Do not do src->dest copy if register would not be allocated a normal register
[official-gcc.git] / gcc / explow.c
blobaffb2196bd956042d05f4dc9d2606d1b0b41f666
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "expr.h"
28 #include "hard-reg-set.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
34 static rtx break_out_memory_refs PROTO((rtx));
35 static void emit_stack_probe PROTO((rtx));
36 /* Return an rtx for the sum of X and the integer C.
38 This function should be used via the `plus_constant' macro. */
40 rtx
41 plus_constant_wide (x, c)
42 register rtx x;
43 register HOST_WIDE_INT c;
45 register RTX_CODE code;
46 register enum machine_mode mode;
47 register rtx tem;
48 int all_constant = 0;
50 if (c == 0)
51 return x;
53 restart:
55 code = GET_CODE (x);
56 mode = GET_MODE (x);
57 switch (code)
59 case CONST_INT:
60 return GEN_INT (INTVAL (x) + c);
62 case CONST_DOUBLE:
64 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
65 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
66 HOST_WIDE_INT l2 = c;
67 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
68 HOST_WIDE_INT lv, hv;
70 add_double (l1, h1, l2, h2, &lv, &hv);
72 return immed_double_const (lv, hv, VOIDmode);
75 case MEM:
76 /* If this is a reference to the constant pool, try replacing it with
77 a reference to a new constant. If the resulting address isn't
78 valid, don't return it because we have no way to validize it. */
79 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
80 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
82 /* Any rtl we create here must go in a saveable obstack, since
83 we might have been called from within combine. */
84 push_obstacks_nochange ();
85 rtl_in_saveable_obstack ();
86 tem
87 = force_const_mem (GET_MODE (x),
88 plus_constant (get_pool_constant (XEXP (x, 0)),
89 c));
90 pop_obstacks ();
91 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
92 return tem;
94 break;
96 case CONST:
97 /* If adding to something entirely constant, set a flag
98 so that we can add a CONST around the result. */
99 x = XEXP (x, 0);
100 all_constant = 1;
101 goto restart;
103 case SYMBOL_REF:
104 case LABEL_REF:
105 all_constant = 1;
106 break;
108 case PLUS:
109 /* The interesting case is adding the integer to a sum.
110 Look for constant term in the sum and combine
111 with C. For an integer constant term, we make a combined
112 integer. For a constant term that is not an explicit integer,
113 we cannot really combine, but group them together anyway.
115 Use a recursive call in case the remaining operand is something
116 that we handle specially, such as a SYMBOL_REF. */
118 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
119 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
120 else if (CONSTANT_P (XEXP (x, 0)))
121 return gen_rtx_PLUS (mode,
122 plus_constant (XEXP (x, 0), c),
123 XEXP (x, 1));
124 else if (CONSTANT_P (XEXP (x, 1)))
125 return gen_rtx_PLUS (mode,
126 XEXP (x, 0),
127 plus_constant (XEXP (x, 1), c));
128 break;
130 default:
131 break;
134 if (c != 0)
135 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
137 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
138 return x;
139 else if (all_constant)
140 return gen_rtx_CONST (mode, x);
141 else
142 return x;
145 /* This is the same as `plus_constant', except that it handles LO_SUM.
147 This function should be used via the `plus_constant_for_output' macro. */
150 plus_constant_for_output_wide (x, c)
151 register rtx x;
152 register HOST_WIDE_INT c;
154 register enum machine_mode mode = GET_MODE (x);
156 if (GET_CODE (x) == LO_SUM)
157 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
158 plus_constant_for_output (XEXP (x, 1), c));
160 else
161 return plus_constant (x, c);
164 /* If X is a sum, return a new sum like X but lacking any constant terms.
165 Add all the removed constant terms into *CONSTPTR.
166 X itself is not altered. The result != X if and only if
167 it is not isomorphic to X. */
170 eliminate_constant_term (x, constptr)
171 rtx x;
172 rtx *constptr;
174 register rtx x0, x1;
175 rtx tem;
177 if (GET_CODE (x) != PLUS)
178 return x;
180 /* First handle constants appearing at this level explicitly. */
181 if (GET_CODE (XEXP (x, 1)) == CONST_INT
182 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
183 XEXP (x, 1)))
184 && GET_CODE (tem) == CONST_INT)
186 *constptr = tem;
187 return eliminate_constant_term (XEXP (x, 0), constptr);
190 tem = const0_rtx;
191 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
192 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
193 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
194 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
195 *constptr, tem))
196 && GET_CODE (tem) == CONST_INT)
198 *constptr = tem;
199 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
202 return x;
205 /* Returns the insn that next references REG after INSN, or 0
206 if REG is clobbered before next referenced or we cannot find
207 an insn that references REG in a straight-line piece of code. */
210 find_next_ref (reg, insn)
211 rtx reg;
212 rtx insn;
214 rtx next;
216 for (insn = NEXT_INSN (insn); insn; insn = next)
218 next = NEXT_INSN (insn);
219 if (GET_CODE (insn) == NOTE)
220 continue;
221 if (GET_CODE (insn) == CODE_LABEL
222 || GET_CODE (insn) == BARRIER)
223 return 0;
224 if (GET_CODE (insn) == INSN
225 || GET_CODE (insn) == JUMP_INSN
226 || GET_CODE (insn) == CALL_INSN)
228 if (reg_set_p (reg, insn))
229 return 0;
230 if (reg_mentioned_p (reg, PATTERN (insn)))
231 return insn;
232 if (GET_CODE (insn) == JUMP_INSN)
234 if (simplejump_p (insn))
235 next = JUMP_LABEL (insn);
236 else
237 return 0;
239 if (GET_CODE (insn) == CALL_INSN
240 && REGNO (reg) < FIRST_PSEUDO_REGISTER
241 && call_used_regs[REGNO (reg)])
242 return 0;
244 else
245 abort ();
247 return 0;
250 /* Return an rtx for the size in bytes of the value of EXP. */
253 expr_size (exp)
254 tree exp;
256 tree size = size_in_bytes (TREE_TYPE (exp));
258 if (TREE_CODE (size) != INTEGER_CST
259 && contains_placeholder_p (size))
260 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
262 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
263 EXPAND_MEMORY_USE_BAD);
266 /* Return a copy of X in which all memory references
267 and all constants that involve symbol refs
268 have been replaced with new temporary registers.
269 Also emit code to load the memory locations and constants
270 into those registers.
272 If X contains no such constants or memory references,
273 X itself (not a copy) is returned.
275 If a constant is found in the address that is not a legitimate constant
276 in an insn, it is left alone in the hope that it might be valid in the
277 address.
279 X may contain no arithmetic except addition, subtraction and multiplication.
280 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
282 static rtx
283 break_out_memory_refs (x)
284 register rtx x;
286 if (GET_CODE (x) == MEM
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
293 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
300 return x;
303 #ifdef POINTERS_EXTEND_UNSIGNED
305 /* Given X, a memory address in ptr_mode, convert it to an address
306 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
307 the fact that pointers are not allowed to overflow by commuting arithmetic
308 operations over conversions so that address arithmetic insns can be
309 used. */
312 convert_memory_address (to_mode, x)
313 enum machine_mode to_mode;
314 rtx x;
316 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
317 rtx temp;
319 /* Here we handle some special cases. If none of them apply, fall through
320 to the default case. */
321 switch (GET_CODE (x))
323 case CONST_INT:
324 case CONST_DOUBLE:
325 return x;
327 case LABEL_REF:
328 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
329 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
330 return temp;
332 case SYMBOL_REF:
333 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
334 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
335 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
336 return temp;
338 case CONST:
339 return gen_rtx_CONST (to_mode,
340 convert_memory_address (to_mode, XEXP (x, 0)));
342 case PLUS:
343 case MULT:
344 /* For addition the second operand is a small constant, we can safely
345 permute the conversion and addition operation. We can always safely
346 permute them if we are making the address narrower. In addition,
347 always permute the operations if this is a constant. */
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
349 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
350 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
351 || CONSTANT_P (XEXP (x, 0)))))
352 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
353 convert_memory_address (to_mode, XEXP (x, 0)),
354 convert_memory_address (to_mode, XEXP (x, 1)));
355 break;
357 default:
358 break;
361 return convert_modes (to_mode, from_mode,
362 x, POINTERS_EXTEND_UNSIGNED);
364 #endif
366 /* Given a memory address or facsimile X, construct a new address,
367 currently equivalent, that is stable: future stores won't change it.
369 X must be composed of constants, register and memory references
370 combined with addition, subtraction and multiplication:
371 in other words, just what you can get from expand_expr if sum_ok is 1.
373 Works by making copies of all regs and memory locations used
374 by X and combining them the same way X does.
375 You could also stabilize the reference to this address
376 by copying the address to a register with copy_to_reg;
377 but then you wouldn't get indexed addressing in the reference. */
380 copy_all_regs (x)
381 register rtx x;
383 if (GET_CODE (x) == REG)
385 if (REGNO (x) != FRAME_POINTER_REGNUM
386 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
387 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
388 #endif
390 x = copy_to_reg (x);
392 else if (GET_CODE (x) == MEM)
393 x = copy_to_reg (x);
394 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
395 || GET_CODE (x) == MULT)
397 register rtx op0 = copy_all_regs (XEXP (x, 0));
398 register rtx op1 = copy_all_regs (XEXP (x, 1));
399 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
400 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
402 return x;
405 /* Return something equivalent to X but valid as a memory address
406 for something of mode MODE. When X is not itself valid, this
407 works by copying X or subexpressions of it into registers. */
410 memory_address (mode, x)
411 enum machine_mode mode;
412 register rtx x;
414 register rtx oldx = x;
416 if (GET_CODE (x) == ADDRESSOF)
417 return x;
419 #ifdef POINTERS_EXTEND_UNSIGNED
420 if (GET_MODE (x) == ptr_mode)
421 x = convert_memory_address (Pmode, x);
422 #endif
424 /* By passing constant addresses thru registers
425 we get a chance to cse them. */
426 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
427 x = force_reg (Pmode, x);
429 /* Accept a QUEUED that refers to a REG
430 even though that isn't a valid address.
431 On attempting to put this in an insn we will call protect_from_queue
432 which will turn it into a REG, which is valid. */
433 else if (GET_CODE (x) == QUEUED
434 && GET_CODE (QUEUED_VAR (x)) == REG)
437 /* We get better cse by rejecting indirect addressing at this stage.
438 Let the combiner create indirect addresses where appropriate.
439 For now, generate the code so that the subexpressions useful to share
440 are visible. But not if cse won't be done! */
441 else
443 if (! cse_not_expected && GET_CODE (x) != REG)
444 x = break_out_memory_refs (x);
446 /* At this point, any valid address is accepted. */
447 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
449 /* If it was valid before but breaking out memory refs invalidated it,
450 use it the old way. */
451 if (memory_address_p (mode, oldx))
452 goto win2;
454 /* Perform machine-dependent transformations on X
455 in certain cases. This is not necessary since the code
456 below can handle all possible cases, but machine-dependent
457 transformations can make better code. */
458 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
460 /* PLUS and MULT can appear in special ways
461 as the result of attempts to make an address usable for indexing.
462 Usually they are dealt with by calling force_operand, below.
463 But a sum containing constant terms is special
464 if removing them makes the sum a valid address:
465 then we generate that address in a register
466 and index off of it. We do this because it often makes
467 shorter code, and because the addresses thus generated
468 in registers often become common subexpressions. */
469 if (GET_CODE (x) == PLUS)
471 rtx constant_term = const0_rtx;
472 rtx y = eliminate_constant_term (x, &constant_term);
473 if (constant_term == const0_rtx
474 || ! memory_address_p (mode, y))
475 x = force_operand (x, NULL_RTX);
476 else
478 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
479 if (! memory_address_p (mode, y))
480 x = force_operand (x, NULL_RTX);
481 else
482 x = y;
486 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
487 x = force_operand (x, NULL_RTX);
489 /* If we have a register that's an invalid address,
490 it must be a hard reg of the wrong class. Copy it to a pseudo. */
491 else if (GET_CODE (x) == REG)
492 x = copy_to_reg (x);
494 /* Last resort: copy the value to a register, since
495 the register is a valid address. */
496 else
497 x = force_reg (Pmode, x);
499 goto done;
501 win2:
502 x = oldx;
503 win:
504 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
505 /* Don't copy an addr via a reg if it is one of our stack slots. */
506 && ! (GET_CODE (x) == PLUS
507 && (XEXP (x, 0) == virtual_stack_vars_rtx
508 || XEXP (x, 0) == virtual_incoming_args_rtx)))
510 if (general_operand (x, Pmode))
511 x = force_reg (Pmode, x);
512 else
513 x = force_operand (x, NULL_RTX);
517 done:
519 /* If we didn't change the address, we are done. Otherwise, mark
520 a reg as a pointer if we have REG or REG + CONST_INT. */
521 if (oldx == x)
522 return x;
523 else if (GET_CODE (x) == REG)
524 mark_reg_pointer (x, 1);
525 else if (GET_CODE (x) == PLUS
526 && GET_CODE (XEXP (x, 0)) == REG
527 && GET_CODE (XEXP (x, 1)) == CONST_INT)
528 mark_reg_pointer (XEXP (x, 0), 1);
530 /* OLDX may have been the address on a temporary. Update the address
531 to indicate that X is now used. */
532 update_temp_slot_address (oldx, x);
534 return x;
537 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
540 memory_address_noforce (mode, x)
541 enum machine_mode mode;
542 rtx x;
544 int ambient_force_addr = flag_force_addr;
545 rtx val;
547 flag_force_addr = 0;
548 val = memory_address (mode, x);
549 flag_force_addr = ambient_force_addr;
550 return val;
553 /* Convert a mem ref into one with a valid memory address.
554 Pass through anything else unchanged. */
557 validize_mem (ref)
558 rtx ref;
560 if (GET_CODE (ref) != MEM)
561 return ref;
562 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
563 return ref;
564 /* Don't alter REF itself, since that is probably a stack slot. */
565 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
568 /* Return a modified copy of X with its memory address copied
569 into a temporary register to protect it from side effects.
570 If X is not a MEM, it is returned unchanged (and not copied).
571 Perhaps even if it is a MEM, if there is no need to change it. */
574 stabilize (x)
575 rtx x;
577 register rtx addr;
578 if (GET_CODE (x) != MEM)
579 return x;
580 addr = XEXP (x, 0);
581 if (rtx_unstable_p (addr))
583 rtx temp = copy_all_regs (addr);
584 rtx mem;
585 if (GET_CODE (temp) != REG)
586 temp = copy_to_reg (temp);
587 mem = gen_rtx_MEM (GET_MODE (x), temp);
589 /* Mark returned memref with in_struct if it's in an array or
590 structure. Copy const and volatile from original memref. */
592 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
593 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
594 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
595 return mem;
597 return x;
600 /* Copy the value or contents of X to a new temp reg and return that reg. */
603 copy_to_reg (x)
604 rtx x;
606 register rtx temp = gen_reg_rtx (GET_MODE (x));
608 /* If not an operand, must be an address with PLUS and MULT so
609 do the computation. */
610 if (! general_operand (x, VOIDmode))
611 x = force_operand (x, temp);
613 if (x != temp)
614 emit_move_insn (temp, x);
616 return temp;
619 /* Like copy_to_reg but always give the new register mode Pmode
620 in case X is a constant. */
623 copy_addr_to_reg (x)
624 rtx x;
626 return copy_to_mode_reg (Pmode, x);
629 /* Like copy_to_reg but always give the new register mode MODE
630 in case X is a constant. */
633 copy_to_mode_reg (mode, x)
634 enum machine_mode mode;
635 rtx x;
637 register rtx temp = gen_reg_rtx (mode);
639 /* If not an operand, must be an address with PLUS and MULT so
640 do the computation. */
641 if (! general_operand (x, VOIDmode))
642 x = force_operand (x, temp);
644 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
645 abort ();
646 if (x != temp)
647 emit_move_insn (temp, x);
648 return temp;
651 /* Load X into a register if it is not already one.
652 Use mode MODE for the register.
653 X should be valid for mode MODE, but it may be a constant which
654 is valid for all integer modes; that's why caller must specify MODE.
656 The caller must not alter the value in the register we return,
657 since we mark it as a "constant" register. */
660 force_reg (mode, x)
661 enum machine_mode mode;
662 rtx x;
664 register rtx temp, insn, set;
666 if (GET_CODE (x) == REG)
667 return x;
668 temp = gen_reg_rtx (mode);
669 insn = emit_move_insn (temp, x);
671 /* Let optimizers know that TEMP's value never changes
672 and that X can be substituted for it. Don't get confused
673 if INSN set something else (such as a SUBREG of TEMP). */
674 if (CONSTANT_P (x)
675 && (set = single_set (insn)) != 0
676 && SET_DEST (set) == temp)
678 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
680 if (note)
681 XEXP (note, 0) = x;
682 else
683 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
685 return temp;
688 /* If X is a memory ref, copy its contents to a new temp reg and return
689 that reg. Otherwise, return X. */
692 force_not_mem (x)
693 rtx x;
695 register rtx temp;
696 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
697 return x;
698 temp = gen_reg_rtx (GET_MODE (x));
699 emit_move_insn (temp, x);
700 return temp;
703 /* Copy X to TARGET (if it's nonzero and a reg)
704 or to a new temp reg and return that reg.
705 MODE is the mode to use for X in case it is a constant. */
708 copy_to_suggested_reg (x, target, mode)
709 rtx x, target;
710 enum machine_mode mode;
712 register rtx temp;
714 if (target && GET_CODE (target) == REG)
715 temp = target;
716 else
717 temp = gen_reg_rtx (mode);
719 emit_move_insn (temp, x);
720 return temp;
723 /* Return the mode to use to store a scalar of TYPE and MODE.
724 PUNSIGNEDP points to the signedness of the type and may be adjusted
725 to show what signedness to use on extension operations.
727 FOR_CALL is non-zero if this call is promoting args for a call. */
729 enum machine_mode
730 promote_mode (type, mode, punsignedp, for_call)
731 tree type;
732 enum machine_mode mode;
733 int *punsignedp;
734 int for_call;
736 enum tree_code code = TREE_CODE (type);
737 int unsignedp = *punsignedp;
739 #ifdef PROMOTE_FOR_CALL_ONLY
740 if (! for_call)
741 return mode;
742 #endif
744 switch (code)
746 #ifdef PROMOTE_MODE
747 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
748 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
749 PROMOTE_MODE (mode, unsignedp, type);
750 break;
751 #endif
753 #ifdef POINTERS_EXTEND_UNSIGNED
754 case REFERENCE_TYPE:
755 case POINTER_TYPE:
756 mode = Pmode;
757 unsignedp = POINTERS_EXTEND_UNSIGNED;
758 break;
759 #endif
761 default:
762 break;
765 *punsignedp = unsignedp;
766 return mode;
769 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
770 This pops when ADJUST is positive. ADJUST need not be constant. */
772 void
773 adjust_stack (adjust)
774 rtx adjust;
776 rtx temp;
777 adjust = protect_from_queue (adjust, 0);
779 if (adjust == const0_rtx)
780 return;
782 temp = expand_binop (Pmode,
783 #ifdef STACK_GROWS_DOWNWARD
784 add_optab,
785 #else
786 sub_optab,
787 #endif
788 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
789 OPTAB_LIB_WIDEN);
791 if (temp != stack_pointer_rtx)
792 emit_move_insn (stack_pointer_rtx, temp);
795 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
796 This pushes when ADJUST is positive. ADJUST need not be constant. */
798 void
799 anti_adjust_stack (adjust)
800 rtx adjust;
802 rtx temp;
803 adjust = protect_from_queue (adjust, 0);
805 if (adjust == const0_rtx)
806 return;
808 temp = expand_binop (Pmode,
809 #ifdef STACK_GROWS_DOWNWARD
810 sub_optab,
811 #else
812 add_optab,
813 #endif
814 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
815 OPTAB_LIB_WIDEN);
817 if (temp != stack_pointer_rtx)
818 emit_move_insn (stack_pointer_rtx, temp);
821 /* Round the size of a block to be pushed up to the boundary required
822 by this machine. SIZE is the desired size, which need not be constant. */
825 round_push (size)
826 rtx size;
828 #ifdef STACK_BOUNDARY
829 int align = STACK_BOUNDARY / BITS_PER_UNIT;
830 if (align == 1)
831 return size;
832 if (GET_CODE (size) == CONST_INT)
834 int new = (INTVAL (size) + align - 1) / align * align;
835 if (INTVAL (size) != new)
836 size = GEN_INT (new);
838 else
840 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
841 but we know it can't. So add ourselves and then do
842 TRUNC_DIV_EXPR. */
843 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
844 NULL_RTX, 1, OPTAB_LIB_WIDEN);
845 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
846 NULL_RTX, 1);
847 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
849 #endif /* STACK_BOUNDARY */
850 return size;
853 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
854 to a previously-created save area. If no save area has been allocated,
855 this function will allocate one. If a save area is specified, it
856 must be of the proper mode.
858 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
859 are emitted at the current position. */
861 void
862 emit_stack_save (save_level, psave, after)
863 enum save_level save_level;
864 rtx *psave;
865 rtx after;
867 rtx sa = *psave;
868 /* The default is that we use a move insn and save in a Pmode object. */
869 rtx (*fcn) () = gen_move_insn;
870 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
872 /* See if this machine has anything special to do for this kind of save. */
873 switch (save_level)
875 #ifdef HAVE_save_stack_block
876 case SAVE_BLOCK:
877 if (HAVE_save_stack_block)
878 fcn = gen_save_stack_block;
879 break;
880 #endif
881 #ifdef HAVE_save_stack_function
882 case SAVE_FUNCTION:
883 if (HAVE_save_stack_function)
884 fcn = gen_save_stack_function;
885 break;
886 #endif
887 #ifdef HAVE_save_stack_nonlocal
888 case SAVE_NONLOCAL:
889 if (HAVE_save_stack_nonlocal)
890 fcn = gen_save_stack_nonlocal;
891 break;
892 #endif
893 default:
894 break;
897 /* If there is no save area and we have to allocate one, do so. Otherwise
898 verify the save area is the proper mode. */
900 if (sa == 0)
902 if (mode != VOIDmode)
904 if (save_level == SAVE_NONLOCAL)
905 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
906 else
907 *psave = sa = gen_reg_rtx (mode);
910 else
912 if (mode == VOIDmode || GET_MODE (sa) != mode)
913 abort ();
916 if (after)
918 rtx seq;
920 start_sequence ();
921 /* We must validize inside the sequence, to ensure that any instructions
922 created by the validize call also get moved to the right place. */
923 if (sa != 0)
924 sa = validize_mem (sa);
925 emit_insn (fcn (sa, stack_pointer_rtx));
926 seq = gen_sequence ();
927 end_sequence ();
928 emit_insn_after (seq, after);
930 else
932 if (sa != 0)
933 sa = validize_mem (sa);
934 emit_insn (fcn (sa, stack_pointer_rtx));
938 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
939 area made by emit_stack_save. If it is zero, we have nothing to do.
941 Put any emitted insns after insn AFTER, if nonzero, otherwise at
942 current position. */
944 void
945 emit_stack_restore (save_level, sa, after)
946 enum save_level save_level;
947 rtx after;
948 rtx sa;
950 /* The default is that we use a move insn. */
951 rtx (*fcn) () = gen_move_insn;
953 /* See if this machine has anything special to do for this kind of save. */
954 switch (save_level)
956 #ifdef HAVE_restore_stack_block
957 case SAVE_BLOCK:
958 if (HAVE_restore_stack_block)
959 fcn = gen_restore_stack_block;
960 break;
961 #endif
962 #ifdef HAVE_restore_stack_function
963 case SAVE_FUNCTION:
964 if (HAVE_restore_stack_function)
965 fcn = gen_restore_stack_function;
966 break;
967 #endif
968 #ifdef HAVE_restore_stack_nonlocal
969 case SAVE_NONLOCAL:
970 if (HAVE_restore_stack_nonlocal)
971 fcn = gen_restore_stack_nonlocal;
972 break;
973 #endif
974 default:
975 break;
978 if (sa != 0)
979 sa = validize_mem (sa);
981 if (after)
983 rtx seq;
985 start_sequence ();
986 emit_insn (fcn (stack_pointer_rtx, sa));
987 seq = gen_sequence ();
988 end_sequence ();
989 emit_insn_after (seq, after);
991 else
992 emit_insn (fcn (stack_pointer_rtx, sa));
995 #ifdef SETJMP_VIA_SAVE_AREA
996 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
997 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
998 platforms, the dynamic stack space used can corrupt the original
999 frame, thus causing a crash if a longjmp unwinds to it. */
1001 void
1002 optimize_save_area_alloca (insns)
1003 rtx insns;
1005 rtx insn;
1007 for (insn = insns; insn; insn = NEXT_INSN(insn))
1009 rtx note;
1011 if (GET_CODE (insn) != INSN)
1012 continue;
1014 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1016 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1017 continue;
1019 if (!current_function_calls_setjmp)
1021 rtx pat = PATTERN (insn);
1023 /* If we do not see the note in a pattern matching
1024 these precise characteristics, we did something
1025 entirely wrong in allocate_dynamic_stack_space.
1027 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1028 was defined on a machine where stacks grow towards higher
1029 addresses.
1031 Right now only supported port with stack that grow upward
1032 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1033 if (GET_CODE (pat) != SET
1034 || SET_DEST (pat) != stack_pointer_rtx
1035 || GET_CODE (SET_SRC (pat)) != MINUS
1036 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1037 abort ();
1039 /* This will now be transformed into a (set REG REG)
1040 so we can just blow away all the other notes. */
1041 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1042 REG_NOTES (insn) = NULL_RTX;
1044 else
1046 /* setjmp was called, we must remove the REG_SAVE_AREA
1047 note so that later passes do not get confused by its
1048 presence. */
1049 if (note == REG_NOTES (insn))
1051 REG_NOTES (insn) = XEXP (note, 1);
1053 else
1055 rtx srch;
1057 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1058 if (XEXP (srch, 1) == note)
1059 break;
1061 if (srch == NULL_RTX)
1062 abort();
1064 XEXP (srch, 1) = XEXP (note, 1);
1067 /* Once we've seen the note of interest, we need not look at
1068 the rest of them. */
1069 break;
1073 #endif /* SETJMP_VIA_SAVE_AREA */
1075 /* Return an rtx representing the address of an area of memory dynamically
1076 pushed on the stack. This region of memory is always aligned to
1077 a multiple of BIGGEST_ALIGNMENT.
1079 Any required stack pointer alignment is preserved.
1081 SIZE is an rtx representing the size of the area.
1082 TARGET is a place in which the address can be placed.
1084 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1087 allocate_dynamic_stack_space (size, target, known_align)
1088 rtx size;
1089 rtx target;
1090 int known_align;
1092 #ifdef SETJMP_VIA_SAVE_AREA
1093 rtx setjmpless_size = NULL_RTX;
1094 #endif
1096 /* If we're asking for zero bytes, it doesn't matter what we point
1097 to since we can't dereference it. But return a reasonable
1098 address anyway. */
1099 if (size == const0_rtx)
1100 return virtual_stack_dynamic_rtx;
1102 /* Otherwise, show we're calling alloca or equivalent. */
1103 current_function_calls_alloca = 1;
1105 /* Ensure the size is in the proper mode. */
1106 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1107 size = convert_to_mode (Pmode, size, 1);
1109 /* We will need to ensure that the address we return is aligned to
1110 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1111 always know its final value at this point in the compilation (it
1112 might depend on the size of the outgoing parameter lists, for
1113 example), so we must align the value to be returned in that case.
1114 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1115 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1116 We must also do an alignment operation on the returned value if
1117 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1119 If we have to align, we must leave space in SIZE for the hole
1120 that might result from the alignment operation. */
1122 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1123 #define MUST_ALIGN 1
1124 #else
1125 #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1126 #endif
1128 if (MUST_ALIGN)
1130 if (GET_CODE (size) == CONST_INT)
1131 size = GEN_INT (INTVAL (size)
1132 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1133 else
1134 size = expand_binop (Pmode, add_optab, size,
1135 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1136 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1139 #ifdef SETJMP_VIA_SAVE_AREA
1140 /* If setjmp restores regs from a save area in the stack frame,
1141 avoid clobbering the reg save area. Note that the offset of
1142 virtual_incoming_args_rtx includes the preallocated stack args space.
1143 It would be no problem to clobber that, but it's on the wrong side
1144 of the old save area. */
1146 rtx dynamic_offset
1147 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1148 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1150 if (!current_function_calls_setjmp)
1152 int align = STACK_BOUNDARY / BITS_PER_UNIT;
1154 /* See optimize_save_area_alloca to understand what is being
1155 set up here. */
1157 #if !defined(STACK_BOUNDARY) || !defined(MUST_ALIGN) || (STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1158 /* If anyone creates a target with these characteristics, let them
1159 know that our optimization cannot work correctly in such a case. */
1160 abort();
1161 #endif
1163 if (GET_CODE (size) == CONST_INT)
1165 int new = INTVAL (size) / align * align;
1167 if (INTVAL (size) != new)
1168 setjmpless_size = GEN_INT (new);
1169 else
1170 setjmpless_size = size;
1172 else
1174 /* Since we know overflow is not possible, we avoid using
1175 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1176 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1177 GEN_INT (align), NULL_RTX, 1);
1178 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1179 GEN_INT (align), NULL_RTX, 1);
1181 /* Our optimization works based upon being able to perform a simple
1182 transformation of this RTL into a (set REG REG) so make sure things
1183 did in fact end up in a REG. */
1184 if (!arith_operand (setjmpless_size, Pmode))
1185 setjmpless_size = force_reg (Pmode, setjmpless_size);
1188 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1189 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1191 #endif /* SETJMP_VIA_SAVE_AREA */
1193 /* Round the size to a multiple of the required stack alignment.
1194 Since the stack if presumed to be rounded before this allocation,
1195 this will maintain the required alignment.
1197 If the stack grows downward, we could save an insn by subtracting
1198 SIZE from the stack pointer and then aligning the stack pointer.
1199 The problem with this is that the stack pointer may be unaligned
1200 between the execution of the subtraction and alignment insns and
1201 some machines do not allow this. Even on those that do, some
1202 signal handlers malfunction if a signal should occur between those
1203 insns. Since this is an extremely rare event, we have no reliable
1204 way of knowing which systems have this problem. So we avoid even
1205 momentarily mis-aligning the stack. */
1207 #ifdef STACK_BOUNDARY
1208 /* If we added a variable amount to SIZE,
1209 we can no longer assume it is aligned. */
1210 #if !defined (SETJMP_VIA_SAVE_AREA)
1211 if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
1212 #endif
1213 size = round_push (size);
1214 #endif
1216 do_pending_stack_adjust ();
1218 /* If needed, check that we have the required amount of stack. Take into
1219 account what has already been checked. */
1220 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1221 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1223 /* Don't use a TARGET that isn't a pseudo. */
1224 if (target == 0 || GET_CODE (target) != REG
1225 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1226 target = gen_reg_rtx (Pmode);
1228 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1230 /* Perform the required allocation from the stack. Some systems do
1231 this differently than simply incrementing/decrementing from the
1232 stack pointer, such as acquiring the space by calling malloc(). */
1233 #ifdef HAVE_allocate_stack
1234 if (HAVE_allocate_stack)
1236 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1237 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1238 (target, Pmode)))
1239 target = copy_to_mode_reg (Pmode, target);
1240 size = convert_modes (Pmode, ptr_mode, size, 1);
1241 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][1]
1242 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][1])
1243 (size, Pmode)))
1244 size = copy_to_mode_reg (Pmode, size);
1246 emit_insn (gen_allocate_stack (target, size));
1248 else
1249 #endif
1251 #ifndef STACK_GROWS_DOWNWARD
1252 emit_move_insn (target, virtual_stack_dynamic_rtx);
1253 #endif
1254 size = convert_modes (Pmode, ptr_mode, size, 1);
1255 anti_adjust_stack (size);
1256 #ifdef SETJMP_VIA_SAVE_AREA
1257 if (setjmpless_size != NULL_RTX)
1259 rtx note_target = get_last_insn ();
1261 REG_NOTES (note_target) = gen_rtx (EXPR_LIST, REG_SAVE_AREA,
1262 setjmpless_size,
1263 REG_NOTES (note_target));
1265 #endif /* SETJMP_VIA_SAVE_AREA */
1266 #ifdef STACK_GROWS_DOWNWARD
1267 emit_move_insn (target, virtual_stack_dynamic_rtx);
1268 #endif
1271 if (MUST_ALIGN)
1273 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1274 but we know it can't. So add ourselves and then do
1275 TRUNC_DIV_EXPR. */
1276 target = expand_binop (Pmode, add_optab, target,
1277 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1278 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1279 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1280 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1281 NULL_RTX, 1);
1282 target = expand_mult (Pmode, target,
1283 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1284 NULL_RTX, 1);
1287 /* Some systems require a particular insn to refer to the stack
1288 to make the pages exist. */
1289 #ifdef HAVE_probe
1290 if (HAVE_probe)
1291 emit_insn (gen_probe ());
1292 #endif
1294 /* Record the new stack level for nonlocal gotos. */
1295 if (nonlocal_goto_handler_slot != 0)
1296 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1298 return target;
1301 /* Emit one stack probe at ADDRESS, an address within the stack. */
1303 static void
1304 emit_stack_probe (address)
1305 rtx address;
1307 rtx memref = gen_rtx_MEM (word_mode, address);
1309 MEM_VOLATILE_P (memref) = 1;
1311 if (STACK_CHECK_PROBE_LOAD)
1312 emit_move_insn (gen_reg_rtx (word_mode), memref);
1313 else
1314 emit_move_insn (memref, const0_rtx);
1317 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1318 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1319 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1320 subtract from the stack. If SIZE is constant, this is done
1321 with a fixed number of probes. Otherwise, we must make a loop. */
1323 #ifdef STACK_GROWS_DOWNWARD
1324 #define STACK_GROW_OP MINUS
1325 #else
1326 #define STACK_GROW_OP PLUS
1327 #endif
1329 void
1330 probe_stack_range (first, size)
1331 HOST_WIDE_INT first;
1332 rtx size;
1334 /* First see if we have an insn to check the stack. Use it if so. */
1335 #ifdef HAVE_check_stack
1336 if (HAVE_check_stack)
1338 rtx last_addr
1339 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1340 stack_pointer_rtx,
1341 plus_constant (size, first)),
1342 NULL_RTX);
1344 if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1345 && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1346 (last_address, Pmode)))
1347 last_address = copy_to_mode_reg (Pmode, last_address);
1349 emit_insn (gen_check_stack (last_address));
1350 return;
1352 #endif
1354 /* If we have to generate explicit probes, see if we have a constant
1355 small number of them to generate. If so, that's the easy case. */
1356 if (GET_CODE (size) == CONST_INT
1357 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1359 HOST_WIDE_INT offset;
1361 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1362 for values of N from 1 until it exceeds LAST. If only one
1363 probe is needed, this will not generate any code. Then probe
1364 at LAST. */
1365 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1366 offset < INTVAL (size);
1367 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1368 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1369 stack_pointer_rtx,
1370 GEN_INT (offset)));
1372 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1373 stack_pointer_rtx,
1374 plus_constant (size, first)));
1377 /* In the variable case, do the same as above, but in a loop. We emit loop
1378 notes so that loop optimization can be done. */
1379 else
1381 rtx test_addr
1382 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1383 stack_pointer_rtx,
1384 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1385 NULL_RTX);
1386 rtx last_addr
1387 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1388 stack_pointer_rtx,
1389 plus_constant (size, first)),
1390 NULL_RTX);
1391 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1392 rtx loop_lab = gen_label_rtx ();
1393 rtx test_lab = gen_label_rtx ();
1394 rtx end_lab = gen_label_rtx ();
1395 rtx temp;
1397 if (GET_CODE (test_addr) != REG
1398 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1399 test_addr = force_reg (Pmode, test_addr);
1401 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1402 emit_jump (test_lab);
1404 emit_label (loop_lab);
1405 emit_stack_probe (test_addr);
1407 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1409 #ifdef STACK_GROWS_DOWNWARD
1410 #define CMP_OPCODE GTU
1411 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1412 1, OPTAB_WIDEN);
1413 #else
1414 #define CMP_OPCODE LTU
1415 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1416 1, OPTAB_WIDEN);
1417 #endif
1419 if (temp != test_addr)
1420 abort ();
1422 emit_label (test_lab);
1423 emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0);
1424 emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab));
1425 emit_jump (end_lab);
1426 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1427 emit_label (end_lab);
1429 /* If will be doing stupid optimization, show test_addr is still live. */
1430 if (obey_regdecls)
1431 emit_insn (gen_rtx_USE (VOIDmode, test_addr));
1433 emit_stack_probe (last_addr);
1437 /* Return an rtx representing the register or memory location
1438 in which a scalar value of data type VALTYPE
1439 was returned by a function call to function FUNC.
1440 FUNC is a FUNCTION_DECL node if the precise function is known,
1441 otherwise 0. */
1444 hard_function_value (valtype, func)
1445 tree valtype;
1446 tree func;
1448 rtx val = FUNCTION_VALUE (valtype, func);
1449 if (GET_CODE (val) == REG
1450 && GET_MODE (val) == BLKmode)
1452 int bytes = int_size_in_bytes (valtype);
1453 enum machine_mode tmpmode;
1454 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1455 tmpmode != MAX_MACHINE_MODE;
1456 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1458 /* Have we found a large enough mode? */
1459 if (GET_MODE_SIZE (tmpmode) >= bytes)
1460 break;
1463 /* No suitable mode found. */
1464 if (tmpmode == MAX_MACHINE_MODE)
1465 abort ();
1467 PUT_MODE (val, tmpmode);
1469 return val;
1472 /* Return an rtx representing the register or memory location
1473 in which a scalar value of mode MODE was returned by a library call. */
1476 hard_libcall_value (mode)
1477 enum machine_mode mode;
1479 return LIBCALL_VALUE (mode);
1482 /* Look up the tree code for a given rtx code
1483 to provide the arithmetic operation for REAL_ARITHMETIC.
1484 The function returns an int because the caller may not know
1485 what `enum tree_code' means. */
1488 rtx_to_tree_code (code)
1489 enum rtx_code code;
1491 enum tree_code tcode;
1493 switch (code)
1495 case PLUS:
1496 tcode = PLUS_EXPR;
1497 break;
1498 case MINUS:
1499 tcode = MINUS_EXPR;
1500 break;
1501 case MULT:
1502 tcode = MULT_EXPR;
1503 break;
1504 case DIV:
1505 tcode = RDIV_EXPR;
1506 break;
1507 case SMIN:
1508 tcode = MIN_EXPR;
1509 break;
1510 case SMAX:
1511 tcode = MAX_EXPR;
1512 break;
1513 default:
1514 tcode = LAST_AND_UNUSED_TREE_CODE;
1515 break;
1517 return ((int) tcode);