1 /* real.cc - software floating point emulation.
2 Copyright (C) 1993-2023 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
41 b = base or radix, here always 2
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
68 static void get_zero (REAL_VALUE_TYPE
*, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
71 static void get_inf (REAL_VALUE_TYPE
*, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
73 const REAL_VALUE_TYPE
*, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
76 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
78 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
79 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
80 const REAL_VALUE_TYPE
*);
81 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
82 const REAL_VALUE_TYPE
*, int);
83 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
84 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
86 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 const REAL_VALUE_TYPE
*);
92 static void normalize (REAL_VALUE_TYPE
*);
94 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
95 const REAL_VALUE_TYPE
*, int);
96 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
97 const REAL_VALUE_TYPE
*);
98 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
99 const REAL_VALUE_TYPE
*);
100 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
104 static void decimal_from_integer (REAL_VALUE_TYPE
*);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE
*,
108 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE
* real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE
*, int);
113 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
115 /* Determine whether a floating-point value X is a denormal. R is
116 expected to be in denormal form, so this function is only
117 meaningful after a call to round_for_format. */
120 real_isdenormal (const REAL_VALUE_TYPE
*r
)
122 return r
->cl
== rvc_normal
&& (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
125 /* Initialize R with a positive zero. */
128 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
130 memset (r
, 0, sizeof (*r
));
134 /* Initialize R with the canonical quiet NaN. */
137 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
139 memset (r
, 0, sizeof (*r
));
146 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
148 memset (r
, 0, sizeof (*r
));
156 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
158 memset (r
, 0, sizeof (*r
));
164 /* Right-shift the significand of A by N bits; put the result in the
165 significand of R. If any one bits are shifted out, return true. */
168 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
171 unsigned long sticky
= 0;
172 unsigned int i
, ofs
= 0;
174 if (n
>= HOST_BITS_PER_LONG
)
176 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
178 n
&= HOST_BITS_PER_LONG
- 1;
183 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
184 for (i
= 0; i
< SIGSZ
; ++i
)
187 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
188 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
189 << (HOST_BITS_PER_LONG
- n
)));
194 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
195 r
->sig
[i
] = a
->sig
[ofs
+ i
];
196 for (; i
< SIGSZ
; ++i
)
203 /* Right-shift the significand of A by N bits; put the result in the
207 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
210 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
212 n
&= HOST_BITS_PER_LONG
- 1;
215 for (i
= 0; i
< SIGSZ
; ++i
)
218 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
219 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
220 << (HOST_BITS_PER_LONG
- n
)));
225 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
226 r
->sig
[i
] = a
->sig
[ofs
+ i
];
227 for (; i
< SIGSZ
; ++i
)
232 /* Left-shift the significand of A by N bits; put the result in the
236 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
239 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
241 n
&= HOST_BITS_PER_LONG
- 1;
244 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
245 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
246 for (; i
< SIGSZ
; ++i
)
247 r
->sig
[SIGSZ
-1-i
] = 0;
250 for (i
= 0; i
< SIGSZ
; ++i
)
253 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
254 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
255 >> (HOST_BITS_PER_LONG
- n
)));
259 /* Likewise, but N is specialized to 1. */
262 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
266 for (i
= SIGSZ
- 1; i
> 0; --i
)
267 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
268 r
->sig
[0] = a
->sig
[0] << 1;
271 /* Add the significands of A and B, placing the result in R. Return
272 true if there was carry out of the most significant word. */
275 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
276 const REAL_VALUE_TYPE
*b
)
281 for (i
= 0; i
< SIGSZ
; ++i
)
283 unsigned long ai
= a
->sig
[i
];
284 unsigned long ri
= ai
+ b
->sig
[i
];
300 /* Subtract the significands of A and B, placing the result in R. CARRY is
301 true if there's a borrow incoming to the least significant word.
302 Return true if there was borrow out of the most significant word. */
305 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
306 const REAL_VALUE_TYPE
*b
, int carry
)
310 for (i
= 0; i
< SIGSZ
; ++i
)
312 unsigned long ai
= a
->sig
[i
];
313 unsigned long ri
= ai
- b
->sig
[i
];
329 /* Negate the significand A, placing the result in R. */
332 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
337 for (i
= 0; i
< SIGSZ
; ++i
)
339 unsigned long ri
, ai
= a
->sig
[i
];
358 /* Compare significands. Return tri-state vs zero. */
361 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
365 for (i
= SIGSZ
- 1; i
>= 0; --i
)
367 unsigned long ai
= a
->sig
[i
];
368 unsigned long bi
= b
->sig
[i
];
379 /* Return true if A is nonzero. */
382 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
386 for (i
= SIGSZ
- 1; i
>= 0; --i
)
393 /* Set bit N of the significand of R. */
396 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
398 r
->sig
[n
/ HOST_BITS_PER_LONG
]
399 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
402 /* Clear bit N of the significand of R. */
405 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
407 r
->sig
[n
/ HOST_BITS_PER_LONG
]
408 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
411 /* Test bit N of the significand of R. */
414 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
416 /* ??? Compiler bug here if we return this expression directly.
417 The conversion to bool strips the "&1" and we wind up testing
418 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
419 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
423 /* Clear bits 0..N-1 of the significand of R. */
426 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
428 int i
, w
= n
/ HOST_BITS_PER_LONG
;
430 for (i
= 0; i
< w
; ++i
)
433 /* We are actually passing N == SIGNIFICAND_BITS which would result
434 in an out-of-bound access below. */
435 if (n
% HOST_BITS_PER_LONG
!= 0)
436 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
439 /* Divide the significands of A and B, placing the result in R. Return
440 true if the division was inexact. */
443 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
444 const REAL_VALUE_TYPE
*b
)
447 int i
, bit
= SIGNIFICAND_BITS
- 1;
448 unsigned long msb
, inexact
;
451 memset (r
->sig
, 0, sizeof (r
->sig
));
457 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
458 lshift_significand_1 (&u
, &u
);
460 if (msb
|| cmp_significands (&u
, b
) >= 0)
462 sub_significands (&u
, &u
, b
, 0);
463 set_significand_bit (r
, bit
);
468 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
474 /* Adjust the exponent and significand of R such that the most
475 significant bit is set. We underflow to zero and overflow to
476 infinity here, without denormals. (The intermediate representation
477 exponent is large enough to handle target denormals normalized.) */
480 normalize (REAL_VALUE_TYPE
*r
)
488 /* Find the first word that is nonzero. */
489 for (i
= SIGSZ
- 1; i
>= 0; i
--)
491 shift
+= HOST_BITS_PER_LONG
;
495 /* Zero significand flushes to zero. */
503 /* Find the first bit that is nonzero. */
505 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
511 exp
= REAL_EXP (r
) - shift
;
513 get_inf (r
, r
->sign
);
514 else if (exp
< -MAX_EXP
)
515 get_zero (r
, r
->sign
);
518 SET_REAL_EXP (r
, exp
);
519 lshift_significand (r
, r
, shift
);
524 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
525 result may be inexact due to a loss of precision. */
528 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
529 const REAL_VALUE_TYPE
*b
, int subtract_p
)
533 bool inexact
= false;
535 /* Determine if we need to add or subtract. */
537 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
539 switch (CLASS2 (a
->cl
, b
->cl
))
541 case CLASS2 (rvc_zero
, rvc_zero
):
542 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
543 get_zero (r
, sign
& !subtract_p
);
546 case CLASS2 (rvc_zero
, rvc_normal
):
547 case CLASS2 (rvc_zero
, rvc_inf
):
548 case CLASS2 (rvc_zero
, rvc_nan
):
550 case CLASS2 (rvc_normal
, rvc_nan
):
551 case CLASS2 (rvc_inf
, rvc_nan
):
552 case CLASS2 (rvc_nan
, rvc_nan
):
553 /* ANY + NaN = NaN. */
554 case CLASS2 (rvc_normal
, rvc_inf
):
557 /* Make resulting NaN value to be qNaN. The caller has the
558 responsibility to avoid the operation if flag_signaling_nans
561 r
->sign
= sign
^ subtract_p
;
564 case CLASS2 (rvc_normal
, rvc_zero
):
565 case CLASS2 (rvc_inf
, rvc_zero
):
566 case CLASS2 (rvc_nan
, rvc_zero
):
568 case CLASS2 (rvc_nan
, rvc_normal
):
569 case CLASS2 (rvc_nan
, rvc_inf
):
570 /* NaN + ANY = NaN. */
571 case CLASS2 (rvc_inf
, rvc_normal
):
574 /* Make resulting NaN value to be qNaN. The caller has the
575 responsibility to avoid the operation if flag_signaling_nans
580 case CLASS2 (rvc_inf
, rvc_inf
):
582 /* Inf - Inf = NaN. */
583 get_canonical_qnan (r
, 0);
585 /* Inf + Inf = Inf. */
589 case CLASS2 (rvc_normal
, rvc_normal
):
596 /* Swap the arguments such that A has the larger exponent. */
597 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
600 const REAL_VALUE_TYPE
*t
;
607 /* If the exponents are not identical, we need to shift the
608 significand of B down. */
611 /* If the exponents are too far apart, the significands
612 do not overlap, which makes the subtraction a noop. */
613 if (dexp
>= SIGNIFICAND_BITS
)
620 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
626 if (sub_significands (r
, a
, b
, inexact
))
628 /* We got a borrow out of the subtraction. That means that
629 A and B had the same exponent, and B had the larger
630 significand. We need to swap the sign and negate the
633 neg_significand (r
, r
);
638 if (add_significands (r
, a
, b
))
640 /* We got carry out of the addition. This means we need to
641 shift the significand back down one bit and increase the
643 inexact
|= sticky_rshift_significand (r
, r
, 1);
644 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
655 SET_REAL_EXP (r
, exp
);
656 /* Zero out the remaining fields. */
661 /* Re-normalize the result. */
664 /* Special case: if the subtraction results in zero, the result
666 if (r
->cl
== rvc_zero
)
669 r
->sig
[0] |= inexact
;
674 /* Calculate R = A * B. Return true if the result may be inexact. */
677 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
678 const REAL_VALUE_TYPE
*b
)
680 REAL_VALUE_TYPE u
, t
, *rr
;
681 unsigned int i
, j
, k
;
682 int sign
= a
->sign
^ b
->sign
;
683 bool inexact
= false;
685 switch (CLASS2 (a
->cl
, b
->cl
))
687 case CLASS2 (rvc_zero
, rvc_zero
):
688 case CLASS2 (rvc_zero
, rvc_normal
):
689 case CLASS2 (rvc_normal
, rvc_zero
):
690 /* +-0 * ANY = 0 with appropriate sign. */
694 case CLASS2 (rvc_zero
, rvc_nan
):
695 case CLASS2 (rvc_normal
, rvc_nan
):
696 case CLASS2 (rvc_inf
, rvc_nan
):
697 case CLASS2 (rvc_nan
, rvc_nan
):
698 /* ANY * NaN = NaN. */
700 /* Make resulting NaN value to be qNaN. The caller has the
701 responsibility to avoid the operation if flag_signaling_nans
707 case CLASS2 (rvc_nan
, rvc_zero
):
708 case CLASS2 (rvc_nan
, rvc_normal
):
709 case CLASS2 (rvc_nan
, rvc_inf
):
710 /* NaN * ANY = NaN. */
712 /* Make resulting NaN value to be qNaN. The caller has the
713 responsibility to avoid the operation if flag_signaling_nans
719 case CLASS2 (rvc_zero
, rvc_inf
):
720 case CLASS2 (rvc_inf
, rvc_zero
):
722 get_canonical_qnan (r
, sign
);
725 case CLASS2 (rvc_inf
, rvc_inf
):
726 case CLASS2 (rvc_normal
, rvc_inf
):
727 case CLASS2 (rvc_inf
, rvc_normal
):
728 /* Inf * Inf = Inf, R * Inf = Inf */
732 case CLASS2 (rvc_normal
, rvc_normal
):
739 if (r
== a
|| r
== b
)
745 /* Collect all the partial products. Since we don't have sure access
746 to a widening multiply, we split each long into two half-words.
748 Consider the long-hand form of a four half-word multiplication:
758 We construct partial products of the widened half-word products
759 that are known to not overlap, e.g. DF+DH. Each such partial
760 product is given its proper exponent, which allows us to sum them
761 and obtain the finished product. */
763 for (i
= 0; i
< SIGSZ
* 2; ++i
)
765 unsigned long ai
= a
->sig
[i
/ 2];
767 ai
>>= HOST_BITS_PER_LONG
/ 2;
769 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
774 for (j
= 0; j
< 2; ++j
)
776 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
777 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
786 /* Would underflow to zero, which we shouldn't bother adding. */
791 memset (&u
, 0, sizeof (u
));
793 SET_REAL_EXP (&u
, exp
);
795 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
797 unsigned long bi
= b
->sig
[k
/ 2];
799 bi
>>= HOST_BITS_PER_LONG
/ 2;
801 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
803 u
.sig
[k
/ 2] = ai
* bi
;
807 inexact
|= do_add (rr
, rr
, &u
, 0);
818 /* Calculate R = A / B. Return true if the result may be inexact. */
821 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
822 const REAL_VALUE_TYPE
*b
)
824 int exp
, sign
= a
->sign
^ b
->sign
;
825 REAL_VALUE_TYPE t
, *rr
;
828 switch (CLASS2 (a
->cl
, b
->cl
))
830 case CLASS2 (rvc_zero
, rvc_zero
):
832 case CLASS2 (rvc_inf
, rvc_inf
):
833 /* Inf / Inf = NaN. */
834 get_canonical_qnan (r
, sign
);
837 case CLASS2 (rvc_zero
, rvc_normal
):
838 case CLASS2 (rvc_zero
, rvc_inf
):
840 case CLASS2 (rvc_normal
, rvc_inf
):
845 case CLASS2 (rvc_normal
, rvc_zero
):
847 case CLASS2 (rvc_inf
, rvc_zero
):
852 case CLASS2 (rvc_zero
, rvc_nan
):
853 case CLASS2 (rvc_normal
, rvc_nan
):
854 case CLASS2 (rvc_inf
, rvc_nan
):
855 case CLASS2 (rvc_nan
, rvc_nan
):
856 /* ANY / NaN = NaN. */
858 /* Make resulting NaN value to be qNaN. The caller has the
859 responsibility to avoid the operation if flag_signaling_nans
865 case CLASS2 (rvc_nan
, rvc_zero
):
866 case CLASS2 (rvc_nan
, rvc_normal
):
867 case CLASS2 (rvc_nan
, rvc_inf
):
868 /* NaN / ANY = NaN. */
870 /* Make resulting NaN value to be qNaN. The caller has the
871 responsibility to avoid the operation if flag_signaling_nans
877 case CLASS2 (rvc_inf
, rvc_normal
):
882 case CLASS2 (rvc_normal
, rvc_normal
):
889 if (r
== a
|| r
== b
)
894 /* Make sure all fields in the result are initialized. */
899 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
910 SET_REAL_EXP (rr
, exp
);
912 inexact
= div_significands (rr
, a
, b
);
914 /* Re-normalize the result. */
916 rr
->sig
[0] |= inexact
;
924 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
925 one of the two operands is a NaN. */
928 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
933 switch (CLASS2 (a
->cl
, b
->cl
))
935 case CLASS2 (rvc_zero
, rvc_zero
):
936 /* Sign of zero doesn't matter for compares. */
939 case CLASS2 (rvc_normal
, rvc_zero
):
940 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
942 return decimal_do_compare (a
, b
, nan_result
);
944 case CLASS2 (rvc_inf
, rvc_zero
):
945 case CLASS2 (rvc_inf
, rvc_normal
):
946 return (a
->sign
? -1 : 1);
948 case CLASS2 (rvc_inf
, rvc_inf
):
949 return -a
->sign
- -b
->sign
;
951 case CLASS2 (rvc_zero
, rvc_normal
):
952 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
954 return decimal_do_compare (a
, b
, nan_result
);
956 case CLASS2 (rvc_zero
, rvc_inf
):
957 case CLASS2 (rvc_normal
, rvc_inf
):
958 return (b
->sign
? 1 : -1);
960 case CLASS2 (rvc_zero
, rvc_nan
):
961 case CLASS2 (rvc_normal
, rvc_nan
):
962 case CLASS2 (rvc_inf
, rvc_nan
):
963 case CLASS2 (rvc_nan
, rvc_nan
):
964 case CLASS2 (rvc_nan
, rvc_zero
):
965 case CLASS2 (rvc_nan
, rvc_normal
):
966 case CLASS2 (rvc_nan
, rvc_inf
):
969 case CLASS2 (rvc_normal
, rvc_normal
):
976 if (a
->decimal
|| b
->decimal
)
977 return decimal_do_compare (a
, b
, nan_result
);
979 if (a
->sign
!= b
->sign
)
980 return -a
->sign
- -b
->sign
;
982 if (REAL_EXP (a
) > REAL_EXP (b
))
984 else if (REAL_EXP (a
) < REAL_EXP (b
))
987 ret
= cmp_significands (a
, b
);
989 return (a
->sign
? -ret
: ret
);
992 /* Return A truncated to an integral value toward zero. */
995 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
1004 /* Make resulting NaN value to be qNaN. The caller has the
1005 responsibility to avoid the operation if flag_signaling_nans
1013 decimal_do_fix_trunc (r
, a
);
1016 if (REAL_EXP (r
) <= 0)
1017 get_zero (r
, r
->sign
);
1018 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
1019 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
1027 /* Perform the binary or unary operation described by CODE.
1028 For a unary operation, leave OP1 NULL. This function returns
1029 true if the result may be inexact due to loss of precision. */
1032 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
1033 const REAL_VALUE_TYPE
*op1
)
1035 enum tree_code code
= (enum tree_code
) icode
;
1037 if (op0
->decimal
|| (op1
&& op1
->decimal
))
1038 return decimal_real_arithmetic (r
, code
, op0
, op1
);
1043 /* Clear any padding areas in *r if it isn't equal to one of the
1044 operands so that we can later do bitwise comparisons later on. */
1045 if (r
!= op0
&& r
!= op1
)
1046 memset (r
, '\0', sizeof (*r
));
1047 return do_add (r
, op0
, op1
, 0);
1050 if (r
!= op0
&& r
!= op1
)
1051 memset (r
, '\0', sizeof (*r
));
1052 return do_add (r
, op0
, op1
, 1);
1055 if (r
!= op0
&& r
!= op1
)
1056 memset (r
, '\0', sizeof (*r
));
1057 return do_multiply (r
, op0
, op1
);
1060 if (r
!= op0
&& r
!= op1
)
1061 memset (r
, '\0', sizeof (*r
));
1062 return do_divide (r
, op0
, op1
);
1065 if (op1
->cl
== rvc_nan
)
1068 /* Make resulting NaN value to be qNaN. The caller has the
1069 responsibility to avoid the operation if flag_signaling_nans
1073 else if (do_compare (op0
, op1
, -1) < 0)
1080 if (op1
->cl
== rvc_nan
)
1083 /* Make resulting NaN value to be qNaN. The caller has the
1084 responsibility to avoid the operation if flag_signaling_nans
1088 else if (do_compare (op0
, op1
, 1) < 0)
1104 case FIX_TRUNC_EXPR
:
1105 do_fix_trunc (r
, op0
);
1115 real_value_negate (const REAL_VALUE_TYPE
*op0
)
1118 real_arithmetic (&r
, NEGATE_EXPR
, op0
, NULL
);
1123 real_value_abs (const REAL_VALUE_TYPE
*op0
)
1126 real_arithmetic (&r
, ABS_EXPR
, op0
, NULL
);
1130 /* Return whether OP0 == OP1. */
1133 real_equal (const REAL_VALUE_TYPE
*op0
, const REAL_VALUE_TYPE
*op1
)
1135 return do_compare (op0
, op1
, -1) == 0;
1138 /* Return whether OP0 < OP1. */
1141 real_less (const REAL_VALUE_TYPE
*op0
, const REAL_VALUE_TYPE
*op1
)
1143 return do_compare (op0
, op1
, 1) < 0;
1147 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1148 const REAL_VALUE_TYPE
*op1
)
1150 enum tree_code code
= (enum tree_code
) icode
;
1155 return real_less (op0
, op1
);
1157 return do_compare (op0
, op1
, 1) <= 0;
1159 return do_compare (op0
, op1
, -1) > 0;
1161 return do_compare (op0
, op1
, -1) >= 0;
1163 return real_equal (op0
, op1
);
1165 return do_compare (op0
, op1
, -1) != 0;
1166 case UNORDERED_EXPR
:
1167 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1169 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1171 return do_compare (op0
, op1
, -1) < 0;
1173 return do_compare (op0
, op1
, -1) <= 0;
1175 return do_compare (op0
, op1
, 1) > 0;
1177 return do_compare (op0
, op1
, 1) >= 0;
1179 return do_compare (op0
, op1
, 0) == 0;
1181 return do_compare (op0
, op1
, 0) != 0;
1188 /* Return floor log2(R). */
1191 real_exponent (const REAL_VALUE_TYPE
*r
)
1199 return (unsigned int)-1 >> 1;
1201 return REAL_EXP (r
);
1207 /* R = OP0 * 2**EXP. */
1210 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1218 /* Make resulting NaN value to be qNaN. The caller has the
1219 responsibility to avoid the operation if flag_signaling_nans
1225 exp
+= REAL_EXP (op0
);
1227 get_inf (r
, r
->sign
);
1228 else if (exp
< -MAX_EXP
)
1229 get_zero (r
, r
->sign
);
1231 SET_REAL_EXP (r
, exp
);
1239 /* Determine whether a floating-point value X is infinite. */
1242 real_isinf (const REAL_VALUE_TYPE
*r
)
1244 return (r
->cl
== rvc_inf
);
1247 /* Determine whether a floating-point value X is infinite with SIGN. */
1250 real_isinf (const REAL_VALUE_TYPE
*r
, bool sign
)
1252 return real_isinf (r
) && r
->sign
== sign
;
1255 /* Determine whether a floating-point value X is a NaN. */
1258 real_isnan (const REAL_VALUE_TYPE
*r
)
1260 return (r
->cl
== rvc_nan
);
1263 /* Determine whether a floating-point value X is a signaling NaN. */
1264 bool real_issignaling_nan (const REAL_VALUE_TYPE
*r
)
1266 return real_isnan (r
) && r
->signalling
;
1269 /* Determine whether a floating-point value X is finite. */
1272 real_isfinite (const REAL_VALUE_TYPE
*r
)
1274 return (r
->cl
!= rvc_nan
) && (r
->cl
!= rvc_inf
);
1277 /* Determine whether a floating-point value X is negative. */
1280 real_isneg (const REAL_VALUE_TYPE
*r
)
1285 /* Determine whether a floating-point value X is plus or minus zero. */
1288 real_iszero (const REAL_VALUE_TYPE
*r
)
1290 return r
->cl
== rvc_zero
;
1293 /* Determine whether a floating-point value X is zero with SIGN. */
1296 real_iszero (const REAL_VALUE_TYPE
*r
, bool sign
)
1298 return real_iszero (r
) && r
->sign
== sign
;
1301 /* Determine whether a floating-point value X is minus zero. */
1304 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1306 return r
->sign
&& r
->cl
== rvc_zero
;
1309 /* Compare two floating-point objects for bitwise identity. */
1312 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1318 if (a
->sign
!= b
->sign
)
1328 if (a
->decimal
!= b
->decimal
)
1330 if (REAL_EXP (a
) != REAL_EXP (b
))
1335 if (a
->signalling
!= b
->signalling
)
1337 /* The significand is ignored for canonical NaNs. */
1338 if (a
->canonical
|| b
->canonical
)
1339 return a
->canonical
== b
->canonical
;
1346 for (i
= 0; i
< SIGSZ
; ++i
)
1347 if (a
->sig
[i
] != b
->sig
[i
])
1353 /* Try to change R into its exact multiplicative inverse in format FMT.
1354 Return true if successful. */
1357 exact_real_inverse (format_helper fmt
, REAL_VALUE_TYPE
*r
)
1359 const REAL_VALUE_TYPE
*one
= real_digit (1);
1363 if (r
->cl
!= rvc_normal
)
1366 /* Check for a power of two: all significand bits zero except the MSB. */
1367 for (i
= 0; i
< SIGSZ
-1; ++i
)
1370 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1373 /* Find the inverse and truncate to the required format. */
1374 do_divide (&u
, one
, r
);
1375 real_convert (&u
, fmt
, &u
);
1377 /* The rounding may have overflowed. */
1378 if (u
.cl
!= rvc_normal
)
1380 for (i
= 0; i
< SIGSZ
-1; ++i
)
1383 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1390 /* Return true if arithmetic on values in IMODE that were promoted
1391 from values in TMODE is equivalent to direct arithmetic on values
1395 real_can_shorten_arithmetic (machine_mode imode
, machine_mode tmode
)
1397 const struct real_format
*tfmt
, *ifmt
;
1398 tfmt
= REAL_MODE_FORMAT (tmode
);
1399 ifmt
= REAL_MODE_FORMAT (imode
);
1400 /* These conditions are conservative rather than trying to catch the
1401 exact boundary conditions; the main case to allow is IEEE float
1403 return (ifmt
->b
== tfmt
->b
1404 && ifmt
->p
> 2 * tfmt
->p
1405 && ifmt
->emin
< 2 * tfmt
->emin
- tfmt
->p
- 2
1406 && ifmt
->emin
< tfmt
->emin
- tfmt
->emax
- tfmt
->p
- 2
1407 && ifmt
->emax
> 2 * tfmt
->emax
+ 2
1408 && ifmt
->emax
> tfmt
->emax
- tfmt
->emin
+ tfmt
->p
+ 2
1409 && ifmt
->round_towards_zero
== tfmt
->round_towards_zero
1410 && (ifmt
->has_sign_dependent_rounding
1411 == tfmt
->has_sign_dependent_rounding
)
1412 && ifmt
->has_nans
>= tfmt
->has_nans
1413 && ifmt
->has_inf
>= tfmt
->has_inf
1414 && ifmt
->has_signed_zero
>= tfmt
->has_signed_zero
1415 && !MODE_COMPOSITE_P (tmode
)
1416 && !MODE_COMPOSITE_P (imode
));
1419 /* Render R as an integer. */
1422 real_to_integer (const REAL_VALUE_TYPE
*r
)
1424 unsigned HOST_WIDE_INT i
;
1435 i
= HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1);
1442 return decimal_real_to_integer (r
);
1444 if (REAL_EXP (r
) <= 0)
1446 /* Only force overflow for unsigned overflow. Signed overflow is
1447 undefined, so it doesn't matter what we return, and some callers
1448 expect to be able to use this routine for both signed and
1449 unsigned conversions. */
1450 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1453 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1454 i
= r
->sig
[SIGSZ
-1];
1457 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1458 i
= r
->sig
[SIGSZ
-1];
1459 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1460 i
|= r
->sig
[SIGSZ
-2];
1463 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1474 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1475 be represented in precision, *FAIL is set to TRUE. */
1478 real_to_integer (const REAL_VALUE_TYPE
*r
, bool *fail
, int precision
)
1480 HOST_WIDE_INT val
[2 * WIDE_INT_MAX_ELTS
];
1489 return wi::zero (precision
);
1497 return wi::set_bit_in_zero (precision
- 1, precision
);
1499 return ~wi::set_bit_in_zero (precision
- 1, precision
);
1503 return decimal_real_to_integer (r
, fail
, precision
);
1508 /* Only force overflow for unsigned overflow. Signed overflow is
1509 undefined, so it doesn't matter what we return, and some callers
1510 expect to be able to use this routine for both signed and
1511 unsigned conversions. */
1512 if (exp
> precision
)
1515 /* Put the significand into a wide_int that has precision W, which
1516 is the smallest HWI-multiple that has at least PRECISION bits.
1517 This ensures that the top bit of the significand is in the
1518 top bit of the wide_int. */
1519 words
= (precision
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
1520 w
= words
* HOST_BITS_PER_WIDE_INT
;
1522 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1523 for (int i
= 0; i
< words
; i
++)
1525 int j
= SIGSZ
- words
+ i
;
1526 val
[i
] = (j
< 0) ? 0 : r
->sig
[j
];
1529 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1530 for (int i
= 0; i
< words
; i
++)
1532 int j
= SIGSZ
- (words
* 2) + (i
* 2);
1539 val
[i
] |= (unsigned HOST_WIDE_INT
) r
->sig
[j
] << HOST_BITS_PER_LONG
;
1542 /* Shift the value into place and truncate to the desired precision. */
1543 result
= wide_int::from_array (val
, words
, w
);
1544 result
= wi::lrshift (result
, w
- exp
);
1545 result
= wide_int::from (result
, precision
, UNSIGNED
);
1557 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1558 of NUM / DEN. Return the quotient and place the remainder in NUM.
1559 It is expected that NUM / DEN are close enough that the quotient is
1562 static unsigned long
1563 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1565 unsigned long q
, msb
;
1566 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1575 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1577 lshift_significand_1 (num
, num
);
1579 if (msb
|| cmp_significands (num
, den
) >= 0)
1581 sub_significands (num
, num
, den
, 0);
1585 while (--expn
>= expd
);
1587 SET_REAL_EXP (num
, expd
);
1593 /* Render R as a decimal floating point constant. Emit DIGITS significant
1594 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1595 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1596 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1597 to a string that, when parsed back in mode MODE, yields the same value. */
1599 #define M_LOG10_2 0.30102999566398119521
1602 real_to_decimal_for_mode (char *str
, const REAL_VALUE_TYPE
*r_orig
,
1603 size_t buf_size
, size_t digits
,
1604 int crop_trailing_zeros
, machine_mode mode
)
1606 const struct real_format
*fmt
= NULL
;
1607 const REAL_VALUE_TYPE
*one
, *ten
;
1608 REAL_VALUE_TYPE r
, pten
, u
, v
;
1609 int dec_exp
, cmp_one
, digit
;
1611 char *p
, *first
, *last
;
1615 if (mode
!= VOIDmode
)
1617 fmt
= REAL_MODE_FORMAT (mode
);
1625 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1630 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1633 /* ??? Print the significand as well, if not canonical? */
1634 sprintf (str
, "%c%cNaN", (r_orig
->sign
? '-' : '+'),
1635 (r_orig
->signalling
? 'S' : 'Q'));
1643 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1647 /* Bound the number of digits printed by the size of the representation. */
1648 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1649 if (digits
== 0 || digits
> max_digits
)
1650 digits
= max_digits
;
1652 /* Estimate the decimal exponent, and compute the length of the string it
1653 will print as. Be conservative and add one to account for possible
1654 overflow or rounding error. */
1655 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1656 for (max_digits
= 1; dec_exp
; max_digits
++)
1659 /* Bound the number of digits printed by the size of the output buffer. */
1660 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1661 gcc_assert (max_digits
<= buf_size
);
1662 if (digits
> max_digits
)
1663 digits
= max_digits
;
1665 one
= real_digit (1);
1666 ten
= ten_to_ptwo (0);
1674 cmp_one
= do_compare (&r
, one
, 0);
1679 /* Number is greater than one. Convert significand to an integer
1680 and strip trailing decimal zeros. */
1683 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1685 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1686 m
= floor_log2 (max_digits
);
1688 /* Iterate over the bits of the possible powers of 10 that might
1689 be present in U and eliminate them. That is, if we find that
1690 10**2**M divides U evenly, keep the division and increase
1696 do_divide (&t
, &u
, ten_to_ptwo (m
));
1697 do_fix_trunc (&v
, &t
);
1698 if (cmp_significands (&v
, &t
) == 0)
1706 /* Revert the scaling to integer that we performed earlier. */
1707 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1708 - (SIGNIFICAND_BITS
- 1));
1711 /* Find power of 10. Do this by dividing out 10**2**M when
1712 this is larger than the current remainder. Fill PTEN with
1713 the power of 10 that we compute. */
1714 if (REAL_EXP (&r
) > 0)
1716 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1719 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1720 if (do_compare (&u
, ptentwo
, 0) >= 0)
1722 do_divide (&u
, &u
, ptentwo
);
1723 do_multiply (&pten
, &pten
, ptentwo
);
1730 /* We managed to divide off enough tens in the above reduction
1731 loop that we've now got a negative exponent. Fall into the
1732 less-than-one code to compute the proper value for PTEN. */
1739 /* Number is less than one. Pad significand with leading
1745 /* Stop if we'd shift bits off the bottom. */
1749 do_multiply (&u
, &v
, ten
);
1751 /* Stop if we're now >= 1 or zero. */
1752 if (REAL_EXP (&u
) > 0 || u
.cl
== rvc_zero
)
1760 /* Find power of 10. Do this by multiplying in P=10**2**M when
1761 the current remainder is smaller than 1/P. Fill PTEN with the
1762 power of 10 that we compute. */
1763 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1766 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1767 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1769 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1771 do_multiply (&v
, &v
, ptentwo
);
1772 do_multiply (&pten
, &pten
, ptentwo
);
1778 /* Invert the positive power of 10 that we've collected so far. */
1779 do_divide (&pten
, one
, &pten
);
1787 /* At this point, PTEN should contain the nearest power of 10 smaller
1788 than R, such that this division produces the first digit.
1790 Using a divide-step primitive that returns the complete integral
1791 remainder avoids the rounding error that would be produced if
1792 we were to use do_divide here and then simply multiply by 10 for
1793 each subsequent digit. */
1795 digit
= rtd_divmod (&r
, &pten
);
1797 /* Be prepared for error in that division via underflow ... */
1798 if (digit
== 0 && cmp_significand_0 (&r
))
1800 /* Multiply by 10 and try again. */
1801 do_multiply (&r
, &r
, ten
);
1802 digit
= rtd_divmod (&r
, &pten
);
1804 gcc_assert (digit
!= 0);
1807 /* ... or overflow. */
1817 gcc_assert (digit
<= 10);
1821 /* Generate subsequent digits. */
1822 while (--digits
> 0)
1824 do_multiply (&r
, &r
, ten
);
1825 digit
= rtd_divmod (&r
, &pten
);
1830 /* Generate one more digit with which to do rounding. */
1831 do_multiply (&r
, &r
, ten
);
1832 digit
= rtd_divmod (&r
, &pten
);
1834 /* Round the result. */
1835 if (fmt
&& fmt
->round_towards_zero
)
1837 /* If the format uses round towards zero when parsing the string
1838 back in, we need to always round away from zero here. */
1839 if (cmp_significand_0 (&r
))
1841 round_up
= digit
> 0;
1847 /* Round to nearest. If R is nonzero there are additional
1848 nonzero digits to be extracted. */
1849 if (cmp_significand_0 (&r
))
1851 /* Round to even. */
1852 else if ((p
[-1] - '0') & 1)
1856 round_up
= digit
> 5;
1873 /* Carry out of the first digit. This means we had all 9's and
1874 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1882 /* Insert the decimal point. */
1883 first
[0] = first
[1];
1886 /* If requested, drop trailing zeros. Never crop past "1.0". */
1887 if (crop_trailing_zeros
)
1888 while (last
> first
+ 3 && last
[-1] == '0')
1891 /* Append the exponent. */
1892 sprintf (last
, "e%+d", dec_exp
);
1894 /* Verify that we can read the original value back in. */
1895 if (flag_checking
&& mode
!= VOIDmode
)
1897 real_from_string (&r
, str
);
1898 real_convert (&r
, mode
, &r
);
1899 gcc_assert (real_identical (&r
, r_orig
));
1903 /* Likewise, except always uses round-to-nearest. */
1906 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1907 size_t digits
, int crop_trailing_zeros
)
1909 real_to_decimal_for_mode (str
, r_orig
, buf_size
,
1910 digits
, crop_trailing_zeros
, VOIDmode
);
1914 debug (const REAL_VALUE_TYPE
&r
)
1917 real_to_hexadecimal (s
, &r
, sizeof (s
), 0, 1);
1918 fprintf (stderr
, "%s\n", s
);
1921 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1922 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1923 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1924 strip trailing zeros. */
1927 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1928 size_t digits
, int crop_trailing_zeros
)
1930 int i
, j
, exp
= REAL_EXP (r
);
1943 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1946 /* ??? Print the significand as well, if not canonical? */
1947 sprintf (str
, "%c%cNaN", (r
->sign
? '-' : '+'),
1948 (r
->signalling
? 'S' : 'Q'));
1956 /* Hexadecimal format for decimal floats is not interesting. */
1957 strcpy (str
, "N/A");
1962 digits
= SIGNIFICAND_BITS
/ 4;
1964 /* Bound the number of digits printed by the size of the output buffer. */
1966 sprintf (exp_buf
, "p%+d", exp
);
1967 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1968 gcc_assert (max_digits
<= buf_size
);
1969 if (digits
> max_digits
)
1970 digits
= max_digits
;
1981 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1982 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1984 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1990 if (crop_trailing_zeros
)
1991 while (p
> first
+ 1 && p
[-1] == '0')
1994 sprintf (p
, "p%+d", exp
);
1997 /* Initialize R from a decimal or hexadecimal string. The string is
1998 assumed to have been syntax checked already. Return -1 if the
1999 value underflows, +1 if overflows, and 0 otherwise. */
2002 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
2014 else if (*str
== '+')
2017 if (startswith (str
, "QNaN"))
2019 get_canonical_qnan (r
, sign
);
2022 else if (startswith (str
, "SNaN"))
2024 get_canonical_snan (r
, sign
);
2027 else if (startswith (str
, "Inf"))
2033 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
2035 /* Hexadecimal floating point. */
2036 int pos
= SIGNIFICAND_BITS
- 4, d
;
2044 d
= hex_value (*str
);
2049 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
2050 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
2054 /* Ensure correct rounding by setting last bit if there is
2055 a subsequent nonzero digit. */
2063 if (pos
== SIGNIFICAND_BITS
- 4)
2070 d
= hex_value (*str
);
2075 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
2076 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
2080 /* Ensure correct rounding by setting last bit if there is
2081 a subsequent nonzero digit. */
2087 /* If the mantissa is zero, ignore the exponent. */
2088 if (!cmp_significand_0 (r
))
2091 if (*str
== 'p' || *str
== 'P')
2093 bool exp_neg
= false;
2101 else if (*str
== '+')
2105 while (ISDIGIT (*str
))
2111 /* Overflowed the exponent. */
2126 SET_REAL_EXP (r
, exp
);
2132 /* Decimal floating point. */
2133 const char *cstr
= str
;
2137 while (*cstr
== '0')
2142 while (*cstr
== '0')
2146 /* If the mantissa is zero, ignore the exponent. */
2147 if (!ISDIGIT (*cstr
))
2150 /* Nonzero value, possibly overflowing or underflowing. */
2151 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2152 inexact
= mpfr_strtofr (m
, str
, NULL
, 10, MPFR_RNDZ
);
2153 /* The result should never be a NaN, and because the rounding is
2154 toward zero should never be an infinity. */
2155 gcc_assert (!mpfr_nan_p (m
) && !mpfr_inf_p (m
));
2156 if (mpfr_zero_p (m
) || mpfr_get_exp (m
) < -MAX_EXP
+ 4)
2161 else if (mpfr_get_exp (m
) > MAX_EXP
- 4)
2168 real_from_mpfr (r
, m
, NULL_TREE
, MPFR_RNDZ
);
2169 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2170 because the hex digits used in real_from_mpfr did not
2171 start with a digit 8 to f, but the exponent bounds above
2172 should have avoided underflow or overflow. */
2173 gcc_assert (r
->cl
== rvc_normal
);
2174 /* Set a sticky bit if mpfr_strtofr was inexact. */
2175 r
->sig
[0] |= inexact
;
2196 /* Legacy. Similar, but return the result directly. */
2199 real_from_string2 (const char *s
, format_helper fmt
)
2203 real_from_string (&r
, s
);
2205 real_convert (&r
, fmt
, &r
);
2210 /* Initialize R from string S and desired format FMT. */
2213 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, format_helper fmt
)
2215 if (fmt
.decimal_p ())
2216 decimal_real_from_string (r
, s
);
2218 real_from_string (r
, s
);
2221 real_convert (r
, fmt
, r
);
2224 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2228 real_from_integer (REAL_VALUE_TYPE
*r
, format_helper fmt
,
2229 const wide_int_ref
&val_in
, signop sgn
)
2235 unsigned int len
= val_in
.get_precision ();
2237 int maxbitlen
= MAX_BITSIZE_MODE_ANY_INT
+ HOST_BITS_PER_WIDE_INT
;
2238 const unsigned int realmax
= (SIGNIFICAND_BITS
/ HOST_BITS_PER_WIDE_INT
2239 * HOST_BITS_PER_WIDE_INT
);
2241 memset (r
, 0, sizeof (*r
));
2243 r
->sign
= wi::neg_p (val_in
, sgn
);
2245 /* We have to ensure we can negate the largest negative number. */
2246 wide_int val
= wide_int::from (val_in
, maxbitlen
, sgn
);
2251 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2252 won't work with precisions that are not a multiple of
2253 HOST_BITS_PER_WIDE_INT. */
2254 len
+= HOST_BITS_PER_WIDE_INT
- 1;
2256 /* Ensure we can represent the largest negative number. */
2259 len
= len
/HOST_BITS_PER_WIDE_INT
* HOST_BITS_PER_WIDE_INT
;
2261 /* Cap the size to the size allowed by real.h. */
2264 HOST_WIDE_INT cnt_l_z
;
2265 cnt_l_z
= wi::clz (val
);
2267 if (maxbitlen
- cnt_l_z
> realmax
)
2269 e
= maxbitlen
- cnt_l_z
- realmax
;
2271 /* This value is too large, we must shift it right to
2272 preserve all the bits we can, and then bump the
2273 exponent up by that amount. */
2274 val
= wi::lrshift (val
, e
);
2279 /* Clear out top bits so elt will work with precisions that aren't
2280 a multiple of HOST_BITS_PER_WIDE_INT. */
2281 val
= wide_int::from (val
, len
, sgn
);
2282 len
= len
/ HOST_BITS_PER_WIDE_INT
;
2284 SET_REAL_EXP (r
, len
* HOST_BITS_PER_WIDE_INT
+ e
);
2287 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2288 for (i
= len
- 1; i
>= 0; i
--)
2290 r
->sig
[j
--] = val
.elt (i
);
2296 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2297 for (i
= len
- 1; i
>= 0; i
--)
2299 HOST_WIDE_INT e
= val
.elt (i
);
2300 r
->sig
[j
--] = e
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2312 if (fmt
.decimal_p ())
2313 decimal_from_integer (r
);
2315 real_convert (r
, fmt
, r
);
2318 /* Render R, an integral value, as a floating point constant with no
2319 specified exponent. */
2322 decimal_integer_string (char *str
, const REAL_VALUE_TYPE
*r_orig
,
2325 int dec_exp
, digit
, digits
;
2326 REAL_VALUE_TYPE r
, pten
;
2332 if (r
.cl
== rvc_zero
)
2341 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
2342 digits
= dec_exp
+ 1;
2343 gcc_assert ((digits
+ 2) < (int)buf_size
);
2345 pten
= *real_digit (1);
2346 times_pten (&pten
, dec_exp
);
2352 digit
= rtd_divmod (&r
, &pten
);
2353 gcc_assert (digit
>= 0 && digit
<= 9);
2355 while (--digits
> 0)
2358 digit
= rtd_divmod (&r
, &pten
);
2365 /* Convert a real with an integral value to decimal float. */
2368 decimal_from_integer (REAL_VALUE_TYPE
*r
)
2372 decimal_integer_string (str
, r
, sizeof (str
) - 1);
2373 decimal_real_from_string (r
, str
);
2376 /* Returns 10**2**N. */
2378 static const REAL_VALUE_TYPE
*
2381 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2383 gcc_assert (n
>= 0);
2384 gcc_assert (n
< EXP_BITS
);
2386 if (tens
[n
].cl
== rvc_zero
)
2388 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2390 HOST_WIDE_INT t
= 10;
2393 for (i
= 0; i
< n
; ++i
)
2396 real_from_integer (&tens
[n
], VOIDmode
, t
, UNSIGNED
);
2400 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2401 do_multiply (&tens
[n
], t
, t
);
2408 /* Returns 10**(-2**N). */
2410 static const REAL_VALUE_TYPE
*
2411 ten_to_mptwo (int n
)
2413 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2415 gcc_assert (n
>= 0);
2416 gcc_assert (n
< EXP_BITS
);
2418 if (tens
[n
].cl
== rvc_zero
)
2419 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2426 static const REAL_VALUE_TYPE
*
2429 static REAL_VALUE_TYPE num
[10];
2431 gcc_assert (n
>= 0);
2432 gcc_assert (n
<= 9);
2434 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2435 real_from_integer (&num
[n
], VOIDmode
, n
, UNSIGNED
);
2440 /* Multiply R by 10**EXP. */
2443 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2445 REAL_VALUE_TYPE pten
, *rr
;
2446 bool negative
= (exp
< 0);
2452 pten
= *real_digit (1);
2458 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2460 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2463 do_divide (r
, r
, &pten
);
2466 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2468 const REAL_VALUE_TYPE
*
2471 static REAL_VALUE_TYPE value
;
2473 /* Initialize mathematical constants for constant folding builtins.
2474 These constants need to be given to at least 160 bits precision. */
2475 if (value
.cl
== rvc_zero
)
2478 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2479 mpfr_set_ui (m
, 1, MPFR_RNDN
);
2480 mpfr_exp (m
, m
, MPFR_RNDN
);
2481 real_from_mpfr (&value
, m
, NULL_TREE
, MPFR_RNDN
);
2488 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2490 #define CACHED_FRACTION(NAME, N) \
2491 const REAL_VALUE_TYPE * \
2494 static REAL_VALUE_TYPE value; \
2496 /* Initialize mathematical constants for constant folding builtins. \
2497 These constants need to be given to at least 160 bits \
2499 if (value.cl == rvc_zero) \
2500 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2504 CACHED_FRACTION (dconst_third_ptr
, 3)
2505 CACHED_FRACTION (dconst_quarter_ptr
, 4)
2506 CACHED_FRACTION (dconst_sixth_ptr
, 6)
2507 CACHED_FRACTION (dconst_ninth_ptr
, 9)
2509 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2511 const REAL_VALUE_TYPE
*
2512 dconst_sqrt2_ptr (void)
2514 static REAL_VALUE_TYPE value
;
2516 /* Initialize mathematical constants for constant folding builtins.
2517 These constants need to be given to at least 160 bits precision. */
2518 if (value
.cl
== rvc_zero
)
2521 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2522 mpfr_sqrt_ui (m
, 2, MPFR_RNDN
);
2523 real_from_mpfr (&value
, m
, NULL_TREE
, MPFR_RNDN
);
2529 /* Fills R with Inf with SIGN. */
2532 real_inf (REAL_VALUE_TYPE
*r
, bool sign
)
2537 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2538 we force a QNaN, else we force an SNaN. The string, if not empty,
2539 is parsed as a number and placed in the significand. Return true
2540 if the string was successfully parsed. */
2543 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2549 get_canonical_qnan (r
, 0);
2551 get_canonical_snan (r
, 0);
2557 memset (r
, 0, sizeof (*r
));
2560 /* Parse akin to strtol into the significand of R. */
2562 while (ISSPACE (*str
))
2566 else if (*str
== '+')
2571 if (*str
== 'x' || *str
== 'X')
2580 while ((d
= hex_value (*str
)) < base
)
2587 lshift_significand (r
, r
, 3);
2590 lshift_significand (r
, r
, 4);
2593 lshift_significand_1 (&u
, r
);
2594 lshift_significand (r
, r
, 3);
2595 add_significands (r
, r
, &u
);
2603 add_significands (r
, r
, &u
);
2608 /* Must have consumed the entire string for success. */
2612 /* Shift the significand into place such that the bits
2613 are in the most significant bits for the format. */
2614 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2616 /* Our MSB is always unset for NaNs. */
2617 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2619 /* Force quiet or signaling NaN. */
2620 r
->signalling
= !quiet
;
2626 /* Fills R with the largest finite value representable in mode MODE.
2627 If SIGN is nonzero, R is set to the most negative finite value. */
2630 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, machine_mode mode
)
2632 const struct real_format
*fmt
;
2635 fmt
= REAL_MODE_FORMAT (mode
);
2637 memset (r
, 0, sizeof (*r
));
2640 decimal_real_maxval (r
, sign
, mode
);
2645 SET_REAL_EXP (r
, fmt
->emax
);
2647 np2
= SIGNIFICAND_BITS
- fmt
->p
;
2648 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2649 clear_significand_below (r
, np2
);
2651 if (fmt
->pnan
< fmt
->p
)
2652 /* This is an IBM extended double format made up of two IEEE
2653 doubles. The value of the long double is the sum of the
2654 values of the two parts. The most significant part is
2655 required to be the value of the long double rounded to the
2656 nearest double. Rounding means we need a slightly smaller
2657 value for LDBL_MAX. */
2658 clear_significand_bit (r
, SIGNIFICAND_BITS
- fmt
->pnan
- 1);
2662 /* Fills R with 2**N. */
2665 real_2expN (REAL_VALUE_TYPE
*r
, int n
, format_helper fmt
)
2667 memset (r
, 0, sizeof (*r
));
2672 else if (n
< -MAX_EXP
)
2677 SET_REAL_EXP (r
, n
);
2678 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2680 if (fmt
.decimal_p ())
2681 decimal_real_convert (r
, fmt
, r
);
2686 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2690 bool round_up
= false;
2696 decimal_round_for_format (fmt
, r
);
2699 /* FIXME. We can come here via fp_easy_constant
2700 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2701 investigated whether this convert needs to be here, or
2702 something else is missing. */
2703 decimal_real_convert (r
, REAL_MODE_FORMAT (DFmode
), r
);
2707 emin2m1
= fmt
->emin
- 1;
2710 np2
= SIGNIFICAND_BITS
- p2
;
2714 get_zero (r
, r
->sign
);
2717 if (!fmt
->has_signed_zero
)
2722 get_inf (r
, r
->sign
);
2727 clear_significand_below (r
, np2
);
2737 /* Check the range of the exponent. If we're out of range,
2738 either underflow or overflow. */
2739 if (REAL_EXP (r
) > emax2
)
2741 else if (REAL_EXP (r
) <= emin2m1
)
2745 if (!fmt
->has_denorm
)
2747 /* Don't underflow completely until we've had a chance to round. */
2748 if (REAL_EXP (r
) < emin2m1
)
2753 diff
= emin2m1
- REAL_EXP (r
) + 1;
2757 /* De-normalize the significand. */
2758 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2759 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2763 if (!fmt
->round_towards_zero
)
2765 /* There are P2 true significand bits, followed by one guard bit,
2766 followed by one sticky bit, followed by stuff. Fold nonzero
2767 stuff into the sticky bit. */
2768 unsigned long sticky
;
2772 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2773 sticky
|= r
->sig
[i
];
2775 & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2777 guard
= test_significand_bit (r
, np2
- 1);
2778 lsb
= test_significand_bit (r
, np2
);
2780 /* Round to even. */
2781 round_up
= guard
&& (sticky
|| lsb
);
2788 set_significand_bit (&u
, np2
);
2790 if (add_significands (r
, r
, &u
))
2792 /* Overflow. Means the significand had been all ones, and
2793 is now all zeros. Need to increase the exponent, and
2794 possibly re-normalize it. */
2795 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2796 if (REAL_EXP (r
) > emax2
)
2798 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2802 /* Catch underflow that we deferred until after rounding. */
2803 if (REAL_EXP (r
) <= emin2m1
)
2806 /* Clear out trailing garbage. */
2807 clear_significand_below (r
, np2
);
2810 /* Extend or truncate to a new format. */
2813 real_convert (REAL_VALUE_TYPE
*r
, format_helper fmt
,
2814 const REAL_VALUE_TYPE
*a
)
2818 if (a
->decimal
|| fmt
->b
== 10)
2819 decimal_real_convert (r
, fmt
, a
);
2821 round_for_format (fmt
, r
);
2823 /* Make resulting NaN value to be qNaN. The caller has the
2824 responsibility to avoid the operation if flag_signaling_nans
2826 if (r
->cl
== rvc_nan
)
2829 /* round_for_format de-normalizes denormals. Undo just that part. */
2830 if (r
->cl
== rvc_normal
)
2834 /* Legacy. Likewise, except return the struct directly. */
2837 real_value_truncate (format_helper fmt
, REAL_VALUE_TYPE a
)
2840 real_convert (&r
, fmt
, &a
);
2844 /* Return true if truncating to FMT is exact. */
2847 exact_real_truncate (format_helper fmt
, const REAL_VALUE_TYPE
*a
)
2852 /* Don't allow conversion to denormals. */
2853 emin2m1
= fmt
->emin
- 1;
2854 if (REAL_EXP (a
) <= emin2m1
)
2857 /* After conversion to the new format, the value must be identical. */
2858 real_convert (&t
, fmt
, a
);
2859 return real_identical (&t
, a
);
2862 /* Write R to the given target format. Place the words of the result
2863 in target word order in BUF. There are always 32 bits in each
2864 long, no matter the size of the host long.
2866 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2869 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2876 round_for_format (fmt
, &r
);
2880 (*fmt
->encode
) (fmt
, buf
, &r
);
2885 /* Read R from the given target format. Read the words of the result
2886 in target word order in BUF. There are always 32 bits in each
2887 long, no matter the size of the host long. */
2890 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, format_helper fmt
)
2892 (*fmt
->decode
) (fmt
, r
, buf
);
2895 /* Return the number of bits of the largest binary value that the
2896 significand of FMT will hold. */
2897 /* ??? Legacy. Should get access to real_format directly. */
2900 significand_size (format_helper fmt
)
2907 /* Return the size in bits of the largest binary value that can be
2908 held by the decimal coefficient for this format. This is one more
2909 than the number of bits required to hold the largest coefficient
2911 double log2_10
= 3.3219281;
2912 return fmt
->p
* log2_10
;
2917 /* Return a hash value for the given real value. */
2918 /* ??? The "unsigned int" return value is intended to be hashval_t,
2919 but I didn't want to pull hashtab.h into real.h. */
2922 real_hash (const REAL_VALUE_TYPE
*r
)
2927 h
= r
->cl
| (r
->sign
<< 2);
2935 h
|= (unsigned int)REAL_EXP (r
) << 3;
2940 h
^= (unsigned int)-1;
2949 if (sizeof (unsigned long) > sizeof (unsigned int))
2950 for (i
= 0; i
< SIGSZ
; ++i
)
2952 unsigned long s
= r
->sig
[i
];
2953 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2956 for (i
= 0; i
< SIGSZ
; ++i
)
2962 /* IEEE single-precision format. */
2964 static void encode_ieee_single (const struct real_format
*fmt
,
2965 long *, const REAL_VALUE_TYPE
*);
2966 static void decode_ieee_single (const struct real_format
*,
2967 REAL_VALUE_TYPE
*, const long *);
2970 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2971 const REAL_VALUE_TYPE
*r
)
2973 unsigned long image
, sig
, exp
;
2974 unsigned long sign
= r
->sign
;
2977 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2988 image
|= 0x7fffffff;
2995 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 22) - 1 : 0);
2996 if (r
->signalling
== fmt
->qnan_msb_set
)
3007 image
|= 0x7fffffff;
3011 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3012 whereas the intermediate representation is 0.F x 2**exp.
3013 Which means we're off by one. */
3014 if (real_isdenormal (r
))
3017 exp
= REAL_EXP (r
) + 127 - 1;
3030 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3033 unsigned long image
= buf
[0] & 0xffffffff;
3034 bool sign
= (image
>> 31) & 1;
3035 int exp
= (image
>> 23) & 0xff;
3037 memset (r
, 0, sizeof (*r
));
3038 image
<<= HOST_BITS_PER_LONG
- 24;
3043 if (image
&& fmt
->has_denorm
)
3047 SET_REAL_EXP (r
, -126);
3048 r
->sig
[SIGSZ
-1] = image
<< 1;
3051 else if (fmt
->has_signed_zero
)
3054 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
3060 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
3061 ^ fmt
->qnan_msb_set
);
3062 r
->sig
[SIGSZ
-1] = image
;
3074 SET_REAL_EXP (r
, exp
- 127 + 1);
3075 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
3079 const struct real_format ieee_single_format
=
3102 const struct real_format mips_single_format
=
3125 const struct real_format motorola_single_format
=
3148 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3149 single precision with the following differences:
3150 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3152 - NaNs are not supported.
3153 - The range of non-zero numbers in binary is
3154 (001)[1.]000...000 to (255)[1.]111...111.
3155 - Denormals can be represented, but are treated as +0.0 when
3156 used as an operand and are never generated as a result.
3157 - -0.0 can be represented, but a zero result is always +0.0.
3158 - the only supported rounding mode is trunction (towards zero). */
3159 const struct real_format spu_single_format
=
3182 /* IEEE double-precision format. */
3184 static void encode_ieee_double (const struct real_format
*fmt
,
3185 long *, const REAL_VALUE_TYPE
*);
3186 static void decode_ieee_double (const struct real_format
*,
3187 REAL_VALUE_TYPE
*, const long *);
3190 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
3191 const REAL_VALUE_TYPE
*r
)
3193 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
3194 unsigned long sign
= r
->sign
;
3196 image_hi
= sign
<< 31;
3199 if (HOST_BITS_PER_LONG
== 64)
3201 sig_hi
= r
->sig
[SIGSZ
-1];
3202 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
3203 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
3207 sig_hi
= r
->sig
[SIGSZ
-1];
3208 sig_lo
= r
->sig
[SIGSZ
-2];
3209 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
3210 sig_hi
= (sig_hi
>> 11) & 0xfffff;
3220 image_hi
|= 2047 << 20;
3223 image_hi
|= 0x7fffffff;
3224 image_lo
= 0xffffffff;
3233 if (fmt
->canonical_nan_lsbs_set
)
3235 sig_hi
= (1 << 19) - 1;
3236 sig_lo
= 0xffffffff;
3244 if (r
->signalling
== fmt
->qnan_msb_set
)
3245 sig_hi
&= ~(1 << 19);
3248 if (sig_hi
== 0 && sig_lo
== 0)
3251 image_hi
|= 2047 << 20;
3257 image_hi
|= 0x7fffffff;
3258 image_lo
= 0xffffffff;
3263 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3264 whereas the intermediate representation is 0.F x 2**exp.
3265 Which means we're off by one. */
3266 if (real_isdenormal (r
))
3269 exp
= REAL_EXP (r
) + 1023 - 1;
3270 image_hi
|= exp
<< 20;
3279 if (FLOAT_WORDS_BIG_ENDIAN
)
3280 buf
[0] = image_hi
, buf
[1] = image_lo
;
3282 buf
[0] = image_lo
, buf
[1] = image_hi
;
3286 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3289 unsigned long image_hi
, image_lo
;
3293 if (FLOAT_WORDS_BIG_ENDIAN
)
3294 image_hi
= buf
[0], image_lo
= buf
[1];
3296 image_lo
= buf
[0], image_hi
= buf
[1];
3297 image_lo
&= 0xffffffff;
3298 image_hi
&= 0xffffffff;
3300 sign
= (image_hi
>> 31) & 1;
3301 exp
= (image_hi
>> 20) & 0x7ff;
3303 memset (r
, 0, sizeof (*r
));
3305 image_hi
<<= 32 - 21;
3306 image_hi
|= image_lo
>> 21;
3307 image_hi
&= 0x7fffffff;
3308 image_lo
<<= 32 - 21;
3312 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
3316 SET_REAL_EXP (r
, -1022);
3317 if (HOST_BITS_PER_LONG
== 32)
3319 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
3321 r
->sig
[SIGSZ
-1] = image_hi
;
3322 r
->sig
[SIGSZ
-2] = image_lo
;
3326 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
3327 r
->sig
[SIGSZ
-1] = image_hi
;
3331 else if (fmt
->has_signed_zero
)
3334 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
3336 if (image_hi
|| image_lo
)
3340 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3341 if (HOST_BITS_PER_LONG
== 32)
3343 r
->sig
[SIGSZ
-1] = image_hi
;
3344 r
->sig
[SIGSZ
-2] = image_lo
;
3347 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
3359 SET_REAL_EXP (r
, exp
- 1023 + 1);
3360 if (HOST_BITS_PER_LONG
== 32)
3362 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
3363 r
->sig
[SIGSZ
-2] = image_lo
;
3366 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
3370 const struct real_format ieee_double_format
=
3393 const struct real_format mips_double_format
=
3416 const struct real_format motorola_double_format
=
3439 /* IEEE extended real format. This comes in three flavors: Intel's as
3440 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3441 12- and 16-byte images may be big- or little endian; Motorola's is
3442 always big endian. */
3444 /* Helper subroutine which converts from the internal format to the
3445 12-byte little-endian Intel format. Functions below adjust this
3446 for the other possible formats. */
3448 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3449 const REAL_VALUE_TYPE
*r
)
3451 unsigned long image_hi
, sig_hi
, sig_lo
;
3453 image_hi
= r
->sign
<< 15;
3454 sig_hi
= sig_lo
= 0;
3466 /* Intel requires the explicit integer bit to be set, otherwise
3467 it considers the value a "pseudo-infinity". Motorola docs
3468 say it doesn't care. */
3469 sig_hi
= 0x80000000;
3474 sig_lo
= sig_hi
= 0xffffffff;
3484 if (fmt
->canonical_nan_lsbs_set
)
3486 sig_hi
= (1 << 30) - 1;
3487 sig_lo
= 0xffffffff;
3490 else if (HOST_BITS_PER_LONG
== 32)
3492 sig_hi
= r
->sig
[SIGSZ
-1];
3493 sig_lo
= r
->sig
[SIGSZ
-2];
3497 sig_lo
= r
->sig
[SIGSZ
-1];
3498 sig_hi
= sig_lo
>> 31 >> 1;
3499 sig_lo
&= 0xffffffff;
3501 if (r
->signalling
== fmt
->qnan_msb_set
)
3502 sig_hi
&= ~(1 << 30);
3505 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3508 /* Intel requires the explicit integer bit to be set, otherwise
3509 it considers the value a "pseudo-nan". Motorola docs say it
3511 sig_hi
|= 0x80000000;
3516 sig_lo
= sig_hi
= 0xffffffff;
3522 int exp
= REAL_EXP (r
);
3524 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3525 whereas the intermediate representation is 0.F x 2**exp.
3526 Which means we're off by one.
3528 Except for Motorola, which consider exp=0 and explicit
3529 integer bit set to continue to be normalized. In theory
3530 this discrepancy has been taken care of by the difference
3531 in fmt->emin in round_for_format. */
3533 if (real_isdenormal (r
))
3538 gcc_assert (exp
>= 0);
3542 if (HOST_BITS_PER_LONG
== 32)
3544 sig_hi
= r
->sig
[SIGSZ
-1];
3545 sig_lo
= r
->sig
[SIGSZ
-2];
3549 sig_lo
= r
->sig
[SIGSZ
-1];
3550 sig_hi
= sig_lo
>> 31 >> 1;
3551 sig_lo
&= 0xffffffff;
3560 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3563 /* Convert from the internal format to the 12-byte Motorola format
3564 for an IEEE extended real. */
3566 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3567 const REAL_VALUE_TYPE
*r
)
3570 encode_ieee_extended (fmt
, intermed
, r
);
3572 if (r
->cl
== rvc_inf
)
3573 /* For infinity clear the explicit integer bit again, so that the
3574 format matches the canonical infinity generated by the FPU. */
3577 /* Motorola chips are assumed always to be big-endian. Also, the
3578 padding in a Motorola extended real goes between the exponent and
3579 the mantissa. At this point the mantissa is entirely within
3580 elements 0 and 1 of intermed, and the exponent entirely within
3581 element 2, so all we have to do is swap the order around, and
3582 shift element 2 left 16 bits. */
3583 buf
[0] = intermed
[2] << 16;
3584 buf
[1] = intermed
[1];
3585 buf
[2] = intermed
[0];
3588 /* Convert from the internal format to the 12-byte Intel format for
3589 an IEEE extended real. */
3591 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3592 const REAL_VALUE_TYPE
*r
)
3594 if (FLOAT_WORDS_BIG_ENDIAN
)
3596 /* All the padding in an Intel-format extended real goes at the high
3597 end, which in this case is after the mantissa, not the exponent.
3598 Therefore we must shift everything down 16 bits. */
3600 encode_ieee_extended (fmt
, intermed
, r
);
3601 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3602 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3603 buf
[2] = (intermed
[0] << 16);
3606 /* encode_ieee_extended produces what we want directly. */
3607 encode_ieee_extended (fmt
, buf
, r
);
3610 /* Convert from the internal format to the 16-byte Intel format for
3611 an IEEE extended real. */
3613 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3614 const REAL_VALUE_TYPE
*r
)
3616 /* All the padding in an Intel-format extended real goes at the high end. */
3617 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3621 /* As above, we have a helper function which converts from 12-byte
3622 little-endian Intel format to internal format. Functions below
3623 adjust for the other possible formats. */
3625 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3628 unsigned long image_hi
, sig_hi
, sig_lo
;
3632 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3633 sig_lo
&= 0xffffffff;
3634 sig_hi
&= 0xffffffff;
3635 image_hi
&= 0xffffffff;
3637 sign
= (image_hi
>> 15) & 1;
3638 exp
= image_hi
& 0x7fff;
3640 memset (r
, 0, sizeof (*r
));
3644 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3649 /* When the IEEE format contains a hidden bit, we know that
3650 it's zero at this point, and so shift up the significand
3651 and decrease the exponent to match. In this case, Motorola
3652 defines the explicit integer bit to be valid, so we don't
3653 know whether the msb is set or not. */
3654 SET_REAL_EXP (r
, fmt
->emin
);
3655 if (HOST_BITS_PER_LONG
== 32)
3657 r
->sig
[SIGSZ
-1] = sig_hi
;
3658 r
->sig
[SIGSZ
-2] = sig_lo
;
3661 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3665 else if (fmt
->has_signed_zero
)
3668 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3670 /* See above re "pseudo-infinities" and "pseudo-nans".
3671 Short summary is that the MSB will likely always be
3672 set, and that we don't care about it. */
3673 sig_hi
&= 0x7fffffff;
3675 if (sig_hi
|| sig_lo
)
3679 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3680 if (HOST_BITS_PER_LONG
== 32)
3682 r
->sig
[SIGSZ
-1] = sig_hi
;
3683 r
->sig
[SIGSZ
-2] = sig_lo
;
3686 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3698 SET_REAL_EXP (r
, exp
- 16383 + 1);
3699 if (HOST_BITS_PER_LONG
== 32)
3701 r
->sig
[SIGSZ
-1] = sig_hi
;
3702 r
->sig
[SIGSZ
-2] = sig_lo
;
3705 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3709 /* Convert from the internal format to the 12-byte Motorola format
3710 for an IEEE extended real. */
3712 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3717 /* Motorola chips are assumed always to be big-endian. Also, the
3718 padding in a Motorola extended real goes between the exponent and
3719 the mantissa; remove it. */
3720 intermed
[0] = buf
[2];
3721 intermed
[1] = buf
[1];
3722 intermed
[2] = (unsigned long)buf
[0] >> 16;
3724 decode_ieee_extended (fmt
, r
, intermed
);
3727 /* Convert from the internal format to the 12-byte Intel format for
3728 an IEEE extended real. */
3730 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3733 if (FLOAT_WORDS_BIG_ENDIAN
)
3735 /* All the padding in an Intel-format extended real goes at the high
3736 end, which in this case is after the mantissa, not the exponent.
3737 Therefore we must shift everything up 16 bits. */
3740 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3741 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3742 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3744 decode_ieee_extended (fmt
, r
, intermed
);
3747 /* decode_ieee_extended produces what we want directly. */
3748 decode_ieee_extended (fmt
, r
, buf
);
3751 /* Convert from the internal format to the 16-byte Intel format for
3752 an IEEE extended real. */
3754 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3757 /* All the padding in an Intel-format extended real goes at the high end. */
3758 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3761 const struct real_format ieee_extended_motorola_format
=
3763 encode_ieee_extended_motorola
,
3764 decode_ieee_extended_motorola
,
3781 "ieee_extended_motorola"
3784 const struct real_format ieee_extended_intel_96_format
=
3786 encode_ieee_extended_intel_96
,
3787 decode_ieee_extended_intel_96
,
3804 "ieee_extended_intel_96"
3807 const struct real_format ieee_extended_intel_128_format
=
3809 encode_ieee_extended_intel_128
,
3810 decode_ieee_extended_intel_128
,
3827 "ieee_extended_intel_128"
3830 /* The following caters to i386 systems that set the rounding precision
3831 to 53 bits instead of 64, e.g. FreeBSD. */
3832 const struct real_format ieee_extended_intel_96_round_53_format
=
3834 encode_ieee_extended_intel_96
,
3835 decode_ieee_extended_intel_96
,
3852 "ieee_extended_intel_96_round_53"
3855 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3856 numbers whose sum is equal to the extended precision value. The number
3857 with greater magnitude is first. This format has the same magnitude
3858 range as an IEEE double precision value, but effectively 106 bits of
3859 significand precision. Infinity and NaN are represented by their IEEE
3860 double precision value stored in the first number, the second number is
3861 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3863 static void encode_ibm_extended (const struct real_format
*fmt
,
3864 long *, const REAL_VALUE_TYPE
*);
3865 static void decode_ibm_extended (const struct real_format
*,
3866 REAL_VALUE_TYPE
*, const long *);
3869 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3870 const REAL_VALUE_TYPE
*r
)
3872 REAL_VALUE_TYPE u
, normr
, v
;
3873 const struct real_format
*base_fmt
;
3875 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3877 /* Renormalize R before doing any arithmetic on it. */
3879 if (normr
.cl
== rvc_normal
)
3882 /* u = IEEE double precision portion of significand. */
3884 round_for_format (base_fmt
, &u
);
3885 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3887 if (u
.cl
== rvc_normal
)
3889 do_add (&v
, &normr
, &u
, 1);
3890 /* Call round_for_format since we might need to denormalize. */
3891 round_for_format (base_fmt
, &v
);
3892 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3896 /* Inf, NaN, 0 are all representable as doubles, so the
3897 least-significant part can be 0.0. */
3904 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3907 REAL_VALUE_TYPE u
, v
;
3908 const struct real_format
*base_fmt
;
3910 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3911 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3913 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3915 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3916 do_add (r
, &u
, &v
, 0);
3922 const struct real_format ibm_extended_format
=
3924 encode_ibm_extended
,
3925 decode_ibm_extended
,
3945 const struct real_format mips_extended_format
=
3947 encode_ibm_extended
,
3948 decode_ibm_extended
,
3969 /* IEEE quad precision format. */
3971 static void encode_ieee_quad (const struct real_format
*fmt
,
3972 long *, const REAL_VALUE_TYPE
*);
3973 static void decode_ieee_quad (const struct real_format
*,
3974 REAL_VALUE_TYPE
*, const long *);
3977 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3978 const REAL_VALUE_TYPE
*r
)
3980 unsigned long image3
, image2
, image1
, image0
, exp
;
3981 unsigned long sign
= r
->sign
;
3984 image3
= sign
<< 31;
3989 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3998 image3
|= 32767 << 16;
4001 image3
|= 0x7fffffff;
4002 image2
= 0xffffffff;
4003 image1
= 0xffffffff;
4004 image0
= 0xffffffff;
4011 image3
|= 32767 << 16;
4015 if (fmt
->canonical_nan_lsbs_set
)
4018 image2
= image1
= image0
= 0xffffffff;
4021 else if (HOST_BITS_PER_LONG
== 32)
4026 image3
|= u
.sig
[3] & 0xffff;
4031 image1
= image0
>> 31 >> 1;
4033 image3
|= (image2
>> 31 >> 1) & 0xffff;
4034 image0
&= 0xffffffff;
4035 image2
&= 0xffffffff;
4037 if (r
->signalling
== fmt
->qnan_msb_set
)
4041 if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
4046 image3
|= 0x7fffffff;
4047 image2
= 0xffffffff;
4048 image1
= 0xffffffff;
4049 image0
= 0xffffffff;
4054 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4055 whereas the intermediate representation is 0.F x 2**exp.
4056 Which means we're off by one. */
4057 if (real_isdenormal (r
))
4060 exp
= REAL_EXP (r
) + 16383 - 1;
4061 image3
|= exp
<< 16;
4063 if (HOST_BITS_PER_LONG
== 32)
4068 image3
|= u
.sig
[3] & 0xffff;
4073 image1
= image0
>> 31 >> 1;
4075 image3
|= (image2
>> 31 >> 1) & 0xffff;
4076 image0
&= 0xffffffff;
4077 image2
&= 0xffffffff;
4085 if (FLOAT_WORDS_BIG_ENDIAN
)
4102 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
4105 unsigned long image3
, image2
, image1
, image0
;
4109 if (FLOAT_WORDS_BIG_ENDIAN
)
4123 image0
&= 0xffffffff;
4124 image1
&= 0xffffffff;
4125 image2
&= 0xffffffff;
4127 sign
= (image3
>> 31) & 1;
4128 exp
= (image3
>> 16) & 0x7fff;
4131 memset (r
, 0, sizeof (*r
));
4135 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
4140 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
4141 if (HOST_BITS_PER_LONG
== 32)
4150 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
4151 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
4156 else if (fmt
->has_signed_zero
)
4159 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
4161 if (image3
| image2
| image1
| image0
)
4165 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
4167 if (HOST_BITS_PER_LONG
== 32)
4176 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
4177 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
4179 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
4191 SET_REAL_EXP (r
, exp
- 16383 + 1);
4193 if (HOST_BITS_PER_LONG
== 32)
4202 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
4203 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
4205 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
4206 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4210 const struct real_format ieee_quad_format
=
4233 const struct real_format mips_quad_format
=
4256 /* Descriptions of VAX floating point formats can be found beginning at
4258 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4260 The thing to remember is that they're almost IEEE, except for word
4261 order, exponent bias, and the lack of infinities, nans, and denormals.
4263 We don't implement the H_floating format here, simply because neither
4264 the VAX or Alpha ports use it. */
4266 static void encode_vax_f (const struct real_format
*fmt
,
4267 long *, const REAL_VALUE_TYPE
*);
4268 static void decode_vax_f (const struct real_format
*,
4269 REAL_VALUE_TYPE
*, const long *);
4270 static void encode_vax_d (const struct real_format
*fmt
,
4271 long *, const REAL_VALUE_TYPE
*);
4272 static void decode_vax_d (const struct real_format
*,
4273 REAL_VALUE_TYPE
*, const long *);
4274 static void encode_vax_g (const struct real_format
*fmt
,
4275 long *, const REAL_VALUE_TYPE
*);
4276 static void decode_vax_g (const struct real_format
*,
4277 REAL_VALUE_TYPE
*, const long *);
4280 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4281 const REAL_VALUE_TYPE
*r
)
4283 unsigned long sign
, exp
, sig
, image
;
4285 sign
= r
->sign
<< 15;
4295 image
= 0xffff7fff | sign
;
4299 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4300 exp
= REAL_EXP (r
) + 128;
4302 image
= (sig
<< 16) & 0xffff0000;
4316 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4317 REAL_VALUE_TYPE
*r
, const long *buf
)
4319 unsigned long image
= buf
[0] & 0xffffffff;
4320 int exp
= (image
>> 7) & 0xff;
4322 memset (r
, 0, sizeof (*r
));
4327 r
->sign
= (image
>> 15) & 1;
4328 SET_REAL_EXP (r
, exp
- 128);
4330 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
4331 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4336 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4337 const REAL_VALUE_TYPE
*r
)
4339 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4344 image0
= image1
= 0;
4349 image0
= 0xffff7fff | sign
;
4350 image1
= 0xffffffff;
4354 /* Extract the significand into straight hi:lo. */
4355 if (HOST_BITS_PER_LONG
== 64)
4357 image0
= r
->sig
[SIGSZ
-1];
4358 image1
= (image0
>> (64 - 56)) & 0xffffffff;
4359 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
4363 image0
= r
->sig
[SIGSZ
-1];
4364 image1
= r
->sig
[SIGSZ
-2];
4365 image1
= (image0
<< 24) | (image1
>> 8);
4366 image0
= (image0
>> 8) & 0xffffff;
4369 /* Rearrange the half-words of the significand to match the
4371 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
4372 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4374 /* Add the sign and exponent. */
4376 image0
|= (REAL_EXP (r
) + 128) << 7;
4383 if (FLOAT_WORDS_BIG_ENDIAN
)
4384 buf
[0] = image1
, buf
[1] = image0
;
4386 buf
[0] = image0
, buf
[1] = image1
;
4390 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4391 REAL_VALUE_TYPE
*r
, const long *buf
)
4393 unsigned long image0
, image1
;
4396 if (FLOAT_WORDS_BIG_ENDIAN
)
4397 image1
= buf
[0], image0
= buf
[1];
4399 image0
= buf
[0], image1
= buf
[1];
4400 image0
&= 0xffffffff;
4401 image1
&= 0xffffffff;
4403 exp
= (image0
>> 7) & 0xff;
4405 memset (r
, 0, sizeof (*r
));
4410 r
->sign
= (image0
>> 15) & 1;
4411 SET_REAL_EXP (r
, exp
- 128);
4413 /* Rearrange the half-words of the external format into
4414 proper ascending order. */
4415 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
4416 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4418 if (HOST_BITS_PER_LONG
== 64)
4420 image0
= (image0
<< 31 << 1) | image1
;
4423 r
->sig
[SIGSZ
-1] = image0
;
4427 r
->sig
[SIGSZ
-1] = image0
;
4428 r
->sig
[SIGSZ
-2] = image1
;
4429 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
4430 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4436 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4437 const REAL_VALUE_TYPE
*r
)
4439 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4444 image0
= image1
= 0;
4449 image0
= 0xffff7fff | sign
;
4450 image1
= 0xffffffff;
4454 /* Extract the significand into straight hi:lo. */
4455 if (HOST_BITS_PER_LONG
== 64)
4457 image0
= r
->sig
[SIGSZ
-1];
4458 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4459 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4463 image0
= r
->sig
[SIGSZ
-1];
4464 image1
= r
->sig
[SIGSZ
-2];
4465 image1
= (image0
<< 21) | (image1
>> 11);
4466 image0
= (image0
>> 11) & 0xfffff;
4469 /* Rearrange the half-words of the significand to match the
4471 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4472 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4474 /* Add the sign and exponent. */
4476 image0
|= (REAL_EXP (r
) + 1024) << 4;
4483 if (FLOAT_WORDS_BIG_ENDIAN
)
4484 buf
[0] = image1
, buf
[1] = image0
;
4486 buf
[0] = image0
, buf
[1] = image1
;
4490 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4491 REAL_VALUE_TYPE
*r
, const long *buf
)
4493 unsigned long image0
, image1
;
4496 if (FLOAT_WORDS_BIG_ENDIAN
)
4497 image1
= buf
[0], image0
= buf
[1];
4499 image0
= buf
[0], image1
= buf
[1];
4500 image0
&= 0xffffffff;
4501 image1
&= 0xffffffff;
4503 exp
= (image0
>> 4) & 0x7ff;
4505 memset (r
, 0, sizeof (*r
));
4510 r
->sign
= (image0
>> 15) & 1;
4511 SET_REAL_EXP (r
, exp
- 1024);
4513 /* Rearrange the half-words of the external format into
4514 proper ascending order. */
4515 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4516 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4518 if (HOST_BITS_PER_LONG
== 64)
4520 image0
= (image0
<< 31 << 1) | image1
;
4523 r
->sig
[SIGSZ
-1] = image0
;
4527 r
->sig
[SIGSZ
-1] = image0
;
4528 r
->sig
[SIGSZ
-2] = image1
;
4529 lshift_significand (r
, r
, 64 - 53);
4530 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4535 const struct real_format vax_f_format
=
4558 const struct real_format vax_d_format
=
4581 const struct real_format vax_g_format
=
4604 /* Encode real R into a single precision DFP value in BUF. */
4606 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4607 long *buf ATTRIBUTE_UNUSED
,
4608 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4610 encode_decimal32 (fmt
, buf
, r
);
4613 /* Decode a single precision DFP value in BUF into a real R. */
4615 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4616 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4617 const long *buf ATTRIBUTE_UNUSED
)
4619 decode_decimal32 (fmt
, r
, buf
);
4622 /* Encode real R into a double precision DFP value in BUF. */
4624 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4625 long *buf ATTRIBUTE_UNUSED
,
4626 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4628 encode_decimal64 (fmt
, buf
, r
);
4631 /* Decode a double precision DFP value in BUF into a real R. */
4633 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4634 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4635 const long *buf ATTRIBUTE_UNUSED
)
4637 decode_decimal64 (fmt
, r
, buf
);
4640 /* Encode real R into a quad precision DFP value in BUF. */
4642 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4643 long *buf ATTRIBUTE_UNUSED
,
4644 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4646 encode_decimal128 (fmt
, buf
, r
);
4649 /* Decode a quad precision DFP value in BUF into a real R. */
4651 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4652 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4653 const long *buf ATTRIBUTE_UNUSED
)
4655 decode_decimal128 (fmt
, r
, buf
);
4658 /* Single precision decimal floating point (IEEE 754). */
4659 const struct real_format decimal_single_format
=
4661 encode_decimal_single
,
4662 decode_decimal_single
,
4682 /* Double precision decimal floating point (IEEE 754). */
4683 const struct real_format decimal_double_format
=
4685 encode_decimal_double
,
4686 decode_decimal_double
,
4706 /* Quad precision decimal floating point (IEEE 754). */
4707 const struct real_format decimal_quad_format
=
4709 encode_decimal_quad
,
4710 decode_decimal_quad
,
4730 /* Encode half-precision floats. This routine is used both for the IEEE
4731 ARM alternative encodings. */
4733 encode_ieee_half (const struct real_format
*fmt
, long *buf
,
4734 const REAL_VALUE_TYPE
*r
)
4736 unsigned long image
, sig
, exp
;
4737 unsigned long sign
= r
->sign
;
4740 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 11)) & 0x3ff;
4758 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 9) - 1 : 0);
4759 if (r
->signalling
== fmt
->qnan_msb_set
)
4774 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4775 whereas the intermediate representation is 0.F x 2**exp.
4776 Which means we're off by one. */
4777 if (real_isdenormal (r
))
4780 exp
= REAL_EXP (r
) + 15 - 1;
4792 /* Decode half-precision floats. This routine is used both for the IEEE
4793 ARM alternative encodings. */
4795 decode_ieee_half (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
4798 unsigned long image
= buf
[0] & 0xffff;
4799 bool sign
= (image
>> 15) & 1;
4800 int exp
= (image
>> 10) & 0x1f;
4802 memset (r
, 0, sizeof (*r
));
4803 image
<<= HOST_BITS_PER_LONG
- 11;
4808 if (image
&& fmt
->has_denorm
)
4812 SET_REAL_EXP (r
, -14);
4813 r
->sig
[SIGSZ
-1] = image
<< 1;
4816 else if (fmt
->has_signed_zero
)
4819 else if (exp
== 31 && (fmt
->has_nans
|| fmt
->has_inf
))
4825 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
4826 ^ fmt
->qnan_msb_set
);
4827 r
->sig
[SIGSZ
-1] = image
;
4839 SET_REAL_EXP (r
, exp
- 15 + 1);
4840 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
4844 /* Encode arm_bfloat types. */
4846 encode_arm_bfloat_half (const struct real_format
*fmt
, long *buf
,
4847 const REAL_VALUE_TYPE
*r
)
4849 unsigned long image
, sig
, exp
;
4850 unsigned long sign
= r
->sign
;
4853 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 8)) & 0x7f;
4871 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 6) - 1 : 0);
4872 if (r
->signalling
== fmt
->qnan_msb_set
)
4887 if (real_isdenormal (r
))
4890 exp
= REAL_EXP (r
) + 127 - 1;
4902 /* Decode arm_bfloat types. */
4904 decode_arm_bfloat_half (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
4907 unsigned long image
= buf
[0] & 0xffff;
4908 bool sign
= (image
>> 15) & 1;
4909 int exp
= (image
>> 7) & 0xff;
4911 memset (r
, 0, sizeof (*r
));
4912 image
<<= HOST_BITS_PER_LONG
- 8;
4917 if (image
&& fmt
->has_denorm
)
4921 SET_REAL_EXP (r
, -126);
4922 r
->sig
[SIGSZ
-1] = image
<< 1;
4925 else if (fmt
->has_signed_zero
)
4928 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
4934 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
4935 ^ fmt
->qnan_msb_set
);
4936 r
->sig
[SIGSZ
-1] = image
;
4948 SET_REAL_EXP (r
, exp
- 127 + 1);
4949 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
4953 /* Half-precision format, as specified in IEEE 754R. */
4954 const struct real_format ieee_half_format
=
4977 /* ARM's alternative half-precision format, similar to IEEE but with
4978 no reserved exponent value for NaNs and infinities; rather, it just
4979 extends the range of exponents by one. */
4980 const struct real_format arm_half_format
=
5003 /* ARM Bfloat half-precision format. This format resembles a truncated
5004 (16-bit) version of the 32-bit IEEE 754 single-precision floating-point
5006 const struct real_format arm_bfloat_half_format
=
5008 encode_arm_bfloat_half
,
5009 decode_arm_bfloat_half
,
5030 /* A synthetic "format" for internal arithmetic. It's the size of the
5031 internal significand minus the two bits needed for proper rounding.
5032 The encode and decode routines exist only to satisfy our paranoia
5035 static void encode_internal (const struct real_format
*fmt
,
5036 long *, const REAL_VALUE_TYPE
*);
5037 static void decode_internal (const struct real_format
*,
5038 REAL_VALUE_TYPE
*, const long *);
5041 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
5042 const REAL_VALUE_TYPE
*r
)
5044 memcpy (buf
, r
, sizeof (*r
));
5048 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
5049 REAL_VALUE_TYPE
*r
, const long *buf
)
5051 memcpy (r
, buf
, sizeof (*r
));
5054 const struct real_format real_internal_format
=
5059 SIGNIFICAND_BITS
- 2,
5060 SIGNIFICAND_BITS
- 2,
5077 /* Calculate X raised to the integer exponent N in format FMT and store
5078 the result in R. Return true if the result may be inexact due to
5079 loss of precision. The algorithm is the classic "left-to-right binary
5080 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
5081 Algorithms", "The Art of Computer Programming", Volume 2. */
5084 real_powi (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5085 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
5087 unsigned HOST_WIDE_INT bit
;
5089 bool inexact
= false;
5101 /* Don't worry about overflow, from now on n is unsigned. */
5109 bit
= HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1);
5110 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
5114 inexact
|= do_multiply (&t
, &t
, &t
);
5116 inexact
|= do_multiply (&t
, &t
, x
);
5124 inexact
|= do_divide (&t
, &dconst1
, &t
);
5126 real_convert (r
, fmt
, &t
);
5130 /* Round X to the nearest integer not larger in absolute value, i.e.
5131 towards zero, placing the result in R in format FMT. */
5134 real_trunc (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5135 const REAL_VALUE_TYPE
*x
)
5137 do_fix_trunc (r
, x
);
5139 real_convert (r
, fmt
, r
);
5142 /* Round X to the largest integer not greater in value, i.e. round
5143 down, placing the result in R in format FMT. */
5146 real_floor (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5147 const REAL_VALUE_TYPE
*x
)
5151 do_fix_trunc (&t
, x
);
5152 if (! real_identical (&t
, x
) && x
->sign
)
5153 do_add (&t
, &t
, &dconstm1
, 0);
5155 real_convert (r
, fmt
, &t
);
5160 /* Round X to the smallest integer not less then argument, i.e. round
5161 up, placing the result in R in format FMT. */
5164 real_ceil (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5165 const REAL_VALUE_TYPE
*x
)
5169 do_fix_trunc (&t
, x
);
5170 if (! real_identical (&t
, x
) && ! x
->sign
)
5171 do_add (&t
, &t
, &dconst1
, 0);
5173 real_convert (r
, fmt
, &t
);
5178 /* Round X to the nearest integer, but round halfway cases away from
5182 real_round (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5183 const REAL_VALUE_TYPE
*x
)
5185 do_add (r
, x
, &dconsthalf
, x
->sign
);
5186 do_fix_trunc (r
, r
);
5188 real_convert (r
, fmt
, r
);
5191 /* Return true (including 0) if integer part of R is even, else return
5192 false. The function is not valid for rvc_inf and rvc_nan classes. */
5195 is_even (REAL_VALUE_TYPE
*r
)
5197 gcc_assert (r
->cl
!= rvc_inf
);
5198 gcc_assert (r
->cl
!= rvc_nan
);
5200 if (r
->cl
== rvc_zero
)
5203 /* For (-1,1), number is even. */
5204 if (REAL_EXP (r
) <= 0)
5207 /* Check lowest bit, if not set, return true. */
5208 else if (REAL_EXP (r
) <= SIGNIFICAND_BITS
)
5210 unsigned int n
= SIGNIFICAND_BITS
- REAL_EXP (r
);
5211 int w
= n
/ HOST_BITS_PER_LONG
;
5213 unsigned long num
= ((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
5215 if ((r
->sig
[w
] & num
) == 0)
5224 /* Return true if R is halfway between two integers, else return
5228 is_halfway_below (const REAL_VALUE_TYPE
*r
)
5230 if (r
->cl
!= rvc_normal
)
5233 /* For numbers (-0.5,0) and (0,0.5). */
5234 if (REAL_EXP (r
) < 0)
5237 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
5239 unsigned int n
= SIGNIFICAND_BITS
- REAL_EXP (r
) - 1;
5240 int w
= n
/ HOST_BITS_PER_LONG
;
5242 for (int i
= 0; i
< w
; ++i
)
5246 unsigned long num
= 1UL << (n
% HOST_BITS_PER_LONG
);
5248 if ((r
->sig
[w
] & num
) != 0 && (r
->sig
[w
] & (num
- 1)) == 0)
5254 /* Round X to nearest integer, rounding halfway cases towards even. */
5257 real_roundeven (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5258 const REAL_VALUE_TYPE
*x
)
5260 if (is_halfway_below (x
))
5262 /* Special case as -0.5 rounds to -0.0 and
5263 similarly +0.5 rounds to +0.0. */
5264 if (REAL_EXP (x
) == 0)
5267 clear_significand_below (r
, SIGNIFICAND_BITS
);
5271 do_add (r
, x
, &dconsthalf
, x
->sign
);
5273 do_add (r
, r
, &dconstm1
, x
->sign
);
5276 real_convert (r
, fmt
, r
);
5279 real_round (r
, fmt
, x
);
5282 /* Set the sign of R to the sign of X. */
5285 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
5290 /* Check whether the real constant value given is an integer.
5291 Returns false for signaling NaN. */
5294 real_isinteger (const REAL_VALUE_TYPE
*c
, format_helper fmt
)
5296 REAL_VALUE_TYPE cint
;
5298 real_trunc (&cint
, fmt
, c
);
5299 return real_identical (c
, &cint
);
5302 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
5303 storing it in *INT_OUT if so. */
5306 real_isinteger (const REAL_VALUE_TYPE
*c
, HOST_WIDE_INT
*int_out
)
5308 REAL_VALUE_TYPE cint
;
5310 HOST_WIDE_INT n
= real_to_integer (c
);
5311 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
5312 if (real_identical (c
, &cint
))
5320 /* Calculate nextafter (X, Y) or nexttoward (X, Y). Return true if
5321 underflow or overflow needs to be raised. */
5324 real_nextafter (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5325 const REAL_VALUE_TYPE
*x
, const REAL_VALUE_TYPE
*y
)
5327 int cmp
= do_compare (x
, y
, 2);
5328 /* If either operand is NaN, return qNaN. */
5331 get_canonical_qnan (r
, 0);
5334 /* If x == y, return y cast to target type. */
5337 real_convert (r
, fmt
, y
);
5341 if (x
->cl
== rvc_zero
)
5343 get_zero (r
, y
->sign
);
5345 SET_REAL_EXP (r
, fmt
->emin
- fmt
->p
+ 1);
5346 r
->sig
[SIGSZ
- 1] = SIG_MSB
;
5350 int np2
= SIGNIFICAND_BITS
- fmt
->p
;
5351 /* For denormals adjust np2 correspondingly. */
5352 if (x
->cl
== rvc_normal
&& REAL_EXP (x
) < fmt
->emin
)
5353 np2
+= fmt
->emin
- REAL_EXP (x
);
5356 get_zero (r
, x
->sign
);
5358 set_significand_bit (&u
, np2
);
5360 SET_REAL_EXP (r
, REAL_EXP (x
));
5362 if (x
->cl
== rvc_inf
)
5364 bool borrow
= sub_significands (r
, r
, &u
, 0);
5365 gcc_assert (borrow
);
5366 SET_REAL_EXP (r
, fmt
->emax
);
5368 else if (cmp
== (x
->sign
? 1 : -1))
5370 if (add_significands (r
, x
, &u
))
5372 /* Overflow. Means the significand had been all ones, and
5373 is now all zeros. Need to increase the exponent, and
5374 possibly re-normalize it. */
5375 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
5376 if (REAL_EXP (r
) > fmt
->emax
)
5378 get_inf (r
, x
->sign
);
5381 r
->sig
[SIGSZ
- 1] = SIG_MSB
;
5386 if (REAL_EXP (x
) > fmt
->emin
&& x
->sig
[SIGSZ
- 1] == SIG_MSB
)
5389 for (i
= SIGSZ
- 2; i
>= 0; i
--)
5394 /* When mantissa is 1.0, we need to subtract only
5395 half of u: nextafter (1.0, 0.0) is 1.0 - __DBL_EPSILON__ / 2
5396 rather than 1.0 - __DBL_EPSILON__. */
5397 clear_significand_bit (&u
, np2
);
5399 set_significand_bit (&u
, np2
);
5402 sub_significands (r
, x
, &u
, 0);
5405 /* Clear out trailing garbage. */
5406 clear_significand_below (r
, np2
);
5408 if (REAL_EXP (r
) <= fmt
->emin
- fmt
->p
)
5410 get_zero (r
, x
->sign
);
5413 return r
->cl
== rvc_zero
|| REAL_EXP (r
) < fmt
->emin
;
5416 /* Write into BUF the maximum representable finite floating-point
5417 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5418 float string. LEN is the size of BUF, and the buffer must be large
5419 enough to contain the resulting string. If NORM_MAX, instead write
5420 the maximum representable finite normalized floating-point number,
5421 defined to be such that all choices of digits for that exponent are
5422 representable in the format (this only makes a difference for IBM
5426 get_max_float (const struct real_format
*fmt
, char *buf
, size_t len
,
5431 bool is_ibm_extended
= fmt
->pnan
< fmt
->p
;
5433 strcpy (buf
, "0x0.");
5435 for (i
= 0, p
= buf
+ 4; i
+ 3 < n
; i
+= 4)
5438 *p
++ = "08ce"[n
- i
];
5440 (is_ibm_extended
&& norm_max
) ? fmt
->emax
- 1 : fmt
->emax
);
5441 if (is_ibm_extended
&& !norm_max
)
5443 /* This is an IBM extended double format made up of two IEEE
5444 doubles. The value of the long double is the sum of the
5445 values of the two parts. The most significant part is
5446 required to be the value of the long double rounded to the
5447 nearest double. Rounding means we need a slightly smaller
5448 value for LDBL_MAX. */
5449 buf
[4 + fmt
->pnan
/ 4] = "7bde"[fmt
->pnan
% 4];
5452 gcc_assert (strlen (buf
) < len
);
5455 /* True if all values of integral type can be represented
5456 by this floating-point type exactly. */
5458 bool format_helper::can_represent_integral_type_p (tree type
) const
5460 gcc_assert (! decimal_p () && INTEGRAL_TYPE_P (type
));
5462 /* INT?_MIN is power-of-two so it takes
5463 only one mantissa bit. */
5464 bool signed_p
= TYPE_SIGN (type
) == SIGNED
;
5465 return TYPE_PRECISION (type
) - signed_p
<= significand_size (*this);
5468 /* True if mode M has a NaN representation and
5469 the treatment of NaN operands is important. */
5472 HONOR_NANS (machine_mode m
)
5474 return MODE_HAS_NANS (m
) && !flag_finite_math_only
;
5478 HONOR_NANS (const_tree t
)
5480 return HONOR_NANS (element_mode (t
));
5484 HONOR_NANS (const_rtx x
)
5486 return HONOR_NANS (GET_MODE (x
));
5489 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5492 HONOR_SNANS (machine_mode m
)
5494 return flag_signaling_nans
&& HONOR_NANS (m
);
5498 HONOR_SNANS (const_tree t
)
5500 return HONOR_SNANS (element_mode (t
));
5504 HONOR_SNANS (const_rtx x
)
5506 return HONOR_SNANS (GET_MODE (x
));
5509 /* As for HONOR_NANS, but true if the mode can represent infinity and
5510 the treatment of infinite values is important. */
5513 HONOR_INFINITIES (machine_mode m
)
5515 return MODE_HAS_INFINITIES (m
) && !flag_finite_math_only
;
5519 HONOR_INFINITIES (const_tree t
)
5521 return HONOR_INFINITIES (element_mode (t
));
5525 HONOR_INFINITIES (const_rtx x
)
5527 return HONOR_INFINITIES (GET_MODE (x
));
5530 /* Like HONOR_NANS, but true if the given mode distinguishes between
5531 positive and negative zero, and the sign of zero is important. */
5534 HONOR_SIGNED_ZEROS (machine_mode m
)
5536 return MODE_HAS_SIGNED_ZEROS (m
) && flag_signed_zeros
;
5540 HONOR_SIGNED_ZEROS (const_tree t
)
5542 return HONOR_SIGNED_ZEROS (element_mode (t
));
5546 HONOR_SIGNED_ZEROS (const_rtx x
)
5548 return HONOR_SIGNED_ZEROS (GET_MODE (x
));
5551 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5552 and the rounding mode is important. */
5555 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m
)
5557 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m
) && flag_rounding_math
;
5561 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t
)
5563 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t
));
5567 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x
)
5569 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x
));
5572 /* Fills r with the largest value such that 1 + r*r won't overflow.
5573 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
5576 build_sinatan_real (REAL_VALUE_TYPE
* r
, tree type
)
5578 REAL_VALUE_TYPE maxval
;
5579 mpfr_t mpfr_const1
, mpfr_c
, mpfr_maxval
;
5580 machine_mode mode
= TYPE_MODE (type
);
5581 const struct real_format
* fmt
= REAL_MODE_FORMAT (mode
);
5583 real_maxval (&maxval
, 0, mode
);
5585 mpfr_inits (mpfr_const1
, mpfr_c
, mpfr_maxval
, NULL
);
5587 mpfr_from_real (mpfr_const1
, &dconst1
, MPFR_RNDN
);
5588 mpfr_from_real (mpfr_maxval
, &maxval
, MPFR_RNDN
);
5590 mpfr_sub (mpfr_c
, mpfr_maxval
, mpfr_const1
, MPFR_RNDN
);
5591 mpfr_sqrt (mpfr_c
, mpfr_c
, MPFR_RNDZ
);
5593 real_from_mpfr (r
, mpfr_c
, fmt
, MPFR_RNDZ
);
5595 mpfr_clears (mpfr_const1
, mpfr_c
, mpfr_maxval
, NULL
);