1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2023 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
29 #include "coretypes.h"
36 #include "fold-const.h"
37 #include "gimple-iterator.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
42 #include "tree-into-ssa.h"
45 #include "tree-data-ref.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-pass.h"
48 #include "tree-ssa-propagate.h"
49 #include "gimple-pretty-print.h"
60 set_dump_file (FILE *f
)
66 friend debug_printer
&
67 operator<< (debug_printer
&output
, int i
)
69 fprintf (output
.dump_file
, "%d", i
);
73 friend debug_printer
&
74 operator<< (debug_printer
&output
, const char *s
)
76 fprintf (output
.dump_file
, "%s", s
);
80 friend debug_printer
&
81 operator<< (debug_printer
&output
, gimple
* stmt
)
83 print_gimple_stmt (output
.dump_file
, stmt
, 0, TDF_VOPS
| TDF_MEMSYMS
);
87 friend debug_printer
&
88 operator<< (debug_printer
&output
, tree t
)
90 print_generic_expr (output
.dump_file
, t
, TDF_SLIM
);
95 #define DEBUG_PRINT(args) do \
97 if (dump_file && (dump_flags & TDF_DETAILS)) { args; } \
100 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
101 different colors. If there are not enough colors, paint the
102 remaining SCoPs in gray.
105 - "*" after the node number denotes the entry of a SCoP,
106 - "#" after the node number denotes the exit of a SCoP,
107 - "()" around the node number denotes the entry or the
108 exit nodes of the SCOP. These are not part of SCoP. */
111 dot_all_sese (FILE *file
, vec
<sese_l
>& scops
)
113 /* Disable debugging while printing graph. */
114 dump_flags_t tmp_dump_flags
= dump_flags
;
115 dump_flags
= TDF_NONE
;
117 fprintf (file
, "digraph all {\n");
120 FOR_ALL_BB_FN (bb
, cfun
)
122 int part_of_scop
= false;
124 /* Use HTML for every bb label. So we are able to print bbs
125 which are part of two different SCoPs, with two different
126 background colors. */
127 fprintf (file
, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
129 fprintf (file
, "CELLSPACING=\"0\">\n");
131 /* Select color for SCoP. */
134 FOR_EACH_VEC_ELT (scops
, i
, region
)
136 bool sese_in_region
= bb_in_sese_p (bb
, *region
);
137 if (sese_in_region
|| (region
->exit
->dest
== bb
)
138 || (region
->entry
->dest
== bb
))
198 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
202 fprintf (file
, " (");
204 if (bb
== region
->entry
->dest
&& bb
== region
->exit
->dest
)
205 fprintf (file
, " %d*# ", bb
->index
);
206 else if (bb
== region
->entry
->dest
)
207 fprintf (file
, " %d* ", bb
->index
);
208 else if (bb
== region
->exit
->dest
)
209 fprintf (file
, " %d# ", bb
->index
);
211 fprintf (file
, " %d ", bb
->index
);
213 fprintf (file
, "{lp_%d}", bb
->loop_father
->num
);
218 fprintf (file
, "</TD></TR>\n");
225 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
226 fprintf (file
, " %d {lp_%d} </TD></TR>\n", bb
->index
,
227 bb
->loop_father
->num
);
229 fprintf (file
, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
232 FOR_ALL_BB_FN (bb
, cfun
)
236 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
237 fprintf (file
, "%d -> %d;\n", bb
->index
, e
->dest
->index
);
240 fputs ("}\n\n", file
);
242 /* Enable debugging again. */
243 dump_flags
= tmp_dump_flags
;
246 /* Display SCoP on stderr. */
249 dot_sese (sese_l
& scop
)
255 scops
.safe_push (scop
);
257 dot_all_sese (stderr
, scops
);
267 dot_all_sese (stderr
, scops
);
271 /* Returns a COND_EXPR statement when BB has a single predecessor, the
272 edge between BB and its predecessor is not a loop exit edge, and
273 the last statement of the single predecessor is a COND_EXPR. */
276 single_pred_cond_non_loop_exit (basic_block bb
)
278 if (single_pred_p (bb
))
280 edge e
= single_pred_edge (bb
);
281 basic_block pred
= e
->src
;
284 if (loop_depth (pred
->loop_father
) > loop_depth (bb
->loop_father
))
287 stmt
= last_stmt (pred
);
289 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
290 return as_a
<gcond
*> (stmt
);
299 /* Build the maximal scop containing LOOPs and add it to SCOPS. */
304 scop_detection () : scops (vNULL
) {}
311 /* A marker for invalid sese_l. */
312 static sese_l invalid_sese
;
314 /* Return the SCOPS in this SCOP_DETECTION. */
322 /* Return an sese_l around the LOOP. */
324 sese_l
get_sese (loop_p loop
);
326 /* Merge scops at same loop depth and returns the new sese.
327 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
329 sese_l
merge_sese (sese_l first
, sese_l second
) const;
331 /* Build scop outer->inner if possible. */
333 void build_scop_depth (loop_p loop
);
335 /* Return true when BEGIN is the preheader edge of a loop with a single exit
338 static bool region_has_one_loop (sese_l s
);
340 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
342 void add_scop (sese_l s
);
344 /* Returns true if S1 subsumes/surrounds S2. */
345 static bool subsumes (sese_l s1
, sese_l s2
);
347 /* Remove a SCoP which is subsumed by S1. */
348 void remove_subscops (sese_l s1
);
350 /* Returns true if S1 intersects with S2. Since we already know that S1 does
351 not subsume S2 or vice-versa, we only check for entry bbs. */
353 static bool intersects (sese_l s1
, sese_l s2
);
355 /* Remove one of the scops when it intersects with any other. */
357 void remove_intersecting_scops (sese_l s1
);
359 /* Return true when a statement in SCOP cannot be represented by Graphite. */
361 bool harmful_loop_in_region (sese_l scop
) const;
363 /* Return true only when STMT is simple enough for being handled by Graphite.
364 This depends on SCOP, as the parameters are initialized relatively to
365 this basic block, the linear functions are initialized based on the
366 outermost loop containing STMT inside the SCOP. BB is the place where we
367 try to evaluate the STMT. */
369 bool stmt_simple_for_scop_p (sese_l scop
, gimple
*stmt
,
370 basic_block bb
) const;
372 /* Something like "n * m" is not allowed. */
374 static bool graphite_can_represent_init (tree e
);
376 /* Return true when SCEV can be represented in the polyhedral model.
378 An expression can be represented, if it can be expressed as an
379 affine expression. For loops (i, j) and parameters (m, n) all
380 affine expressions are of the form:
382 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
384 1 i + 20 j + (-2) m + 25
386 Something like "i * n" or "n * m" is not allowed. */
388 static bool graphite_can_represent_scev (sese_l scop
, tree scev
);
390 /* Return true when EXPR can be represented in the polyhedral model.
392 This means an expression can be represented, if it is linear with respect
393 to the loops and the strides are non parametric. LOOP is the place where
394 the expr will be evaluated. SCOP defines the region we analyse. */
396 static bool graphite_can_represent_expr (sese_l scop
, loop_p loop
,
399 /* Return true if the data references of STMT can be represented by Graphite.
400 We try to analyze the data references in a loop contained in the SCOP. */
402 static bool stmt_has_simple_data_refs_p (sese_l scop
, gimple
*stmt
);
404 /* Remove the close phi node at GSI and replace its rhs with the rhs
407 static void remove_duplicate_close_phi (gphi
*phi
, gphi_iterator
*gsi
);
409 /* Returns true when Graphite can represent LOOP in SCOP.
410 FIXME: For the moment, graphite cannot be used on loops that iterate using
411 induction variables that wrap. */
413 static bool can_represent_loop (loop_p loop
, sese_l scop
);
415 /* Returns the number of pbbs that are in loops contained in SCOP. */
417 static int nb_pbbs_in_loops (scop_p scop
);
423 sese_l
scop_detection::invalid_sese (NULL
, NULL
);
425 /* Return an sese_l around the LOOP. */
428 scop_detection::get_sese (loop_p loop
)
433 edge scop_begin
= loop_preheader_edge (loop
);
434 edge scop_end
= single_exit (loop
);
435 if (!scop_end
|| (scop_end
->flags
& (EDGE_COMPLEX
|EDGE_FAKE
)))
438 return sese_l (scop_begin
, scop_end
);
441 /* Merge scops at same loop depth and returns the new sese.
442 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
445 scop_detection::merge_sese (sese_l first
, sese_l second
) const
447 /* In the trivial case first/second may be NULL. */
453 DEBUG_PRINT (dp
<< "[scop-detection] try merging sese s1: ";
454 print_sese (dump_file
, first
);
455 dp
<< "[scop-detection] try merging sese s2: ";
456 print_sese (dump_file
, second
));
458 auto_bitmap worklist
, in_sese_region
;
459 bitmap_set_bit (worklist
, get_entry_bb (first
)->index
);
460 bitmap_set_bit (worklist
, get_exit_bb (first
)->index
);
461 bitmap_set_bit (worklist
, get_entry_bb (second
)->index
);
462 bitmap_set_bit (worklist
, get_exit_bb (second
)->index
);
463 edge entry
= NULL
, exit
= NULL
;
465 /* We can optimize the case of adding a loop entry dest or exit
466 src to the worklist (for single-exit loops) by skipping
467 directly to the exit dest / entry src. in_sese_region
468 doesn't have to cover all blocks in the region but merely
469 its border it acts more like a visited bitmap. */
472 int index
= bitmap_first_set_bit (worklist
);
473 bitmap_clear_bit (worklist
, index
);
474 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, index
);
478 /* With fake exit edges we can end up with no possible exit. */
479 if (index
== EXIT_BLOCK
)
481 DEBUG_PRINT (dp
<< "[scop-detection-fail] cannot merge seses.\n");
485 bitmap_set_bit (in_sese_region
, bb
->index
);
487 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
488 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
491 || dominated_by_p (CDI_DOMINATORS
, entry
->dest
, bb
)))
494 && ! bitmap_bit_p (in_sese_region
, entry
->src
->index
))
495 bitmap_set_bit (worklist
, entry
->src
->index
);
498 else if (! bitmap_bit_p (in_sese_region
, e
->src
->index
))
499 bitmap_set_bit (worklist
, e
->src
->index
);
501 basic_block pdom
= get_immediate_dominator (CDI_POST_DOMINATORS
, bb
);
502 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
505 || dominated_by_p (CDI_POST_DOMINATORS
, exit
->src
, bb
)))
508 && ! bitmap_bit_p (in_sese_region
, exit
->dest
->index
))
509 bitmap_set_bit (worklist
, exit
->dest
->index
);
512 else if (! bitmap_bit_p (in_sese_region
, e
->dest
->index
))
513 bitmap_set_bit (worklist
, e
->dest
->index
);
515 while (! bitmap_empty_p (worklist
));
517 sese_l
combined (entry
, exit
);
519 DEBUG_PRINT (dp
<< "[merged-sese] s1: "; print_sese (dump_file
, combined
));
524 /* Print the loop numbers of the loops contained in SESE to FILE. */
527 print_sese_loop_numbers (FILE *file
, sese_l sese
)
529 bool first_loop
= true;
530 for (loop_p nest
= sese
.entry
->dest
->loop_father
; nest
; nest
= nest
->next
)
532 if (!loop_in_sese_p (nest
, sese
))
535 for (auto loop
: loops_list (cfun
, LI_INCLUDE_ROOT
, nest
))
537 gcc_assert (loop_in_sese_p (loop
, sese
));
539 fprintf (file
, "%s%d", first_loop
? "" : ", ", loop
->num
);
545 /* Build scop outer->inner if possible. */
548 scop_detection::build_scop_depth (loop_p loop
)
550 sese_l s
= invalid_sese
;
554 sese_l next
= get_sese (loop
);
556 || harmful_loop_in_region (next
))
559 DEBUG_PRINT (dp
<< "[scop-detection] Discarding SCoP on loops ";
560 print_sese_loop_numbers (dump_file
, next
);
561 dp
<< " because of harmful loops\n");
564 build_scop_depth (loop
);
571 sese_l combined
= merge_sese (s
, next
);
573 || harmful_loop_in_region (combined
))
587 /* Returns true when Graphite can represent LOOP in SCOP.
588 FIXME: For the moment, graphite cannot be used on loops that iterate using
589 induction variables that wrap. */
592 scop_detection::can_represent_loop (loop_p loop
, sese_l scop
)
595 struct tree_niter_desc niter_desc
;
597 /* We can only handle do {} while () style loops correctly. */
598 edge exit
= single_exit (loop
);
600 || !single_pred_p (loop
->latch
)
601 || exit
->src
!= single_pred (loop
->latch
)
602 || !empty_block_p (loop
->latch
))
604 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] Loop shape unsupported.\n");
608 bool edge_irreducible
= (loop_preheader_edge (loop
)->flags
609 & EDGE_IRREDUCIBLE_LOOP
);
610 if (edge_irreducible
)
612 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] "
613 "Loop is not a natural loop.\n");
617 bool niter_is_unconditional
= number_of_iterations_exit (loop
,
621 if (!niter_is_unconditional
)
623 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] "
624 "Loop niter not unconditional.\n"
625 "Condition: " << niter_desc
.assumptions
<< "\n");
629 niter
= number_of_latch_executions (loop
);
632 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] Loop niter unknown.\n");
635 if (!niter_desc
.control
.no_overflow
)
637 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] Loop niter can overflow.\n");
641 bool undetermined_coefficients
= chrec_contains_undetermined (niter
);
642 if (undetermined_coefficients
)
644 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] "
645 "Loop niter chrec contains undetermined "
650 bool can_represent_expr
= graphite_can_represent_expr (scop
, loop
, niter
);
651 if (!can_represent_expr
)
653 DEBUG_PRINT (dp
<< "[can_represent_loop-fail] "
654 << "Loop niter expression cannot be represented: "
662 /* Return true when BEGIN is the preheader edge of a loop with a single exit
666 scop_detection::region_has_one_loop (sese_l s
)
668 edge begin
= s
.entry
;
670 /* Check for a single perfectly nested loop. */
671 if (begin
->dest
->loop_father
->inner
)
674 /* Otherwise, check whether we have adjacent loops. */
675 return (single_pred_p (end
->src
)
676 && begin
->dest
->loop_father
== single_pred (end
->src
)->loop_father
);
679 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
682 scop_detection::add_scop (sese_l s
)
686 /* If the exit edge is fake discard the SCoP for now as we're removing the
687 fake edges again after analysis. */
688 if (s
.exit
->flags
& EDGE_FAKE
)
690 DEBUG_PRINT (dp
<< "[scop-detection-fail] Discarding infinite loop SCoP: ";
691 print_sese (dump_file
, s
));
695 /* Include the BB with the loop-closed SSA PHI nodes, we need this
696 block in the region for code-generating out-of-SSA copies.
697 canonicalize_loop_closed_ssa makes sure that is in proper shape. */
698 if (s
.exit
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
699 && loop_exit_edge_p (s
.exit
->src
->loop_father
, s
.exit
))
701 gcc_assert (single_pred_p (s
.exit
->dest
)
702 && single_succ_p (s
.exit
->dest
)
703 && sese_trivially_empty_bb_p (s
.exit
->dest
));
704 s
.exit
= single_succ_edge (s
.exit
->dest
);
707 /* Do not add scops with only one loop. */
708 if (region_has_one_loop (s
))
710 DEBUG_PRINT (dp
<< "[scop-detection-fail] Discarding one loop SCoP: ";
711 print_sese (dump_file
, s
));
715 if (get_exit_bb (s
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
717 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
718 << "Discarding SCoP exiting to return: ";
719 print_sese (dump_file
, s
));
723 /* Remove all the scops which are subsumed by s. */
726 /* Remove intersecting scops. FIXME: It will be a good idea to keep
727 the non-intersecting part of the scop already in the list. */
728 remove_intersecting_scops (s
);
731 DEBUG_PRINT (dp
<< "[scop-detection] Adding SCoP: "; print_sese (dump_file
, s
));
733 if (dump_file
&& dump_flags
& TDF_DETAILS
)
735 fprintf (dump_file
, "Loops in SCoP: ");
736 print_sese_loop_numbers (dump_file
, s
);
737 fprintf (dump_file
, "\n");
741 /* Return true when a statement in SCOP cannot be represented by Graphite. */
744 scop_detection::harmful_loop_in_region (sese_l scop
) const
746 basic_block exit_bb
= get_exit_bb (scop
);
747 basic_block entry_bb
= get_entry_bb (scop
);
749 DEBUG_PRINT (dp
<< "[checking-harmful-bbs] ";
750 print_sese (dump_file
, scop
));
751 gcc_assert (dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
));
753 auto_vec
<basic_block
> worklist
;
756 worklist
.safe_push (entry_bb
);
757 while (! worklist
.is_empty ())
759 basic_block bb
= worklist
.pop ();
760 DEBUG_PRINT (dp
<< "Visiting bb_" << bb
->index
<< "\n");
762 /* The basic block should not be part of an irreducible loop. */
763 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
765 DEBUG_PRINT (dp
<< "[scop-detection-fail] Found bb in irreducible "
771 /* Check for unstructured control flow: CFG not generated by structured
773 if (bb
->succs
->length () > 1)
777 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
778 if (!dominated_by_p (CDI_POST_DOMINATORS
, bb
, e
->dest
)
779 && !dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
781 DEBUG_PRINT (dp
<< "[scop-detection-fail] Found unstructured "
787 /* Collect all loops in the current region. */
788 loop_p loop
= bb
->loop_father
;
789 if (loop_in_sese_p (loop
, scop
))
790 bitmap_set_bit (loops
, loop
->num
);
792 /* Check for harmful statements in basic blocks part of the region. */
793 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
794 !gsi_end_p (gsi
); gsi_next (&gsi
))
795 if (!stmt_simple_for_scop_p (scop
, gsi_stmt (gsi
), bb
))
797 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
798 "Found harmful statement.\n");
802 for (basic_block dom
= first_dom_son (CDI_DOMINATORS
, bb
);
804 dom
= next_dom_son (CDI_DOMINATORS
, dom
))
805 if (dom
!= scop
.exit
->dest
)
806 worklist
.safe_push (dom
);
809 /* Go through all loops and check that they are still valid in the combined
813 EXECUTE_IF_SET_IN_BITMAP (loops
, 0, j
, bi
)
815 loop_p loop
= (*current_loops
->larray
)[j
];
816 gcc_assert (loop
->num
== (int) j
);
818 /* Check if the loop nests are to be optimized for speed. */
820 && ! optimize_loop_for_speed_p (loop
))
822 DEBUG_PRINT (dp
<< "[scop-detection-fail] loop_"
823 << loop
->num
<< " is not on a hot path.\n");
827 if (! can_represent_loop (loop
, scop
))
829 DEBUG_PRINT (dp
<< "[scop-detection-fail] cannot represent loop_"
830 << loop
->num
<< "\n");
834 /* Check if all loop nests have at least one data reference.
835 ??? This check is expensive and loops premature at this point.
836 If important to retain we can pre-compute this for all innermost
837 loops and reject those when we build a SESE region for a loop
838 during SESE discovery. */
840 && ! loop_nest_has_data_refs (loop
))
842 DEBUG_PRINT (dp
<< "[scop-detection-fail] loop_" << loop
->num
843 << " does not have any data reference.\n");
846 DEBUG_PRINT (dp
<< "[scop-detection] loop_" << loop
->num
<< " is harmless.\n");
852 /* Returns true if S1 subsumes/surrounds S2. */
854 scop_detection::subsumes (sese_l s1
, sese_l s2
)
856 if (dominated_by_p (CDI_DOMINATORS
, get_entry_bb (s2
),
858 && dominated_by_p (CDI_POST_DOMINATORS
, s2
.exit
->dest
,
864 /* Remove a SCoP which is subsumed by S1. */
866 scop_detection::remove_subscops (sese_l s1
)
870 FOR_EACH_VEC_ELT_REVERSE (scops
, j
, s2
)
872 if (subsumes (s1
, *s2
))
874 DEBUG_PRINT (dp
<< "Removing sub-SCoP";
875 print_sese (dump_file
, *s2
));
876 scops
.unordered_remove (j
);
881 /* Returns true if S1 intersects with S2. Since we already know that S1 does
882 not subsume S2 or vice-versa, we only check for entry bbs. */
885 scop_detection::intersects (sese_l s1
, sese_l s2
)
887 if (dominated_by_p (CDI_DOMINATORS
, get_entry_bb (s2
),
889 && !dominated_by_p (CDI_DOMINATORS
, get_entry_bb (s2
),
892 if ((s1
.exit
== s2
.entry
) || (s2
.exit
== s1
.entry
))
898 /* Remove one of the scops when it intersects with any other. */
901 scop_detection::remove_intersecting_scops (sese_l s1
)
905 FOR_EACH_VEC_ELT_REVERSE (scops
, j
, s2
)
907 if (intersects (s1
, *s2
))
909 DEBUG_PRINT (dp
<< "Removing intersecting SCoP";
910 print_sese (dump_file
, *s2
);
911 dp
<< "Intersects with:";
912 print_sese (dump_file
, s1
));
913 scops
.unordered_remove (j
);
918 /* Something like "n * m" is not allowed. */
921 scop_detection::graphite_can_represent_init (tree e
)
923 switch (TREE_CODE (e
))
925 case POLYNOMIAL_CHREC
:
926 return graphite_can_represent_init (CHREC_LEFT (e
))
927 && graphite_can_represent_init (CHREC_RIGHT (e
));
930 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
931 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
932 && tree_fits_shwi_p (TREE_OPERAND (e
, 1));
934 return graphite_can_represent_init (TREE_OPERAND (e
, 1))
935 && tree_fits_shwi_p (TREE_OPERAND (e
, 0));
938 case POINTER_PLUS_EXPR
:
940 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
941 && graphite_can_represent_init (TREE_OPERAND (e
, 1));
946 case NON_LVALUE_EXPR
:
947 return graphite_can_represent_init (TREE_OPERAND (e
, 0));
956 /* Return true when SCEV can be represented in the polyhedral model.
958 An expression can be represented, if it can be expressed as an
959 affine expression. For loops (i, j) and parameters (m, n) all
960 affine expressions are of the form:
962 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
964 1 i + 20 j + (-2) m + 25
966 Something like "i * n" or "n * m" is not allowed. */
969 scop_detection::graphite_can_represent_scev (sese_l scop
, tree scev
)
971 if (chrec_contains_undetermined (scev
))
974 switch (TREE_CODE (scev
))
979 case NON_LVALUE_EXPR
:
980 return graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 0));
983 case POINTER_PLUS_EXPR
:
985 return graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 0))
986 && graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 1));
989 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 0)))
990 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 1)))
991 && !(chrec_contains_symbols (TREE_OPERAND (scev
, 0))
992 && chrec_contains_symbols (TREE_OPERAND (scev
, 1)))
993 && graphite_can_represent_init (scev
)
994 && graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 0))
995 && graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 1));
997 case POLYNOMIAL_CHREC
:
998 /* Check for constant strides. With a non constant stride of
999 'n' we would have a value of 'iv * n'. Also check that the
1000 initial value can represented: for example 'n * m' cannot be
1002 gcc_assert (loop_in_sese_p (get_loop (cfun
,
1003 CHREC_VARIABLE (scev
)), scop
));
1004 if (!evolution_function_right_is_integer_cst (scev
)
1005 || !graphite_can_represent_init (scev
))
1007 return graphite_can_represent_scev (scop
, CHREC_LEFT (scev
));
1010 /* We cannot encode addresses for ISL. */
1017 /* Only affine functions can be represented. */
1018 if (tree_contains_chrecs (scev
, NULL
) || !scev_is_linear_expression (scev
))
1024 /* Return true when EXPR can be represented in the polyhedral model.
1026 This means an expression can be represented, if it is linear with respect to
1027 the loops and the strides are non parametric. LOOP is the place where the
1028 expr will be evaluated. SCOP defines the region we analyse. */
1031 scop_detection::graphite_can_represent_expr (sese_l scop
, loop_p loop
,
1034 tree scev
= cached_scalar_evolution_in_region (scop
, loop
, expr
);
1035 bool can_represent
= graphite_can_represent_scev (scop
, scev
);
1042 "[graphite_can_represent_expr] Cannot represent scev \"");
1043 print_generic_expr (dump_file
, scev
, TDF_SLIM
);
1044 fprintf (dump_file
, "\" of expression ");
1045 print_generic_expr (dump_file
, expr
, TDF_SLIM
);
1046 fprintf (dump_file
, " in loop %d\n", loop
->num
);
1049 return can_represent
;
1052 /* Return true if the data references of STMT can be represented by Graphite.
1053 We try to analyze the data references in a loop contained in the SCOP. */
1056 scop_detection::stmt_has_simple_data_refs_p (sese_l scop
, gimple
*stmt
)
1058 edge nest
= scop
.entry
;
1059 loop_p loop
= loop_containing_stmt (stmt
);
1060 if (!loop_in_sese_p (loop
, scop
))
1063 auto_vec
<data_reference_p
> drs
;
1064 if (! graphite_find_data_references_in_stmt (nest
, loop
, stmt
, &drs
))
1066 DEBUG_PRINT (dp
<< "[stmt_has_simple_data_refs_p] "
1067 "Unanalyzable statement.\n");
1072 data_reference_p dr
;
1073 FOR_EACH_VEC_ELT (drs
, j
, dr
)
1075 for (unsigned i
= 0; i
< DR_NUM_DIMENSIONS (dr
); ++i
)
1076 if (! graphite_can_represent_scev (scop
, DR_ACCESS_FN (dr
, i
)))
1078 DEBUG_PRINT (dp
<< "[stmt_has_simple_data_refs_p] "
1079 "Cannot represent access function SCEV: "
1080 << DR_ACCESS_FN (dr
, i
) << "\n");
1088 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
1089 Calls have side-effects, except those to const or pure
1093 stmt_has_side_effects (gimple
*stmt
)
1095 if (gimple_has_volatile_ops (stmt
)
1096 || (gimple_code (stmt
) == GIMPLE_CALL
1097 && !(gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
)))
1098 || (gimple_code (stmt
) == GIMPLE_ASM
))
1100 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1101 << "Statement has side-effects:\n";
1102 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
| TDF_MEMSYMS
));
1108 /* Return true only when STMT is simple enough for being handled by Graphite.
1109 This depends on SCOP, as the parameters are initialized relatively to
1110 this basic block, the linear functions are initialized based on the outermost
1111 loop containing STMT inside the SCOP. BB is the place where we try to
1112 evaluate the STMT. */
1115 scop_detection::stmt_simple_for_scop_p (sese_l scop
, gimple
*stmt
,
1116 basic_block bb
) const
1120 if (is_gimple_debug (stmt
))
1123 if (stmt_has_side_effects (stmt
))
1126 if (!stmt_has_simple_data_refs_p (scop
, stmt
))
1128 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1129 << "Graphite cannot handle data-refs in stmt:\n";
1130 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
|TDF_MEMSYMS
););
1134 switch (gimple_code (stmt
))
1141 /* We can handle all binary comparisons. Inequalities are
1142 also supported as they can be represented with union of
1144 enum tree_code code
= gimple_cond_code (stmt
);
1145 if (!(code
== LT_EXPR
1150 || code
== NE_EXPR
))
1152 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1153 << "Graphite cannot handle cond stmt:\n";
1154 print_gimple_stmt (dump_file
, stmt
, 0,
1155 TDF_VOPS
| TDF_MEMSYMS
));
1159 loop_p loop
= bb
->loop_father
;
1160 for (unsigned i
= 0; i
< 2; ++i
)
1162 tree op
= gimple_op (stmt
, i
);
1163 if (!graphite_can_represent_expr (scop
, loop
, op
))
1165 DEBUG_PRINT (dump_printf_loc (MSG_MISSED_OPTIMIZATION
, stmt
,
1166 "[scop-detection-fail] "
1167 "Graphite cannot represent cond "
1168 "stmt operator expression.\n"));
1169 DEBUG_PRINT (dp
<< op
<< "\n");
1173 if (! INTEGRAL_TYPE_P (TREE_TYPE (op
)))
1175 DEBUG_PRINT (dump_printf_loc (MSG_MISSED_OPTIMIZATION
, stmt
,
1176 "[scop-detection-fail] "
1177 "Graphite cannot represent cond "
1178 "statement operator. "
1179 "Type must be integral.\n"));
1190 tree op
, lhs
= gimple_get_lhs (stmt
);
1192 /* If we are not going to instantiate the stmt do not require
1193 its operands to be instantiatable at this point. */
1195 && TREE_CODE (lhs
) == SSA_NAME
1196 && scev_analyzable_p (lhs
, scop
))
1198 /* Verify that if we can analyze operands at their def site we
1199 also can represent them when analyzed at their uses. */
1200 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
1201 if (scev_analyzable_p (op
, scop
)
1202 && chrec_contains_undetermined
1203 (cached_scalar_evolution_in_region (scop
,
1204 bb
->loop_father
, op
)))
1206 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1207 << "Graphite cannot code-gen stmt:\n";
1208 print_gimple_stmt (dump_file
, stmt
, 0,
1209 TDF_VOPS
| TDF_MEMSYMS
));
1216 /* These nodes cut a new scope. */
1218 dp
<< "[scop-detection-fail] "
1219 << "Gimple stmt not handled in Graphite:\n";
1220 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
| TDF_MEMSYMS
));
1225 /* Returns the number of pbbs that are in loops contained in SCOP. */
1228 scop_detection::nb_pbbs_in_loops (scop_p scop
)
1234 FOR_EACH_VEC_ELT (scop
->pbbs
, i
, pbb
)
1235 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb
)), scop
->scop_info
->region
))
1241 /* Assigns the parameter NAME an index in REGION. */
1244 assign_parameter_index_in_region (tree name
, sese_info_p region
)
1246 gcc_assert (TREE_CODE (name
) == SSA_NAME
1247 && ! defined_in_sese_p (name
, region
->region
));
1250 FOR_EACH_VEC_ELT (region
->params
, i
, p
)
1254 region
->params
.safe_push (name
);
1257 /* In the context of sese S, scan the expression E and translate it to
1258 a linear expression C. When parsing a symbolic multiplication, K
1259 represents the constant multiplier of an expression containing
1263 scan_tree_for_params (sese_info_p s
, tree e
)
1265 if (e
== chrec_dont_know
)
1268 switch (TREE_CODE (e
))
1270 case POLYNOMIAL_CHREC
:
1271 scan_tree_for_params (s
, CHREC_LEFT (e
));
1275 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
1276 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
1278 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
1282 case POINTER_PLUS_EXPR
:
1284 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
1285 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
1291 case NON_LVALUE_EXPR
:
1292 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
1296 assign_parameter_index_in_region (e
, s
);
1312 /* Find parameters with respect to REGION in BB. We are looking in memory
1313 access functions, conditions and loop bounds. */
1316 find_params_in_bb (sese_info_p region
, gimple_poly_bb_p gbb
)
1318 /* Find parameters in the access functions of data references. */
1320 data_reference_p dr
;
1321 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb
), i
, dr
)
1322 for (unsigned j
= 0; j
< DR_NUM_DIMENSIONS (dr
); j
++)
1323 scan_tree_for_params (region
, DR_ACCESS_FN (dr
, j
));
1325 /* Find parameters in conditional statements. */
1327 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb
), i
, stmt
)
1329 loop_p loop
= gimple_bb (stmt
)->loop_father
;
1330 tree lhs
= cached_scalar_evolution_in_region (region
->region
, loop
,
1331 gimple_cond_lhs (stmt
));
1332 tree rhs
= cached_scalar_evolution_in_region (region
->region
, loop
,
1333 gimple_cond_rhs (stmt
));
1334 gcc_assert (!chrec_contains_undetermined (lhs
)
1335 && !chrec_contains_undetermined (rhs
));
1337 scan_tree_for_params (region
, lhs
);
1338 scan_tree_for_params (region
, rhs
);
1342 /* Record the parameters used in the SCOP BBs. A variable is a parameter
1343 in a scop if it does not vary during the execution of that scop. */
1346 find_scop_parameters (scop_p scop
)
1349 sese_info_p region
= scop
->scop_info
;
1351 /* Parameters used in loop bounds are processed during gather_bbs. */
1353 /* Find the parameters used in data accesses. */
1355 FOR_EACH_VEC_ELT (scop
->pbbs
, i
, pbb
)
1356 find_params_in_bb (region
, PBB_BLACK_BOX (pbb
));
1358 int nbp
= sese_nb_params (region
);
1359 scop_set_nb_params (scop
, nbp
);
1363 add_write (vec
<tree
> *writes
, tree def
)
1365 writes
->safe_push (def
);
1366 DEBUG_PRINT (dp
<< "Adding scalar write: ";
1367 print_generic_expr (dump_file
, def
);
1368 dp
<< "\nFrom stmt: ";
1369 print_gimple_stmt (dump_file
,
1370 SSA_NAME_DEF_STMT (def
), 0));
1374 add_read (vec
<scalar_use
> *reads
, tree use
, gimple
*use_stmt
)
1376 DEBUG_PRINT (dp
<< "Adding scalar read: ";
1377 print_generic_expr (dump_file
, use
);
1378 dp
<< "\nFrom stmt: ";
1379 print_gimple_stmt (dump_file
, use_stmt
, 0));
1380 reads
->safe_push (std::make_pair (use_stmt
, use
));
1384 /* Record DEF if it is used in other bbs different than DEF_BB in the SCOP. */
1387 build_cross_bb_scalars_def (scop_p scop
, tree def
, basic_block def_bb
,
1390 if (!is_gimple_reg (def
))
1393 bool scev_analyzable
= scev_analyzable_p (def
, scop
->scop_info
->region
);
1396 imm_use_iterator imm_iter
;
1397 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
1398 /* Do not gather scalar variables that can be analyzed by SCEV as they can
1399 be generated out of the induction variables. */
1400 if ((! scev_analyzable
1401 /* But gather SESE liveouts as we otherwise fail to rewrite their
1403 || ! bb_in_sese_p (gimple_bb (use_stmt
), scop
->scop_info
->region
))
1404 && (def_bb
!= gimple_bb (use_stmt
) && !is_gimple_debug (use_stmt
)))
1406 add_write (writes
, def
);
1411 /* Record USE if it is defined in other bbs different than USE_STMT
1415 build_cross_bb_scalars_use (scop_p scop
, tree use
, gimple
*use_stmt
,
1416 vec
<scalar_use
> *reads
)
1418 if (!is_gimple_reg (use
))
1421 /* Do not gather scalar variables that can be analyzed by SCEV as they can be
1422 generated out of the induction variables. */
1423 if (scev_analyzable_p (use
, scop
->scop_info
->region
))
1426 gimple
*def_stmt
= SSA_NAME_DEF_STMT (use
);
1427 if (gimple_bb (def_stmt
) != gimple_bb (use_stmt
))
1428 add_read (reads
, use
, use_stmt
);
1431 /* Generates a polyhedral black box only if the bb contains interesting
1434 static gimple_poly_bb_p
1435 try_generate_gimple_bb (scop_p scop
, basic_block bb
)
1437 vec
<data_reference_p
> drs
= vNULL
;
1438 vec
<tree
> writes
= vNULL
;
1439 vec
<scalar_use
> reads
= vNULL
;
1441 sese_l region
= scop
->scop_info
->region
;
1442 edge nest
= region
.entry
;
1443 loop_p loop
= bb
->loop_father
;
1444 if (!loop_in_sese_p (loop
, region
))
1447 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
1450 gimple
*stmt
= gsi_stmt (gsi
);
1451 if (is_gimple_debug (stmt
))
1454 graphite_find_data_references_in_stmt (nest
, loop
, stmt
, &drs
);
1456 tree def
= gimple_get_lhs (stmt
);
1458 build_cross_bb_scalars_def (scop
, def
, gimple_bb (stmt
), &writes
);
1462 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
1463 build_cross_bb_scalars_use (scop
, use
, stmt
, &reads
);
1466 /* Handle defs and uses in PHIs. Those need special treatment given
1467 that we have to present ISL with sth that looks like we've rewritten
1468 the IL out-of-SSA. */
1469 for (gphi_iterator psi
= gsi_start_phis (bb
); !gsi_end_p (psi
);
1472 gphi
*phi
= psi
.phi ();
1473 tree res
= gimple_phi_result (phi
);
1474 if (virtual_operand_p (res
)
1475 || scev_analyzable_p (res
, scop
->scop_info
->region
))
1477 /* To simulate out-of-SSA the block containing the PHI node has
1478 reads of the PHI destination. And to preserve SSA dependences
1479 we also write to it (the out-of-SSA decl and the SSA result
1480 are coalesced for dependence purposes which is good enough). */
1481 add_read (&reads
, res
, phi
);
1482 add_write (&writes
, res
);
1484 basic_block bb_for_succs
= bb
;
1485 if (bb_for_succs
== bb_for_succs
->loop_father
->latch
1486 && bb_in_sese_p (bb_for_succs
, scop
->scop_info
->region
)
1487 && sese_trivially_empty_bb_p (bb_for_succs
))
1488 bb_for_succs
= NULL
;
1489 while (bb_for_succs
)
1491 basic_block latch
= NULL
;
1494 FOR_EACH_EDGE (e
, ei
, bb_for_succs
->succs
)
1496 for (gphi_iterator psi
= gsi_start_phis (e
->dest
); !gsi_end_p (psi
);
1499 gphi
*phi
= psi
.phi ();
1500 tree res
= gimple_phi_result (phi
);
1501 if (virtual_operand_p (res
))
1503 /* To simulate out-of-SSA the predecessor of edges into PHI nodes
1504 has a copy from the PHI argument to the PHI destination. */
1505 if (! scev_analyzable_p (res
, scop
->scop_info
->region
))
1506 add_write (&writes
, res
);
1507 tree use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1508 if (TREE_CODE (use
) == SSA_NAME
1509 && ! SSA_NAME_IS_DEFAULT_DEF (use
)
1510 && gimple_bb (SSA_NAME_DEF_STMT (use
)) != bb_for_succs
1511 && ! scev_analyzable_p (use
, scop
->scop_info
->region
))
1512 add_read (&reads
, use
, phi
);
1514 if (e
->dest
== bb_for_succs
->loop_father
->latch
1515 && bb_in_sese_p (e
->dest
, scop
->scop_info
->region
)
1516 && sese_trivially_empty_bb_p (e
->dest
))
1519 /* Handle empty latch block PHIs here, otherwise we confuse ISL
1520 with extra conditional code where it then peels off the last
1521 iteration just because of that. It would be simplest if we
1522 just didn't force simple latches (thus remove the forwarder). */
1523 bb_for_succs
= latch
;
1526 /* For the region exit block add reads for all live-out vars. */
1527 if (bb
== scop
->scop_info
->region
.exit
->src
)
1529 sese_build_liveouts (scop
->scop_info
);
1532 EXECUTE_IF_SET_IN_BITMAP (scop
->scop_info
->liveout
, 0, i
, bi
)
1534 tree use
= ssa_name (i
);
1535 add_read (&reads
, use
, NULL
);
1539 if (drs
.is_empty () && writes
.is_empty () && reads
.is_empty ())
1542 return new_gimple_poly_bb (bb
, drs
, reads
, writes
);
1545 /* Compute alias-sets for all data references in DRS. */
1548 build_alias_set (scop_p scop
)
1550 int num_vertices
= scop
->drs
.length ();
1551 struct graph
*g
= new_graph (num_vertices
);
1557 = find_common_loop (scop
->scop_info
->region
.entry
->dest
->loop_father
,
1558 scop
->scop_info
->region
.exit
->src
->loop_father
);
1560 FOR_EACH_VEC_ELT (scop
->drs
, i
, dr1
)
1561 for (j
= i
+1; scop
->drs
.iterate (j
, &dr2
); j
++)
1562 if (dr_may_alias_p (dr1
->dr
, dr2
->dr
, nest
))
1564 /* Dependences in the same alias set need to be handled
1565 by just looking at DR_ACCESS_FNs. */
1566 if (DR_NUM_DIMENSIONS (dr1
->dr
) == 0
1567 || DR_NUM_DIMENSIONS (dr1
->dr
) != DR_NUM_DIMENSIONS (dr2
->dr
)
1568 || ! operand_equal_p (DR_BASE_OBJECT (dr1
->dr
),
1569 DR_BASE_OBJECT (dr2
->dr
),
1571 || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1
->dr
)),
1572 TREE_TYPE (DR_BASE_OBJECT (dr2
->dr
))))
1581 all_vertices
= XNEWVEC (int, num_vertices
);
1582 for (i
= 0; i
< num_vertices
; i
++)
1583 all_vertices
[i
] = i
;
1586 = graphds_dfs (g
, all_vertices
, num_vertices
, NULL
, true, NULL
) + 1;
1587 free (all_vertices
);
1589 for (i
= 0; i
< g
->n_vertices
; i
++)
1590 scop
->drs
[i
].alias_set
= g
->vertices
[i
].component
+ 1;
1596 /* Gather BBs and conditions for a SCOP. */
1597 class gather_bbs
: public dom_walker
1600 gather_bbs (cdi_direction
, scop_p
, int *);
1602 virtual edge
before_dom_children (basic_block
);
1603 virtual void after_dom_children (basic_block
);
1606 auto_vec
<gimple
*, 3> conditions
, cases
;
1610 gather_bbs::gather_bbs (cdi_direction direction
, scop_p scop
, int *bb_to_rpo
)
1611 : dom_walker (direction
, ALL_BLOCKS
, bb_to_rpo
), scop (scop
)
1615 /* Call-back for dom_walk executed before visiting the dominated
1619 gather_bbs::before_dom_children (basic_block bb
)
1621 sese_info_p region
= scop
->scop_info
;
1622 if (!bb_in_sese_p (bb
, region
->region
))
1623 return dom_walker::STOP
;
1625 /* For loops fully contained in the region record parameters in the
1627 loop_p loop
= bb
->loop_father
;
1628 if (loop
->header
== bb
1629 && loop_in_sese_p (loop
, region
->region
))
1631 tree nb_iters
= number_of_latch_executions (loop
);
1632 if (chrec_contains_symbols (nb_iters
))
1634 nb_iters
= cached_scalar_evolution_in_region (region
->region
,
1636 scan_tree_for_params (region
, nb_iters
);
1640 if (gcond
*stmt
= single_pred_cond_non_loop_exit (bb
))
1642 edge e
= single_pred_edge (bb
);
1643 /* Make sure the condition is in the region and thus was verified
1645 if (e
!= region
->region
.entry
)
1647 conditions
.safe_push (stmt
);
1648 if (e
->flags
& EDGE_TRUE_VALUE
)
1649 cases
.safe_push (stmt
);
1651 cases
.safe_push (NULL
);
1655 scop
->scop_info
->bbs
.safe_push (bb
);
1657 gimple_poly_bb_p gbb
= try_generate_gimple_bb (scop
, bb
);
1661 GBB_CONDITIONS (gbb
) = conditions
.copy ();
1662 GBB_CONDITION_CASES (gbb
) = cases
.copy ();
1664 poly_bb_p pbb
= new_poly_bb (scop
, gbb
);
1665 scop
->pbbs
.safe_push (pbb
);
1668 data_reference_p dr
;
1669 FOR_EACH_VEC_ELT (gbb
->data_refs
, i
, dr
)
1671 DEBUG_PRINT (dp
<< "Adding memory ";
1676 print_generic_expr (dump_file
, dr
->ref
);
1677 dp
<< "\nFrom stmt: ";
1678 print_gimple_stmt (dump_file
, dr
->stmt
, 0));
1680 scop
->drs
.safe_push (dr_info (dr
, pbb
));
1686 /* Call-back for dom_walk executed after visiting the dominated
1690 gather_bbs::after_dom_children (basic_block bb
)
1692 if (!bb_in_sese_p (bb
, scop
->scop_info
->region
))
1695 if (single_pred_cond_non_loop_exit (bb
))
1697 edge e
= single_pred_edge (bb
);
1698 if (e
!= scop
->scop_info
->region
.entry
)
1707 /* Compute sth like an execution order, dominator order with first executing
1708 edges that stay inside the current loop, delaying processing exit edges. */
1710 static int *bb_to_rpo
;
1712 /* Helper for qsort, sorting after order above. */
1715 cmp_pbbs (const void *pa
, const void *pb
)
1717 poly_bb_p bb1
= *((const poly_bb_p
*)pa
);
1718 poly_bb_p bb2
= *((const poly_bb_p
*)pb
);
1719 if (bb_to_rpo
[bb1
->black_box
->bb
->index
]
1720 < bb_to_rpo
[bb2
->black_box
->bb
->index
])
1722 else if (bb_to_rpo
[bb1
->black_box
->bb
->index
]
1723 > bb_to_rpo
[bb2
->black_box
->bb
->index
])
1729 /* Find Static Control Parts (SCoP) in the current function and pushes
1733 build_scops (vec
<scop_p
> *scops
)
1736 dp
.set_dump_file (dump_file
);
1739 sb
.build_scop_depth (current_loops
->tree_root
);
1741 /* Now create scops from the lightweight SESEs. */
1742 vec
<sese_l
> scops_l
= sb
.get_scops ();
1744 /* Domwalk needs a bb to RPO mapping. Compute it once here. */
1745 int *postorder
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1746 int postorder_num
= pre_and_rev_post_order_compute (NULL
, postorder
, true);
1747 bb_to_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1748 for (int i
= 0; i
< postorder_num
; ++i
)
1749 bb_to_rpo
[postorder
[i
]] = i
;
1754 FOR_EACH_VEC_ELT (scops_l
, i
, s
)
1756 scop_p scop
= new_scop (s
->entry
, s
->exit
);
1758 /* Record all basic blocks and their conditions in REGION. */
1759 gather_bbs (CDI_DOMINATORS
, scop
, bb_to_rpo
).walk (s
->entry
->dest
);
1761 /* Sort pbbs after execution order for initial schedule generation. */
1762 scop
->pbbs
.qsort (cmp_pbbs
);
1764 if (! build_alias_set (scop
))
1766 DEBUG_PRINT (dp
<< "[scop-detection-fail] cannot handle dependences\n");
1771 /* Do not optimize a scop containing only PBBs that do not belong
1773 if (sb
.nb_pbbs_in_loops (scop
) == 0)
1775 DEBUG_PRINT (dp
<< "[scop-detection-fail] no data references.\n");
1780 unsigned max_arrays
= param_graphite_max_arrays_per_scop
;
1782 && scop
->drs
.length () >= max_arrays
)
1784 DEBUG_PRINT (dp
<< "[scop-detection-fail] too many data references: "
1785 << scop
->drs
.length ()
1786 << " is larger than --param graphite-max-arrays-per-scop="
1787 << max_arrays
<< ".\n");
1792 find_scop_parameters (scop
);
1793 graphite_dim_t max_dim
= param_graphite_max_nb_scop_params
;
1795 && scop_nb_params (scop
) > max_dim
)
1797 DEBUG_PRINT (dp
<< "[scop-detection-fail] too many parameters: "
1798 << scop_nb_params (scop
)
1799 << " larger than --param graphite-max-nb-scop-params="
1800 << max_dim
<< ".\n");
1805 scops
->safe_push (scop
);
1810 DEBUG_PRINT (dp
<< "number of SCoPs: " << (scops
? scops
->length () : 0););
1813 #endif /* HAVE_isl */