2007-02-11 Manuel Lopez-Ibanez <manu@gcc.gnu.org>
[official-gcc.git] / gcc / dwarf2out.c
blobf77d4f2559e4cf7dbbc376c340b8140a36d35841
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_pubtypes_section;
160 static GTY(()) section *debug_str_section;
161 static GTY(()) section *debug_ranges_section;
162 static GTY(()) section *debug_frame_section;
164 /* How to start an assembler comment. */
165 #ifndef ASM_COMMENT_START
166 #define ASM_COMMENT_START ";#"
167 #endif
169 typedef struct dw_cfi_struct *dw_cfi_ref;
170 typedef struct dw_fde_struct *dw_fde_ref;
171 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173 /* Call frames are described using a sequence of Call Frame
174 Information instructions. The register number, offset
175 and address fields are provided as possible operands;
176 their use is selected by the opcode field. */
178 enum dw_cfi_oprnd_type {
179 dw_cfi_oprnd_unused,
180 dw_cfi_oprnd_reg_num,
181 dw_cfi_oprnd_offset,
182 dw_cfi_oprnd_addr,
183 dw_cfi_oprnd_loc
186 typedef union dw_cfi_oprnd_struct GTY(())
188 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 dw_cfi_oprnd;
195 typedef struct dw_cfi_struct GTY(())
197 dw_cfi_ref dw_cfi_next;
198 enum dwarf_call_frame_info dw_cfi_opc;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd1;
201 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd2;
204 dw_cfi_node;
206 /* This is how we define the location of the CFA. We use to handle it
207 as REG + OFFSET all the time, but now it can be more complex.
208 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209 Instead of passing around REG and OFFSET, we pass a copy
210 of this structure. */
211 typedef struct cfa_loc GTY(())
213 HOST_WIDE_INT offset;
214 HOST_WIDE_INT base_offset;
215 unsigned int reg;
216 int indirect; /* 1 if CFA is accessed via a dereference. */
217 } dw_cfa_location;
219 /* All call frame descriptions (FDE's) in the GCC generated DWARF
220 refer to a single Common Information Entry (CIE), defined at
221 the beginning of the .debug_frame section. This use of a single
222 CIE obviates the need to keep track of multiple CIE's
223 in the DWARF generation routines below. */
225 typedef struct dw_fde_struct GTY(())
227 tree decl;
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 const char *dw_fde_hot_section_label;
232 const char *dw_fde_hot_section_end_label;
233 const char *dw_fde_unlikely_section_label;
234 const char *dw_fde_unlikely_section_end_label;
235 bool dw_fde_switched_sections;
236 dw_cfi_ref dw_fde_cfi;
237 unsigned funcdef_number;
238 unsigned all_throwers_are_sibcalls : 1;
239 unsigned nothrow : 1;
240 unsigned uses_eh_lsda : 1;
242 dw_fde_node;
244 /* Maximum size (in bytes) of an artificially generated label. */
245 #define MAX_ARTIFICIAL_LABEL_BYTES 30
247 /* The size of addresses as they appear in the Dwarf 2 data.
248 Some architectures use word addresses to refer to code locations,
249 but Dwarf 2 info always uses byte addresses. On such machines,
250 Dwarf 2 addresses need to be larger than the architecture's
251 pointers. */
252 #ifndef DWARF2_ADDR_SIZE
253 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254 #endif
256 /* The size in bytes of a DWARF field indicating an offset or length
257 relative to a debug info section, specified to be 4 bytes in the
258 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
259 as PTR_SIZE. */
261 #ifndef DWARF_OFFSET_SIZE
262 #define DWARF_OFFSET_SIZE 4
263 #endif
265 /* According to the (draft) DWARF 3 specification, the initial length
266 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
267 bytes are 0xffffffff, followed by the length stored in the next 8
268 bytes.
270 However, the SGI/MIPS ABI uses an initial length which is equal to
271 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
273 #ifndef DWARF_INITIAL_LENGTH_SIZE
274 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275 #endif
277 #define DWARF_VERSION 2
279 /* Round SIZE up to the nearest BOUNDARY. */
280 #define DWARF_ROUND(SIZE,BOUNDARY) \
281 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
283 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
284 #ifndef DWARF_CIE_DATA_ALIGNMENT
285 #ifdef STACK_GROWS_DOWNWARD
286 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #else
288 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289 #endif
290 #endif
292 /* CIE identifier. */
293 #if HOST_BITS_PER_WIDE_INT >= 64
294 #define DWARF_CIE_ID \
295 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #else
297 #define DWARF_CIE_ID DW_CIE_ID
298 #endif
300 /* A pointer to the base of a table that contains frame description
301 information for each routine. */
302 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
304 /* Number of elements currently allocated for fde_table. */
305 static GTY(()) unsigned fde_table_allocated;
307 /* Number of elements in fde_table currently in use. */
308 static GTY(()) unsigned fde_table_in_use;
310 /* Size (in elements) of increments by which we may expand the
311 fde_table. */
312 #define FDE_TABLE_INCREMENT 256
314 /* A list of call frame insns for the CIE. */
315 static GTY(()) dw_cfi_ref cie_cfi_head;
317 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319 attribute that accelerates the lookup of the FDE associated
320 with the subprogram. This variable holds the table index of the FDE
321 associated with the current function (body) definition. */
322 static unsigned current_funcdef_fde;
323 #endif
325 struct indirect_string_node GTY(())
327 const char *str;
328 unsigned int refcount;
329 unsigned int form;
330 char *label;
333 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
335 static GTY(()) int dw2_string_counter;
336 static GTY(()) unsigned long dwarf2out_cfi_label_num;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
340 /* Forward declarations for functions defined in this file. */
342 static char *stripattributes (const char *);
343 static const char *dwarf_cfi_name (unsigned);
344 static dw_cfi_ref new_cfi (void);
345 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346 static void add_fde_cfi (const char *, dw_cfi_ref);
347 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348 static void lookup_cfa (dw_cfa_location *);
349 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350 static void initial_return_save (rtx);
351 static HOST_WIDE_INT stack_adjust_offset (rtx);
352 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353 static void output_call_frame_info (int);
354 static void dwarf2out_stack_adjust (rtx, bool);
355 static void flush_queued_reg_saves (void);
356 static bool clobbers_queued_reg_save (rtx);
357 static void dwarf2out_frame_debug_expr (rtx, const char *);
359 /* Support for complex CFA locations. */
360 static void output_cfa_loc (dw_cfi_ref);
361 static void get_cfa_from_loc_descr (dw_cfa_location *,
362 struct dw_loc_descr_struct *);
363 static struct dw_loc_descr_struct *build_cfa_loc
364 (dw_cfa_location *, HOST_WIDE_INT);
365 static void def_cfa_1 (const char *, dw_cfa_location *);
367 /* How to start an assembler comment. */
368 #ifndef ASM_COMMENT_START
369 #define ASM_COMMENT_START ";#"
370 #endif
372 /* Data and reference forms for relocatable data. */
373 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
376 #ifndef DEBUG_FRAME_SECTION
377 #define DEBUG_FRAME_SECTION ".debug_frame"
378 #endif
380 #ifndef FUNC_BEGIN_LABEL
381 #define FUNC_BEGIN_LABEL "LFB"
382 #endif
384 #ifndef FUNC_END_LABEL
385 #define FUNC_END_LABEL "LFE"
386 #endif
388 #ifndef FRAME_BEGIN_LABEL
389 #define FRAME_BEGIN_LABEL "Lframe"
390 #endif
391 #define CIE_AFTER_SIZE_LABEL "LSCIE"
392 #define CIE_END_LABEL "LECIE"
393 #define FDE_LABEL "LSFDE"
394 #define FDE_AFTER_SIZE_LABEL "LASFDE"
395 #define FDE_END_LABEL "LEFDE"
396 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
397 #define LINE_NUMBER_END_LABEL "LELT"
398 #define LN_PROLOG_AS_LABEL "LASLTP"
399 #define LN_PROLOG_END_LABEL "LELTP"
400 #define DIE_LABEL_PREFIX "DW"
402 /* The DWARF 2 CFA column which tracks the return address. Normally this
403 is the column for PC, or the first column after all of the hard
404 registers. */
405 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #ifdef PC_REGNUM
407 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #else
409 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
410 #endif
411 #endif
413 /* The mapping from gcc register number to DWARF 2 CFA column number. By
414 default, we just provide columns for all registers. */
415 #ifndef DWARF_FRAME_REGNUM
416 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417 #endif
419 /* Hook used by __throw. */
422 expand_builtin_dwarf_sp_column (void)
424 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
428 /* Return a pointer to a copy of the section string name S with all
429 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 static inline char *
432 stripattributes (const char *s)
434 char *stripped = XNEWVEC (char, strlen (s) + 2);
435 char *p = stripped;
437 *p++ = '*';
439 while (*s && *s != ',')
440 *p++ = *s++;
442 *p = '\0';
443 return stripped;
446 /* MEM is a memory reference for the register size table, each element of
447 which has mode MODE. Initialize column C as a return address column. */
449 static void
450 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
452 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
453 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
454 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
457 /* Generate code to initialize the register size table. */
459 void
460 expand_builtin_init_dwarf_reg_sizes (tree address)
462 unsigned int i;
463 enum machine_mode mode = TYPE_MODE (char_type_node);
464 rtx addr = expand_normal (address);
465 rtx mem = gen_rtx_MEM (BLKmode, addr);
466 bool wrote_return_column = false;
468 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
472 if (rnum < DWARF_FRAME_REGISTERS)
474 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
475 enum machine_mode save_mode = reg_raw_mode[i];
476 HOST_WIDE_INT size;
478 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
479 save_mode = choose_hard_reg_mode (i, 1, true);
480 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
482 if (save_mode == VOIDmode)
483 continue;
484 wrote_return_column = true;
486 size = GET_MODE_SIZE (save_mode);
487 if (offset < 0)
488 continue;
490 emit_move_insn (adjust_address (mem, mode, offset),
491 gen_int_mode (size, mode));
495 if (!wrote_return_column)
496 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
498 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
499 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
500 #endif
503 /* Convert a DWARF call frame info. operation to its string name */
505 static const char *
506 dwarf_cfi_name (unsigned int cfi_opc)
508 switch (cfi_opc)
510 case DW_CFA_advance_loc:
511 return "DW_CFA_advance_loc";
512 case DW_CFA_offset:
513 return "DW_CFA_offset";
514 case DW_CFA_restore:
515 return "DW_CFA_restore";
516 case DW_CFA_nop:
517 return "DW_CFA_nop";
518 case DW_CFA_set_loc:
519 return "DW_CFA_set_loc";
520 case DW_CFA_advance_loc1:
521 return "DW_CFA_advance_loc1";
522 case DW_CFA_advance_loc2:
523 return "DW_CFA_advance_loc2";
524 case DW_CFA_advance_loc4:
525 return "DW_CFA_advance_loc4";
526 case DW_CFA_offset_extended:
527 return "DW_CFA_offset_extended";
528 case DW_CFA_restore_extended:
529 return "DW_CFA_restore_extended";
530 case DW_CFA_undefined:
531 return "DW_CFA_undefined";
532 case DW_CFA_same_value:
533 return "DW_CFA_same_value";
534 case DW_CFA_register:
535 return "DW_CFA_register";
536 case DW_CFA_remember_state:
537 return "DW_CFA_remember_state";
538 case DW_CFA_restore_state:
539 return "DW_CFA_restore_state";
540 case DW_CFA_def_cfa:
541 return "DW_CFA_def_cfa";
542 case DW_CFA_def_cfa_register:
543 return "DW_CFA_def_cfa_register";
544 case DW_CFA_def_cfa_offset:
545 return "DW_CFA_def_cfa_offset";
547 /* DWARF 3 */
548 case DW_CFA_def_cfa_expression:
549 return "DW_CFA_def_cfa_expression";
550 case DW_CFA_expression:
551 return "DW_CFA_expression";
552 case DW_CFA_offset_extended_sf:
553 return "DW_CFA_offset_extended_sf";
554 case DW_CFA_def_cfa_sf:
555 return "DW_CFA_def_cfa_sf";
556 case DW_CFA_def_cfa_offset_sf:
557 return "DW_CFA_def_cfa_offset_sf";
559 /* SGI/MIPS specific */
560 case DW_CFA_MIPS_advance_loc8:
561 return "DW_CFA_MIPS_advance_loc8";
563 /* GNU extensions */
564 case DW_CFA_GNU_window_save:
565 return "DW_CFA_GNU_window_save";
566 case DW_CFA_GNU_args_size:
567 return "DW_CFA_GNU_args_size";
568 case DW_CFA_GNU_negative_offset_extended:
569 return "DW_CFA_GNU_negative_offset_extended";
571 default:
572 return "DW_CFA_<unknown>";
576 /* Return a pointer to a newly allocated Call Frame Instruction. */
578 static inline dw_cfi_ref
579 new_cfi (void)
581 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
583 cfi->dw_cfi_next = NULL;
584 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
585 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
587 return cfi;
590 /* Add a Call Frame Instruction to list of instructions. */
592 static inline void
593 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
595 dw_cfi_ref *p;
597 /* Find the end of the chain. */
598 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601 *p = cfi;
604 /* Generate a new label for the CFI info to refer to. */
606 char *
607 dwarf2out_cfi_label (void)
609 static char label[20];
611 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
612 ASM_OUTPUT_LABEL (asm_out_file, label);
613 return label;
616 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
617 or to the CIE if LABEL is NULL. */
619 static void
620 add_fde_cfi (const char *label, dw_cfi_ref cfi)
622 if (label)
624 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
626 if (*label == 0)
627 label = dwarf2out_cfi_label ();
629 if (fde->dw_fde_current_label == NULL
630 || strcmp (label, fde->dw_fde_current_label) != 0)
632 dw_cfi_ref xcfi;
634 label = xstrdup (label);
636 /* Set the location counter to the new label. */
637 xcfi = new_cfi ();
638 /* If we have a current label, advance from there, otherwise
639 set the location directly using set_loc. */
640 xcfi->dw_cfi_opc = fde->dw_fde_current_label
641 ? DW_CFA_advance_loc4
642 : DW_CFA_set_loc;
643 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
644 add_cfi (&fde->dw_fde_cfi, xcfi);
646 fde->dw_fde_current_label = label;
649 add_cfi (&fde->dw_fde_cfi, cfi);
652 else
653 add_cfi (&cie_cfi_head, cfi);
656 /* Subroutine of lookup_cfa. */
658 static void
659 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
661 switch (cfi->dw_cfi_opc)
663 case DW_CFA_def_cfa_offset:
664 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
665 break;
666 case DW_CFA_def_cfa_offset_sf:
667 loc->offset
668 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
669 break;
670 case DW_CFA_def_cfa_register:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 break;
673 case DW_CFA_def_cfa:
674 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
675 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
676 break;
677 case DW_CFA_def_cfa_sf:
678 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
679 loc->offset
680 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
681 break;
682 case DW_CFA_def_cfa_expression:
683 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
684 break;
685 default:
686 break;
690 /* Find the previous value for the CFA. */
692 static void
693 lookup_cfa (dw_cfa_location *loc)
695 dw_cfi_ref cfi;
697 loc->reg = INVALID_REGNUM;
698 loc->offset = 0;
699 loc->indirect = 0;
700 loc->base_offset = 0;
702 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
703 lookup_cfa_1 (cfi, loc);
705 if (fde_table_in_use)
707 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
708 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
709 lookup_cfa_1 (cfi, loc);
713 /* The current rule for calculating the DWARF2 canonical frame address. */
714 static dw_cfa_location cfa;
716 /* The register used for saving registers to the stack, and its offset
717 from the CFA. */
718 static dw_cfa_location cfa_store;
720 /* The running total of the size of arguments pushed onto the stack. */
721 static HOST_WIDE_INT args_size;
723 /* The last args_size we actually output. */
724 static HOST_WIDE_INT old_args_size;
726 /* Entry point to update the canonical frame address (CFA).
727 LABEL is passed to add_fde_cfi. The value of CFA is now to be
728 calculated from REG+OFFSET. */
730 void
731 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
733 dw_cfa_location loc;
734 loc.indirect = 0;
735 loc.base_offset = 0;
736 loc.reg = reg;
737 loc.offset = offset;
738 def_cfa_1 (label, &loc);
741 /* Determine if two dw_cfa_location structures define the same data. */
743 static bool
744 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
746 return (loc1->reg == loc2->reg
747 && loc1->offset == loc2->offset
748 && loc1->indirect == loc2->indirect
749 && (loc1->indirect == 0
750 || loc1->base_offset == loc2->base_offset));
753 /* This routine does the actual work. The CFA is now calculated from
754 the dw_cfa_location structure. */
756 static void
757 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
759 dw_cfi_ref cfi;
760 dw_cfa_location old_cfa, loc;
762 cfa = *loc_p;
763 loc = *loc_p;
765 if (cfa_store.reg == loc.reg && loc.indirect == 0)
766 cfa_store.offset = loc.offset;
768 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
769 lookup_cfa (&old_cfa);
771 /* If nothing changed, no need to issue any call frame instructions. */
772 if (cfa_equal_p (&loc, &old_cfa))
773 return;
775 cfi = new_cfi ();
777 if (loc.reg == old_cfa.reg && !loc.indirect)
779 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
780 the CFA register did not change but the offset did. */
781 if (loc.offset < 0)
783 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
784 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
786 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
787 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
789 else
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
792 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
796 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
797 else if (loc.offset == old_cfa.offset
798 && old_cfa.reg != INVALID_REGNUM
799 && !loc.indirect)
801 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
802 indicating the CFA register has changed to <register> but the
803 offset has not changed. */
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
805 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
807 #endif
809 else if (loc.indirect == 0)
811 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
812 indicating the CFA register has changed to <register> with
813 the specified offset. */
814 if (loc.offset < 0)
816 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
817 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
819 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
820 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
821 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
823 else
825 cfi->dw_cfi_opc = DW_CFA_def_cfa;
826 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
827 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
830 else
832 /* Construct a DW_CFA_def_cfa_expression instruction to
833 calculate the CFA using a full location expression since no
834 register-offset pair is available. */
835 struct dw_loc_descr_struct *loc_list;
837 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
838 loc_list = build_cfa_loc (&loc, 0);
839 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
842 add_fde_cfi (label, cfi);
845 /* Add the CFI for saving a register. REG is the CFA column number.
846 LABEL is passed to add_fde_cfi.
847 If SREG is -1, the register is saved at OFFSET from the CFA;
848 otherwise it is saved in SREG. */
850 static void
851 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
853 dw_cfi_ref cfi = new_cfi ();
855 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
857 if (sreg == INVALID_REGNUM)
859 if (reg & ~0x3f)
860 /* The register number won't fit in 6 bits, so we have to use
861 the long form. */
862 cfi->dw_cfi_opc = DW_CFA_offset_extended;
863 else
864 cfi->dw_cfi_opc = DW_CFA_offset;
866 #ifdef ENABLE_CHECKING
868 /* If we get an offset that is not a multiple of
869 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
870 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
871 description. */
872 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
874 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
876 #endif
877 offset /= DWARF_CIE_DATA_ALIGNMENT;
878 if (offset < 0)
879 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
881 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
883 else if (sreg == reg)
884 cfi->dw_cfi_opc = DW_CFA_same_value;
885 else
887 cfi->dw_cfi_opc = DW_CFA_register;
888 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
891 add_fde_cfi (label, cfi);
894 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
895 This CFI tells the unwinder that it needs to restore the window registers
896 from the previous frame's window save area.
898 ??? Perhaps we should note in the CIE where windows are saved (instead of
899 assuming 0(cfa)) and what registers are in the window. */
901 void
902 dwarf2out_window_save (const char *label)
904 dw_cfi_ref cfi = new_cfi ();
906 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
907 add_fde_cfi (label, cfi);
910 /* Add a CFI to update the running total of the size of arguments
911 pushed onto the stack. */
913 void
914 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
916 dw_cfi_ref cfi;
918 if (size == old_args_size)
919 return;
921 old_args_size = size;
923 cfi = new_cfi ();
924 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
925 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
926 add_fde_cfi (label, cfi);
929 /* Entry point for saving a register to the stack. REG is the GCC register
930 number. LABEL and OFFSET are passed to reg_save. */
932 void
933 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
935 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
938 /* Entry point for saving the return address in the stack.
939 LABEL and OFFSET are passed to reg_save. */
941 void
942 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
944 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
947 /* Entry point for saving the return address in a register.
948 LABEL and SREG are passed to reg_save. */
950 void
951 dwarf2out_return_reg (const char *label, unsigned int sreg)
953 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
956 /* Record the initial position of the return address. RTL is
957 INCOMING_RETURN_ADDR_RTX. */
959 static void
960 initial_return_save (rtx rtl)
962 unsigned int reg = INVALID_REGNUM;
963 HOST_WIDE_INT offset = 0;
965 switch (GET_CODE (rtl))
967 case REG:
968 /* RA is in a register. */
969 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
970 break;
972 case MEM:
973 /* RA is on the stack. */
974 rtl = XEXP (rtl, 0);
975 switch (GET_CODE (rtl))
977 case REG:
978 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
979 offset = 0;
980 break;
982 case PLUS:
983 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
984 offset = INTVAL (XEXP (rtl, 1));
985 break;
987 case MINUS:
988 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
989 offset = -INTVAL (XEXP (rtl, 1));
990 break;
992 default:
993 gcc_unreachable ();
996 break;
998 case PLUS:
999 /* The return address is at some offset from any value we can
1000 actually load. For instance, on the SPARC it is in %i7+8. Just
1001 ignore the offset for now; it doesn't matter for unwinding frames. */
1002 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1003 initial_return_save (XEXP (rtl, 0));
1004 return;
1006 default:
1007 gcc_unreachable ();
1010 if (reg != DWARF_FRAME_RETURN_COLUMN)
1011 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1014 /* Given a SET, calculate the amount of stack adjustment it
1015 contains. */
1017 static HOST_WIDE_INT
1018 stack_adjust_offset (rtx pattern)
1020 rtx src = SET_SRC (pattern);
1021 rtx dest = SET_DEST (pattern);
1022 HOST_WIDE_INT offset = 0;
1023 enum rtx_code code;
1025 if (dest == stack_pointer_rtx)
1027 /* (set (reg sp) (plus (reg sp) (const_int))) */
1028 code = GET_CODE (src);
1029 if (! (code == PLUS || code == MINUS)
1030 || XEXP (src, 0) != stack_pointer_rtx
1031 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1032 return 0;
1034 offset = INTVAL (XEXP (src, 1));
1035 if (code == PLUS)
1036 offset = -offset;
1038 else if (MEM_P (dest))
1040 /* (set (mem (pre_dec (reg sp))) (foo)) */
1041 src = XEXP (dest, 0);
1042 code = GET_CODE (src);
1044 switch (code)
1046 case PRE_MODIFY:
1047 case POST_MODIFY:
1048 if (XEXP (src, 0) == stack_pointer_rtx)
1050 rtx val = XEXP (XEXP (src, 1), 1);
1051 /* We handle only adjustments by constant amount. */
1052 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1053 && GET_CODE (val) == CONST_INT);
1054 offset = -INTVAL (val);
1055 break;
1057 return 0;
1059 case PRE_DEC:
1060 case POST_DEC:
1061 if (XEXP (src, 0) == stack_pointer_rtx)
1063 offset = GET_MODE_SIZE (GET_MODE (dest));
1064 break;
1066 return 0;
1068 case PRE_INC:
1069 case POST_INC:
1070 if (XEXP (src, 0) == stack_pointer_rtx)
1072 offset = -GET_MODE_SIZE (GET_MODE (dest));
1073 break;
1075 return 0;
1077 default:
1078 return 0;
1081 else
1082 return 0;
1084 return offset;
1087 /* Check INSN to see if it looks like a push or a stack adjustment, and
1088 make a note of it if it does. EH uses this information to find out how
1089 much extra space it needs to pop off the stack. */
1091 static void
1092 dwarf2out_stack_adjust (rtx insn, bool after_p)
1094 HOST_WIDE_INT offset;
1095 const char *label;
1096 int i;
1098 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1099 with this function. Proper support would require all frame-related
1100 insns to be marked, and to be able to handle saving state around
1101 epilogues textually in the middle of the function. */
1102 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1103 return;
1105 /* If only calls can throw, and we have a frame pointer,
1106 save up adjustments until we see the CALL_INSN. */
1107 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1109 if (CALL_P (insn) && !after_p)
1111 /* Extract the size of the args from the CALL rtx itself. */
1112 insn = PATTERN (insn);
1113 if (GET_CODE (insn) == PARALLEL)
1114 insn = XVECEXP (insn, 0, 0);
1115 if (GET_CODE (insn) == SET)
1116 insn = SET_SRC (insn);
1117 gcc_assert (GET_CODE (insn) == CALL);
1118 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1120 return;
1123 if (CALL_P (insn) && !after_p)
1125 if (!flag_asynchronous_unwind_tables)
1126 dwarf2out_args_size ("", args_size);
1127 return;
1129 else if (BARRIER_P (insn))
1131 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1132 the compiler will have already emitted a stack adjustment, but
1133 doesn't bother for calls to noreturn functions. */
1134 #ifdef STACK_GROWS_DOWNWARD
1135 offset = -args_size;
1136 #else
1137 offset = args_size;
1138 #endif
1140 else if (GET_CODE (PATTERN (insn)) == SET)
1141 offset = stack_adjust_offset (PATTERN (insn));
1142 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1143 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1145 /* There may be stack adjustments inside compound insns. Search
1146 for them. */
1147 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1148 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1149 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1151 else
1152 return;
1154 if (offset == 0)
1155 return;
1157 if (cfa.reg == STACK_POINTER_REGNUM)
1158 cfa.offset += offset;
1160 #ifndef STACK_GROWS_DOWNWARD
1161 offset = -offset;
1162 #endif
1164 args_size += offset;
1165 if (args_size < 0)
1166 args_size = 0;
1168 label = dwarf2out_cfi_label ();
1169 def_cfa_1 (label, &cfa);
1170 if (flag_asynchronous_unwind_tables)
1171 dwarf2out_args_size (label, args_size);
1174 #endif
1176 /* We delay emitting a register save until either (a) we reach the end
1177 of the prologue or (b) the register is clobbered. This clusters
1178 register saves so that there are fewer pc advances. */
1180 struct queued_reg_save GTY(())
1182 struct queued_reg_save *next;
1183 rtx reg;
1184 HOST_WIDE_INT cfa_offset;
1185 rtx saved_reg;
1188 static GTY(()) struct queued_reg_save *queued_reg_saves;
1190 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1191 struct reg_saved_in_data GTY(()) {
1192 rtx orig_reg;
1193 rtx saved_in_reg;
1196 /* A list of registers saved in other registers.
1197 The list intentionally has a small maximum capacity of 4; if your
1198 port needs more than that, you might consider implementing a
1199 more efficient data structure. */
1200 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1201 static GTY(()) size_t num_regs_saved_in_regs;
1203 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1204 static const char *last_reg_save_label;
1206 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1207 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1209 static void
1210 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1212 struct queued_reg_save *q;
1214 /* Duplicates waste space, but it's also necessary to remove them
1215 for correctness, since the queue gets output in reverse
1216 order. */
1217 for (q = queued_reg_saves; q != NULL; q = q->next)
1218 if (REGNO (q->reg) == REGNO (reg))
1219 break;
1221 if (q == NULL)
1223 q = ggc_alloc (sizeof (*q));
1224 q->next = queued_reg_saves;
1225 queued_reg_saves = q;
1228 q->reg = reg;
1229 q->cfa_offset = offset;
1230 q->saved_reg = sreg;
1232 last_reg_save_label = label;
1235 /* Output all the entries in QUEUED_REG_SAVES. */
1237 static void
1238 flush_queued_reg_saves (void)
1240 struct queued_reg_save *q;
1242 for (q = queued_reg_saves; q; q = q->next)
1244 size_t i;
1245 unsigned int reg, sreg;
1247 for (i = 0; i < num_regs_saved_in_regs; i++)
1248 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1249 break;
1250 if (q->saved_reg && i == num_regs_saved_in_regs)
1252 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1253 num_regs_saved_in_regs++;
1255 if (i != num_regs_saved_in_regs)
1257 regs_saved_in_regs[i].orig_reg = q->reg;
1258 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1261 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1262 if (q->saved_reg)
1263 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1264 else
1265 sreg = INVALID_REGNUM;
1266 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1269 queued_reg_saves = NULL;
1270 last_reg_save_label = NULL;
1273 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1274 location for? Or, does it clobber a register which we've previously
1275 said that some other register is saved in, and for which we now
1276 have a new location for? */
1278 static bool
1279 clobbers_queued_reg_save (rtx insn)
1281 struct queued_reg_save *q;
1283 for (q = queued_reg_saves; q; q = q->next)
1285 size_t i;
1286 if (modified_in_p (q->reg, insn))
1287 return true;
1288 for (i = 0; i < num_regs_saved_in_regs; i++)
1289 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1290 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1291 return true;
1294 return false;
1297 /* Entry point for saving the first register into the second. */
1299 void
1300 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1302 size_t i;
1303 unsigned int regno, sregno;
1305 for (i = 0; i < num_regs_saved_in_regs; i++)
1306 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1307 break;
1308 if (i == num_regs_saved_in_regs)
1310 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1311 num_regs_saved_in_regs++;
1313 regs_saved_in_regs[i].orig_reg = reg;
1314 regs_saved_in_regs[i].saved_in_reg = sreg;
1316 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1317 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1318 reg_save (label, regno, sregno, 0);
1321 /* What register, if any, is currently saved in REG? */
1323 static rtx
1324 reg_saved_in (rtx reg)
1326 unsigned int regn = REGNO (reg);
1327 size_t i;
1328 struct queued_reg_save *q;
1330 for (q = queued_reg_saves; q; q = q->next)
1331 if (q->saved_reg && regn == REGNO (q->saved_reg))
1332 return q->reg;
1334 for (i = 0; i < num_regs_saved_in_regs; i++)
1335 if (regs_saved_in_regs[i].saved_in_reg
1336 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1337 return regs_saved_in_regs[i].orig_reg;
1339 return NULL_RTX;
1343 /* A temporary register holding an integral value used in adjusting SP
1344 or setting up the store_reg. The "offset" field holds the integer
1345 value, not an offset. */
1346 static dw_cfa_location cfa_temp;
1348 /* Record call frame debugging information for an expression EXPR,
1349 which either sets SP or FP (adjusting how we calculate the frame
1350 address) or saves a register to the stack or another register.
1351 LABEL indicates the address of EXPR.
1353 This function encodes a state machine mapping rtxes to actions on
1354 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1355 users need not read the source code.
1357 The High-Level Picture
1359 Changes in the register we use to calculate the CFA: Currently we
1360 assume that if you copy the CFA register into another register, we
1361 should take the other one as the new CFA register; this seems to
1362 work pretty well. If it's wrong for some target, it's simple
1363 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1365 Changes in the register we use for saving registers to the stack:
1366 This is usually SP, but not always. Again, we deduce that if you
1367 copy SP into another register (and SP is not the CFA register),
1368 then the new register is the one we will be using for register
1369 saves. This also seems to work.
1371 Register saves: There's not much guesswork about this one; if
1372 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1373 register save, and the register used to calculate the destination
1374 had better be the one we think we're using for this purpose.
1375 It's also assumed that a copy from a call-saved register to another
1376 register is saving that register if RTX_FRAME_RELATED_P is set on
1377 that instruction. If the copy is from a call-saved register to
1378 the *same* register, that means that the register is now the same
1379 value as in the caller.
1381 Except: If the register being saved is the CFA register, and the
1382 offset is nonzero, we are saving the CFA, so we assume we have to
1383 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1384 the intent is to save the value of SP from the previous frame.
1386 In addition, if a register has previously been saved to a different
1387 register,
1389 Invariants / Summaries of Rules
1391 cfa current rule for calculating the CFA. It usually
1392 consists of a register and an offset.
1393 cfa_store register used by prologue code to save things to the stack
1394 cfa_store.offset is the offset from the value of
1395 cfa_store.reg to the actual CFA
1396 cfa_temp register holding an integral value. cfa_temp.offset
1397 stores the value, which will be used to adjust the
1398 stack pointer. cfa_temp is also used like cfa_store,
1399 to track stores to the stack via fp or a temp reg.
1401 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1402 with cfa.reg as the first operand changes the cfa.reg and its
1403 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1404 cfa_temp.offset.
1406 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1407 expression yielding a constant. This sets cfa_temp.reg
1408 and cfa_temp.offset.
1410 Rule 5: Create a new register cfa_store used to save items to the
1411 stack.
1413 Rules 10-14: Save a register to the stack. Define offset as the
1414 difference of the original location and cfa_store's
1415 location (or cfa_temp's location if cfa_temp is used).
1417 The Rules
1419 "{a,b}" indicates a choice of a xor b.
1420 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1422 Rule 1:
1423 (set <reg1> <reg2>:cfa.reg)
1424 effects: cfa.reg = <reg1>
1425 cfa.offset unchanged
1426 cfa_temp.reg = <reg1>
1427 cfa_temp.offset = cfa.offset
1429 Rule 2:
1430 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1431 {<const_int>,<reg>:cfa_temp.reg}))
1432 effects: cfa.reg = sp if fp used
1433 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1434 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1435 if cfa_store.reg==sp
1437 Rule 3:
1438 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1439 effects: cfa.reg = fp
1440 cfa_offset += +/- <const_int>
1442 Rule 4:
1443 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1444 constraints: <reg1> != fp
1445 <reg1> != sp
1446 effects: cfa.reg = <reg1>
1447 cfa_temp.reg = <reg1>
1448 cfa_temp.offset = cfa.offset
1450 Rule 5:
1451 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1452 constraints: <reg1> != fp
1453 <reg1> != sp
1454 effects: cfa_store.reg = <reg1>
1455 cfa_store.offset = cfa.offset - cfa_temp.offset
1457 Rule 6:
1458 (set <reg> <const_int>)
1459 effects: cfa_temp.reg = <reg>
1460 cfa_temp.offset = <const_int>
1462 Rule 7:
1463 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1464 effects: cfa_temp.reg = <reg1>
1465 cfa_temp.offset |= <const_int>
1467 Rule 8:
1468 (set <reg> (high <exp>))
1469 effects: none
1471 Rule 9:
1472 (set <reg> (lo_sum <exp> <const_int>))
1473 effects: cfa_temp.reg = <reg>
1474 cfa_temp.offset = <const_int>
1476 Rule 10:
1477 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1478 effects: cfa_store.offset -= <const_int>
1479 cfa.offset = cfa_store.offset if cfa.reg == sp
1480 cfa.reg = sp
1481 cfa.base_offset = -cfa_store.offset
1483 Rule 11:
1484 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1485 effects: cfa_store.offset += -/+ mode_size(mem)
1486 cfa.offset = cfa_store.offset if cfa.reg == sp
1487 cfa.reg = sp
1488 cfa.base_offset = -cfa_store.offset
1490 Rule 12:
1491 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1493 <reg2>)
1494 effects: cfa.reg = <reg1>
1495 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1497 Rule 13:
1498 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1499 effects: cfa.reg = <reg1>
1500 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1502 Rule 14:
1503 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1504 effects: cfa.reg = <reg1>
1505 cfa.base_offset = -cfa_temp.offset
1506 cfa_temp.offset -= mode_size(mem)
1508 Rule 15:
1509 (set <reg> {unspec, unspec_volatile})
1510 effects: target-dependent */
1512 static void
1513 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1515 rtx src, dest;
1516 HOST_WIDE_INT offset;
1518 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1519 the PARALLEL independently. The first element is always processed if
1520 it is a SET. This is for backward compatibility. Other elements
1521 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1522 flag is set in them. */
1523 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1525 int par_index;
1526 int limit = XVECLEN (expr, 0);
1527 rtx elem;
1529 /* PARALLELs have strict read-modify-write semantics, so we
1530 ought to evaluate every rvalue before changing any lvalue.
1531 It's cumbersome to do that in general, but there's an
1532 easy approximation that is enough for all current users:
1533 handle register saves before register assignments. */
1534 if (GET_CODE (expr) == PARALLEL)
1535 for (par_index = 0; par_index < limit; par_index++)
1537 elem = XVECEXP (expr, 0, par_index);
1538 if (GET_CODE (elem) == SET
1539 && MEM_P (SET_DEST (elem))
1540 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1541 dwarf2out_frame_debug_expr (elem, label);
1544 for (par_index = 0; par_index < limit; par_index++)
1546 elem = XVECEXP (expr, 0, par_index);
1547 if (GET_CODE (elem) == SET
1548 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1549 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1550 dwarf2out_frame_debug_expr (elem, label);
1552 return;
1555 gcc_assert (GET_CODE (expr) == SET);
1557 src = SET_SRC (expr);
1558 dest = SET_DEST (expr);
1560 if (REG_P (src))
1562 rtx rsi = reg_saved_in (src);
1563 if (rsi)
1564 src = rsi;
1567 switch (GET_CODE (dest))
1569 case REG:
1570 switch (GET_CODE (src))
1572 /* Setting FP from SP. */
1573 case REG:
1574 if (cfa.reg == (unsigned) REGNO (src))
1576 /* Rule 1 */
1577 /* Update the CFA rule wrt SP or FP. Make sure src is
1578 relative to the current CFA register.
1580 We used to require that dest be either SP or FP, but the
1581 ARM copies SP to a temporary register, and from there to
1582 FP. So we just rely on the backends to only set
1583 RTX_FRAME_RELATED_P on appropriate insns. */
1584 cfa.reg = REGNO (dest);
1585 cfa_temp.reg = cfa.reg;
1586 cfa_temp.offset = cfa.offset;
1588 else
1590 /* Saving a register in a register. */
1591 gcc_assert (!fixed_regs [REGNO (dest)]
1592 /* For the SPARC and its register window. */
1593 || (DWARF_FRAME_REGNUM (REGNO (src))
1594 == DWARF_FRAME_RETURN_COLUMN));
1595 queue_reg_save (label, src, dest, 0);
1597 break;
1599 case PLUS:
1600 case MINUS:
1601 case LO_SUM:
1602 if (dest == stack_pointer_rtx)
1604 /* Rule 2 */
1605 /* Adjusting SP. */
1606 switch (GET_CODE (XEXP (src, 1)))
1608 case CONST_INT:
1609 offset = INTVAL (XEXP (src, 1));
1610 break;
1611 case REG:
1612 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1613 == cfa_temp.reg);
1614 offset = cfa_temp.offset;
1615 break;
1616 default:
1617 gcc_unreachable ();
1620 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1622 /* Restoring SP from FP in the epilogue. */
1623 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1624 cfa.reg = STACK_POINTER_REGNUM;
1626 else if (GET_CODE (src) == LO_SUM)
1627 /* Assume we've set the source reg of the LO_SUM from sp. */
1629 else
1630 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1632 if (GET_CODE (src) != MINUS)
1633 offset = -offset;
1634 if (cfa.reg == STACK_POINTER_REGNUM)
1635 cfa.offset += offset;
1636 if (cfa_store.reg == STACK_POINTER_REGNUM)
1637 cfa_store.offset += offset;
1639 else if (dest == hard_frame_pointer_rtx)
1641 /* Rule 3 */
1642 /* Either setting the FP from an offset of the SP,
1643 or adjusting the FP */
1644 gcc_assert (frame_pointer_needed);
1646 gcc_assert (REG_P (XEXP (src, 0))
1647 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1648 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1649 offset = INTVAL (XEXP (src, 1));
1650 if (GET_CODE (src) != MINUS)
1651 offset = -offset;
1652 cfa.offset += offset;
1653 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1655 else
1657 gcc_assert (GET_CODE (src) != MINUS);
1659 /* Rule 4 */
1660 if (REG_P (XEXP (src, 0))
1661 && REGNO (XEXP (src, 0)) == cfa.reg
1662 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1664 /* Setting a temporary CFA register that will be copied
1665 into the FP later on. */
1666 offset = - INTVAL (XEXP (src, 1));
1667 cfa.offset += offset;
1668 cfa.reg = REGNO (dest);
1669 /* Or used to save regs to the stack. */
1670 cfa_temp.reg = cfa.reg;
1671 cfa_temp.offset = cfa.offset;
1674 /* Rule 5 */
1675 else if (REG_P (XEXP (src, 0))
1676 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1677 && XEXP (src, 1) == stack_pointer_rtx)
1679 /* Setting a scratch register that we will use instead
1680 of SP for saving registers to the stack. */
1681 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1682 cfa_store.reg = REGNO (dest);
1683 cfa_store.offset = cfa.offset - cfa_temp.offset;
1686 /* Rule 9 */
1687 else if (GET_CODE (src) == LO_SUM
1688 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset = INTVAL (XEXP (src, 1));
1693 else
1694 gcc_unreachable ();
1696 break;
1698 /* Rule 6 */
1699 case CONST_INT:
1700 cfa_temp.reg = REGNO (dest);
1701 cfa_temp.offset = INTVAL (src);
1702 break;
1704 /* Rule 7 */
1705 case IOR:
1706 gcc_assert (REG_P (XEXP (src, 0))
1707 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1708 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1710 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1711 cfa_temp.reg = REGNO (dest);
1712 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1713 break;
1715 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1716 which will fill in all of the bits. */
1717 /* Rule 8 */
1718 case HIGH:
1719 break;
1721 /* Rule 15 */
1722 case UNSPEC:
1723 case UNSPEC_VOLATILE:
1724 gcc_assert (targetm.dwarf_handle_frame_unspec);
1725 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1726 return;
1728 default:
1729 gcc_unreachable ();
1732 def_cfa_1 (label, &cfa);
1733 break;
1735 case MEM:
1736 gcc_assert (REG_P (src));
1738 /* Saving a register to the stack. Make sure dest is relative to the
1739 CFA register. */
1740 switch (GET_CODE (XEXP (dest, 0)))
1742 /* Rule 10 */
1743 /* With a push. */
1744 case PRE_MODIFY:
1745 /* We can't handle variable size modifications. */
1746 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1747 == CONST_INT);
1748 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1750 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1751 && cfa_store.reg == STACK_POINTER_REGNUM);
1753 cfa_store.offset += offset;
1754 if (cfa.reg == STACK_POINTER_REGNUM)
1755 cfa.offset = cfa_store.offset;
1757 offset = -cfa_store.offset;
1758 break;
1760 /* Rule 11 */
1761 case PRE_INC:
1762 case PRE_DEC:
1763 offset = GET_MODE_SIZE (GET_MODE (dest));
1764 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1765 offset = -offset;
1767 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1768 && cfa_store.reg == STACK_POINTER_REGNUM);
1770 cfa_store.offset += offset;
1771 if (cfa.reg == STACK_POINTER_REGNUM)
1772 cfa.offset = cfa_store.offset;
1774 offset = -cfa_store.offset;
1775 break;
1777 /* Rule 12 */
1778 /* With an offset. */
1779 case PLUS:
1780 case MINUS:
1781 case LO_SUM:
1783 int regno;
1785 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1786 && REG_P (XEXP (XEXP (dest, 0), 0)));
1787 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1788 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1789 offset = -offset;
1791 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1793 if (cfa_store.reg == (unsigned) regno)
1794 offset -= cfa_store.offset;
1795 else
1797 gcc_assert (cfa_temp.reg == (unsigned) regno);
1798 offset -= cfa_temp.offset;
1801 break;
1803 /* Rule 13 */
1804 /* Without an offset. */
1805 case REG:
1807 int regno = REGNO (XEXP (dest, 0));
1809 if (cfa_store.reg == (unsigned) regno)
1810 offset = -cfa_store.offset;
1811 else
1813 gcc_assert (cfa_temp.reg == (unsigned) regno);
1814 offset = -cfa_temp.offset;
1817 break;
1819 /* Rule 14 */
1820 case POST_INC:
1821 gcc_assert (cfa_temp.reg
1822 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1823 offset = -cfa_temp.offset;
1824 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1825 break;
1827 default:
1828 gcc_unreachable ();
1831 if (REGNO (src) != STACK_POINTER_REGNUM
1832 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1833 && (unsigned) REGNO (src) == cfa.reg)
1835 /* We're storing the current CFA reg into the stack. */
1837 if (cfa.offset == 0)
1839 /* If the source register is exactly the CFA, assume
1840 we're saving SP like any other register; this happens
1841 on the ARM. */
1842 def_cfa_1 (label, &cfa);
1843 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1844 break;
1846 else
1848 /* Otherwise, we'll need to look in the stack to
1849 calculate the CFA. */
1850 rtx x = XEXP (dest, 0);
1852 if (!REG_P (x))
1853 x = XEXP (x, 0);
1854 gcc_assert (REG_P (x));
1856 cfa.reg = REGNO (x);
1857 cfa.base_offset = offset;
1858 cfa.indirect = 1;
1859 def_cfa_1 (label, &cfa);
1860 break;
1864 def_cfa_1 (label, &cfa);
1865 queue_reg_save (label, src, NULL_RTX, offset);
1866 break;
1868 default:
1869 gcc_unreachable ();
1873 /* Record call frame debugging information for INSN, which either
1874 sets SP or FP (adjusting how we calculate the frame address) or saves a
1875 register to the stack. If INSN is NULL_RTX, initialize our state.
1877 If AFTER_P is false, we're being called before the insn is emitted,
1878 otherwise after. Call instructions get invoked twice. */
1880 void
1881 dwarf2out_frame_debug (rtx insn, bool after_p)
1883 const char *label;
1884 rtx src;
1886 if (insn == NULL_RTX)
1888 size_t i;
1890 /* Flush any queued register saves. */
1891 flush_queued_reg_saves ();
1893 /* Set up state for generating call frame debug info. */
1894 lookup_cfa (&cfa);
1895 gcc_assert (cfa.reg
1896 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1898 cfa.reg = STACK_POINTER_REGNUM;
1899 cfa_store = cfa;
1900 cfa_temp.reg = -1;
1901 cfa_temp.offset = 0;
1903 for (i = 0; i < num_regs_saved_in_regs; i++)
1905 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1906 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1908 num_regs_saved_in_regs = 0;
1909 return;
1912 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1913 flush_queued_reg_saves ();
1915 if (! RTX_FRAME_RELATED_P (insn))
1917 if (!ACCUMULATE_OUTGOING_ARGS)
1918 dwarf2out_stack_adjust (insn, after_p);
1919 return;
1922 label = dwarf2out_cfi_label ();
1923 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1924 if (src)
1925 insn = XEXP (src, 0);
1926 else
1927 insn = PATTERN (insn);
1929 dwarf2out_frame_debug_expr (insn, label);
1932 #endif
1934 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1935 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1936 (enum dwarf_call_frame_info cfi);
1938 static enum dw_cfi_oprnd_type
1939 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1941 switch (cfi)
1943 case DW_CFA_nop:
1944 case DW_CFA_GNU_window_save:
1945 return dw_cfi_oprnd_unused;
1947 case DW_CFA_set_loc:
1948 case DW_CFA_advance_loc1:
1949 case DW_CFA_advance_loc2:
1950 case DW_CFA_advance_loc4:
1951 case DW_CFA_MIPS_advance_loc8:
1952 return dw_cfi_oprnd_addr;
1954 case DW_CFA_offset:
1955 case DW_CFA_offset_extended:
1956 case DW_CFA_def_cfa:
1957 case DW_CFA_offset_extended_sf:
1958 case DW_CFA_def_cfa_sf:
1959 case DW_CFA_restore_extended:
1960 case DW_CFA_undefined:
1961 case DW_CFA_same_value:
1962 case DW_CFA_def_cfa_register:
1963 case DW_CFA_register:
1964 return dw_cfi_oprnd_reg_num;
1966 case DW_CFA_def_cfa_offset:
1967 case DW_CFA_GNU_args_size:
1968 case DW_CFA_def_cfa_offset_sf:
1969 return dw_cfi_oprnd_offset;
1971 case DW_CFA_def_cfa_expression:
1972 case DW_CFA_expression:
1973 return dw_cfi_oprnd_loc;
1975 default:
1976 gcc_unreachable ();
1980 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1981 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1982 (enum dwarf_call_frame_info cfi);
1984 static enum dw_cfi_oprnd_type
1985 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1987 switch (cfi)
1989 case DW_CFA_def_cfa:
1990 case DW_CFA_def_cfa_sf:
1991 case DW_CFA_offset:
1992 case DW_CFA_offset_extended_sf:
1993 case DW_CFA_offset_extended:
1994 return dw_cfi_oprnd_offset;
1996 case DW_CFA_register:
1997 return dw_cfi_oprnd_reg_num;
1999 default:
2000 return dw_cfi_oprnd_unused;
2004 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2006 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
2007 switch to the data section instead, and write out a synthetic label
2008 for collect2. */
2010 static void
2011 switch_to_eh_frame_section (void)
2013 tree label;
2015 #ifdef EH_FRAME_SECTION_NAME
2016 if (eh_frame_section == 0)
2018 int flags;
2020 if (EH_TABLES_CAN_BE_READ_ONLY)
2022 int fde_encoding;
2023 int per_encoding;
2024 int lsda_encoding;
2026 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2027 /*global=*/0);
2028 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2029 /*global=*/1);
2030 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2031 /*global=*/0);
2032 flags = ((! flag_pic
2033 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2034 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2035 && (per_encoding & 0x70) != DW_EH_PE_absptr
2036 && (per_encoding & 0x70) != DW_EH_PE_aligned
2037 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2038 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2039 ? 0 : SECTION_WRITE);
2041 else
2042 flags = SECTION_WRITE;
2043 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2045 #endif
2047 if (eh_frame_section)
2048 switch_to_section (eh_frame_section);
2049 else
2051 /* We have no special eh_frame section. Put the information in
2052 the data section and emit special labels to guide collect2. */
2053 switch_to_section (data_section);
2054 label = get_file_function_name ("F");
2055 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2056 targetm.asm_out.globalize_label (asm_out_file,
2057 IDENTIFIER_POINTER (label));
2058 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2062 /* Output a Call Frame Information opcode and its operand(s). */
2064 static void
2065 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2067 unsigned long r;
2068 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2069 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2070 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2071 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2072 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2073 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2075 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2076 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2077 "DW_CFA_offset, column 0x%lx", r);
2078 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2080 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2082 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2083 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2084 "DW_CFA_restore, column 0x%lx", r);
2086 else
2088 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2089 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2091 switch (cfi->dw_cfi_opc)
2093 case DW_CFA_set_loc:
2094 if (for_eh)
2095 dw2_asm_output_encoded_addr_rtx (
2096 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2097 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2098 false, NULL);
2099 else
2100 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2101 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2102 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2103 break;
2105 case DW_CFA_advance_loc1:
2106 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2107 fde->dw_fde_current_label, NULL);
2108 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2109 break;
2111 case DW_CFA_advance_loc2:
2112 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2113 fde->dw_fde_current_label, NULL);
2114 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2115 break;
2117 case DW_CFA_advance_loc4:
2118 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2119 fde->dw_fde_current_label, NULL);
2120 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2121 break;
2123 case DW_CFA_MIPS_advance_loc8:
2124 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2125 fde->dw_fde_current_label, NULL);
2126 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2127 break;
2129 case DW_CFA_offset_extended:
2130 case DW_CFA_def_cfa:
2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2134 break;
2136 case DW_CFA_offset_extended_sf:
2137 case DW_CFA_def_cfa_sf:
2138 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2139 dw2_asm_output_data_uleb128 (r, NULL);
2140 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2141 break;
2143 case DW_CFA_restore_extended:
2144 case DW_CFA_undefined:
2145 case DW_CFA_same_value:
2146 case DW_CFA_def_cfa_register:
2147 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2148 dw2_asm_output_data_uleb128 (r, NULL);
2149 break;
2151 case DW_CFA_register:
2152 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2153 dw2_asm_output_data_uleb128 (r, NULL);
2154 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2155 dw2_asm_output_data_uleb128 (r, NULL);
2156 break;
2158 case DW_CFA_def_cfa_offset:
2159 case DW_CFA_GNU_args_size:
2160 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2161 break;
2163 case DW_CFA_def_cfa_offset_sf:
2164 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2165 break;
2167 case DW_CFA_GNU_window_save:
2168 break;
2170 case DW_CFA_def_cfa_expression:
2171 case DW_CFA_expression:
2172 output_cfa_loc (cfi);
2173 break;
2175 case DW_CFA_GNU_negative_offset_extended:
2176 /* Obsoleted by DW_CFA_offset_extended_sf. */
2177 gcc_unreachable ();
2179 default:
2180 break;
2185 /* Output the call frame information used to record information
2186 that relates to calculating the frame pointer, and records the
2187 location of saved registers. */
2189 static void
2190 output_call_frame_info (int for_eh)
2192 unsigned int i;
2193 dw_fde_ref fde;
2194 dw_cfi_ref cfi;
2195 char l1[20], l2[20], section_start_label[20];
2196 bool any_lsda_needed = false;
2197 char augmentation[6];
2198 int augmentation_size;
2199 int fde_encoding = DW_EH_PE_absptr;
2200 int per_encoding = DW_EH_PE_absptr;
2201 int lsda_encoding = DW_EH_PE_absptr;
2202 int return_reg;
2204 /* Don't emit a CIE if there won't be any FDEs. */
2205 if (fde_table_in_use == 0)
2206 return;
2208 /* If we make FDEs linkonce, we may have to emit an empty label for
2209 an FDE that wouldn't otherwise be emitted. We want to avoid
2210 having an FDE kept around when the function it refers to is
2211 discarded. Example where this matters: a primary function
2212 template in C++ requires EH information, but an explicit
2213 specialization doesn't. */
2214 if (TARGET_USES_WEAK_UNWIND_INFO
2215 && ! flag_asynchronous_unwind_tables
2216 && for_eh)
2217 for (i = 0; i < fde_table_in_use; i++)
2218 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2219 && !fde_table[i].uses_eh_lsda
2220 && ! DECL_WEAK (fde_table[i].decl))
2221 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2222 for_eh, /* empty */ 1);
2224 /* If we don't have any functions we'll want to unwind out of, don't
2225 emit any EH unwind information. Note that if exceptions aren't
2226 enabled, we won't have collected nothrow information, and if we
2227 asked for asynchronous tables, we always want this info. */
2228 if (for_eh)
2230 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2232 for (i = 0; i < fde_table_in_use; i++)
2233 if (fde_table[i].uses_eh_lsda)
2234 any_eh_needed = any_lsda_needed = true;
2235 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2236 any_eh_needed = true;
2237 else if (! fde_table[i].nothrow
2238 && ! fde_table[i].all_throwers_are_sibcalls)
2239 any_eh_needed = true;
2241 if (! any_eh_needed)
2242 return;
2245 /* We're going to be generating comments, so turn on app. */
2246 if (flag_debug_asm)
2247 app_enable ();
2249 if (for_eh)
2250 switch_to_eh_frame_section ();
2251 else
2253 if (!debug_frame_section)
2254 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2255 SECTION_DEBUG, NULL);
2256 switch_to_section (debug_frame_section);
2259 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2260 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2262 /* Output the CIE. */
2263 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2264 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2265 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2266 dw2_asm_output_data (4, 0xffffffff,
2267 "Initial length escape value indicating 64-bit DWARF extension");
2268 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2269 "Length of Common Information Entry");
2270 ASM_OUTPUT_LABEL (asm_out_file, l1);
2272 /* Now that the CIE pointer is PC-relative for EH,
2273 use 0 to identify the CIE. */
2274 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2275 (for_eh ? 0 : DWARF_CIE_ID),
2276 "CIE Identifier Tag");
2278 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2280 augmentation[0] = 0;
2281 augmentation_size = 0;
2282 if (for_eh)
2284 char *p;
2286 /* Augmentation:
2287 z Indicates that a uleb128 is present to size the
2288 augmentation section.
2289 L Indicates the encoding (and thus presence) of
2290 an LSDA pointer in the FDE augmentation.
2291 R Indicates a non-default pointer encoding for
2292 FDE code pointers.
2293 P Indicates the presence of an encoding + language
2294 personality routine in the CIE augmentation. */
2296 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2297 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2298 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2300 p = augmentation + 1;
2301 if (eh_personality_libfunc)
2303 *p++ = 'P';
2304 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2306 if (any_lsda_needed)
2308 *p++ = 'L';
2309 augmentation_size += 1;
2311 if (fde_encoding != DW_EH_PE_absptr)
2313 *p++ = 'R';
2314 augmentation_size += 1;
2316 if (p > augmentation + 1)
2318 augmentation[0] = 'z';
2319 *p = '\0';
2322 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2323 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2325 int offset = ( 4 /* Length */
2326 + 4 /* CIE Id */
2327 + 1 /* CIE version */
2328 + strlen (augmentation) + 1 /* Augmentation */
2329 + size_of_uleb128 (1) /* Code alignment */
2330 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2331 + 1 /* RA column */
2332 + 1 /* Augmentation size */
2333 + 1 /* Personality encoding */ );
2334 int pad = -offset & (PTR_SIZE - 1);
2336 augmentation_size += pad;
2338 /* Augmentations should be small, so there's scarce need to
2339 iterate for a solution. Die if we exceed one uleb128 byte. */
2340 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2344 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2345 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2346 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2347 "CIE Data Alignment Factor");
2349 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2350 if (DW_CIE_VERSION == 1)
2351 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2352 else
2353 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2355 if (augmentation[0])
2357 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2358 if (eh_personality_libfunc)
2360 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2361 eh_data_format_name (per_encoding));
2362 dw2_asm_output_encoded_addr_rtx (per_encoding,
2363 eh_personality_libfunc,
2364 true, NULL);
2367 if (any_lsda_needed)
2368 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2369 eh_data_format_name (lsda_encoding));
2371 if (fde_encoding != DW_EH_PE_absptr)
2372 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2373 eh_data_format_name (fde_encoding));
2376 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2377 output_cfi (cfi, NULL, for_eh);
2379 /* Pad the CIE out to an address sized boundary. */
2380 ASM_OUTPUT_ALIGN (asm_out_file,
2381 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2382 ASM_OUTPUT_LABEL (asm_out_file, l2);
2384 /* Loop through all of the FDE's. */
2385 for (i = 0; i < fde_table_in_use; i++)
2387 fde = &fde_table[i];
2389 /* Don't emit EH unwind info for leaf functions that don't need it. */
2390 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2391 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2392 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2393 && !fde->uses_eh_lsda)
2394 continue;
2396 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2397 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2398 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2399 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2400 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2401 dw2_asm_output_data (4, 0xffffffff,
2402 "Initial length escape value indicating 64-bit DWARF extension");
2403 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2404 "FDE Length");
2405 ASM_OUTPUT_LABEL (asm_out_file, l1);
2407 if (for_eh)
2408 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2409 else
2410 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2411 debug_frame_section, "FDE CIE offset");
2413 if (for_eh)
2415 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2416 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2417 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2418 sym_ref,
2419 false,
2420 "FDE initial location");
2421 if (fde->dw_fde_switched_sections)
2423 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2424 fde->dw_fde_unlikely_section_label);
2425 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2426 fde->dw_fde_hot_section_label);
2427 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2428 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2429 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2430 "FDE initial location");
2431 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2432 fde->dw_fde_hot_section_end_label,
2433 fde->dw_fde_hot_section_label,
2434 "FDE address range");
2435 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2436 "FDE initial location");
2437 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2438 fde->dw_fde_unlikely_section_end_label,
2439 fde->dw_fde_unlikely_section_label,
2440 "FDE address range");
2442 else
2443 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2444 fde->dw_fde_end, fde->dw_fde_begin,
2445 "FDE address range");
2447 else
2449 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2450 "FDE initial location");
2451 if (fde->dw_fde_switched_sections)
2453 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2454 fde->dw_fde_hot_section_label,
2455 "FDE initial location");
2456 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2457 fde->dw_fde_hot_section_end_label,
2458 fde->dw_fde_hot_section_label,
2459 "FDE address range");
2460 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2461 fde->dw_fde_unlikely_section_label,
2462 "FDE initial location");
2463 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2464 fde->dw_fde_unlikely_section_end_label,
2465 fde->dw_fde_unlikely_section_label,
2466 "FDE address range");
2468 else
2469 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2470 fde->dw_fde_end, fde->dw_fde_begin,
2471 "FDE address range");
2474 if (augmentation[0])
2476 if (any_lsda_needed)
2478 int size = size_of_encoded_value (lsda_encoding);
2480 if (lsda_encoding == DW_EH_PE_aligned)
2482 int offset = ( 4 /* Length */
2483 + 4 /* CIE offset */
2484 + 2 * size_of_encoded_value (fde_encoding)
2485 + 1 /* Augmentation size */ );
2486 int pad = -offset & (PTR_SIZE - 1);
2488 size += pad;
2489 gcc_assert (size_of_uleb128 (size) == 1);
2492 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2494 if (fde->uses_eh_lsda)
2496 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2497 fde->funcdef_number);
2498 dw2_asm_output_encoded_addr_rtx (
2499 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2500 false, "Language Specific Data Area");
2502 else
2504 if (lsda_encoding == DW_EH_PE_aligned)
2505 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2506 dw2_asm_output_data
2507 (size_of_encoded_value (lsda_encoding), 0,
2508 "Language Specific Data Area (none)");
2511 else
2512 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2515 /* Loop through the Call Frame Instructions associated with
2516 this FDE. */
2517 fde->dw_fde_current_label = fde->dw_fde_begin;
2518 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2519 output_cfi (cfi, fde, for_eh);
2521 /* Pad the FDE out to an address sized boundary. */
2522 ASM_OUTPUT_ALIGN (asm_out_file,
2523 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2524 ASM_OUTPUT_LABEL (asm_out_file, l2);
2527 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2528 dw2_asm_output_data (4, 0, "End of Table");
2529 #ifdef MIPS_DEBUGGING_INFO
2530 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2531 get a value of 0. Putting .align 0 after the label fixes it. */
2532 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2533 #endif
2535 /* Turn off app to make assembly quicker. */
2536 if (flag_debug_asm)
2537 app_disable ();
2540 /* Output a marker (i.e. a label) for the beginning of a function, before
2541 the prologue. */
2543 void
2544 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2545 const char *file ATTRIBUTE_UNUSED)
2547 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2548 char * dup_label;
2549 dw_fde_ref fde;
2551 current_function_func_begin_label = NULL;
2553 #ifdef TARGET_UNWIND_INFO
2554 /* ??? current_function_func_begin_label is also used by except.c
2555 for call-site information. We must emit this label if it might
2556 be used. */
2557 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2558 && ! dwarf2out_do_frame ())
2559 return;
2560 #else
2561 if (! dwarf2out_do_frame ())
2562 return;
2563 #endif
2565 switch_to_section (function_section (current_function_decl));
2566 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2567 current_function_funcdef_no);
2568 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2569 current_function_funcdef_no);
2570 dup_label = xstrdup (label);
2571 current_function_func_begin_label = dup_label;
2573 #ifdef TARGET_UNWIND_INFO
2574 /* We can elide the fde allocation if we're not emitting debug info. */
2575 if (! dwarf2out_do_frame ())
2576 return;
2577 #endif
2579 /* Expand the fde table if necessary. */
2580 if (fde_table_in_use == fde_table_allocated)
2582 fde_table_allocated += FDE_TABLE_INCREMENT;
2583 fde_table = ggc_realloc (fde_table,
2584 fde_table_allocated * sizeof (dw_fde_node));
2585 memset (fde_table + fde_table_in_use, 0,
2586 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2589 /* Record the FDE associated with this function. */
2590 current_funcdef_fde = fde_table_in_use;
2592 /* Add the new FDE at the end of the fde_table. */
2593 fde = &fde_table[fde_table_in_use++];
2594 fde->decl = current_function_decl;
2595 fde->dw_fde_begin = dup_label;
2596 fde->dw_fde_current_label = dup_label;
2597 fde->dw_fde_hot_section_label = NULL;
2598 fde->dw_fde_hot_section_end_label = NULL;
2599 fde->dw_fde_unlikely_section_label = NULL;
2600 fde->dw_fde_unlikely_section_end_label = NULL;
2601 fde->dw_fde_switched_sections = false;
2602 fde->dw_fde_end = NULL;
2603 fde->dw_fde_cfi = NULL;
2604 fde->funcdef_number = current_function_funcdef_no;
2605 fde->nothrow = TREE_NOTHROW (current_function_decl);
2606 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2607 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2609 args_size = old_args_size = 0;
2611 /* We only want to output line number information for the genuine dwarf2
2612 prologue case, not the eh frame case. */
2613 #ifdef DWARF2_DEBUGGING_INFO
2614 if (file)
2615 dwarf2out_source_line (line, file);
2616 #endif
2619 /* Output a marker (i.e. a label) for the absolute end of the generated code
2620 for a function definition. This gets called *after* the epilogue code has
2621 been generated. */
2623 void
2624 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2625 const char *file ATTRIBUTE_UNUSED)
2627 dw_fde_ref fde;
2628 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2630 /* Output a label to mark the endpoint of the code generated for this
2631 function. */
2632 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2633 current_function_funcdef_no);
2634 ASM_OUTPUT_LABEL (asm_out_file, label);
2635 fde = &fde_table[fde_table_in_use - 1];
2636 fde->dw_fde_end = xstrdup (label);
2639 void
2640 dwarf2out_frame_init (void)
2642 /* Allocate the initial hunk of the fde_table. */
2643 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2644 fde_table_allocated = FDE_TABLE_INCREMENT;
2645 fde_table_in_use = 0;
2647 /* Generate the CFA instructions common to all FDE's. Do it now for the
2648 sake of lookup_cfa. */
2650 /* On entry, the Canonical Frame Address is at SP. */
2651 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2653 #ifdef DWARF2_UNWIND_INFO
2654 if (DWARF2_UNWIND_INFO)
2655 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2656 #endif
2659 void
2660 dwarf2out_frame_finish (void)
2662 /* Output call frame information. */
2663 if (DWARF2_FRAME_INFO)
2664 output_call_frame_info (0);
2666 #ifndef TARGET_UNWIND_INFO
2667 /* Output another copy for the unwinder. */
2668 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2669 output_call_frame_info (1);
2670 #endif
2672 #endif
2674 /* And now, the subset of the debugging information support code necessary
2675 for emitting location expressions. */
2677 /* Data about a single source file. */
2678 struct dwarf_file_data GTY(())
2680 const char * filename;
2681 int emitted_number;
2684 /* We need some way to distinguish DW_OP_addr with a direct symbol
2685 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2686 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2689 typedef struct dw_val_struct *dw_val_ref;
2690 typedef struct die_struct *dw_die_ref;
2691 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2692 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2694 /* Each DIE may have a series of attribute/value pairs. Values
2695 can take on several forms. The forms that are used in this
2696 implementation are listed below. */
2698 enum dw_val_class
2700 dw_val_class_addr,
2701 dw_val_class_offset,
2702 dw_val_class_loc,
2703 dw_val_class_loc_list,
2704 dw_val_class_range_list,
2705 dw_val_class_const,
2706 dw_val_class_unsigned_const,
2707 dw_val_class_long_long,
2708 dw_val_class_vec,
2709 dw_val_class_flag,
2710 dw_val_class_die_ref,
2711 dw_val_class_fde_ref,
2712 dw_val_class_lbl_id,
2713 dw_val_class_lineptr,
2714 dw_val_class_str,
2715 dw_val_class_macptr,
2716 dw_val_class_file
2719 /* Describe a double word constant value. */
2720 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2722 typedef struct dw_long_long_struct GTY(())
2724 unsigned long hi;
2725 unsigned long low;
2727 dw_long_long_const;
2729 /* Describe a floating point constant value, or a vector constant value. */
2731 typedef struct dw_vec_struct GTY(())
2733 unsigned char * GTY((length ("%h.length"))) array;
2734 unsigned length;
2735 unsigned elt_size;
2737 dw_vec_const;
2739 /* The dw_val_node describes an attribute's value, as it is
2740 represented internally. */
2742 typedef struct dw_val_struct GTY(())
2744 enum dw_val_class val_class;
2745 union dw_val_struct_union
2747 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2748 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2749 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2750 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2751 HOST_WIDE_INT GTY ((default)) val_int;
2752 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2753 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2754 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2755 struct dw_val_die_union
2757 dw_die_ref die;
2758 int external;
2759 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2760 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2761 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2762 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2763 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2764 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2766 GTY ((desc ("%1.val_class"))) v;
2768 dw_val_node;
2770 /* Locations in memory are described using a sequence of stack machine
2771 operations. */
2773 typedef struct dw_loc_descr_struct GTY(())
2775 dw_loc_descr_ref dw_loc_next;
2776 enum dwarf_location_atom dw_loc_opc;
2777 dw_val_node dw_loc_oprnd1;
2778 dw_val_node dw_loc_oprnd2;
2779 int dw_loc_addr;
2781 dw_loc_descr_node;
2783 /* Location lists are ranges + location descriptions for that range,
2784 so you can track variables that are in different places over
2785 their entire life. */
2786 typedef struct dw_loc_list_struct GTY(())
2788 dw_loc_list_ref dw_loc_next;
2789 const char *begin; /* Label for begin address of range */
2790 const char *end; /* Label for end address of range */
2791 char *ll_symbol; /* Label for beginning of location list.
2792 Only on head of list */
2793 const char *section; /* Section this loclist is relative to */
2794 dw_loc_descr_ref expr;
2795 } dw_loc_list_node;
2797 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2799 static const char *dwarf_stack_op_name (unsigned);
2800 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2801 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2802 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2803 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2804 static unsigned long size_of_locs (dw_loc_descr_ref);
2805 static void output_loc_operands (dw_loc_descr_ref);
2806 static void output_loc_sequence (dw_loc_descr_ref);
2808 /* Convert a DWARF stack opcode into its string name. */
2810 static const char *
2811 dwarf_stack_op_name (unsigned int op)
2813 switch (op)
2815 case DW_OP_addr:
2816 case INTERNAL_DW_OP_tls_addr:
2817 return "DW_OP_addr";
2818 case DW_OP_deref:
2819 return "DW_OP_deref";
2820 case DW_OP_const1u:
2821 return "DW_OP_const1u";
2822 case DW_OP_const1s:
2823 return "DW_OP_const1s";
2824 case DW_OP_const2u:
2825 return "DW_OP_const2u";
2826 case DW_OP_const2s:
2827 return "DW_OP_const2s";
2828 case DW_OP_const4u:
2829 return "DW_OP_const4u";
2830 case DW_OP_const4s:
2831 return "DW_OP_const4s";
2832 case DW_OP_const8u:
2833 return "DW_OP_const8u";
2834 case DW_OP_const8s:
2835 return "DW_OP_const8s";
2836 case DW_OP_constu:
2837 return "DW_OP_constu";
2838 case DW_OP_consts:
2839 return "DW_OP_consts";
2840 case DW_OP_dup:
2841 return "DW_OP_dup";
2842 case DW_OP_drop:
2843 return "DW_OP_drop";
2844 case DW_OP_over:
2845 return "DW_OP_over";
2846 case DW_OP_pick:
2847 return "DW_OP_pick";
2848 case DW_OP_swap:
2849 return "DW_OP_swap";
2850 case DW_OP_rot:
2851 return "DW_OP_rot";
2852 case DW_OP_xderef:
2853 return "DW_OP_xderef";
2854 case DW_OP_abs:
2855 return "DW_OP_abs";
2856 case DW_OP_and:
2857 return "DW_OP_and";
2858 case DW_OP_div:
2859 return "DW_OP_div";
2860 case DW_OP_minus:
2861 return "DW_OP_minus";
2862 case DW_OP_mod:
2863 return "DW_OP_mod";
2864 case DW_OP_mul:
2865 return "DW_OP_mul";
2866 case DW_OP_neg:
2867 return "DW_OP_neg";
2868 case DW_OP_not:
2869 return "DW_OP_not";
2870 case DW_OP_or:
2871 return "DW_OP_or";
2872 case DW_OP_plus:
2873 return "DW_OP_plus";
2874 case DW_OP_plus_uconst:
2875 return "DW_OP_plus_uconst";
2876 case DW_OP_shl:
2877 return "DW_OP_shl";
2878 case DW_OP_shr:
2879 return "DW_OP_shr";
2880 case DW_OP_shra:
2881 return "DW_OP_shra";
2882 case DW_OP_xor:
2883 return "DW_OP_xor";
2884 case DW_OP_bra:
2885 return "DW_OP_bra";
2886 case DW_OP_eq:
2887 return "DW_OP_eq";
2888 case DW_OP_ge:
2889 return "DW_OP_ge";
2890 case DW_OP_gt:
2891 return "DW_OP_gt";
2892 case DW_OP_le:
2893 return "DW_OP_le";
2894 case DW_OP_lt:
2895 return "DW_OP_lt";
2896 case DW_OP_ne:
2897 return "DW_OP_ne";
2898 case DW_OP_skip:
2899 return "DW_OP_skip";
2900 case DW_OP_lit0:
2901 return "DW_OP_lit0";
2902 case DW_OP_lit1:
2903 return "DW_OP_lit1";
2904 case DW_OP_lit2:
2905 return "DW_OP_lit2";
2906 case DW_OP_lit3:
2907 return "DW_OP_lit3";
2908 case DW_OP_lit4:
2909 return "DW_OP_lit4";
2910 case DW_OP_lit5:
2911 return "DW_OP_lit5";
2912 case DW_OP_lit6:
2913 return "DW_OP_lit6";
2914 case DW_OP_lit7:
2915 return "DW_OP_lit7";
2916 case DW_OP_lit8:
2917 return "DW_OP_lit8";
2918 case DW_OP_lit9:
2919 return "DW_OP_lit9";
2920 case DW_OP_lit10:
2921 return "DW_OP_lit10";
2922 case DW_OP_lit11:
2923 return "DW_OP_lit11";
2924 case DW_OP_lit12:
2925 return "DW_OP_lit12";
2926 case DW_OP_lit13:
2927 return "DW_OP_lit13";
2928 case DW_OP_lit14:
2929 return "DW_OP_lit14";
2930 case DW_OP_lit15:
2931 return "DW_OP_lit15";
2932 case DW_OP_lit16:
2933 return "DW_OP_lit16";
2934 case DW_OP_lit17:
2935 return "DW_OP_lit17";
2936 case DW_OP_lit18:
2937 return "DW_OP_lit18";
2938 case DW_OP_lit19:
2939 return "DW_OP_lit19";
2940 case DW_OP_lit20:
2941 return "DW_OP_lit20";
2942 case DW_OP_lit21:
2943 return "DW_OP_lit21";
2944 case DW_OP_lit22:
2945 return "DW_OP_lit22";
2946 case DW_OP_lit23:
2947 return "DW_OP_lit23";
2948 case DW_OP_lit24:
2949 return "DW_OP_lit24";
2950 case DW_OP_lit25:
2951 return "DW_OP_lit25";
2952 case DW_OP_lit26:
2953 return "DW_OP_lit26";
2954 case DW_OP_lit27:
2955 return "DW_OP_lit27";
2956 case DW_OP_lit28:
2957 return "DW_OP_lit28";
2958 case DW_OP_lit29:
2959 return "DW_OP_lit29";
2960 case DW_OP_lit30:
2961 return "DW_OP_lit30";
2962 case DW_OP_lit31:
2963 return "DW_OP_lit31";
2964 case DW_OP_reg0:
2965 return "DW_OP_reg0";
2966 case DW_OP_reg1:
2967 return "DW_OP_reg1";
2968 case DW_OP_reg2:
2969 return "DW_OP_reg2";
2970 case DW_OP_reg3:
2971 return "DW_OP_reg3";
2972 case DW_OP_reg4:
2973 return "DW_OP_reg4";
2974 case DW_OP_reg5:
2975 return "DW_OP_reg5";
2976 case DW_OP_reg6:
2977 return "DW_OP_reg6";
2978 case DW_OP_reg7:
2979 return "DW_OP_reg7";
2980 case DW_OP_reg8:
2981 return "DW_OP_reg8";
2982 case DW_OP_reg9:
2983 return "DW_OP_reg9";
2984 case DW_OP_reg10:
2985 return "DW_OP_reg10";
2986 case DW_OP_reg11:
2987 return "DW_OP_reg11";
2988 case DW_OP_reg12:
2989 return "DW_OP_reg12";
2990 case DW_OP_reg13:
2991 return "DW_OP_reg13";
2992 case DW_OP_reg14:
2993 return "DW_OP_reg14";
2994 case DW_OP_reg15:
2995 return "DW_OP_reg15";
2996 case DW_OP_reg16:
2997 return "DW_OP_reg16";
2998 case DW_OP_reg17:
2999 return "DW_OP_reg17";
3000 case DW_OP_reg18:
3001 return "DW_OP_reg18";
3002 case DW_OP_reg19:
3003 return "DW_OP_reg19";
3004 case DW_OP_reg20:
3005 return "DW_OP_reg20";
3006 case DW_OP_reg21:
3007 return "DW_OP_reg21";
3008 case DW_OP_reg22:
3009 return "DW_OP_reg22";
3010 case DW_OP_reg23:
3011 return "DW_OP_reg23";
3012 case DW_OP_reg24:
3013 return "DW_OP_reg24";
3014 case DW_OP_reg25:
3015 return "DW_OP_reg25";
3016 case DW_OP_reg26:
3017 return "DW_OP_reg26";
3018 case DW_OP_reg27:
3019 return "DW_OP_reg27";
3020 case DW_OP_reg28:
3021 return "DW_OP_reg28";
3022 case DW_OP_reg29:
3023 return "DW_OP_reg29";
3024 case DW_OP_reg30:
3025 return "DW_OP_reg30";
3026 case DW_OP_reg31:
3027 return "DW_OP_reg31";
3028 case DW_OP_breg0:
3029 return "DW_OP_breg0";
3030 case DW_OP_breg1:
3031 return "DW_OP_breg1";
3032 case DW_OP_breg2:
3033 return "DW_OP_breg2";
3034 case DW_OP_breg3:
3035 return "DW_OP_breg3";
3036 case DW_OP_breg4:
3037 return "DW_OP_breg4";
3038 case DW_OP_breg5:
3039 return "DW_OP_breg5";
3040 case DW_OP_breg6:
3041 return "DW_OP_breg6";
3042 case DW_OP_breg7:
3043 return "DW_OP_breg7";
3044 case DW_OP_breg8:
3045 return "DW_OP_breg8";
3046 case DW_OP_breg9:
3047 return "DW_OP_breg9";
3048 case DW_OP_breg10:
3049 return "DW_OP_breg10";
3050 case DW_OP_breg11:
3051 return "DW_OP_breg11";
3052 case DW_OP_breg12:
3053 return "DW_OP_breg12";
3054 case DW_OP_breg13:
3055 return "DW_OP_breg13";
3056 case DW_OP_breg14:
3057 return "DW_OP_breg14";
3058 case DW_OP_breg15:
3059 return "DW_OP_breg15";
3060 case DW_OP_breg16:
3061 return "DW_OP_breg16";
3062 case DW_OP_breg17:
3063 return "DW_OP_breg17";
3064 case DW_OP_breg18:
3065 return "DW_OP_breg18";
3066 case DW_OP_breg19:
3067 return "DW_OP_breg19";
3068 case DW_OP_breg20:
3069 return "DW_OP_breg20";
3070 case DW_OP_breg21:
3071 return "DW_OP_breg21";
3072 case DW_OP_breg22:
3073 return "DW_OP_breg22";
3074 case DW_OP_breg23:
3075 return "DW_OP_breg23";
3076 case DW_OP_breg24:
3077 return "DW_OP_breg24";
3078 case DW_OP_breg25:
3079 return "DW_OP_breg25";
3080 case DW_OP_breg26:
3081 return "DW_OP_breg26";
3082 case DW_OP_breg27:
3083 return "DW_OP_breg27";
3084 case DW_OP_breg28:
3085 return "DW_OP_breg28";
3086 case DW_OP_breg29:
3087 return "DW_OP_breg29";
3088 case DW_OP_breg30:
3089 return "DW_OP_breg30";
3090 case DW_OP_breg31:
3091 return "DW_OP_breg31";
3092 case DW_OP_regx:
3093 return "DW_OP_regx";
3094 case DW_OP_fbreg:
3095 return "DW_OP_fbreg";
3096 case DW_OP_bregx:
3097 return "DW_OP_bregx";
3098 case DW_OP_piece:
3099 return "DW_OP_piece";
3100 case DW_OP_deref_size:
3101 return "DW_OP_deref_size";
3102 case DW_OP_xderef_size:
3103 return "DW_OP_xderef_size";
3104 case DW_OP_nop:
3105 return "DW_OP_nop";
3106 case DW_OP_push_object_address:
3107 return "DW_OP_push_object_address";
3108 case DW_OP_call2:
3109 return "DW_OP_call2";
3110 case DW_OP_call4:
3111 return "DW_OP_call4";
3112 case DW_OP_call_ref:
3113 return "DW_OP_call_ref";
3114 case DW_OP_GNU_push_tls_address:
3115 return "DW_OP_GNU_push_tls_address";
3116 default:
3117 return "OP_<unknown>";
3121 /* Return a pointer to a newly allocated location description. Location
3122 descriptions are simple expression terms that can be strung
3123 together to form more complicated location (address) descriptions. */
3125 static inline dw_loc_descr_ref
3126 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3127 unsigned HOST_WIDE_INT oprnd2)
3129 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3131 descr->dw_loc_opc = op;
3132 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3133 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3134 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3135 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3137 return descr;
3140 /* Add a location description term to a location description expression. */
3142 static inline void
3143 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3145 dw_loc_descr_ref *d;
3147 /* Find the end of the chain. */
3148 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3151 *d = descr;
3154 /* Return the size of a location descriptor. */
3156 static unsigned long
3157 size_of_loc_descr (dw_loc_descr_ref loc)
3159 unsigned long size = 1;
3161 switch (loc->dw_loc_opc)
3163 case DW_OP_addr:
3164 case INTERNAL_DW_OP_tls_addr:
3165 size += DWARF2_ADDR_SIZE;
3166 break;
3167 case DW_OP_const1u:
3168 case DW_OP_const1s:
3169 size += 1;
3170 break;
3171 case DW_OP_const2u:
3172 case DW_OP_const2s:
3173 size += 2;
3174 break;
3175 case DW_OP_const4u:
3176 case DW_OP_const4s:
3177 size += 4;
3178 break;
3179 case DW_OP_const8u:
3180 case DW_OP_const8s:
3181 size += 8;
3182 break;
3183 case DW_OP_constu:
3184 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3185 break;
3186 case DW_OP_consts:
3187 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3188 break;
3189 case DW_OP_pick:
3190 size += 1;
3191 break;
3192 case DW_OP_plus_uconst:
3193 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3194 break;
3195 case DW_OP_skip:
3196 case DW_OP_bra:
3197 size += 2;
3198 break;
3199 case DW_OP_breg0:
3200 case DW_OP_breg1:
3201 case DW_OP_breg2:
3202 case DW_OP_breg3:
3203 case DW_OP_breg4:
3204 case DW_OP_breg5:
3205 case DW_OP_breg6:
3206 case DW_OP_breg7:
3207 case DW_OP_breg8:
3208 case DW_OP_breg9:
3209 case DW_OP_breg10:
3210 case DW_OP_breg11:
3211 case DW_OP_breg12:
3212 case DW_OP_breg13:
3213 case DW_OP_breg14:
3214 case DW_OP_breg15:
3215 case DW_OP_breg16:
3216 case DW_OP_breg17:
3217 case DW_OP_breg18:
3218 case DW_OP_breg19:
3219 case DW_OP_breg20:
3220 case DW_OP_breg21:
3221 case DW_OP_breg22:
3222 case DW_OP_breg23:
3223 case DW_OP_breg24:
3224 case DW_OP_breg25:
3225 case DW_OP_breg26:
3226 case DW_OP_breg27:
3227 case DW_OP_breg28:
3228 case DW_OP_breg29:
3229 case DW_OP_breg30:
3230 case DW_OP_breg31:
3231 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3232 break;
3233 case DW_OP_regx:
3234 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3235 break;
3236 case DW_OP_fbreg:
3237 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3238 break;
3239 case DW_OP_bregx:
3240 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3241 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3242 break;
3243 case DW_OP_piece:
3244 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3245 break;
3246 case DW_OP_deref_size:
3247 case DW_OP_xderef_size:
3248 size += 1;
3249 break;
3250 case DW_OP_call2:
3251 size += 2;
3252 break;
3253 case DW_OP_call4:
3254 size += 4;
3255 break;
3256 case DW_OP_call_ref:
3257 size += DWARF2_ADDR_SIZE;
3258 break;
3259 default:
3260 break;
3263 return size;
3266 /* Return the size of a series of location descriptors. */
3268 static unsigned long
3269 size_of_locs (dw_loc_descr_ref loc)
3271 dw_loc_descr_ref l;
3272 unsigned long size;
3274 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3275 field, to avoid writing to a PCH file. */
3276 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3278 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3279 break;
3280 size += size_of_loc_descr (l);
3282 if (! l)
3283 return size;
3285 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3287 l->dw_loc_addr = size;
3288 size += size_of_loc_descr (l);
3291 return size;
3294 /* Output location description stack opcode's operands (if any). */
3296 static void
3297 output_loc_operands (dw_loc_descr_ref loc)
3299 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3300 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3302 switch (loc->dw_loc_opc)
3304 #ifdef DWARF2_DEBUGGING_INFO
3305 case DW_OP_addr:
3306 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3307 break;
3308 case DW_OP_const2u:
3309 case DW_OP_const2s:
3310 dw2_asm_output_data (2, val1->v.val_int, NULL);
3311 break;
3312 case DW_OP_const4u:
3313 case DW_OP_const4s:
3314 dw2_asm_output_data (4, val1->v.val_int, NULL);
3315 break;
3316 case DW_OP_const8u:
3317 case DW_OP_const8s:
3318 gcc_assert (HOST_BITS_PER_LONG >= 64);
3319 dw2_asm_output_data (8, val1->v.val_int, NULL);
3320 break;
3321 case DW_OP_skip:
3322 case DW_OP_bra:
3324 int offset;
3326 gcc_assert (val1->val_class == dw_val_class_loc);
3327 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3329 dw2_asm_output_data (2, offset, NULL);
3331 break;
3332 #else
3333 case DW_OP_addr:
3334 case DW_OP_const2u:
3335 case DW_OP_const2s:
3336 case DW_OP_const4u:
3337 case DW_OP_const4s:
3338 case DW_OP_const8u:
3339 case DW_OP_const8s:
3340 case DW_OP_skip:
3341 case DW_OP_bra:
3342 /* We currently don't make any attempt to make sure these are
3343 aligned properly like we do for the main unwind info, so
3344 don't support emitting things larger than a byte if we're
3345 only doing unwinding. */
3346 gcc_unreachable ();
3347 #endif
3348 case DW_OP_const1u:
3349 case DW_OP_const1s:
3350 dw2_asm_output_data (1, val1->v.val_int, NULL);
3351 break;
3352 case DW_OP_constu:
3353 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3354 break;
3355 case DW_OP_consts:
3356 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3357 break;
3358 case DW_OP_pick:
3359 dw2_asm_output_data (1, val1->v.val_int, NULL);
3360 break;
3361 case DW_OP_plus_uconst:
3362 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3363 break;
3364 case DW_OP_breg0:
3365 case DW_OP_breg1:
3366 case DW_OP_breg2:
3367 case DW_OP_breg3:
3368 case DW_OP_breg4:
3369 case DW_OP_breg5:
3370 case DW_OP_breg6:
3371 case DW_OP_breg7:
3372 case DW_OP_breg8:
3373 case DW_OP_breg9:
3374 case DW_OP_breg10:
3375 case DW_OP_breg11:
3376 case DW_OP_breg12:
3377 case DW_OP_breg13:
3378 case DW_OP_breg14:
3379 case DW_OP_breg15:
3380 case DW_OP_breg16:
3381 case DW_OP_breg17:
3382 case DW_OP_breg18:
3383 case DW_OP_breg19:
3384 case DW_OP_breg20:
3385 case DW_OP_breg21:
3386 case DW_OP_breg22:
3387 case DW_OP_breg23:
3388 case DW_OP_breg24:
3389 case DW_OP_breg25:
3390 case DW_OP_breg26:
3391 case DW_OP_breg27:
3392 case DW_OP_breg28:
3393 case DW_OP_breg29:
3394 case DW_OP_breg30:
3395 case DW_OP_breg31:
3396 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3397 break;
3398 case DW_OP_regx:
3399 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3400 break;
3401 case DW_OP_fbreg:
3402 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3403 break;
3404 case DW_OP_bregx:
3405 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3406 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3407 break;
3408 case DW_OP_piece:
3409 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3410 break;
3411 case DW_OP_deref_size:
3412 case DW_OP_xderef_size:
3413 dw2_asm_output_data (1, val1->v.val_int, NULL);
3414 break;
3416 case INTERNAL_DW_OP_tls_addr:
3417 if (targetm.asm_out.output_dwarf_dtprel)
3419 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3420 DWARF2_ADDR_SIZE,
3421 val1->v.val_addr);
3422 fputc ('\n', asm_out_file);
3424 else
3425 gcc_unreachable ();
3426 break;
3428 default:
3429 /* Other codes have no operands. */
3430 break;
3434 /* Output a sequence of location operations. */
3436 static void
3437 output_loc_sequence (dw_loc_descr_ref loc)
3439 for (; loc != NULL; loc = loc->dw_loc_next)
3441 /* Output the opcode. */
3442 dw2_asm_output_data (1, loc->dw_loc_opc,
3443 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3445 /* Output the operand(s) (if any). */
3446 output_loc_operands (loc);
3450 /* This routine will generate the correct assembly data for a location
3451 description based on a cfi entry with a complex address. */
3453 static void
3454 output_cfa_loc (dw_cfi_ref cfi)
3456 dw_loc_descr_ref loc;
3457 unsigned long size;
3459 /* Output the size of the block. */
3460 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3461 size = size_of_locs (loc);
3462 dw2_asm_output_data_uleb128 (size, NULL);
3464 /* Now output the operations themselves. */
3465 output_loc_sequence (loc);
3468 /* This function builds a dwarf location descriptor sequence from a
3469 dw_cfa_location, adding the given OFFSET to the result of the
3470 expression. */
3472 static struct dw_loc_descr_struct *
3473 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3475 struct dw_loc_descr_struct *head, *tmp;
3477 offset += cfa->offset;
3479 if (cfa->indirect)
3481 if (cfa->base_offset)
3483 if (cfa->reg <= 31)
3484 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3485 else
3486 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3488 else if (cfa->reg <= 31)
3489 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3490 else
3491 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3493 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3494 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3495 add_loc_descr (&head, tmp);
3496 if (offset != 0)
3498 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3499 add_loc_descr (&head, tmp);
3502 else
3504 if (offset == 0)
3505 if (cfa->reg <= 31)
3506 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3507 else
3508 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3509 else if (cfa->reg <= 31)
3510 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3511 else
3512 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3515 return head;
3518 /* This function fills in aa dw_cfa_location structure from a dwarf location
3519 descriptor sequence. */
3521 static void
3522 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3524 struct dw_loc_descr_struct *ptr;
3525 cfa->offset = 0;
3526 cfa->base_offset = 0;
3527 cfa->indirect = 0;
3528 cfa->reg = -1;
3530 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3532 enum dwarf_location_atom op = ptr->dw_loc_opc;
3534 switch (op)
3536 case DW_OP_reg0:
3537 case DW_OP_reg1:
3538 case DW_OP_reg2:
3539 case DW_OP_reg3:
3540 case DW_OP_reg4:
3541 case DW_OP_reg5:
3542 case DW_OP_reg6:
3543 case DW_OP_reg7:
3544 case DW_OP_reg8:
3545 case DW_OP_reg9:
3546 case DW_OP_reg10:
3547 case DW_OP_reg11:
3548 case DW_OP_reg12:
3549 case DW_OP_reg13:
3550 case DW_OP_reg14:
3551 case DW_OP_reg15:
3552 case DW_OP_reg16:
3553 case DW_OP_reg17:
3554 case DW_OP_reg18:
3555 case DW_OP_reg19:
3556 case DW_OP_reg20:
3557 case DW_OP_reg21:
3558 case DW_OP_reg22:
3559 case DW_OP_reg23:
3560 case DW_OP_reg24:
3561 case DW_OP_reg25:
3562 case DW_OP_reg26:
3563 case DW_OP_reg27:
3564 case DW_OP_reg28:
3565 case DW_OP_reg29:
3566 case DW_OP_reg30:
3567 case DW_OP_reg31:
3568 cfa->reg = op - DW_OP_reg0;
3569 break;
3570 case DW_OP_regx:
3571 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3572 break;
3573 case DW_OP_breg0:
3574 case DW_OP_breg1:
3575 case DW_OP_breg2:
3576 case DW_OP_breg3:
3577 case DW_OP_breg4:
3578 case DW_OP_breg5:
3579 case DW_OP_breg6:
3580 case DW_OP_breg7:
3581 case DW_OP_breg8:
3582 case DW_OP_breg9:
3583 case DW_OP_breg10:
3584 case DW_OP_breg11:
3585 case DW_OP_breg12:
3586 case DW_OP_breg13:
3587 case DW_OP_breg14:
3588 case DW_OP_breg15:
3589 case DW_OP_breg16:
3590 case DW_OP_breg17:
3591 case DW_OP_breg18:
3592 case DW_OP_breg19:
3593 case DW_OP_breg20:
3594 case DW_OP_breg21:
3595 case DW_OP_breg22:
3596 case DW_OP_breg23:
3597 case DW_OP_breg24:
3598 case DW_OP_breg25:
3599 case DW_OP_breg26:
3600 case DW_OP_breg27:
3601 case DW_OP_breg28:
3602 case DW_OP_breg29:
3603 case DW_OP_breg30:
3604 case DW_OP_breg31:
3605 cfa->reg = op - DW_OP_breg0;
3606 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3607 break;
3608 case DW_OP_bregx:
3609 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3610 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3611 break;
3612 case DW_OP_deref:
3613 cfa->indirect = 1;
3614 break;
3615 case DW_OP_plus_uconst:
3616 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3617 break;
3618 default:
3619 internal_error ("DW_LOC_OP %s not implemented",
3620 dwarf_stack_op_name (ptr->dw_loc_opc));
3624 #endif /* .debug_frame support */
3626 /* And now, the support for symbolic debugging information. */
3627 #ifdef DWARF2_DEBUGGING_INFO
3629 /* .debug_str support. */
3630 static int output_indirect_string (void **, void *);
3632 static void dwarf2out_init (const char *);
3633 static void dwarf2out_finish (const char *);
3634 static void dwarf2out_define (unsigned int, const char *);
3635 static void dwarf2out_undef (unsigned int, const char *);
3636 static void dwarf2out_start_source_file (unsigned, const char *);
3637 static void dwarf2out_end_source_file (unsigned);
3638 static void dwarf2out_begin_block (unsigned, unsigned);
3639 static void dwarf2out_end_block (unsigned, unsigned);
3640 static bool dwarf2out_ignore_block (tree);
3641 static void dwarf2out_global_decl (tree);
3642 static void dwarf2out_type_decl (tree, int);
3643 static void dwarf2out_imported_module_or_decl (tree, tree);
3644 static void dwarf2out_abstract_function (tree);
3645 static void dwarf2out_var_location (rtx);
3646 static void dwarf2out_begin_function (tree);
3647 static void dwarf2out_switch_text_section (void);
3649 /* The debug hooks structure. */
3651 const struct gcc_debug_hooks dwarf2_debug_hooks =
3653 dwarf2out_init,
3654 dwarf2out_finish,
3655 dwarf2out_define,
3656 dwarf2out_undef,
3657 dwarf2out_start_source_file,
3658 dwarf2out_end_source_file,
3659 dwarf2out_begin_block,
3660 dwarf2out_end_block,
3661 dwarf2out_ignore_block,
3662 dwarf2out_source_line,
3663 dwarf2out_begin_prologue,
3664 debug_nothing_int_charstar, /* end_prologue */
3665 dwarf2out_end_epilogue,
3666 dwarf2out_begin_function,
3667 debug_nothing_int, /* end_function */
3668 dwarf2out_decl, /* function_decl */
3669 dwarf2out_global_decl,
3670 dwarf2out_type_decl, /* type_decl */
3671 dwarf2out_imported_module_or_decl,
3672 debug_nothing_tree, /* deferred_inline_function */
3673 /* The DWARF 2 backend tries to reduce debugging bloat by not
3674 emitting the abstract description of inline functions until
3675 something tries to reference them. */
3676 dwarf2out_abstract_function, /* outlining_inline_function */
3677 debug_nothing_rtx, /* label */
3678 debug_nothing_int, /* handle_pch */
3679 dwarf2out_var_location,
3680 dwarf2out_switch_text_section,
3681 1 /* start_end_main_source_file */
3683 #endif
3685 /* NOTE: In the comments in this file, many references are made to
3686 "Debugging Information Entries". This term is abbreviated as `DIE'
3687 throughout the remainder of this file. */
3689 /* An internal representation of the DWARF output is built, and then
3690 walked to generate the DWARF debugging info. The walk of the internal
3691 representation is done after the entire program has been compiled.
3692 The types below are used to describe the internal representation. */
3694 /* Various DIE's use offsets relative to the beginning of the
3695 .debug_info section to refer to each other. */
3697 typedef long int dw_offset;
3699 /* Define typedefs here to avoid circular dependencies. */
3701 typedef struct dw_attr_struct *dw_attr_ref;
3702 typedef struct dw_line_info_struct *dw_line_info_ref;
3703 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3704 typedef struct pubname_struct *pubname_ref;
3705 typedef struct dw_ranges_struct *dw_ranges_ref;
3707 /* Each entry in the line_info_table maintains the file and
3708 line number associated with the label generated for that
3709 entry. The label gives the PC value associated with
3710 the line number entry. */
3712 typedef struct dw_line_info_struct GTY(())
3714 unsigned long dw_file_num;
3715 unsigned long dw_line_num;
3717 dw_line_info_entry;
3719 /* Line information for functions in separate sections; each one gets its
3720 own sequence. */
3721 typedef struct dw_separate_line_info_struct GTY(())
3723 unsigned long dw_file_num;
3724 unsigned long dw_line_num;
3725 unsigned long function;
3727 dw_separate_line_info_entry;
3729 /* Each DIE attribute has a field specifying the attribute kind,
3730 a link to the next attribute in the chain, and an attribute value.
3731 Attributes are typically linked below the DIE they modify. */
3733 typedef struct dw_attr_struct GTY(())
3735 enum dwarf_attribute dw_attr;
3736 dw_val_node dw_attr_val;
3738 dw_attr_node;
3740 DEF_VEC_O(dw_attr_node);
3741 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3743 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3744 The children of each node form a circular list linked by
3745 die_sib. die_child points to the node *before* the "first" child node. */
3747 typedef struct die_struct GTY(())
3749 enum dwarf_tag die_tag;
3750 char *die_symbol;
3751 VEC(dw_attr_node,gc) * die_attr;
3752 dw_die_ref die_parent;
3753 dw_die_ref die_child;
3754 dw_die_ref die_sib;
3755 dw_die_ref die_definition; /* ref from a specification to its definition */
3756 dw_offset die_offset;
3757 unsigned long die_abbrev;
3758 int die_mark;
3759 /* Die is used and must not be pruned as unused. */
3760 int die_perennial_p;
3761 unsigned int decl_id;
3763 die_node;
3765 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3766 #define FOR_EACH_CHILD(die, c, expr) do { \
3767 c = die->die_child; \
3768 if (c) do { \
3769 c = c->die_sib; \
3770 expr; \
3771 } while (c != die->die_child); \
3772 } while (0)
3774 /* The pubname structure */
3776 typedef struct pubname_struct GTY(())
3778 dw_die_ref die;
3779 const char *name;
3781 pubname_entry;
3783 DEF_VEC_O(pubname_entry);
3784 DEF_VEC_ALLOC_O(pubname_entry, gc);
3786 struct dw_ranges_struct GTY(())
3788 int block_num;
3791 /* The limbo die list structure. */
3792 typedef struct limbo_die_struct GTY(())
3794 dw_die_ref die;
3795 tree created_for;
3796 struct limbo_die_struct *next;
3798 limbo_die_node;
3800 /* How to start an assembler comment. */
3801 #ifndef ASM_COMMENT_START
3802 #define ASM_COMMENT_START ";#"
3803 #endif
3805 /* Define a macro which returns nonzero for a TYPE_DECL which was
3806 implicitly generated for a tagged type.
3808 Note that unlike the gcc front end (which generates a NULL named
3809 TYPE_DECL node for each complete tagged type, each array type, and
3810 each function type node created) the g++ front end generates a
3811 _named_ TYPE_DECL node for each tagged type node created.
3812 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3813 generate a DW_TAG_typedef DIE for them. */
3815 #define TYPE_DECL_IS_STUB(decl) \
3816 (DECL_NAME (decl) == NULL_TREE \
3817 || (DECL_ARTIFICIAL (decl) \
3818 && is_tagged_type (TREE_TYPE (decl)) \
3819 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3820 /* This is necessary for stub decls that \
3821 appear in nested inline functions. */ \
3822 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3823 && (decl_ultimate_origin (decl) \
3824 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3826 /* Information concerning the compilation unit's programming
3827 language, and compiler version. */
3829 /* Fixed size portion of the DWARF compilation unit header. */
3830 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3831 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3833 /* Fixed size portion of public names info. */
3834 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3836 /* Fixed size portion of the address range info. */
3837 #define DWARF_ARANGES_HEADER_SIZE \
3838 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3839 DWARF2_ADDR_SIZE * 2) \
3840 - DWARF_INITIAL_LENGTH_SIZE)
3842 /* Size of padding portion in the address range info. It must be
3843 aligned to twice the pointer size. */
3844 #define DWARF_ARANGES_PAD_SIZE \
3845 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3846 DWARF2_ADDR_SIZE * 2) \
3847 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3849 /* Use assembler line directives if available. */
3850 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3851 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3852 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3853 #else
3854 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3855 #endif
3856 #endif
3858 /* Minimum line offset in a special line info. opcode.
3859 This value was chosen to give a reasonable range of values. */
3860 #define DWARF_LINE_BASE -10
3862 /* First special line opcode - leave room for the standard opcodes. */
3863 #define DWARF_LINE_OPCODE_BASE 10
3865 /* Range of line offsets in a special line info. opcode. */
3866 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3868 /* Flag that indicates the initial value of the is_stmt_start flag.
3869 In the present implementation, we do not mark any lines as
3870 the beginning of a source statement, because that information
3871 is not made available by the GCC front-end. */
3872 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3874 #ifdef DWARF2_DEBUGGING_INFO
3875 /* This location is used by calc_die_sizes() to keep track
3876 the offset of each DIE within the .debug_info section. */
3877 static unsigned long next_die_offset;
3878 #endif
3880 /* Record the root of the DIE's built for the current compilation unit. */
3881 static GTY(()) dw_die_ref comp_unit_die;
3883 /* A list of DIEs with a NULL parent waiting to be relocated. */
3884 static GTY(()) limbo_die_node *limbo_die_list;
3886 /* Filenames referenced by this compilation unit. */
3887 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3889 /* A hash table of references to DIE's that describe declarations.
3890 The key is a DECL_UID() which is a unique number identifying each decl. */
3891 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3893 /* Node of the variable location list. */
3894 struct var_loc_node GTY ((chain_next ("%h.next")))
3896 rtx GTY (()) var_loc_note;
3897 const char * GTY (()) label;
3898 const char * GTY (()) section_label;
3899 struct var_loc_node * GTY (()) next;
3902 /* Variable location list. */
3903 struct var_loc_list_def GTY (())
3905 struct var_loc_node * GTY (()) first;
3907 /* Do not mark the last element of the chained list because
3908 it is marked through the chain. */
3909 struct var_loc_node * GTY ((skip ("%h"))) last;
3911 /* DECL_UID of the variable decl. */
3912 unsigned int decl_id;
3914 typedef struct var_loc_list_def var_loc_list;
3917 /* Table of decl location linked lists. */
3918 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3920 /* A pointer to the base of a list of references to DIE's that
3921 are uniquely identified by their tag, presence/absence of
3922 children DIE's, and list of attribute/value pairs. */
3923 static GTY((length ("abbrev_die_table_allocated")))
3924 dw_die_ref *abbrev_die_table;
3926 /* Number of elements currently allocated for abbrev_die_table. */
3927 static GTY(()) unsigned abbrev_die_table_allocated;
3929 /* Number of elements in type_die_table currently in use. */
3930 static GTY(()) unsigned abbrev_die_table_in_use;
3932 /* Size (in elements) of increments by which we may expand the
3933 abbrev_die_table. */
3934 #define ABBREV_DIE_TABLE_INCREMENT 256
3936 /* A pointer to the base of a table that contains line information
3937 for each source code line in .text in the compilation unit. */
3938 static GTY((length ("line_info_table_allocated")))
3939 dw_line_info_ref line_info_table;
3941 /* Number of elements currently allocated for line_info_table. */
3942 static GTY(()) unsigned line_info_table_allocated;
3944 /* Number of elements in line_info_table currently in use. */
3945 static GTY(()) unsigned line_info_table_in_use;
3947 /* True if the compilation unit places functions in more than one section. */
3948 static GTY(()) bool have_multiple_function_sections = false;
3950 /* A pointer to the base of a table that contains line information
3951 for each source code line outside of .text in the compilation unit. */
3952 static GTY ((length ("separate_line_info_table_allocated")))
3953 dw_separate_line_info_ref separate_line_info_table;
3955 /* Number of elements currently allocated for separate_line_info_table. */
3956 static GTY(()) unsigned separate_line_info_table_allocated;
3958 /* Number of elements in separate_line_info_table currently in use. */
3959 static GTY(()) unsigned separate_line_info_table_in_use;
3961 /* Size (in elements) of increments by which we may expand the
3962 line_info_table. */
3963 #define LINE_INFO_TABLE_INCREMENT 1024
3965 /* A pointer to the base of a table that contains a list of publicly
3966 accessible names. */
3967 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3969 /* A pointer to the base of a table that contains a list of publicly
3970 accessible types. */
3971 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3973 /* Array of dies for which we should generate .debug_arange info. */
3974 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3976 /* Number of elements currently allocated for arange_table. */
3977 static GTY(()) unsigned arange_table_allocated;
3979 /* Number of elements in arange_table currently in use. */
3980 static GTY(()) unsigned arange_table_in_use;
3982 /* Size (in elements) of increments by which we may expand the
3983 arange_table. */
3984 #define ARANGE_TABLE_INCREMENT 64
3986 /* Array of dies for which we should generate .debug_ranges info. */
3987 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3989 /* Number of elements currently allocated for ranges_table. */
3990 static GTY(()) unsigned ranges_table_allocated;
3992 /* Number of elements in ranges_table currently in use. */
3993 static GTY(()) unsigned ranges_table_in_use;
3995 /* Size (in elements) of increments by which we may expand the
3996 ranges_table. */
3997 #define RANGES_TABLE_INCREMENT 64
3999 /* Whether we have location lists that need outputting */
4000 static GTY(()) bool have_location_lists;
4002 /* Unique label counter. */
4003 static GTY(()) unsigned int loclabel_num;
4005 #ifdef DWARF2_DEBUGGING_INFO
4006 /* Record whether the function being analyzed contains inlined functions. */
4007 static int current_function_has_inlines;
4008 #endif
4009 #if 0 && defined (MIPS_DEBUGGING_INFO)
4010 static int comp_unit_has_inlines;
4011 #endif
4013 /* The last file entry emitted by maybe_emit_file(). */
4014 static GTY(()) struct dwarf_file_data * last_emitted_file;
4016 /* Number of internal labels generated by gen_internal_sym(). */
4017 static GTY(()) int label_num;
4019 /* Cached result of previous call to lookup_filename. */
4020 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4022 #ifdef DWARF2_DEBUGGING_INFO
4024 /* Offset from the "steady-state frame pointer" to the frame base,
4025 within the current function. */
4026 static HOST_WIDE_INT frame_pointer_fb_offset;
4028 /* Forward declarations for functions defined in this file. */
4030 static int is_pseudo_reg (rtx);
4031 static tree type_main_variant (tree);
4032 static int is_tagged_type (tree);
4033 static const char *dwarf_tag_name (unsigned);
4034 static const char *dwarf_attr_name (unsigned);
4035 static const char *dwarf_form_name (unsigned);
4036 static tree decl_ultimate_origin (tree);
4037 static tree block_ultimate_origin (tree);
4038 static tree decl_class_context (tree);
4039 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4040 static inline enum dw_val_class AT_class (dw_attr_ref);
4041 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4042 static inline unsigned AT_flag (dw_attr_ref);
4043 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4044 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4045 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4046 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4047 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4048 unsigned long);
4049 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4050 unsigned int, unsigned char *);
4051 static hashval_t debug_str_do_hash (const void *);
4052 static int debug_str_eq (const void *, const void *);
4053 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4054 static inline const char *AT_string (dw_attr_ref);
4055 static int AT_string_form (dw_attr_ref);
4056 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4057 static void add_AT_specification (dw_die_ref, dw_die_ref);
4058 static inline dw_die_ref AT_ref (dw_attr_ref);
4059 static inline int AT_ref_external (dw_attr_ref);
4060 static inline void set_AT_ref_external (dw_attr_ref, int);
4061 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4062 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4063 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4064 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4065 dw_loc_list_ref);
4066 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4067 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4068 static inline rtx AT_addr (dw_attr_ref);
4069 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4070 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4071 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4072 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4073 unsigned HOST_WIDE_INT);
4074 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4075 unsigned long);
4076 static inline const char *AT_lbl (dw_attr_ref);
4077 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4078 static const char *get_AT_low_pc (dw_die_ref);
4079 static const char *get_AT_hi_pc (dw_die_ref);
4080 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4081 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4082 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4083 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4084 static bool is_c_family (void);
4085 static bool is_cxx (void);
4086 static bool is_java (void);
4087 static bool is_fortran (void);
4088 static bool is_ada (void);
4089 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4090 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4091 static void add_child_die (dw_die_ref, dw_die_ref);
4092 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4093 static dw_die_ref lookup_type_die (tree);
4094 static void equate_type_number_to_die (tree, dw_die_ref);
4095 static hashval_t decl_die_table_hash (const void *);
4096 static int decl_die_table_eq (const void *, const void *);
4097 static dw_die_ref lookup_decl_die (tree);
4098 static hashval_t decl_loc_table_hash (const void *);
4099 static int decl_loc_table_eq (const void *, const void *);
4100 static var_loc_list *lookup_decl_loc (tree);
4101 static void equate_decl_number_to_die (tree, dw_die_ref);
4102 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4103 static void print_spaces (FILE *);
4104 static void print_die (dw_die_ref, FILE *);
4105 static void print_dwarf_line_table (FILE *);
4106 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4107 static dw_die_ref pop_compile_unit (dw_die_ref);
4108 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4109 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4110 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4111 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4112 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4113 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4114 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4115 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4116 static void compute_section_prefix (dw_die_ref);
4117 static int is_type_die (dw_die_ref);
4118 static int is_comdat_die (dw_die_ref);
4119 static int is_symbol_die (dw_die_ref);
4120 static void assign_symbol_names (dw_die_ref);
4121 static void break_out_includes (dw_die_ref);
4122 static hashval_t htab_cu_hash (const void *);
4123 static int htab_cu_eq (const void *, const void *);
4124 static void htab_cu_del (void *);
4125 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4126 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4127 static void add_sibling_attributes (dw_die_ref);
4128 static void build_abbrev_table (dw_die_ref);
4129 static void output_location_lists (dw_die_ref);
4130 static int constant_size (long unsigned);
4131 static unsigned long size_of_die (dw_die_ref);
4132 static void calc_die_sizes (dw_die_ref);
4133 static void mark_dies (dw_die_ref);
4134 static void unmark_dies (dw_die_ref);
4135 static void unmark_all_dies (dw_die_ref);
4136 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4137 static unsigned long size_of_aranges (void);
4138 static enum dwarf_form value_format (dw_attr_ref);
4139 static void output_value_format (dw_attr_ref);
4140 static void output_abbrev_section (void);
4141 static void output_die_symbol (dw_die_ref);
4142 static void output_die (dw_die_ref);
4143 static void output_compilation_unit_header (void);
4144 static void output_comp_unit (dw_die_ref, int);
4145 static const char *dwarf2_name (tree, int);
4146 static void add_pubname (tree, dw_die_ref);
4147 static void add_pubtype (tree, dw_die_ref);
4148 static void output_pubnames (VEC (pubname_entry,gc) *);
4149 static void add_arange (tree, dw_die_ref);
4150 static void output_aranges (void);
4151 static unsigned int add_ranges (tree);
4152 static void output_ranges (void);
4153 static void output_line_info (void);
4154 static void output_file_names (void);
4155 static dw_die_ref base_type_die (tree);
4156 static int is_base_type (tree);
4157 static bool is_subrange_type (tree);
4158 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4159 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4160 static int type_is_enum (tree);
4161 static unsigned int dbx_reg_number (rtx);
4162 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4163 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4164 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4165 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4166 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4167 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4168 static int is_based_loc (rtx);
4169 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4170 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4171 static dw_loc_descr_ref loc_descriptor (rtx);
4172 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4173 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4174 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4175 static tree field_type (tree);
4176 static unsigned int simple_type_align_in_bits (tree);
4177 static unsigned int simple_decl_align_in_bits (tree);
4178 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4179 static HOST_WIDE_INT field_byte_offset (tree);
4180 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4181 dw_loc_descr_ref);
4182 static void add_data_member_location_attribute (dw_die_ref, tree);
4183 static void add_const_value_attribute (dw_die_ref, rtx);
4184 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4185 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4186 static void insert_float (rtx, unsigned char *);
4187 static rtx rtl_for_decl_location (tree);
4188 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4189 enum dwarf_attribute);
4190 static void tree_add_const_value_attribute (dw_die_ref, tree);
4191 static void add_name_attribute (dw_die_ref, const char *);
4192 static void add_comp_dir_attribute (dw_die_ref);
4193 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4194 static void add_subscript_info (dw_die_ref, tree);
4195 static void add_byte_size_attribute (dw_die_ref, tree);
4196 static void add_bit_offset_attribute (dw_die_ref, tree);
4197 static void add_bit_size_attribute (dw_die_ref, tree);
4198 static void add_prototyped_attribute (dw_die_ref, tree);
4199 static void add_abstract_origin_attribute (dw_die_ref, tree);
4200 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4201 static void add_src_coords_attributes (dw_die_ref, tree);
4202 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4203 static void push_decl_scope (tree);
4204 static void pop_decl_scope (void);
4205 static dw_die_ref scope_die_for (tree, dw_die_ref);
4206 static inline int local_scope_p (dw_die_ref);
4207 static inline int class_or_namespace_scope_p (dw_die_ref);
4208 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4209 static void add_calling_convention_attribute (dw_die_ref, tree);
4210 static const char *type_tag (tree);
4211 static tree member_declared_type (tree);
4212 #if 0
4213 static const char *decl_start_label (tree);
4214 #endif
4215 static void gen_array_type_die (tree, dw_die_ref);
4216 #if 0
4217 static void gen_entry_point_die (tree, dw_die_ref);
4218 #endif
4219 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4220 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4221 static void gen_inlined_union_type_die (tree, dw_die_ref);
4222 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4223 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4224 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4225 static void gen_formal_types_die (tree, dw_die_ref);
4226 static void gen_subprogram_die (tree, dw_die_ref);
4227 static void gen_variable_die (tree, dw_die_ref);
4228 static void gen_label_die (tree, dw_die_ref);
4229 static void gen_lexical_block_die (tree, dw_die_ref, int);
4230 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4231 static void gen_field_die (tree, dw_die_ref);
4232 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4233 static dw_die_ref gen_compile_unit_die (const char *);
4234 static void gen_inheritance_die (tree, tree, dw_die_ref);
4235 static void gen_member_die (tree, dw_die_ref);
4236 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4237 static void gen_subroutine_type_die (tree, dw_die_ref);
4238 static void gen_typedef_die (tree, dw_die_ref);
4239 static void gen_type_die (tree, dw_die_ref);
4240 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4241 static void gen_block_die (tree, dw_die_ref, int);
4242 static void decls_for_scope (tree, dw_die_ref, int);
4243 static int is_redundant_typedef (tree);
4244 static void gen_namespace_die (tree);
4245 static void gen_decl_die (tree, dw_die_ref);
4246 static dw_die_ref force_decl_die (tree);
4247 static dw_die_ref force_type_die (tree);
4248 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4249 static void declare_in_namespace (tree, dw_die_ref);
4250 static struct dwarf_file_data * lookup_filename (const char *);
4251 static void retry_incomplete_types (void);
4252 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4253 static void splice_child_die (dw_die_ref, dw_die_ref);
4254 static int file_info_cmp (const void *, const void *);
4255 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4256 const char *, const char *, unsigned);
4257 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4258 const char *, const char *,
4259 const char *);
4260 static void output_loc_list (dw_loc_list_ref);
4261 static char *gen_internal_sym (const char *);
4263 static void prune_unmark_dies (dw_die_ref);
4264 static void prune_unused_types_mark (dw_die_ref, int);
4265 static void prune_unused_types_walk (dw_die_ref);
4266 static void prune_unused_types_walk_attribs (dw_die_ref);
4267 static void prune_unused_types_prune (dw_die_ref);
4268 static void prune_unused_types (void);
4269 static int maybe_emit_file (struct dwarf_file_data *fd);
4271 /* Section names used to hold DWARF debugging information. */
4272 #ifndef DEBUG_INFO_SECTION
4273 #define DEBUG_INFO_SECTION ".debug_info"
4274 #endif
4275 #ifndef DEBUG_ABBREV_SECTION
4276 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4277 #endif
4278 #ifndef DEBUG_ARANGES_SECTION
4279 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4280 #endif
4281 #ifndef DEBUG_MACINFO_SECTION
4282 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4283 #endif
4284 #ifndef DEBUG_LINE_SECTION
4285 #define DEBUG_LINE_SECTION ".debug_line"
4286 #endif
4287 #ifndef DEBUG_LOC_SECTION
4288 #define DEBUG_LOC_SECTION ".debug_loc"
4289 #endif
4290 #ifndef DEBUG_PUBNAMES_SECTION
4291 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4292 #endif
4293 #ifndef DEBUG_STR_SECTION
4294 #define DEBUG_STR_SECTION ".debug_str"
4295 #endif
4296 #ifndef DEBUG_RANGES_SECTION
4297 #define DEBUG_RANGES_SECTION ".debug_ranges"
4298 #endif
4300 /* Standard ELF section names for compiled code and data. */
4301 #ifndef TEXT_SECTION_NAME
4302 #define TEXT_SECTION_NAME ".text"
4303 #endif
4305 /* Section flags for .debug_str section. */
4306 #define DEBUG_STR_SECTION_FLAGS \
4307 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4308 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4309 : SECTION_DEBUG)
4311 /* Labels we insert at beginning sections we can reference instead of
4312 the section names themselves. */
4314 #ifndef TEXT_SECTION_LABEL
4315 #define TEXT_SECTION_LABEL "Ltext"
4316 #endif
4317 #ifndef COLD_TEXT_SECTION_LABEL
4318 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4319 #endif
4320 #ifndef DEBUG_LINE_SECTION_LABEL
4321 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4322 #endif
4323 #ifndef DEBUG_INFO_SECTION_LABEL
4324 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4325 #endif
4326 #ifndef DEBUG_ABBREV_SECTION_LABEL
4327 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4328 #endif
4329 #ifndef DEBUG_LOC_SECTION_LABEL
4330 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4331 #endif
4332 #ifndef DEBUG_RANGES_SECTION_LABEL
4333 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4334 #endif
4335 #ifndef DEBUG_MACINFO_SECTION_LABEL
4336 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4337 #endif
4339 /* Definitions of defaults for formats and names of various special
4340 (artificial) labels which may be generated within this file (when the -g
4341 options is used and DWARF2_DEBUGGING_INFO is in effect.
4342 If necessary, these may be overridden from within the tm.h file, but
4343 typically, overriding these defaults is unnecessary. */
4345 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4346 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4347 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4348 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4349 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4350 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4351 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4352 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4353 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4354 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4356 #ifndef TEXT_END_LABEL
4357 #define TEXT_END_LABEL "Letext"
4358 #endif
4359 #ifndef COLD_END_LABEL
4360 #define COLD_END_LABEL "Letext_cold"
4361 #endif
4362 #ifndef BLOCK_BEGIN_LABEL
4363 #define BLOCK_BEGIN_LABEL "LBB"
4364 #endif
4365 #ifndef BLOCK_END_LABEL
4366 #define BLOCK_END_LABEL "LBE"
4367 #endif
4368 #ifndef LINE_CODE_LABEL
4369 #define LINE_CODE_LABEL "LM"
4370 #endif
4371 #ifndef SEPARATE_LINE_CODE_LABEL
4372 #define SEPARATE_LINE_CODE_LABEL "LSM"
4373 #endif
4375 /* We allow a language front-end to designate a function that is to be
4376 called to "demangle" any name before it is put into a DIE. */
4378 static const char *(*demangle_name_func) (const char *);
4380 void
4381 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4383 demangle_name_func = func;
4386 /* Test if rtl node points to a pseudo register. */
4388 static inline int
4389 is_pseudo_reg (rtx rtl)
4391 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4392 || (GET_CODE (rtl) == SUBREG
4393 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4396 /* Return a reference to a type, with its const and volatile qualifiers
4397 removed. */
4399 static inline tree
4400 type_main_variant (tree type)
4402 type = TYPE_MAIN_VARIANT (type);
4404 /* ??? There really should be only one main variant among any group of
4405 variants of a given type (and all of the MAIN_VARIANT values for all
4406 members of the group should point to that one type) but sometimes the C
4407 front-end messes this up for array types, so we work around that bug
4408 here. */
4409 if (TREE_CODE (type) == ARRAY_TYPE)
4410 while (type != TYPE_MAIN_VARIANT (type))
4411 type = TYPE_MAIN_VARIANT (type);
4413 return type;
4416 /* Return nonzero if the given type node represents a tagged type. */
4418 static inline int
4419 is_tagged_type (tree type)
4421 enum tree_code code = TREE_CODE (type);
4423 return (code == RECORD_TYPE || code == UNION_TYPE
4424 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4427 /* Convert a DIE tag into its string name. */
4429 static const char *
4430 dwarf_tag_name (unsigned int tag)
4432 switch (tag)
4434 case DW_TAG_padding:
4435 return "DW_TAG_padding";
4436 case DW_TAG_array_type:
4437 return "DW_TAG_array_type";
4438 case DW_TAG_class_type:
4439 return "DW_TAG_class_type";
4440 case DW_TAG_entry_point:
4441 return "DW_TAG_entry_point";
4442 case DW_TAG_enumeration_type:
4443 return "DW_TAG_enumeration_type";
4444 case DW_TAG_formal_parameter:
4445 return "DW_TAG_formal_parameter";
4446 case DW_TAG_imported_declaration:
4447 return "DW_TAG_imported_declaration";
4448 case DW_TAG_label:
4449 return "DW_TAG_label";
4450 case DW_TAG_lexical_block:
4451 return "DW_TAG_lexical_block";
4452 case DW_TAG_member:
4453 return "DW_TAG_member";
4454 case DW_TAG_pointer_type:
4455 return "DW_TAG_pointer_type";
4456 case DW_TAG_reference_type:
4457 return "DW_TAG_reference_type";
4458 case DW_TAG_compile_unit:
4459 return "DW_TAG_compile_unit";
4460 case DW_TAG_string_type:
4461 return "DW_TAG_string_type";
4462 case DW_TAG_structure_type:
4463 return "DW_TAG_structure_type";
4464 case DW_TAG_subroutine_type:
4465 return "DW_TAG_subroutine_type";
4466 case DW_TAG_typedef:
4467 return "DW_TAG_typedef";
4468 case DW_TAG_union_type:
4469 return "DW_TAG_union_type";
4470 case DW_TAG_unspecified_parameters:
4471 return "DW_TAG_unspecified_parameters";
4472 case DW_TAG_variant:
4473 return "DW_TAG_variant";
4474 case DW_TAG_common_block:
4475 return "DW_TAG_common_block";
4476 case DW_TAG_common_inclusion:
4477 return "DW_TAG_common_inclusion";
4478 case DW_TAG_inheritance:
4479 return "DW_TAG_inheritance";
4480 case DW_TAG_inlined_subroutine:
4481 return "DW_TAG_inlined_subroutine";
4482 case DW_TAG_module:
4483 return "DW_TAG_module";
4484 case DW_TAG_ptr_to_member_type:
4485 return "DW_TAG_ptr_to_member_type";
4486 case DW_TAG_set_type:
4487 return "DW_TAG_set_type";
4488 case DW_TAG_subrange_type:
4489 return "DW_TAG_subrange_type";
4490 case DW_TAG_with_stmt:
4491 return "DW_TAG_with_stmt";
4492 case DW_TAG_access_declaration:
4493 return "DW_TAG_access_declaration";
4494 case DW_TAG_base_type:
4495 return "DW_TAG_base_type";
4496 case DW_TAG_catch_block:
4497 return "DW_TAG_catch_block";
4498 case DW_TAG_const_type:
4499 return "DW_TAG_const_type";
4500 case DW_TAG_constant:
4501 return "DW_TAG_constant";
4502 case DW_TAG_enumerator:
4503 return "DW_TAG_enumerator";
4504 case DW_TAG_file_type:
4505 return "DW_TAG_file_type";
4506 case DW_TAG_friend:
4507 return "DW_TAG_friend";
4508 case DW_TAG_namelist:
4509 return "DW_TAG_namelist";
4510 case DW_TAG_namelist_item:
4511 return "DW_TAG_namelist_item";
4512 case DW_TAG_namespace:
4513 return "DW_TAG_namespace";
4514 case DW_TAG_packed_type:
4515 return "DW_TAG_packed_type";
4516 case DW_TAG_subprogram:
4517 return "DW_TAG_subprogram";
4518 case DW_TAG_template_type_param:
4519 return "DW_TAG_template_type_param";
4520 case DW_TAG_template_value_param:
4521 return "DW_TAG_template_value_param";
4522 case DW_TAG_thrown_type:
4523 return "DW_TAG_thrown_type";
4524 case DW_TAG_try_block:
4525 return "DW_TAG_try_block";
4526 case DW_TAG_variant_part:
4527 return "DW_TAG_variant_part";
4528 case DW_TAG_variable:
4529 return "DW_TAG_variable";
4530 case DW_TAG_volatile_type:
4531 return "DW_TAG_volatile_type";
4532 case DW_TAG_imported_module:
4533 return "DW_TAG_imported_module";
4534 case DW_TAG_MIPS_loop:
4535 return "DW_TAG_MIPS_loop";
4536 case DW_TAG_format_label:
4537 return "DW_TAG_format_label";
4538 case DW_TAG_function_template:
4539 return "DW_TAG_function_template";
4540 case DW_TAG_class_template:
4541 return "DW_TAG_class_template";
4542 case DW_TAG_GNU_BINCL:
4543 return "DW_TAG_GNU_BINCL";
4544 case DW_TAG_GNU_EINCL:
4545 return "DW_TAG_GNU_EINCL";
4546 default:
4547 return "DW_TAG_<unknown>";
4551 /* Convert a DWARF attribute code into its string name. */
4553 static const char *
4554 dwarf_attr_name (unsigned int attr)
4556 switch (attr)
4558 case DW_AT_sibling:
4559 return "DW_AT_sibling";
4560 case DW_AT_location:
4561 return "DW_AT_location";
4562 case DW_AT_name:
4563 return "DW_AT_name";
4564 case DW_AT_ordering:
4565 return "DW_AT_ordering";
4566 case DW_AT_subscr_data:
4567 return "DW_AT_subscr_data";
4568 case DW_AT_byte_size:
4569 return "DW_AT_byte_size";
4570 case DW_AT_bit_offset:
4571 return "DW_AT_bit_offset";
4572 case DW_AT_bit_size:
4573 return "DW_AT_bit_size";
4574 case DW_AT_element_list:
4575 return "DW_AT_element_list";
4576 case DW_AT_stmt_list:
4577 return "DW_AT_stmt_list";
4578 case DW_AT_low_pc:
4579 return "DW_AT_low_pc";
4580 case DW_AT_high_pc:
4581 return "DW_AT_high_pc";
4582 case DW_AT_language:
4583 return "DW_AT_language";
4584 case DW_AT_member:
4585 return "DW_AT_member";
4586 case DW_AT_discr:
4587 return "DW_AT_discr";
4588 case DW_AT_discr_value:
4589 return "DW_AT_discr_value";
4590 case DW_AT_visibility:
4591 return "DW_AT_visibility";
4592 case DW_AT_import:
4593 return "DW_AT_import";
4594 case DW_AT_string_length:
4595 return "DW_AT_string_length";
4596 case DW_AT_common_reference:
4597 return "DW_AT_common_reference";
4598 case DW_AT_comp_dir:
4599 return "DW_AT_comp_dir";
4600 case DW_AT_const_value:
4601 return "DW_AT_const_value";
4602 case DW_AT_containing_type:
4603 return "DW_AT_containing_type";
4604 case DW_AT_default_value:
4605 return "DW_AT_default_value";
4606 case DW_AT_inline:
4607 return "DW_AT_inline";
4608 case DW_AT_is_optional:
4609 return "DW_AT_is_optional";
4610 case DW_AT_lower_bound:
4611 return "DW_AT_lower_bound";
4612 case DW_AT_producer:
4613 return "DW_AT_producer";
4614 case DW_AT_prototyped:
4615 return "DW_AT_prototyped";
4616 case DW_AT_return_addr:
4617 return "DW_AT_return_addr";
4618 case DW_AT_start_scope:
4619 return "DW_AT_start_scope";
4620 case DW_AT_stride_size:
4621 return "DW_AT_stride_size";
4622 case DW_AT_upper_bound:
4623 return "DW_AT_upper_bound";
4624 case DW_AT_abstract_origin:
4625 return "DW_AT_abstract_origin";
4626 case DW_AT_accessibility:
4627 return "DW_AT_accessibility";
4628 case DW_AT_address_class:
4629 return "DW_AT_address_class";
4630 case DW_AT_artificial:
4631 return "DW_AT_artificial";
4632 case DW_AT_base_types:
4633 return "DW_AT_base_types";
4634 case DW_AT_calling_convention:
4635 return "DW_AT_calling_convention";
4636 case DW_AT_count:
4637 return "DW_AT_count";
4638 case DW_AT_data_member_location:
4639 return "DW_AT_data_member_location";
4640 case DW_AT_decl_column:
4641 return "DW_AT_decl_column";
4642 case DW_AT_decl_file:
4643 return "DW_AT_decl_file";
4644 case DW_AT_decl_line:
4645 return "DW_AT_decl_line";
4646 case DW_AT_declaration:
4647 return "DW_AT_declaration";
4648 case DW_AT_discr_list:
4649 return "DW_AT_discr_list";
4650 case DW_AT_encoding:
4651 return "DW_AT_encoding";
4652 case DW_AT_external:
4653 return "DW_AT_external";
4654 case DW_AT_frame_base:
4655 return "DW_AT_frame_base";
4656 case DW_AT_friend:
4657 return "DW_AT_friend";
4658 case DW_AT_identifier_case:
4659 return "DW_AT_identifier_case";
4660 case DW_AT_macro_info:
4661 return "DW_AT_macro_info";
4662 case DW_AT_namelist_items:
4663 return "DW_AT_namelist_items";
4664 case DW_AT_priority:
4665 return "DW_AT_priority";
4666 case DW_AT_segment:
4667 return "DW_AT_segment";
4668 case DW_AT_specification:
4669 return "DW_AT_specification";
4670 case DW_AT_static_link:
4671 return "DW_AT_static_link";
4672 case DW_AT_type:
4673 return "DW_AT_type";
4674 case DW_AT_use_location:
4675 return "DW_AT_use_location";
4676 case DW_AT_variable_parameter:
4677 return "DW_AT_variable_parameter";
4678 case DW_AT_virtuality:
4679 return "DW_AT_virtuality";
4680 case DW_AT_vtable_elem_location:
4681 return "DW_AT_vtable_elem_location";
4683 case DW_AT_allocated:
4684 return "DW_AT_allocated";
4685 case DW_AT_associated:
4686 return "DW_AT_associated";
4687 case DW_AT_data_location:
4688 return "DW_AT_data_location";
4689 case DW_AT_stride:
4690 return "DW_AT_stride";
4691 case DW_AT_entry_pc:
4692 return "DW_AT_entry_pc";
4693 case DW_AT_use_UTF8:
4694 return "DW_AT_use_UTF8";
4695 case DW_AT_extension:
4696 return "DW_AT_extension";
4697 case DW_AT_ranges:
4698 return "DW_AT_ranges";
4699 case DW_AT_trampoline:
4700 return "DW_AT_trampoline";
4701 case DW_AT_call_column:
4702 return "DW_AT_call_column";
4703 case DW_AT_call_file:
4704 return "DW_AT_call_file";
4705 case DW_AT_call_line:
4706 return "DW_AT_call_line";
4708 case DW_AT_MIPS_fde:
4709 return "DW_AT_MIPS_fde";
4710 case DW_AT_MIPS_loop_begin:
4711 return "DW_AT_MIPS_loop_begin";
4712 case DW_AT_MIPS_tail_loop_begin:
4713 return "DW_AT_MIPS_tail_loop_begin";
4714 case DW_AT_MIPS_epilog_begin:
4715 return "DW_AT_MIPS_epilog_begin";
4716 case DW_AT_MIPS_loop_unroll_factor:
4717 return "DW_AT_MIPS_loop_unroll_factor";
4718 case DW_AT_MIPS_software_pipeline_depth:
4719 return "DW_AT_MIPS_software_pipeline_depth";
4720 case DW_AT_MIPS_linkage_name:
4721 return "DW_AT_MIPS_linkage_name";
4722 case DW_AT_MIPS_stride:
4723 return "DW_AT_MIPS_stride";
4724 case DW_AT_MIPS_abstract_name:
4725 return "DW_AT_MIPS_abstract_name";
4726 case DW_AT_MIPS_clone_origin:
4727 return "DW_AT_MIPS_clone_origin";
4728 case DW_AT_MIPS_has_inlines:
4729 return "DW_AT_MIPS_has_inlines";
4731 case DW_AT_sf_names:
4732 return "DW_AT_sf_names";
4733 case DW_AT_src_info:
4734 return "DW_AT_src_info";
4735 case DW_AT_mac_info:
4736 return "DW_AT_mac_info";
4737 case DW_AT_src_coords:
4738 return "DW_AT_src_coords";
4739 case DW_AT_body_begin:
4740 return "DW_AT_body_begin";
4741 case DW_AT_body_end:
4742 return "DW_AT_body_end";
4743 case DW_AT_GNU_vector:
4744 return "DW_AT_GNU_vector";
4746 case DW_AT_VMS_rtnbeg_pd_address:
4747 return "DW_AT_VMS_rtnbeg_pd_address";
4749 default:
4750 return "DW_AT_<unknown>";
4754 /* Convert a DWARF value form code into its string name. */
4756 static const char *
4757 dwarf_form_name (unsigned int form)
4759 switch (form)
4761 case DW_FORM_addr:
4762 return "DW_FORM_addr";
4763 case DW_FORM_block2:
4764 return "DW_FORM_block2";
4765 case DW_FORM_block4:
4766 return "DW_FORM_block4";
4767 case DW_FORM_data2:
4768 return "DW_FORM_data2";
4769 case DW_FORM_data4:
4770 return "DW_FORM_data4";
4771 case DW_FORM_data8:
4772 return "DW_FORM_data8";
4773 case DW_FORM_string:
4774 return "DW_FORM_string";
4775 case DW_FORM_block:
4776 return "DW_FORM_block";
4777 case DW_FORM_block1:
4778 return "DW_FORM_block1";
4779 case DW_FORM_data1:
4780 return "DW_FORM_data1";
4781 case DW_FORM_flag:
4782 return "DW_FORM_flag";
4783 case DW_FORM_sdata:
4784 return "DW_FORM_sdata";
4785 case DW_FORM_strp:
4786 return "DW_FORM_strp";
4787 case DW_FORM_udata:
4788 return "DW_FORM_udata";
4789 case DW_FORM_ref_addr:
4790 return "DW_FORM_ref_addr";
4791 case DW_FORM_ref1:
4792 return "DW_FORM_ref1";
4793 case DW_FORM_ref2:
4794 return "DW_FORM_ref2";
4795 case DW_FORM_ref4:
4796 return "DW_FORM_ref4";
4797 case DW_FORM_ref8:
4798 return "DW_FORM_ref8";
4799 case DW_FORM_ref_udata:
4800 return "DW_FORM_ref_udata";
4801 case DW_FORM_indirect:
4802 return "DW_FORM_indirect";
4803 default:
4804 return "DW_FORM_<unknown>";
4808 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4809 instance of an inlined instance of a decl which is local to an inline
4810 function, so we have to trace all of the way back through the origin chain
4811 to find out what sort of node actually served as the original seed for the
4812 given block. */
4814 static tree
4815 decl_ultimate_origin (tree decl)
4817 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4818 return NULL_TREE;
4820 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4821 nodes in the function to point to themselves; ignore that if
4822 we're trying to output the abstract instance of this function. */
4823 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4824 return NULL_TREE;
4826 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4827 most distant ancestor, this should never happen. */
4828 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4830 return DECL_ABSTRACT_ORIGIN (decl);
4833 /* Determine the "ultimate origin" of a block. The block may be an inlined
4834 instance of an inlined instance of a block which is local to an inline
4835 function, so we have to trace all of the way back through the origin chain
4836 to find out what sort of node actually served as the original seed for the
4837 given block. */
4839 static tree
4840 block_ultimate_origin (tree block)
4842 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4844 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4845 nodes in the function to point to themselves; ignore that if
4846 we're trying to output the abstract instance of this function. */
4847 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4848 return NULL_TREE;
4850 if (immediate_origin == NULL_TREE)
4851 return NULL_TREE;
4852 else
4854 tree ret_val;
4855 tree lookahead = immediate_origin;
4859 ret_val = lookahead;
4860 lookahead = (TREE_CODE (ret_val) == BLOCK
4861 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4863 while (lookahead != NULL && lookahead != ret_val);
4865 /* The block's abstract origin chain may not be the *ultimate* origin of
4866 the block. It could lead to a DECL that has an abstract origin set.
4867 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4868 will give us if it has one). Note that DECL's abstract origins are
4869 supposed to be the most distant ancestor (or so decl_ultimate_origin
4870 claims), so we don't need to loop following the DECL origins. */
4871 if (DECL_P (ret_val))
4872 return DECL_ORIGIN (ret_val);
4874 return ret_val;
4878 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4879 of a virtual function may refer to a base class, so we check the 'this'
4880 parameter. */
4882 static tree
4883 decl_class_context (tree decl)
4885 tree context = NULL_TREE;
4887 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4888 context = DECL_CONTEXT (decl);
4889 else
4890 context = TYPE_MAIN_VARIANT
4891 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4893 if (context && !TYPE_P (context))
4894 context = NULL_TREE;
4896 return context;
4899 /* Add an attribute/value pair to a DIE. */
4901 static inline void
4902 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4904 /* Maybe this should be an assert? */
4905 if (die == NULL)
4906 return;
4908 if (die->die_attr == NULL)
4909 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4910 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4913 static inline enum dw_val_class
4914 AT_class (dw_attr_ref a)
4916 return a->dw_attr_val.val_class;
4919 /* Add a flag value attribute to a DIE. */
4921 static inline void
4922 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4924 dw_attr_node attr;
4926 attr.dw_attr = attr_kind;
4927 attr.dw_attr_val.val_class = dw_val_class_flag;
4928 attr.dw_attr_val.v.val_flag = flag;
4929 add_dwarf_attr (die, &attr);
4932 static inline unsigned
4933 AT_flag (dw_attr_ref a)
4935 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4936 return a->dw_attr_val.v.val_flag;
4939 /* Add a signed integer attribute value to a DIE. */
4941 static inline void
4942 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4944 dw_attr_node attr;
4946 attr.dw_attr = attr_kind;
4947 attr.dw_attr_val.val_class = dw_val_class_const;
4948 attr.dw_attr_val.v.val_int = int_val;
4949 add_dwarf_attr (die, &attr);
4952 static inline HOST_WIDE_INT
4953 AT_int (dw_attr_ref a)
4955 gcc_assert (a && AT_class (a) == dw_val_class_const);
4956 return a->dw_attr_val.v.val_int;
4959 /* Add an unsigned integer attribute value to a DIE. */
4961 static inline void
4962 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4963 unsigned HOST_WIDE_INT unsigned_val)
4965 dw_attr_node attr;
4967 attr.dw_attr = attr_kind;
4968 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4969 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4970 add_dwarf_attr (die, &attr);
4973 static inline unsigned HOST_WIDE_INT
4974 AT_unsigned (dw_attr_ref a)
4976 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4977 return a->dw_attr_val.v.val_unsigned;
4980 /* Add an unsigned double integer attribute value to a DIE. */
4982 static inline void
4983 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4984 long unsigned int val_hi, long unsigned int val_low)
4986 dw_attr_node attr;
4988 attr.dw_attr = attr_kind;
4989 attr.dw_attr_val.val_class = dw_val_class_long_long;
4990 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4991 attr.dw_attr_val.v.val_long_long.low = val_low;
4992 add_dwarf_attr (die, &attr);
4995 /* Add a floating point attribute value to a DIE and return it. */
4997 static inline void
4998 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4999 unsigned int length, unsigned int elt_size, unsigned char *array)
5001 dw_attr_node attr;
5003 attr.dw_attr = attr_kind;
5004 attr.dw_attr_val.val_class = dw_val_class_vec;
5005 attr.dw_attr_val.v.val_vec.length = length;
5006 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
5007 attr.dw_attr_val.v.val_vec.array = array;
5008 add_dwarf_attr (die, &attr);
5011 /* Hash and equality functions for debug_str_hash. */
5013 static hashval_t
5014 debug_str_do_hash (const void *x)
5016 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5019 static int
5020 debug_str_eq (const void *x1, const void *x2)
5022 return strcmp ((((const struct indirect_string_node *)x1)->str),
5023 (const char *)x2) == 0;
5026 /* Add a string attribute value to a DIE. */
5028 static inline void
5029 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5031 dw_attr_node attr;
5032 struct indirect_string_node *node;
5033 void **slot;
5035 if (! debug_str_hash)
5036 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5037 debug_str_eq, NULL);
5039 slot = htab_find_slot_with_hash (debug_str_hash, str,
5040 htab_hash_string (str), INSERT);
5041 if (*slot == NULL)
5042 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5043 node = (struct indirect_string_node *) *slot;
5044 node->str = ggc_strdup (str);
5045 node->refcount++;
5047 attr.dw_attr = attr_kind;
5048 attr.dw_attr_val.val_class = dw_val_class_str;
5049 attr.dw_attr_val.v.val_str = node;
5050 add_dwarf_attr (die, &attr);
5053 static inline const char *
5054 AT_string (dw_attr_ref a)
5056 gcc_assert (a && AT_class (a) == dw_val_class_str);
5057 return a->dw_attr_val.v.val_str->str;
5060 /* Find out whether a string should be output inline in DIE
5061 or out-of-line in .debug_str section. */
5063 static int
5064 AT_string_form (dw_attr_ref a)
5066 struct indirect_string_node *node;
5067 unsigned int len;
5068 char label[32];
5070 gcc_assert (a && AT_class (a) == dw_val_class_str);
5072 node = a->dw_attr_val.v.val_str;
5073 if (node->form)
5074 return node->form;
5076 len = strlen (node->str) + 1;
5078 /* If the string is shorter or equal to the size of the reference, it is
5079 always better to put it inline. */
5080 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5081 return node->form = DW_FORM_string;
5083 /* If we cannot expect the linker to merge strings in .debug_str
5084 section, only put it into .debug_str if it is worth even in this
5085 single module. */
5086 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5087 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5088 return node->form = DW_FORM_string;
5090 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5091 ++dw2_string_counter;
5092 node->label = xstrdup (label);
5094 return node->form = DW_FORM_strp;
5097 /* Add a DIE reference attribute value to a DIE. */
5099 static inline void
5100 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5102 dw_attr_node attr;
5104 attr.dw_attr = attr_kind;
5105 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5106 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5107 attr.dw_attr_val.v.val_die_ref.external = 0;
5108 add_dwarf_attr (die, &attr);
5111 /* Add an AT_specification attribute to a DIE, and also make the back
5112 pointer from the specification to the definition. */
5114 static inline void
5115 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5117 add_AT_die_ref (die, DW_AT_specification, targ_die);
5118 gcc_assert (!targ_die->die_definition);
5119 targ_die->die_definition = die;
5122 static inline dw_die_ref
5123 AT_ref (dw_attr_ref a)
5125 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5126 return a->dw_attr_val.v.val_die_ref.die;
5129 static inline int
5130 AT_ref_external (dw_attr_ref a)
5132 if (a && AT_class (a) == dw_val_class_die_ref)
5133 return a->dw_attr_val.v.val_die_ref.external;
5135 return 0;
5138 static inline void
5139 set_AT_ref_external (dw_attr_ref a, int i)
5141 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5142 a->dw_attr_val.v.val_die_ref.external = i;
5145 /* Add an FDE reference attribute value to a DIE. */
5147 static inline void
5148 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5150 dw_attr_node attr;
5152 attr.dw_attr = attr_kind;
5153 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5154 attr.dw_attr_val.v.val_fde_index = targ_fde;
5155 add_dwarf_attr (die, &attr);
5158 /* Add a location description attribute value to a DIE. */
5160 static inline void
5161 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5163 dw_attr_node attr;
5165 attr.dw_attr = attr_kind;
5166 attr.dw_attr_val.val_class = dw_val_class_loc;
5167 attr.dw_attr_val.v.val_loc = loc;
5168 add_dwarf_attr (die, &attr);
5171 static inline dw_loc_descr_ref
5172 AT_loc (dw_attr_ref a)
5174 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5175 return a->dw_attr_val.v.val_loc;
5178 static inline void
5179 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5181 dw_attr_node attr;
5183 attr.dw_attr = attr_kind;
5184 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5185 attr.dw_attr_val.v.val_loc_list = loc_list;
5186 add_dwarf_attr (die, &attr);
5187 have_location_lists = true;
5190 static inline dw_loc_list_ref
5191 AT_loc_list (dw_attr_ref a)
5193 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5194 return a->dw_attr_val.v.val_loc_list;
5197 /* Add an address constant attribute value to a DIE. */
5199 static inline void
5200 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5202 dw_attr_node attr;
5204 attr.dw_attr = attr_kind;
5205 attr.dw_attr_val.val_class = dw_val_class_addr;
5206 attr.dw_attr_val.v.val_addr = addr;
5207 add_dwarf_attr (die, &attr);
5210 /* Get the RTX from to an address DIE attribute. */
5212 static inline rtx
5213 AT_addr (dw_attr_ref a)
5215 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5216 return a->dw_attr_val.v.val_addr;
5219 /* Add a file attribute value to a DIE. */
5221 static inline void
5222 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5223 struct dwarf_file_data *fd)
5225 dw_attr_node attr;
5227 attr.dw_attr = attr_kind;
5228 attr.dw_attr_val.val_class = dw_val_class_file;
5229 attr.dw_attr_val.v.val_file = fd;
5230 add_dwarf_attr (die, &attr);
5233 /* Get the dwarf_file_data from a file DIE attribute. */
5235 static inline struct dwarf_file_data *
5236 AT_file (dw_attr_ref a)
5238 gcc_assert (a && AT_class (a) == dw_val_class_file);
5239 return a->dw_attr_val.v.val_file;
5242 /* Add a label identifier attribute value to a DIE. */
5244 static inline void
5245 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5247 dw_attr_node attr;
5249 attr.dw_attr = attr_kind;
5250 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5251 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5252 add_dwarf_attr (die, &attr);
5255 /* Add a section offset attribute value to a DIE, an offset into the
5256 debug_line section. */
5258 static inline void
5259 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5260 const char *label)
5262 dw_attr_node attr;
5264 attr.dw_attr = attr_kind;
5265 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5266 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5267 add_dwarf_attr (die, &attr);
5270 /* Add a section offset attribute value to a DIE, an offset into the
5271 debug_macinfo section. */
5273 static inline void
5274 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5275 const char *label)
5277 dw_attr_node attr;
5279 attr.dw_attr = attr_kind;
5280 attr.dw_attr_val.val_class = dw_val_class_macptr;
5281 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5282 add_dwarf_attr (die, &attr);
5285 /* Add an offset attribute value to a DIE. */
5287 static inline void
5288 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5289 unsigned HOST_WIDE_INT offset)
5291 dw_attr_node attr;
5293 attr.dw_attr = attr_kind;
5294 attr.dw_attr_val.val_class = dw_val_class_offset;
5295 attr.dw_attr_val.v.val_offset = offset;
5296 add_dwarf_attr (die, &attr);
5299 /* Add an range_list attribute value to a DIE. */
5301 static void
5302 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5303 long unsigned int offset)
5305 dw_attr_node attr;
5307 attr.dw_attr = attr_kind;
5308 attr.dw_attr_val.val_class = dw_val_class_range_list;
5309 attr.dw_attr_val.v.val_offset = offset;
5310 add_dwarf_attr (die, &attr);
5313 static inline const char *
5314 AT_lbl (dw_attr_ref a)
5316 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5317 || AT_class (a) == dw_val_class_lineptr
5318 || AT_class (a) == dw_val_class_macptr));
5319 return a->dw_attr_val.v.val_lbl_id;
5322 /* Get the attribute of type attr_kind. */
5324 static dw_attr_ref
5325 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5327 dw_attr_ref a;
5328 unsigned ix;
5329 dw_die_ref spec = NULL;
5331 if (! die)
5332 return NULL;
5334 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5335 if (a->dw_attr == attr_kind)
5336 return a;
5337 else if (a->dw_attr == DW_AT_specification
5338 || a->dw_attr == DW_AT_abstract_origin)
5339 spec = AT_ref (a);
5341 if (spec)
5342 return get_AT (spec, attr_kind);
5344 return NULL;
5347 /* Return the "low pc" attribute value, typically associated with a subprogram
5348 DIE. Return null if the "low pc" attribute is either not present, or if it
5349 cannot be represented as an assembler label identifier. */
5351 static inline const char *
5352 get_AT_low_pc (dw_die_ref die)
5354 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5356 return a ? AT_lbl (a) : NULL;
5359 /* Return the "high pc" attribute value, typically associated with a subprogram
5360 DIE. Return null if the "high pc" attribute is either not present, or if it
5361 cannot be represented as an assembler label identifier. */
5363 static inline const char *
5364 get_AT_hi_pc (dw_die_ref die)
5366 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5368 return a ? AT_lbl (a) : NULL;
5371 /* Return the value of the string attribute designated by ATTR_KIND, or
5372 NULL if it is not present. */
5374 static inline const char *
5375 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5377 dw_attr_ref a = get_AT (die, attr_kind);
5379 return a ? AT_string (a) : NULL;
5382 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5383 if it is not present. */
5385 static inline int
5386 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 dw_attr_ref a = get_AT (die, attr_kind);
5390 return a ? AT_flag (a) : 0;
5393 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5394 if it is not present. */
5396 static inline unsigned
5397 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5399 dw_attr_ref a = get_AT (die, attr_kind);
5401 return a ? AT_unsigned (a) : 0;
5404 static inline dw_die_ref
5405 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5407 dw_attr_ref a = get_AT (die, attr_kind);
5409 return a ? AT_ref (a) : NULL;
5412 static inline struct dwarf_file_data *
5413 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5415 dw_attr_ref a = get_AT (die, attr_kind);
5417 return a ? AT_file (a) : NULL;
5420 /* Return TRUE if the language is C or C++. */
5422 static inline bool
5423 is_c_family (void)
5425 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5427 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5428 || lang == DW_LANG_C99
5429 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5432 /* Return TRUE if the language is C++. */
5434 static inline bool
5435 is_cxx (void)
5437 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5439 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5442 /* Return TRUE if the language is Fortran. */
5444 static inline bool
5445 is_fortran (void)
5447 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5449 return (lang == DW_LANG_Fortran77
5450 || lang == DW_LANG_Fortran90
5451 || lang == DW_LANG_Fortran95);
5454 /* Return TRUE if the language is Java. */
5456 static inline bool
5457 is_java (void)
5459 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5461 return lang == DW_LANG_Java;
5464 /* Return TRUE if the language is Ada. */
5466 static inline bool
5467 is_ada (void)
5469 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5471 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5474 /* Remove the specified attribute if present. */
5476 static void
5477 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5479 dw_attr_ref a;
5480 unsigned ix;
5482 if (! die)
5483 return;
5485 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5486 if (a->dw_attr == attr_kind)
5488 if (AT_class (a) == dw_val_class_str)
5489 if (a->dw_attr_val.v.val_str->refcount)
5490 a->dw_attr_val.v.val_str->refcount--;
5492 /* VEC_ordered_remove should help reduce the number of abbrevs
5493 that are needed. */
5494 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5495 return;
5499 /* Remove CHILD from its parent. PREV must have the property that
5500 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5502 static void
5503 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5505 gcc_assert (child->die_parent == prev->die_parent);
5506 gcc_assert (prev->die_sib == child);
5507 if (prev == child)
5509 gcc_assert (child->die_parent->die_child == child);
5510 prev = NULL;
5512 else
5513 prev->die_sib = child->die_sib;
5514 if (child->die_parent->die_child == child)
5515 child->die_parent->die_child = prev;
5518 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5519 matches TAG. */
5521 static void
5522 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5524 dw_die_ref c;
5526 c = die->die_child;
5527 if (c) do {
5528 dw_die_ref prev = c;
5529 c = c->die_sib;
5530 while (c->die_tag == tag)
5532 remove_child_with_prev (c, prev);
5533 /* Might have removed every child. */
5534 if (c == c->die_sib)
5535 return;
5536 c = c->die_sib;
5538 } while (c != die->die_child);
5541 /* Add a CHILD_DIE as the last child of DIE. */
5543 static void
5544 add_child_die (dw_die_ref die, dw_die_ref child_die)
5546 /* FIXME this should probably be an assert. */
5547 if (! die || ! child_die)
5548 return;
5549 gcc_assert (die != child_die);
5551 child_die->die_parent = die;
5552 if (die->die_child)
5554 child_die->die_sib = die->die_child->die_sib;
5555 die->die_child->die_sib = child_die;
5557 else
5558 child_die->die_sib = child_die;
5559 die->die_child = child_die;
5562 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5563 is the specification, to the end of PARENT's list of children.
5564 This is done by removing and re-adding it. */
5566 static void
5567 splice_child_die (dw_die_ref parent, dw_die_ref child)
5569 dw_die_ref p;
5571 /* We want the declaration DIE from inside the class, not the
5572 specification DIE at toplevel. */
5573 if (child->die_parent != parent)
5575 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5577 if (tmp)
5578 child = tmp;
5581 gcc_assert (child->die_parent == parent
5582 || (child->die_parent
5583 == get_AT_ref (parent, DW_AT_specification)));
5585 for (p = child->die_parent->die_child; ; p = p->die_sib)
5586 if (p->die_sib == child)
5588 remove_child_with_prev (child, p);
5589 break;
5592 add_child_die (parent, child);
5595 /* Return a pointer to a newly created DIE node. */
5597 static inline dw_die_ref
5598 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5600 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5602 die->die_tag = tag_value;
5604 if (parent_die != NULL)
5605 add_child_die (parent_die, die);
5606 else
5608 limbo_die_node *limbo_node;
5610 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5611 limbo_node->die = die;
5612 limbo_node->created_for = t;
5613 limbo_node->next = limbo_die_list;
5614 limbo_die_list = limbo_node;
5617 return die;
5620 /* Return the DIE associated with the given type specifier. */
5622 static inline dw_die_ref
5623 lookup_type_die (tree type)
5625 return TYPE_SYMTAB_DIE (type);
5628 /* Equate a DIE to a given type specifier. */
5630 static inline void
5631 equate_type_number_to_die (tree type, dw_die_ref type_die)
5633 TYPE_SYMTAB_DIE (type) = type_die;
5636 /* Returns a hash value for X (which really is a die_struct). */
5638 static hashval_t
5639 decl_die_table_hash (const void *x)
5641 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5644 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5646 static int
5647 decl_die_table_eq (const void *x, const void *y)
5649 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5652 /* Return the DIE associated with a given declaration. */
5654 static inline dw_die_ref
5655 lookup_decl_die (tree decl)
5657 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5660 /* Returns a hash value for X (which really is a var_loc_list). */
5662 static hashval_t
5663 decl_loc_table_hash (const void *x)
5665 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5668 /* Return nonzero if decl_id of var_loc_list X is the same as
5669 UID of decl *Y. */
5671 static int
5672 decl_loc_table_eq (const void *x, const void *y)
5674 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5677 /* Return the var_loc list associated with a given declaration. */
5679 static inline var_loc_list *
5680 lookup_decl_loc (tree decl)
5682 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5685 /* Equate a DIE to a particular declaration. */
5687 static void
5688 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5690 unsigned int decl_id = DECL_UID (decl);
5691 void **slot;
5693 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5694 *slot = decl_die;
5695 decl_die->decl_id = decl_id;
5698 /* Add a variable location node to the linked list for DECL. */
5700 static void
5701 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5703 unsigned int decl_id = DECL_UID (decl);
5704 var_loc_list *temp;
5705 void **slot;
5707 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5708 if (*slot == NULL)
5710 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5711 temp->decl_id = decl_id;
5712 *slot = temp;
5714 else
5715 temp = *slot;
5717 if (temp->last)
5719 /* If the current location is the same as the end of the list,
5720 we have nothing to do. */
5721 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5722 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5724 /* Add LOC to the end of list and update LAST. */
5725 temp->last->next = loc;
5726 temp->last = loc;
5729 /* Do not add empty location to the beginning of the list. */
5730 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5732 temp->first = loc;
5733 temp->last = loc;
5737 /* Keep track of the number of spaces used to indent the
5738 output of the debugging routines that print the structure of
5739 the DIE internal representation. */
5740 static int print_indent;
5742 /* Indent the line the number of spaces given by print_indent. */
5744 static inline void
5745 print_spaces (FILE *outfile)
5747 fprintf (outfile, "%*s", print_indent, "");
5750 /* Print the information associated with a given DIE, and its children.
5751 This routine is a debugging aid only. */
5753 static void
5754 print_die (dw_die_ref die, FILE *outfile)
5756 dw_attr_ref a;
5757 dw_die_ref c;
5758 unsigned ix;
5760 print_spaces (outfile);
5761 fprintf (outfile, "DIE %4lu: %s\n",
5762 die->die_offset, dwarf_tag_name (die->die_tag));
5763 print_spaces (outfile);
5764 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5765 fprintf (outfile, " offset: %lu\n", die->die_offset);
5767 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5769 print_spaces (outfile);
5770 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5772 switch (AT_class (a))
5774 case dw_val_class_addr:
5775 fprintf (outfile, "address");
5776 break;
5777 case dw_val_class_offset:
5778 fprintf (outfile, "offset");
5779 break;
5780 case dw_val_class_loc:
5781 fprintf (outfile, "location descriptor");
5782 break;
5783 case dw_val_class_loc_list:
5784 fprintf (outfile, "location list -> label:%s",
5785 AT_loc_list (a)->ll_symbol);
5786 break;
5787 case dw_val_class_range_list:
5788 fprintf (outfile, "range list");
5789 break;
5790 case dw_val_class_const:
5791 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5792 break;
5793 case dw_val_class_unsigned_const:
5794 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5795 break;
5796 case dw_val_class_long_long:
5797 fprintf (outfile, "constant (%lu,%lu)",
5798 a->dw_attr_val.v.val_long_long.hi,
5799 a->dw_attr_val.v.val_long_long.low);
5800 break;
5801 case dw_val_class_vec:
5802 fprintf (outfile, "floating-point or vector constant");
5803 break;
5804 case dw_val_class_flag:
5805 fprintf (outfile, "%u", AT_flag (a));
5806 break;
5807 case dw_val_class_die_ref:
5808 if (AT_ref (a) != NULL)
5810 if (AT_ref (a)->die_symbol)
5811 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5812 else
5813 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5815 else
5816 fprintf (outfile, "die -> <null>");
5817 break;
5818 case dw_val_class_lbl_id:
5819 case dw_val_class_lineptr:
5820 case dw_val_class_macptr:
5821 fprintf (outfile, "label: %s", AT_lbl (a));
5822 break;
5823 case dw_val_class_str:
5824 if (AT_string (a) != NULL)
5825 fprintf (outfile, "\"%s\"", AT_string (a));
5826 else
5827 fprintf (outfile, "<null>");
5828 break;
5829 case dw_val_class_file:
5830 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5831 AT_file (a)->emitted_number);
5832 break;
5833 default:
5834 break;
5837 fprintf (outfile, "\n");
5840 if (die->die_child != NULL)
5842 print_indent += 4;
5843 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5844 print_indent -= 4;
5846 if (print_indent == 0)
5847 fprintf (outfile, "\n");
5850 /* Print the contents of the source code line number correspondence table.
5851 This routine is a debugging aid only. */
5853 static void
5854 print_dwarf_line_table (FILE *outfile)
5856 unsigned i;
5857 dw_line_info_ref line_info;
5859 fprintf (outfile, "\n\nDWARF source line information\n");
5860 for (i = 1; i < line_info_table_in_use; i++)
5862 line_info = &line_info_table[i];
5863 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5864 line_info->dw_file_num,
5865 line_info->dw_line_num);
5868 fprintf (outfile, "\n\n");
5871 /* Print the information collected for a given DIE. */
5873 void
5874 debug_dwarf_die (dw_die_ref die)
5876 print_die (die, stderr);
5879 /* Print all DWARF information collected for the compilation unit.
5880 This routine is a debugging aid only. */
5882 void
5883 debug_dwarf (void)
5885 print_indent = 0;
5886 print_die (comp_unit_die, stderr);
5887 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5888 print_dwarf_line_table (stderr);
5891 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5892 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5893 DIE that marks the start of the DIEs for this include file. */
5895 static dw_die_ref
5896 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5898 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5899 dw_die_ref new_unit = gen_compile_unit_die (filename);
5901 new_unit->die_sib = old_unit;
5902 return new_unit;
5905 /* Close an include-file CU and reopen the enclosing one. */
5907 static dw_die_ref
5908 pop_compile_unit (dw_die_ref old_unit)
5910 dw_die_ref new_unit = old_unit->die_sib;
5912 old_unit->die_sib = NULL;
5913 return new_unit;
5916 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5917 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5919 /* Calculate the checksum of a location expression. */
5921 static inline void
5922 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5924 CHECKSUM (loc->dw_loc_opc);
5925 CHECKSUM (loc->dw_loc_oprnd1);
5926 CHECKSUM (loc->dw_loc_oprnd2);
5929 /* Calculate the checksum of an attribute. */
5931 static void
5932 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5934 dw_loc_descr_ref loc;
5935 rtx r;
5937 CHECKSUM (at->dw_attr);
5939 /* We don't care that this was compiled with a different compiler
5940 snapshot; if the output is the same, that's what matters. */
5941 if (at->dw_attr == DW_AT_producer)
5942 return;
5944 switch (AT_class (at))
5946 case dw_val_class_const:
5947 CHECKSUM (at->dw_attr_val.v.val_int);
5948 break;
5949 case dw_val_class_unsigned_const:
5950 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5951 break;
5952 case dw_val_class_long_long:
5953 CHECKSUM (at->dw_attr_val.v.val_long_long);
5954 break;
5955 case dw_val_class_vec:
5956 CHECKSUM (at->dw_attr_val.v.val_vec);
5957 break;
5958 case dw_val_class_flag:
5959 CHECKSUM (at->dw_attr_val.v.val_flag);
5960 break;
5961 case dw_val_class_str:
5962 CHECKSUM_STRING (AT_string (at));
5963 break;
5965 case dw_val_class_addr:
5966 r = AT_addr (at);
5967 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5968 CHECKSUM_STRING (XSTR (r, 0));
5969 break;
5971 case dw_val_class_offset:
5972 CHECKSUM (at->dw_attr_val.v.val_offset);
5973 break;
5975 case dw_val_class_loc:
5976 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5977 loc_checksum (loc, ctx);
5978 break;
5980 case dw_val_class_die_ref:
5981 die_checksum (AT_ref (at), ctx, mark);
5982 break;
5984 case dw_val_class_fde_ref:
5985 case dw_val_class_lbl_id:
5986 case dw_val_class_lineptr:
5987 case dw_val_class_macptr:
5988 break;
5990 case dw_val_class_file:
5991 CHECKSUM_STRING (AT_file (at)->filename);
5992 break;
5994 default:
5995 break;
5999 /* Calculate the checksum of a DIE. */
6001 static void
6002 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6004 dw_die_ref c;
6005 dw_attr_ref a;
6006 unsigned ix;
6008 /* To avoid infinite recursion. */
6009 if (die->die_mark)
6011 CHECKSUM (die->die_mark);
6012 return;
6014 die->die_mark = ++(*mark);
6016 CHECKSUM (die->die_tag);
6018 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6019 attr_checksum (a, ctx, mark);
6021 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6024 #undef CHECKSUM
6025 #undef CHECKSUM_STRING
6027 /* Do the location expressions look same? */
6028 static inline int
6029 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6031 return loc1->dw_loc_opc == loc2->dw_loc_opc
6032 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6033 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6036 /* Do the values look the same? */
6037 static int
6038 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6040 dw_loc_descr_ref loc1, loc2;
6041 rtx r1, r2;
6043 if (v1->val_class != v2->val_class)
6044 return 0;
6046 switch (v1->val_class)
6048 case dw_val_class_const:
6049 return v1->v.val_int == v2->v.val_int;
6050 case dw_val_class_unsigned_const:
6051 return v1->v.val_unsigned == v2->v.val_unsigned;
6052 case dw_val_class_long_long:
6053 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6054 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6055 case dw_val_class_vec:
6056 if (v1->v.val_vec.length != v2->v.val_vec.length
6057 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6058 return 0;
6059 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6060 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6061 return 0;
6062 return 1;
6063 case dw_val_class_flag:
6064 return v1->v.val_flag == v2->v.val_flag;
6065 case dw_val_class_str:
6066 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6068 case dw_val_class_addr:
6069 r1 = v1->v.val_addr;
6070 r2 = v2->v.val_addr;
6071 if (GET_CODE (r1) != GET_CODE (r2))
6072 return 0;
6073 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6074 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6076 case dw_val_class_offset:
6077 return v1->v.val_offset == v2->v.val_offset;
6079 case dw_val_class_loc:
6080 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6081 loc1 && loc2;
6082 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6083 if (!same_loc_p (loc1, loc2, mark))
6084 return 0;
6085 return !loc1 && !loc2;
6087 case dw_val_class_die_ref:
6088 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6090 case dw_val_class_fde_ref:
6091 case dw_val_class_lbl_id:
6092 case dw_val_class_lineptr:
6093 case dw_val_class_macptr:
6094 return 1;
6096 case dw_val_class_file:
6097 return v1->v.val_file == v2->v.val_file;
6099 default:
6100 return 1;
6104 /* Do the attributes look the same? */
6106 static int
6107 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6109 if (at1->dw_attr != at2->dw_attr)
6110 return 0;
6112 /* We don't care that this was compiled with a different compiler
6113 snapshot; if the output is the same, that's what matters. */
6114 if (at1->dw_attr == DW_AT_producer)
6115 return 1;
6117 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6120 /* Do the dies look the same? */
6122 static int
6123 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6125 dw_die_ref c1, c2;
6126 dw_attr_ref a1;
6127 unsigned ix;
6129 /* To avoid infinite recursion. */
6130 if (die1->die_mark)
6131 return die1->die_mark == die2->die_mark;
6132 die1->die_mark = die2->die_mark = ++(*mark);
6134 if (die1->die_tag != die2->die_tag)
6135 return 0;
6137 if (VEC_length (dw_attr_node, die1->die_attr)
6138 != VEC_length (dw_attr_node, die2->die_attr))
6139 return 0;
6141 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6142 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6143 return 0;
6145 c1 = die1->die_child;
6146 c2 = die2->die_child;
6147 if (! c1)
6149 if (c2)
6150 return 0;
6152 else
6153 for (;;)
6155 if (!same_die_p (c1, c2, mark))
6156 return 0;
6157 c1 = c1->die_sib;
6158 c2 = c2->die_sib;
6159 if (c1 == die1->die_child)
6161 if (c2 == die2->die_child)
6162 break;
6163 else
6164 return 0;
6168 return 1;
6171 /* Do the dies look the same? Wrapper around same_die_p. */
6173 static int
6174 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6176 int mark = 0;
6177 int ret = same_die_p (die1, die2, &mark);
6179 unmark_all_dies (die1);
6180 unmark_all_dies (die2);
6182 return ret;
6185 /* The prefix to attach to symbols on DIEs in the current comdat debug
6186 info section. */
6187 static char *comdat_symbol_id;
6189 /* The index of the current symbol within the current comdat CU. */
6190 static unsigned int comdat_symbol_number;
6192 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6193 children, and set comdat_symbol_id accordingly. */
6195 static void
6196 compute_section_prefix (dw_die_ref unit_die)
6198 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6199 const char *base = die_name ? lbasename (die_name) : "anonymous";
6200 char *name = alloca (strlen (base) + 64);
6201 char *p;
6202 int i, mark;
6203 unsigned char checksum[16];
6204 struct md5_ctx ctx;
6206 /* Compute the checksum of the DIE, then append part of it as hex digits to
6207 the name filename of the unit. */
6209 md5_init_ctx (&ctx);
6210 mark = 0;
6211 die_checksum (unit_die, &ctx, &mark);
6212 unmark_all_dies (unit_die);
6213 md5_finish_ctx (&ctx, checksum);
6215 sprintf (name, "%s.", base);
6216 clean_symbol_name (name);
6218 p = name + strlen (name);
6219 for (i = 0; i < 4; i++)
6221 sprintf (p, "%.2x", checksum[i]);
6222 p += 2;
6225 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6226 comdat_symbol_number = 0;
6229 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6231 static int
6232 is_type_die (dw_die_ref die)
6234 switch (die->die_tag)
6236 case DW_TAG_array_type:
6237 case DW_TAG_class_type:
6238 case DW_TAG_enumeration_type:
6239 case DW_TAG_pointer_type:
6240 case DW_TAG_reference_type:
6241 case DW_TAG_string_type:
6242 case DW_TAG_structure_type:
6243 case DW_TAG_subroutine_type:
6244 case DW_TAG_union_type:
6245 case DW_TAG_ptr_to_member_type:
6246 case DW_TAG_set_type:
6247 case DW_TAG_subrange_type:
6248 case DW_TAG_base_type:
6249 case DW_TAG_const_type:
6250 case DW_TAG_file_type:
6251 case DW_TAG_packed_type:
6252 case DW_TAG_volatile_type:
6253 case DW_TAG_typedef:
6254 return 1;
6255 default:
6256 return 0;
6260 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6261 Basically, we want to choose the bits that are likely to be shared between
6262 compilations (types) and leave out the bits that are specific to individual
6263 compilations (functions). */
6265 static int
6266 is_comdat_die (dw_die_ref c)
6268 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6269 we do for stabs. The advantage is a greater likelihood of sharing between
6270 objects that don't include headers in the same order (and therefore would
6271 put the base types in a different comdat). jason 8/28/00 */
6273 if (c->die_tag == DW_TAG_base_type)
6274 return 0;
6276 if (c->die_tag == DW_TAG_pointer_type
6277 || c->die_tag == DW_TAG_reference_type
6278 || c->die_tag == DW_TAG_const_type
6279 || c->die_tag == DW_TAG_volatile_type)
6281 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6283 return t ? is_comdat_die (t) : 0;
6286 return is_type_die (c);
6289 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6290 compilation unit. */
6292 static int
6293 is_symbol_die (dw_die_ref c)
6295 return (is_type_die (c)
6296 || (get_AT (c, DW_AT_declaration)
6297 && !get_AT (c, DW_AT_specification))
6298 || c->die_tag == DW_TAG_namespace);
6301 static char *
6302 gen_internal_sym (const char *prefix)
6304 char buf[256];
6306 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6307 return xstrdup (buf);
6310 /* Assign symbols to all worthy DIEs under DIE. */
6312 static void
6313 assign_symbol_names (dw_die_ref die)
6315 dw_die_ref c;
6317 if (is_symbol_die (die))
6319 if (comdat_symbol_id)
6321 char *p = alloca (strlen (comdat_symbol_id) + 64);
6323 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6324 comdat_symbol_id, comdat_symbol_number++);
6325 die->die_symbol = xstrdup (p);
6327 else
6328 die->die_symbol = gen_internal_sym ("LDIE");
6331 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6334 struct cu_hash_table_entry
6336 dw_die_ref cu;
6337 unsigned min_comdat_num, max_comdat_num;
6338 struct cu_hash_table_entry *next;
6341 /* Routines to manipulate hash table of CUs. */
6342 static hashval_t
6343 htab_cu_hash (const void *of)
6345 const struct cu_hash_table_entry *entry = of;
6347 return htab_hash_string (entry->cu->die_symbol);
6350 static int
6351 htab_cu_eq (const void *of1, const void *of2)
6353 const struct cu_hash_table_entry *entry1 = of1;
6354 const struct die_struct *entry2 = of2;
6356 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6359 static void
6360 htab_cu_del (void *what)
6362 struct cu_hash_table_entry *next, *entry = what;
6364 while (entry)
6366 next = entry->next;
6367 free (entry);
6368 entry = next;
6372 /* Check whether we have already seen this CU and set up SYM_NUM
6373 accordingly. */
6374 static int
6375 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6377 struct cu_hash_table_entry dummy;
6378 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6380 dummy.max_comdat_num = 0;
6382 slot = (struct cu_hash_table_entry **)
6383 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6384 INSERT);
6385 entry = *slot;
6387 for (; entry; last = entry, entry = entry->next)
6389 if (same_die_p_wrap (cu, entry->cu))
6390 break;
6393 if (entry)
6395 *sym_num = entry->min_comdat_num;
6396 return 1;
6399 entry = XCNEW (struct cu_hash_table_entry);
6400 entry->cu = cu;
6401 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6402 entry->next = *slot;
6403 *slot = entry;
6405 return 0;
6408 /* Record SYM_NUM to record of CU in HTABLE. */
6409 static void
6410 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6412 struct cu_hash_table_entry **slot, *entry;
6414 slot = (struct cu_hash_table_entry **)
6415 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6416 NO_INSERT);
6417 entry = *slot;
6419 entry->max_comdat_num = sym_num;
6422 /* Traverse the DIE (which is always comp_unit_die), and set up
6423 additional compilation units for each of the include files we see
6424 bracketed by BINCL/EINCL. */
6426 static void
6427 break_out_includes (dw_die_ref die)
6429 dw_die_ref c;
6430 dw_die_ref unit = NULL;
6431 limbo_die_node *node, **pnode;
6432 htab_t cu_hash_table;
6434 c = die->die_child;
6435 if (c) do {
6436 dw_die_ref prev = c;
6437 c = c->die_sib;
6438 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6439 || (unit && is_comdat_die (c)))
6441 dw_die_ref next = c->die_sib;
6443 /* This DIE is for a secondary CU; remove it from the main one. */
6444 remove_child_with_prev (c, prev);
6446 if (c->die_tag == DW_TAG_GNU_BINCL)
6447 unit = push_new_compile_unit (unit, c);
6448 else if (c->die_tag == DW_TAG_GNU_EINCL)
6449 unit = pop_compile_unit (unit);
6450 else
6451 add_child_die (unit, c);
6452 c = next;
6453 if (c == die->die_child)
6454 break;
6456 } while (c != die->die_child);
6458 #if 0
6459 /* We can only use this in debugging, since the frontend doesn't check
6460 to make sure that we leave every include file we enter. */
6461 gcc_assert (!unit);
6462 #endif
6464 assign_symbol_names (die);
6465 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6466 for (node = limbo_die_list, pnode = &limbo_die_list;
6467 node;
6468 node = node->next)
6470 int is_dupl;
6472 compute_section_prefix (node->die);
6473 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6474 &comdat_symbol_number);
6475 assign_symbol_names (node->die);
6476 if (is_dupl)
6477 *pnode = node->next;
6478 else
6480 pnode = &node->next;
6481 record_comdat_symbol_number (node->die, cu_hash_table,
6482 comdat_symbol_number);
6485 htab_delete (cu_hash_table);
6488 /* Traverse the DIE and add a sibling attribute if it may have the
6489 effect of speeding up access to siblings. To save some space,
6490 avoid generating sibling attributes for DIE's without children. */
6492 static void
6493 add_sibling_attributes (dw_die_ref die)
6495 dw_die_ref c;
6497 if (! die->die_child)
6498 return;
6500 if (die->die_parent && die != die->die_parent->die_child)
6501 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6503 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6506 /* Output all location lists for the DIE and its children. */
6508 static void
6509 output_location_lists (dw_die_ref die)
6511 dw_die_ref c;
6512 dw_attr_ref a;
6513 unsigned ix;
6515 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6516 if (AT_class (a) == dw_val_class_loc_list)
6517 output_loc_list (AT_loc_list (a));
6519 FOR_EACH_CHILD (die, c, output_location_lists (c));
6522 /* The format of each DIE (and its attribute value pairs) is encoded in an
6523 abbreviation table. This routine builds the abbreviation table and assigns
6524 a unique abbreviation id for each abbreviation entry. The children of each
6525 die are visited recursively. */
6527 static void
6528 build_abbrev_table (dw_die_ref die)
6530 unsigned long abbrev_id;
6531 unsigned int n_alloc;
6532 dw_die_ref c;
6533 dw_attr_ref a;
6534 unsigned ix;
6536 /* Scan the DIE references, and mark as external any that refer to
6537 DIEs from other CUs (i.e. those which are not marked). */
6538 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6539 if (AT_class (a) == dw_val_class_die_ref
6540 && AT_ref (a)->die_mark == 0)
6542 gcc_assert (AT_ref (a)->die_symbol);
6544 set_AT_ref_external (a, 1);
6547 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6549 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6550 dw_attr_ref die_a, abbrev_a;
6551 unsigned ix;
6552 bool ok = true;
6554 if (abbrev->die_tag != die->die_tag)
6555 continue;
6556 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6557 continue;
6559 if (VEC_length (dw_attr_node, abbrev->die_attr)
6560 != VEC_length (dw_attr_node, die->die_attr))
6561 continue;
6563 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6565 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6566 if ((abbrev_a->dw_attr != die_a->dw_attr)
6567 || (value_format (abbrev_a) != value_format (die_a)))
6569 ok = false;
6570 break;
6573 if (ok)
6574 break;
6577 if (abbrev_id >= abbrev_die_table_in_use)
6579 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6581 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6582 abbrev_die_table = ggc_realloc (abbrev_die_table,
6583 sizeof (dw_die_ref) * n_alloc);
6585 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6586 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6587 abbrev_die_table_allocated = n_alloc;
6590 ++abbrev_die_table_in_use;
6591 abbrev_die_table[abbrev_id] = die;
6594 die->die_abbrev = abbrev_id;
6595 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6598 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6600 static int
6601 constant_size (long unsigned int value)
6603 int log;
6605 if (value == 0)
6606 log = 0;
6607 else
6608 log = floor_log2 (value);
6610 log = log / 8;
6611 log = 1 << (floor_log2 (log) + 1);
6613 return log;
6616 /* Return the size of a DIE as it is represented in the
6617 .debug_info section. */
6619 static unsigned long
6620 size_of_die (dw_die_ref die)
6622 unsigned long size = 0;
6623 dw_attr_ref a;
6624 unsigned ix;
6626 size += size_of_uleb128 (die->die_abbrev);
6627 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6629 switch (AT_class (a))
6631 case dw_val_class_addr:
6632 size += DWARF2_ADDR_SIZE;
6633 break;
6634 case dw_val_class_offset:
6635 size += DWARF_OFFSET_SIZE;
6636 break;
6637 case dw_val_class_loc:
6639 unsigned long lsize = size_of_locs (AT_loc (a));
6641 /* Block length. */
6642 size += constant_size (lsize);
6643 size += lsize;
6645 break;
6646 case dw_val_class_loc_list:
6647 size += DWARF_OFFSET_SIZE;
6648 break;
6649 case dw_val_class_range_list:
6650 size += DWARF_OFFSET_SIZE;
6651 break;
6652 case dw_val_class_const:
6653 size += size_of_sleb128 (AT_int (a));
6654 break;
6655 case dw_val_class_unsigned_const:
6656 size += constant_size (AT_unsigned (a));
6657 break;
6658 case dw_val_class_long_long:
6659 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6660 break;
6661 case dw_val_class_vec:
6662 size += 1 + (a->dw_attr_val.v.val_vec.length
6663 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6664 break;
6665 case dw_val_class_flag:
6666 size += 1;
6667 break;
6668 case dw_val_class_die_ref:
6669 if (AT_ref_external (a))
6670 size += DWARF2_ADDR_SIZE;
6671 else
6672 size += DWARF_OFFSET_SIZE;
6673 break;
6674 case dw_val_class_fde_ref:
6675 size += DWARF_OFFSET_SIZE;
6676 break;
6677 case dw_val_class_lbl_id:
6678 size += DWARF2_ADDR_SIZE;
6679 break;
6680 case dw_val_class_lineptr:
6681 case dw_val_class_macptr:
6682 size += DWARF_OFFSET_SIZE;
6683 break;
6684 case dw_val_class_str:
6685 if (AT_string_form (a) == DW_FORM_strp)
6686 size += DWARF_OFFSET_SIZE;
6687 else
6688 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6689 break;
6690 case dw_val_class_file:
6691 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6692 break;
6693 default:
6694 gcc_unreachable ();
6698 return size;
6701 /* Size the debugging information associated with a given DIE. Visits the
6702 DIE's children recursively. Updates the global variable next_die_offset, on
6703 each time through. Uses the current value of next_die_offset to update the
6704 die_offset field in each DIE. */
6706 static void
6707 calc_die_sizes (dw_die_ref die)
6709 dw_die_ref c;
6711 die->die_offset = next_die_offset;
6712 next_die_offset += size_of_die (die);
6714 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6716 if (die->die_child != NULL)
6717 /* Count the null byte used to terminate sibling lists. */
6718 next_die_offset += 1;
6721 /* Set the marks for a die and its children. We do this so
6722 that we know whether or not a reference needs to use FORM_ref_addr; only
6723 DIEs in the same CU will be marked. We used to clear out the offset
6724 and use that as the flag, but ran into ordering problems. */
6726 static void
6727 mark_dies (dw_die_ref die)
6729 dw_die_ref c;
6731 gcc_assert (!die->die_mark);
6733 die->die_mark = 1;
6734 FOR_EACH_CHILD (die, c, mark_dies (c));
6737 /* Clear the marks for a die and its children. */
6739 static void
6740 unmark_dies (dw_die_ref die)
6742 dw_die_ref c;
6744 gcc_assert (die->die_mark);
6746 die->die_mark = 0;
6747 FOR_EACH_CHILD (die, c, unmark_dies (c));
6750 /* Clear the marks for a die, its children and referred dies. */
6752 static void
6753 unmark_all_dies (dw_die_ref die)
6755 dw_die_ref c;
6756 dw_attr_ref a;
6757 unsigned ix;
6759 if (!die->die_mark)
6760 return;
6761 die->die_mark = 0;
6763 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6765 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6766 if (AT_class (a) == dw_val_class_die_ref)
6767 unmark_all_dies (AT_ref (a));
6770 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6771 generated for the compilation unit. */
6773 static unsigned long
6774 size_of_pubnames (VEC (pubname_entry, gc) * names)
6776 unsigned long size;
6777 unsigned i;
6778 pubname_ref p;
6780 size = DWARF_PUBNAMES_HEADER_SIZE;
6781 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6782 if (names != pubtype_table
6783 || p->die->die_offset != 0
6784 || !flag_eliminate_unused_debug_types)
6785 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6787 size += DWARF_OFFSET_SIZE;
6788 return size;
6791 /* Return the size of the information in the .debug_aranges section. */
6793 static unsigned long
6794 size_of_aranges (void)
6796 unsigned long size;
6798 size = DWARF_ARANGES_HEADER_SIZE;
6800 /* Count the address/length pair for this compilation unit. */
6801 size += 2 * DWARF2_ADDR_SIZE;
6802 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6804 /* Count the two zero words used to terminated the address range table. */
6805 size += 2 * DWARF2_ADDR_SIZE;
6806 return size;
6809 /* Select the encoding of an attribute value. */
6811 static enum dwarf_form
6812 value_format (dw_attr_ref a)
6814 switch (a->dw_attr_val.val_class)
6816 case dw_val_class_addr:
6817 return DW_FORM_addr;
6818 case dw_val_class_range_list:
6819 case dw_val_class_offset:
6820 case dw_val_class_loc_list:
6821 switch (DWARF_OFFSET_SIZE)
6823 case 4:
6824 return DW_FORM_data4;
6825 case 8:
6826 return DW_FORM_data8;
6827 default:
6828 gcc_unreachable ();
6830 case dw_val_class_loc:
6831 switch (constant_size (size_of_locs (AT_loc (a))))
6833 case 1:
6834 return DW_FORM_block1;
6835 case 2:
6836 return DW_FORM_block2;
6837 default:
6838 gcc_unreachable ();
6840 case dw_val_class_const:
6841 return DW_FORM_sdata;
6842 case dw_val_class_unsigned_const:
6843 switch (constant_size (AT_unsigned (a)))
6845 case 1:
6846 return DW_FORM_data1;
6847 case 2:
6848 return DW_FORM_data2;
6849 case 4:
6850 return DW_FORM_data4;
6851 case 8:
6852 return DW_FORM_data8;
6853 default:
6854 gcc_unreachable ();
6856 case dw_val_class_long_long:
6857 return DW_FORM_block1;
6858 case dw_val_class_vec:
6859 return DW_FORM_block1;
6860 case dw_val_class_flag:
6861 return DW_FORM_flag;
6862 case dw_val_class_die_ref:
6863 if (AT_ref_external (a))
6864 return DW_FORM_ref_addr;
6865 else
6866 return DW_FORM_ref;
6867 case dw_val_class_fde_ref:
6868 return DW_FORM_data;
6869 case dw_val_class_lbl_id:
6870 return DW_FORM_addr;
6871 case dw_val_class_lineptr:
6872 case dw_val_class_macptr:
6873 return DW_FORM_data;
6874 case dw_val_class_str:
6875 return AT_string_form (a);
6876 case dw_val_class_file:
6877 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6879 case 1:
6880 return DW_FORM_data1;
6881 case 2:
6882 return DW_FORM_data2;
6883 case 4:
6884 return DW_FORM_data4;
6885 default:
6886 gcc_unreachable ();
6889 default:
6890 gcc_unreachable ();
6894 /* Output the encoding of an attribute value. */
6896 static void
6897 output_value_format (dw_attr_ref a)
6899 enum dwarf_form form = value_format (a);
6901 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6904 /* Output the .debug_abbrev section which defines the DIE abbreviation
6905 table. */
6907 static void
6908 output_abbrev_section (void)
6910 unsigned long abbrev_id;
6912 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6914 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6915 unsigned ix;
6916 dw_attr_ref a_attr;
6918 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6919 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6920 dwarf_tag_name (abbrev->die_tag));
6922 if (abbrev->die_child != NULL)
6923 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6924 else
6925 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6927 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6928 ix++)
6930 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6931 dwarf_attr_name (a_attr->dw_attr));
6932 output_value_format (a_attr);
6935 dw2_asm_output_data (1, 0, NULL);
6936 dw2_asm_output_data (1, 0, NULL);
6939 /* Terminate the table. */
6940 dw2_asm_output_data (1, 0, NULL);
6943 /* Output a symbol we can use to refer to this DIE from another CU. */
6945 static inline void
6946 output_die_symbol (dw_die_ref die)
6948 char *sym = die->die_symbol;
6950 if (sym == 0)
6951 return;
6953 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6954 /* We make these global, not weak; if the target doesn't support
6955 .linkonce, it doesn't support combining the sections, so debugging
6956 will break. */
6957 targetm.asm_out.globalize_label (asm_out_file, sym);
6959 ASM_OUTPUT_LABEL (asm_out_file, sym);
6962 /* Return a new location list, given the begin and end range, and the
6963 expression. gensym tells us whether to generate a new internal symbol for
6964 this location list node, which is done for the head of the list only. */
6966 static inline dw_loc_list_ref
6967 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6968 const char *section, unsigned int gensym)
6970 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6972 retlist->begin = begin;
6973 retlist->end = end;
6974 retlist->expr = expr;
6975 retlist->section = section;
6976 if (gensym)
6977 retlist->ll_symbol = gen_internal_sym ("LLST");
6979 return retlist;
6982 /* Add a location description expression to a location list. */
6984 static inline void
6985 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6986 const char *begin, const char *end,
6987 const char *section)
6989 dw_loc_list_ref *d;
6991 /* Find the end of the chain. */
6992 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6995 /* Add a new location list node to the list. */
6996 *d = new_loc_list (descr, begin, end, section, 0);
6999 static void
7000 dwarf2out_switch_text_section (void)
7002 dw_fde_ref fde;
7004 gcc_assert (cfun);
7006 fde = &fde_table[fde_table_in_use - 1];
7007 fde->dw_fde_switched_sections = true;
7008 fde->dw_fde_hot_section_label = cfun->hot_section_label;
7009 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
7010 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
7011 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
7012 have_multiple_function_sections = true;
7014 /* Reset the current label on switching text sections, so that we
7015 don't attempt to advance_loc4 between labels in different sections. */
7016 fde->dw_fde_current_label = NULL;
7019 /* Output the location list given to us. */
7021 static void
7022 output_loc_list (dw_loc_list_ref list_head)
7024 dw_loc_list_ref curr = list_head;
7026 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7028 /* Walk the location list, and output each range + expression. */
7029 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7031 unsigned long size;
7032 if (!have_multiple_function_sections)
7034 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7035 "Location list begin address (%s)",
7036 list_head->ll_symbol);
7037 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7038 "Location list end address (%s)",
7039 list_head->ll_symbol);
7041 else
7043 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7044 "Location list begin address (%s)",
7045 list_head->ll_symbol);
7046 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7047 "Location list end address (%s)",
7048 list_head->ll_symbol);
7050 size = size_of_locs (curr->expr);
7052 /* Output the block length for this list of location operations. */
7053 gcc_assert (size <= 0xffff);
7054 dw2_asm_output_data (2, size, "%s", "Location expression size");
7056 output_loc_sequence (curr->expr);
7059 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7060 "Location list terminator begin (%s)",
7061 list_head->ll_symbol);
7062 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7063 "Location list terminator end (%s)",
7064 list_head->ll_symbol);
7067 /* Output the DIE and its attributes. Called recursively to generate
7068 the definitions of each child DIE. */
7070 static void
7071 output_die (dw_die_ref die)
7073 dw_attr_ref a;
7074 dw_die_ref c;
7075 unsigned long size;
7076 unsigned ix;
7078 /* If someone in another CU might refer to us, set up a symbol for
7079 them to point to. */
7080 if (die->die_symbol)
7081 output_die_symbol (die);
7083 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7084 die->die_offset, dwarf_tag_name (die->die_tag));
7086 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7088 const char *name = dwarf_attr_name (a->dw_attr);
7090 switch (AT_class (a))
7092 case dw_val_class_addr:
7093 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7094 break;
7096 case dw_val_class_offset:
7097 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7098 "%s", name);
7099 break;
7101 case dw_val_class_range_list:
7103 char *p = strchr (ranges_section_label, '\0');
7105 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7106 a->dw_attr_val.v.val_offset);
7107 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7108 debug_ranges_section, "%s", name);
7109 *p = '\0';
7111 break;
7113 case dw_val_class_loc:
7114 size = size_of_locs (AT_loc (a));
7116 /* Output the block length for this list of location operations. */
7117 dw2_asm_output_data (constant_size (size), size, "%s", name);
7119 output_loc_sequence (AT_loc (a));
7120 break;
7122 case dw_val_class_const:
7123 /* ??? It would be slightly more efficient to use a scheme like is
7124 used for unsigned constants below, but gdb 4.x does not sign
7125 extend. Gdb 5.x does sign extend. */
7126 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7127 break;
7129 case dw_val_class_unsigned_const:
7130 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7131 AT_unsigned (a), "%s", name);
7132 break;
7134 case dw_val_class_long_long:
7136 unsigned HOST_WIDE_INT first, second;
7138 dw2_asm_output_data (1,
7139 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7140 "%s", name);
7142 if (WORDS_BIG_ENDIAN)
7144 first = a->dw_attr_val.v.val_long_long.hi;
7145 second = a->dw_attr_val.v.val_long_long.low;
7147 else
7149 first = a->dw_attr_val.v.val_long_long.low;
7150 second = a->dw_attr_val.v.val_long_long.hi;
7153 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7154 first, "long long constant");
7155 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7156 second, NULL);
7158 break;
7160 case dw_val_class_vec:
7162 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7163 unsigned int len = a->dw_attr_val.v.val_vec.length;
7164 unsigned int i;
7165 unsigned char *p;
7167 dw2_asm_output_data (1, len * elt_size, "%s", name);
7168 if (elt_size > sizeof (HOST_WIDE_INT))
7170 elt_size /= 2;
7171 len *= 2;
7173 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7174 i < len;
7175 i++, p += elt_size)
7176 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7177 "fp or vector constant word %u", i);
7178 break;
7181 case dw_val_class_flag:
7182 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7183 break;
7185 case dw_val_class_loc_list:
7187 char *sym = AT_loc_list (a)->ll_symbol;
7189 gcc_assert (sym);
7190 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7191 "%s", name);
7193 break;
7195 case dw_val_class_die_ref:
7196 if (AT_ref_external (a))
7198 char *sym = AT_ref (a)->die_symbol;
7200 gcc_assert (sym);
7201 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7202 "%s", name);
7204 else
7206 gcc_assert (AT_ref (a)->die_offset);
7207 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7208 "%s", name);
7210 break;
7212 case dw_val_class_fde_ref:
7214 char l1[20];
7216 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7217 a->dw_attr_val.v.val_fde_index * 2);
7218 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7219 "%s", name);
7221 break;
7223 case dw_val_class_lbl_id:
7224 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7225 break;
7227 case dw_val_class_lineptr:
7228 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7229 debug_line_section, "%s", name);
7230 break;
7232 case dw_val_class_macptr:
7233 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7234 debug_macinfo_section, "%s", name);
7235 break;
7237 case dw_val_class_str:
7238 if (AT_string_form (a) == DW_FORM_strp)
7239 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7240 a->dw_attr_val.v.val_str->label,
7241 debug_str_section,
7242 "%s: \"%s\"", name, AT_string (a));
7243 else
7244 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7245 break;
7247 case dw_val_class_file:
7249 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7251 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7252 a->dw_attr_val.v.val_file->filename);
7253 break;
7256 default:
7257 gcc_unreachable ();
7261 FOR_EACH_CHILD (die, c, output_die (c));
7263 /* Add null byte to terminate sibling list. */
7264 if (die->die_child != NULL)
7265 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7266 die->die_offset);
7269 /* Output the compilation unit that appears at the beginning of the
7270 .debug_info section, and precedes the DIE descriptions. */
7272 static void
7273 output_compilation_unit_header (void)
7275 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7276 dw2_asm_output_data (4, 0xffffffff,
7277 "Initial length escape value indicating 64-bit DWARF extension");
7278 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7279 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7280 "Length of Compilation Unit Info");
7281 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7282 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7283 debug_abbrev_section,
7284 "Offset Into Abbrev. Section");
7285 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7288 /* Output the compilation unit DIE and its children. */
7290 static void
7291 output_comp_unit (dw_die_ref die, int output_if_empty)
7293 const char *secname;
7294 char *oldsym, *tmp;
7296 /* Unless we are outputting main CU, we may throw away empty ones. */
7297 if (!output_if_empty && die->die_child == NULL)
7298 return;
7300 /* Even if there are no children of this DIE, we must output the information
7301 about the compilation unit. Otherwise, on an empty translation unit, we
7302 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7303 will then complain when examining the file. First mark all the DIEs in
7304 this CU so we know which get local refs. */
7305 mark_dies (die);
7307 build_abbrev_table (die);
7309 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7310 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7311 calc_die_sizes (die);
7313 oldsym = die->die_symbol;
7314 if (oldsym)
7316 tmp = alloca (strlen (oldsym) + 24);
7318 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7319 secname = tmp;
7320 die->die_symbol = NULL;
7321 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7323 else
7324 switch_to_section (debug_info_section);
7326 /* Output debugging information. */
7327 output_compilation_unit_header ();
7328 output_die (die);
7330 /* Leave the marks on the main CU, so we can check them in
7331 output_pubnames. */
7332 if (oldsym)
7334 unmark_dies (die);
7335 die->die_symbol = oldsym;
7339 /* Return the DWARF2/3 pubname associated with a decl. */
7341 static const char *
7342 dwarf2_name (tree decl, int scope)
7344 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7347 /* Add a new entry to .debug_pubnames if appropriate. */
7349 static void
7350 add_pubname (tree decl, dw_die_ref die)
7352 pubname_entry e;
7354 if (! TREE_PUBLIC (decl))
7355 return;
7357 e.die = die;
7358 e.name = xstrdup (dwarf2_name (decl, 1));
7359 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7362 /* Add a new entry to .debug_pubtypes if appropriate. */
7364 static void
7365 add_pubtype (tree decl, dw_die_ref die)
7367 pubname_entry e;
7369 e.name = NULL;
7370 if ((TREE_PUBLIC (decl)
7371 || die->die_parent == comp_unit_die)
7372 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7374 e.die = die;
7375 if (TYPE_P (decl))
7377 if (TYPE_NAME (decl))
7379 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7380 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7381 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7382 && DECL_NAME (TYPE_NAME (decl)))
7383 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7384 else
7385 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7388 else
7389 e.name = xstrdup (dwarf2_name (decl, 1));
7391 /* If we don't have a name for the type, there's no point in adding
7392 it to the table. */
7393 if (e.name && e.name[0] != '\0')
7394 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7398 /* Output the public names table used to speed up access to externally
7399 visible names; or the public types table used to find type definitions. */
7401 static void
7402 output_pubnames (VEC (pubname_entry, gc) * names)
7404 unsigned i;
7405 unsigned long pubnames_length = size_of_pubnames (names);
7406 pubname_ref pub;
7408 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7409 dw2_asm_output_data (4, 0xffffffff,
7410 "Initial length escape value indicating 64-bit DWARF extension");
7411 if (names == pubname_table)
7412 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7413 "Length of Public Names Info");
7414 else
7415 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7416 "Length of Public Type Names Info");
7417 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7418 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7419 debug_info_section,
7420 "Offset of Compilation Unit Info");
7421 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7422 "Compilation Unit Length");
7424 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7426 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7427 if (names == pubname_table)
7428 gcc_assert (pub->die->die_mark);
7430 if (names != pubtype_table
7431 || pub->die->die_offset != 0
7432 || !flag_eliminate_unused_debug_types)
7434 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7435 "DIE offset");
7437 dw2_asm_output_nstring (pub->name, -1, "external name");
7441 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7444 /* Add a new entry to .debug_aranges if appropriate. */
7446 static void
7447 add_arange (tree decl, dw_die_ref die)
7449 if (! DECL_SECTION_NAME (decl))
7450 return;
7452 if (arange_table_in_use == arange_table_allocated)
7454 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7455 arange_table = ggc_realloc (arange_table,
7456 (arange_table_allocated
7457 * sizeof (dw_die_ref)));
7458 memset (arange_table + arange_table_in_use, 0,
7459 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7462 arange_table[arange_table_in_use++] = die;
7465 /* Output the information that goes into the .debug_aranges table.
7466 Namely, define the beginning and ending address range of the
7467 text section generated for this compilation unit. */
7469 static void
7470 output_aranges (void)
7472 unsigned i;
7473 unsigned long aranges_length = size_of_aranges ();
7475 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7476 dw2_asm_output_data (4, 0xffffffff,
7477 "Initial length escape value indicating 64-bit DWARF extension");
7478 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7479 "Length of Address Ranges Info");
7480 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7481 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7482 debug_info_section,
7483 "Offset of Compilation Unit Info");
7484 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7485 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7487 /* We need to align to twice the pointer size here. */
7488 if (DWARF_ARANGES_PAD_SIZE)
7490 /* Pad using a 2 byte words so that padding is correct for any
7491 pointer size. */
7492 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7493 2 * DWARF2_ADDR_SIZE);
7494 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7495 dw2_asm_output_data (2, 0, NULL);
7498 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7499 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7500 text_section_label, "Length");
7501 if (flag_reorder_blocks_and_partition)
7503 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7504 "Address");
7505 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7506 cold_text_section_label, "Length");
7509 for (i = 0; i < arange_table_in_use; i++)
7511 dw_die_ref die = arange_table[i];
7513 /* We shouldn't see aranges for DIEs outside of the main CU. */
7514 gcc_assert (die->die_mark);
7516 if (die->die_tag == DW_TAG_subprogram)
7518 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7519 "Address");
7520 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7521 get_AT_low_pc (die), "Length");
7523 else
7525 /* A static variable; extract the symbol from DW_AT_location.
7526 Note that this code isn't currently hit, as we only emit
7527 aranges for functions (jason 9/23/99). */
7528 dw_attr_ref a = get_AT (die, DW_AT_location);
7529 dw_loc_descr_ref loc;
7531 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7533 loc = AT_loc (a);
7534 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7536 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7537 loc->dw_loc_oprnd1.v.val_addr, "Address");
7538 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7539 get_AT_unsigned (die, DW_AT_byte_size),
7540 "Length");
7544 /* Output the terminator words. */
7545 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7546 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7549 /* Add a new entry to .debug_ranges. Return the offset at which it
7550 was placed. */
7552 static unsigned int
7553 add_ranges (tree block)
7555 unsigned int in_use = ranges_table_in_use;
7557 if (in_use == ranges_table_allocated)
7559 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7560 ranges_table
7561 = ggc_realloc (ranges_table, (ranges_table_allocated
7562 * sizeof (struct dw_ranges_struct)));
7563 memset (ranges_table + ranges_table_in_use, 0,
7564 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7567 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7568 ranges_table_in_use = in_use + 1;
7570 return in_use * 2 * DWARF2_ADDR_SIZE;
7573 static void
7574 output_ranges (void)
7576 unsigned i;
7577 static const char *const start_fmt = "Offset 0x%x";
7578 const char *fmt = start_fmt;
7580 for (i = 0; i < ranges_table_in_use; i++)
7582 int block_num = ranges_table[i].block_num;
7584 if (block_num)
7586 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7587 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7589 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7590 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7592 /* If all code is in the text section, then the compilation
7593 unit base address defaults to DW_AT_low_pc, which is the
7594 base of the text section. */
7595 if (!have_multiple_function_sections)
7597 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7598 text_section_label,
7599 fmt, i * 2 * DWARF2_ADDR_SIZE);
7600 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7601 text_section_label, NULL);
7604 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7605 compilation unit base address to zero, which allows us to
7606 use absolute addresses, and not worry about whether the
7607 target supports cross-section arithmetic. */
7608 else
7610 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7611 fmt, i * 2 * DWARF2_ADDR_SIZE);
7612 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7615 fmt = NULL;
7617 else
7619 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7620 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7621 fmt = start_fmt;
7626 /* Data structure containing information about input files. */
7627 struct file_info
7629 const char *path; /* Complete file name. */
7630 const char *fname; /* File name part. */
7631 int length; /* Length of entire string. */
7632 struct dwarf_file_data * file_idx; /* Index in input file table. */
7633 int dir_idx; /* Index in directory table. */
7636 /* Data structure containing information about directories with source
7637 files. */
7638 struct dir_info
7640 const char *path; /* Path including directory name. */
7641 int length; /* Path length. */
7642 int prefix; /* Index of directory entry which is a prefix. */
7643 int count; /* Number of files in this directory. */
7644 int dir_idx; /* Index of directory used as base. */
7647 /* Callback function for file_info comparison. We sort by looking at
7648 the directories in the path. */
7650 static int
7651 file_info_cmp (const void *p1, const void *p2)
7653 const struct file_info *s1 = p1;
7654 const struct file_info *s2 = p2;
7655 unsigned char *cp1;
7656 unsigned char *cp2;
7658 /* Take care of file names without directories. We need to make sure that
7659 we return consistent values to qsort since some will get confused if
7660 we return the same value when identical operands are passed in opposite
7661 orders. So if neither has a directory, return 0 and otherwise return
7662 1 or -1 depending on which one has the directory. */
7663 if ((s1->path == s1->fname || s2->path == s2->fname))
7664 return (s2->path == s2->fname) - (s1->path == s1->fname);
7666 cp1 = (unsigned char *) s1->path;
7667 cp2 = (unsigned char *) s2->path;
7669 while (1)
7671 ++cp1;
7672 ++cp2;
7673 /* Reached the end of the first path? If so, handle like above. */
7674 if ((cp1 == (unsigned char *) s1->fname)
7675 || (cp2 == (unsigned char *) s2->fname))
7676 return ((cp2 == (unsigned char *) s2->fname)
7677 - (cp1 == (unsigned char *) s1->fname));
7679 /* Character of current path component the same? */
7680 else if (*cp1 != *cp2)
7681 return *cp1 - *cp2;
7685 struct file_name_acquire_data
7687 struct file_info *files;
7688 int used_files;
7689 int max_files;
7692 /* Traversal function for the hash table. */
7694 static int
7695 file_name_acquire (void ** slot, void *data)
7697 struct file_name_acquire_data *fnad = data;
7698 struct dwarf_file_data *d = *slot;
7699 struct file_info *fi;
7700 const char *f;
7702 gcc_assert (fnad->max_files >= d->emitted_number);
7704 if (! d->emitted_number)
7705 return 1;
7707 gcc_assert (fnad->max_files != fnad->used_files);
7709 fi = fnad->files + fnad->used_files++;
7711 /* Skip all leading "./". */
7712 f = d->filename;
7713 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7714 f += 2;
7716 /* Create a new array entry. */
7717 fi->path = f;
7718 fi->length = strlen (f);
7719 fi->file_idx = d;
7721 /* Search for the file name part. */
7722 f = strrchr (f, DIR_SEPARATOR);
7723 #if defined (DIR_SEPARATOR_2)
7725 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7727 if (g != NULL)
7729 if (f == NULL || f < g)
7730 f = g;
7733 #endif
7735 fi->fname = f == NULL ? fi->path : f + 1;
7736 return 1;
7739 /* Output the directory table and the file name table. We try to minimize
7740 the total amount of memory needed. A heuristic is used to avoid large
7741 slowdowns with many input files. */
7743 static void
7744 output_file_names (void)
7746 struct file_name_acquire_data fnad;
7747 int numfiles;
7748 struct file_info *files;
7749 struct dir_info *dirs;
7750 int *saved;
7751 int *savehere;
7752 int *backmap;
7753 int ndirs;
7754 int idx_offset;
7755 int i;
7756 int idx;
7758 if (!last_emitted_file)
7760 dw2_asm_output_data (1, 0, "End directory table");
7761 dw2_asm_output_data (1, 0, "End file name table");
7762 return;
7765 numfiles = last_emitted_file->emitted_number;
7767 /* Allocate the various arrays we need. */
7768 files = alloca (numfiles * sizeof (struct file_info));
7769 dirs = alloca (numfiles * sizeof (struct dir_info));
7771 fnad.files = files;
7772 fnad.used_files = 0;
7773 fnad.max_files = numfiles;
7774 htab_traverse (file_table, file_name_acquire, &fnad);
7775 gcc_assert (fnad.used_files == fnad.max_files);
7777 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7779 /* Find all the different directories used. */
7780 dirs[0].path = files[0].path;
7781 dirs[0].length = files[0].fname - files[0].path;
7782 dirs[0].prefix = -1;
7783 dirs[0].count = 1;
7784 dirs[0].dir_idx = 0;
7785 files[0].dir_idx = 0;
7786 ndirs = 1;
7788 for (i = 1; i < numfiles; i++)
7789 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7790 && memcmp (dirs[ndirs - 1].path, files[i].path,
7791 dirs[ndirs - 1].length) == 0)
7793 /* Same directory as last entry. */
7794 files[i].dir_idx = ndirs - 1;
7795 ++dirs[ndirs - 1].count;
7797 else
7799 int j;
7801 /* This is a new directory. */
7802 dirs[ndirs].path = files[i].path;
7803 dirs[ndirs].length = files[i].fname - files[i].path;
7804 dirs[ndirs].count = 1;
7805 dirs[ndirs].dir_idx = ndirs;
7806 files[i].dir_idx = ndirs;
7808 /* Search for a prefix. */
7809 dirs[ndirs].prefix = -1;
7810 for (j = 0; j < ndirs; j++)
7811 if (dirs[j].length < dirs[ndirs].length
7812 && dirs[j].length > 1
7813 && (dirs[ndirs].prefix == -1
7814 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7815 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7816 dirs[ndirs].prefix = j;
7818 ++ndirs;
7821 /* Now to the actual work. We have to find a subset of the directories which
7822 allow expressing the file name using references to the directory table
7823 with the least amount of characters. We do not do an exhaustive search
7824 where we would have to check out every combination of every single
7825 possible prefix. Instead we use a heuristic which provides nearly optimal
7826 results in most cases and never is much off. */
7827 saved = alloca (ndirs * sizeof (int));
7828 savehere = alloca (ndirs * sizeof (int));
7830 memset (saved, '\0', ndirs * sizeof (saved[0]));
7831 for (i = 0; i < ndirs; i++)
7833 int j;
7834 int total;
7836 /* We can always save some space for the current directory. But this
7837 does not mean it will be enough to justify adding the directory. */
7838 savehere[i] = dirs[i].length;
7839 total = (savehere[i] - saved[i]) * dirs[i].count;
7841 for (j = i + 1; j < ndirs; j++)
7843 savehere[j] = 0;
7844 if (saved[j] < dirs[i].length)
7846 /* Determine whether the dirs[i] path is a prefix of the
7847 dirs[j] path. */
7848 int k;
7850 k = dirs[j].prefix;
7851 while (k != -1 && k != (int) i)
7852 k = dirs[k].prefix;
7854 if (k == (int) i)
7856 /* Yes it is. We can possibly save some memory by
7857 writing the filenames in dirs[j] relative to
7858 dirs[i]. */
7859 savehere[j] = dirs[i].length;
7860 total += (savehere[j] - saved[j]) * dirs[j].count;
7865 /* Check whether we can save enough to justify adding the dirs[i]
7866 directory. */
7867 if (total > dirs[i].length + 1)
7869 /* It's worthwhile adding. */
7870 for (j = i; j < ndirs; j++)
7871 if (savehere[j] > 0)
7873 /* Remember how much we saved for this directory so far. */
7874 saved[j] = savehere[j];
7876 /* Remember the prefix directory. */
7877 dirs[j].dir_idx = i;
7882 /* Emit the directory name table. */
7883 idx = 1;
7884 idx_offset = dirs[0].length > 0 ? 1 : 0;
7885 for (i = 1 - idx_offset; i < ndirs; i++)
7886 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7887 "Directory Entry: 0x%x", i + idx_offset);
7889 dw2_asm_output_data (1, 0, "End directory table");
7891 /* We have to emit them in the order of emitted_number since that's
7892 used in the debug info generation. To do this efficiently we
7893 generate a back-mapping of the indices first. */
7894 backmap = alloca (numfiles * sizeof (int));
7895 for (i = 0; i < numfiles; i++)
7896 backmap[files[i].file_idx->emitted_number - 1] = i;
7898 /* Now write all the file names. */
7899 for (i = 0; i < numfiles; i++)
7901 int file_idx = backmap[i];
7902 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7904 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7905 "File Entry: 0x%x", (unsigned) i + 1);
7907 /* Include directory index. */
7908 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7910 /* Modification time. */
7911 dw2_asm_output_data_uleb128 (0, NULL);
7913 /* File length in bytes. */
7914 dw2_asm_output_data_uleb128 (0, NULL);
7917 dw2_asm_output_data (1, 0, "End file name table");
7921 /* Output the source line number correspondence information. This
7922 information goes into the .debug_line section. */
7924 static void
7925 output_line_info (void)
7927 char l1[20], l2[20], p1[20], p2[20];
7928 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7929 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7930 unsigned opc;
7931 unsigned n_op_args;
7932 unsigned long lt_index;
7933 unsigned long current_line;
7934 long line_offset;
7935 long line_delta;
7936 unsigned long current_file;
7937 unsigned long function;
7939 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7940 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7941 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7942 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7944 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7945 dw2_asm_output_data (4, 0xffffffff,
7946 "Initial length escape value indicating 64-bit DWARF extension");
7947 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7948 "Length of Source Line Info");
7949 ASM_OUTPUT_LABEL (asm_out_file, l1);
7951 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7952 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7953 ASM_OUTPUT_LABEL (asm_out_file, p1);
7955 /* Define the architecture-dependent minimum instruction length (in
7956 bytes). In this implementation of DWARF, this field is used for
7957 information purposes only. Since GCC generates assembly language,
7958 we have no a priori knowledge of how many instruction bytes are
7959 generated for each source line, and therefore can use only the
7960 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7961 commands. Accordingly, we fix this as `1', which is "correct
7962 enough" for all architectures, and don't let the target override. */
7963 dw2_asm_output_data (1, 1,
7964 "Minimum Instruction Length");
7966 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7967 "Default is_stmt_start flag");
7968 dw2_asm_output_data (1, DWARF_LINE_BASE,
7969 "Line Base Value (Special Opcodes)");
7970 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7971 "Line Range Value (Special Opcodes)");
7972 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7973 "Special Opcode Base");
7975 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7977 switch (opc)
7979 case DW_LNS_advance_pc:
7980 case DW_LNS_advance_line:
7981 case DW_LNS_set_file:
7982 case DW_LNS_set_column:
7983 case DW_LNS_fixed_advance_pc:
7984 n_op_args = 1;
7985 break;
7986 default:
7987 n_op_args = 0;
7988 break;
7991 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7992 opc, n_op_args);
7995 /* Write out the information about the files we use. */
7996 output_file_names ();
7997 ASM_OUTPUT_LABEL (asm_out_file, p2);
7999 /* We used to set the address register to the first location in the text
8000 section here, but that didn't accomplish anything since we already
8001 have a line note for the opening brace of the first function. */
8003 /* Generate the line number to PC correspondence table, encoded as
8004 a series of state machine operations. */
8005 current_file = 1;
8006 current_line = 1;
8008 if (cfun && in_cold_section_p)
8009 strcpy (prev_line_label, cfun->cold_section_label);
8010 else
8011 strcpy (prev_line_label, text_section_label);
8012 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
8014 dw_line_info_ref line_info = &line_info_table[lt_index];
8016 #if 0
8017 /* Disable this optimization for now; GDB wants to see two line notes
8018 at the beginning of a function so it can find the end of the
8019 prologue. */
8021 /* Don't emit anything for redundant notes. Just updating the
8022 address doesn't accomplish anything, because we already assume
8023 that anything after the last address is this line. */
8024 if (line_info->dw_line_num == current_line
8025 && line_info->dw_file_num == current_file)
8026 continue;
8027 #endif
8029 /* Emit debug info for the address of the current line.
8031 Unfortunately, we have little choice here currently, and must always
8032 use the most general form. GCC does not know the address delta
8033 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8034 attributes which will give an upper bound on the address range. We
8035 could perhaps use length attributes to determine when it is safe to
8036 use DW_LNS_fixed_advance_pc. */
8038 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8039 if (0)
8041 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8042 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8043 "DW_LNS_fixed_advance_pc");
8044 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8046 else
8048 /* This can handle any delta. This takes
8049 4+DWARF2_ADDR_SIZE bytes. */
8050 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8051 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8052 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8053 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8056 strcpy (prev_line_label, line_label);
8058 /* Emit debug info for the source file of the current line, if
8059 different from the previous line. */
8060 if (line_info->dw_file_num != current_file)
8062 current_file = line_info->dw_file_num;
8063 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8064 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8067 /* Emit debug info for the current line number, choosing the encoding
8068 that uses the least amount of space. */
8069 if (line_info->dw_line_num != current_line)
8071 line_offset = line_info->dw_line_num - current_line;
8072 line_delta = line_offset - DWARF_LINE_BASE;
8073 current_line = line_info->dw_line_num;
8074 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8075 /* This can handle deltas from -10 to 234, using the current
8076 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8077 takes 1 byte. */
8078 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8079 "line %lu", current_line);
8080 else
8082 /* This can handle any delta. This takes at least 4 bytes,
8083 depending on the value being encoded. */
8084 dw2_asm_output_data (1, DW_LNS_advance_line,
8085 "advance to line %lu", current_line);
8086 dw2_asm_output_data_sleb128 (line_offset, NULL);
8087 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8090 else
8091 /* We still need to start a new row, so output a copy insn. */
8092 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8095 /* Emit debug info for the address of the end of the function. */
8096 if (0)
8098 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8099 "DW_LNS_fixed_advance_pc");
8100 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8102 else
8104 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8105 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8106 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8107 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8110 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8111 dw2_asm_output_data_uleb128 (1, NULL);
8112 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8114 function = 0;
8115 current_file = 1;
8116 current_line = 1;
8117 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8119 dw_separate_line_info_ref line_info
8120 = &separate_line_info_table[lt_index];
8122 #if 0
8123 /* Don't emit anything for redundant notes. */
8124 if (line_info->dw_line_num == current_line
8125 && line_info->dw_file_num == current_file
8126 && line_info->function == function)
8127 goto cont;
8128 #endif
8130 /* Emit debug info for the address of the current line. If this is
8131 a new function, or the first line of a function, then we need
8132 to handle it differently. */
8133 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8134 lt_index);
8135 if (function != line_info->function)
8137 function = line_info->function;
8139 /* Set the address register to the first line in the function. */
8140 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8141 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8142 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8143 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8145 else
8147 /* ??? See the DW_LNS_advance_pc comment above. */
8148 if (0)
8150 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8151 "DW_LNS_fixed_advance_pc");
8152 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8154 else
8156 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8157 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8158 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8159 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8163 strcpy (prev_line_label, line_label);
8165 /* Emit debug info for the source file of the current line, if
8166 different from the previous line. */
8167 if (line_info->dw_file_num != current_file)
8169 current_file = line_info->dw_file_num;
8170 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8171 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8174 /* Emit debug info for the current line number, choosing the encoding
8175 that uses the least amount of space. */
8176 if (line_info->dw_line_num != current_line)
8178 line_offset = line_info->dw_line_num - current_line;
8179 line_delta = line_offset - DWARF_LINE_BASE;
8180 current_line = line_info->dw_line_num;
8181 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8182 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8183 "line %lu", current_line);
8184 else
8186 dw2_asm_output_data (1, DW_LNS_advance_line,
8187 "advance to line %lu", current_line);
8188 dw2_asm_output_data_sleb128 (line_offset, NULL);
8189 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8192 else
8193 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8195 #if 0
8196 cont:
8197 #endif
8199 lt_index++;
8201 /* If we're done with a function, end its sequence. */
8202 if (lt_index == separate_line_info_table_in_use
8203 || separate_line_info_table[lt_index].function != function)
8205 current_file = 1;
8206 current_line = 1;
8208 /* Emit debug info for the address of the end of the function. */
8209 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8210 if (0)
8212 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8213 "DW_LNS_fixed_advance_pc");
8214 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8216 else
8218 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8219 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8220 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8221 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8224 /* Output the marker for the end of this sequence. */
8225 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8226 dw2_asm_output_data_uleb128 (1, NULL);
8227 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8231 /* Output the marker for the end of the line number info. */
8232 ASM_OUTPUT_LABEL (asm_out_file, l2);
8235 /* Given a pointer to a tree node for some base type, return a pointer to
8236 a DIE that describes the given type.
8238 This routine must only be called for GCC type nodes that correspond to
8239 Dwarf base (fundamental) types. */
8241 static dw_die_ref
8242 base_type_die (tree type)
8244 dw_die_ref base_type_result;
8245 enum dwarf_type encoding;
8247 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8248 return 0;
8250 switch (TREE_CODE (type))
8252 case INTEGER_TYPE:
8253 if (TYPE_STRING_FLAG (type))
8255 if (TYPE_UNSIGNED (type))
8256 encoding = DW_ATE_unsigned_char;
8257 else
8258 encoding = DW_ATE_signed_char;
8260 else if (TYPE_UNSIGNED (type))
8261 encoding = DW_ATE_unsigned;
8262 else
8263 encoding = DW_ATE_signed;
8264 break;
8266 case REAL_TYPE:
8267 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8268 encoding = DW_ATE_decimal_float;
8269 else
8270 encoding = DW_ATE_float;
8271 break;
8273 /* Dwarf2 doesn't know anything about complex ints, so use
8274 a user defined type for it. */
8275 case COMPLEX_TYPE:
8276 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8277 encoding = DW_ATE_complex_float;
8278 else
8279 encoding = DW_ATE_lo_user;
8280 break;
8282 case BOOLEAN_TYPE:
8283 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8284 encoding = DW_ATE_boolean;
8285 break;
8287 default:
8288 /* No other TREE_CODEs are Dwarf fundamental types. */
8289 gcc_unreachable ();
8292 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8294 /* This probably indicates a bug. */
8295 if (! TYPE_NAME (type))
8296 add_name_attribute (base_type_result, "__unknown__");
8298 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8299 int_size_in_bytes (type));
8300 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8302 return base_type_result;
8305 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8306 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8308 static inline int
8309 is_base_type (tree type)
8311 switch (TREE_CODE (type))
8313 case ERROR_MARK:
8314 case VOID_TYPE:
8315 case INTEGER_TYPE:
8316 case REAL_TYPE:
8317 case COMPLEX_TYPE:
8318 case BOOLEAN_TYPE:
8319 return 1;
8321 case ARRAY_TYPE:
8322 case RECORD_TYPE:
8323 case UNION_TYPE:
8324 case QUAL_UNION_TYPE:
8325 case ENUMERAL_TYPE:
8326 case FUNCTION_TYPE:
8327 case METHOD_TYPE:
8328 case POINTER_TYPE:
8329 case REFERENCE_TYPE:
8330 case OFFSET_TYPE:
8331 case LANG_TYPE:
8332 case VECTOR_TYPE:
8333 return 0;
8335 default:
8336 gcc_unreachable ();
8339 return 0;
8342 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8343 node, return the size in bits for the type if it is a constant, or else
8344 return the alignment for the type if the type's size is not constant, or
8345 else return BITS_PER_WORD if the type actually turns out to be an
8346 ERROR_MARK node. */
8348 static inline unsigned HOST_WIDE_INT
8349 simple_type_size_in_bits (tree type)
8351 if (TREE_CODE (type) == ERROR_MARK)
8352 return BITS_PER_WORD;
8353 else if (TYPE_SIZE (type) == NULL_TREE)
8354 return 0;
8355 else if (host_integerp (TYPE_SIZE (type), 1))
8356 return tree_low_cst (TYPE_SIZE (type), 1);
8357 else
8358 return TYPE_ALIGN (type);
8361 /* Return true if the debug information for the given type should be
8362 emitted as a subrange type. */
8364 static inline bool
8365 is_subrange_type (tree type)
8367 tree subtype = TREE_TYPE (type);
8369 /* Subrange types are identified by the fact that they are integer
8370 types, and that they have a subtype which is either an integer type
8371 or an enumeral type. */
8373 if (TREE_CODE (type) != INTEGER_TYPE
8374 || subtype == NULL_TREE)
8375 return false;
8377 if (TREE_CODE (subtype) != INTEGER_TYPE
8378 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8379 return false;
8381 if (TREE_CODE (type) == TREE_CODE (subtype)
8382 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8383 && TYPE_MIN_VALUE (type) != NULL
8384 && TYPE_MIN_VALUE (subtype) != NULL
8385 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8386 && TYPE_MAX_VALUE (type) != NULL
8387 && TYPE_MAX_VALUE (subtype) != NULL
8388 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8390 /* The type and its subtype have the same representation. If in
8391 addition the two types also have the same name, then the given
8392 type is not a subrange type, but rather a plain base type. */
8393 /* FIXME: brobecker/2004-03-22:
8394 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8395 therefore be sufficient to check the TYPE_SIZE node pointers
8396 rather than checking the actual size. Unfortunately, we have
8397 found some cases, such as in the Ada "integer" type, where
8398 this is not the case. Until this problem is solved, we need to
8399 keep checking the actual size. */
8400 tree type_name = TYPE_NAME (type);
8401 tree subtype_name = TYPE_NAME (subtype);
8403 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8404 type_name = DECL_NAME (type_name);
8406 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8407 subtype_name = DECL_NAME (subtype_name);
8409 if (type_name == subtype_name)
8410 return false;
8413 return true;
8416 /* Given a pointer to a tree node for a subrange type, return a pointer
8417 to a DIE that describes the given type. */
8419 static dw_die_ref
8420 subrange_type_die (tree type, dw_die_ref context_die)
8422 dw_die_ref subrange_die;
8423 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8425 if (context_die == NULL)
8426 context_die = comp_unit_die;
8428 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8430 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8432 /* The size of the subrange type and its base type do not match,
8433 so we need to generate a size attribute for the subrange type. */
8434 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8437 if (TYPE_MIN_VALUE (type) != NULL)
8438 add_bound_info (subrange_die, DW_AT_lower_bound,
8439 TYPE_MIN_VALUE (type));
8440 if (TYPE_MAX_VALUE (type) != NULL)
8441 add_bound_info (subrange_die, DW_AT_upper_bound,
8442 TYPE_MAX_VALUE (type));
8444 return subrange_die;
8447 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8448 entry that chains various modifiers in front of the given type. */
8450 static dw_die_ref
8451 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8452 dw_die_ref context_die)
8454 enum tree_code code = TREE_CODE (type);
8455 dw_die_ref mod_type_die;
8456 dw_die_ref sub_die = NULL;
8457 tree item_type = NULL;
8458 tree qualified_type;
8459 tree name;
8461 if (code == ERROR_MARK)
8462 return NULL;
8464 /* See if we already have the appropriately qualified variant of
8465 this type. */
8466 qualified_type
8467 = get_qualified_type (type,
8468 ((is_const_type ? TYPE_QUAL_CONST : 0)
8469 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8471 /* If we do, then we can just use its DIE, if it exists. */
8472 if (qualified_type)
8474 mod_type_die = lookup_type_die (qualified_type);
8475 if (mod_type_die)
8476 return mod_type_die;
8479 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8481 /* Handle C typedef types. */
8482 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8484 tree dtype = TREE_TYPE (name);
8486 if (qualified_type == dtype)
8488 /* For a named type, use the typedef. */
8489 gen_type_die (qualified_type, context_die);
8490 return lookup_type_die (qualified_type);
8492 else if (is_const_type < TYPE_READONLY (dtype)
8493 || is_volatile_type < TYPE_VOLATILE (dtype)
8494 || (is_const_type <= TYPE_READONLY (dtype)
8495 && is_volatile_type <= TYPE_VOLATILE (dtype)
8496 && DECL_ORIGINAL_TYPE (name) != type))
8497 /* cv-unqualified version of named type. Just use the unnamed
8498 type to which it refers. */
8499 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8500 is_const_type, is_volatile_type,
8501 context_die);
8502 /* Else cv-qualified version of named type; fall through. */
8505 if (is_const_type)
8507 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8508 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8510 else if (is_volatile_type)
8512 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8513 sub_die = modified_type_die (type, 0, 0, context_die);
8515 else if (code == POINTER_TYPE)
8517 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8518 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8519 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8520 item_type = TREE_TYPE (type);
8522 else if (code == REFERENCE_TYPE)
8524 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8525 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8526 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8527 item_type = TREE_TYPE (type);
8529 else if (is_subrange_type (type))
8531 mod_type_die = subrange_type_die (type, context_die);
8532 item_type = TREE_TYPE (type);
8534 else if (is_base_type (type))
8535 mod_type_die = base_type_die (type);
8536 else
8538 gen_type_die (type, context_die);
8540 /* We have to get the type_main_variant here (and pass that to the
8541 `lookup_type_die' routine) because the ..._TYPE node we have
8542 might simply be a *copy* of some original type node (where the
8543 copy was created to help us keep track of typedef names) and
8544 that copy might have a different TYPE_UID from the original
8545 ..._TYPE node. */
8546 if (TREE_CODE (type) != VECTOR_TYPE)
8547 return lookup_type_die (type_main_variant (type));
8548 else
8549 /* Vectors have the debugging information in the type,
8550 not the main variant. */
8551 return lookup_type_die (type);
8554 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8555 don't output a DW_TAG_typedef, since there isn't one in the
8556 user's program; just attach a DW_AT_name to the type. */
8557 if (name
8558 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8560 if (TREE_CODE (name) == TYPE_DECL)
8561 /* Could just call add_name_and_src_coords_attributes here,
8562 but since this is a builtin type it doesn't have any
8563 useful source coordinates anyway. */
8564 name = DECL_NAME (name);
8565 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8568 if (qualified_type)
8569 equate_type_number_to_die (qualified_type, mod_type_die);
8571 if (item_type)
8572 /* We must do this after the equate_type_number_to_die call, in case
8573 this is a recursive type. This ensures that the modified_type_die
8574 recursion will terminate even if the type is recursive. Recursive
8575 types are possible in Ada. */
8576 sub_die = modified_type_die (item_type,
8577 TYPE_READONLY (item_type),
8578 TYPE_VOLATILE (item_type),
8579 context_die);
8581 if (sub_die != NULL)
8582 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8584 return mod_type_die;
8587 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8588 an enumerated type. */
8590 static inline int
8591 type_is_enum (tree type)
8593 return TREE_CODE (type) == ENUMERAL_TYPE;
8596 /* Return the DBX register number described by a given RTL node. */
8598 static unsigned int
8599 dbx_reg_number (rtx rtl)
8601 unsigned regno = REGNO (rtl);
8603 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8605 #ifdef LEAF_REG_REMAP
8606 if (current_function_uses_only_leaf_regs)
8608 int leaf_reg = LEAF_REG_REMAP (regno);
8609 if (leaf_reg != -1)
8610 regno = (unsigned) leaf_reg;
8612 #endif
8614 return DBX_REGISTER_NUMBER (regno);
8617 /* Optionally add a DW_OP_piece term to a location description expression.
8618 DW_OP_piece is only added if the location description expression already
8619 doesn't end with DW_OP_piece. */
8621 static void
8622 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8624 dw_loc_descr_ref loc;
8626 if (*list_head != NULL)
8628 /* Find the end of the chain. */
8629 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8632 if (loc->dw_loc_opc != DW_OP_piece)
8633 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8637 /* Return a location descriptor that designates a machine register or
8638 zero if there is none. */
8640 static dw_loc_descr_ref
8641 reg_loc_descriptor (rtx rtl)
8643 rtx regs;
8645 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8646 return 0;
8648 regs = targetm.dwarf_register_span (rtl);
8650 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8651 return multiple_reg_loc_descriptor (rtl, regs);
8652 else
8653 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8656 /* Return a location descriptor that designates a machine register for
8657 a given hard register number. */
8659 static dw_loc_descr_ref
8660 one_reg_loc_descriptor (unsigned int regno)
8662 if (regno <= 31)
8663 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8664 else
8665 return new_loc_descr (DW_OP_regx, regno, 0);
8668 /* Given an RTL of a register, return a location descriptor that
8669 designates a value that spans more than one register. */
8671 static dw_loc_descr_ref
8672 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8674 int nregs, size, i;
8675 unsigned reg;
8676 dw_loc_descr_ref loc_result = NULL;
8678 reg = REGNO (rtl);
8679 #ifdef LEAF_REG_REMAP
8680 if (current_function_uses_only_leaf_regs)
8682 int leaf_reg = LEAF_REG_REMAP (reg);
8683 if (leaf_reg != -1)
8684 reg = (unsigned) leaf_reg;
8686 #endif
8687 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8688 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8690 /* Simple, contiguous registers. */
8691 if (regs == NULL_RTX)
8693 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8695 loc_result = NULL;
8696 while (nregs--)
8698 dw_loc_descr_ref t;
8700 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8701 add_loc_descr (&loc_result, t);
8702 add_loc_descr_op_piece (&loc_result, size);
8703 ++reg;
8705 return loc_result;
8708 /* Now onto stupid register sets in non contiguous locations. */
8710 gcc_assert (GET_CODE (regs) == PARALLEL);
8712 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8713 loc_result = NULL;
8715 for (i = 0; i < XVECLEN (regs, 0); ++i)
8717 dw_loc_descr_ref t;
8719 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8720 add_loc_descr (&loc_result, t);
8721 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8722 add_loc_descr_op_piece (&loc_result, size);
8724 return loc_result;
8727 /* Return a location descriptor that designates a constant. */
8729 static dw_loc_descr_ref
8730 int_loc_descriptor (HOST_WIDE_INT i)
8732 enum dwarf_location_atom op;
8734 /* Pick the smallest representation of a constant, rather than just
8735 defaulting to the LEB encoding. */
8736 if (i >= 0)
8738 if (i <= 31)
8739 op = DW_OP_lit0 + i;
8740 else if (i <= 0xff)
8741 op = DW_OP_const1u;
8742 else if (i <= 0xffff)
8743 op = DW_OP_const2u;
8744 else if (HOST_BITS_PER_WIDE_INT == 32
8745 || i <= 0xffffffff)
8746 op = DW_OP_const4u;
8747 else
8748 op = DW_OP_constu;
8750 else
8752 if (i >= -0x80)
8753 op = DW_OP_const1s;
8754 else if (i >= -0x8000)
8755 op = DW_OP_const2s;
8756 else if (HOST_BITS_PER_WIDE_INT == 32
8757 || i >= -0x80000000)
8758 op = DW_OP_const4s;
8759 else
8760 op = DW_OP_consts;
8763 return new_loc_descr (op, i, 0);
8766 /* Return a location descriptor that designates a base+offset location. */
8768 static dw_loc_descr_ref
8769 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8771 unsigned int regno;
8773 /* We only use "frame base" when we're sure we're talking about the
8774 post-prologue local stack frame. We do this by *not* running
8775 register elimination until this point, and recognizing the special
8776 argument pointer and soft frame pointer rtx's. */
8777 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8779 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8781 if (elim != reg)
8783 if (GET_CODE (elim) == PLUS)
8785 offset += INTVAL (XEXP (elim, 1));
8786 elim = XEXP (elim, 0);
8788 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8789 : stack_pointer_rtx));
8790 offset += frame_pointer_fb_offset;
8792 return new_loc_descr (DW_OP_fbreg, offset, 0);
8796 regno = dbx_reg_number (reg);
8797 if (regno <= 31)
8798 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8799 else
8800 return new_loc_descr (DW_OP_bregx, regno, offset);
8803 /* Return true if this RTL expression describes a base+offset calculation. */
8805 static inline int
8806 is_based_loc (rtx rtl)
8808 return (GET_CODE (rtl) == PLUS
8809 && ((REG_P (XEXP (rtl, 0))
8810 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8811 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8814 /* The following routine converts the RTL for a variable or parameter
8815 (resident in memory) into an equivalent Dwarf representation of a
8816 mechanism for getting the address of that same variable onto the top of a
8817 hypothetical "address evaluation" stack.
8819 When creating memory location descriptors, we are effectively transforming
8820 the RTL for a memory-resident object into its Dwarf postfix expression
8821 equivalent. This routine recursively descends an RTL tree, turning
8822 it into Dwarf postfix code as it goes.
8824 MODE is the mode of the memory reference, needed to handle some
8825 autoincrement addressing modes.
8827 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8828 location list for RTL.
8830 Return 0 if we can't represent the location. */
8832 static dw_loc_descr_ref
8833 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8835 dw_loc_descr_ref mem_loc_result = NULL;
8836 enum dwarf_location_atom op;
8838 /* Note that for a dynamically sized array, the location we will generate a
8839 description of here will be the lowest numbered location which is
8840 actually within the array. That's *not* necessarily the same as the
8841 zeroth element of the array. */
8843 rtl = targetm.delegitimize_address (rtl);
8845 switch (GET_CODE (rtl))
8847 case POST_INC:
8848 case POST_DEC:
8849 case POST_MODIFY:
8850 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8851 just fall into the SUBREG code. */
8853 /* ... fall through ... */
8855 case SUBREG:
8856 /* The case of a subreg may arise when we have a local (register)
8857 variable or a formal (register) parameter which doesn't quite fill
8858 up an entire register. For now, just assume that it is
8859 legitimate to make the Dwarf info refer to the whole register which
8860 contains the given subreg. */
8861 rtl = XEXP (rtl, 0);
8863 /* ... fall through ... */
8865 case REG:
8866 /* Whenever a register number forms a part of the description of the
8867 method for calculating the (dynamic) address of a memory resident
8868 object, DWARF rules require the register number be referred to as
8869 a "base register". This distinction is not based in any way upon
8870 what category of register the hardware believes the given register
8871 belongs to. This is strictly DWARF terminology we're dealing with
8872 here. Note that in cases where the location of a memory-resident
8873 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8874 OP_CONST (0)) the actual DWARF location descriptor that we generate
8875 may just be OP_BASEREG (basereg). This may look deceptively like
8876 the object in question was allocated to a register (rather than in
8877 memory) so DWARF consumers need to be aware of the subtle
8878 distinction between OP_REG and OP_BASEREG. */
8879 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8880 mem_loc_result = based_loc_descr (rtl, 0);
8881 break;
8883 case MEM:
8884 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8885 if (mem_loc_result != 0)
8886 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8887 break;
8889 case LO_SUM:
8890 rtl = XEXP (rtl, 1);
8892 /* ... fall through ... */
8894 case LABEL_REF:
8895 /* Some ports can transform a symbol ref into a label ref, because
8896 the symbol ref is too far away and has to be dumped into a constant
8897 pool. */
8898 case CONST:
8899 case SYMBOL_REF:
8900 /* Alternatively, the symbol in the constant pool might be referenced
8901 by a different symbol. */
8902 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8904 bool marked;
8905 rtx tmp = get_pool_constant_mark (rtl, &marked);
8907 if (GET_CODE (tmp) == SYMBOL_REF)
8909 rtl = tmp;
8910 if (CONSTANT_POOL_ADDRESS_P (tmp))
8911 get_pool_constant_mark (tmp, &marked);
8912 else
8913 marked = true;
8916 /* If all references to this pool constant were optimized away,
8917 it was not output and thus we can't represent it.
8918 FIXME: might try to use DW_OP_const_value here, though
8919 DW_OP_piece complicates it. */
8920 if (!marked)
8921 return 0;
8924 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8925 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8926 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8927 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8928 break;
8930 case PRE_MODIFY:
8931 /* Extract the PLUS expression nested inside and fall into
8932 PLUS code below. */
8933 rtl = XEXP (rtl, 1);
8934 goto plus;
8936 case PRE_INC:
8937 case PRE_DEC:
8938 /* Turn these into a PLUS expression and fall into the PLUS code
8939 below. */
8940 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8941 GEN_INT (GET_CODE (rtl) == PRE_INC
8942 ? GET_MODE_UNIT_SIZE (mode)
8943 : -GET_MODE_UNIT_SIZE (mode)));
8945 /* ... fall through ... */
8947 case PLUS:
8948 plus:
8949 if (is_based_loc (rtl))
8950 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8951 INTVAL (XEXP (rtl, 1)));
8952 else
8954 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8955 if (mem_loc_result == 0)
8956 break;
8958 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8959 && INTVAL (XEXP (rtl, 1)) >= 0)
8960 add_loc_descr (&mem_loc_result,
8961 new_loc_descr (DW_OP_plus_uconst,
8962 INTVAL (XEXP (rtl, 1)), 0));
8963 else
8965 add_loc_descr (&mem_loc_result,
8966 mem_loc_descriptor (XEXP (rtl, 1), mode));
8967 add_loc_descr (&mem_loc_result,
8968 new_loc_descr (DW_OP_plus, 0, 0));
8971 break;
8973 /* If a pseudo-reg is optimized away, it is possible for it to
8974 be replaced with a MEM containing a multiply or shift. */
8975 case MULT:
8976 op = DW_OP_mul;
8977 goto do_binop;
8979 case ASHIFT:
8980 op = DW_OP_shl;
8981 goto do_binop;
8983 case ASHIFTRT:
8984 op = DW_OP_shra;
8985 goto do_binop;
8987 case LSHIFTRT:
8988 op = DW_OP_shr;
8989 goto do_binop;
8991 do_binop:
8993 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8994 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8996 if (op0 == 0 || op1 == 0)
8997 break;
8999 mem_loc_result = op0;
9000 add_loc_descr (&mem_loc_result, op1);
9001 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9002 break;
9005 case CONST_INT:
9006 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9007 break;
9009 default:
9010 gcc_unreachable ();
9013 return mem_loc_result;
9016 /* Return a descriptor that describes the concatenation of two locations.
9017 This is typically a complex variable. */
9019 static dw_loc_descr_ref
9020 concat_loc_descriptor (rtx x0, rtx x1)
9022 dw_loc_descr_ref cc_loc_result = NULL;
9023 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9024 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9026 if (x0_ref == 0 || x1_ref == 0)
9027 return 0;
9029 cc_loc_result = x0_ref;
9030 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9032 add_loc_descr (&cc_loc_result, x1_ref);
9033 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9035 return cc_loc_result;
9038 /* Return a descriptor that describes the concatenation of N
9039 locations. */
9041 static dw_loc_descr_ref
9042 concatn_loc_descriptor (rtx concatn)
9044 unsigned int i;
9045 dw_loc_descr_ref cc_loc_result = NULL;
9046 unsigned int n = XVECLEN (concatn, 0);
9048 for (i = 0; i < n; ++i)
9050 dw_loc_descr_ref ref;
9051 rtx x = XVECEXP (concatn, 0, i);
9053 ref = loc_descriptor (x);
9054 if (ref == NULL)
9055 return NULL;
9057 add_loc_descr (&cc_loc_result, ref);
9058 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9061 return cc_loc_result;
9064 /* Output a proper Dwarf location descriptor for a variable or parameter
9065 which is either allocated in a register or in a memory location. For a
9066 register, we just generate an OP_REG and the register number. For a
9067 memory location we provide a Dwarf postfix expression describing how to
9068 generate the (dynamic) address of the object onto the address stack.
9070 If we don't know how to describe it, return 0. */
9072 static dw_loc_descr_ref
9073 loc_descriptor (rtx rtl)
9075 dw_loc_descr_ref loc_result = NULL;
9077 switch (GET_CODE (rtl))
9079 case SUBREG:
9080 /* The case of a subreg may arise when we have a local (register)
9081 variable or a formal (register) parameter which doesn't quite fill
9082 up an entire register. For now, just assume that it is
9083 legitimate to make the Dwarf info refer to the whole register which
9084 contains the given subreg. */
9085 rtl = SUBREG_REG (rtl);
9087 /* ... fall through ... */
9089 case REG:
9090 loc_result = reg_loc_descriptor (rtl);
9091 break;
9093 case MEM:
9094 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9095 break;
9097 case CONCAT:
9098 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9099 break;
9101 case CONCATN:
9102 loc_result = concatn_loc_descriptor (rtl);
9103 break;
9105 case VAR_LOCATION:
9106 /* Single part. */
9107 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9109 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9110 break;
9113 rtl = XEXP (rtl, 1);
9114 /* FALLTHRU */
9116 case PARALLEL:
9118 rtvec par_elems = XVEC (rtl, 0);
9119 int num_elem = GET_NUM_ELEM (par_elems);
9120 enum machine_mode mode;
9121 int i;
9123 /* Create the first one, so we have something to add to. */
9124 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9125 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9126 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9127 for (i = 1; i < num_elem; i++)
9129 dw_loc_descr_ref temp;
9131 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9132 add_loc_descr (&loc_result, temp);
9133 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9134 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9137 break;
9139 default:
9140 gcc_unreachable ();
9143 return loc_result;
9146 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9147 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9148 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9149 top-level invocation, and we require the address of LOC; is 0 if we require
9150 the value of LOC. */
9152 static dw_loc_descr_ref
9153 loc_descriptor_from_tree_1 (tree loc, int want_address)
9155 dw_loc_descr_ref ret, ret1;
9156 int have_address = 0;
9157 enum dwarf_location_atom op;
9159 /* ??? Most of the time we do not take proper care for sign/zero
9160 extending the values properly. Hopefully this won't be a real
9161 problem... */
9163 switch (TREE_CODE (loc))
9165 case ERROR_MARK:
9166 return 0;
9168 case PLACEHOLDER_EXPR:
9169 /* This case involves extracting fields from an object to determine the
9170 position of other fields. We don't try to encode this here. The
9171 only user of this is Ada, which encodes the needed information using
9172 the names of types. */
9173 return 0;
9175 case CALL_EXPR:
9176 return 0;
9178 case PREINCREMENT_EXPR:
9179 case PREDECREMENT_EXPR:
9180 case POSTINCREMENT_EXPR:
9181 case POSTDECREMENT_EXPR:
9182 /* There are no opcodes for these operations. */
9183 return 0;
9185 case ADDR_EXPR:
9186 /* If we already want an address, there's nothing we can do. */
9187 if (want_address)
9188 return 0;
9190 /* Otherwise, process the argument and look for the address. */
9191 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9193 case VAR_DECL:
9194 if (DECL_THREAD_LOCAL_P (loc))
9196 rtx rtl;
9198 /* If this is not defined, we have no way to emit the data. */
9199 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
9200 return 0;
9202 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9203 look up addresses of objects in the current module. */
9204 if (DECL_EXTERNAL (loc))
9205 return 0;
9207 rtl = rtl_for_decl_location (loc);
9208 if (rtl == NULL_RTX)
9209 return 0;
9211 if (!MEM_P (rtl))
9212 return 0;
9213 rtl = XEXP (rtl, 0);
9214 if (! CONSTANT_P (rtl))
9215 return 0;
9217 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9218 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9219 ret->dw_loc_oprnd1.v.val_addr = rtl;
9221 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9222 add_loc_descr (&ret, ret1);
9224 have_address = 1;
9225 break;
9227 /* FALLTHRU */
9229 case PARM_DECL:
9230 if (DECL_HAS_VALUE_EXPR_P (loc))
9231 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9232 want_address);
9233 /* FALLTHRU */
9235 case RESULT_DECL:
9236 case FUNCTION_DECL:
9238 rtx rtl = rtl_for_decl_location (loc);
9240 if (rtl == NULL_RTX)
9241 return 0;
9242 else if (GET_CODE (rtl) == CONST_INT)
9244 HOST_WIDE_INT val = INTVAL (rtl);
9245 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9246 val &= GET_MODE_MASK (DECL_MODE (loc));
9247 ret = int_loc_descriptor (val);
9249 else if (GET_CODE (rtl) == CONST_STRING)
9250 return 0;
9251 else if (CONSTANT_P (rtl))
9253 ret = new_loc_descr (DW_OP_addr, 0, 0);
9254 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9255 ret->dw_loc_oprnd1.v.val_addr = rtl;
9257 else
9259 enum machine_mode mode;
9261 /* Certain constructs can only be represented at top-level. */
9262 if (want_address == 2)
9263 return loc_descriptor (rtl);
9265 mode = GET_MODE (rtl);
9266 if (MEM_P (rtl))
9268 rtl = XEXP (rtl, 0);
9269 have_address = 1;
9271 ret = mem_loc_descriptor (rtl, mode);
9274 break;
9276 case INDIRECT_REF:
9277 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9278 have_address = 1;
9279 break;
9281 case COMPOUND_EXPR:
9282 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9284 case NOP_EXPR:
9285 case CONVERT_EXPR:
9286 case NON_LVALUE_EXPR:
9287 case VIEW_CONVERT_EXPR:
9288 case SAVE_EXPR:
9289 case GIMPLE_MODIFY_STMT:
9290 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9291 want_address);
9293 case COMPONENT_REF:
9294 case BIT_FIELD_REF:
9295 case ARRAY_REF:
9296 case ARRAY_RANGE_REF:
9298 tree obj, offset;
9299 HOST_WIDE_INT bitsize, bitpos, bytepos;
9300 enum machine_mode mode;
9301 int volatilep;
9302 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9304 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9305 &unsignedp, &volatilep, false);
9307 if (obj == loc)
9308 return 0;
9310 ret = loc_descriptor_from_tree_1 (obj, 1);
9311 if (ret == 0
9312 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9313 return 0;
9315 if (offset != NULL_TREE)
9317 /* Variable offset. */
9318 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9319 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9322 bytepos = bitpos / BITS_PER_UNIT;
9323 if (bytepos > 0)
9324 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9325 else if (bytepos < 0)
9327 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9328 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9331 have_address = 1;
9332 break;
9335 case INTEGER_CST:
9336 if (host_integerp (loc, 0))
9337 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9338 else
9339 return 0;
9340 break;
9342 case CONSTRUCTOR:
9344 /* Get an RTL for this, if something has been emitted. */
9345 rtx rtl = lookup_constant_def (loc);
9346 enum machine_mode mode;
9348 if (!rtl || !MEM_P (rtl))
9349 return 0;
9350 mode = GET_MODE (rtl);
9351 rtl = XEXP (rtl, 0);
9352 ret = mem_loc_descriptor (rtl, mode);
9353 have_address = 1;
9354 break;
9357 case TRUTH_AND_EXPR:
9358 case TRUTH_ANDIF_EXPR:
9359 case BIT_AND_EXPR:
9360 op = DW_OP_and;
9361 goto do_binop;
9363 case TRUTH_XOR_EXPR:
9364 case BIT_XOR_EXPR:
9365 op = DW_OP_xor;
9366 goto do_binop;
9368 case TRUTH_OR_EXPR:
9369 case TRUTH_ORIF_EXPR:
9370 case BIT_IOR_EXPR:
9371 op = DW_OP_or;
9372 goto do_binop;
9374 case FLOOR_DIV_EXPR:
9375 case CEIL_DIV_EXPR:
9376 case ROUND_DIV_EXPR:
9377 case TRUNC_DIV_EXPR:
9378 op = DW_OP_div;
9379 goto do_binop;
9381 case MINUS_EXPR:
9382 op = DW_OP_minus;
9383 goto do_binop;
9385 case FLOOR_MOD_EXPR:
9386 case CEIL_MOD_EXPR:
9387 case ROUND_MOD_EXPR:
9388 case TRUNC_MOD_EXPR:
9389 op = DW_OP_mod;
9390 goto do_binop;
9392 case MULT_EXPR:
9393 op = DW_OP_mul;
9394 goto do_binop;
9396 case LSHIFT_EXPR:
9397 op = DW_OP_shl;
9398 goto do_binop;
9400 case RSHIFT_EXPR:
9401 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9402 goto do_binop;
9404 case PLUS_EXPR:
9405 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9406 && host_integerp (TREE_OPERAND (loc, 1), 0))
9408 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9409 if (ret == 0)
9410 return 0;
9412 add_loc_descr (&ret,
9413 new_loc_descr (DW_OP_plus_uconst,
9414 tree_low_cst (TREE_OPERAND (loc, 1),
9416 0));
9417 break;
9420 op = DW_OP_plus;
9421 goto do_binop;
9423 case LE_EXPR:
9424 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9425 return 0;
9427 op = DW_OP_le;
9428 goto do_binop;
9430 case GE_EXPR:
9431 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9432 return 0;
9434 op = DW_OP_ge;
9435 goto do_binop;
9437 case LT_EXPR:
9438 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9439 return 0;
9441 op = DW_OP_lt;
9442 goto do_binop;
9444 case GT_EXPR:
9445 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9446 return 0;
9448 op = DW_OP_gt;
9449 goto do_binop;
9451 case EQ_EXPR:
9452 op = DW_OP_eq;
9453 goto do_binop;
9455 case NE_EXPR:
9456 op = DW_OP_ne;
9457 goto do_binop;
9459 do_binop:
9460 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9461 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9462 if (ret == 0 || ret1 == 0)
9463 return 0;
9465 add_loc_descr (&ret, ret1);
9466 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9467 break;
9469 case TRUTH_NOT_EXPR:
9470 case BIT_NOT_EXPR:
9471 op = DW_OP_not;
9472 goto do_unop;
9474 case ABS_EXPR:
9475 op = DW_OP_abs;
9476 goto do_unop;
9478 case NEGATE_EXPR:
9479 op = DW_OP_neg;
9480 goto do_unop;
9482 do_unop:
9483 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9484 if (ret == 0)
9485 return 0;
9487 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9488 break;
9490 case MIN_EXPR:
9491 case MAX_EXPR:
9493 const enum tree_code code =
9494 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9496 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9497 build2 (code, integer_type_node,
9498 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9499 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9502 /* ... fall through ... */
9504 case COND_EXPR:
9506 dw_loc_descr_ref lhs
9507 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9508 dw_loc_descr_ref rhs
9509 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9510 dw_loc_descr_ref bra_node, jump_node, tmp;
9512 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9513 if (ret == 0 || lhs == 0 || rhs == 0)
9514 return 0;
9516 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9517 add_loc_descr (&ret, bra_node);
9519 add_loc_descr (&ret, rhs);
9520 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9521 add_loc_descr (&ret, jump_node);
9523 add_loc_descr (&ret, lhs);
9524 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9525 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9527 /* ??? Need a node to point the skip at. Use a nop. */
9528 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9529 add_loc_descr (&ret, tmp);
9530 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9531 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9533 break;
9535 case FIX_TRUNC_EXPR:
9536 return 0;
9538 default:
9539 /* Leave front-end specific codes as simply unknown. This comes
9540 up, for instance, with the C STMT_EXPR. */
9541 if ((unsigned int) TREE_CODE (loc)
9542 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9543 return 0;
9545 #ifdef ENABLE_CHECKING
9546 /* Otherwise this is a generic code; we should just lists all of
9547 these explicitly. We forgot one. */
9548 gcc_unreachable ();
9549 #else
9550 /* In a release build, we want to degrade gracefully: better to
9551 generate incomplete debugging information than to crash. */
9552 return NULL;
9553 #endif
9556 /* Show if we can't fill the request for an address. */
9557 if (want_address && !have_address)
9558 return 0;
9560 /* If we've got an address and don't want one, dereference. */
9561 if (!want_address && have_address && ret)
9563 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9565 if (size > DWARF2_ADDR_SIZE || size == -1)
9566 return 0;
9567 else if (size == DWARF2_ADDR_SIZE)
9568 op = DW_OP_deref;
9569 else
9570 op = DW_OP_deref_size;
9572 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9575 return ret;
9578 static inline dw_loc_descr_ref
9579 loc_descriptor_from_tree (tree loc)
9581 return loc_descriptor_from_tree_1 (loc, 2);
9584 /* Given a value, round it up to the lowest multiple of `boundary'
9585 which is not less than the value itself. */
9587 static inline HOST_WIDE_INT
9588 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9590 return (((value + boundary - 1) / boundary) * boundary);
9593 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9594 pointer to the declared type for the relevant field variable, or return
9595 `integer_type_node' if the given node turns out to be an
9596 ERROR_MARK node. */
9598 static inline tree
9599 field_type (tree decl)
9601 tree type;
9603 if (TREE_CODE (decl) == ERROR_MARK)
9604 return integer_type_node;
9606 type = DECL_BIT_FIELD_TYPE (decl);
9607 if (type == NULL_TREE)
9608 type = TREE_TYPE (decl);
9610 return type;
9613 /* Given a pointer to a tree node, return the alignment in bits for
9614 it, or else return BITS_PER_WORD if the node actually turns out to
9615 be an ERROR_MARK node. */
9617 static inline unsigned
9618 simple_type_align_in_bits (tree type)
9620 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9623 static inline unsigned
9624 simple_decl_align_in_bits (tree decl)
9626 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9629 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9630 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9631 or return 0 if we are unable to determine what that offset is, either
9632 because the argument turns out to be a pointer to an ERROR_MARK node, or
9633 because the offset is actually variable. (We can't handle the latter case
9634 just yet). */
9636 static HOST_WIDE_INT
9637 field_byte_offset (tree decl)
9639 unsigned int type_align_in_bits;
9640 unsigned int decl_align_in_bits;
9641 unsigned HOST_WIDE_INT type_size_in_bits;
9642 HOST_WIDE_INT object_offset_in_bits;
9643 tree type;
9644 tree field_size_tree;
9645 HOST_WIDE_INT bitpos_int;
9646 HOST_WIDE_INT deepest_bitpos;
9647 unsigned HOST_WIDE_INT field_size_in_bits;
9649 if (TREE_CODE (decl) == ERROR_MARK)
9650 return 0;
9652 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9654 type = field_type (decl);
9655 field_size_tree = DECL_SIZE (decl);
9657 /* The size could be unspecified if there was an error, or for
9658 a flexible array member. */
9659 if (! field_size_tree)
9660 field_size_tree = bitsize_zero_node;
9662 /* We cannot yet cope with fields whose positions are variable, so
9663 for now, when we see such things, we simply return 0. Someday, we may
9664 be able to handle such cases, but it will be damn difficult. */
9665 if (! host_integerp (bit_position (decl), 0))
9666 return 0;
9668 bitpos_int = int_bit_position (decl);
9670 /* If we don't know the size of the field, pretend it's a full word. */
9671 if (host_integerp (field_size_tree, 1))
9672 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9673 else
9674 field_size_in_bits = BITS_PER_WORD;
9676 type_size_in_bits = simple_type_size_in_bits (type);
9677 type_align_in_bits = simple_type_align_in_bits (type);
9678 decl_align_in_bits = simple_decl_align_in_bits (decl);
9680 /* The GCC front-end doesn't make any attempt to keep track of the starting
9681 bit offset (relative to the start of the containing structure type) of the
9682 hypothetical "containing object" for a bit-field. Thus, when computing
9683 the byte offset value for the start of the "containing object" of a
9684 bit-field, we must deduce this information on our own. This can be rather
9685 tricky to do in some cases. For example, handling the following structure
9686 type definition when compiling for an i386/i486 target (which only aligns
9687 long long's to 32-bit boundaries) can be very tricky:
9689 struct S { int field1; long long field2:31; };
9691 Fortunately, there is a simple rule-of-thumb which can be used in such
9692 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9693 structure shown above. It decides to do this based upon one simple rule
9694 for bit-field allocation. GCC allocates each "containing object" for each
9695 bit-field at the first (i.e. lowest addressed) legitimate alignment
9696 boundary (based upon the required minimum alignment for the declared type
9697 of the field) which it can possibly use, subject to the condition that
9698 there is still enough available space remaining in the containing object
9699 (when allocated at the selected point) to fully accommodate all of the
9700 bits of the bit-field itself.
9702 This simple rule makes it obvious why GCC allocates 8 bytes for each
9703 object of the structure type shown above. When looking for a place to
9704 allocate the "containing object" for `field2', the compiler simply tries
9705 to allocate a 64-bit "containing object" at each successive 32-bit
9706 boundary (starting at zero) until it finds a place to allocate that 64-
9707 bit field such that at least 31 contiguous (and previously unallocated)
9708 bits remain within that selected 64 bit field. (As it turns out, for the
9709 example above, the compiler finds it is OK to allocate the "containing
9710 object" 64-bit field at bit-offset zero within the structure type.)
9712 Here we attempt to work backwards from the limited set of facts we're
9713 given, and we try to deduce from those facts, where GCC must have believed
9714 that the containing object started (within the structure type). The value
9715 we deduce is then used (by the callers of this routine) to generate
9716 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9717 and, in the case of DW_AT_location, regular fields as well). */
9719 /* Figure out the bit-distance from the start of the structure to the
9720 "deepest" bit of the bit-field. */
9721 deepest_bitpos = bitpos_int + field_size_in_bits;
9723 /* This is the tricky part. Use some fancy footwork to deduce where the
9724 lowest addressed bit of the containing object must be. */
9725 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9727 /* Round up to type_align by default. This works best for bitfields. */
9728 object_offset_in_bits += type_align_in_bits - 1;
9729 object_offset_in_bits /= type_align_in_bits;
9730 object_offset_in_bits *= type_align_in_bits;
9732 if (object_offset_in_bits > bitpos_int)
9734 /* Sigh, the decl must be packed. */
9735 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9737 /* Round up to decl_align instead. */
9738 object_offset_in_bits += decl_align_in_bits - 1;
9739 object_offset_in_bits /= decl_align_in_bits;
9740 object_offset_in_bits *= decl_align_in_bits;
9743 return object_offset_in_bits / BITS_PER_UNIT;
9746 /* The following routines define various Dwarf attributes and any data
9747 associated with them. */
9749 /* Add a location description attribute value to a DIE.
9751 This emits location attributes suitable for whole variables and
9752 whole parameters. Note that the location attributes for struct fields are
9753 generated by the routine `data_member_location_attribute' below. */
9755 static inline void
9756 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9757 dw_loc_descr_ref descr)
9759 if (descr != 0)
9760 add_AT_loc (die, attr_kind, descr);
9763 /* Attach the specialized form of location attribute used for data members of
9764 struct and union types. In the special case of a FIELD_DECL node which
9765 represents a bit-field, the "offset" part of this special location
9766 descriptor must indicate the distance in bytes from the lowest-addressed
9767 byte of the containing struct or union type to the lowest-addressed byte of
9768 the "containing object" for the bit-field. (See the `field_byte_offset'
9769 function above).
9771 For any given bit-field, the "containing object" is a hypothetical object
9772 (of some integral or enum type) within which the given bit-field lives. The
9773 type of this hypothetical "containing object" is always the same as the
9774 declared type of the individual bit-field itself (for GCC anyway... the
9775 DWARF spec doesn't actually mandate this). Note that it is the size (in
9776 bytes) of the hypothetical "containing object" which will be given in the
9777 DW_AT_byte_size attribute for this bit-field. (See the
9778 `byte_size_attribute' function below.) It is also used when calculating the
9779 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9780 function below.) */
9782 static void
9783 add_data_member_location_attribute (dw_die_ref die, tree decl)
9785 HOST_WIDE_INT offset;
9786 dw_loc_descr_ref loc_descr = 0;
9788 if (TREE_CODE (decl) == TREE_BINFO)
9790 /* We're working on the TAG_inheritance for a base class. */
9791 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9793 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9794 aren't at a fixed offset from all (sub)objects of the same
9795 type. We need to extract the appropriate offset from our
9796 vtable. The following dwarf expression means
9798 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9800 This is specific to the V3 ABI, of course. */
9802 dw_loc_descr_ref tmp;
9804 /* Make a copy of the object address. */
9805 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9806 add_loc_descr (&loc_descr, tmp);
9808 /* Extract the vtable address. */
9809 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9810 add_loc_descr (&loc_descr, tmp);
9812 /* Calculate the address of the offset. */
9813 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9814 gcc_assert (offset < 0);
9816 tmp = int_loc_descriptor (-offset);
9817 add_loc_descr (&loc_descr, tmp);
9818 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9819 add_loc_descr (&loc_descr, tmp);
9821 /* Extract the offset. */
9822 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9823 add_loc_descr (&loc_descr, tmp);
9825 /* Add it to the object address. */
9826 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9827 add_loc_descr (&loc_descr, tmp);
9829 else
9830 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9832 else
9833 offset = field_byte_offset (decl);
9835 if (! loc_descr)
9837 enum dwarf_location_atom op;
9839 /* The DWARF2 standard says that we should assume that the structure
9840 address is already on the stack, so we can specify a structure field
9841 address by using DW_OP_plus_uconst. */
9843 #ifdef MIPS_DEBUGGING_INFO
9844 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9845 operator correctly. It works only if we leave the offset on the
9846 stack. */
9847 op = DW_OP_constu;
9848 #else
9849 op = DW_OP_plus_uconst;
9850 #endif
9852 loc_descr = new_loc_descr (op, offset, 0);
9855 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9858 /* Writes integer values to dw_vec_const array. */
9860 static void
9861 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9863 while (size != 0)
9865 *dest++ = val & 0xff;
9866 val >>= 8;
9867 --size;
9871 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9873 static HOST_WIDE_INT
9874 extract_int (const unsigned char *src, unsigned int size)
9876 HOST_WIDE_INT val = 0;
9878 src += size;
9879 while (size != 0)
9881 val <<= 8;
9882 val |= *--src & 0xff;
9883 --size;
9885 return val;
9888 /* Writes floating point values to dw_vec_const array. */
9890 static void
9891 insert_float (rtx rtl, unsigned char *array)
9893 REAL_VALUE_TYPE rv;
9894 long val[4];
9895 int i;
9897 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9898 real_to_target (val, &rv, GET_MODE (rtl));
9900 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9901 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9903 insert_int (val[i], 4, array);
9904 array += 4;
9908 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9909 does not have a "location" either in memory or in a register. These
9910 things can arise in GNU C when a constant is passed as an actual parameter
9911 to an inlined function. They can also arise in C++ where declared
9912 constants do not necessarily get memory "homes". */
9914 static void
9915 add_const_value_attribute (dw_die_ref die, rtx rtl)
9917 switch (GET_CODE (rtl))
9919 case CONST_INT:
9921 HOST_WIDE_INT val = INTVAL (rtl);
9923 if (val < 0)
9924 add_AT_int (die, DW_AT_const_value, val);
9925 else
9926 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9928 break;
9930 case CONST_DOUBLE:
9931 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9932 floating-point constant. A CONST_DOUBLE is used whenever the
9933 constant requires more than one word in order to be adequately
9934 represented. We output CONST_DOUBLEs as blocks. */
9936 enum machine_mode mode = GET_MODE (rtl);
9938 if (SCALAR_FLOAT_MODE_P (mode))
9940 unsigned int length = GET_MODE_SIZE (mode);
9941 unsigned char *array = ggc_alloc (length);
9943 insert_float (rtl, array);
9944 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9946 else
9948 /* ??? We really should be using HOST_WIDE_INT throughout. */
9949 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9951 add_AT_long_long (die, DW_AT_const_value,
9952 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9955 break;
9957 case CONST_VECTOR:
9959 enum machine_mode mode = GET_MODE (rtl);
9960 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9961 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9962 unsigned char *array = ggc_alloc (length * elt_size);
9963 unsigned int i;
9964 unsigned char *p;
9966 switch (GET_MODE_CLASS (mode))
9968 case MODE_VECTOR_INT:
9969 for (i = 0, p = array; i < length; i++, p += elt_size)
9971 rtx elt = CONST_VECTOR_ELT (rtl, i);
9972 HOST_WIDE_INT lo, hi;
9974 switch (GET_CODE (elt))
9976 case CONST_INT:
9977 lo = INTVAL (elt);
9978 hi = -(lo < 0);
9979 break;
9981 case CONST_DOUBLE:
9982 lo = CONST_DOUBLE_LOW (elt);
9983 hi = CONST_DOUBLE_HIGH (elt);
9984 break;
9986 default:
9987 gcc_unreachable ();
9990 if (elt_size <= sizeof (HOST_WIDE_INT))
9991 insert_int (lo, elt_size, p);
9992 else
9994 unsigned char *p0 = p;
9995 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9997 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9998 if (WORDS_BIG_ENDIAN)
10000 p0 = p1;
10001 p1 = p;
10003 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
10004 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
10007 break;
10009 case MODE_VECTOR_FLOAT:
10010 for (i = 0, p = array; i < length; i++, p += elt_size)
10012 rtx elt = CONST_VECTOR_ELT (rtl, i);
10013 insert_float (elt, p);
10015 break;
10017 default:
10018 gcc_unreachable ();
10021 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10023 break;
10025 case CONST_STRING:
10026 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10027 break;
10029 case SYMBOL_REF:
10030 case LABEL_REF:
10031 case CONST:
10032 add_AT_addr (die, DW_AT_const_value, rtl);
10033 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10034 break;
10036 case PLUS:
10037 /* In cases where an inlined instance of an inline function is passed
10038 the address of an `auto' variable (which is local to the caller) we
10039 can get a situation where the DECL_RTL of the artificial local
10040 variable (for the inlining) which acts as a stand-in for the
10041 corresponding formal parameter (of the inline function) will look
10042 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10043 exactly a compile-time constant expression, but it isn't the address
10044 of the (artificial) local variable either. Rather, it represents the
10045 *value* which the artificial local variable always has during its
10046 lifetime. We currently have no way to represent such quasi-constant
10047 values in Dwarf, so for now we just punt and generate nothing. */
10048 break;
10050 default:
10051 /* No other kinds of rtx should be possible here. */
10052 gcc_unreachable ();
10057 /* Determine whether the evaluation of EXPR references any variables
10058 or functions which aren't otherwise used (and therefore may not be
10059 output). */
10060 static tree
10061 reference_to_unused (tree * tp, int * walk_subtrees,
10062 void * data ATTRIBUTE_UNUSED)
10064 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10065 *walk_subtrees = 0;
10067 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10068 && ! TREE_ASM_WRITTEN (*tp))
10069 return *tp;
10070 else if (DECL_P (*tp) && TREE_CODE (*tp) != FUNCTION_DECL)
10072 struct varpool_node *node = varpool_node (*tp);
10073 if (!node->needed)
10074 return *tp;
10077 return NULL_TREE;
10080 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10081 for use in a later add_const_value_attribute call. */
10083 static rtx
10084 rtl_for_decl_init (tree init, tree type)
10086 rtx rtl = NULL_RTX;
10088 /* If a variable is initialized with a string constant without embedded
10089 zeros, build CONST_STRING. */
10090 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10092 tree enttype = TREE_TYPE (type);
10093 tree domain = TYPE_DOMAIN (type);
10094 enum machine_mode mode = TYPE_MODE (enttype);
10096 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10097 && domain
10098 && integer_zerop (TYPE_MIN_VALUE (domain))
10099 && compare_tree_int (TYPE_MAX_VALUE (domain),
10100 TREE_STRING_LENGTH (init) - 1) == 0
10101 && ((size_t) TREE_STRING_LENGTH (init)
10102 == strlen (TREE_STRING_POINTER (init)) + 1))
10103 rtl = gen_rtx_CONST_STRING (VOIDmode,
10104 ggc_strdup (TREE_STRING_POINTER (init)));
10106 /* Other aggregates, and complex values, could be represented using
10107 CONCAT: FIXME! */
10108 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10110 /* Vectors only work if their mode is supported by the target.
10111 FIXME: generic vectors ought to work too. */
10112 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10114 /* If the initializer is something that we know will expand into an
10115 immediate RTL constant, expand it now. We must be careful not to
10116 reference variables which won't be output. */
10117 else if (initializer_constant_valid_p (init, type)
10118 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10120 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10122 /* If expand_expr returns a MEM, it wasn't immediate. */
10123 gcc_assert (!rtl || !MEM_P (rtl));
10126 return rtl;
10129 /* Generate RTL for the variable DECL to represent its location. */
10131 static rtx
10132 rtl_for_decl_location (tree decl)
10134 rtx rtl;
10136 /* Here we have to decide where we are going to say the parameter "lives"
10137 (as far as the debugger is concerned). We only have a couple of
10138 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10140 DECL_RTL normally indicates where the parameter lives during most of the
10141 activation of the function. If optimization is enabled however, this
10142 could be either NULL or else a pseudo-reg. Both of those cases indicate
10143 that the parameter doesn't really live anywhere (as far as the code
10144 generation parts of GCC are concerned) during most of the function's
10145 activation. That will happen (for example) if the parameter is never
10146 referenced within the function.
10148 We could just generate a location descriptor here for all non-NULL
10149 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10150 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10151 where DECL_RTL is NULL or is a pseudo-reg.
10153 Note however that we can only get away with using DECL_INCOMING_RTL as
10154 a backup substitute for DECL_RTL in certain limited cases. In cases
10155 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10156 we can be sure that the parameter was passed using the same type as it is
10157 declared to have within the function, and that its DECL_INCOMING_RTL
10158 points us to a place where a value of that type is passed.
10160 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10161 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10162 because in these cases DECL_INCOMING_RTL points us to a value of some
10163 type which is *different* from the type of the parameter itself. Thus,
10164 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10165 such cases, the debugger would end up (for example) trying to fetch a
10166 `float' from a place which actually contains the first part of a
10167 `double'. That would lead to really incorrect and confusing
10168 output at debug-time.
10170 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10171 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10172 are a couple of exceptions however. On little-endian machines we can
10173 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10174 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10175 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10176 when (on a little-endian machine) a non-prototyped function has a
10177 parameter declared to be of type `short' or `char'. In such cases,
10178 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10179 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10180 passed `int' value. If the debugger then uses that address to fetch
10181 a `short' or a `char' (on a little-endian machine) the result will be
10182 the correct data, so we allow for such exceptional cases below.
10184 Note that our goal here is to describe the place where the given formal
10185 parameter lives during most of the function's activation (i.e. between the
10186 end of the prologue and the start of the epilogue). We'll do that as best
10187 as we can. Note however that if the given formal parameter is modified
10188 sometime during the execution of the function, then a stack backtrace (at
10189 debug-time) will show the function as having been called with the *new*
10190 value rather than the value which was originally passed in. This happens
10191 rarely enough that it is not a major problem, but it *is* a problem, and
10192 I'd like to fix it.
10194 A future version of dwarf2out.c may generate two additional attributes for
10195 any given DW_TAG_formal_parameter DIE which will describe the "passed
10196 type" and the "passed location" for the given formal parameter in addition
10197 to the attributes we now generate to indicate the "declared type" and the
10198 "active location" for each parameter. This additional set of attributes
10199 could be used by debuggers for stack backtraces. Separately, note that
10200 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10201 This happens (for example) for inlined-instances of inline function formal
10202 parameters which are never referenced. This really shouldn't be
10203 happening. All PARM_DECL nodes should get valid non-NULL
10204 DECL_INCOMING_RTL values. FIXME. */
10206 /* Use DECL_RTL as the "location" unless we find something better. */
10207 rtl = DECL_RTL_IF_SET (decl);
10209 /* When generating abstract instances, ignore everything except
10210 constants, symbols living in memory, and symbols living in
10211 fixed registers. */
10212 if (! reload_completed)
10214 if (rtl
10215 && (CONSTANT_P (rtl)
10216 || (MEM_P (rtl)
10217 && CONSTANT_P (XEXP (rtl, 0)))
10218 || (REG_P (rtl)
10219 && TREE_CODE (decl) == VAR_DECL
10220 && TREE_STATIC (decl))))
10222 rtl = targetm.delegitimize_address (rtl);
10223 return rtl;
10225 rtl = NULL_RTX;
10227 else if (TREE_CODE (decl) == PARM_DECL)
10229 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10231 tree declared_type = TREE_TYPE (decl);
10232 tree passed_type = DECL_ARG_TYPE (decl);
10233 enum machine_mode dmode = TYPE_MODE (declared_type);
10234 enum machine_mode pmode = TYPE_MODE (passed_type);
10236 /* This decl represents a formal parameter which was optimized out.
10237 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10238 all cases where (rtl == NULL_RTX) just below. */
10239 if (dmode == pmode)
10240 rtl = DECL_INCOMING_RTL (decl);
10241 else if (SCALAR_INT_MODE_P (dmode)
10242 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10243 && DECL_INCOMING_RTL (decl))
10245 rtx inc = DECL_INCOMING_RTL (decl);
10246 if (REG_P (inc))
10247 rtl = inc;
10248 else if (MEM_P (inc))
10250 if (BYTES_BIG_ENDIAN)
10251 rtl = adjust_address_nv (inc, dmode,
10252 GET_MODE_SIZE (pmode)
10253 - GET_MODE_SIZE (dmode));
10254 else
10255 rtl = inc;
10260 /* If the parm was passed in registers, but lives on the stack, then
10261 make a big endian correction if the mode of the type of the
10262 parameter is not the same as the mode of the rtl. */
10263 /* ??? This is the same series of checks that are made in dbxout.c before
10264 we reach the big endian correction code there. It isn't clear if all
10265 of these checks are necessary here, but keeping them all is the safe
10266 thing to do. */
10267 else if (MEM_P (rtl)
10268 && XEXP (rtl, 0) != const0_rtx
10269 && ! CONSTANT_P (XEXP (rtl, 0))
10270 /* Not passed in memory. */
10271 && !MEM_P (DECL_INCOMING_RTL (decl))
10272 /* Not passed by invisible reference. */
10273 && (!REG_P (XEXP (rtl, 0))
10274 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10275 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10276 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10277 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10278 #endif
10280 /* Big endian correction check. */
10281 && BYTES_BIG_ENDIAN
10282 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10283 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10284 < UNITS_PER_WORD))
10286 int offset = (UNITS_PER_WORD
10287 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10289 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10290 plus_constant (XEXP (rtl, 0), offset));
10293 else if (TREE_CODE (decl) == VAR_DECL
10294 && rtl
10295 && MEM_P (rtl)
10296 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10297 && BYTES_BIG_ENDIAN)
10299 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10300 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10302 /* If a variable is declared "register" yet is smaller than
10303 a register, then if we store the variable to memory, it
10304 looks like we're storing a register-sized value, when in
10305 fact we are not. We need to adjust the offset of the
10306 storage location to reflect the actual value's bytes,
10307 else gdb will not be able to display it. */
10308 if (rsize > dsize)
10309 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10310 plus_constant (XEXP (rtl, 0), rsize-dsize));
10313 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10314 and will have been substituted directly into all expressions that use it.
10315 C does not have such a concept, but C++ and other languages do. */
10316 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10317 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10319 if (rtl)
10320 rtl = targetm.delegitimize_address (rtl);
10322 /* If we don't look past the constant pool, we risk emitting a
10323 reference to a constant pool entry that isn't referenced from
10324 code, and thus is not emitted. */
10325 if (rtl)
10326 rtl = avoid_constant_pool_reference (rtl);
10328 return rtl;
10331 /* We need to figure out what section we should use as the base for the
10332 address ranges where a given location is valid.
10333 1. If this particular DECL has a section associated with it, use that.
10334 2. If this function has a section associated with it, use that.
10335 3. Otherwise, use the text section.
10336 XXX: If you split a variable across multiple sections, we won't notice. */
10338 static const char *
10339 secname_for_decl (tree decl)
10341 const char *secname;
10343 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10345 tree sectree = DECL_SECTION_NAME (decl);
10346 secname = TREE_STRING_POINTER (sectree);
10348 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10350 tree sectree = DECL_SECTION_NAME (current_function_decl);
10351 secname = TREE_STRING_POINTER (sectree);
10353 else if (cfun && in_cold_section_p)
10354 secname = cfun->cold_section_label;
10355 else
10356 secname = text_section_label;
10358 return secname;
10361 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10362 data attribute for a variable or a parameter. We generate the
10363 DW_AT_const_value attribute only in those cases where the given variable
10364 or parameter does not have a true "location" either in memory or in a
10365 register. This can happen (for example) when a constant is passed as an
10366 actual argument in a call to an inline function. (It's possible that
10367 these things can crop up in other ways also.) Note that one type of
10368 constant value which can be passed into an inlined function is a constant
10369 pointer. This can happen for example if an actual argument in an inlined
10370 function call evaluates to a compile-time constant address. */
10372 static void
10373 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10374 enum dwarf_attribute attr)
10376 rtx rtl;
10377 dw_loc_descr_ref descr;
10378 var_loc_list *loc_list;
10379 struct var_loc_node *node;
10380 if (TREE_CODE (decl) == ERROR_MARK)
10381 return;
10383 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10384 || TREE_CODE (decl) == RESULT_DECL);
10386 /* See if we possibly have multiple locations for this variable. */
10387 loc_list = lookup_decl_loc (decl);
10389 /* If it truly has multiple locations, the first and last node will
10390 differ. */
10391 if (loc_list && loc_list->first != loc_list->last)
10393 const char *endname, *secname;
10394 dw_loc_list_ref list;
10395 rtx varloc;
10397 /* Now that we know what section we are using for a base,
10398 actually construct the list of locations.
10399 The first location information is what is passed to the
10400 function that creates the location list, and the remaining
10401 locations just get added on to that list.
10402 Note that we only know the start address for a location
10403 (IE location changes), so to build the range, we use
10404 the range [current location start, next location start].
10405 This means we have to special case the last node, and generate
10406 a range of [last location start, end of function label]. */
10408 node = loc_list->first;
10409 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10410 secname = secname_for_decl (decl);
10412 list = new_loc_list (loc_descriptor (varloc),
10413 node->label, node->next->label, secname, 1);
10414 node = node->next;
10416 for (; node->next; node = node->next)
10417 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10419 /* The variable has a location between NODE->LABEL and
10420 NODE->NEXT->LABEL. */
10421 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10422 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10423 node->label, node->next->label, secname);
10426 /* If the variable has a location at the last label
10427 it keeps its location until the end of function. */
10428 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10430 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10432 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10433 if (!current_function_decl)
10434 endname = text_end_label;
10435 else
10437 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10438 current_function_funcdef_no);
10439 endname = ggc_strdup (label_id);
10441 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10442 node->label, endname, secname);
10445 /* Finally, add the location list to the DIE, and we are done. */
10446 add_AT_loc_list (die, attr, list);
10447 return;
10450 /* Try to get some constant RTL for this decl, and use that as the value of
10451 the location. */
10453 rtl = rtl_for_decl_location (decl);
10454 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10456 add_const_value_attribute (die, rtl);
10457 return;
10460 /* If we have tried to generate the location otherwise, and it
10461 didn't work out (we wouldn't be here if we did), and we have a one entry
10462 location list, try generating a location from that. */
10463 if (loc_list && loc_list->first)
10465 node = loc_list->first;
10466 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10467 if (descr)
10469 add_AT_location_description (die, attr, descr);
10470 return;
10474 /* We couldn't get any rtl, so try directly generating the location
10475 description from the tree. */
10476 descr = loc_descriptor_from_tree (decl);
10477 if (descr)
10479 add_AT_location_description (die, attr, descr);
10480 return;
10482 /* None of that worked, so it must not really have a location;
10483 try adding a constant value attribute from the DECL_INITIAL. */
10484 tree_add_const_value_attribute (die, decl);
10487 /* If we don't have a copy of this variable in memory for some reason (such
10488 as a C++ member constant that doesn't have an out-of-line definition),
10489 we should tell the debugger about the constant value. */
10491 static void
10492 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10494 tree init = DECL_INITIAL (decl);
10495 tree type = TREE_TYPE (decl);
10496 rtx rtl;
10498 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10499 /* OK */;
10500 else
10501 return;
10503 rtl = rtl_for_decl_init (init, type);
10504 if (rtl)
10505 add_const_value_attribute (var_die, rtl);
10508 /* Convert the CFI instructions for the current function into a
10509 location list. This is used for DW_AT_frame_base when we targeting
10510 a dwarf2 consumer that does not support the dwarf3
10511 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10512 expressions. */
10514 static dw_loc_list_ref
10515 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10517 dw_fde_ref fde;
10518 dw_loc_list_ref list, *list_tail;
10519 dw_cfi_ref cfi;
10520 dw_cfa_location last_cfa, next_cfa;
10521 const char *start_label, *last_label, *section;
10523 fde = &fde_table[fde_table_in_use - 1];
10525 section = secname_for_decl (current_function_decl);
10526 list_tail = &list;
10527 list = NULL;
10529 next_cfa.reg = INVALID_REGNUM;
10530 next_cfa.offset = 0;
10531 next_cfa.indirect = 0;
10532 next_cfa.base_offset = 0;
10534 start_label = fde->dw_fde_begin;
10536 /* ??? Bald assumption that the CIE opcode list does not contain
10537 advance opcodes. */
10538 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10539 lookup_cfa_1 (cfi, &next_cfa);
10541 last_cfa = next_cfa;
10542 last_label = start_label;
10544 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10545 switch (cfi->dw_cfi_opc)
10547 case DW_CFA_set_loc:
10548 case DW_CFA_advance_loc1:
10549 case DW_CFA_advance_loc2:
10550 case DW_CFA_advance_loc4:
10551 if (!cfa_equal_p (&last_cfa, &next_cfa))
10553 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10554 start_label, last_label, section,
10555 list == NULL);
10557 list_tail = &(*list_tail)->dw_loc_next;
10558 last_cfa = next_cfa;
10559 start_label = last_label;
10561 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10562 break;
10564 case DW_CFA_advance_loc:
10565 /* The encoding is complex enough that we should never emit this. */
10566 case DW_CFA_remember_state:
10567 case DW_CFA_restore_state:
10568 /* We don't handle these two in this function. It would be possible
10569 if it were to be required. */
10570 gcc_unreachable ();
10572 default:
10573 lookup_cfa_1 (cfi, &next_cfa);
10574 break;
10577 if (!cfa_equal_p (&last_cfa, &next_cfa))
10579 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10580 start_label, last_label, section,
10581 list == NULL);
10582 list_tail = &(*list_tail)->dw_loc_next;
10583 start_label = last_label;
10585 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10586 start_label, fde->dw_fde_end, section,
10587 list == NULL);
10589 return list;
10592 /* Compute a displacement from the "steady-state frame pointer" to the
10593 frame base (often the same as the CFA), and store it in
10594 frame_pointer_fb_offset. OFFSET is added to the displacement
10595 before the latter is negated. */
10597 static void
10598 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10600 rtx reg, elim;
10602 #ifdef FRAME_POINTER_CFA_OFFSET
10603 reg = frame_pointer_rtx;
10604 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10605 #else
10606 reg = arg_pointer_rtx;
10607 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10608 #endif
10610 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10611 if (GET_CODE (elim) == PLUS)
10613 offset += INTVAL (XEXP (elim, 1));
10614 elim = XEXP (elim, 0);
10616 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10617 : stack_pointer_rtx));
10619 frame_pointer_fb_offset = -offset;
10622 /* Generate a DW_AT_name attribute given some string value to be included as
10623 the value of the attribute. */
10625 static void
10626 add_name_attribute (dw_die_ref die, const char *name_string)
10628 if (name_string != NULL && *name_string != 0)
10630 if (demangle_name_func)
10631 name_string = (*demangle_name_func) (name_string);
10633 add_AT_string (die, DW_AT_name, name_string);
10637 /* Generate a DW_AT_comp_dir attribute for DIE. */
10639 static void
10640 add_comp_dir_attribute (dw_die_ref die)
10642 const char *wd = get_src_pwd ();
10643 if (wd != NULL)
10644 add_AT_string (die, DW_AT_comp_dir, wd);
10647 /* Given a tree node describing an array bound (either lower or upper) output
10648 a representation for that bound. */
10650 static void
10651 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10653 switch (TREE_CODE (bound))
10655 case ERROR_MARK:
10656 return;
10658 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10659 case INTEGER_CST:
10660 if (! host_integerp (bound, 0)
10661 || (bound_attr == DW_AT_lower_bound
10662 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10663 || (is_fortran () && integer_onep (bound)))))
10664 /* Use the default. */
10666 else
10667 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10668 break;
10670 case CONVERT_EXPR:
10671 case NOP_EXPR:
10672 case NON_LVALUE_EXPR:
10673 case VIEW_CONVERT_EXPR:
10674 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10675 break;
10677 case SAVE_EXPR:
10678 break;
10680 case VAR_DECL:
10681 case PARM_DECL:
10682 case RESULT_DECL:
10684 dw_die_ref decl_die = lookup_decl_die (bound);
10686 /* ??? Can this happen, or should the variable have been bound
10687 first? Probably it can, since I imagine that we try to create
10688 the types of parameters in the order in which they exist in
10689 the list, and won't have created a forward reference to a
10690 later parameter. */
10691 if (decl_die != NULL)
10692 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10693 break;
10696 default:
10698 /* Otherwise try to create a stack operation procedure to
10699 evaluate the value of the array bound. */
10701 dw_die_ref ctx, decl_die;
10702 dw_loc_descr_ref loc;
10704 loc = loc_descriptor_from_tree (bound);
10705 if (loc == NULL)
10706 break;
10708 if (current_function_decl == 0)
10709 ctx = comp_unit_die;
10710 else
10711 ctx = lookup_decl_die (current_function_decl);
10713 decl_die = new_die (DW_TAG_variable, ctx, bound);
10714 add_AT_flag (decl_die, DW_AT_artificial, 1);
10715 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10716 add_AT_loc (decl_die, DW_AT_location, loc);
10718 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10719 break;
10724 /* Note that the block of subscript information for an array type also
10725 includes information about the element type of type given array type. */
10727 static void
10728 add_subscript_info (dw_die_ref type_die, tree type)
10730 #ifndef MIPS_DEBUGGING_INFO
10731 unsigned dimension_number;
10732 #endif
10733 tree lower, upper;
10734 dw_die_ref subrange_die;
10736 /* The GNU compilers represent multidimensional array types as sequences of
10737 one dimensional array types whose element types are themselves array
10738 types. Here we squish that down, so that each multidimensional array
10739 type gets only one array_type DIE in the Dwarf debugging info. The draft
10740 Dwarf specification say that we are allowed to do this kind of
10741 compression in C (because there is no difference between an array or
10742 arrays and a multidimensional array in C) but for other source languages
10743 (e.g. Ada) we probably shouldn't do this. */
10745 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10746 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10747 We work around this by disabling this feature. See also
10748 gen_array_type_die. */
10749 #ifndef MIPS_DEBUGGING_INFO
10750 for (dimension_number = 0;
10751 TREE_CODE (type) == ARRAY_TYPE;
10752 type = TREE_TYPE (type), dimension_number++)
10753 #endif
10755 tree domain = TYPE_DOMAIN (type);
10757 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10758 and (in GNU C only) variable bounds. Handle all three forms
10759 here. */
10760 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10761 if (domain)
10763 /* We have an array type with specified bounds. */
10764 lower = TYPE_MIN_VALUE (domain);
10765 upper = TYPE_MAX_VALUE (domain);
10767 /* Define the index type. */
10768 if (TREE_TYPE (domain))
10770 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10771 TREE_TYPE field. We can't emit debug info for this
10772 because it is an unnamed integral type. */
10773 if (TREE_CODE (domain) == INTEGER_TYPE
10774 && TYPE_NAME (domain) == NULL_TREE
10775 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10776 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10778 else
10779 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10780 type_die);
10783 /* ??? If upper is NULL, the array has unspecified length,
10784 but it does have a lower bound. This happens with Fortran
10785 dimension arr(N:*)
10786 Since the debugger is definitely going to need to know N
10787 to produce useful results, go ahead and output the lower
10788 bound solo, and hope the debugger can cope. */
10790 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10791 if (upper)
10792 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10795 /* Otherwise we have an array type with an unspecified length. The
10796 DWARF-2 spec does not say how to handle this; let's just leave out the
10797 bounds. */
10801 static void
10802 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10804 unsigned size;
10806 switch (TREE_CODE (tree_node))
10808 case ERROR_MARK:
10809 size = 0;
10810 break;
10811 case ENUMERAL_TYPE:
10812 case RECORD_TYPE:
10813 case UNION_TYPE:
10814 case QUAL_UNION_TYPE:
10815 size = int_size_in_bytes (tree_node);
10816 break;
10817 case FIELD_DECL:
10818 /* For a data member of a struct or union, the DW_AT_byte_size is
10819 generally given as the number of bytes normally allocated for an
10820 object of the *declared* type of the member itself. This is true
10821 even for bit-fields. */
10822 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10823 break;
10824 default:
10825 gcc_unreachable ();
10828 /* Note that `size' might be -1 when we get to this point. If it is, that
10829 indicates that the byte size of the entity in question is variable. We
10830 have no good way of expressing this fact in Dwarf at the present time,
10831 so just let the -1 pass on through. */
10832 add_AT_unsigned (die, DW_AT_byte_size, size);
10835 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10836 which specifies the distance in bits from the highest order bit of the
10837 "containing object" for the bit-field to the highest order bit of the
10838 bit-field itself.
10840 For any given bit-field, the "containing object" is a hypothetical object
10841 (of some integral or enum type) within which the given bit-field lives. The
10842 type of this hypothetical "containing object" is always the same as the
10843 declared type of the individual bit-field itself. The determination of the
10844 exact location of the "containing object" for a bit-field is rather
10845 complicated. It's handled by the `field_byte_offset' function (above).
10847 Note that it is the size (in bytes) of the hypothetical "containing object"
10848 which will be given in the DW_AT_byte_size attribute for this bit-field.
10849 (See `byte_size_attribute' above). */
10851 static inline void
10852 add_bit_offset_attribute (dw_die_ref die, tree decl)
10854 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10855 tree type = DECL_BIT_FIELD_TYPE (decl);
10856 HOST_WIDE_INT bitpos_int;
10857 HOST_WIDE_INT highest_order_object_bit_offset;
10858 HOST_WIDE_INT highest_order_field_bit_offset;
10859 HOST_WIDE_INT unsigned bit_offset;
10861 /* Must be a field and a bit field. */
10862 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10864 /* We can't yet handle bit-fields whose offsets are variable, so if we
10865 encounter such things, just return without generating any attribute
10866 whatsoever. Likewise for variable or too large size. */
10867 if (! host_integerp (bit_position (decl), 0)
10868 || ! host_integerp (DECL_SIZE (decl), 1))
10869 return;
10871 bitpos_int = int_bit_position (decl);
10873 /* Note that the bit offset is always the distance (in bits) from the
10874 highest-order bit of the "containing object" to the highest-order bit of
10875 the bit-field itself. Since the "high-order end" of any object or field
10876 is different on big-endian and little-endian machines, the computation
10877 below must take account of these differences. */
10878 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10879 highest_order_field_bit_offset = bitpos_int;
10881 if (! BYTES_BIG_ENDIAN)
10883 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10884 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10887 bit_offset
10888 = (! BYTES_BIG_ENDIAN
10889 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10890 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10892 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10895 /* For a FIELD_DECL node which represents a bit field, output an attribute
10896 which specifies the length in bits of the given field. */
10898 static inline void
10899 add_bit_size_attribute (dw_die_ref die, tree decl)
10901 /* Must be a field and a bit field. */
10902 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10903 && DECL_BIT_FIELD_TYPE (decl));
10905 if (host_integerp (DECL_SIZE (decl), 1))
10906 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10909 /* If the compiled language is ANSI C, then add a 'prototyped'
10910 attribute, if arg types are given for the parameters of a function. */
10912 static inline void
10913 add_prototyped_attribute (dw_die_ref die, tree func_type)
10915 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10916 && TYPE_ARG_TYPES (func_type) != NULL)
10917 add_AT_flag (die, DW_AT_prototyped, 1);
10920 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10921 by looking in either the type declaration or object declaration
10922 equate table. */
10924 static inline void
10925 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10927 dw_die_ref origin_die = NULL;
10929 if (TREE_CODE (origin) != FUNCTION_DECL)
10931 /* We may have gotten separated from the block for the inlined
10932 function, if we're in an exception handler or some such; make
10933 sure that the abstract function has been written out.
10935 Doing this for nested functions is wrong, however; functions are
10936 distinct units, and our context might not even be inline. */
10937 tree fn = origin;
10939 if (TYPE_P (fn))
10940 fn = TYPE_STUB_DECL (fn);
10942 fn = decl_function_context (fn);
10943 if (fn)
10944 dwarf2out_abstract_function (fn);
10947 if (DECL_P (origin))
10948 origin_die = lookup_decl_die (origin);
10949 else if (TYPE_P (origin))
10950 origin_die = lookup_type_die (origin);
10952 /* XXX: Functions that are never lowered don't always have correct block
10953 trees (in the case of java, they simply have no block tree, in some other
10954 languages). For these functions, there is nothing we can really do to
10955 output correct debug info for inlined functions in all cases. Rather
10956 than die, we'll just produce deficient debug info now, in that we will
10957 have variables without a proper abstract origin. In the future, when all
10958 functions are lowered, we should re-add a gcc_assert (origin_die)
10959 here. */
10961 if (origin_die)
10962 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10965 /* We do not currently support the pure_virtual attribute. */
10967 static inline void
10968 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10970 if (DECL_VINDEX (func_decl))
10972 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10974 if (host_integerp (DECL_VINDEX (func_decl), 0))
10975 add_AT_loc (die, DW_AT_vtable_elem_location,
10976 new_loc_descr (DW_OP_constu,
10977 tree_low_cst (DECL_VINDEX (func_decl), 0),
10978 0));
10980 /* GNU extension: Record what type this method came from originally. */
10981 if (debug_info_level > DINFO_LEVEL_TERSE)
10982 add_AT_die_ref (die, DW_AT_containing_type,
10983 lookup_type_die (DECL_CONTEXT (func_decl)));
10987 /* Add source coordinate attributes for the given decl. */
10989 static void
10990 add_src_coords_attributes (dw_die_ref die, tree decl)
10992 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10994 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10995 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10998 /* Add a DW_AT_name attribute and source coordinate attribute for the
10999 given decl, but only if it actually has a name. */
11001 static void
11002 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
11004 tree decl_name;
11006 decl_name = DECL_NAME (decl);
11007 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
11009 add_name_attribute (die, dwarf2_name (decl, 0));
11010 if (! DECL_ARTIFICIAL (decl))
11011 add_src_coords_attributes (die, decl);
11013 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
11014 && TREE_PUBLIC (decl)
11015 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
11016 && !DECL_ABSTRACT (decl)
11017 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
11018 add_AT_string (die, DW_AT_MIPS_linkage_name,
11019 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
11022 #ifdef VMS_DEBUGGING_INFO
11023 /* Get the function's name, as described by its RTL. This may be different
11024 from the DECL_NAME name used in the source file. */
11025 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11027 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11028 XEXP (DECL_RTL (decl), 0));
11029 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11031 #endif
11034 /* Push a new declaration scope. */
11036 static void
11037 push_decl_scope (tree scope)
11039 VEC_safe_push (tree, gc, decl_scope_table, scope);
11042 /* Pop a declaration scope. */
11044 static inline void
11045 pop_decl_scope (void)
11047 VEC_pop (tree, decl_scope_table);
11050 /* Return the DIE for the scope that immediately contains this type.
11051 Non-named types get global scope. Named types nested in other
11052 types get their containing scope if it's open, or global scope
11053 otherwise. All other types (i.e. function-local named types) get
11054 the current active scope. */
11056 static dw_die_ref
11057 scope_die_for (tree t, dw_die_ref context_die)
11059 dw_die_ref scope_die = NULL;
11060 tree containing_scope;
11061 int i;
11063 /* Non-types always go in the current scope. */
11064 gcc_assert (TYPE_P (t));
11066 containing_scope = TYPE_CONTEXT (t);
11068 /* Use the containing namespace if it was passed in (for a declaration). */
11069 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11071 if (context_die == lookup_decl_die (containing_scope))
11072 /* OK */;
11073 else
11074 containing_scope = NULL_TREE;
11077 /* Ignore function type "scopes" from the C frontend. They mean that
11078 a tagged type is local to a parmlist of a function declarator, but
11079 that isn't useful to DWARF. */
11080 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11081 containing_scope = NULL_TREE;
11083 if (containing_scope == NULL_TREE)
11084 scope_die = comp_unit_die;
11085 else if (TYPE_P (containing_scope))
11087 /* For types, we can just look up the appropriate DIE. But
11088 first we check to see if we're in the middle of emitting it
11089 so we know where the new DIE should go. */
11090 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11091 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11092 break;
11094 if (i < 0)
11096 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11097 || TREE_ASM_WRITTEN (containing_scope));
11099 /* If none of the current dies are suitable, we get file scope. */
11100 scope_die = comp_unit_die;
11102 else
11103 scope_die = lookup_type_die (containing_scope);
11105 else
11106 scope_die = context_die;
11108 return scope_die;
11111 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11113 static inline int
11114 local_scope_p (dw_die_ref context_die)
11116 for (; context_die; context_die = context_die->die_parent)
11117 if (context_die->die_tag == DW_TAG_inlined_subroutine
11118 || context_die->die_tag == DW_TAG_subprogram)
11119 return 1;
11121 return 0;
11124 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11125 whether or not to treat a DIE in this context as a declaration. */
11127 static inline int
11128 class_or_namespace_scope_p (dw_die_ref context_die)
11130 return (context_die
11131 && (context_die->die_tag == DW_TAG_structure_type
11132 || context_die->die_tag == DW_TAG_union_type
11133 || context_die->die_tag == DW_TAG_namespace));
11136 /* Many forms of DIEs require a "type description" attribute. This
11137 routine locates the proper "type descriptor" die for the type given
11138 by 'type', and adds a DW_AT_type attribute below the given die. */
11140 static void
11141 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11142 int decl_volatile, dw_die_ref context_die)
11144 enum tree_code code = TREE_CODE (type);
11145 dw_die_ref type_die = NULL;
11147 /* ??? If this type is an unnamed subrange type of an integral or
11148 floating-point type, use the inner type. This is because we have no
11149 support for unnamed types in base_type_die. This can happen if this is
11150 an Ada subrange type. Correct solution is emit a subrange type die. */
11151 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11152 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11153 type = TREE_TYPE (type), code = TREE_CODE (type);
11155 if (code == ERROR_MARK
11156 /* Handle a special case. For functions whose return type is void, we
11157 generate *no* type attribute. (Note that no object may have type
11158 `void', so this only applies to function return types). */
11159 || code == VOID_TYPE)
11160 return;
11162 type_die = modified_type_die (type,
11163 decl_const || TYPE_READONLY (type),
11164 decl_volatile || TYPE_VOLATILE (type),
11165 context_die);
11167 if (type_die != NULL)
11168 add_AT_die_ref (object_die, DW_AT_type, type_die);
11171 /* Given an object die, add the calling convention attribute for the
11172 function call type. */
11173 static void
11174 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11176 enum dwarf_calling_convention value = DW_CC_normal;
11178 value = targetm.dwarf_calling_convention (type);
11180 /* Only add the attribute if the backend requests it, and
11181 is not DW_CC_normal. */
11182 if (value && (value != DW_CC_normal))
11183 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11186 /* Given a tree pointer to a struct, class, union, or enum type node, return
11187 a pointer to the (string) tag name for the given type, or zero if the type
11188 was declared without a tag. */
11190 static const char *
11191 type_tag (tree type)
11193 const char *name = 0;
11195 if (TYPE_NAME (type) != 0)
11197 tree t = 0;
11199 /* Find the IDENTIFIER_NODE for the type name. */
11200 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11201 t = TYPE_NAME (type);
11203 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11204 a TYPE_DECL node, regardless of whether or not a `typedef' was
11205 involved. */
11206 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11207 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11208 t = DECL_NAME (TYPE_NAME (type));
11210 /* Now get the name as a string, or invent one. */
11211 if (t != 0)
11212 name = IDENTIFIER_POINTER (t);
11215 return (name == 0 || *name == '\0') ? 0 : name;
11218 /* Return the type associated with a data member, make a special check
11219 for bit field types. */
11221 static inline tree
11222 member_declared_type (tree member)
11224 return (DECL_BIT_FIELD_TYPE (member)
11225 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11228 /* Get the decl's label, as described by its RTL. This may be different
11229 from the DECL_NAME name used in the source file. */
11231 #if 0
11232 static const char *
11233 decl_start_label (tree decl)
11235 rtx x;
11236 const char *fnname;
11238 x = DECL_RTL (decl);
11239 gcc_assert (MEM_P (x));
11241 x = XEXP (x, 0);
11242 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11244 fnname = XSTR (x, 0);
11245 return fnname;
11247 #endif
11249 /* These routines generate the internal representation of the DIE's for
11250 the compilation unit. Debugging information is collected by walking
11251 the declaration trees passed in from dwarf2out_decl(). */
11253 static void
11254 gen_array_type_die (tree type, dw_die_ref context_die)
11256 dw_die_ref scope_die = scope_die_for (type, context_die);
11257 dw_die_ref array_die;
11258 tree element_type;
11260 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11261 the inner array type comes before the outer array type. Thus we must
11262 call gen_type_die before we call new_die. See below also. */
11263 #ifdef MIPS_DEBUGGING_INFO
11264 gen_type_die (TREE_TYPE (type), context_die);
11265 #endif
11267 array_die = new_die (DW_TAG_array_type, scope_die, type);
11268 add_name_attribute (array_die, type_tag (type));
11269 equate_type_number_to_die (type, array_die);
11271 if (TREE_CODE (type) == VECTOR_TYPE)
11273 /* The frontend feeds us a representation for the vector as a struct
11274 containing an array. Pull out the array type. */
11275 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11276 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11279 #if 0
11280 /* We default the array ordering. SDB will probably do
11281 the right things even if DW_AT_ordering is not present. It's not even
11282 an issue until we start to get into multidimensional arrays anyway. If
11283 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11284 then we'll have to put the DW_AT_ordering attribute back in. (But if
11285 and when we find out that we need to put these in, we will only do so
11286 for multidimensional arrays. */
11287 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11288 #endif
11290 #ifdef MIPS_DEBUGGING_INFO
11291 /* The SGI compilers handle arrays of unknown bound by setting
11292 AT_declaration and not emitting any subrange DIEs. */
11293 if (! TYPE_DOMAIN (type))
11294 add_AT_flag (array_die, DW_AT_declaration, 1);
11295 else
11296 #endif
11297 add_subscript_info (array_die, type);
11299 /* Add representation of the type of the elements of this array type. */
11300 element_type = TREE_TYPE (type);
11302 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11303 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11304 We work around this by disabling this feature. See also
11305 add_subscript_info. */
11306 #ifndef MIPS_DEBUGGING_INFO
11307 while (TREE_CODE (element_type) == ARRAY_TYPE)
11308 element_type = TREE_TYPE (element_type);
11310 gen_type_die (element_type, context_die);
11311 #endif
11313 add_type_attribute (array_die, element_type, 0, 0, context_die);
11315 if (get_AT (array_die, DW_AT_name))
11316 add_pubtype (type, array_die);
11319 #if 0
11320 static void
11321 gen_entry_point_die (tree decl, dw_die_ref context_die)
11323 tree origin = decl_ultimate_origin (decl);
11324 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11326 if (origin != NULL)
11327 add_abstract_origin_attribute (decl_die, origin);
11328 else
11330 add_name_and_src_coords_attributes (decl_die, decl);
11331 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11332 0, 0, context_die);
11335 if (DECL_ABSTRACT (decl))
11336 equate_decl_number_to_die (decl, decl_die);
11337 else
11338 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11340 #endif
11342 /* Walk through the list of incomplete types again, trying once more to
11343 emit full debugging info for them. */
11345 static void
11346 retry_incomplete_types (void)
11348 int i;
11350 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11351 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11354 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11356 static void
11357 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11359 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11361 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11362 be incomplete and such types are not marked. */
11363 add_abstract_origin_attribute (type_die, type);
11366 /* Generate a DIE to represent an inlined instance of a structure type. */
11368 static void
11369 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11371 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11373 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11374 be incomplete and such types are not marked. */
11375 add_abstract_origin_attribute (type_die, type);
11378 /* Generate a DIE to represent an inlined instance of a union type. */
11380 static void
11381 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11383 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11385 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11386 be incomplete and such types are not marked. */
11387 add_abstract_origin_attribute (type_die, type);
11390 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11391 include all of the information about the enumeration values also. Each
11392 enumerated type name/value is listed as a child of the enumerated type
11393 DIE. */
11395 static dw_die_ref
11396 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11398 dw_die_ref type_die = lookup_type_die (type);
11400 if (type_die == NULL)
11402 type_die = new_die (DW_TAG_enumeration_type,
11403 scope_die_for (type, context_die), type);
11404 equate_type_number_to_die (type, type_die);
11405 add_name_attribute (type_die, type_tag (type));
11407 else if (! TYPE_SIZE (type))
11408 return type_die;
11409 else
11410 remove_AT (type_die, DW_AT_declaration);
11412 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11413 given enum type is incomplete, do not generate the DW_AT_byte_size
11414 attribute or the DW_AT_element_list attribute. */
11415 if (TYPE_SIZE (type))
11417 tree link;
11419 TREE_ASM_WRITTEN (type) = 1;
11420 add_byte_size_attribute (type_die, type);
11421 if (TYPE_STUB_DECL (type) != NULL_TREE)
11422 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11424 /* If the first reference to this type was as the return type of an
11425 inline function, then it may not have a parent. Fix this now. */
11426 if (type_die->die_parent == NULL)
11427 add_child_die (scope_die_for (type, context_die), type_die);
11429 for (link = TYPE_VALUES (type);
11430 link != NULL; link = TREE_CHAIN (link))
11432 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11433 tree value = TREE_VALUE (link);
11435 add_name_attribute (enum_die,
11436 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11438 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11439 /* DWARF2 does not provide a way of indicating whether or
11440 not enumeration constants are signed or unsigned. GDB
11441 always assumes the values are signed, so we output all
11442 values as if they were signed. That means that
11443 enumeration constants with very large unsigned values
11444 will appear to have negative values in the debugger. */
11445 add_AT_int (enum_die, DW_AT_const_value,
11446 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11449 else
11450 add_AT_flag (type_die, DW_AT_declaration, 1);
11452 if (get_AT (type_die, DW_AT_name))
11453 add_pubtype (type, type_die);
11455 return type_die;
11458 /* Generate a DIE to represent either a real live formal parameter decl or to
11459 represent just the type of some formal parameter position in some function
11460 type.
11462 Note that this routine is a bit unusual because its argument may be a
11463 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11464 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11465 node. If it's the former then this function is being called to output a
11466 DIE to represent a formal parameter object (or some inlining thereof). If
11467 it's the latter, then this function is only being called to output a
11468 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11469 argument type of some subprogram type. */
11471 static dw_die_ref
11472 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11474 dw_die_ref parm_die
11475 = new_die (DW_TAG_formal_parameter, context_die, node);
11476 tree origin;
11478 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11480 case tcc_declaration:
11481 origin = decl_ultimate_origin (node);
11482 if (origin != NULL)
11483 add_abstract_origin_attribute (parm_die, origin);
11484 else
11486 add_name_and_src_coords_attributes (parm_die, node);
11487 add_type_attribute (parm_die, TREE_TYPE (node),
11488 TREE_READONLY (node),
11489 TREE_THIS_VOLATILE (node),
11490 context_die);
11491 if (DECL_ARTIFICIAL (node))
11492 add_AT_flag (parm_die, DW_AT_artificial, 1);
11495 equate_decl_number_to_die (node, parm_die);
11496 if (! DECL_ABSTRACT (node))
11497 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11499 break;
11501 case tcc_type:
11502 /* We were called with some kind of a ..._TYPE node. */
11503 add_type_attribute (parm_die, node, 0, 0, context_die);
11504 break;
11506 default:
11507 gcc_unreachable ();
11510 return parm_die;
11513 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11514 at the end of an (ANSI prototyped) formal parameters list. */
11516 static void
11517 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11519 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11522 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11523 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11524 parameters as specified in some function type specification (except for
11525 those which appear as part of a function *definition*). */
11527 static void
11528 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11530 tree link;
11531 tree formal_type = NULL;
11532 tree first_parm_type;
11533 tree arg;
11535 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11537 arg = DECL_ARGUMENTS (function_or_method_type);
11538 function_or_method_type = TREE_TYPE (function_or_method_type);
11540 else
11541 arg = NULL_TREE;
11543 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11545 /* Make our first pass over the list of formal parameter types and output a
11546 DW_TAG_formal_parameter DIE for each one. */
11547 for (link = first_parm_type; link; )
11549 dw_die_ref parm_die;
11551 formal_type = TREE_VALUE (link);
11552 if (formal_type == void_type_node)
11553 break;
11555 /* Output a (nameless) DIE to represent the formal parameter itself. */
11556 parm_die = gen_formal_parameter_die (formal_type, context_die);
11557 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11558 && link == first_parm_type)
11559 || (arg && DECL_ARTIFICIAL (arg)))
11560 add_AT_flag (parm_die, DW_AT_artificial, 1);
11562 link = TREE_CHAIN (link);
11563 if (arg)
11564 arg = TREE_CHAIN (arg);
11567 /* If this function type has an ellipsis, add a
11568 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11569 if (formal_type != void_type_node)
11570 gen_unspecified_parameters_die (function_or_method_type, context_die);
11572 /* Make our second (and final) pass over the list of formal parameter types
11573 and output DIEs to represent those types (as necessary). */
11574 for (link = TYPE_ARG_TYPES (function_or_method_type);
11575 link && TREE_VALUE (link);
11576 link = TREE_CHAIN (link))
11577 gen_type_die (TREE_VALUE (link), context_die);
11580 /* We want to generate the DIE for TYPE so that we can generate the
11581 die for MEMBER, which has been defined; we will need to refer back
11582 to the member declaration nested within TYPE. If we're trying to
11583 generate minimal debug info for TYPE, processing TYPE won't do the
11584 trick; we need to attach the member declaration by hand. */
11586 static void
11587 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11589 gen_type_die (type, context_die);
11591 /* If we're trying to avoid duplicate debug info, we may not have
11592 emitted the member decl for this function. Emit it now. */
11593 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11594 && ! lookup_decl_die (member))
11596 dw_die_ref type_die;
11597 gcc_assert (!decl_ultimate_origin (member));
11599 push_decl_scope (type);
11600 type_die = lookup_type_die (type);
11601 if (TREE_CODE (member) == FUNCTION_DECL)
11602 gen_subprogram_die (member, type_die);
11603 else if (TREE_CODE (member) == FIELD_DECL)
11605 /* Ignore the nameless fields that are used to skip bits but handle
11606 C++ anonymous unions and structs. */
11607 if (DECL_NAME (member) != NULL_TREE
11608 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11609 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11611 gen_type_die (member_declared_type (member), type_die);
11612 gen_field_die (member, type_die);
11615 else
11616 gen_variable_die (member, type_die);
11618 pop_decl_scope ();
11622 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11623 may later generate inlined and/or out-of-line instances of. */
11625 static void
11626 dwarf2out_abstract_function (tree decl)
11628 dw_die_ref old_die;
11629 tree save_fn;
11630 struct function *save_cfun;
11631 tree context;
11632 int was_abstract = DECL_ABSTRACT (decl);
11634 /* Make sure we have the actual abstract inline, not a clone. */
11635 decl = DECL_ORIGIN (decl);
11637 old_die = lookup_decl_die (decl);
11638 if (old_die && get_AT (old_die, DW_AT_inline))
11639 /* We've already generated the abstract instance. */
11640 return;
11642 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11643 we don't get confused by DECL_ABSTRACT. */
11644 if (debug_info_level > DINFO_LEVEL_TERSE)
11646 context = decl_class_context (decl);
11647 if (context)
11648 gen_type_die_for_member
11649 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11652 /* Pretend we've just finished compiling this function. */
11653 save_fn = current_function_decl;
11654 save_cfun = cfun;
11655 current_function_decl = decl;
11656 cfun = DECL_STRUCT_FUNCTION (decl);
11658 set_decl_abstract_flags (decl, 1);
11659 dwarf2out_decl (decl);
11660 if (! was_abstract)
11661 set_decl_abstract_flags (decl, 0);
11663 current_function_decl = save_fn;
11664 cfun = save_cfun;
11667 /* Helper function of premark_used_types() which gets called through
11668 htab_traverse_resize().
11670 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11671 marked as unused by prune_unused_types. */
11672 static int
11673 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11675 tree type;
11676 dw_die_ref die;
11678 type = *slot;
11679 die = lookup_type_die (type);
11680 if (die != NULL)
11681 die->die_perennial_p = 1;
11682 return 1;
11685 /* Mark all members of used_types_hash as perennial. */
11686 static void
11687 premark_used_types (void)
11689 if (cfun && cfun->used_types_hash)
11690 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11693 /* Generate a DIE to represent a declared function (either file-scope or
11694 block-local). */
11696 static void
11697 gen_subprogram_die (tree decl, dw_die_ref context_die)
11699 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11700 tree origin = decl_ultimate_origin (decl);
11701 dw_die_ref subr_die;
11702 tree fn_arg_types;
11703 tree outer_scope;
11704 dw_die_ref old_die = lookup_decl_die (decl);
11705 int declaration = (current_function_decl != decl
11706 || class_or_namespace_scope_p (context_die));
11708 premark_used_types ();
11710 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11711 started to generate the abstract instance of an inline, decided to output
11712 its containing class, and proceeded to emit the declaration of the inline
11713 from the member list for the class. If so, DECLARATION takes priority;
11714 we'll get back to the abstract instance when done with the class. */
11716 /* The class-scope declaration DIE must be the primary DIE. */
11717 if (origin && declaration && class_or_namespace_scope_p (context_die))
11719 origin = NULL;
11720 gcc_assert (!old_die);
11723 /* Now that the C++ front end lazily declares artificial member fns, we
11724 might need to retrofit the declaration into its class. */
11725 if (!declaration && !origin && !old_die
11726 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11727 && !class_or_namespace_scope_p (context_die)
11728 && debug_info_level > DINFO_LEVEL_TERSE)
11729 old_die = force_decl_die (decl);
11731 if (origin != NULL)
11733 gcc_assert (!declaration || local_scope_p (context_die));
11735 /* Fixup die_parent for the abstract instance of a nested
11736 inline function. */
11737 if (old_die && old_die->die_parent == NULL)
11738 add_child_die (context_die, old_die);
11740 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11741 add_abstract_origin_attribute (subr_die, origin);
11743 else if (old_die)
11745 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11746 struct dwarf_file_data * file_index = lookup_filename (s.file);
11748 if (!get_AT_flag (old_die, DW_AT_declaration)
11749 /* We can have a normal definition following an inline one in the
11750 case of redefinition of GNU C extern inlines.
11751 It seems reasonable to use AT_specification in this case. */
11752 && !get_AT (old_die, DW_AT_inline))
11754 /* Detect and ignore this case, where we are trying to output
11755 something we have already output. */
11756 return;
11759 /* If the definition comes from the same place as the declaration,
11760 maybe use the old DIE. We always want the DIE for this function
11761 that has the *_pc attributes to be under comp_unit_die so the
11762 debugger can find it. We also need to do this for abstract
11763 instances of inlines, since the spec requires the out-of-line copy
11764 to have the same parent. For local class methods, this doesn't
11765 apply; we just use the old DIE. */
11766 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11767 && (DECL_ARTIFICIAL (decl)
11768 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11769 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11770 == (unsigned) s.line))))
11772 subr_die = old_die;
11774 /* Clear out the declaration attribute and the formal parameters.
11775 Do not remove all children, because it is possible that this
11776 declaration die was forced using force_decl_die(). In such
11777 cases die that forced declaration die (e.g. TAG_imported_module)
11778 is one of the children that we do not want to remove. */
11779 remove_AT (subr_die, DW_AT_declaration);
11780 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11782 else
11784 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11785 add_AT_specification (subr_die, old_die);
11786 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11787 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11788 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11789 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11792 else
11794 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11796 if (TREE_PUBLIC (decl))
11797 add_AT_flag (subr_die, DW_AT_external, 1);
11799 add_name_and_src_coords_attributes (subr_die, decl);
11800 if (debug_info_level > DINFO_LEVEL_TERSE)
11802 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11803 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11804 0, 0, context_die);
11807 add_pure_or_virtual_attribute (subr_die, decl);
11808 if (DECL_ARTIFICIAL (decl))
11809 add_AT_flag (subr_die, DW_AT_artificial, 1);
11811 if (TREE_PROTECTED (decl))
11812 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11813 else if (TREE_PRIVATE (decl))
11814 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11817 if (declaration)
11819 if (!old_die || !get_AT (old_die, DW_AT_inline))
11821 add_AT_flag (subr_die, DW_AT_declaration, 1);
11823 /* The first time we see a member function, it is in the context of
11824 the class to which it belongs. We make sure of this by emitting
11825 the class first. The next time is the definition, which is
11826 handled above. The two may come from the same source text.
11828 Note that force_decl_die() forces function declaration die. It is
11829 later reused to represent definition. */
11830 equate_decl_number_to_die (decl, subr_die);
11833 else if (DECL_ABSTRACT (decl))
11835 if (DECL_DECLARED_INLINE_P (decl))
11837 if (cgraph_function_possibly_inlined_p (decl))
11838 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11839 else
11840 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11842 else
11844 if (cgraph_function_possibly_inlined_p (decl))
11845 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11846 else
11847 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11850 equate_decl_number_to_die (decl, subr_die);
11852 else if (!DECL_EXTERNAL (decl))
11854 HOST_WIDE_INT cfa_fb_offset;
11856 if (!old_die || !get_AT (old_die, DW_AT_inline))
11857 equate_decl_number_to_die (decl, subr_die);
11859 if (!flag_reorder_blocks_and_partition)
11861 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11862 current_function_funcdef_no);
11863 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11864 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11865 current_function_funcdef_no);
11866 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11868 add_pubname (decl, subr_die);
11869 add_arange (decl, subr_die);
11871 else
11872 { /* Do nothing for now; maybe need to duplicate die, one for
11873 hot section and ond for cold section, then use the hot/cold
11874 section begin/end labels to generate the aranges... */
11876 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11877 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11878 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11879 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11881 add_pubname (decl, subr_die);
11882 add_arange (decl, subr_die);
11883 add_arange (decl, subr_die);
11887 #ifdef MIPS_DEBUGGING_INFO
11888 /* Add a reference to the FDE for this routine. */
11889 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11890 #endif
11892 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11894 /* We define the "frame base" as the function's CFA. This is more
11895 convenient for several reasons: (1) It's stable across the prologue
11896 and epilogue, which makes it better than just a frame pointer,
11897 (2) With dwarf3, there exists a one-byte encoding that allows us
11898 to reference the .debug_frame data by proxy, but failing that,
11899 (3) We can at least reuse the code inspection and interpretation
11900 code that determines the CFA position at various points in the
11901 function. */
11902 /* ??? Use some command-line or configury switch to enable the use
11903 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11904 consumers that understand it; fall back to "pure" dwarf2 and
11905 convert the CFA data into a location list. */
11907 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11908 if (list->dw_loc_next)
11909 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11910 else
11911 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11914 /* Compute a displacement from the "steady-state frame pointer" to
11915 the CFA. The former is what all stack slots and argument slots
11916 will reference in the rtl; the later is what we've told the
11917 debugger about. We'll need to adjust all frame_base references
11918 by this displacement. */
11919 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11921 if (cfun->static_chain_decl)
11922 add_AT_location_description (subr_die, DW_AT_static_link,
11923 loc_descriptor_from_tree (cfun->static_chain_decl));
11926 /* Now output descriptions of the arguments for this function. This gets
11927 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11928 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11929 `...' at the end of the formal parameter list. In order to find out if
11930 there was a trailing ellipsis or not, we must instead look at the type
11931 associated with the FUNCTION_DECL. This will be a node of type
11932 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11933 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11934 an ellipsis at the end. */
11936 /* In the case where we are describing a mere function declaration, all we
11937 need to do here (and all we *can* do here) is to describe the *types* of
11938 its formal parameters. */
11939 if (debug_info_level <= DINFO_LEVEL_TERSE)
11941 else if (declaration)
11942 gen_formal_types_die (decl, subr_die);
11943 else
11945 /* Generate DIEs to represent all known formal parameters. */
11946 tree arg_decls = DECL_ARGUMENTS (decl);
11947 tree parm;
11949 /* When generating DIEs, generate the unspecified_parameters DIE
11950 instead if we come across the arg "__builtin_va_alist" */
11951 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11952 if (TREE_CODE (parm) == PARM_DECL)
11954 if (DECL_NAME (parm)
11955 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11956 "__builtin_va_alist"))
11957 gen_unspecified_parameters_die (parm, subr_die);
11958 else
11959 gen_decl_die (parm, subr_die);
11962 /* Decide whether we need an unspecified_parameters DIE at the end.
11963 There are 2 more cases to do this for: 1) the ansi ... declaration -
11964 this is detectable when the end of the arg list is not a
11965 void_type_node 2) an unprototyped function declaration (not a
11966 definition). This just means that we have no info about the
11967 parameters at all. */
11968 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11969 if (fn_arg_types != NULL)
11971 /* This is the prototyped case, check for.... */
11972 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11973 gen_unspecified_parameters_die (decl, subr_die);
11975 else if (DECL_INITIAL (decl) == NULL_TREE)
11976 gen_unspecified_parameters_die (decl, subr_die);
11979 /* Output Dwarf info for all of the stuff within the body of the function
11980 (if it has one - it may be just a declaration). */
11981 outer_scope = DECL_INITIAL (decl);
11983 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11984 a function. This BLOCK actually represents the outermost binding contour
11985 for the function, i.e. the contour in which the function's formal
11986 parameters and labels get declared. Curiously, it appears that the front
11987 end doesn't actually put the PARM_DECL nodes for the current function onto
11988 the BLOCK_VARS list for this outer scope, but are strung off of the
11989 DECL_ARGUMENTS list for the function instead.
11991 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11992 the LABEL_DECL nodes for the function however, and we output DWARF info
11993 for those in decls_for_scope. Just within the `outer_scope' there will be
11994 a BLOCK node representing the function's outermost pair of curly braces,
11995 and any blocks used for the base and member initializers of a C++
11996 constructor function. */
11997 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11999 /* Emit a DW_TAG_variable DIE for a named return value. */
12000 if (DECL_NAME (DECL_RESULT (decl)))
12001 gen_decl_die (DECL_RESULT (decl), subr_die);
12003 current_function_has_inlines = 0;
12004 decls_for_scope (outer_scope, subr_die, 0);
12006 #if 0 && defined (MIPS_DEBUGGING_INFO)
12007 if (current_function_has_inlines)
12009 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
12010 if (! comp_unit_has_inlines)
12012 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
12013 comp_unit_has_inlines = 1;
12016 #endif
12018 /* Add the calling convention attribute if requested. */
12019 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
12023 /* Generate a DIE to represent a declared data object. */
12025 static void
12026 gen_variable_die (tree decl, dw_die_ref context_die)
12028 tree origin = decl_ultimate_origin (decl);
12029 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12031 dw_die_ref old_die = lookup_decl_die (decl);
12032 int declaration = (DECL_EXTERNAL (decl)
12033 /* If DECL is COMDAT and has not actually been
12034 emitted, we cannot take its address; there
12035 might end up being no definition anywhere in
12036 the program. For example, consider the C++
12037 test case:
12039 template <class T>
12040 struct S { static const int i = 7; };
12042 template <class T>
12043 const int S<T>::i;
12045 int f() { return S<int>::i; }
12047 Here, S<int>::i is not DECL_EXTERNAL, but no
12048 definition is required, so the compiler will
12049 not emit a definition. */
12050 || (TREE_CODE (decl) == VAR_DECL
12051 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12052 || class_or_namespace_scope_p (context_die));
12054 if (origin != NULL)
12055 add_abstract_origin_attribute (var_die, origin);
12057 /* Loop unrolling can create multiple blocks that refer to the same
12058 static variable, so we must test for the DW_AT_declaration flag.
12060 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12061 copy decls and set the DECL_ABSTRACT flag on them instead of
12062 sharing them.
12064 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12066 ??? The declare_in_namespace support causes us to get two DIEs for one
12067 variable, both of which are declarations. We want to avoid considering
12068 one to be a specification, so we must test that this DIE is not a
12069 declaration. */
12070 else if (old_die && TREE_STATIC (decl) && ! declaration
12071 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12073 /* This is a definition of a C++ class level static. */
12074 add_AT_specification (var_die, old_die);
12075 if (DECL_NAME (decl))
12077 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12078 struct dwarf_file_data * file_index = lookup_filename (s.file);
12080 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12081 add_AT_file (var_die, DW_AT_decl_file, file_index);
12083 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12084 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12087 else
12089 add_name_and_src_coords_attributes (var_die, decl);
12090 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12091 TREE_THIS_VOLATILE (decl), context_die);
12093 if (TREE_PUBLIC (decl))
12094 add_AT_flag (var_die, DW_AT_external, 1);
12096 if (DECL_ARTIFICIAL (decl))
12097 add_AT_flag (var_die, DW_AT_artificial, 1);
12099 if (TREE_PROTECTED (decl))
12100 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12101 else if (TREE_PRIVATE (decl))
12102 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12105 if (declaration)
12106 add_AT_flag (var_die, DW_AT_declaration, 1);
12108 if (DECL_ABSTRACT (decl) || declaration)
12109 equate_decl_number_to_die (decl, var_die);
12111 if (! declaration && ! DECL_ABSTRACT (decl))
12113 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12114 add_pubname (decl, var_die);
12116 else
12117 tree_add_const_value_attribute (var_die, decl);
12120 /* Generate a DIE to represent a label identifier. */
12122 static void
12123 gen_label_die (tree decl, dw_die_ref context_die)
12125 tree origin = decl_ultimate_origin (decl);
12126 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12127 rtx insn;
12128 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12130 if (origin != NULL)
12131 add_abstract_origin_attribute (lbl_die, origin);
12132 else
12133 add_name_and_src_coords_attributes (lbl_die, decl);
12135 if (DECL_ABSTRACT (decl))
12136 equate_decl_number_to_die (decl, lbl_die);
12137 else
12139 insn = DECL_RTL_IF_SET (decl);
12141 /* Deleted labels are programmer specified labels which have been
12142 eliminated because of various optimizations. We still emit them
12143 here so that it is possible to put breakpoints on them. */
12144 if (insn
12145 && (LABEL_P (insn)
12146 || ((NOTE_P (insn)
12147 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12149 /* When optimization is enabled (via -O) some parts of the compiler
12150 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12151 represent source-level labels which were explicitly declared by
12152 the user. This really shouldn't be happening though, so catch
12153 it if it ever does happen. */
12154 gcc_assert (!INSN_DELETED_P (insn));
12156 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12157 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12162 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12163 attributes to the DIE for a block STMT, to describe where the inlined
12164 function was called from. This is similar to add_src_coords_attributes. */
12166 static inline void
12167 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12169 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12171 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12172 add_AT_unsigned (die, DW_AT_call_line, s.line);
12175 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12176 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12178 static inline void
12179 add_high_low_attributes (tree stmt, dw_die_ref die)
12181 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12183 if (BLOCK_FRAGMENT_CHAIN (stmt))
12185 tree chain;
12187 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12189 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12192 add_ranges (chain);
12193 chain = BLOCK_FRAGMENT_CHAIN (chain);
12195 while (chain);
12196 add_ranges (NULL);
12198 else
12200 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12201 BLOCK_NUMBER (stmt));
12202 add_AT_lbl_id (die, DW_AT_low_pc, label);
12203 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12204 BLOCK_NUMBER (stmt));
12205 add_AT_lbl_id (die, DW_AT_high_pc, label);
12209 /* Generate a DIE for a lexical block. */
12211 static void
12212 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12214 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12216 if (! BLOCK_ABSTRACT (stmt))
12217 add_high_low_attributes (stmt, stmt_die);
12219 decls_for_scope (stmt, stmt_die, depth);
12222 /* Generate a DIE for an inlined subprogram. */
12224 static void
12225 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12227 tree decl = block_ultimate_origin (stmt);
12229 /* Emit info for the abstract instance first, if we haven't yet. We
12230 must emit this even if the block is abstract, otherwise when we
12231 emit the block below (or elsewhere), we may end up trying to emit
12232 a die whose origin die hasn't been emitted, and crashing. */
12233 dwarf2out_abstract_function (decl);
12235 if (! BLOCK_ABSTRACT (stmt))
12237 dw_die_ref subr_die
12238 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12240 add_abstract_origin_attribute (subr_die, decl);
12241 add_high_low_attributes (stmt, subr_die);
12242 add_call_src_coords_attributes (stmt, subr_die);
12244 decls_for_scope (stmt, subr_die, depth);
12245 current_function_has_inlines = 1;
12247 else
12248 /* We may get here if we're the outer block of function A that was
12249 inlined into function B that was inlined into function C. When
12250 generating debugging info for C, dwarf2out_abstract_function(B)
12251 would mark all inlined blocks as abstract, including this one.
12252 So, we wouldn't (and shouldn't) expect labels to be generated
12253 for this one. Instead, just emit debugging info for
12254 declarations within the block. This is particularly important
12255 in the case of initializers of arguments passed from B to us:
12256 if they're statement expressions containing declarations, we
12257 wouldn't generate dies for their abstract variables, and then,
12258 when generating dies for the real variables, we'd die (pun
12259 intended :-) */
12260 gen_lexical_block_die (stmt, context_die, depth);
12263 /* Generate a DIE for a field in a record, or structure. */
12265 static void
12266 gen_field_die (tree decl, dw_die_ref context_die)
12268 dw_die_ref decl_die;
12270 if (TREE_TYPE (decl) == error_mark_node)
12271 return;
12273 decl_die = new_die (DW_TAG_member, context_die, decl);
12274 add_name_and_src_coords_attributes (decl_die, decl);
12275 add_type_attribute (decl_die, member_declared_type (decl),
12276 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12277 context_die);
12279 if (DECL_BIT_FIELD_TYPE (decl))
12281 add_byte_size_attribute (decl_die, decl);
12282 add_bit_size_attribute (decl_die, decl);
12283 add_bit_offset_attribute (decl_die, decl);
12286 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12287 add_data_member_location_attribute (decl_die, decl);
12289 if (DECL_ARTIFICIAL (decl))
12290 add_AT_flag (decl_die, DW_AT_artificial, 1);
12292 if (TREE_PROTECTED (decl))
12293 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12294 else if (TREE_PRIVATE (decl))
12295 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12297 /* Equate decl number to die, so that we can look up this decl later on. */
12298 equate_decl_number_to_die (decl, decl_die);
12301 #if 0
12302 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12303 Use modified_type_die instead.
12304 We keep this code here just in case these types of DIEs may be needed to
12305 represent certain things in other languages (e.g. Pascal) someday. */
12307 static void
12308 gen_pointer_type_die (tree type, dw_die_ref context_die)
12310 dw_die_ref ptr_die
12311 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12313 equate_type_number_to_die (type, ptr_die);
12314 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12315 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12318 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12319 Use modified_type_die instead.
12320 We keep this code here just in case these types of DIEs may be needed to
12321 represent certain things in other languages (e.g. Pascal) someday. */
12323 static void
12324 gen_reference_type_die (tree type, dw_die_ref context_die)
12326 dw_die_ref ref_die
12327 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12329 equate_type_number_to_die (type, ref_die);
12330 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12331 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12333 #endif
12335 /* Generate a DIE for a pointer to a member type. */
12337 static void
12338 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12340 dw_die_ref ptr_die
12341 = new_die (DW_TAG_ptr_to_member_type,
12342 scope_die_for (type, context_die), type);
12344 equate_type_number_to_die (type, ptr_die);
12345 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12346 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12347 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12350 /* Generate the DIE for the compilation unit. */
12352 static dw_die_ref
12353 gen_compile_unit_die (const char *filename)
12355 dw_die_ref die;
12356 char producer[250];
12357 const char *language_string = lang_hooks.name;
12358 int language;
12360 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12362 if (filename)
12364 add_name_attribute (die, filename);
12365 /* Don't add cwd for <built-in>. */
12366 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12367 add_comp_dir_attribute (die);
12370 sprintf (producer, "%s %s", language_string, version_string);
12372 #ifdef MIPS_DEBUGGING_INFO
12373 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12374 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12375 not appear in the producer string, the debugger reaches the conclusion
12376 that the object file is stripped and has no debugging information.
12377 To get the MIPS/SGI debugger to believe that there is debugging
12378 information in the object file, we add a -g to the producer string. */
12379 if (debug_info_level > DINFO_LEVEL_TERSE)
12380 strcat (producer, " -g");
12381 #endif
12383 add_AT_string (die, DW_AT_producer, producer);
12385 if (strcmp (language_string, "GNU C++") == 0)
12386 language = DW_LANG_C_plus_plus;
12387 else if (strcmp (language_string, "GNU Ada") == 0)
12388 language = DW_LANG_Ada95;
12389 else if (strcmp (language_string, "GNU F77") == 0)
12390 language = DW_LANG_Fortran77;
12391 else if (strcmp (language_string, "GNU F95") == 0)
12392 language = DW_LANG_Fortran95;
12393 else if (strcmp (language_string, "GNU Pascal") == 0)
12394 language = DW_LANG_Pascal83;
12395 else if (strcmp (language_string, "GNU Java") == 0)
12396 language = DW_LANG_Java;
12397 else if (strcmp (language_string, "GNU Objective-C") == 0)
12398 language = DW_LANG_ObjC;
12399 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12400 language = DW_LANG_ObjC_plus_plus;
12401 else
12402 language = DW_LANG_C89;
12404 add_AT_unsigned (die, DW_AT_language, language);
12405 return die;
12408 /* Generate the DIE for a base class. */
12410 static void
12411 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12413 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12415 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12416 add_data_member_location_attribute (die, binfo);
12418 if (BINFO_VIRTUAL_P (binfo))
12419 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12421 if (access == access_public_node)
12422 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12423 else if (access == access_protected_node)
12424 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12427 /* Generate a DIE for a class member. */
12429 static void
12430 gen_member_die (tree type, dw_die_ref context_die)
12432 tree member;
12433 tree binfo = TYPE_BINFO (type);
12434 dw_die_ref child;
12436 /* If this is not an incomplete type, output descriptions of each of its
12437 members. Note that as we output the DIEs necessary to represent the
12438 members of this record or union type, we will also be trying to output
12439 DIEs to represent the *types* of those members. However the `type'
12440 function (above) will specifically avoid generating type DIEs for member
12441 types *within* the list of member DIEs for this (containing) type except
12442 for those types (of members) which are explicitly marked as also being
12443 members of this (containing) type themselves. The g++ front- end can
12444 force any given type to be treated as a member of some other (containing)
12445 type by setting the TYPE_CONTEXT of the given (member) type to point to
12446 the TREE node representing the appropriate (containing) type. */
12448 /* First output info about the base classes. */
12449 if (binfo)
12451 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12452 int i;
12453 tree base;
12455 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12456 gen_inheritance_die (base,
12457 (accesses ? VEC_index (tree, accesses, i)
12458 : access_public_node), context_die);
12461 /* Now output info about the data members and type members. */
12462 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12464 /* If we thought we were generating minimal debug info for TYPE
12465 and then changed our minds, some of the member declarations
12466 may have already been defined. Don't define them again, but
12467 do put them in the right order. */
12469 child = lookup_decl_die (member);
12470 if (child)
12471 splice_child_die (context_die, child);
12472 else
12473 gen_decl_die (member, context_die);
12476 /* Now output info about the function members (if any). */
12477 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12479 /* Don't include clones in the member list. */
12480 if (DECL_ABSTRACT_ORIGIN (member))
12481 continue;
12483 child = lookup_decl_die (member);
12484 if (child)
12485 splice_child_die (context_die, child);
12486 else
12487 gen_decl_die (member, context_die);
12491 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12492 is set, we pretend that the type was never defined, so we only get the
12493 member DIEs needed by later specification DIEs. */
12495 static void
12496 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12498 dw_die_ref type_die = lookup_type_die (type);
12499 dw_die_ref scope_die = 0;
12500 int nested = 0;
12501 int complete = (TYPE_SIZE (type)
12502 && (! TYPE_STUB_DECL (type)
12503 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12504 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12506 if (type_die && ! complete)
12507 return;
12509 if (TYPE_CONTEXT (type) != NULL_TREE
12510 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12511 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12512 nested = 1;
12514 scope_die = scope_die_for (type, context_die);
12516 if (! type_die || (nested && scope_die == comp_unit_die))
12517 /* First occurrence of type or toplevel definition of nested class. */
12519 dw_die_ref old_die = type_die;
12521 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12522 ? DW_TAG_structure_type : DW_TAG_union_type,
12523 scope_die, type);
12524 equate_type_number_to_die (type, type_die);
12525 if (old_die)
12526 add_AT_specification (type_die, old_die);
12527 else
12528 add_name_attribute (type_die, type_tag (type));
12530 else
12531 remove_AT (type_die, DW_AT_declaration);
12533 /* If this type has been completed, then give it a byte_size attribute and
12534 then give a list of members. */
12535 if (complete && !ns_decl)
12537 /* Prevent infinite recursion in cases where the type of some member of
12538 this type is expressed in terms of this type itself. */
12539 TREE_ASM_WRITTEN (type) = 1;
12540 add_byte_size_attribute (type_die, type);
12541 if (TYPE_STUB_DECL (type) != NULL_TREE)
12542 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12544 /* If the first reference to this type was as the return type of an
12545 inline function, then it may not have a parent. Fix this now. */
12546 if (type_die->die_parent == NULL)
12547 add_child_die (scope_die, type_die);
12549 push_decl_scope (type);
12550 gen_member_die (type, type_die);
12551 pop_decl_scope ();
12553 /* GNU extension: Record what type our vtable lives in. */
12554 if (TYPE_VFIELD (type))
12556 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12558 gen_type_die (vtype, context_die);
12559 add_AT_die_ref (type_die, DW_AT_containing_type,
12560 lookup_type_die (vtype));
12563 else
12565 add_AT_flag (type_die, DW_AT_declaration, 1);
12567 /* We don't need to do this for function-local types. */
12568 if (TYPE_STUB_DECL (type)
12569 && ! decl_function_context (TYPE_STUB_DECL (type)))
12570 VEC_safe_push (tree, gc, incomplete_types, type);
12573 if (get_AT (type_die, DW_AT_name))
12574 add_pubtype (type, type_die);
12577 /* Generate a DIE for a subroutine _type_. */
12579 static void
12580 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12582 tree return_type = TREE_TYPE (type);
12583 dw_die_ref subr_die
12584 = new_die (DW_TAG_subroutine_type,
12585 scope_die_for (type, context_die), type);
12587 equate_type_number_to_die (type, subr_die);
12588 add_prototyped_attribute (subr_die, type);
12589 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12590 gen_formal_types_die (type, subr_die);
12592 if (get_AT (subr_die, DW_AT_name))
12593 add_pubtype (type, subr_die);
12596 /* Generate a DIE for a type definition. */
12598 static void
12599 gen_typedef_die (tree decl, dw_die_ref context_die)
12601 dw_die_ref type_die;
12602 tree origin;
12604 if (TREE_ASM_WRITTEN (decl))
12605 return;
12607 TREE_ASM_WRITTEN (decl) = 1;
12608 type_die = new_die (DW_TAG_typedef, context_die, decl);
12609 origin = decl_ultimate_origin (decl);
12610 if (origin != NULL)
12611 add_abstract_origin_attribute (type_die, origin);
12612 else
12614 tree type;
12616 add_name_and_src_coords_attributes (type_die, decl);
12617 if (DECL_ORIGINAL_TYPE (decl))
12619 type = DECL_ORIGINAL_TYPE (decl);
12621 gcc_assert (type != TREE_TYPE (decl));
12622 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12624 else
12625 type = TREE_TYPE (decl);
12627 add_type_attribute (type_die, type, TREE_READONLY (decl),
12628 TREE_THIS_VOLATILE (decl), context_die);
12631 if (DECL_ABSTRACT (decl))
12632 equate_decl_number_to_die (decl, type_die);
12634 if (get_AT (type_die, DW_AT_name))
12635 add_pubtype (decl, type_die);
12638 /* Generate a type description DIE. */
12640 static void
12641 gen_type_die (tree type, dw_die_ref context_die)
12643 int need_pop;
12645 if (type == NULL_TREE || type == error_mark_node)
12646 return;
12648 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12649 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12651 if (TREE_ASM_WRITTEN (type))
12652 return;
12654 /* Prevent broken recursion; we can't hand off to the same type. */
12655 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12657 TREE_ASM_WRITTEN (type) = 1;
12658 gen_decl_die (TYPE_NAME (type), context_die);
12659 return;
12662 /* We are going to output a DIE to represent the unqualified version
12663 of this type (i.e. without any const or volatile qualifiers) so
12664 get the main variant (i.e. the unqualified version) of this type
12665 now. (Vectors are special because the debugging info is in the
12666 cloned type itself). */
12667 if (TREE_CODE (type) != VECTOR_TYPE)
12668 type = type_main_variant (type);
12670 if (TREE_ASM_WRITTEN (type))
12671 return;
12673 switch (TREE_CODE (type))
12675 case ERROR_MARK:
12676 break;
12678 case POINTER_TYPE:
12679 case REFERENCE_TYPE:
12680 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12681 ensures that the gen_type_die recursion will terminate even if the
12682 type is recursive. Recursive types are possible in Ada. */
12683 /* ??? We could perhaps do this for all types before the switch
12684 statement. */
12685 TREE_ASM_WRITTEN (type) = 1;
12687 /* For these types, all that is required is that we output a DIE (or a
12688 set of DIEs) to represent the "basis" type. */
12689 gen_type_die (TREE_TYPE (type), context_die);
12690 break;
12692 case OFFSET_TYPE:
12693 /* This code is used for C++ pointer-to-data-member types.
12694 Output a description of the relevant class type. */
12695 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12697 /* Output a description of the type of the object pointed to. */
12698 gen_type_die (TREE_TYPE (type), context_die);
12700 /* Now output a DIE to represent this pointer-to-data-member type
12701 itself. */
12702 gen_ptr_to_mbr_type_die (type, context_die);
12703 break;
12705 case FUNCTION_TYPE:
12706 /* Force out return type (in case it wasn't forced out already). */
12707 gen_type_die (TREE_TYPE (type), context_die);
12708 gen_subroutine_type_die (type, context_die);
12709 break;
12711 case METHOD_TYPE:
12712 /* Force out return type (in case it wasn't forced out already). */
12713 gen_type_die (TREE_TYPE (type), context_die);
12714 gen_subroutine_type_die (type, context_die);
12715 break;
12717 case ARRAY_TYPE:
12718 gen_array_type_die (type, context_die);
12719 break;
12721 case VECTOR_TYPE:
12722 gen_array_type_die (type, context_die);
12723 break;
12725 case ENUMERAL_TYPE:
12726 case RECORD_TYPE:
12727 case UNION_TYPE:
12728 case QUAL_UNION_TYPE:
12729 /* If this is a nested type whose containing class hasn't been written
12730 out yet, writing it out will cover this one, too. This does not apply
12731 to instantiations of member class templates; they need to be added to
12732 the containing class as they are generated. FIXME: This hurts the
12733 idea of combining type decls from multiple TUs, since we can't predict
12734 what set of template instantiations we'll get. */
12735 if (TYPE_CONTEXT (type)
12736 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12737 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12739 gen_type_die (TYPE_CONTEXT (type), context_die);
12741 if (TREE_ASM_WRITTEN (type))
12742 return;
12744 /* If that failed, attach ourselves to the stub. */
12745 push_decl_scope (TYPE_CONTEXT (type));
12746 context_die = lookup_type_die (TYPE_CONTEXT (type));
12747 need_pop = 1;
12749 else
12751 declare_in_namespace (type, context_die);
12752 need_pop = 0;
12755 if (TREE_CODE (type) == ENUMERAL_TYPE)
12757 /* This might have been written out by the call to
12758 declare_in_namespace. */
12759 if (!TREE_ASM_WRITTEN (type))
12760 gen_enumeration_type_die (type, context_die);
12762 else
12763 gen_struct_or_union_type_die (type, context_die);
12765 if (need_pop)
12766 pop_decl_scope ();
12768 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12769 it up if it is ever completed. gen_*_type_die will set it for us
12770 when appropriate. */
12771 return;
12773 case VOID_TYPE:
12774 case INTEGER_TYPE:
12775 case REAL_TYPE:
12776 case COMPLEX_TYPE:
12777 case BOOLEAN_TYPE:
12778 /* No DIEs needed for fundamental types. */
12779 break;
12781 case LANG_TYPE:
12782 /* No Dwarf representation currently defined. */
12783 break;
12785 default:
12786 gcc_unreachable ();
12789 TREE_ASM_WRITTEN (type) = 1;
12792 /* Generate a DIE for a tagged type instantiation. */
12794 static void
12795 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12797 if (type == NULL_TREE || type == error_mark_node)
12798 return;
12800 /* We are going to output a DIE to represent the unqualified version of
12801 this type (i.e. without any const or volatile qualifiers) so make sure
12802 that we have the main variant (i.e. the unqualified version) of this
12803 type now. */
12804 gcc_assert (type == type_main_variant (type));
12806 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12807 an instance of an unresolved type. */
12809 switch (TREE_CODE (type))
12811 case ERROR_MARK:
12812 break;
12814 case ENUMERAL_TYPE:
12815 gen_inlined_enumeration_type_die (type, context_die);
12816 break;
12818 case RECORD_TYPE:
12819 gen_inlined_structure_type_die (type, context_die);
12820 break;
12822 case UNION_TYPE:
12823 case QUAL_UNION_TYPE:
12824 gen_inlined_union_type_die (type, context_die);
12825 break;
12827 default:
12828 gcc_unreachable ();
12832 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12833 things which are local to the given block. */
12835 static void
12836 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12838 int must_output_die = 0;
12839 tree origin;
12840 tree decl;
12841 enum tree_code origin_code;
12843 /* Ignore blocks that are NULL. */
12844 if (stmt == NULL_TREE)
12845 return;
12847 /* If the block is one fragment of a non-contiguous block, do not
12848 process the variables, since they will have been done by the
12849 origin block. Do process subblocks. */
12850 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12852 tree sub;
12854 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12855 gen_block_die (sub, context_die, depth + 1);
12857 return;
12860 /* Determine the "ultimate origin" of this block. This block may be an
12861 inlined instance of an inlined instance of inline function, so we have
12862 to trace all of the way back through the origin chain to find out what
12863 sort of node actually served as the original seed for the creation of
12864 the current block. */
12865 origin = block_ultimate_origin (stmt);
12866 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12868 /* Determine if we need to output any Dwarf DIEs at all to represent this
12869 block. */
12870 if (origin_code == FUNCTION_DECL)
12871 /* The outer scopes for inlinings *must* always be represented. We
12872 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12873 must_output_die = 1;
12874 else
12876 /* In the case where the current block represents an inlining of the
12877 "body block" of an inline function, we must *NOT* output any DIE for
12878 this block because we have already output a DIE to represent the whole
12879 inlined function scope and the "body block" of any function doesn't
12880 really represent a different scope according to ANSI C rules. So we
12881 check here to make sure that this block does not represent a "body
12882 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12883 if (! is_body_block (origin ? origin : stmt))
12885 /* Determine if this block directly contains any "significant"
12886 local declarations which we will need to output DIEs for. */
12887 if (debug_info_level > DINFO_LEVEL_TERSE)
12888 /* We are not in terse mode so *any* local declaration counts
12889 as being a "significant" one. */
12890 must_output_die = (BLOCK_VARS (stmt) != NULL
12891 && (TREE_USED (stmt)
12892 || TREE_ASM_WRITTEN (stmt)
12893 || BLOCK_ABSTRACT (stmt)));
12894 else
12895 /* We are in terse mode, so only local (nested) function
12896 definitions count as "significant" local declarations. */
12897 for (decl = BLOCK_VARS (stmt);
12898 decl != NULL; decl = TREE_CHAIN (decl))
12899 if (TREE_CODE (decl) == FUNCTION_DECL
12900 && DECL_INITIAL (decl))
12902 must_output_die = 1;
12903 break;
12908 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12909 DIE for any block which contains no significant local declarations at
12910 all. Rather, in such cases we just call `decls_for_scope' so that any
12911 needed Dwarf info for any sub-blocks will get properly generated. Note
12912 that in terse mode, our definition of what constitutes a "significant"
12913 local declaration gets restricted to include only inlined function
12914 instances and local (nested) function definitions. */
12915 if (must_output_die)
12917 if (origin_code == FUNCTION_DECL)
12918 gen_inlined_subroutine_die (stmt, context_die, depth);
12919 else
12920 gen_lexical_block_die (stmt, context_die, depth);
12922 else
12923 decls_for_scope (stmt, context_die, depth);
12926 /* Generate all of the decls declared within a given scope and (recursively)
12927 all of its sub-blocks. */
12929 static void
12930 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12932 tree decl;
12933 tree subblocks;
12935 /* Ignore NULL blocks. */
12936 if (stmt == NULL_TREE)
12937 return;
12939 if (TREE_USED (stmt))
12941 /* Output the DIEs to represent all of the data objects and typedefs
12942 declared directly within this block but not within any nested
12943 sub-blocks. Also, nested function and tag DIEs have been
12944 generated with a parent of NULL; fix that up now. */
12945 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12947 dw_die_ref die;
12949 if (TREE_CODE (decl) == FUNCTION_DECL)
12950 die = lookup_decl_die (decl);
12951 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12952 die = lookup_type_die (TREE_TYPE (decl));
12953 else
12954 die = NULL;
12956 if (die != NULL && die->die_parent == NULL)
12957 add_child_die (context_die, die);
12958 /* Do not produce debug information for static variables since
12959 these might be optimized out. We are called for these later
12960 in varpool_analyze_pending_decls. */
12961 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12963 else
12964 gen_decl_die (decl, context_die);
12968 /* If we're at -g1, we're not interested in subblocks. */
12969 if (debug_info_level <= DINFO_LEVEL_TERSE)
12970 return;
12972 /* Output the DIEs to represent all sub-blocks (and the items declared
12973 therein) of this block. */
12974 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12975 subblocks != NULL;
12976 subblocks = BLOCK_CHAIN (subblocks))
12977 gen_block_die (subblocks, context_die, depth + 1);
12980 /* Is this a typedef we can avoid emitting? */
12982 static inline int
12983 is_redundant_typedef (tree decl)
12985 if (TYPE_DECL_IS_STUB (decl))
12986 return 1;
12988 if (DECL_ARTIFICIAL (decl)
12989 && DECL_CONTEXT (decl)
12990 && is_tagged_type (DECL_CONTEXT (decl))
12991 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12992 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12993 /* Also ignore the artificial member typedef for the class name. */
12994 return 1;
12996 return 0;
12999 /* Returns the DIE for decl. A DIE will always be returned. */
13001 static dw_die_ref
13002 force_decl_die (tree decl)
13004 dw_die_ref decl_die;
13005 unsigned saved_external_flag;
13006 tree save_fn = NULL_TREE;
13007 decl_die = lookup_decl_die (decl);
13008 if (!decl_die)
13010 dw_die_ref context_die;
13011 tree decl_context = DECL_CONTEXT (decl);
13012 if (decl_context)
13014 /* Find die that represents this context. */
13015 if (TYPE_P (decl_context))
13016 context_die = force_type_die (decl_context);
13017 else
13018 context_die = force_decl_die (decl_context);
13020 else
13021 context_die = comp_unit_die;
13023 decl_die = lookup_decl_die (decl);
13024 if (decl_die)
13025 return decl_die;
13027 switch (TREE_CODE (decl))
13029 case FUNCTION_DECL:
13030 /* Clear current_function_decl, so that gen_subprogram_die thinks
13031 that this is a declaration. At this point, we just want to force
13032 declaration die. */
13033 save_fn = current_function_decl;
13034 current_function_decl = NULL_TREE;
13035 gen_subprogram_die (decl, context_die);
13036 current_function_decl = save_fn;
13037 break;
13039 case VAR_DECL:
13040 /* Set external flag to force declaration die. Restore it after
13041 gen_decl_die() call. */
13042 saved_external_flag = DECL_EXTERNAL (decl);
13043 DECL_EXTERNAL (decl) = 1;
13044 gen_decl_die (decl, context_die);
13045 DECL_EXTERNAL (decl) = saved_external_flag;
13046 break;
13048 case NAMESPACE_DECL:
13049 dwarf2out_decl (decl);
13050 break;
13052 default:
13053 gcc_unreachable ();
13056 /* We should be able to find the DIE now. */
13057 if (!decl_die)
13058 decl_die = lookup_decl_die (decl);
13059 gcc_assert (decl_die);
13062 return decl_die;
13065 /* Returns the DIE for TYPE. A DIE is always returned. */
13067 static dw_die_ref
13068 force_type_die (tree type)
13070 dw_die_ref type_die;
13072 type_die = lookup_type_die (type);
13073 if (!type_die)
13075 dw_die_ref context_die;
13076 if (TYPE_CONTEXT (type))
13078 if (TYPE_P (TYPE_CONTEXT (type)))
13079 context_die = force_type_die (TYPE_CONTEXT (type));
13080 else
13081 context_die = force_decl_die (TYPE_CONTEXT (type));
13083 else
13084 context_die = comp_unit_die;
13086 type_die = lookup_type_die (type);
13087 if (type_die)
13088 return type_die;
13089 gen_type_die (type, context_die);
13090 type_die = lookup_type_die (type);
13091 gcc_assert (type_die);
13093 return type_die;
13096 /* Force out any required namespaces to be able to output DECL,
13097 and return the new context_die for it, if it's changed. */
13099 static dw_die_ref
13100 setup_namespace_context (tree thing, dw_die_ref context_die)
13102 tree context = (DECL_P (thing)
13103 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13104 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13105 /* Force out the namespace. */
13106 context_die = force_decl_die (context);
13108 return context_die;
13111 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13112 type) within its namespace, if appropriate.
13114 For compatibility with older debuggers, namespace DIEs only contain
13115 declarations; all definitions are emitted at CU scope. */
13117 static void
13118 declare_in_namespace (tree thing, dw_die_ref context_die)
13120 dw_die_ref ns_context;
13122 if (debug_info_level <= DINFO_LEVEL_TERSE)
13123 return;
13125 /* If this decl is from an inlined function, then don't try to emit it in its
13126 namespace, as we will get confused. It would have already been emitted
13127 when the abstract instance of the inline function was emitted anyways. */
13128 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13129 return;
13131 ns_context = setup_namespace_context (thing, context_die);
13133 if (ns_context != context_die)
13135 if (DECL_P (thing))
13136 gen_decl_die (thing, ns_context);
13137 else
13138 gen_type_die (thing, ns_context);
13142 /* Generate a DIE for a namespace or namespace alias. */
13144 static void
13145 gen_namespace_die (tree decl)
13147 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13149 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13150 they are an alias of. */
13151 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13153 /* Output a real namespace. */
13154 dw_die_ref namespace_die
13155 = new_die (DW_TAG_namespace, context_die, decl);
13156 add_name_and_src_coords_attributes (namespace_die, decl);
13157 equate_decl_number_to_die (decl, namespace_die);
13159 else
13161 /* Output a namespace alias. */
13163 /* Force out the namespace we are an alias of, if necessary. */
13164 dw_die_ref origin_die
13165 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13167 /* Now create the namespace alias DIE. */
13168 dw_die_ref namespace_die
13169 = new_die (DW_TAG_imported_declaration, context_die, decl);
13170 add_name_and_src_coords_attributes (namespace_die, decl);
13171 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13172 equate_decl_number_to_die (decl, namespace_die);
13176 /* Generate Dwarf debug information for a decl described by DECL. */
13178 static void
13179 gen_decl_die (tree decl, dw_die_ref context_die)
13181 tree origin;
13183 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13184 return;
13186 switch (TREE_CODE (decl))
13188 case ERROR_MARK:
13189 break;
13191 case CONST_DECL:
13192 /* The individual enumerators of an enum type get output when we output
13193 the Dwarf representation of the relevant enum type itself. */
13194 break;
13196 case FUNCTION_DECL:
13197 /* Don't output any DIEs to represent mere function declarations,
13198 unless they are class members or explicit block externs. */
13199 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13200 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13201 break;
13203 #if 0
13204 /* FIXME */
13205 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13206 on local redeclarations of global functions. That seems broken. */
13207 if (current_function_decl != decl)
13208 /* This is only a declaration. */;
13209 #endif
13211 /* If we're emitting a clone, emit info for the abstract instance. */
13212 if (DECL_ORIGIN (decl) != decl)
13213 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13215 /* If we're emitting an out-of-line copy of an inline function,
13216 emit info for the abstract instance and set up to refer to it. */
13217 else if (cgraph_function_possibly_inlined_p (decl)
13218 && ! DECL_ABSTRACT (decl)
13219 && ! class_or_namespace_scope_p (context_die)
13220 /* dwarf2out_abstract_function won't emit a die if this is just
13221 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13222 that case, because that works only if we have a die. */
13223 && DECL_INITIAL (decl) != NULL_TREE)
13225 dwarf2out_abstract_function (decl);
13226 set_decl_origin_self (decl);
13229 /* Otherwise we're emitting the primary DIE for this decl. */
13230 else if (debug_info_level > DINFO_LEVEL_TERSE)
13232 /* Before we describe the FUNCTION_DECL itself, make sure that we
13233 have described its return type. */
13234 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13236 /* And its virtual context. */
13237 if (DECL_VINDEX (decl) != NULL_TREE)
13238 gen_type_die (DECL_CONTEXT (decl), context_die);
13240 /* And its containing type. */
13241 origin = decl_class_context (decl);
13242 if (origin != NULL_TREE)
13243 gen_type_die_for_member (origin, decl, context_die);
13245 /* And its containing namespace. */
13246 declare_in_namespace (decl, context_die);
13249 /* Now output a DIE to represent the function itself. */
13250 gen_subprogram_die (decl, context_die);
13251 break;
13253 case TYPE_DECL:
13254 /* If we are in terse mode, don't generate any DIEs to represent any
13255 actual typedefs. */
13256 if (debug_info_level <= DINFO_LEVEL_TERSE)
13257 break;
13259 /* In the special case of a TYPE_DECL node representing the declaration
13260 of some type tag, if the given TYPE_DECL is marked as having been
13261 instantiated from some other (original) TYPE_DECL node (e.g. one which
13262 was generated within the original definition of an inline function) we
13263 have to generate a special (abbreviated) DW_TAG_structure_type,
13264 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13265 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13267 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13268 break;
13271 if (is_redundant_typedef (decl))
13272 gen_type_die (TREE_TYPE (decl), context_die);
13273 else
13274 /* Output a DIE to represent the typedef itself. */
13275 gen_typedef_die (decl, context_die);
13276 break;
13278 case LABEL_DECL:
13279 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13280 gen_label_die (decl, context_die);
13281 break;
13283 case VAR_DECL:
13284 case RESULT_DECL:
13285 /* If we are in terse mode, don't generate any DIEs to represent any
13286 variable declarations or definitions. */
13287 if (debug_info_level <= DINFO_LEVEL_TERSE)
13288 break;
13290 /* Output any DIEs that are needed to specify the type of this data
13291 object. */
13292 gen_type_die (TREE_TYPE (decl), context_die);
13294 /* And its containing type. */
13295 origin = decl_class_context (decl);
13296 if (origin != NULL_TREE)
13297 gen_type_die_for_member (origin, decl, context_die);
13299 /* And its containing namespace. */
13300 declare_in_namespace (decl, context_die);
13302 /* Now output the DIE to represent the data object itself. This gets
13303 complicated because of the possibility that the VAR_DECL really
13304 represents an inlined instance of a formal parameter for an inline
13305 function. */
13306 origin = decl_ultimate_origin (decl);
13307 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13308 gen_formal_parameter_die (decl, context_die);
13309 else
13310 gen_variable_die (decl, context_die);
13311 break;
13313 case FIELD_DECL:
13314 /* Ignore the nameless fields that are used to skip bits but handle C++
13315 anonymous unions and structs. */
13316 if (DECL_NAME (decl) != NULL_TREE
13317 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13318 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13320 gen_type_die (member_declared_type (decl), context_die);
13321 gen_field_die (decl, context_die);
13323 break;
13325 case PARM_DECL:
13326 gen_type_die (TREE_TYPE (decl), context_die);
13327 gen_formal_parameter_die (decl, context_die);
13328 break;
13330 case NAMESPACE_DECL:
13331 gen_namespace_die (decl);
13332 break;
13334 default:
13335 /* Probably some frontend-internal decl. Assume we don't care. */
13336 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13337 break;
13341 /* Output debug information for global decl DECL. Called from toplev.c after
13342 compilation proper has finished. */
13344 static void
13345 dwarf2out_global_decl (tree decl)
13347 /* Output DWARF2 information for file-scope tentative data object
13348 declarations, file-scope (extern) function declarations (which had no
13349 corresponding body) and file-scope tagged type declarations and
13350 definitions which have not yet been forced out. */
13351 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13352 dwarf2out_decl (decl);
13355 /* Output debug information for type decl DECL. Called from toplev.c
13356 and from language front ends (to record built-in types). */
13357 static void
13358 dwarf2out_type_decl (tree decl, int local)
13360 if (!local)
13361 dwarf2out_decl (decl);
13364 /* Output debug information for imported module or decl. */
13366 static void
13367 dwarf2out_imported_module_or_decl (tree decl, tree context)
13369 dw_die_ref imported_die, at_import_die;
13370 dw_die_ref scope_die;
13371 expanded_location xloc;
13373 if (debug_info_level <= DINFO_LEVEL_TERSE)
13374 return;
13376 gcc_assert (decl);
13378 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13379 We need decl DIE for reference and scope die. First, get DIE for the decl
13380 itself. */
13382 /* Get the scope die for decl context. Use comp_unit_die for global module
13383 or decl. If die is not found for non globals, force new die. */
13384 if (!context)
13385 scope_die = comp_unit_die;
13386 else if (TYPE_P (context))
13387 scope_die = force_type_die (context);
13388 else
13389 scope_die = force_decl_die (context);
13391 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13392 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13393 at_import_die = force_type_die (TREE_TYPE (decl));
13394 else
13396 at_import_die = lookup_decl_die (decl);
13397 if (!at_import_die)
13399 /* If we're trying to avoid duplicate debug info, we may not have
13400 emitted the member decl for this field. Emit it now. */
13401 if (TREE_CODE (decl) == FIELD_DECL)
13403 tree type = DECL_CONTEXT (decl);
13404 dw_die_ref type_context_die;
13406 if (TYPE_CONTEXT (type))
13407 if (TYPE_P (TYPE_CONTEXT (type)))
13408 type_context_die = force_type_die (TYPE_CONTEXT (type));
13409 else
13410 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13411 else
13412 type_context_die = comp_unit_die;
13413 gen_type_die_for_member (type, decl, type_context_die);
13415 at_import_die = force_decl_die (decl);
13419 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13420 if (TREE_CODE (decl) == NAMESPACE_DECL)
13421 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13422 else
13423 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13425 xloc = expand_location (input_location);
13426 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13427 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13428 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13431 /* Write the debugging output for DECL. */
13433 void
13434 dwarf2out_decl (tree decl)
13436 dw_die_ref context_die = comp_unit_die;
13438 switch (TREE_CODE (decl))
13440 case ERROR_MARK:
13441 return;
13443 case FUNCTION_DECL:
13444 /* What we would really like to do here is to filter out all mere
13445 file-scope declarations of file-scope functions which are never
13446 referenced later within this translation unit (and keep all of ones
13447 that *are* referenced later on) but we aren't clairvoyant, so we have
13448 no idea which functions will be referenced in the future (i.e. later
13449 on within the current translation unit). So here we just ignore all
13450 file-scope function declarations which are not also definitions. If
13451 and when the debugger needs to know something about these functions,
13452 it will have to hunt around and find the DWARF information associated
13453 with the definition of the function.
13455 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13456 nodes represent definitions and which ones represent mere
13457 declarations. We have to check DECL_INITIAL instead. That's because
13458 the C front-end supports some weird semantics for "extern inline"
13459 function definitions. These can get inlined within the current
13460 translation unit (and thus, we need to generate Dwarf info for their
13461 abstract instances so that the Dwarf info for the concrete inlined
13462 instances can have something to refer to) but the compiler never
13463 generates any out-of-lines instances of such things (despite the fact
13464 that they *are* definitions).
13466 The important point is that the C front-end marks these "extern
13467 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13468 them anyway. Note that the C++ front-end also plays some similar games
13469 for inline function definitions appearing within include files which
13470 also contain `#pragma interface' pragmas. */
13471 if (DECL_INITIAL (decl) == NULL_TREE)
13472 return;
13474 /* If we're a nested function, initially use a parent of NULL; if we're
13475 a plain function, this will be fixed up in decls_for_scope. If
13476 we're a method, it will be ignored, since we already have a DIE. */
13477 if (decl_function_context (decl)
13478 /* But if we're in terse mode, we don't care about scope. */
13479 && debug_info_level > DINFO_LEVEL_TERSE)
13480 context_die = NULL;
13481 break;
13483 case VAR_DECL:
13484 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13485 declaration and if the declaration was never even referenced from
13486 within this entire compilation unit. We suppress these DIEs in
13487 order to save space in the .debug section (by eliminating entries
13488 which are probably useless). Note that we must not suppress
13489 block-local extern declarations (whether used or not) because that
13490 would screw-up the debugger's name lookup mechanism and cause it to
13491 miss things which really ought to be in scope at a given point. */
13492 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13493 return;
13495 /* For local statics lookup proper context die. */
13496 if (TREE_STATIC (decl) && decl_function_context (decl))
13497 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13499 /* If we are in terse mode, don't generate any DIEs to represent any
13500 variable declarations or definitions. */
13501 if (debug_info_level <= DINFO_LEVEL_TERSE)
13502 return;
13503 break;
13505 case NAMESPACE_DECL:
13506 if (debug_info_level <= DINFO_LEVEL_TERSE)
13507 return;
13508 if (lookup_decl_die (decl) != NULL)
13509 return;
13510 break;
13512 case TYPE_DECL:
13513 /* Don't emit stubs for types unless they are needed by other DIEs. */
13514 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13515 return;
13517 /* Don't bother trying to generate any DIEs to represent any of the
13518 normal built-in types for the language we are compiling. */
13519 if (DECL_IS_BUILTIN (decl))
13521 /* OK, we need to generate one for `bool' so GDB knows what type
13522 comparisons have. */
13523 if (is_cxx ()
13524 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13525 && ! DECL_IGNORED_P (decl))
13526 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13528 return;
13531 /* If we are in terse mode, don't generate any DIEs for types. */
13532 if (debug_info_level <= DINFO_LEVEL_TERSE)
13533 return;
13535 /* If we're a function-scope tag, initially use a parent of NULL;
13536 this will be fixed up in decls_for_scope. */
13537 if (decl_function_context (decl))
13538 context_die = NULL;
13540 break;
13542 default:
13543 return;
13546 gen_decl_die (decl, context_die);
13549 /* Output a marker (i.e. a label) for the beginning of the generated code for
13550 a lexical block. */
13552 static void
13553 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13554 unsigned int blocknum)
13556 switch_to_section (current_function_section ());
13557 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13560 /* Output a marker (i.e. a label) for the end of the generated code for a
13561 lexical block. */
13563 static void
13564 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13566 switch_to_section (current_function_section ());
13567 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13570 /* Returns nonzero if it is appropriate not to emit any debugging
13571 information for BLOCK, because it doesn't contain any instructions.
13573 Don't allow this for blocks with nested functions or local classes
13574 as we would end up with orphans, and in the presence of scheduling
13575 we may end up calling them anyway. */
13577 static bool
13578 dwarf2out_ignore_block (tree block)
13580 tree decl;
13582 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13583 if (TREE_CODE (decl) == FUNCTION_DECL
13584 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13585 return 0;
13587 return 1;
13590 /* Hash table routines for file_hash. */
13592 static int
13593 file_table_eq (const void *p1_p, const void *p2_p)
13595 const struct dwarf_file_data * p1 = p1_p;
13596 const char * p2 = p2_p;
13597 return strcmp (p1->filename, p2) == 0;
13600 static hashval_t
13601 file_table_hash (const void *p_p)
13603 const struct dwarf_file_data * p = p_p;
13604 return htab_hash_string (p->filename);
13607 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13608 dwarf2out.c) and return its "index". The index of each (known) filename is
13609 just a unique number which is associated with only that one filename. We
13610 need such numbers for the sake of generating labels (in the .debug_sfnames
13611 section) and references to those files numbers (in the .debug_srcinfo
13612 and.debug_macinfo sections). If the filename given as an argument is not
13613 found in our current list, add it to the list and assign it the next
13614 available unique index number. In order to speed up searches, we remember
13615 the index of the filename was looked up last. This handles the majority of
13616 all searches. */
13618 static struct dwarf_file_data *
13619 lookup_filename (const char *file_name)
13621 void ** slot;
13622 struct dwarf_file_data * created;
13624 /* Check to see if the file name that was searched on the previous
13625 call matches this file name. If so, return the index. */
13626 if (file_table_last_lookup
13627 && (file_name == file_table_last_lookup->filename
13628 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13629 return file_table_last_lookup;
13631 /* Didn't match the previous lookup, search the table. */
13632 slot = htab_find_slot_with_hash (file_table, file_name,
13633 htab_hash_string (file_name), INSERT);
13634 if (*slot)
13635 return *slot;
13637 created = ggc_alloc (sizeof (struct dwarf_file_data));
13638 created->filename = file_name;
13639 created->emitted_number = 0;
13640 *slot = created;
13641 return created;
13644 /* If the assembler will construct the file table, then translate the compiler
13645 internal file table number into the assembler file table number, and emit
13646 a .file directive if we haven't already emitted one yet. The file table
13647 numbers are different because we prune debug info for unused variables and
13648 types, which may include filenames. */
13650 static int
13651 maybe_emit_file (struct dwarf_file_data * fd)
13653 if (! fd->emitted_number)
13655 if (last_emitted_file)
13656 fd->emitted_number = last_emitted_file->emitted_number + 1;
13657 else
13658 fd->emitted_number = 1;
13659 last_emitted_file = fd;
13661 if (DWARF2_ASM_LINE_DEBUG_INFO)
13663 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13664 output_quoted_string (asm_out_file, fd->filename);
13665 fputc ('\n', asm_out_file);
13669 return fd->emitted_number;
13672 /* Called by the final INSN scan whenever we see a var location. We
13673 use it to drop labels in the right places, and throw the location in
13674 our lookup table. */
13676 static void
13677 dwarf2out_var_location (rtx loc_note)
13679 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13680 struct var_loc_node *newloc;
13681 rtx prev_insn;
13682 static rtx last_insn;
13683 static const char *last_label;
13684 tree decl;
13686 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13687 return;
13688 prev_insn = PREV_INSN (loc_note);
13690 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13691 /* If the insn we processed last time is the previous insn
13692 and it is also a var location note, use the label we emitted
13693 last time. */
13694 if (last_insn != NULL_RTX
13695 && last_insn == prev_insn
13696 && NOTE_P (prev_insn)
13697 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13699 newloc->label = last_label;
13701 else
13703 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13704 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13705 loclabel_num++;
13706 newloc->label = ggc_strdup (loclabel);
13708 newloc->var_loc_note = loc_note;
13709 newloc->next = NULL;
13711 if (cfun && in_cold_section_p)
13712 newloc->section_label = cfun->cold_section_label;
13713 else
13714 newloc->section_label = text_section_label;
13716 last_insn = loc_note;
13717 last_label = newloc->label;
13718 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13719 add_var_loc_to_decl (decl, newloc);
13722 /* We need to reset the locations at the beginning of each
13723 function. We can't do this in the end_function hook, because the
13724 declarations that use the locations won't have been output when
13725 that hook is called. Also compute have_multiple_function_sections here. */
13727 static void
13728 dwarf2out_begin_function (tree fun)
13730 htab_empty (decl_loc_table);
13732 if (function_section (fun) != text_section)
13733 have_multiple_function_sections = true;
13736 /* Output a label to mark the beginning of a source code line entry
13737 and record information relating to this source line, in
13738 'line_info_table' for later output of the .debug_line section. */
13740 static void
13741 dwarf2out_source_line (unsigned int line, const char *filename)
13743 if (debug_info_level >= DINFO_LEVEL_NORMAL
13744 && line != 0)
13746 int file_num = maybe_emit_file (lookup_filename (filename));
13748 switch_to_section (current_function_section ());
13750 /* If requested, emit something human-readable. */
13751 if (flag_debug_asm)
13752 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13753 filename, line);
13755 if (DWARF2_ASM_LINE_DEBUG_INFO)
13757 /* Emit the .loc directive understood by GNU as. */
13758 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13760 /* Indicate that line number info exists. */
13761 line_info_table_in_use++;
13763 else if (function_section (current_function_decl) != text_section)
13765 dw_separate_line_info_ref line_info;
13766 targetm.asm_out.internal_label (asm_out_file,
13767 SEPARATE_LINE_CODE_LABEL,
13768 separate_line_info_table_in_use);
13770 /* Expand the line info table if necessary. */
13771 if (separate_line_info_table_in_use
13772 == separate_line_info_table_allocated)
13774 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13775 separate_line_info_table
13776 = ggc_realloc (separate_line_info_table,
13777 separate_line_info_table_allocated
13778 * sizeof (dw_separate_line_info_entry));
13779 memset (separate_line_info_table
13780 + separate_line_info_table_in_use,
13782 (LINE_INFO_TABLE_INCREMENT
13783 * sizeof (dw_separate_line_info_entry)));
13786 /* Add the new entry at the end of the line_info_table. */
13787 line_info
13788 = &separate_line_info_table[separate_line_info_table_in_use++];
13789 line_info->dw_file_num = file_num;
13790 line_info->dw_line_num = line;
13791 line_info->function = current_function_funcdef_no;
13793 else
13795 dw_line_info_ref line_info;
13797 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13798 line_info_table_in_use);
13800 /* Expand the line info table if necessary. */
13801 if (line_info_table_in_use == line_info_table_allocated)
13803 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13804 line_info_table
13805 = ggc_realloc (line_info_table,
13806 (line_info_table_allocated
13807 * sizeof (dw_line_info_entry)));
13808 memset (line_info_table + line_info_table_in_use, 0,
13809 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13812 /* Add the new entry at the end of the line_info_table. */
13813 line_info = &line_info_table[line_info_table_in_use++];
13814 line_info->dw_file_num = file_num;
13815 line_info->dw_line_num = line;
13820 /* Record the beginning of a new source file. */
13822 static void
13823 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13825 if (flag_eliminate_dwarf2_dups)
13827 /* Record the beginning of the file for break_out_includes. */
13828 dw_die_ref bincl_die;
13830 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13831 add_AT_string (bincl_die, DW_AT_name, filename);
13834 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13836 int file_num = maybe_emit_file (lookup_filename (filename));
13838 switch_to_section (debug_macinfo_section);
13839 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13840 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13841 lineno);
13843 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13847 /* Record the end of a source file. */
13849 static void
13850 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13852 if (flag_eliminate_dwarf2_dups)
13853 /* Record the end of the file for break_out_includes. */
13854 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13856 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13858 switch_to_section (debug_macinfo_section);
13859 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13863 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13864 the tail part of the directive line, i.e. the part which is past the
13865 initial whitespace, #, whitespace, directive-name, whitespace part. */
13867 static void
13868 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13869 const char *buffer ATTRIBUTE_UNUSED)
13871 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13873 switch_to_section (debug_macinfo_section);
13874 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13875 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13876 dw2_asm_output_nstring (buffer, -1, "The macro");
13880 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13881 the tail part of the directive line, i.e. the part which is past the
13882 initial whitespace, #, whitespace, directive-name, whitespace part. */
13884 static void
13885 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13886 const char *buffer ATTRIBUTE_UNUSED)
13888 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13890 switch_to_section (debug_macinfo_section);
13891 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13892 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13893 dw2_asm_output_nstring (buffer, -1, "The macro");
13897 /* Set up for Dwarf output at the start of compilation. */
13899 static void
13900 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13902 /* Allocate the file_table. */
13903 file_table = htab_create_ggc (50, file_table_hash,
13904 file_table_eq, NULL);
13906 /* Allocate the decl_die_table. */
13907 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13908 decl_die_table_eq, NULL);
13910 /* Allocate the decl_loc_table. */
13911 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13912 decl_loc_table_eq, NULL);
13914 /* Allocate the initial hunk of the decl_scope_table. */
13915 decl_scope_table = VEC_alloc (tree, gc, 256);
13917 /* Allocate the initial hunk of the abbrev_die_table. */
13918 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13919 * sizeof (dw_die_ref));
13920 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13921 /* Zero-th entry is allocated, but unused. */
13922 abbrev_die_table_in_use = 1;
13924 /* Allocate the initial hunk of the line_info_table. */
13925 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13926 * sizeof (dw_line_info_entry));
13927 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13929 /* Zero-th entry is allocated, but unused. */
13930 line_info_table_in_use = 1;
13932 /* Allocate the pubtypes and pubnames vectors. */
13933 pubname_table = VEC_alloc (pubname_entry, gc, 32);
13934 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13936 /* Generate the initial DIE for the .debug section. Note that the (string)
13937 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13938 will (typically) be a relative pathname and that this pathname should be
13939 taken as being relative to the directory from which the compiler was
13940 invoked when the given (base) source file was compiled. We will fill
13941 in this value in dwarf2out_finish. */
13942 comp_unit_die = gen_compile_unit_die (NULL);
13944 incomplete_types = VEC_alloc (tree, gc, 64);
13946 used_rtx_array = VEC_alloc (rtx, gc, 32);
13948 debug_info_section = get_section (DEBUG_INFO_SECTION,
13949 SECTION_DEBUG, NULL);
13950 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13951 SECTION_DEBUG, NULL);
13952 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13953 SECTION_DEBUG, NULL);
13954 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13955 SECTION_DEBUG, NULL);
13956 debug_line_section = get_section (DEBUG_LINE_SECTION,
13957 SECTION_DEBUG, NULL);
13958 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13959 SECTION_DEBUG, NULL);
13960 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13961 SECTION_DEBUG, NULL);
13962 #ifdef DEBUG_PUBTYPES_SECTION
13963 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
13964 SECTION_DEBUG, NULL);
13965 #endif
13966 debug_str_section = get_section (DEBUG_STR_SECTION,
13967 DEBUG_STR_SECTION_FLAGS, NULL);
13968 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13969 SECTION_DEBUG, NULL);
13970 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13971 SECTION_DEBUG, NULL);
13973 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13974 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13975 DEBUG_ABBREV_SECTION_LABEL, 0);
13976 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13977 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13978 COLD_TEXT_SECTION_LABEL, 0);
13979 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13981 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13982 DEBUG_INFO_SECTION_LABEL, 0);
13983 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13984 DEBUG_LINE_SECTION_LABEL, 0);
13985 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13986 DEBUG_RANGES_SECTION_LABEL, 0);
13987 switch_to_section (debug_abbrev_section);
13988 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13989 switch_to_section (debug_info_section);
13990 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13991 switch_to_section (debug_line_section);
13992 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13994 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13996 switch_to_section (debug_macinfo_section);
13997 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13998 DEBUG_MACINFO_SECTION_LABEL, 0);
13999 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
14002 switch_to_section (text_section);
14003 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
14004 if (flag_reorder_blocks_and_partition)
14006 switch_to_section (unlikely_text_section ());
14007 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
14011 /* A helper function for dwarf2out_finish called through
14012 ht_forall. Emit one queued .debug_str string. */
14014 static int
14015 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
14017 struct indirect_string_node *node = (struct indirect_string_node *) *h;
14019 if (node->form == DW_FORM_strp)
14021 switch_to_section (debug_str_section);
14022 ASM_OUTPUT_LABEL (asm_out_file, node->label);
14023 assemble_string (node->str, strlen (node->str) + 1);
14026 return 1;
14029 #if ENABLE_ASSERT_CHECKING
14030 /* Verify that all marks are clear. */
14032 static void
14033 verify_marks_clear (dw_die_ref die)
14035 dw_die_ref c;
14037 gcc_assert (! die->die_mark);
14038 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14040 #endif /* ENABLE_ASSERT_CHECKING */
14042 /* Clear the marks for a die and its children.
14043 Be cool if the mark isn't set. */
14045 static void
14046 prune_unmark_dies (dw_die_ref die)
14048 dw_die_ref c;
14050 if (die->die_mark)
14051 die->die_mark = 0;
14052 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14055 /* Given DIE that we're marking as used, find any other dies
14056 it references as attributes and mark them as used. */
14058 static void
14059 prune_unused_types_walk_attribs (dw_die_ref die)
14061 dw_attr_ref a;
14062 unsigned ix;
14064 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14066 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14068 /* A reference to another DIE.
14069 Make sure that it will get emitted. */
14070 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14072 /* Set the string's refcount to 0 so that prune_unused_types_mark
14073 accounts properly for it. */
14074 if (AT_class (a) == dw_val_class_str)
14075 a->dw_attr_val.v.val_str->refcount = 0;
14080 /* Mark DIE as being used. If DOKIDS is true, then walk down
14081 to DIE's children. */
14083 static void
14084 prune_unused_types_mark (dw_die_ref die, int dokids)
14086 dw_die_ref c;
14088 if (die->die_mark == 0)
14090 /* We haven't done this node yet. Mark it as used. */
14091 die->die_mark = 1;
14093 /* We also have to mark its parents as used.
14094 (But we don't want to mark our parents' kids due to this.) */
14095 if (die->die_parent)
14096 prune_unused_types_mark (die->die_parent, 0);
14098 /* Mark any referenced nodes. */
14099 prune_unused_types_walk_attribs (die);
14101 /* If this node is a specification,
14102 also mark the definition, if it exists. */
14103 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14104 prune_unused_types_mark (die->die_definition, 1);
14107 if (dokids && die->die_mark != 2)
14109 /* We need to walk the children, but haven't done so yet.
14110 Remember that we've walked the kids. */
14111 die->die_mark = 2;
14113 /* If this is an array type, we need to make sure our
14114 kids get marked, even if they're types. */
14115 if (die->die_tag == DW_TAG_array_type)
14116 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14117 else
14118 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14123 /* Walk the tree DIE and mark types that we actually use. */
14125 static void
14126 prune_unused_types_walk (dw_die_ref die)
14128 dw_die_ref c;
14130 /* Don't do anything if this node is already marked. */
14131 if (die->die_mark)
14132 return;
14134 switch (die->die_tag)
14136 case DW_TAG_const_type:
14137 case DW_TAG_packed_type:
14138 case DW_TAG_pointer_type:
14139 case DW_TAG_reference_type:
14140 case DW_TAG_volatile_type:
14141 case DW_TAG_typedef:
14142 case DW_TAG_array_type:
14143 case DW_TAG_structure_type:
14144 case DW_TAG_union_type:
14145 case DW_TAG_class_type:
14146 case DW_TAG_friend:
14147 case DW_TAG_variant_part:
14148 case DW_TAG_enumeration_type:
14149 case DW_TAG_subroutine_type:
14150 case DW_TAG_string_type:
14151 case DW_TAG_set_type:
14152 case DW_TAG_subrange_type:
14153 case DW_TAG_ptr_to_member_type:
14154 case DW_TAG_file_type:
14155 if (die->die_perennial_p)
14156 break;
14158 /* It's a type node --- don't mark it. */
14159 return;
14161 default:
14162 /* Mark everything else. */
14163 break;
14166 die->die_mark = 1;
14168 /* Now, mark any dies referenced from here. */
14169 prune_unused_types_walk_attribs (die);
14171 /* Mark children. */
14172 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14175 /* Increment the string counts on strings referred to from DIE's
14176 attributes. */
14178 static void
14179 prune_unused_types_update_strings (dw_die_ref die)
14181 dw_attr_ref a;
14182 unsigned ix;
14184 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14185 if (AT_class (a) == dw_val_class_str)
14187 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14188 s->refcount++;
14189 /* Avoid unnecessarily putting strings that are used less than
14190 twice in the hash table. */
14191 if (s->refcount
14192 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14194 void ** slot;
14195 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14196 htab_hash_string (s->str),
14197 INSERT);
14198 gcc_assert (*slot == NULL);
14199 *slot = s;
14204 /* Remove from the tree DIE any dies that aren't marked. */
14206 static void
14207 prune_unused_types_prune (dw_die_ref die)
14209 dw_die_ref c;
14211 gcc_assert (die->die_mark);
14212 prune_unused_types_update_strings (die);
14214 if (! die->die_child)
14215 return;
14217 c = die->die_child;
14218 do {
14219 dw_die_ref prev = c;
14220 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14221 if (c == die->die_child)
14223 /* No marked children between 'prev' and the end of the list. */
14224 if (prev == c)
14225 /* No marked children at all. */
14226 die->die_child = NULL;
14227 else
14229 prev->die_sib = c->die_sib;
14230 die->die_child = prev;
14232 return;
14235 if (c != prev->die_sib)
14236 prev->die_sib = c;
14237 prune_unused_types_prune (c);
14238 } while (c != die->die_child);
14242 /* Remove dies representing declarations that we never use. */
14244 static void
14245 prune_unused_types (void)
14247 unsigned int i;
14248 limbo_die_node *node;
14249 pubname_ref pub;
14251 #if ENABLE_ASSERT_CHECKING
14252 /* All the marks should already be clear. */
14253 verify_marks_clear (comp_unit_die);
14254 for (node = limbo_die_list; node; node = node->next)
14255 verify_marks_clear (node->die);
14256 #endif /* ENABLE_ASSERT_CHECKING */
14258 /* Set the mark on nodes that are actually used. */
14259 prune_unused_types_walk (comp_unit_die);
14260 for (node = limbo_die_list; node; node = node->next)
14261 prune_unused_types_walk (node->die);
14263 /* Also set the mark on nodes referenced from the
14264 pubname_table or arange_table. */
14265 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14266 prune_unused_types_mark (pub->die, 1);
14267 for (i = 0; i < arange_table_in_use; i++)
14268 prune_unused_types_mark (arange_table[i], 1);
14270 /* Get rid of nodes that aren't marked; and update the string counts. */
14271 if (debug_str_hash)
14272 htab_empty (debug_str_hash);
14273 prune_unused_types_prune (comp_unit_die);
14274 for (node = limbo_die_list; node; node = node->next)
14275 prune_unused_types_prune (node->die);
14277 /* Leave the marks clear. */
14278 prune_unmark_dies (comp_unit_die);
14279 for (node = limbo_die_list; node; node = node->next)
14280 prune_unmark_dies (node->die);
14283 /* Set the parameter to true if there are any relative pathnames in
14284 the file table. */
14285 static int
14286 file_table_relative_p (void ** slot, void *param)
14288 bool *p = param;
14289 struct dwarf_file_data *d = *slot;
14290 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14292 *p = true;
14293 return 0;
14295 return 1;
14298 /* Output stuff that dwarf requires at the end of every file,
14299 and generate the DWARF-2 debugging info. */
14301 static void
14302 dwarf2out_finish (const char *filename)
14304 limbo_die_node *node, *next_node;
14305 dw_die_ref die = 0;
14307 /* Add the name for the main input file now. We delayed this from
14308 dwarf2out_init to avoid complications with PCH. */
14309 add_name_attribute (comp_unit_die, filename);
14310 if (!IS_ABSOLUTE_PATH (filename))
14311 add_comp_dir_attribute (comp_unit_die);
14312 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14314 bool p = false;
14315 htab_traverse (file_table, file_table_relative_p, &p);
14316 if (p)
14317 add_comp_dir_attribute (comp_unit_die);
14320 /* Traverse the limbo die list, and add parent/child links. The only
14321 dies without parents that should be here are concrete instances of
14322 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14323 For concrete instances, we can get the parent die from the abstract
14324 instance. */
14325 for (node = limbo_die_list; node; node = next_node)
14327 next_node = node->next;
14328 die = node->die;
14330 if (die->die_parent == NULL)
14332 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14334 if (origin)
14335 add_child_die (origin->die_parent, die);
14336 else if (die == comp_unit_die)
14338 else if (errorcount > 0 || sorrycount > 0)
14339 /* It's OK to be confused by errors in the input. */
14340 add_child_die (comp_unit_die, die);
14341 else
14343 /* In certain situations, the lexical block containing a
14344 nested function can be optimized away, which results
14345 in the nested function die being orphaned. Likewise
14346 with the return type of that nested function. Force
14347 this to be a child of the containing function.
14349 It may happen that even the containing function got fully
14350 inlined and optimized out. In that case we are lost and
14351 assign the empty child. This should not be big issue as
14352 the function is likely unreachable too. */
14353 tree context = NULL_TREE;
14355 gcc_assert (node->created_for);
14357 if (DECL_P (node->created_for))
14358 context = DECL_CONTEXT (node->created_for);
14359 else if (TYPE_P (node->created_for))
14360 context = TYPE_CONTEXT (node->created_for);
14362 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14364 origin = lookup_decl_die (context);
14365 if (origin)
14366 add_child_die (origin, die);
14367 else
14368 add_child_die (comp_unit_die, die);
14373 limbo_die_list = NULL;
14375 /* Walk through the list of incomplete types again, trying once more to
14376 emit full debugging info for them. */
14377 retry_incomplete_types ();
14379 if (flag_eliminate_unused_debug_types)
14380 prune_unused_types ();
14382 /* Generate separate CUs for each of the include files we've seen.
14383 They will go into limbo_die_list. */
14384 if (flag_eliminate_dwarf2_dups)
14385 break_out_includes (comp_unit_die);
14387 /* Traverse the DIE's and add add sibling attributes to those DIE's
14388 that have children. */
14389 add_sibling_attributes (comp_unit_die);
14390 for (node = limbo_die_list; node; node = node->next)
14391 add_sibling_attributes (node->die);
14393 /* Output a terminator label for the .text section. */
14394 switch_to_section (text_section);
14395 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14396 if (flag_reorder_blocks_and_partition)
14398 switch_to_section (unlikely_text_section ());
14399 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14402 /* We can only use the low/high_pc attributes if all of the code was
14403 in .text. */
14404 if (!have_multiple_function_sections)
14406 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14407 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14410 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14411 "base address". Use zero so that these addresses become absolute. */
14412 else if (have_location_lists || ranges_table_in_use)
14413 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14415 /* Output location list section if necessary. */
14416 if (have_location_lists)
14418 /* Output the location lists info. */
14419 switch_to_section (debug_loc_section);
14420 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14421 DEBUG_LOC_SECTION_LABEL, 0);
14422 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14423 output_location_lists (die);
14426 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14427 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14428 debug_line_section_label);
14430 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14431 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14433 /* Output all of the compilation units. We put the main one last so that
14434 the offsets are available to output_pubnames. */
14435 for (node = limbo_die_list; node; node = node->next)
14436 output_comp_unit (node->die, 0);
14438 output_comp_unit (comp_unit_die, 0);
14440 /* Output the abbreviation table. */
14441 switch_to_section (debug_abbrev_section);
14442 output_abbrev_section ();
14444 /* Output public names table if necessary. */
14445 if (!VEC_empty (pubname_entry, pubname_table))
14447 switch_to_section (debug_pubnames_section);
14448 output_pubnames (pubname_table);
14451 #ifdef DEBUG_PUBTYPES_SECTION
14452 /* Output public types table if necessary. */
14453 if (!VEC_empty (pubname_entry, pubtype_table))
14455 switch_to_section (debug_pubtypes_section);
14456 output_pubnames (pubtype_table);
14458 #endif
14460 /* Output the address range information. We only put functions in the arange
14461 table, so don't write it out if we don't have any. */
14462 if (fde_table_in_use)
14464 switch_to_section (debug_aranges_section);
14465 output_aranges ();
14468 /* Output ranges section if necessary. */
14469 if (ranges_table_in_use)
14471 switch_to_section (debug_ranges_section);
14472 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14473 output_ranges ();
14476 /* Output the source line correspondence table. We must do this
14477 even if there is no line information. Otherwise, on an empty
14478 translation unit, we will generate a present, but empty,
14479 .debug_info section. IRIX 6.5 `nm' will then complain when
14480 examining the file. This is done late so that any filenames
14481 used by the debug_info section are marked as 'used'. */
14482 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14484 switch_to_section (debug_line_section);
14485 output_line_info ();
14488 /* Have to end the macro section. */
14489 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14491 switch_to_section (debug_macinfo_section);
14492 dw2_asm_output_data (1, 0, "End compilation unit");
14495 /* If we emitted any DW_FORM_strp form attribute, output the string
14496 table too. */
14497 if (debug_str_hash)
14498 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14500 #else
14502 /* This should never be used, but its address is needed for comparisons. */
14503 const struct gcc_debug_hooks dwarf2_debug_hooks;
14505 #endif /* DWARF2_DEBUGGING_INFO */
14507 #include "gt-dwarf2out.h"