REAL_VALUE_TYPE *);
4268 static void decode_vax_f (const struct real_format *,
4269 REAL_VALUE_TYPE *, const long *);
4270 static void encode_vax_d (const struct real_format *fmt,
4271 long *, const REAL_VALUE_TYPE *);
4272 static void decode_vax_d (const struct real_format *,
4273 REAL_VALUE_TYPE *, const long *);
4274 static void encode_vax_g (const struct real_format *fmt,
4275 long *, const REAL_VALUE_TYPE *);
4276 static void decode_vax_g (const struct real_format *,
4277 REAL_VALUE_TYPE *, const long *);
4279 static void
4280 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4281 const REAL_VALUE_TYPE *r)
4283 unsigned long sign, exp, sig, image;
4285 sign = r->sign << 15;
4287 switch (r->cl)
4289 case rvc_zero:
4290 image = 0;
4291 break;
4293 case rvc_inf:
4294 case rvc_nan:
4295 image = 0xffff7fff | sign;
4296 break;
4298 case rvc_normal:
4299 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4300 exp = REAL_EXP (r) + 128;
4302 image = (sig << 16) & 0xffff0000;
4303 image |= sign;
4304 image |= exp << 7;
4305 image |= sig >> 16;
4306 break;
4308 default:
4309 gcc_unreachable ();
4312 buf[0] = image;
4315 static void
4316 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4317 REAL_VALUE_TYPE *r, const long *buf)
4319 unsigned long image = buf[0] & 0xffffffff;
4320 int exp = (image >> 7) & 0xff;
4322 memset (r, 0, sizeof (*r));
4324 if (exp != 0)
4326 r->cl = rvc_normal;
4327 r->sign = (image >> 15) & 1;
4328 SET_REAL_EXP (r, exp - 128);
4330 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4331 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4335 static void
4336 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4337 const REAL_VALUE_TYPE *r)
4339 unsigned long image0, image1, sign = r->sign << 15;
4341 switch (r->cl)
4343 case rvc_zero:
4344 image0 = image1 = 0;
4345 break;
4347 case rvc_inf:
4348 case rvc_nan:
4349 image0 = 0xffff7fff | sign;
4350 image1 = 0xffffffff;
4351 break;
4353 case rvc_normal:
4354 /* Extract the significand into straight hi:lo. */
4355 if (HOST_BITS_PER_LONG == 64)
4357 image0 = r->sig[SIGSZ-1];
4358 image1 = (image0 >> (64 - 56)) & 0xffffffff;
4359 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4361 else
4363 image0 = r->sig[SIGSZ-1];
4364 image1 = r->sig[SIGSZ-2];
4365 image1 = (image0 << 24) | (image1 >> 8);
4366 image0 = (image0 >> 8) & 0xffffff;
4369 /* Rearrange the half-words of the significand to match the
4370 external format. */
4371 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4372 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4374 /* Add the sign and exponent. */
4375 image0 |= sign;
4376 image0 |= (REAL_EXP (r) + 128) << 7;
4377 break;
4379 default:
4380 gcc_unreachable ();
4383 if (FLOAT_WORDS_BIG_ENDIAN)
4384 buf[0] = image1, buf[1] = image0;
4385 else
4386 buf[0] = image0, buf[1] = image1;
4389 static void
4390 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4391 REAL_VALUE_TYPE *r, const long *buf)
4393 unsigned long image0, image1;
4394 int exp;
4396 if (FLOAT_WORDS_BIG_ENDIAN)
4397 image1 = buf[0], image0 = buf[1];
4398 else
4399 image0 = buf[0], image1 = buf[1];
4400 image0 &= 0xffffffff;
4401 image1 &= 0xffffffff;
4403 exp = (image0 >> 7) & 0xff;
4405 memset (r, 0, sizeof (*r));
4407 if (exp != 0)
4409 r->cl = rvc_normal;
4410 r->sign = (image0 >> 15) & 1;
4411 SET_REAL_EXP (r, exp - 128);
4413 /* Rearrange the half-words of the external format into
4414 proper ascending order. */
4415 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4416 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4418 if (HOST_BITS_PER_LONG == 64)
4420 image0 = (image0 << 31 << 1) | image1;
4421 image0 <<= 64 - 56;
4422 image0 |= SIG_MSB;
4423 r->sig[SIGSZ-1] = image0;
4425 else
4427 r->sig[SIGSZ-1] = image0;
4428 r->sig[SIGSZ-2] = image1;
4429 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4430 r->sig[SIGSZ-1] |= SIG_MSB;
4435 static void
4436 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4437 const REAL_VALUE_TYPE *r)
4439 unsigned long image0, image1, sign = r->sign << 15;
4441 switch (r->cl)
4443 case rvc_zero:
4444 image0 = image1 = 0;
4445 break;
4447 case rvc_inf:
4448 case rvc_nan:
4449 image0 = 0xffff7fff | sign;
4450 image1 = 0xffffffff;
4451 break;
4453 case rvc_normal:
4454 /* Extract the significand into straight hi:lo. */
4455 if (HOST_BITS_PER_LONG == 64)
4457 image0 = r->sig[SIGSZ-1];
4458 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4459 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4461 else
4463 image0 = r->sig[SIGSZ-1];
4464 image1 = r->sig[SIGSZ-2];
4465 image1 = (image0 << 21) | (image1 >> 11);
4466 image0 = (image0 >> 11) & 0xfffff;
4469 /* Rearrange the half-words of the significand to match the
4470 external format. */
4471 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4472 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4474 /* Add the sign and exponent. */
4475 image0 |= sign;
4476 image0 |= (REAL_EXP (r) + 1024) << 4;
4477 break;
4479 default:
4480 gcc_unreachable ();
4483 if (FLOAT_WORDS_BIG_ENDIAN)
4484 buf[0] = image1, buf[1] = image0;
4485 else
4486 buf[0] = image0, buf[1] = image1;
4489 static void
4490 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4491 REAL_VALUE_TYPE *r, const long *buf)
4493 unsigned long image0, image1;
4494 int exp;
4496 if (FLOAT_WORDS_BIG_ENDIAN)
4497 image1 = buf[0], image0 = buf[1];
4498 else
4499 image0 = buf[0], image1 = buf[1];
4500 image0 &= 0xffffffff;
4501 image1 &= 0xffffffff;
4503 exp = (image0 >> 4) & 0x7ff;
4505 memset (r, 0, sizeof (*r));
4507 if (exp != 0)
4509 r->cl = rvc_normal;
4510 r->sign = (image0 >> 15) & 1;
4511 SET_REAL_EXP (r, exp - 1024);
4513 /* Rearrange the half-words of the external format into
4514 proper ascending order. */
4515 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4516 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4518 if (HOST_BITS_PER_LONG == 64)
4520 image0 = (image0 << 31 << 1) | image1;
4521 image0 <<= 64 - 53;
4522 image0 |= SIG_MSB;
4523 r->sig[SIGSZ-1] = image0;
4525 else
4527 r->sig[SIGSZ-1] = image0;
4528 r->sig[SIGSZ-2] = image1;
4529 lshift_significand (r, r, 64 - 53);
4530 r->sig[SIGSZ-1] |= SIG_MSB;
4535 const struct real_format vax_f_format =
4537 encode_vax_f,
4538 decode_vax_f,
4542 -127,
4543 127,
4547 false,
4548 false,
4549 false,
4550 false,
4551 false,
4552 false,
4553 false,
4554 false,
4555 "vax_f"
4558 const struct real_format vax_d_format =
4560 encode_vax_d,
4561 decode_vax_d,
4565 -127,
4566 127,
4570 false,
4571 false,
4572 false,
4573 false,
4574 false,
4575 false,
4576 false,
4577 false,
4578 "vax_d"
4581 const struct real_format vax_g_format =
4583 encode_vax_g,
4584 decode_vax_g,
4588 -1023,
4589 1023,
4593 false,
4594 false,
4595 false,
4596 false,
4597 false,
4598 false,
4599 false,
4600 false,
4601 "vax_g"
4604 /* Encode real R into a single precision DFP value in BUF. */
4605 static void
4606 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4607 long *buf ATTRIBUTE_UNUSED,
4608 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4610 encode_decimal32 (fmt, buf, r);
4613 /* Decode a single precision DFP value in BUF into a real R. */
4614 static void
4615 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4616 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4617 const long *buf ATTRIBUTE_UNUSED)
4619 decode_decimal32 (fmt, r, buf);
4622 /* Encode real R into a double precision DFP value in BUF. */
4623 static void
4624 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4625 long *buf ATTRIBUTE_UNUSED,
4626 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4628 encode_decimal64 (fmt, buf, r);
4631 /* Decode a double precision DFP value in BUF into a real R. */
4632 static void
4633 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4634 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4635 const long *buf ATTRIBUTE_UNUSED)
4637 decode_decimal64 (fmt, r, buf);
4640 /* Encode real R into a quad precision DFP value in BUF. */
4641 static void
4642 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4643 long *buf ATTRIBUTE_UNUSED,
4644 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4646 encode_decimal128 (fmt, buf, r);
4649 /* Decode a quad precision DFP value in BUF into a real R. */
4650 static void
4651 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4652 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4653 const long *buf ATTRIBUTE_UNUSED)
4655 decode_decimal128 (fmt, r, buf);
4658 /* Single precision decimal floating point (IEEE 754). */
4659 const struct real_format decimal_single_format =
4661 encode_decimal_single,
4662 decode_decimal_single,
4666 -94,
4671 false,
4672 true,
4673 true,
4674 true,
4675 true,
4676 true,
4677 true,
4678 false,
4679 "decimal_single"
4682 /* Double precision decimal floating point (IEEE 754). */
4683 const struct real_format decimal_double_format =
4685 encode_decimal_double,
4686 decode_decimal_double,
4690 -382,
4691 385,
4695 false,
4696 true,
4697 true,
4698 true,
4699 true,
4700 true,
4701 true,
4702 false,
4703 "decimal_double"
4706 /* Quad precision decimal floating point (IEEE 754). */
4707 const struct real_format decimal_quad_format =
4709 encode_decimal_quad,
4710 decode_decimal_quad,
4714 -6142,
4715 6145,
4716 127,
4717 127,
4718 128,
4719 false,
4720 true,
4721 true,
4722 true,
4723 true,
4724 true,
4725 true,
4726 false,
4727 "decimal_quad"
4730 /* Encode half-precision floats. This routine is used both for the IEEE
4731 ARM alternative encodings. */
4732 static void
4733 encode_ieee_half (const struct real_format *fmt, long *buf,
4734 const REAL_VALUE_TYPE *r)
4736 unsigned long image, sig, exp;
4737 unsigned long sign = r->sign;
4739 image = sign << 15;
4740 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4742 switch (r->cl)
4744 case rvc_zero:
4745 break;
4747 case rvc_inf:
4748 if (fmt->has_inf)
4749 image |= 31 << 10;
4750 else
4751 image |= 0x7fff;
4752 break;
4754 case rvc_nan:
4755 if (fmt->has_nans)
4757 if (r->canonical)
4758 sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4759 if (r->signalling == fmt->qnan_msb_set)
4760 sig &= ~(1 << 9);
4761 else
4762 sig |= 1 << 9;
4763 if (sig == 0)
4764 sig = 1 << 8;
4766 image |= 31 << 10;
4767 image |= sig;
4769 else
4770 image |= 0x3ff;
4771 break;
4773 case rvc_normal:
4774 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4775 whereas the intermediate representation is 0.F x 2**exp.
4776 Which means we're off by one. */
4777 if (real_isdenormal (r))
4778 exp = 0;
4779 else
4780 exp = REAL_EXP (r) + 15 - 1;
4781 image |= exp << 10;
4782 image |= sig;
4783 break;
4785 default:
4786 gcc_unreachable ();
4789 buf[0] = image;
4792 /* Decode half-precision floats. This routine is used both for the IEEE
4793 ARM alternative encodings. */
4794 static void
4795 decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4796 const long *buf)
4798 unsigned long image = buf[0] & 0xffff;
4799 bool sign = (image >> 15) & 1;
4800 int exp = (image >> 10) & 0x1f;
4802 memset (r, 0, sizeof (*r));
4803 image <<= HOST_BITS_PER_LONG - 11;
4804 image &= ~SIG_MSB;
4806 if (exp == 0)
4808 if (image && fmt->has_denorm)
4810 r->cl = rvc_normal;
4811 r->sign = sign;
4812 SET_REAL_EXP (r, -14);
4813 r->sig[SIGSZ-1] = image << 1;
4814 normalize (r);
4816 else if (fmt->has_signed_zero)
4817 r->sign = sign;
4819 else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4821 if (image)
4823 r->cl = rvc_nan;
4824 r->sign = sign;
4825 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4826 ^ fmt->qnan_msb_set);
4827 r->sig[SIGSZ-1] = image;
4829 else
4831 r->cl = rvc_inf;
4832 r->sign = sign;
4835 else
4837 r->cl = rvc_normal;
4838 r->sign = sign;
4839 SET_REAL_EXP (r, exp - 15 + 1);
4840 r->sig[SIGSZ-1] = image | SIG_MSB;
4844 /* Encode arm_bfloat types. */
4845 static void
4846 encode_arm_bfloat_half (const struct real_format *fmt, long *buf,
4847 const REAL_VALUE_TYPE *r)
4849 unsigned long image, sig, exp;
4850 unsigned long sign = r->sign;
4852 image = sign << 15;
4853 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 8)) & 0x7f;
4855 switch (r->cl)
4857 case rvc_zero:
4858 break;
4860 case rvc_inf:
4861 if (fmt->has_inf)
4862 image |= 255 << 7;
4863 else
4864 image |= 0x7fff;
4865 break;
4867 case rvc_nan:
4868 if (fmt->has_nans)
4870 if (r->canonical)
4871 sig = (fmt->canonical_nan_lsbs_set ? (1 << 6) - 1 : 0);
4872 if (r->signalling == fmt->qnan_msb_set)
4873 sig &= ~(1 << 6);
4874 else
4875 sig |= 1 << 6;
4876 if (sig == 0)
4877 sig = 1 << 5;
4879 image |= 255 << 7;
4880 image |= sig;
4882 else
4883 image |= 0x7fff;
4884 break;
4886 case rvc_normal:
4887 if (real_isdenormal (r))
4888 exp = 0;
4889 else
4890 exp = REAL_EXP (r) + 127 - 1;
4891 image |= exp << 7;
4892 image |= sig;
4893 break;
4895 default:
4896 gcc_unreachable ();
4899 buf[0] = image;
4902 /* Decode arm_bfloat types. */
4903 static void
4904 decode_arm_bfloat_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4905 const long *buf)
4907 unsigned long image = buf[0] & 0xffff;
4908 bool sign = (image >> 15) & 1;
4909 int exp = (image >> 7) & 0xff;
4911 memset (r, 0, sizeof (*r));
4912 image <<= HOST_BITS_PER_LONG - 8;
4913 image &= ~SIG_MSB;
4915 if (exp == 0)
4917 if (image && fmt->has_denorm)
4919 r->cl = rvc_normal;
4920 r->sign = sign;
4921 SET_REAL_EXP (r, -126);
4922 r->sig[SIGSZ-1] = image << 1;
4923 normalize (r);
4925 else if (fmt->has_signed_zero)
4926 r->sign = sign;
4928 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
4930 if (image)
4932 r->cl = rvc_nan;
4933 r->sign = sign;
4934 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4935 ^ fmt->qnan_msb_set);
4936 r->sig[SIGSZ-1] = image;
4938 else
4940 r->cl = rvc_inf;
4941 r->sign = sign;
4944 else
4946 r->cl = rvc_normal;
4947 r->sign = sign;
4948 SET_REAL_EXP (r, exp - 127 + 1);
4949 r->sig[SIGSZ-1] = image | SIG_MSB;
4953 /* Half-precision format, as specified in IEEE 754R. */
4954 const struct real_format ieee_half_format =
4956 encode_ieee_half,
4957 decode_ieee_half,
4961 -13,
4966 false,
4967 true,
4968 true,
4969 true,
4970 true,
4971 true,
4972 true,
4973 false,
4974 "ieee_half"
4977 /* ARM's alternative half-precision format, similar to IEEE but with
4978 no reserved exponent value for NaNs and infinities; rather, it just
4979 extends the range of exponents by one. */
4980 const struct real_format arm_half_format =
4982 encode_ieee_half,
4983 decode_ieee_half,
4987 -13,
4992 false,
4993 true,
4994 false,
4995 false,
4996 true,
4997 true,
4998 false,
4999 false,
5000 "arm_half"
5003 /* ARM Bfloat half-precision format. This format resembles a truncated
5004 (16-bit) version of the 32-bit IEEE 754 single-precision floating-point
5005 format. */
5006 const struct real_format arm_bfloat_half_format =
5008 encode_arm_bfloat_half,
5009 decode_arm_bfloat_half,
5013 -125,
5014 128,
5018 false,
5019 true,
5020 true,
5021 true,
5022 true,
5023 true,
5024 true,
5025 false,
5026 "arm_bfloat_half"
5030 /* A synthetic "format" for internal arithmetic. It's the size of the
5031 internal significand minus the two bits needed for proper rounding.
5032 The encode and decode routines exist only to satisfy our paranoia
5033 harness. */
5035 static void encode_internal (const struct real_format *fmt,
5036 long *, const REAL_VALUE_TYPE *);
5037 static void decode_internal (const struct real_format *,
5038 REAL_VALUE_TYPE *, const long *);
5040 static void
5041 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
5042 const REAL_VALUE_TYPE *r)
5044 memcpy (buf, r, sizeof (*r));
5047 static void
5048 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
5049 REAL_VALUE_TYPE *r, const long *buf)
5051 memcpy (r, buf, sizeof (*r));
5054 const struct real_format real_internal_format =
5056 encode_internal,
5057 decode_internal,
5059 SIGNIFICAND_BITS - 2,
5060 SIGNIFICAND_BITS - 2,
5061 -MAX_EXP,
5062 MAX_EXP,
5066 false,
5067 false,
5068 true,
5069 true,
5070 false,
5071 true,
5072 true,
5073 false,
5074 "real_internal"
5077 /* Calculate X raised to the integer exponent N in format FMT and store
5078 the result in R. Return true if the result may be inexact due to
5079 loss of precision. The algorithm is the classic "left-to-right binary
5080 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
5081 Algorithms", "The Art of Computer Programming", Volume 2. */
5083 bool
5084 real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
5085 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
5087 unsigned HOST_WIDE_INT bit;
5088 REAL_VALUE_TYPE t;
5089 bool inexact = false;
5090 bool init = false;
5091 bool neg;
5092 int i;
5094 if (n == 0)
5096 *r = dconst1;
5097 return false;
5099 else if (n < 0)
5101 /* Don't worry about overflow, from now on n is unsigned. */
5102 neg = true;
5103 n = -n;
5105 else
5106 neg = false;
5108 t = *x;
5109 bit = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
5110 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
5112 if (init)
5114 inexact |= do_multiply (&t, &t, &t);
5115 if (n & bit)
5116 inexact |= do_multiply (&t, &t, x);
5118 else if (n & bit)
5119 init = true;
5120 bit >>= 1;
5123 if (neg)
5124 inexact |= do_divide (&t, &dconst1, &t);
5126 real_convert (r, fmt, &t);
5127 return inexact;
5130 /* Round X to the nearest integer not larger in absolute value, i.e.
5131 towards zero, placing the result in R in format FMT. */
5133 void
5134 real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
5135 const REAL_VALUE_TYPE *x)
5137 do_fix_trunc (r, x);
5138 if (fmt)
5139 real_convert (r, fmt, r);
5142 /* Round X to the largest integer not greater in value, i.e. round
5143 down, placing the result in R in format FMT. */
5145 void
5146 real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
5147 const REAL_VALUE_TYPE *x)
5149 REAL_VALUE_TYPE t;
5151 do_fix_trunc (&t, x);
5152 if (! real_identical (&t, x) && x->sign)
5153 do_add (&t, &t, &dconstm1, 0);
5154 if (fmt)
5155 real_convert (r, fmt, &t);
5156 else
5157 *r = t;
5160 /* Round X to the smallest integer not less then argument, i.e. round
5161 up, placing the result in R in format FMT. */
5163 void
5164 real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
5165 const REAL_VALUE_TYPE *x)
5167 REAL_VALUE_TYPE t;
5169 do_fix_trunc (&t, x);
5170 if (! real_identical (&t, x) && ! x->sign)
5171 do_add (&t, &t, &dconst1, 0);
5172 if (fmt)
5173 real_convert (r, fmt, &t);
5174 else
5175 *r = t;
5178 /* Round X to the nearest integer, but round halfway cases away from
5179 zero. */
5181 void
5182 real_round (REAL_VALUE_TYPE *r, format_helper fmt,
5183 const REAL_VALUE_TYPE *x)
5185 do_add (r, x, &dconsthalf, x->sign);
5186 do_fix_trunc (r, r);
5187 if (fmt)
5188 real_convert (r, fmt, r);
5191 /* Return true (including 0) if integer part of R is even, else return
5192 false. The function is not valid for rvc_inf and rvc_nan classes. */
5194 static bool
5195 is_even (REAL_VALUE_TYPE *r)
5197 gcc_assert (r->cl != rvc_inf);
5198 gcc_assert (r->cl != rvc_nan);
5200 if (r->cl == rvc_zero)
5201 return true;
5203 /* For (-1,1), number is even. */
5204 if (REAL_EXP (r) <= 0)
5205 return true;
5207 /* Check lowest bit, if not set, return true. */
5208 else if (REAL_EXP (r) <= SIGNIFICAND_BITS)
5210 unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r);
5211 int w = n / HOST_BITS_PER_LONG;
5213 unsigned long num = ((unsigned long)1 << (n % HOST_BITS_PER_LONG));
5215 if ((r->sig[w] & num) == 0)
5216 return true;
5218 else
5219 return true;
5221 return false;
5224 /* Return true if R is halfway between two integers, else return
5225 false. */
5227 static bool
5228 is_halfway_below (const REAL_VALUE_TYPE *r)
5230 if (r->cl != rvc_normal)
5231 return false;
5233 /* For numbers (-0.5,0) and (0,0.5). */
5234 if (REAL_EXP (r) < 0)
5235 return false;
5237 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
5239 unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r) - 1;
5240 int w = n / HOST_BITS_PER_LONG;
5242 for (int i = 0; i < w; ++i)
5243 if (r->sig[i] != 0)
5244 return false;
5246 unsigned long num = 1UL << (n % HOST_BITS_PER_LONG);
5248 if ((r->sig[w] & num) != 0 && (r->sig[w] & (num - 1)) == 0)
5249 return true;
5251 return false;
5254 /* Round X to nearest integer, rounding halfway cases towards even. */
5256 void
5257 real_roundeven (REAL_VALUE_TYPE *r, format_helper fmt,
5258 const REAL_VALUE_TYPE *x)
5260 if (is_halfway_below (x))
5262 /* Special case as -0.5 rounds to -0.0 and
5263 similarly +0.5 rounds to +0.0. */
5264 if (REAL_EXP (x) == 0)
5266 *r = *x;
5267 clear_significand_below (r, SIGNIFICAND_BITS);
5269 else
5271 do_add (r, x, &dconsthalf, x->sign);
5272 if (!is_even (r))
5273 do_add (r, r, &dconstm1, x->sign);
5275 if (fmt)
5276 real_convert (r, fmt, r);
5278 else
5279 real_round (r, fmt, x);
5282 /* Set the sign of R to the sign of X. */
5284 void
5285 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
5287 r->sign = x->sign;
5290 /* Check whether the real constant value given is an integer.
5291 Returns false for signaling NaN. */
5293 bool
5294 real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
5296 REAL_VALUE_TYPE cint;
5298 real_trunc (&cint, fmt, c);
5299 return real_identical (c, &cint);
5302 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
5303 storing it in *INT_OUT if so. */
5305 bool
5306 real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
5308 REAL_VALUE_TYPE cint;
5310 HOST_WIDE_INT n = real_to_integer (c);
5311 real_from_integer (&cint, VOIDmode, n, SIGNED);
5312 if (real_identical (c, &cint))
5314 *int_out = n;
5315 return true;
5317 return false;
5320 /* Calculate nextafter (X, Y) or nexttoward (X, Y). Return true if
5321 underflow or overflow needs to be raised. */
5323 bool
5324 real_nextafter (REAL_VALUE_TYPE *r, format_helper fmt,
5325 const REAL_VALUE_TYPE *x, const REAL_VALUE_TYPE *y)
5327 int cmp = do_compare (x, y, 2);
5328 /* If either operand is NaN, return qNaN. */
5329 if (cmp == 2)
5331 get_canonical_qnan (r, 0);
5332 return false;
5334 /* If x == y, return y cast to target type. */
5335 if (cmp == 0)
5337 real_convert (r, fmt, y);
5338 return false;
5341 if (x->cl == rvc_zero)
5343 get_zero (r, y->sign);
5344 r->cl = rvc_normal;
5345 SET_REAL_EXP (r, fmt->emin - fmt->p + 1);
5346 r->sig[SIGSZ - 1] = SIG_MSB;
5347 return false;
5350 int np2 = SIGNIFICAND_BITS - fmt->p;
5351 /* For denormals adjust np2 correspondingly. */
5352 if (x->cl == rvc_normal && REAL_EXP (x) < fmt->emin)
5353 np2 += fmt->emin - REAL_EXP (x);
5355 REAL_VALUE_TYPE u;
5356 get_zero (r, x->sign);
5357 get_zero (&u, 0);
5358 set_significand_bit (&u, np2);
5359 r->cl = rvc_normal;
5360 SET_REAL_EXP (r, REAL_EXP (x));
5362 if (x->cl == rvc_inf)
5364 bool borrow = sub_significands (r, r, &u, 0);
5365 gcc_assert (borrow);
5366 SET_REAL_EXP (r, fmt->emax);
5368 else if (cmp == (x->sign ? 1 : -1))
5370 if (add_significands (r, x, &u))
5372 /* Overflow. Means the significand had been all ones, and
5373 is now all zeros. Need to increase the exponent, and
5374 possibly re-normalize it. */
5375 SET_REAL_EXP (r, REAL_EXP (r) + 1);
5376 if (REAL_EXP (r) > fmt->emax)
5378 get_inf (r, x->sign);
5379 return true;
5381 r->sig[SIGSZ - 1] = SIG_MSB;
5384 else
5386 if (REAL_EXP (x) > fmt->emin && x->sig[SIGSZ - 1] == SIG_MSB)
5388 int i;
5389 for (i = SIGSZ - 2; i >= 0; i--)
5390 if (x->sig[i])
5391 break;
5392 if (i < 0)
5394 /* When mantissa is 1.0, we need to subtract only
5395 half of u: nextafter (1.0, 0.0) is 1.0 - __DBL_EPSILON__ / 2
5396 rather than 1.0 - __DBL_EPSILON__. */
5397 clear_significand_bit (&u, np2);
5398 np2--;
5399 set_significand_bit (&u, np2);
5402 sub_significands (r, x, &u, 0);
5405 /* Clear out trailing garbage. */
5406 clear_significand_below (r, np2);
5407 normalize (r);
5408 if (REAL_EXP (r) <= fmt->emin - fmt->p)
5410 get_zero (r, x->sign);
5411 return true;
5413 return r->cl == rvc_zero || REAL_EXP (r) < fmt->emin;
5416 /* Write into BUF the maximum representable finite floating-point
5417 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5418 float string. LEN is the size of BUF, and the buffer must be large
5419 enough to contain the resulting string. If NORM_MAX, instead write
5420 the maximum representable finite normalized floating-point number,
5421 defined to be such that all choices of digits for that exponent are
5422 representable in the format (this only makes a difference for IBM
5423 long double). */
5425 void
5426 get_max_float (const struct real_format *fmt, char *buf, size_t len,
5427 bool norm_max)
5429 int i, n;
5430 char *p;
5431 bool is_ibm_extended = fmt->pnan < fmt->p;
5433 strcpy (buf, "0x0.");
5434 n = fmt->p;
5435 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
5436 *p++ = 'f';
5437 if (i < n)
5438 *p++ = "08ce"[n - i];
5439 sprintf (p, "p%d",
5440 (is_ibm_extended && norm_max) ? fmt->emax - 1 : fmt->emax);
5441 if (is_ibm_extended && !norm_max)
5443 /* This is an IBM extended double format made up of two IEEE
5444 doubles. The value of the long double is the sum of the
5445 values of the two parts. The most significant part is
5446 required to be the value of the long double rounded to the
5447 nearest double. Rounding means we need a slightly smaller
5448 value for LDBL_MAX. */
5449 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
5452 gcc_assert (strlen (buf) < len);
5455 /* True if all values of integral type can be represented
5456 by this floating-point type exactly. */
5458 bool format_helper::can_represent_integral_type_p (tree type) const
5460 gcc_assert (! decimal_p () && INTEGRAL_TYPE_P (type));
5462 /* INT?_MIN is power-of-two so it takes
5463 only one mantissa bit. */
5464 bool signed_p = TYPE_SIGN (type) == SIGNED;
5465 return TYPE_PRECISION (type) - signed_p <= significand_size (*this);
5468 /* True if mode M has a NaN representation and
5469 the treatment of NaN operands is important. */
5471 bool
5472 HONOR_NANS (machine_mode m)
5474 return MODE_HAS_NANS (m) && !flag_finite_math_only;
5477 bool
5478 HONOR_NANS (const_tree t)
5480 return HONOR_NANS (element_mode (t));
5483 bool
5484 HONOR_NANS (const_rtx x)
5486 return HONOR_NANS (GET_MODE (x));
5489 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5491 bool
5492 HONOR_SNANS (machine_mode m)
5494 return flag_signaling_nans && HONOR_NANS (m);
5497 bool
5498 HONOR_SNANS (const_tree t)
5500 return HONOR_SNANS (element_mode (t));
5503 bool
5504 HONOR_SNANS (const_rtx x)
5506 return HONOR_SNANS (GET_MODE (x));
5509 /* As for HONOR_NANS, but true if the mode can represent infinity and
5510 the treatment of infinite values is important. */
5512 bool
5513 HONOR_INFINITIES (machine_mode m)
5515 return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
5518 bool
5519 HONOR_INFINITIES (const_tree t)
5521 return HONOR_INFINITIES (element_mode (t));
5524 bool
5525 HONOR_INFINITIES (const_rtx x)
5527 return HONOR_INFINITIES (GET_MODE (x));
5530 /* Like HONOR_NANS, but true if the given mode distinguishes between
5531 positive and negative zero, and the sign of zero is important. */
5533 bool
5534 HONOR_SIGNED_ZEROS (machine_mode m)
5536 return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
5539 bool
5540 HONOR_SIGNED_ZEROS (const_tree t)
5542 return HONOR_SIGNED_ZEROS (element_mode (t));
5545 bool
5546 HONOR_SIGNED_ZEROS (const_rtx x)
5548 return HONOR_SIGNED_ZEROS (GET_MODE (x));
5551 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5552 and the rounding mode is important. */
5554 bool
5555 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
5557 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
5560 bool
5561 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
5563 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
5566 bool
5567 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
5569 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));
5572 /* Fills r with the largest value such that 1 + r*r won't overflow.
5573 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
5575 void
5576 build_sinatan_real (REAL_VALUE_TYPE * r, tree type)
5578 REAL_VALUE_TYPE maxval;
5579 mpfr_t mpfr_const1, mpfr_c, mpfr_maxval;
5580 machine_mode mode = TYPE_MODE (type);
5581 const struct real_format * fmt = REAL_MODE_FORMAT (mode);
5583 real_maxval (&maxval, 0, mode);
5585 mpfr_inits (mpfr_const1, mpfr_c, mpfr_maxval, NULL);
5587 mpfr_from_real (mpfr_const1, &dconst1, MPFR_RNDN);
5588 mpfr_from_real (mpfr_maxval, &maxval, MPFR_RNDN);
5590 mpfr_sub (mpfr_c, mpfr_maxval, mpfr_const1, MPFR_RNDN);
5591 mpfr_sqrt (mpfr_c, mpfr_c, MPFR_RNDZ);
5593 real_from_mpfr (r, mpfr_c, fmt, MPFR_RNDZ);
5595 mpfr_clears (mpfr_const1, mpfr_c, mpfr_maxval, NULL);