* config/frv/frv.md (*adddi3_internal): Change name to...
[official-gcc.git] / gcc / basic-block.h
blobe2d20ac3984e85a171cc6e7332839830c8af5810
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "errors.h"
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head;
37 /* A pointer to a regset_head. */
38 typedef bitmap regset;
40 /* Initialize a new regset. */
41 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, 1)
43 /* Clear a register set by freeing up the linked list. */
44 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
46 /* Copy a register set to another register set. */
47 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
49 /* Compare two register sets. */
50 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
52 /* `and' a register set with a second register set. */
53 #define AND_REG_SET(TO, FROM) bitmap_operation (TO, TO, FROM, BITMAP_AND)
55 /* `and' the complement of a register set with a register set. */
56 #define AND_COMPL_REG_SET(TO, FROM) \
57 bitmap_operation (TO, TO, FROM, BITMAP_AND_COMPL)
59 /* Inclusive or a register set with a second register set. */
60 #define IOR_REG_SET(TO, FROM) bitmap_operation (TO, TO, FROM, BITMAP_IOR)
62 /* Exclusive or a register set with a second register set. */
63 #define XOR_REG_SET(TO, FROM) bitmap_operation (TO, TO, FROM, BITMAP_XOR)
65 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
66 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
67 bitmap_ior_and_compl (TO, FROM1, FROM2)
69 /* Clear a single register in a register set. */
70 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
72 /* Set a single register in a register set. */
73 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
75 /* Return true if a register is set in a register set. */
76 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
78 /* Copy the hard registers in a register set to the hard register set. */
79 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
80 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
81 do { \
82 CLEAR_HARD_REG_SET (TO); \
83 reg_set_to_hard_reg_set (&TO, FROM); \
84 } while (0)
86 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
87 register number and executing CODE for all registers that are set. */
88 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, CODE) \
89 do \
90 { \
91 bitmap_iterator bi; \
93 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, bi) \
94 { \
95 CODE; \
96 } \
97 } while (0)
99 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
100 REGNUM to the register number and executing CODE for all registers that are
101 set in the first regset and not set in the second. */
102 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
103 do \
105 bitmap_iterator bi; \
107 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, bi) \
109 CODE; \
111 } while (0)
113 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
114 REGNUM to the register number and executing CODE for all registers that are
115 set in both regsets. */
116 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
117 do \
119 bitmap_iterator bi; \
121 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, bi) \
123 CODE; \
125 } while (0)
127 /* Allocate a register set with oballoc. */
128 #define OBSTACK_ALLOC_REG_SET(OBSTACK) BITMAP_OBSTACK_ALLOC (OBSTACK)
130 /* Initialize a register set. Returns the new register set. */
131 #define INITIALIZE_REG_SET(HEAD) bitmap_initialize (&HEAD, 1)
133 /* Do any cleanup needed on a regset when it is no longer used. */
134 #define FREE_REG_SET(REGSET) BITMAP_FREE(REGSET)
136 /* Do any one-time initializations needed for regsets. */
137 #define INIT_ONCE_REG_SET() BITMAP_INIT_ONCE ()
139 /* Grow any tables needed when the number of registers is calculated
140 or extended. For the linked list allocation, nothing needs to
141 be done, other than zero the statistics on the first allocation. */
142 #define MAX_REGNO_REG_SET(NUM_REGS, NEW_P, RENUMBER_P)
144 /* Type we use to hold basic block counters. Should be at least
145 64bit. Although a counter cannot be negative, we use a signed
146 type, because erroneous negative counts can be generated when the
147 flow graph is manipulated by various optimizations. A signed type
148 makes those easy to detect. */
149 typedef HOST_WIDEST_INT gcov_type;
151 /* Control flow edge information. */
152 struct edge_def GTY(())
154 /* The two blocks at the ends of the edge. */
155 struct basic_block_def *src;
156 struct basic_block_def *dest;
158 /* Instructions queued on the edge. */
159 union edge_def_insns {
160 rtx GTY ((tag ("0"))) r;
161 tree GTY ((tag ("1"))) t;
162 } GTY ((desc ("ir_type ()"))) insns;
164 /* Auxiliary info specific to a pass. */
165 PTR GTY ((skip (""))) aux;
167 /* Location of any goto implicit in the edge, during tree-ssa. */
168 source_locus goto_locus;
170 int flags; /* see EDGE_* below */
171 int probability; /* biased by REG_BR_PROB_BASE */
172 gcov_type count; /* Expected number of executions calculated
173 in profile.c */
176 typedef struct edge_def *edge;
177 DEF_VEC_GC_P(edge);
179 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
180 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
181 label, or eh */
182 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
183 like an exception, or sibcall */
184 #define EDGE_EH 8 /* Exception throw */
185 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
186 #define EDGE_DFS_BACK 32 /* A backwards edge */
187 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
188 flow. */
189 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
190 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
191 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
192 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
193 predicate is nonzero. */
194 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
195 predicate is zero. */
196 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
197 valid during SSA-CCP. */
198 #define EDGE_CROSSING 8192 /* Edge crosses between hot
199 and cold sections, when we
200 do partitioning. */
201 #define EDGE_ALL_FLAGS 16383
203 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
205 /* Counter summary from the last set of coverage counts read by
206 profile.c. */
207 extern const struct gcov_ctr_summary *profile_info;
209 /* Declared in cfgloop.h. */
210 struct loop;
211 struct loops;
213 /* Declared in tree-flow.h. */
214 struct bb_ann_d;
216 /* A basic block is a sequence of instructions with only entry and
217 only one exit. If any one of the instructions are executed, they
218 will all be executed, and in sequence from first to last.
220 There may be COND_EXEC instructions in the basic block. The
221 COND_EXEC *instructions* will be executed -- but if the condition
222 is false the conditionally executed *expressions* will of course
223 not be executed. We don't consider the conditionally executed
224 expression (which might have side-effects) to be in a separate
225 basic block because the program counter will always be at the same
226 location after the COND_EXEC instruction, regardless of whether the
227 condition is true or not.
229 Basic blocks need not start with a label nor end with a jump insn.
230 For example, a previous basic block may just "conditionally fall"
231 into the succeeding basic block, and the last basic block need not
232 end with a jump insn. Block 0 is a descendant of the entry block.
234 A basic block beginning with two labels cannot have notes between
235 the labels.
237 Data for jump tables are stored in jump_insns that occur in no
238 basic block even though these insns can follow or precede insns in
239 basic blocks. */
241 /* Basic block information indexed by block number. */
242 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
244 /* The first and last insns of the block. */
245 rtx head_;
246 rtx end_;
248 /* Pointers to the first and last trees of the block. */
249 tree stmt_list;
251 /* The edges into and out of the block. */
252 VEC(edge) *preds;
253 VEC(edge) *succs;
255 /* Liveness info. */
257 /* The registers that are modified within this in block. */
258 bitmap GTY ((skip (""))) local_set;
259 /* The registers that are conditionally modified within this block.
260 In other words, registers that are set only as part of a
261 COND_EXEC. */
262 bitmap GTY ((skip (""))) cond_local_set;
263 /* The registers that are live on entry to this block.
265 Note that in SSA form, global_live_at_start does not reflect the
266 use of regs in phi functions, since the liveness of these regs
267 may depend on which edge was taken into the block. */
268 bitmap GTY ((skip (""))) global_live_at_start;
269 /* The registers that are live on exit from this block. */
270 bitmap GTY ((skip (""))) global_live_at_end;
272 /* Auxiliary info specific to a pass. */
273 PTR GTY ((skip (""))) aux;
275 /* Innermost loop containing the block. */
276 struct loop * GTY ((skip (""))) loop_father;
278 /* The dominance and postdominance information node. */
279 struct et_node * GTY ((skip (""))) dom[2];
281 /* Previous and next blocks in the chain. */
282 struct basic_block_def *prev_bb;
283 struct basic_block_def *next_bb;
285 /* The data used by basic block copying and reordering functions. */
286 struct reorder_block_def * GTY ((skip (""))) rbi;
288 /* Annotations used at the tree level. */
289 struct bb_ann_d *tree_annotations;
291 /* Expected number of executions: calculated in profile.c. */
292 gcov_type count;
294 /* The index of this block. */
295 int index;
297 /* The loop depth of this block. */
298 int loop_depth;
300 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
301 int frequency;
303 /* Various flags. See BB_* below. */
304 int flags;
307 typedef struct basic_block_def *basic_block;
309 /* Structure to hold information about the blocks during reordering and
310 copying. */
312 typedef struct reorder_block_def
314 rtx header;
315 rtx footer;
316 basic_block next;
317 basic_block original;
318 /* Used by loop copying. */
319 basic_block copy;
320 int duplicated;
321 int copy_number;
323 /* These fields are used by bb-reorder pass. */
324 int visited;
325 } *reorder_block_def_p;
327 #define BB_FREQ_MAX 10000
329 /* Masks for basic_block.flags. */
330 #define BB_DIRTY 1
331 #define BB_NEW 2
332 #define BB_REACHABLE 4
333 #define BB_VISITED 8
334 #define BB_IRREDUCIBLE_LOOP 16
335 #define BB_SUPERBLOCK 32
336 #define BB_DISABLE_SCHEDULE 64
338 #define BB_HOT_PARTITION 128
339 #define BB_COLD_PARTITION 256
340 #define BB_UNPARTITIONED 0
342 /* Partitions, to be used when partitioning hot and cold basic blocks into
343 separate sections. */
344 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
345 #define BB_SET_PARTITION(bb, part) do { \
346 basic_block bb_ = (bb); \
347 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
348 | (part)); \
349 } while (0)
351 #define BB_COPY_PARTITION(dstbb, srcbb) \
352 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
354 /* Number of basic blocks in the current function. */
356 extern int n_basic_blocks;
358 /* First free basic block number. */
360 extern int last_basic_block;
362 /* Number of edges in the current function. */
364 extern int n_edges;
366 /* Signalize the status of profile information in the CFG. */
367 extern enum profile_status
369 PROFILE_ABSENT,
370 PROFILE_GUESSED,
371 PROFILE_READ
372 } profile_status;
374 /* Index by basic block number, get basic block struct info. */
376 extern GTY(()) varray_type basic_block_info;
378 #define BASIC_BLOCK(N) (VARRAY_BB (basic_block_info, (N)))
380 /* For iterating over basic blocks. */
381 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
382 for (BB = FROM; BB != TO; BB = BB->DIR)
384 #define FOR_EACH_BB(BB) \
385 FOR_BB_BETWEEN (BB, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
387 #define FOR_EACH_BB_REVERSE(BB) \
388 FOR_BB_BETWEEN (BB, EXIT_BLOCK_PTR->prev_bb, ENTRY_BLOCK_PTR, prev_bb)
390 /* For iterating over insns in basic block. */
391 #define FOR_BB_INSNS(BB, INSN) \
392 for ((INSN) = BB_HEAD (BB); \
393 (INSN) != NEXT_INSN (BB_END (BB)); \
394 (INSN) = NEXT_INSN (INSN))
396 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
397 for ((INSN) = BB_END (BB); \
398 (INSN) != PREV_INSN (BB_HEAD (BB)); \
399 (INSN) = PREV_INSN (INSN))
401 /* Cycles through _all_ basic blocks, even the fake ones (entry and
402 exit block). */
404 #define FOR_ALL_BB(BB) \
405 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
407 /* What registers are live at the setjmp call. */
409 extern regset regs_live_at_setjmp;
411 /* Special labels found during CFG build. */
413 extern GTY(()) rtx label_value_list;
415 extern struct obstack flow_obstack;
417 /* Indexed by n, gives number of basic block that (REG n) is used in.
418 If the value is REG_BLOCK_GLOBAL (-2),
419 it means (REG n) is used in more than one basic block.
420 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
421 This information remains valid for the rest of the compilation
422 of the current function; it is used to control register allocation. */
424 #define REG_BLOCK_UNKNOWN -1
425 #define REG_BLOCK_GLOBAL -2
427 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
429 /* Stuff for recording basic block info. */
431 #define BB_HEAD(B) (B)->head_
432 #define BB_END(B) (B)->end_
434 /* Special block numbers [markers] for entry and exit. */
435 #define ENTRY_BLOCK (-1)
436 #define EXIT_BLOCK (-2)
438 /* Special block number not valid for any block. */
439 #define INVALID_BLOCK (-3)
441 /* Similarly, block pointers for the edge list. */
442 extern GTY(()) basic_block ENTRY_BLOCK_PTR;
443 extern GTY(()) basic_block EXIT_BLOCK_PTR;
445 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
446 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
448 extern void compute_bb_for_insn (void);
449 extern void free_bb_for_insn (void);
450 extern void update_bb_for_insn (basic_block);
452 extern void free_basic_block_vars (void);
454 extern void insert_insn_on_edge (rtx, edge);
455 bool safe_insert_insn_on_edge (rtx, edge);
457 extern void commit_edge_insertions (void);
458 extern void commit_edge_insertions_watch_calls (void);
460 extern void remove_fake_edges (void);
461 extern void remove_fake_exit_edges (void);
462 extern void add_noreturn_fake_exit_edges (void);
463 extern void connect_infinite_loops_to_exit (void);
464 extern edge unchecked_make_edge (basic_block, basic_block, int);
465 extern edge cached_make_edge (sbitmap *, basic_block, basic_block, int);
466 extern edge make_edge (basic_block, basic_block, int);
467 extern edge make_single_succ_edge (basic_block, basic_block, int);
468 extern void remove_edge (edge);
469 extern void redirect_edge_succ (edge, basic_block);
470 extern edge redirect_edge_succ_nodup (edge, basic_block);
471 extern void redirect_edge_pred (edge, basic_block);
472 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
473 extern void clear_bb_flags (void);
474 extern void flow_reverse_top_sort_order_compute (int *);
475 extern int flow_depth_first_order_compute (int *, int *);
476 extern int dfs_enumerate_from (basic_block, int,
477 bool (*)(basic_block, void *),
478 basic_block *, int, void *);
479 extern void compute_dominance_frontiers (bitmap *);
480 extern void dump_edge_info (FILE *, edge, int);
481 extern void brief_dump_cfg (FILE *);
482 extern void clear_edges (void);
483 extern void mark_critical_edges (void);
484 extern rtx first_insn_after_basic_block_note (basic_block);
486 /* Structure to group all of the information to process IF-THEN and
487 IF-THEN-ELSE blocks for the conditional execution support. This
488 needs to be in a public file in case the IFCVT macros call
489 functions passing the ce_if_block data structure. */
491 typedef struct ce_if_block
493 basic_block test_bb; /* First test block. */
494 basic_block then_bb; /* THEN block. */
495 basic_block else_bb; /* ELSE block or NULL. */
496 basic_block join_bb; /* Join THEN/ELSE blocks. */
497 basic_block last_test_bb; /* Last bb to hold && or || tests. */
498 int num_multiple_test_blocks; /* # of && and || basic blocks. */
499 int num_and_and_blocks; /* # of && blocks. */
500 int num_or_or_blocks; /* # of || blocks. */
501 int num_multiple_test_insns; /* # of insns in && and || blocks. */
502 int and_and_p; /* Complex test is &&. */
503 int num_then_insns; /* # of insns in THEN block. */
504 int num_else_insns; /* # of insns in ELSE block. */
505 int pass; /* Pass number. */
507 #ifdef IFCVT_EXTRA_FIELDS
508 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
509 #endif
511 } ce_if_block_t;
513 /* This structure maintains an edge list vector. */
514 struct edge_list
516 int num_blocks;
517 int num_edges;
518 edge *index_to_edge;
521 /* This is the value which indicates no edge is present. */
522 #define EDGE_INDEX_NO_EDGE -1
524 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
525 if there is no edge between the 2 basic blocks. */
526 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
528 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
529 block which is either the pred or succ end of the indexed edge. */
530 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
531 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
533 /* INDEX_EDGE returns a pointer to the edge. */
534 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
536 /* Number of edges in the compressed edge list. */
537 #define NUM_EDGES(el) ((el)->num_edges)
539 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
540 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
541 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
543 /* BB is assumed to contain conditional jump. Return the branch edge. */
544 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
545 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
547 /* Return expected execution frequency of the edge E. */
548 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
549 * (e)->probability \
550 + REG_BR_PROB_BASE / 2) \
551 / REG_BR_PROB_BASE)
553 /* Return nonzero if edge is critical. */
554 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
555 && EDGE_COUNT ((e)->dest->preds) >= 2)
557 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
558 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
559 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
560 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
562 /* Iterator object for edges. */
564 typedef struct {
565 unsigned index;
566 VEC(edge) *container;
567 } edge_iterator;
569 /* Return an iterator pointing to the start of an edge vector. */
570 static inline edge_iterator
571 ei_start (VEC(edge) *ev)
573 edge_iterator i;
575 i.index = 0;
576 i.container = ev;
578 return i;
581 /* Return an iterator pointing to the last element of an edge
582 vector. */
583 static inline edge_iterator
584 ei_last (VEC(edge) *ev)
586 edge_iterator i;
588 i.index = EDGE_COUNT (ev) - 1;
589 i.container = ev;
591 return i;
594 /* Is the iterator `i' at the end of the sequence? */
595 static inline bool
596 ei_end_p (edge_iterator i)
598 return (i.index == EDGE_COUNT (i.container));
601 /* Is the iterator `i' at one position before the end of the
602 sequence? */
603 static inline bool
604 ei_one_before_end_p (edge_iterator i)
606 return (i.index + 1 == EDGE_COUNT (i.container));
609 /* Advance the iterator to the next element. */
610 static inline void
611 ei_next (edge_iterator *i)
613 gcc_assert (i->index < EDGE_COUNT (i->container));
614 i->index++;
617 /* Move the iterator to the previous element. */
618 static inline void
619 ei_prev (edge_iterator *i)
621 gcc_assert (i->index > 0);
622 i->index--;
625 /* Return the edge pointed to by the iterator `i'. */
626 static inline edge
627 ei_edge (edge_iterator i)
629 return EDGE_I (i.container, i.index);
632 /* Return an edge pointed to by the iterator. Do it safely so that
633 NULL is returned when the iterator is pointing at the end of the
634 sequence. */
635 static inline edge
636 ei_safe_edge (edge_iterator i)
638 return !ei_end_p (i) ? ei_edge (i) : NULL;
641 /* This macro serves as a convenient way to iterate each edge in a
642 vector of predecessor or successor edges. It must not be used when
643 an element might be removed during the traversal, otherwise
644 elements will be missed. Instead, use a for-loop like that shown
645 in the following pseudo-code:
647 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
649 IF (e != taken_edge)
650 ssa_remove_edge (e);
651 ELSE
652 ei_next (&ei);
656 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
657 for ((EDGE) = NULL, (ITER) = ei_start ((EDGE_VEC)); \
658 ((EDGE) = ei_safe_edge ((ITER))); \
659 ei_next (&(ITER)))
661 struct edge_list * create_edge_list (void);
662 void free_edge_list (struct edge_list *);
663 void print_edge_list (FILE *, struct edge_list *);
664 void verify_edge_list (FILE *, struct edge_list *);
665 int find_edge_index (struct edge_list *, basic_block, basic_block);
666 edge find_edge (basic_block, basic_block);
669 enum update_life_extent
671 UPDATE_LIFE_LOCAL = 0,
672 UPDATE_LIFE_GLOBAL = 1,
673 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
676 /* Flags for life_analysis and update_life_info. */
678 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
679 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
680 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
681 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
682 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
683 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
684 by dead code removal. */
685 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
686 #define PROP_EQUAL_NOTES 128 /* Take into account REG_EQUAL notes. */
687 #define PROP_SCAN_DEAD_STORES 256 /* Scan for dead code. */
688 #define PROP_ASM_SCAN 512 /* Internal flag used within flow.c
689 to flag analysis of asms. */
690 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
691 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
692 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
693 | PROP_ALLOW_CFG_CHANGES \
694 | PROP_SCAN_DEAD_STORES)
695 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
696 | PROP_KILL_DEAD_CODE \
697 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
698 | PROP_SCAN_DEAD_STORES)
700 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
701 except for edge forwarding */
702 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
703 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
704 to care REG_DEAD notes. */
705 #define CLEANUP_PRE_LOOP 8 /* Take care to preserve syntactic loop
706 notes. */
707 #define CLEANUP_UPDATE_LIFE 16 /* Keep life information up to date. */
708 #define CLEANUP_THREADING 32 /* Do jump threading. */
709 #define CLEANUP_NO_INSN_DEL 64 /* Do not try to delete trivially dead
710 insns. */
711 #define CLEANUP_CFGLAYOUT 128 /* Do cleanup in cfglayout mode. */
712 #define CLEANUP_LOG_LINKS 256 /* Update log links. */
714 extern void life_analysis (FILE *, int);
715 extern int update_life_info (sbitmap, enum update_life_extent, int);
716 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
717 extern int count_or_remove_death_notes (sbitmap, int);
718 extern int propagate_block (basic_block, regset, regset, regset, int);
720 struct propagate_block_info;
721 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
722 extern struct propagate_block_info *init_propagate_block_info
723 (basic_block, regset, regset, regset, int);
724 extern void free_propagate_block_info (struct propagate_block_info *);
726 /* In lcm.c */
727 extern struct edge_list *pre_edge_lcm (FILE *, int, sbitmap *, sbitmap *,
728 sbitmap *, sbitmap *, sbitmap **,
729 sbitmap **);
730 extern struct edge_list *pre_edge_rev_lcm (FILE *, int, sbitmap *,
731 sbitmap *, sbitmap *,
732 sbitmap *, sbitmap **,
733 sbitmap **);
734 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
735 extern int optimize_mode_switching (FILE *);
737 /* In emit-rtl.c. */
738 extern rtx emit_block_insn_after (rtx, rtx, basic_block);
739 extern rtx emit_block_insn_before (rtx, rtx, basic_block);
741 /* In predict.c */
742 extern void estimate_probability (struct loops *);
743 extern void expected_value_to_br_prob (void);
744 extern bool maybe_hot_bb_p (basic_block);
745 extern bool probably_cold_bb_p (basic_block);
746 extern bool probably_never_executed_bb_p (basic_block);
747 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
748 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
749 extern void tree_predict_edge (edge, enum br_predictor, int);
750 extern void rtl_predict_edge (edge, enum br_predictor, int);
751 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
752 extern void guess_outgoing_edge_probabilities (basic_block);
754 /* In flow.c */
755 extern void init_flow (void);
756 extern void debug_bb (basic_block);
757 extern basic_block debug_bb_n (int);
758 extern void dump_regset (regset, FILE *);
759 extern void debug_regset (regset);
760 extern void allocate_reg_life_data (void);
761 extern void allocate_bb_life_data (void);
762 extern void expunge_block (basic_block);
763 extern void link_block (basic_block, basic_block);
764 extern void unlink_block (basic_block);
765 extern void compact_blocks (void);
766 extern basic_block alloc_block (void);
767 extern void find_unreachable_blocks (void);
768 extern int delete_noop_moves (void);
769 extern basic_block force_nonfallthru (edge);
770 extern rtx block_label (basic_block);
771 extern bool forwarder_block_p (basic_block);
772 extern bool purge_all_dead_edges (int);
773 extern bool purge_dead_edges (basic_block);
774 extern void find_sub_basic_blocks (basic_block);
775 extern void find_many_sub_basic_blocks (sbitmap);
776 extern void rtl_make_eh_edge (sbitmap *, basic_block, rtx);
777 extern bool can_fallthru (basic_block, basic_block);
778 extern bool could_fall_through (basic_block, basic_block);
779 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
780 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
781 extern void alloc_aux_for_block (basic_block, int);
782 extern void alloc_aux_for_blocks (int);
783 extern void clear_aux_for_blocks (void);
784 extern void free_aux_for_blocks (void);
785 extern void alloc_aux_for_edge (edge, int);
786 extern void alloc_aux_for_edges (int);
787 extern void clear_aux_for_edges (void);
788 extern void free_aux_for_edges (void);
789 extern void find_basic_blocks (rtx, int, FILE *);
790 extern bool cleanup_cfg (int);
791 extern bool delete_unreachable_blocks (void);
792 extern bool merge_seq_blocks (void);
794 typedef struct conflict_graph_def *conflict_graph;
796 /* Callback function when enumerating conflicts. The arguments are
797 the smaller and larger regno in the conflict. Returns zero if
798 enumeration is to continue, nonzero to halt enumeration. */
799 typedef int (*conflict_graph_enum_fn) (int, int, void *);
802 /* Prototypes of operations on conflict graphs. */
804 extern conflict_graph conflict_graph_new
805 (int);
806 extern void conflict_graph_delete (conflict_graph);
807 extern int conflict_graph_add (conflict_graph, int, int);
808 extern int conflict_graph_conflict_p (conflict_graph, int, int);
809 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
810 void *);
811 extern void conflict_graph_merge_regs (conflict_graph, int, int);
812 extern void conflict_graph_print (conflict_graph, FILE*);
813 extern conflict_graph conflict_graph_compute (regset, partition);
814 extern bool mark_dfs_back_edges (void);
815 extern void set_edge_can_fallthru_flag (void);
816 extern void update_br_prob_note (basic_block);
817 extern void fixup_abnormal_edges (void);
818 extern bool inside_basic_block_p (rtx);
819 extern bool control_flow_insn_p (rtx);
821 /* In bb-reorder.c */
822 extern void reorder_basic_blocks (unsigned int);
823 extern void partition_hot_cold_basic_blocks (void);
825 /* In cfg.c */
826 extern void alloc_rbi_pool (void);
827 extern void initialize_bb_rbi (basic_block bb);
828 extern void free_rbi_pool (void);
830 /* In dominance.c */
832 enum cdi_direction
834 CDI_DOMINATORS,
835 CDI_POST_DOMINATORS
838 enum dom_state
840 DOM_NONE, /* Not computed at all. */
841 DOM_CONS_OK, /* The data is conservatively OK, i.e. if it says you that A dominates B,
842 it indeed does. */
843 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
844 DOM_OK /* Everything is ok. */
847 extern enum dom_state dom_computed[2];
849 extern void calculate_dominance_info (enum cdi_direction);
850 extern void free_dominance_info (enum cdi_direction);
851 extern basic_block nearest_common_dominator (enum cdi_direction,
852 basic_block, basic_block);
853 extern void set_immediate_dominator (enum cdi_direction, basic_block,
854 basic_block);
855 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
856 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
857 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
858 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
859 unsigned, basic_block *);
860 extern void add_to_dominance_info (enum cdi_direction, basic_block);
861 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
862 basic_block recount_dominator (enum cdi_direction, basic_block);
863 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
864 basic_block);
865 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
866 extern void verify_dominators (enum cdi_direction);
867 extern basic_block first_dom_son (enum cdi_direction, basic_block);
868 extern basic_block next_dom_son (enum cdi_direction, basic_block);
869 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
870 extern void break_superblocks (void);
871 extern void check_bb_profile (basic_block, FILE *);
872 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
874 #include "cfghooks.h"
876 #endif /* GCC_BASIC_BLOCK_H */