Do not do src->dest copy if register would not be allocated a normal register
[official-gcc.git] / gcc / combine.c
blob14da483ccd11194c936f75db9ef6038797da77c1
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #ifdef __STDC__
79 #include <stdarg.h>
80 #else
81 #include <varargs.h>
82 #endif
84 /* stdio.h must precede rtl.h for FFS. */
85 #include "system.h"
87 #include "rtl.h"
88 #include "flags.h"
89 #include "regs.h"
90 #include "hard-reg-set.h"
91 #include "basic-block.h"
92 #include "insn-config.h"
93 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
94 #include "expr.h"
95 #include "insn-flags.h"
96 #include "insn-codes.h"
97 #include "insn-attr.h"
98 #include "recog.h"
99 #include "real.h"
101 /* It is not safe to use ordinary gen_lowpart in combine.
102 Use gen_lowpart_for_combine instead. See comments there. */
103 #define gen_lowpart dont_use_gen_lowpart_you_dummy
105 /* Number of attempts to combine instructions in this function. */
107 static int combine_attempts;
109 /* Number of attempts that got as far as substitution in this function. */
111 static int combine_merges;
113 /* Number of instructions combined with added SETs in this function. */
115 static int combine_extras;
117 /* Number of instructions combined in this function. */
119 static int combine_successes;
121 /* Totals over entire compilation. */
123 static int total_attempts, total_merges, total_extras, total_successes;
125 /* Define a default value for REVERSIBLE_CC_MODE.
126 We can never assume that a condition code mode is safe to reverse unless
127 the md tells us so. */
128 #ifndef REVERSIBLE_CC_MODE
129 #define REVERSIBLE_CC_MODE(MODE) 0
130 #endif
132 /* Vector mapping INSN_UIDs to cuids.
133 The cuids are like uids but increase monotonically always.
134 Combine always uses cuids so that it can compare them.
135 But actually renumbering the uids, which we used to do,
136 proves to be a bad idea because it makes it hard to compare
137 the dumps produced by earlier passes with those from later passes. */
139 static int *uid_cuid;
140 static int max_uid_cuid;
142 /* Get the cuid of an insn. */
144 #define INSN_CUID(INSN) \
145 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
147 /* Maximum register number, which is the size of the tables below. */
149 static int combine_max_regno;
151 /* Record last point of death of (hard or pseudo) register n. */
153 static rtx *reg_last_death;
155 /* Record last point of modification of (hard or pseudo) register n. */
157 static rtx *reg_last_set;
159 /* Record the cuid of the last insn that invalidated memory
160 (anything that writes memory, and subroutine calls, but not pushes). */
162 static int mem_last_set;
164 /* Record the cuid of the last CALL_INSN
165 so we can tell whether a potential combination crosses any calls. */
167 static int last_call_cuid;
169 /* When `subst' is called, this is the insn that is being modified
170 (by combining in a previous insn). The PATTERN of this insn
171 is still the old pattern partially modified and it should not be
172 looked at, but this may be used to examine the successors of the insn
173 to judge whether a simplification is valid. */
175 static rtx subst_insn;
177 /* This is an insn that belongs before subst_insn, but is not currently
178 on the insn chain. */
180 static rtx subst_prev_insn;
182 /* This is the lowest CUID that `subst' is currently dealing with.
183 get_last_value will not return a value if the register was set at or
184 after this CUID. If not for this mechanism, we could get confused if
185 I2 or I1 in try_combine were an insn that used the old value of a register
186 to obtain a new value. In that case, we might erroneously get the
187 new value of the register when we wanted the old one. */
189 static int subst_low_cuid;
191 /* This contains any hard registers that are used in newpat; reg_dead_at_p
192 must consider all these registers to be always live. */
194 static HARD_REG_SET newpat_used_regs;
196 /* This is an insn to which a LOG_LINKS entry has been added. If this
197 insn is the earlier than I2 or I3, combine should rescan starting at
198 that location. */
200 static rtx added_links_insn;
202 /* Basic block number of the block in which we are performing combines. */
203 static int this_basic_block;
205 /* The next group of arrays allows the recording of the last value assigned
206 to (hard or pseudo) register n. We use this information to see if a
207 operation being processed is redundant given a prior operation performed
208 on the register. For example, an `and' with a constant is redundant if
209 all the zero bits are already known to be turned off.
211 We use an approach similar to that used by cse, but change it in the
212 following ways:
214 (1) We do not want to reinitialize at each label.
215 (2) It is useful, but not critical, to know the actual value assigned
216 to a register. Often just its form is helpful.
218 Therefore, we maintain the following arrays:
220 reg_last_set_value the last value assigned
221 reg_last_set_label records the value of label_tick when the
222 register was assigned
223 reg_last_set_table_tick records the value of label_tick when a
224 value using the register is assigned
225 reg_last_set_invalid set to non-zero when it is not valid
226 to use the value of this register in some
227 register's value
229 To understand the usage of these tables, it is important to understand
230 the distinction between the value in reg_last_set_value being valid
231 and the register being validly contained in some other expression in the
232 table.
234 Entry I in reg_last_set_value is valid if it is non-zero, and either
235 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
237 Register I may validly appear in any expression returned for the value
238 of another register if reg_n_sets[i] is 1. It may also appear in the
239 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
240 reg_last_set_invalid[j] is zero.
242 If an expression is found in the table containing a register which may
243 not validly appear in an expression, the register is replaced by
244 something that won't match, (clobber (const_int 0)).
246 reg_last_set_invalid[i] is set non-zero when register I is being assigned
247 to and reg_last_set_table_tick[i] == label_tick. */
249 /* Record last value assigned to (hard or pseudo) register n. */
251 static rtx *reg_last_set_value;
253 /* Record the value of label_tick when the value for register n is placed in
254 reg_last_set_value[n]. */
256 static int *reg_last_set_label;
258 /* Record the value of label_tick when an expression involving register n
259 is placed in reg_last_set_value. */
261 static int *reg_last_set_table_tick;
263 /* Set non-zero if references to register n in expressions should not be
264 used. */
266 static char *reg_last_set_invalid;
268 /* Incremented for each label. */
270 static int label_tick;
272 /* Some registers that are set more than once and used in more than one
273 basic block are nevertheless always set in similar ways. For example,
274 a QImode register may be loaded from memory in two places on a machine
275 where byte loads zero extend.
277 We record in the following array what we know about the nonzero
278 bits of a register, specifically which bits are known to be zero.
280 If an entry is zero, it means that we don't know anything special. */
282 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
284 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
285 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
287 static enum machine_mode nonzero_bits_mode;
289 /* Nonzero if we know that a register has some leading bits that are always
290 equal to the sign bit. */
292 static char *reg_sign_bit_copies;
294 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
295 It is zero while computing them and after combine has completed. This
296 former test prevents propagating values based on previously set values,
297 which can be incorrect if a variable is modified in a loop. */
299 static int nonzero_sign_valid;
301 /* These arrays are maintained in parallel with reg_last_set_value
302 and are used to store the mode in which the register was last set,
303 the bits that were known to be zero when it was last set, and the
304 number of sign bits copies it was known to have when it was last set. */
306 static enum machine_mode *reg_last_set_mode;
307 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
308 static char *reg_last_set_sign_bit_copies;
310 /* Record one modification to rtl structure
311 to be undone by storing old_contents into *where.
312 is_int is 1 if the contents are an int. */
314 struct undo
316 struct undo *next;
317 int is_int;
318 union {rtx r; int i;} old_contents;
319 union {rtx *r; int *i;} where;
322 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
323 num_undo says how many are currently recorded.
325 storage is nonzero if we must undo the allocation of new storage.
326 The value of storage is what to pass to obfree.
328 other_insn is nonzero if we have modified some other insn in the process
329 of working on subst_insn. It must be verified too.
331 previous_undos is the value of undobuf.undos when we started processing
332 this substitution. This will prevent gen_rtx_combine from re-used a piece
333 from the previous expression. Doing so can produce circular rtl
334 structures. */
336 struct undobuf
338 char *storage;
339 struct undo *undos;
340 struct undo *frees;
341 struct undo *previous_undos;
342 rtx other_insn;
345 static struct undobuf undobuf;
347 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
348 insn. The substitution can be undone by undo_all. If INTO is already
349 set to NEWVAL, do not record this change. Because computing NEWVAL might
350 also call SUBST, we have to compute it before we put anything into
351 the undo table. */
353 #define SUBST(INTO, NEWVAL) \
354 do { rtx _new = (NEWVAL); \
355 struct undo *_buf; \
357 if (undobuf.frees) \
358 _buf = undobuf.frees, undobuf.frees = _buf->next; \
359 else \
360 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
362 _buf->is_int = 0; \
363 _buf->where.r = &INTO; \
364 _buf->old_contents.r = INTO; \
365 INTO = _new; \
366 if (_buf->old_contents.r == INTO) \
367 _buf->next = undobuf.frees, undobuf.frees = _buf; \
368 else \
369 _buf->next = undobuf.undos, undobuf.undos = _buf; \
370 } while (0)
372 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
373 for the value of a HOST_WIDE_INT value (including CONST_INT) is
374 not safe. */
376 #define SUBST_INT(INTO, NEWVAL) \
377 do { struct undo *_buf; \
379 if (undobuf.frees) \
380 _buf = undobuf.frees, undobuf.frees = _buf->next; \
381 else \
382 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
384 _buf->is_int = 1; \
385 _buf->where.i = (int *) &INTO; \
386 _buf->old_contents.i = INTO; \
387 INTO = NEWVAL; \
388 if (_buf->old_contents.i == INTO) \
389 _buf->next = undobuf.frees, undobuf.frees = _buf; \
390 else \
391 _buf->next = undobuf.undos, undobuf.undos = _buf; \
392 } while (0)
394 /* Number of times the pseudo being substituted for
395 was found and replaced. */
397 static int n_occurrences;
399 static void init_reg_last_arrays PROTO((void));
400 static void setup_incoming_promotions PROTO((void));
401 static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
402 static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
403 static int sets_function_arg_p PROTO((rtx));
404 static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
405 static rtx try_combine PROTO((rtx, rtx, rtx));
406 static void undo_all PROTO((void));
407 static rtx *find_split_point PROTO((rtx *, rtx));
408 static rtx subst PROTO((rtx, rtx, rtx, int, int));
409 static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
410 static rtx simplify_if_then_else PROTO((rtx));
411 static rtx simplify_set PROTO((rtx));
412 static rtx simplify_logical PROTO((rtx, int));
413 static rtx expand_compound_operation PROTO((rtx));
414 static rtx expand_field_assignment PROTO((rtx));
415 static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
416 int, int, int));
417 static rtx extract_left_shift PROTO((rtx, int));
418 static rtx make_compound_operation PROTO((rtx, enum rtx_code));
419 static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
420 static rtx force_to_mode PROTO((rtx, enum machine_mode,
421 unsigned HOST_WIDE_INT, rtx, int));
422 static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
423 static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
424 static int rtx_equal_for_field_assignment_p PROTO((rtx, rtx));
425 static rtx make_field_assignment PROTO((rtx));
426 static rtx apply_distributive_law PROTO((rtx));
427 static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
428 unsigned HOST_WIDE_INT));
429 static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
430 static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
431 static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
432 enum rtx_code, HOST_WIDE_INT,
433 enum machine_mode, int *));
434 static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
435 rtx, int));
436 static int recog_for_combine PROTO((rtx *, rtx, rtx *, int *));
437 static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
438 static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
439 ...));
440 static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
441 rtx, rtx));
442 static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
443 enum machine_mode, rtx));
444 static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
445 static int reversible_comparison_p PROTO((rtx));
446 static void update_table_tick PROTO((rtx));
447 static void record_value_for_reg PROTO((rtx, rtx, rtx));
448 static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
449 static void record_dead_and_set_regs PROTO((rtx));
450 static int get_last_value_validate PROTO((rtx *, rtx, int, int));
451 static rtx get_last_value PROTO((rtx));
452 static int use_crosses_set_p PROTO((rtx, int));
453 static void reg_dead_at_p_1 PROTO((rtx, rtx));
454 static int reg_dead_at_p PROTO((rtx, rtx));
455 static void move_deaths PROTO((rtx, rtx, int, rtx, rtx *));
456 static int reg_bitfield_target_p PROTO((rtx, rtx));
457 static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
458 static void distribute_links PROTO((rtx));
459 static void mark_used_regs_combine PROTO((rtx));
460 static int insn_cuid PROTO((rtx));
462 /* Main entry point for combiner. F is the first insn of the function.
463 NREGS is the first unused pseudo-reg number. */
465 void
466 combine_instructions (f, nregs)
467 rtx f;
468 int nregs;
470 register rtx insn, next;
471 #ifdef HAVE_cc0
472 register rtx prev;
473 #endif
474 register int i;
475 register rtx links, nextlinks;
477 combine_attempts = 0;
478 combine_merges = 0;
479 combine_extras = 0;
480 combine_successes = 0;
481 undobuf.undos = undobuf.previous_undos = 0;
483 combine_max_regno = nregs;
485 reg_nonzero_bits
486 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
487 reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
489 bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
490 bzero (reg_sign_bit_copies, nregs * sizeof (char));
492 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
493 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
494 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
495 reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
496 reg_last_set_label = (int *) alloca (nregs * sizeof (int));
497 reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
498 reg_last_set_mode
499 = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
500 reg_last_set_nonzero_bits
501 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
502 reg_last_set_sign_bit_copies
503 = (char *) alloca (nregs * sizeof (char));
505 init_reg_last_arrays ();
507 init_recog_no_volatile ();
509 /* Compute maximum uid value so uid_cuid can be allocated. */
511 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
512 if (INSN_UID (insn) > i)
513 i = INSN_UID (insn);
515 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
516 max_uid_cuid = i;
518 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
520 /* Don't use reg_nonzero_bits when computing it. This can cause problems
521 when, for example, we have j <<= 1 in a loop. */
523 nonzero_sign_valid = 0;
525 /* Compute the mapping from uids to cuids.
526 Cuids are numbers assigned to insns, like uids,
527 except that cuids increase monotonically through the code.
529 Scan all SETs and see if we can deduce anything about what
530 bits are known to be zero for some registers and how many copies
531 of the sign bit are known to exist for those registers.
533 Also set any known values so that we can use it while searching
534 for what bits are known to be set. */
536 label_tick = 1;
538 /* We need to initialize it here, because record_dead_and_set_regs may call
539 get_last_value. */
540 subst_prev_insn = NULL_RTX;
542 setup_incoming_promotions ();
544 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
546 uid_cuid[INSN_UID (insn)] = ++i;
547 subst_low_cuid = i;
548 subst_insn = insn;
550 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
552 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
553 record_dead_and_set_regs (insn);
555 #ifdef AUTO_INC_DEC
556 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
557 if (REG_NOTE_KIND (links) == REG_INC)
558 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX);
559 #endif
562 if (GET_CODE (insn) == CODE_LABEL)
563 label_tick++;
566 nonzero_sign_valid = 1;
568 /* Now scan all the insns in forward order. */
570 this_basic_block = -1;
571 label_tick = 1;
572 last_call_cuid = 0;
573 mem_last_set = 0;
574 init_reg_last_arrays ();
575 setup_incoming_promotions ();
577 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
579 next = 0;
581 /* If INSN starts a new basic block, update our basic block number. */
582 if (this_basic_block + 1 < n_basic_blocks
583 && basic_block_head[this_basic_block + 1] == insn)
584 this_basic_block++;
586 if (GET_CODE (insn) == CODE_LABEL)
587 label_tick++;
589 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
591 /* Try this insn with each insn it links back to. */
593 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
594 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
595 goto retry;
597 /* Try each sequence of three linked insns ending with this one. */
599 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
600 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
601 nextlinks = XEXP (nextlinks, 1))
602 if ((next = try_combine (insn, XEXP (links, 0),
603 XEXP (nextlinks, 0))) != 0)
604 goto retry;
606 #ifdef HAVE_cc0
607 /* Try to combine a jump insn that uses CC0
608 with a preceding insn that sets CC0, and maybe with its
609 logical predecessor as well.
610 This is how we make decrement-and-branch insns.
611 We need this special code because data flow connections
612 via CC0 do not get entered in LOG_LINKS. */
614 if (GET_CODE (insn) == JUMP_INSN
615 && (prev = prev_nonnote_insn (insn)) != 0
616 && GET_CODE (prev) == INSN
617 && sets_cc0_p (PATTERN (prev)))
619 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
620 goto retry;
622 for (nextlinks = LOG_LINKS (prev); nextlinks;
623 nextlinks = XEXP (nextlinks, 1))
624 if ((next = try_combine (insn, prev,
625 XEXP (nextlinks, 0))) != 0)
626 goto retry;
629 /* Do the same for an insn that explicitly references CC0. */
630 if (GET_CODE (insn) == INSN
631 && (prev = prev_nonnote_insn (insn)) != 0
632 && GET_CODE (prev) == INSN
633 && sets_cc0_p (PATTERN (prev))
634 && GET_CODE (PATTERN (insn)) == SET
635 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
637 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
638 goto retry;
640 for (nextlinks = LOG_LINKS (prev); nextlinks;
641 nextlinks = XEXP (nextlinks, 1))
642 if ((next = try_combine (insn, prev,
643 XEXP (nextlinks, 0))) != 0)
644 goto retry;
647 /* Finally, see if any of the insns that this insn links to
648 explicitly references CC0. If so, try this insn, that insn,
649 and its predecessor if it sets CC0. */
650 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
651 if (GET_CODE (XEXP (links, 0)) == INSN
652 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
653 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
654 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
655 && GET_CODE (prev) == INSN
656 && sets_cc0_p (PATTERN (prev))
657 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
658 goto retry;
659 #endif
661 /* Try combining an insn with two different insns whose results it
662 uses. */
663 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
664 for (nextlinks = XEXP (links, 1); nextlinks;
665 nextlinks = XEXP (nextlinks, 1))
666 if ((next = try_combine (insn, XEXP (links, 0),
667 XEXP (nextlinks, 0))) != 0)
668 goto retry;
670 if (GET_CODE (insn) != NOTE)
671 record_dead_and_set_regs (insn);
673 retry:
678 total_attempts += combine_attempts;
679 total_merges += combine_merges;
680 total_extras += combine_extras;
681 total_successes += combine_successes;
683 nonzero_sign_valid = 0;
686 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
688 static void
689 init_reg_last_arrays ()
691 int nregs = combine_max_regno;
693 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
694 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
695 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
696 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
697 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
698 bzero (reg_last_set_invalid, nregs * sizeof (char));
699 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
700 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
701 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
704 /* Set up any promoted values for incoming argument registers. */
706 static void
707 setup_incoming_promotions ()
709 #ifdef PROMOTE_FUNCTION_ARGS
710 int regno;
711 rtx reg;
712 enum machine_mode mode;
713 int unsignedp;
714 rtx first = get_insns ();
716 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
717 if (FUNCTION_ARG_REGNO_P (regno)
718 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
720 record_value_for_reg
721 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
722 : SIGN_EXTEND),
723 GET_MODE (reg),
724 gen_rtx_CLOBBER (mode, const0_rtx)));
726 #endif
729 /* Called via note_stores. If X is a pseudo that is narrower than
730 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
732 If we are setting only a portion of X and we can't figure out what
733 portion, assume all bits will be used since we don't know what will
734 be happening.
736 Similarly, set how many bits of X are known to be copies of the sign bit
737 at all locations in the function. This is the smallest number implied
738 by any set of X. */
740 static void
741 set_nonzero_bits_and_sign_copies (x, set)
742 rtx x;
743 rtx set;
745 int num;
747 if (GET_CODE (x) == REG
748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
749 /* If this register is undefined at the start of the file, we can't
750 say what its contents were. */
751 && ! REGNO_REG_SET_P (basic_block_live_at_start[0], REGNO (x))
752 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
754 if (set == 0 || GET_CODE (set) == CLOBBER)
756 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
757 reg_sign_bit_copies[REGNO (x)] = 1;
758 return;
761 /* If this is a complex assignment, see if we can convert it into a
762 simple assignment. */
763 set = expand_field_assignment (set);
765 /* If this is a simple assignment, or we have a paradoxical SUBREG,
766 set what we know about X. */
768 if (SET_DEST (set) == x
769 || (GET_CODE (SET_DEST (set)) == SUBREG
770 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
771 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
772 && SUBREG_REG (SET_DEST (set)) == x))
774 rtx src = SET_SRC (set);
776 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
777 /* If X is narrower than a word and SRC is a non-negative
778 constant that would appear negative in the mode of X,
779 sign-extend it for use in reg_nonzero_bits because some
780 machines (maybe most) will actually do the sign-extension
781 and this is the conservative approach.
783 ??? For 2.5, try to tighten up the MD files in this regard
784 instead of this kludge. */
786 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
787 && GET_CODE (src) == CONST_INT
788 && INTVAL (src) > 0
789 && 0 != (INTVAL (src)
790 & ((HOST_WIDE_INT) 1
791 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
792 src = GEN_INT (INTVAL (src)
793 | ((HOST_WIDE_INT) (-1)
794 << GET_MODE_BITSIZE (GET_MODE (x))));
795 #endif
797 reg_nonzero_bits[REGNO (x)]
798 |= nonzero_bits (src, nonzero_bits_mode);
799 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
800 if (reg_sign_bit_copies[REGNO (x)] == 0
801 || reg_sign_bit_copies[REGNO (x)] > num)
802 reg_sign_bit_copies[REGNO (x)] = num;
804 else
806 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
807 reg_sign_bit_copies[REGNO (x)] = 1;
812 /* See if INSN can be combined into I3. PRED and SUCC are optionally
813 insns that were previously combined into I3 or that will be combined
814 into the merger of INSN and I3.
816 Return 0 if the combination is not allowed for any reason.
818 If the combination is allowed, *PDEST will be set to the single
819 destination of INSN and *PSRC to the single source, and this function
820 will return 1. */
822 static int
823 can_combine_p (insn, i3, pred, succ, pdest, psrc)
824 rtx insn;
825 rtx i3;
826 rtx pred, succ;
827 rtx *pdest, *psrc;
829 int i;
830 rtx set = 0, src, dest;
831 rtx p;
832 #ifdef AUTO_INC_DEC
833 rtx link;
834 #endif
835 int all_adjacent = (succ ? (next_active_insn (insn) == succ
836 && next_active_insn (succ) == i3)
837 : next_active_insn (insn) == i3);
839 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
840 or a PARALLEL consisting of such a SET and CLOBBERs.
842 If INSN has CLOBBER parallel parts, ignore them for our processing.
843 By definition, these happen during the execution of the insn. When it
844 is merged with another insn, all bets are off. If they are, in fact,
845 needed and aren't also supplied in I3, they may be added by
846 recog_for_combine. Otherwise, it won't match.
848 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
849 note.
851 Get the source and destination of INSN. If more than one, can't
852 combine. */
854 if (GET_CODE (PATTERN (insn)) == SET)
855 set = PATTERN (insn);
856 else if (GET_CODE (PATTERN (insn)) == PARALLEL
857 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
859 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
861 rtx elt = XVECEXP (PATTERN (insn), 0, i);
863 switch (GET_CODE (elt))
865 /* This is important to combine floating point insns
866 for the SH4 port. */
867 case USE:
868 /* Combining an isolated USE doesn't make sense.
869 We depend here on combinable_i3_pat to reject them. */
870 /* The code below this loop only verifies that the inputs of
871 the SET in INSN do not change. We call reg_set_between_p
872 to verify that the REG in the USE does not change betweeen
873 I3 and INSN.
874 If the USE in INSN was for a pseudo register, the matching
875 insn pattern will likely match any register; combining this
876 with any other USE would only be safe if we knew that the
877 used registers have identical values, or if there was
878 something to tell them apart, e.g. different modes. For
879 now, we forgo such compilcated tests and simply disallow
880 combining of USES of pseudo registers with any other USE. */
881 if (GET_CODE (XEXP (elt, 0)) == REG
882 && GET_CODE (PATTERN (i3)) == PARALLEL)
884 rtx i3pat = PATTERN (i3);
885 int i = XVECLEN (i3pat, 0) - 1;
886 int regno = REGNO (XEXP (elt, 0));
889 rtx i3elt = XVECEXP (i3pat, 0, i);
890 if (GET_CODE (i3elt) == USE
891 && GET_CODE (XEXP (i3elt, 0)) == REG
892 && (REGNO (XEXP (i3elt, 0)) == regno
893 ? reg_set_between_p (XEXP (elt, 0),
894 PREV_INSN (insn), i3)
895 : regno >= FIRST_PSEUDO_REGISTER))
896 return 0;
898 while (--i >= 0);
900 break;
902 /* We can ignore CLOBBERs. */
903 case CLOBBER:
904 break;
906 case SET:
907 /* Ignore SETs whose result isn't used but not those that
908 have side-effects. */
909 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
910 && ! side_effects_p (elt))
911 break;
913 /* If we have already found a SET, this is a second one and
914 so we cannot combine with this insn. */
915 if (set)
916 return 0;
918 set = elt;
919 break;
921 default:
922 /* Anything else means we can't combine. */
923 return 0;
927 if (set == 0
928 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
929 so don't do anything with it. */
930 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
931 return 0;
933 else
934 return 0;
936 if (set == 0)
937 return 0;
939 set = expand_field_assignment (set);
940 src = SET_SRC (set), dest = SET_DEST (set);
942 /* Don't eliminate a store in the stack pointer. */
943 if (dest == stack_pointer_rtx
944 /* If we couldn't eliminate a field assignment, we can't combine. */
945 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
946 /* Don't combine with an insn that sets a register to itself if it has
947 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
948 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
949 /* Can't merge a function call. */
950 || GET_CODE (src) == CALL
951 /* Don't eliminate a function call argument. */
952 || (GET_CODE (i3) == CALL_INSN
953 && (find_reg_fusage (i3, USE, dest)
954 || (GET_CODE (dest) == REG
955 && REGNO (dest) < FIRST_PSEUDO_REGISTER
956 && global_regs[REGNO (dest)])))
957 /* Don't substitute into an incremented register. */
958 || FIND_REG_INC_NOTE (i3, dest)
959 || (succ && FIND_REG_INC_NOTE (succ, dest))
960 /* Don't combine the end of a libcall into anything. */
961 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
962 /* Make sure that DEST is not used after SUCC but before I3. */
963 || (succ && ! all_adjacent
964 && reg_used_between_p (dest, succ, i3))
965 /* Make sure that the value that is to be substituted for the register
966 does not use any registers whose values alter in between. However,
967 If the insns are adjacent, a use can't cross a set even though we
968 think it might (this can happen for a sequence of insns each setting
969 the same destination; reg_last_set of that register might point to
970 a NOTE). If INSN has a REG_EQUIV note, the register is always
971 equivalent to the memory so the substitution is valid even if there
972 are intervening stores. Also, don't move a volatile asm or
973 UNSPEC_VOLATILE across any other insns. */
974 || (! all_adjacent
975 && (((GET_CODE (src) != MEM
976 || ! find_reg_note (insn, REG_EQUIV, src))
977 && use_crosses_set_p (src, INSN_CUID (insn)))
978 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
979 || GET_CODE (src) == UNSPEC_VOLATILE))
980 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
981 better register allocation by not doing the combine. */
982 || find_reg_note (i3, REG_NO_CONFLICT, dest)
983 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
984 /* Don't combine across a CALL_INSN, because that would possibly
985 change whether the life span of some REGs crosses calls or not,
986 and it is a pain to update that information.
987 Exception: if source is a constant, moving it later can't hurt.
988 Accept that special case, because it helps -fforce-addr a lot. */
989 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
990 return 0;
992 /* DEST must either be a REG or CC0. */
993 if (GET_CODE (dest) == REG)
995 /* If register alignment is being enforced for multi-word items in all
996 cases except for parameters, it is possible to have a register copy
997 insn referencing a hard register that is not allowed to contain the
998 mode being copied and which would not be valid as an operand of most
999 insns. Eliminate this problem by not combining with such an insn.
1001 Also, on some machines we don't want to extend the life of a hard
1002 register.
1004 This is the same test done in can_combine except that we don't test
1005 if SRC is a CALL operation to permit a hard register with
1006 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
1007 into account. */
1009 if (GET_CODE (src) == REG
1010 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1011 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1012 /* Don't extend the life of a hard register unless it is
1013 user variable (if we have few registers) or it can't
1014 fit into the desired register (meaning something special
1015 is going on).
1016 Also avoid substituting a return register into I3, because
1017 reload can't handle a conflict with constraints of other
1018 inputs. */
1019 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1020 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
1021 || (SMALL_REGISTER_CLASSES
1022 && ((! all_adjacent && ! REG_USERVAR_P (src))
1023 || (FUNCTION_VALUE_REGNO_P (REGNO (src))
1024 && ! REG_USERVAR_P (src))))))))
1025 return 0;
1027 else if (GET_CODE (dest) != CC0)
1028 return 0;
1030 /* Don't substitute for a register intended as a clobberable operand.
1031 Similarly, don't substitute an expression containing a register that
1032 will be clobbered in I3. */
1033 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1034 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1035 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1036 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1037 src)
1038 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1039 return 0;
1041 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1042 or not), reject, unless nothing volatile comes between it and I3 */
1044 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1046 /* Make sure succ doesn't contain a volatile reference. */
1047 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1048 return 0;
1050 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1051 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1052 && p != succ && volatile_refs_p (PATTERN (p)))
1053 return 0;
1056 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1057 to be an explicit register variable, and was chosen for a reason. */
1059 if (GET_CODE (src) == ASM_OPERANDS
1060 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1061 return 0;
1063 /* If there are any volatile insns between INSN and I3, reject, because
1064 they might affect machine state. */
1066 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1067 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1068 && p != succ && volatile_insn_p (PATTERN (p)))
1069 return 0;
1071 /* If INSN or I2 contains an autoincrement or autodecrement,
1072 make sure that register is not used between there and I3,
1073 and not already used in I3 either.
1074 Also insist that I3 not be a jump; if it were one
1075 and the incremented register were spilled, we would lose. */
1077 #ifdef AUTO_INC_DEC
1078 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1079 if (REG_NOTE_KIND (link) == REG_INC
1080 && (GET_CODE (i3) == JUMP_INSN
1081 || reg_used_between_p (XEXP (link, 0), insn, i3)
1082 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1083 return 0;
1084 #endif
1086 #ifdef HAVE_cc0
1087 /* Don't combine an insn that follows a CC0-setting insn.
1088 An insn that uses CC0 must not be separated from the one that sets it.
1089 We do, however, allow I2 to follow a CC0-setting insn if that insn
1090 is passed as I1; in that case it will be deleted also.
1091 We also allow combining in this case if all the insns are adjacent
1092 because that would leave the two CC0 insns adjacent as well.
1093 It would be more logical to test whether CC0 occurs inside I1 or I2,
1094 but that would be much slower, and this ought to be equivalent. */
1096 p = prev_nonnote_insn (insn);
1097 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1098 && ! all_adjacent)
1099 return 0;
1100 #endif
1102 /* If we get here, we have passed all the tests and the combination is
1103 to be allowed. */
1105 *pdest = dest;
1106 *psrc = src;
1108 return 1;
1111 /* Check if PAT is an insn - or a part of it - used to set up an
1112 argument for a function in a hard register. */
1114 static int
1115 sets_function_arg_p (pat)
1116 rtx pat;
1118 int i;
1119 rtx inner_dest;
1121 switch (GET_CODE (pat))
1123 case INSN:
1124 return sets_function_arg_p (PATTERN (pat));
1126 case PARALLEL:
1127 for (i = XVECLEN (pat, 0); --i >= 0;)
1128 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1129 return 1;
1131 break;
1133 case SET:
1134 inner_dest = SET_DEST (pat);
1135 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1136 || GET_CODE (inner_dest) == SUBREG
1137 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1138 inner_dest = XEXP (inner_dest, 0);
1140 return (GET_CODE (inner_dest) == REG
1141 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1142 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1144 default:
1145 break;
1148 return 0;
1151 /* LOC is the location within I3 that contains its pattern or the component
1152 of a PARALLEL of the pattern. We validate that it is valid for combining.
1154 One problem is if I3 modifies its output, as opposed to replacing it
1155 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1156 so would produce an insn that is not equivalent to the original insns.
1158 Consider:
1160 (set (reg:DI 101) (reg:DI 100))
1161 (set (subreg:SI (reg:DI 101) 0) <foo>)
1163 This is NOT equivalent to:
1165 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1166 (set (reg:DI 101) (reg:DI 100))])
1168 Not only does this modify 100 (in which case it might still be valid
1169 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1171 We can also run into a problem if I2 sets a register that I1
1172 uses and I1 gets directly substituted into I3 (not via I2). In that
1173 case, we would be getting the wrong value of I2DEST into I3, so we
1174 must reject the combination. This case occurs when I2 and I1 both
1175 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1176 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1177 of a SET must prevent combination from occurring.
1179 On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
1180 if the destination of a SET is a hard register that isn't a user
1181 variable.
1183 Before doing the above check, we first try to expand a field assignment
1184 into a set of logical operations.
1186 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1187 we place a register that is both set and used within I3. If more than one
1188 such register is detected, we fail.
1190 Return 1 if the combination is valid, zero otherwise. */
1192 static int
1193 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1194 rtx i3;
1195 rtx *loc;
1196 rtx i2dest;
1197 rtx i1dest;
1198 int i1_not_in_src;
1199 rtx *pi3dest_killed;
1201 rtx x = *loc;
1203 if (GET_CODE (x) == SET)
1205 rtx set = expand_field_assignment (x);
1206 rtx dest = SET_DEST (set);
1207 rtx src = SET_SRC (set);
1208 rtx inner_dest = dest;
1210 #if 0
1211 rtx inner_src = src;
1212 #endif
1214 SUBST (*loc, set);
1216 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1217 || GET_CODE (inner_dest) == SUBREG
1218 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1219 inner_dest = XEXP (inner_dest, 0);
1221 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1222 was added. */
1223 #if 0
1224 while (GET_CODE (inner_src) == STRICT_LOW_PART
1225 || GET_CODE (inner_src) == SUBREG
1226 || GET_CODE (inner_src) == ZERO_EXTRACT)
1227 inner_src = XEXP (inner_src, 0);
1229 /* If it is better that two different modes keep two different pseudos,
1230 avoid combining them. This avoids producing the following pattern
1231 on a 386:
1232 (set (subreg:SI (reg/v:QI 21) 0)
1233 (lshiftrt:SI (reg/v:SI 20)
1234 (const_int 24)))
1235 If that were made, reload could not handle the pair of
1236 reg 20/21, since it would try to get any GENERAL_REGS
1237 but some of them don't handle QImode. */
1239 if (rtx_equal_p (inner_src, i2dest)
1240 && GET_CODE (inner_dest) == REG
1241 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1242 return 0;
1243 #endif
1245 /* Check for the case where I3 modifies its output, as
1246 discussed above. */
1247 if ((inner_dest != dest
1248 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1249 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1251 /* This is the same test done in can_combine_p except that we
1252 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1253 CALL operation. Moreover, we can't test all_adjacent; we don't
1254 have to, since this instruction will stay in place, thus we are
1255 not considering increasing the lifetime of INNER_DEST.
1257 Also, if this insn sets a function argument, combining it with
1258 something that might need a spill could clobber a previous
1259 function argument; the all_adjacent test in can_combine_p also
1260 checks this; here, we do a more specific test for this case. */
1262 || (GET_CODE (inner_dest) == REG
1263 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1264 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1265 GET_MODE (inner_dest))
1266 || (SMALL_REGISTER_CLASSES && GET_CODE (src) != CALL
1267 && ! REG_USERVAR_P (inner_dest)
1268 && (FUNCTION_VALUE_REGNO_P (REGNO (inner_dest))
1269 || (FUNCTION_ARG_REGNO_P (REGNO (inner_dest))
1270 && i3 != 0
1271 && sets_function_arg_p (prev_nonnote_insn (i3)))))))
1272 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1273 return 0;
1275 /* If DEST is used in I3, it is being killed in this insn,
1276 so record that for later.
1277 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1278 STACK_POINTER_REGNUM, since these are always considered to be
1279 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1280 if (pi3dest_killed && GET_CODE (dest) == REG
1281 && reg_referenced_p (dest, PATTERN (i3))
1282 && REGNO (dest) != FRAME_POINTER_REGNUM
1283 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1284 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1285 #endif
1286 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1287 && (REGNO (dest) != ARG_POINTER_REGNUM
1288 || ! fixed_regs [REGNO (dest)])
1289 #endif
1290 && REGNO (dest) != STACK_POINTER_REGNUM)
1292 if (*pi3dest_killed)
1293 return 0;
1295 *pi3dest_killed = dest;
1299 else if (GET_CODE (x) == PARALLEL)
1301 int i;
1303 for (i = 0; i < XVECLEN (x, 0); i++)
1304 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1305 i1_not_in_src, pi3dest_killed))
1306 return 0;
1309 return 1;
1312 /* Try to combine the insns I1 and I2 into I3.
1313 Here I1 and I2 appear earlier than I3.
1314 I1 can be zero; then we combine just I2 into I3.
1316 It we are combining three insns and the resulting insn is not recognized,
1317 try splitting it into two insns. If that happens, I2 and I3 are retained
1318 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1319 are pseudo-deleted.
1321 Return 0 if the combination does not work. Then nothing is changed.
1322 If we did the combination, return the insn at which combine should
1323 resume scanning. */
1325 static rtx
1326 try_combine (i3, i2, i1)
1327 register rtx i3, i2, i1;
1329 /* New patterns for I3 and I3, respectively. */
1330 rtx newpat, newi2pat = 0;
1331 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1332 int added_sets_1, added_sets_2;
1333 /* Total number of SETs to put into I3. */
1334 int total_sets;
1335 /* Nonzero is I2's body now appears in I3. */
1336 int i2_is_used;
1337 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1338 int insn_code_number, i2_code_number, other_code_number;
1339 /* Contains I3 if the destination of I3 is used in its source, which means
1340 that the old life of I3 is being killed. If that usage is placed into
1341 I2 and not in I3, a REG_DEAD note must be made. */
1342 rtx i3dest_killed = 0;
1343 /* SET_DEST and SET_SRC of I2 and I1. */
1344 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1345 /* PATTERN (I2), or a copy of it in certain cases. */
1346 rtx i2pat;
1347 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1348 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1349 int i1_feeds_i3 = 0;
1350 /* Notes that must be added to REG_NOTES in I3 and I2. */
1351 rtx new_i3_notes, new_i2_notes;
1352 /* Notes that we substituted I3 into I2 instead of the normal case. */
1353 int i3_subst_into_i2 = 0;
1354 /* Notes that I1, I2 or I3 is a MULT operation. */
1355 int have_mult = 0;
1356 /* Number of clobbers of SCRATCH we had to add. */
1357 int i3_scratches = 0, i2_scratches = 0, other_scratches = 0;
1359 int maxreg;
1360 rtx temp;
1361 register rtx link;
1362 int i;
1364 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1365 This can occur when flow deletes an insn that it has merged into an
1366 auto-increment address. We also can't do anything if I3 has a
1367 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1368 libcall. */
1370 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1371 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1372 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1373 || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
1374 return 0;
1376 combine_attempts++;
1378 undobuf.undos = undobuf.previous_undos = 0;
1379 undobuf.other_insn = 0;
1381 /* Save the current high-water-mark so we can free storage if we didn't
1382 accept this combination. */
1383 undobuf.storage = (char *) oballoc (0);
1385 /* Reset the hard register usage information. */
1386 CLEAR_HARD_REG_SET (newpat_used_regs);
1388 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1389 code below, set I1 to be the earlier of the two insns. */
1390 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1391 temp = i1, i1 = i2, i2 = temp;
1393 added_links_insn = 0;
1395 /* First check for one important special-case that the code below will
1396 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1397 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1398 we may be able to replace that destination with the destination of I3.
1399 This occurs in the common code where we compute both a quotient and
1400 remainder into a structure, in which case we want to do the computation
1401 directly into the structure to avoid register-register copies.
1403 We make very conservative checks below and only try to handle the
1404 most common cases of this. For example, we only handle the case
1405 where I2 and I3 are adjacent to avoid making difficult register
1406 usage tests. */
1408 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1409 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1410 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1411 && (! SMALL_REGISTER_CLASSES
1412 || (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1413 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1414 || REG_USERVAR_P (SET_DEST (PATTERN (i3)))))
1415 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1416 && GET_CODE (PATTERN (i2)) == PARALLEL
1417 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1418 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1419 below would need to check what is inside (and reg_overlap_mentioned_p
1420 doesn't support those codes anyway). Don't allow those destinations;
1421 the resulting insn isn't likely to be recognized anyway. */
1422 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1423 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1424 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1425 SET_DEST (PATTERN (i3)))
1426 && next_real_insn (i2) == i3)
1428 rtx p2 = PATTERN (i2);
1430 /* Make sure that the destination of I3,
1431 which we are going to substitute into one output of I2,
1432 is not used within another output of I2. We must avoid making this:
1433 (parallel [(set (mem (reg 69)) ...)
1434 (set (reg 69) ...)])
1435 which is not well-defined as to order of actions.
1436 (Besides, reload can't handle output reloads for this.)
1438 The problem can also happen if the dest of I3 is a memory ref,
1439 if another dest in I2 is an indirect memory ref. */
1440 for (i = 0; i < XVECLEN (p2, 0); i++)
1441 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1442 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1443 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1444 SET_DEST (XVECEXP (p2, 0, i))))
1445 break;
1447 if (i == XVECLEN (p2, 0))
1448 for (i = 0; i < XVECLEN (p2, 0); i++)
1449 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1451 combine_merges++;
1453 subst_insn = i3;
1454 subst_low_cuid = INSN_CUID (i2);
1456 added_sets_2 = added_sets_1 = 0;
1457 i2dest = SET_SRC (PATTERN (i3));
1459 /* Replace the dest in I2 with our dest and make the resulting
1460 insn the new pattern for I3. Then skip to where we
1461 validate the pattern. Everything was set up above. */
1462 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1463 SET_DEST (PATTERN (i3)));
1465 newpat = p2;
1466 i3_subst_into_i2 = 1;
1467 goto validate_replacement;
1471 #ifndef HAVE_cc0
1472 /* If we have no I1 and I2 looks like:
1473 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1474 (set Y OP)])
1475 make up a dummy I1 that is
1476 (set Y OP)
1477 and change I2 to be
1478 (set (reg:CC X) (compare:CC Y (const_int 0)))
1480 (We can ignore any trailing CLOBBERs.)
1482 This undoes a previous combination and allows us to match a branch-and-
1483 decrement insn. */
1485 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1486 && XVECLEN (PATTERN (i2), 0) >= 2
1487 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1488 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1489 == MODE_CC)
1490 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1491 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1492 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1493 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1494 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1495 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1497 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1498 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1499 break;
1501 if (i == 1)
1503 /* We make I1 with the same INSN_UID as I2. This gives it
1504 the same INSN_CUID for value tracking. Our fake I1 will
1505 never appear in the insn stream so giving it the same INSN_UID
1506 as I2 will not cause a problem. */
1508 subst_prev_insn = i1
1509 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1510 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1511 NULL_RTX);
1513 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1514 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1515 SET_DEST (PATTERN (i1)));
1518 #endif
1520 /* Verify that I2 and I1 are valid for combining. */
1521 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1522 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1524 undo_all ();
1525 return 0;
1528 /* Record whether I2DEST is used in I2SRC and similarly for the other
1529 cases. Knowing this will help in register status updating below. */
1530 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1531 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1532 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1534 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1535 in I2SRC. */
1536 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1538 /* Ensure that I3's pattern can be the destination of combines. */
1539 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1540 i1 && i2dest_in_i1src && i1_feeds_i3,
1541 &i3dest_killed))
1543 undo_all ();
1544 return 0;
1547 /* See if any of the insns is a MULT operation. Unless one is, we will
1548 reject a combination that is, since it must be slower. Be conservative
1549 here. */
1550 if (GET_CODE (i2src) == MULT
1551 || (i1 != 0 && GET_CODE (i1src) == MULT)
1552 || (GET_CODE (PATTERN (i3)) == SET
1553 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1554 have_mult = 1;
1556 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1557 We used to do this EXCEPT in one case: I3 has a post-inc in an
1558 output operand. However, that exception can give rise to insns like
1559 mov r3,(r3)+
1560 which is a famous insn on the PDP-11 where the value of r3 used as the
1561 source was model-dependent. Avoid this sort of thing. */
1563 #if 0
1564 if (!(GET_CODE (PATTERN (i3)) == SET
1565 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1566 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1567 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1568 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1569 /* It's not the exception. */
1570 #endif
1571 #ifdef AUTO_INC_DEC
1572 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1573 if (REG_NOTE_KIND (link) == REG_INC
1574 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1575 || (i1 != 0
1576 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1578 undo_all ();
1579 return 0;
1581 #endif
1583 /* See if the SETs in I1 or I2 need to be kept around in the merged
1584 instruction: whenever the value set there is still needed past I3.
1585 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1587 For the SET in I1, we have two cases: If I1 and I2 independently
1588 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1589 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1590 in I1 needs to be kept around unless I1DEST dies or is set in either
1591 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1592 I1DEST. If so, we know I1 feeds into I2. */
1594 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1596 added_sets_1
1597 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1598 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1600 /* If the set in I2 needs to be kept around, we must make a copy of
1601 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1602 PATTERN (I2), we are only substituting for the original I1DEST, not into
1603 an already-substituted copy. This also prevents making self-referential
1604 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1605 I2DEST. */
1607 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1608 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1609 : PATTERN (i2));
1611 if (added_sets_2)
1612 i2pat = copy_rtx (i2pat);
1614 combine_merges++;
1616 /* Substitute in the latest insn for the regs set by the earlier ones. */
1618 maxreg = max_reg_num ();
1620 subst_insn = i3;
1622 /* It is possible that the source of I2 or I1 may be performing an
1623 unneeded operation, such as a ZERO_EXTEND of something that is known
1624 to have the high part zero. Handle that case by letting subst look at
1625 the innermost one of them.
1627 Another way to do this would be to have a function that tries to
1628 simplify a single insn instead of merging two or more insns. We don't
1629 do this because of the potential of infinite loops and because
1630 of the potential extra memory required. However, doing it the way
1631 we are is a bit of a kludge and doesn't catch all cases.
1633 But only do this if -fexpensive-optimizations since it slows things down
1634 and doesn't usually win. */
1636 if (flag_expensive_optimizations)
1638 /* Pass pc_rtx so no substitutions are done, just simplifications.
1639 The cases that we are interested in here do not involve the few
1640 cases were is_replaced is checked. */
1641 if (i1)
1643 subst_low_cuid = INSN_CUID (i1);
1644 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1646 else
1648 subst_low_cuid = INSN_CUID (i2);
1649 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1652 undobuf.previous_undos = undobuf.undos;
1655 #ifndef HAVE_cc0
1656 /* Many machines that don't use CC0 have insns that can both perform an
1657 arithmetic operation and set the condition code. These operations will
1658 be represented as a PARALLEL with the first element of the vector
1659 being a COMPARE of an arithmetic operation with the constant zero.
1660 The second element of the vector will set some pseudo to the result
1661 of the same arithmetic operation. If we simplify the COMPARE, we won't
1662 match such a pattern and so will generate an extra insn. Here we test
1663 for this case, where both the comparison and the operation result are
1664 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1665 I2SRC. Later we will make the PARALLEL that contains I2. */
1667 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1668 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1669 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1670 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1672 #ifdef EXTRA_CC_MODES
1673 rtx *cc_use;
1674 enum machine_mode compare_mode;
1675 #endif
1677 newpat = PATTERN (i3);
1678 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1680 i2_is_used = 1;
1682 #ifdef EXTRA_CC_MODES
1683 /* See if a COMPARE with the operand we substituted in should be done
1684 with the mode that is currently being used. If not, do the same
1685 processing we do in `subst' for a SET; namely, if the destination
1686 is used only once, try to replace it with a register of the proper
1687 mode and also replace the COMPARE. */
1688 if (undobuf.other_insn == 0
1689 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1690 &undobuf.other_insn))
1691 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1692 i2src, const0_rtx))
1693 != GET_MODE (SET_DEST (newpat))))
1695 int regno = REGNO (SET_DEST (newpat));
1696 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1698 if (regno < FIRST_PSEUDO_REGISTER
1699 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1700 && ! REG_USERVAR_P (SET_DEST (newpat))))
1702 if (regno >= FIRST_PSEUDO_REGISTER)
1703 SUBST (regno_reg_rtx[regno], new_dest);
1705 SUBST (SET_DEST (newpat), new_dest);
1706 SUBST (XEXP (*cc_use, 0), new_dest);
1707 SUBST (SET_SRC (newpat),
1708 gen_rtx_combine (COMPARE, compare_mode,
1709 i2src, const0_rtx));
1711 else
1712 undobuf.other_insn = 0;
1714 #endif
1716 else
1717 #endif
1719 n_occurrences = 0; /* `subst' counts here */
1721 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1722 need to make a unique copy of I2SRC each time we substitute it
1723 to avoid self-referential rtl. */
1725 subst_low_cuid = INSN_CUID (i2);
1726 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1727 ! i1_feeds_i3 && i1dest_in_i1src);
1728 undobuf.previous_undos = undobuf.undos;
1730 /* Record whether i2's body now appears within i3's body. */
1731 i2_is_used = n_occurrences;
1734 /* If we already got a failure, don't try to do more. Otherwise,
1735 try to substitute in I1 if we have it. */
1737 if (i1 && GET_CODE (newpat) != CLOBBER)
1739 /* Before we can do this substitution, we must redo the test done
1740 above (see detailed comments there) that ensures that I1DEST
1741 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1743 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1744 0, NULL_PTR))
1746 undo_all ();
1747 return 0;
1750 n_occurrences = 0;
1751 subst_low_cuid = INSN_CUID (i1);
1752 newpat = subst (newpat, i1dest, i1src, 0, 0);
1753 undobuf.previous_undos = undobuf.undos;
1756 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1757 to count all the ways that I2SRC and I1SRC can be used. */
1758 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1759 && i2_is_used + added_sets_2 > 1)
1760 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1761 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1762 > 1))
1763 /* Fail if we tried to make a new register (we used to abort, but there's
1764 really no reason to). */
1765 || max_reg_num () != maxreg
1766 /* Fail if we couldn't do something and have a CLOBBER. */
1767 || GET_CODE (newpat) == CLOBBER
1768 /* Fail if this new pattern is a MULT and we didn't have one before
1769 at the outer level. */
1770 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1771 && ! have_mult))
1773 undo_all ();
1774 return 0;
1777 /* If the actions of the earlier insns must be kept
1778 in addition to substituting them into the latest one,
1779 we must make a new PARALLEL for the latest insn
1780 to hold additional the SETs. */
1782 if (added_sets_1 || added_sets_2)
1784 combine_extras++;
1786 if (GET_CODE (newpat) == PARALLEL)
1788 rtvec old = XVEC (newpat, 0);
1789 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1790 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1791 bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
1792 sizeof (old->elem[0]) * old->num_elem);
1794 else
1796 rtx old = newpat;
1797 total_sets = 1 + added_sets_1 + added_sets_2;
1798 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1799 XVECEXP (newpat, 0, 0) = old;
1802 if (added_sets_1)
1803 XVECEXP (newpat, 0, --total_sets)
1804 = (GET_CODE (PATTERN (i1)) == PARALLEL
1805 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1807 if (added_sets_2)
1809 /* If there is no I1, use I2's body as is. We used to also not do
1810 the subst call below if I2 was substituted into I3,
1811 but that could lose a simplification. */
1812 if (i1 == 0)
1813 XVECEXP (newpat, 0, --total_sets) = i2pat;
1814 else
1815 /* See comment where i2pat is assigned. */
1816 XVECEXP (newpat, 0, --total_sets)
1817 = subst (i2pat, i1dest, i1src, 0, 0);
1821 /* We come here when we are replacing a destination in I2 with the
1822 destination of I3. */
1823 validate_replacement:
1825 /* Note which hard regs this insn has as inputs. */
1826 mark_used_regs_combine (newpat);
1828 /* Is the result of combination a valid instruction? */
1829 insn_code_number
1830 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1832 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1833 the second SET's destination is a register that is unused. In that case,
1834 we just need the first SET. This can occur when simplifying a divmod
1835 insn. We *must* test for this case here because the code below that
1836 splits two independent SETs doesn't handle this case correctly when it
1837 updates the register status. Also check the case where the first
1838 SET's destination is unused. That would not cause incorrect code, but
1839 does cause an unneeded insn to remain. */
1841 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1842 && XVECLEN (newpat, 0) == 2
1843 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1844 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1845 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1846 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1847 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1848 && asm_noperands (newpat) < 0)
1850 newpat = XVECEXP (newpat, 0, 0);
1851 insn_code_number
1852 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1855 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1856 && XVECLEN (newpat, 0) == 2
1857 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1858 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1859 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1860 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1861 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1862 && asm_noperands (newpat) < 0)
1864 newpat = XVECEXP (newpat, 0, 1);
1865 insn_code_number
1866 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1869 /* If we were combining three insns and the result is a simple SET
1870 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1871 insns. There are two ways to do this. It can be split using a
1872 machine-specific method (like when you have an addition of a large
1873 constant) or by combine in the function find_split_point. */
1875 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1876 && asm_noperands (newpat) < 0)
1878 rtx m_split, *split;
1879 rtx ni2dest = i2dest;
1881 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1882 use I2DEST as a scratch register will help. In the latter case,
1883 convert I2DEST to the mode of the source of NEWPAT if we can. */
1885 m_split = split_insns (newpat, i3);
1887 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
1888 inputs of NEWPAT. */
1890 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
1891 possible to try that as a scratch reg. This would require adding
1892 more code to make it work though. */
1894 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
1896 /* If I2DEST is a hard register or the only use of a pseudo,
1897 we can change its mode. */
1898 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1899 && GET_MODE (SET_DEST (newpat)) != VOIDmode
1900 && GET_CODE (i2dest) == REG
1901 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1902 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1903 && ! REG_USERVAR_P (i2dest))))
1904 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
1905 REGNO (i2dest));
1907 m_split = split_insns
1908 (gen_rtx_PARALLEL (VOIDmode,
1909 gen_rtvec (2, newpat,
1910 gen_rtx_CLOBBER (VOIDmode,
1911 ni2dest))),
1912 i3);
1915 if (m_split && GET_CODE (m_split) == SEQUENCE
1916 && XVECLEN (m_split, 0) == 2
1917 && (next_real_insn (i2) == i3
1918 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1919 INSN_CUID (i2))))
1921 rtx i2set, i3set;
1922 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1923 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1925 i3set = single_set (XVECEXP (m_split, 0, 1));
1926 i2set = single_set (XVECEXP (m_split, 0, 0));
1928 /* In case we changed the mode of I2DEST, replace it in the
1929 pseudo-register table here. We can't do it above in case this
1930 code doesn't get executed and we do a split the other way. */
1932 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1933 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1935 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes,
1936 &i2_scratches);
1938 /* If I2 or I3 has multiple SETs, we won't know how to track
1939 register status, so don't use these insns. If I2's destination
1940 is used between I2 and I3, we also can't use these insns. */
1942 if (i2_code_number >= 0 && i2set && i3set
1943 && (next_real_insn (i2) == i3
1944 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
1945 insn_code_number = recog_for_combine (&newi3pat, i3, &new_i3_notes,
1946 &i3_scratches);
1947 if (insn_code_number >= 0)
1948 newpat = newi3pat;
1950 /* It is possible that both insns now set the destination of I3.
1951 If so, we must show an extra use of it. */
1953 if (insn_code_number >= 0)
1955 rtx new_i3_dest = SET_DEST (i3set);
1956 rtx new_i2_dest = SET_DEST (i2set);
1958 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
1959 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
1960 || GET_CODE (new_i3_dest) == SUBREG)
1961 new_i3_dest = XEXP (new_i3_dest, 0);
1963 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
1964 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
1965 || GET_CODE (new_i2_dest) == SUBREG)
1966 new_i2_dest = XEXP (new_i2_dest, 0);
1968 if (GET_CODE (new_i3_dest) == REG
1969 && GET_CODE (new_i2_dest) == REG
1970 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
1971 REG_N_SETS (REGNO (new_i2_dest))++;
1975 /* If we can split it and use I2DEST, go ahead and see if that
1976 helps things be recognized. Verify that none of the registers
1977 are set between I2 and I3. */
1978 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1979 #ifdef HAVE_cc0
1980 && GET_CODE (i2dest) == REG
1981 #endif
1982 /* We need I2DEST in the proper mode. If it is a hard register
1983 or the only use of a pseudo, we can change its mode. */
1984 && (GET_MODE (*split) == GET_MODE (i2dest)
1985 || GET_MODE (*split) == VOIDmode
1986 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1987 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1988 && ! REG_USERVAR_P (i2dest)))
1989 && (next_real_insn (i2) == i3
1990 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1991 /* We can't overwrite I2DEST if its value is still used by
1992 NEWPAT. */
1993 && ! reg_referenced_p (i2dest, newpat))
1995 rtx newdest = i2dest;
1996 enum rtx_code split_code = GET_CODE (*split);
1997 enum machine_mode split_mode = GET_MODE (*split);
1999 /* Get NEWDEST as a register in the proper mode. We have already
2000 validated that we can do this. */
2001 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2003 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2005 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2006 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2009 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2010 an ASHIFT. This can occur if it was inside a PLUS and hence
2011 appeared to be a memory address. This is a kludge. */
2012 if (split_code == MULT
2013 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2014 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2016 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
2017 XEXP (*split, 0), GEN_INT (i)));
2018 /* Update split_code because we may not have a multiply
2019 anymore. */
2020 split_code = GET_CODE (*split);
2023 #ifdef INSN_SCHEDULING
2024 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2025 be written as a ZERO_EXTEND. */
2026 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2027 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
2028 XEXP (*split, 0)));
2029 #endif
2031 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
2032 SUBST (*split, newdest);
2033 i2_code_number
2034 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
2036 /* If the split point was a MULT and we didn't have one before,
2037 don't use one now. */
2038 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2039 insn_code_number
2040 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
2044 /* Check for a case where we loaded from memory in a narrow mode and
2045 then sign extended it, but we need both registers. In that case,
2046 we have a PARALLEL with both loads from the same memory location.
2047 We can split this into a load from memory followed by a register-register
2048 copy. This saves at least one insn, more if register allocation can
2049 eliminate the copy.
2051 We cannot do this if the destination of the second assignment is
2052 a register that we have already assumed is zero-extended. Similarly
2053 for a SUBREG of such a register. */
2055 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2056 && GET_CODE (newpat) == PARALLEL
2057 && XVECLEN (newpat, 0) == 2
2058 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2059 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2060 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2061 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2062 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2063 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2064 INSN_CUID (i2))
2065 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2066 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2067 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2068 (GET_CODE (temp) == REG
2069 && reg_nonzero_bits[REGNO (temp)] != 0
2070 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2071 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2072 && (reg_nonzero_bits[REGNO (temp)]
2073 != GET_MODE_MASK (word_mode))))
2074 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2075 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2076 (GET_CODE (temp) == REG
2077 && reg_nonzero_bits[REGNO (temp)] != 0
2078 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2079 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2080 && (reg_nonzero_bits[REGNO (temp)]
2081 != GET_MODE_MASK (word_mode)))))
2082 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2083 SET_SRC (XVECEXP (newpat, 0, 1)))
2084 && ! find_reg_note (i3, REG_UNUSED,
2085 SET_DEST (XVECEXP (newpat, 0, 0))))
2087 rtx ni2dest;
2089 newi2pat = XVECEXP (newpat, 0, 0);
2090 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2091 newpat = XVECEXP (newpat, 0, 1);
2092 SUBST (SET_SRC (newpat),
2093 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2094 i2_code_number
2095 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
2097 if (i2_code_number >= 0)
2098 insn_code_number
2099 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
2101 if (insn_code_number >= 0)
2103 rtx insn;
2104 rtx link;
2106 /* If we will be able to accept this, we have made a change to the
2107 destination of I3. This can invalidate a LOG_LINKS pointing
2108 to I3. No other part of combine.c makes such a transformation.
2110 The new I3 will have a destination that was previously the
2111 destination of I1 or I2 and which was used in i2 or I3. Call
2112 distribute_links to make a LOG_LINK from the next use of
2113 that destination. */
2115 PATTERN (i3) = newpat;
2116 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2118 /* I3 now uses what used to be its destination and which is
2119 now I2's destination. That means we need a LOG_LINK from
2120 I3 to I2. But we used to have one, so we still will.
2122 However, some later insn might be using I2's dest and have
2123 a LOG_LINK pointing at I3. We must remove this link.
2124 The simplest way to remove the link is to point it at I1,
2125 which we know will be a NOTE. */
2127 for (insn = NEXT_INSN (i3);
2128 insn && (this_basic_block == n_basic_blocks - 1
2129 || insn != basic_block_head[this_basic_block + 1]);
2130 insn = NEXT_INSN (insn))
2132 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2133 && reg_referenced_p (ni2dest, PATTERN (insn)))
2135 for (link = LOG_LINKS (insn); link;
2136 link = XEXP (link, 1))
2137 if (XEXP (link, 0) == i3)
2138 XEXP (link, 0) = i1;
2140 break;
2146 /* Similarly, check for a case where we have a PARALLEL of two independent
2147 SETs but we started with three insns. In this case, we can do the sets
2148 as two separate insns. This case occurs when some SET allows two
2149 other insns to combine, but the destination of that SET is still live. */
2151 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2152 && GET_CODE (newpat) == PARALLEL
2153 && XVECLEN (newpat, 0) == 2
2154 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2155 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2156 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2157 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2158 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2159 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2160 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2161 INSN_CUID (i2))
2162 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2163 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2164 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2165 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2166 XVECEXP (newpat, 0, 0))
2167 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2168 XVECEXP (newpat, 0, 1)))
2170 /* Normally, it doesn't matter which of the two is done first,
2171 but it does if one references cc0. In that case, it has to
2172 be first. */
2173 #ifdef HAVE_cc0
2174 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2176 newi2pat = XVECEXP (newpat, 0, 0);
2177 newpat = XVECEXP (newpat, 0, 1);
2179 else
2180 #endif
2182 newi2pat = XVECEXP (newpat, 0, 1);
2183 newpat = XVECEXP (newpat, 0, 0);
2186 i2_code_number
2187 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
2189 if (i2_code_number >= 0)
2190 insn_code_number
2191 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
2194 /* If it still isn't recognized, fail and change things back the way they
2195 were. */
2196 if ((insn_code_number < 0
2197 /* Is the result a reasonable ASM_OPERANDS? */
2198 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2200 undo_all ();
2201 return 0;
2204 /* If we had to change another insn, make sure it is valid also. */
2205 if (undobuf.other_insn)
2207 rtx other_pat = PATTERN (undobuf.other_insn);
2208 rtx new_other_notes;
2209 rtx note, next;
2211 CLEAR_HARD_REG_SET (newpat_used_regs);
2213 other_code_number
2214 = recog_for_combine (&other_pat, undobuf.other_insn,
2215 &new_other_notes, &other_scratches);
2217 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2219 undo_all ();
2220 return 0;
2223 PATTERN (undobuf.other_insn) = other_pat;
2225 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2226 are still valid. Then add any non-duplicate notes added by
2227 recog_for_combine. */
2228 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2230 next = XEXP (note, 1);
2232 if (REG_NOTE_KIND (note) == REG_UNUSED
2233 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2235 if (GET_CODE (XEXP (note, 0)) == REG)
2236 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2238 remove_note (undobuf.other_insn, note);
2242 for (note = new_other_notes; note; note = XEXP (note, 1))
2243 if (GET_CODE (XEXP (note, 0)) == REG)
2244 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2246 distribute_notes (new_other_notes, undobuf.other_insn,
2247 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2250 /* We now know that we can do this combination. Merge the insns and
2251 update the status of registers and LOG_LINKS. */
2254 rtx i3notes, i2notes, i1notes = 0;
2255 rtx i3links, i2links, i1links = 0;
2256 rtx midnotes = 0;
2257 register int regno;
2258 /* Compute which registers we expect to eliminate. newi2pat may be setting
2259 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2260 same as i3dest, in which case newi2pat may be setting i1dest. */
2261 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2262 || i2dest_in_i2src || i2dest_in_i1src
2263 ? 0 : i2dest);
2264 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2265 || (newi2pat && reg_set_p (i1dest, newi2pat))
2266 ? 0 : i1dest);
2268 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2269 clear them. */
2270 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2271 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2272 if (i1)
2273 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2275 /* Ensure that we do not have something that should not be shared but
2276 occurs multiple times in the new insns. Check this by first
2277 resetting all the `used' flags and then copying anything is shared. */
2279 reset_used_flags (i3notes);
2280 reset_used_flags (i2notes);
2281 reset_used_flags (i1notes);
2282 reset_used_flags (newpat);
2283 reset_used_flags (newi2pat);
2284 if (undobuf.other_insn)
2285 reset_used_flags (PATTERN (undobuf.other_insn));
2287 i3notes = copy_rtx_if_shared (i3notes);
2288 i2notes = copy_rtx_if_shared (i2notes);
2289 i1notes = copy_rtx_if_shared (i1notes);
2290 newpat = copy_rtx_if_shared (newpat);
2291 newi2pat = copy_rtx_if_shared (newi2pat);
2292 if (undobuf.other_insn)
2293 reset_used_flags (PATTERN (undobuf.other_insn));
2295 INSN_CODE (i3) = insn_code_number;
2296 PATTERN (i3) = newpat;
2297 if (undobuf.other_insn)
2298 INSN_CODE (undobuf.other_insn) = other_code_number;
2300 /* We had one special case above where I2 had more than one set and
2301 we replaced a destination of one of those sets with the destination
2302 of I3. In that case, we have to update LOG_LINKS of insns later
2303 in this basic block. Note that this (expensive) case is rare.
2305 Also, in this case, we must pretend that all REG_NOTEs for I2
2306 actually came from I3, so that REG_UNUSED notes from I2 will be
2307 properly handled. */
2309 if (i3_subst_into_i2)
2311 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2312 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2313 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2314 && ! find_reg_note (i2, REG_UNUSED,
2315 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2316 for (temp = NEXT_INSN (i2);
2317 temp && (this_basic_block == n_basic_blocks - 1
2318 || basic_block_head[this_basic_block] != temp);
2319 temp = NEXT_INSN (temp))
2320 if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2321 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2322 if (XEXP (link, 0) == i2)
2323 XEXP (link, 0) = i3;
2325 if (i3notes)
2327 rtx link = i3notes;
2328 while (XEXP (link, 1))
2329 link = XEXP (link, 1);
2330 XEXP (link, 1) = i2notes;
2332 else
2333 i3notes = i2notes;
2334 i2notes = 0;
2337 LOG_LINKS (i3) = 0;
2338 REG_NOTES (i3) = 0;
2339 LOG_LINKS (i2) = 0;
2340 REG_NOTES (i2) = 0;
2342 if (newi2pat)
2344 INSN_CODE (i2) = i2_code_number;
2345 PATTERN (i2) = newi2pat;
2347 else
2349 PUT_CODE (i2, NOTE);
2350 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2351 NOTE_SOURCE_FILE (i2) = 0;
2354 if (i1)
2356 LOG_LINKS (i1) = 0;
2357 REG_NOTES (i1) = 0;
2358 PUT_CODE (i1, NOTE);
2359 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2360 NOTE_SOURCE_FILE (i1) = 0;
2363 /* Get death notes for everything that is now used in either I3 or
2364 I2 and used to die in a previous insn. If we built two new
2365 patterns, move from I1 to I2 then I2 to I3 so that we get the
2366 proper movement on registers that I2 modifies. */
2368 if (newi2pat)
2370 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2371 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2373 else
2374 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2375 i3, &midnotes);
2377 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2378 if (i3notes)
2379 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2380 elim_i2, elim_i1);
2381 if (i2notes)
2382 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2383 elim_i2, elim_i1);
2384 if (i1notes)
2385 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2386 elim_i2, elim_i1);
2387 if (midnotes)
2388 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2389 elim_i2, elim_i1);
2391 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2392 know these are REG_UNUSED and want them to go to the desired insn,
2393 so we always pass it as i3. We have not counted the notes in
2394 reg_n_deaths yet, so we need to do so now. */
2396 if (newi2pat && new_i2_notes)
2398 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2399 if (GET_CODE (XEXP (temp, 0)) == REG)
2400 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2402 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2405 if (new_i3_notes)
2407 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2408 if (GET_CODE (XEXP (temp, 0)) == REG)
2409 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2411 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2414 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2415 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2416 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2417 in that case, it might delete I2. Similarly for I2 and I1.
2418 Show an additional death due to the REG_DEAD note we make here. If
2419 we discard it in distribute_notes, we will decrement it again. */
2421 if (i3dest_killed)
2423 if (GET_CODE (i3dest_killed) == REG)
2424 REG_N_DEATHS (REGNO (i3dest_killed))++;
2426 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2427 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2428 NULL_RTX),
2429 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2430 else
2431 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2432 NULL_RTX),
2433 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2434 elim_i2, elim_i1);
2437 if (i2dest_in_i2src)
2439 if (GET_CODE (i2dest) == REG)
2440 REG_N_DEATHS (REGNO (i2dest))++;
2442 if (newi2pat && reg_set_p (i2dest, newi2pat))
2443 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2444 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2445 else
2446 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2447 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2448 NULL_RTX, NULL_RTX);
2451 if (i1dest_in_i1src)
2453 if (GET_CODE (i1dest) == REG)
2454 REG_N_DEATHS (REGNO (i1dest))++;
2456 if (newi2pat && reg_set_p (i1dest, newi2pat))
2457 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2458 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2459 else
2460 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2461 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2462 NULL_RTX, NULL_RTX);
2465 distribute_links (i3links);
2466 distribute_links (i2links);
2467 distribute_links (i1links);
2469 if (GET_CODE (i2dest) == REG)
2471 rtx link;
2472 rtx i2_insn = 0, i2_val = 0, set;
2474 /* The insn that used to set this register doesn't exist, and
2475 this life of the register may not exist either. See if one of
2476 I3's links points to an insn that sets I2DEST. If it does,
2477 that is now the last known value for I2DEST. If we don't update
2478 this and I2 set the register to a value that depended on its old
2479 contents, we will get confused. If this insn is used, thing
2480 will be set correctly in combine_instructions. */
2482 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2483 if ((set = single_set (XEXP (link, 0))) != 0
2484 && rtx_equal_p (i2dest, SET_DEST (set)))
2485 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2487 record_value_for_reg (i2dest, i2_insn, i2_val);
2489 /* If the reg formerly set in I2 died only once and that was in I3,
2490 zero its use count so it won't make `reload' do any work. */
2491 if (! added_sets_2
2492 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2493 && ! i2dest_in_i2src)
2495 regno = REGNO (i2dest);
2496 REG_N_SETS (regno)--;
2497 if (REG_N_SETS (regno) == 0
2498 && ! REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
2499 REG_N_REFS (regno) = 0;
2503 if (i1 && GET_CODE (i1dest) == REG)
2505 rtx link;
2506 rtx i1_insn = 0, i1_val = 0, set;
2508 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2509 if ((set = single_set (XEXP (link, 0))) != 0
2510 && rtx_equal_p (i1dest, SET_DEST (set)))
2511 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2513 record_value_for_reg (i1dest, i1_insn, i1_val);
2515 regno = REGNO (i1dest);
2516 if (! added_sets_1 && ! i1dest_in_i1src)
2518 REG_N_SETS (regno)--;
2519 if (REG_N_SETS (regno) == 0
2520 && ! REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
2521 REG_N_REFS (regno) = 0;
2525 /* Update reg_nonzero_bits et al for any changes that may have been made
2526 to this insn. */
2528 note_stores (newpat, set_nonzero_bits_and_sign_copies);
2529 if (newi2pat)
2530 note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
2532 /* If we added any (clobber (scratch)), add them to the max for a
2533 block. This is a very pessimistic calculation, since we might
2534 have had them already and this might not be the worst block, but
2535 it's not worth doing any better. */
2536 max_scratch += i3_scratches + i2_scratches + other_scratches;
2538 /* If I3 is now an unconditional jump, ensure that it has a
2539 BARRIER following it since it may have initially been a
2540 conditional jump. It may also be the last nonnote insn. */
2542 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2543 && ((temp = next_nonnote_insn (i3)) == NULL_RTX
2544 || GET_CODE (temp) != BARRIER))
2545 emit_barrier_after (i3);
2548 combine_successes++;
2550 /* Clear this here, so that subsequent get_last_value calls are not
2551 affected. */
2552 subst_prev_insn = NULL_RTX;
2554 if (added_links_insn
2555 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2556 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2557 return added_links_insn;
2558 else
2559 return newi2pat ? i2 : i3;
2562 /* Undo all the modifications recorded in undobuf. */
2564 static void
2565 undo_all ()
2567 struct undo *undo, *next;
2569 for (undo = undobuf.undos; undo; undo = next)
2571 next = undo->next;
2572 if (undo->is_int)
2573 *undo->where.i = undo->old_contents.i;
2574 else
2575 *undo->where.r = undo->old_contents.r;
2577 undo->next = undobuf.frees;
2578 undobuf.frees = undo;
2581 obfree (undobuf.storage);
2582 undobuf.undos = undobuf.previous_undos = 0;
2584 /* Clear this here, so that subsequent get_last_value calls are not
2585 affected. */
2586 subst_prev_insn = NULL_RTX;
2589 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2590 where we have an arithmetic expression and return that point. LOC will
2591 be inside INSN.
2593 try_combine will call this function to see if an insn can be split into
2594 two insns. */
2596 static rtx *
2597 find_split_point (loc, insn)
2598 rtx *loc;
2599 rtx insn;
2601 rtx x = *loc;
2602 enum rtx_code code = GET_CODE (x);
2603 rtx *split;
2604 int len = 0, pos, unsignedp;
2605 rtx inner;
2607 /* First special-case some codes. */
2608 switch (code)
2610 case SUBREG:
2611 #ifdef INSN_SCHEDULING
2612 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2613 point. */
2614 if (GET_CODE (SUBREG_REG (x)) == MEM)
2615 return loc;
2616 #endif
2617 return find_split_point (&SUBREG_REG (x), insn);
2619 case MEM:
2620 #ifdef HAVE_lo_sum
2621 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2622 using LO_SUM and HIGH. */
2623 if (GET_CODE (XEXP (x, 0)) == CONST
2624 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2626 SUBST (XEXP (x, 0),
2627 gen_rtx_combine (LO_SUM, Pmode,
2628 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2629 XEXP (x, 0)));
2630 return &XEXP (XEXP (x, 0), 0);
2632 #endif
2634 /* If we have a PLUS whose second operand is a constant and the
2635 address is not valid, perhaps will can split it up using
2636 the machine-specific way to split large constants. We use
2637 the first pseudo-reg (one of the virtual regs) as a placeholder;
2638 it will not remain in the result. */
2639 if (GET_CODE (XEXP (x, 0)) == PLUS
2640 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2641 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2643 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2644 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2645 subst_insn);
2647 /* This should have produced two insns, each of which sets our
2648 placeholder. If the source of the second is a valid address,
2649 we can make put both sources together and make a split point
2650 in the middle. */
2652 if (seq && XVECLEN (seq, 0) == 2
2653 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2654 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2655 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2656 && ! reg_mentioned_p (reg,
2657 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2658 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2659 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2660 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2661 && memory_address_p (GET_MODE (x),
2662 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2664 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2665 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2667 /* Replace the placeholder in SRC2 with SRC1. If we can
2668 find where in SRC2 it was placed, that can become our
2669 split point and we can replace this address with SRC2.
2670 Just try two obvious places. */
2672 src2 = replace_rtx (src2, reg, src1);
2673 split = 0;
2674 if (XEXP (src2, 0) == src1)
2675 split = &XEXP (src2, 0);
2676 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2677 && XEXP (XEXP (src2, 0), 0) == src1)
2678 split = &XEXP (XEXP (src2, 0), 0);
2680 if (split)
2682 SUBST (XEXP (x, 0), src2);
2683 return split;
2687 /* If that didn't work, perhaps the first operand is complex and
2688 needs to be computed separately, so make a split point there.
2689 This will occur on machines that just support REG + CONST
2690 and have a constant moved through some previous computation. */
2692 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2693 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2694 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2695 == 'o')))
2696 return &XEXP (XEXP (x, 0), 0);
2698 break;
2700 case SET:
2701 #ifdef HAVE_cc0
2702 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2703 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2704 we need to put the operand into a register. So split at that
2705 point. */
2707 if (SET_DEST (x) == cc0_rtx
2708 && GET_CODE (SET_SRC (x)) != COMPARE
2709 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2710 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2711 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2712 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2713 return &SET_SRC (x);
2714 #endif
2716 /* See if we can split SET_SRC as it stands. */
2717 split = find_split_point (&SET_SRC (x), insn);
2718 if (split && split != &SET_SRC (x))
2719 return split;
2721 /* See if we can split SET_DEST as it stands. */
2722 split = find_split_point (&SET_DEST (x), insn);
2723 if (split && split != &SET_DEST (x))
2724 return split;
2726 /* See if this is a bitfield assignment with everything constant. If
2727 so, this is an IOR of an AND, so split it into that. */
2728 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2729 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2730 <= HOST_BITS_PER_WIDE_INT)
2731 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2732 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2733 && GET_CODE (SET_SRC (x)) == CONST_INT
2734 && ((INTVAL (XEXP (SET_DEST (x), 1))
2735 + INTVAL (XEXP (SET_DEST (x), 2)))
2736 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2737 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2739 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2740 int len = INTVAL (XEXP (SET_DEST (x), 1));
2741 int src = INTVAL (SET_SRC (x));
2742 rtx dest = XEXP (SET_DEST (x), 0);
2743 enum machine_mode mode = GET_MODE (dest);
2744 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2746 if (BITS_BIG_ENDIAN)
2747 pos = GET_MODE_BITSIZE (mode) - len - pos;
2749 if (src == mask)
2750 SUBST (SET_SRC (x),
2751 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2752 else
2753 SUBST (SET_SRC (x),
2754 gen_binary (IOR, mode,
2755 gen_binary (AND, mode, dest,
2756 GEN_INT (~ (mask << pos)
2757 & GET_MODE_MASK (mode))),
2758 GEN_INT (src << pos)));
2760 SUBST (SET_DEST (x), dest);
2762 split = find_split_point (&SET_SRC (x), insn);
2763 if (split && split != &SET_SRC (x))
2764 return split;
2767 /* Otherwise, see if this is an operation that we can split into two.
2768 If so, try to split that. */
2769 code = GET_CODE (SET_SRC (x));
2771 switch (code)
2773 case AND:
2774 /* If we are AND'ing with a large constant that is only a single
2775 bit and the result is only being used in a context where we
2776 need to know if it is zero or non-zero, replace it with a bit
2777 extraction. This will avoid the large constant, which might
2778 have taken more than one insn to make. If the constant were
2779 not a valid argument to the AND but took only one insn to make,
2780 this is no worse, but if it took more than one insn, it will
2781 be better. */
2783 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2784 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2785 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2786 && GET_CODE (SET_DEST (x)) == REG
2787 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2788 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2789 && XEXP (*split, 0) == SET_DEST (x)
2790 && XEXP (*split, 1) == const0_rtx)
2792 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
2793 XEXP (SET_SRC (x), 0),
2794 pos, NULL_RTX, 1, 1, 0, 0);
2795 if (extraction != 0)
2797 SUBST (SET_SRC (x), extraction);
2798 return find_split_point (loc, insn);
2801 break;
2803 case NE:
2804 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
2805 is known to be on, this can be converted into a NEG of a shift. */
2806 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
2807 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
2808 && 1 <= (pos = exact_log2
2809 (nonzero_bits (XEXP (SET_SRC (x), 0),
2810 GET_MODE (XEXP (SET_SRC (x), 0))))))
2812 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
2814 SUBST (SET_SRC (x),
2815 gen_rtx_combine (NEG, mode,
2816 gen_rtx_combine (LSHIFTRT, mode,
2817 XEXP (SET_SRC (x), 0),
2818 GEN_INT (pos))));
2820 split = find_split_point (&SET_SRC (x), insn);
2821 if (split && split != &SET_SRC (x))
2822 return split;
2824 break;
2826 case SIGN_EXTEND:
2827 inner = XEXP (SET_SRC (x), 0);
2829 /* We can't optimize if either mode is a partial integer
2830 mode as we don't know how many bits are significant
2831 in those modes. */
2832 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
2833 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
2834 break;
2836 pos = 0;
2837 len = GET_MODE_BITSIZE (GET_MODE (inner));
2838 unsignedp = 0;
2839 break;
2841 case SIGN_EXTRACT:
2842 case ZERO_EXTRACT:
2843 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2844 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2846 inner = XEXP (SET_SRC (x), 0);
2847 len = INTVAL (XEXP (SET_SRC (x), 1));
2848 pos = INTVAL (XEXP (SET_SRC (x), 2));
2850 if (BITS_BIG_ENDIAN)
2851 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2852 unsignedp = (code == ZERO_EXTRACT);
2854 break;
2856 default:
2857 break;
2860 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2862 enum machine_mode mode = GET_MODE (SET_SRC (x));
2864 /* For unsigned, we have a choice of a shift followed by an
2865 AND or two shifts. Use two shifts for field sizes where the
2866 constant might be too large. We assume here that we can
2867 always at least get 8-bit constants in an AND insn, which is
2868 true for every current RISC. */
2870 if (unsignedp && len <= 8)
2872 SUBST (SET_SRC (x),
2873 gen_rtx_combine
2874 (AND, mode,
2875 gen_rtx_combine (LSHIFTRT, mode,
2876 gen_lowpart_for_combine (mode, inner),
2877 GEN_INT (pos)),
2878 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2880 split = find_split_point (&SET_SRC (x), insn);
2881 if (split && split != &SET_SRC (x))
2882 return split;
2884 else
2886 SUBST (SET_SRC (x),
2887 gen_rtx_combine
2888 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2889 gen_rtx_combine (ASHIFT, mode,
2890 gen_lowpart_for_combine (mode, inner),
2891 GEN_INT (GET_MODE_BITSIZE (mode)
2892 - len - pos)),
2893 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2895 split = find_split_point (&SET_SRC (x), insn);
2896 if (split && split != &SET_SRC (x))
2897 return split;
2901 /* See if this is a simple operation with a constant as the second
2902 operand. It might be that this constant is out of range and hence
2903 could be used as a split point. */
2904 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2905 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2906 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2907 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2908 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2909 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2910 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2911 == 'o'))))
2912 return &XEXP (SET_SRC (x), 1);
2914 /* Finally, see if this is a simple operation with its first operand
2915 not in a register. The operation might require this operand in a
2916 register, so return it as a split point. We can always do this
2917 because if the first operand were another operation, we would have
2918 already found it as a split point. */
2919 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2920 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2921 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2922 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2923 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2924 return &XEXP (SET_SRC (x), 0);
2926 return 0;
2928 case AND:
2929 case IOR:
2930 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2931 it is better to write this as (not (ior A B)) so we can split it.
2932 Similarly for IOR. */
2933 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2935 SUBST (*loc,
2936 gen_rtx_combine (NOT, GET_MODE (x),
2937 gen_rtx_combine (code == IOR ? AND : IOR,
2938 GET_MODE (x),
2939 XEXP (XEXP (x, 0), 0),
2940 XEXP (XEXP (x, 1), 0))));
2941 return find_split_point (loc, insn);
2944 /* Many RISC machines have a large set of logical insns. If the
2945 second operand is a NOT, put it first so we will try to split the
2946 other operand first. */
2947 if (GET_CODE (XEXP (x, 1)) == NOT)
2949 rtx tem = XEXP (x, 0);
2950 SUBST (XEXP (x, 0), XEXP (x, 1));
2951 SUBST (XEXP (x, 1), tem);
2953 break;
2955 default:
2956 break;
2959 /* Otherwise, select our actions depending on our rtx class. */
2960 switch (GET_RTX_CLASS (code))
2962 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2963 case '3':
2964 split = find_split_point (&XEXP (x, 2), insn);
2965 if (split)
2966 return split;
2967 /* ... fall through ... */
2968 case '2':
2969 case 'c':
2970 case '<':
2971 split = find_split_point (&XEXP (x, 1), insn);
2972 if (split)
2973 return split;
2974 /* ... fall through ... */
2975 case '1':
2976 /* Some machines have (and (shift ...) ...) insns. If X is not
2977 an AND, but XEXP (X, 0) is, use it as our split point. */
2978 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2979 return &XEXP (x, 0);
2981 split = find_split_point (&XEXP (x, 0), insn);
2982 if (split)
2983 return split;
2984 return loc;
2987 /* Otherwise, we don't have a split point. */
2988 return 0;
2991 /* Throughout X, replace FROM with TO, and return the result.
2992 The result is TO if X is FROM;
2993 otherwise the result is X, but its contents may have been modified.
2994 If they were modified, a record was made in undobuf so that
2995 undo_all will (among other things) return X to its original state.
2997 If the number of changes necessary is too much to record to undo,
2998 the excess changes are not made, so the result is invalid.
2999 The changes already made can still be undone.
3000 undobuf.num_undo is incremented for such changes, so by testing that
3001 the caller can tell whether the result is valid.
3003 `n_occurrences' is incremented each time FROM is replaced.
3005 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3007 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3008 by copying if `n_occurrences' is non-zero. */
3010 static rtx
3011 subst (x, from, to, in_dest, unique_copy)
3012 register rtx x, from, to;
3013 int in_dest;
3014 int unique_copy;
3016 register enum rtx_code code = GET_CODE (x);
3017 enum machine_mode op0_mode = VOIDmode;
3018 register char *fmt;
3019 register int len, i;
3020 rtx new;
3022 /* Two expressions are equal if they are identical copies of a shared
3023 RTX or if they are both registers with the same register number
3024 and mode. */
3026 #define COMBINE_RTX_EQUAL_P(X,Y) \
3027 ((X) == (Y) \
3028 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3029 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3031 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3033 n_occurrences++;
3034 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3037 /* If X and FROM are the same register but different modes, they will
3038 not have been seen as equal above. However, flow.c will make a
3039 LOG_LINKS entry for that case. If we do nothing, we will try to
3040 rerecognize our original insn and, when it succeeds, we will
3041 delete the feeding insn, which is incorrect.
3043 So force this insn not to match in this (rare) case. */
3044 if (! in_dest && code == REG && GET_CODE (from) == REG
3045 && REGNO (x) == REGNO (from))
3046 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3048 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3049 of which may contain things that can be combined. */
3050 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3051 return x;
3053 /* It is possible to have a subexpression appear twice in the insn.
3054 Suppose that FROM is a register that appears within TO.
3055 Then, after that subexpression has been scanned once by `subst',
3056 the second time it is scanned, TO may be found. If we were
3057 to scan TO here, we would find FROM within it and create a
3058 self-referent rtl structure which is completely wrong. */
3059 if (COMBINE_RTX_EQUAL_P (x, to))
3060 return to;
3062 len = GET_RTX_LENGTH (code);
3063 fmt = GET_RTX_FORMAT (code);
3065 /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
3066 set up to skip this common case. All other cases where we want to
3067 suppress replacing something inside a SET_SRC are handled via the
3068 IN_DEST operand. */
3069 if (code == SET
3070 && (GET_CODE (SET_DEST (x)) == REG
3071 || GET_CODE (SET_DEST (x)) == CC0
3072 || GET_CODE (SET_DEST (x)) == PC))
3073 fmt = "ie";
3075 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3076 constant. */
3077 if (fmt[0] == 'e')
3078 op0_mode = GET_MODE (XEXP (x, 0));
3080 for (i = 0; i < len; i++)
3082 if (fmt[i] == 'E')
3084 register int j;
3085 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3087 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3089 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3090 n_occurrences++;
3092 else
3094 new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
3096 /* If this substitution failed, this whole thing fails. */
3097 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3098 return new;
3101 SUBST (XVECEXP (x, i, j), new);
3104 else if (fmt[i] == 'e')
3106 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3108 /* In general, don't install a subreg involving two modes not
3109 tieable. It can worsen register allocation, and can even
3110 make invalid reload insns, since the reg inside may need to
3111 be copied from in the outside mode, and that may be invalid
3112 if it is an fp reg copied in integer mode.
3114 We allow two exceptions to this: It is valid if it is inside
3115 another SUBREG and the mode of that SUBREG and the mode of
3116 the inside of TO is tieable and it is valid if X is a SET
3117 that copies FROM to CC0. */
3118 if (GET_CODE (to) == SUBREG
3119 && ! MODES_TIEABLE_P (GET_MODE (to),
3120 GET_MODE (SUBREG_REG (to)))
3121 && ! (code == SUBREG
3122 && MODES_TIEABLE_P (GET_MODE (x),
3123 GET_MODE (SUBREG_REG (to))))
3124 #ifdef HAVE_cc0
3125 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3126 #endif
3128 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3130 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3131 n_occurrences++;
3133 else
3134 /* If we are in a SET_DEST, suppress most cases unless we
3135 have gone inside a MEM, in which case we want to
3136 simplify the address. We assume here that things that
3137 are actually part of the destination have their inner
3138 parts in the first expression. This is true for SUBREG,
3139 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3140 things aside from REG and MEM that should appear in a
3141 SET_DEST. */
3142 new = subst (XEXP (x, i), from, to,
3143 (((in_dest
3144 && (code == SUBREG || code == STRICT_LOW_PART
3145 || code == ZERO_EXTRACT))
3146 || code == SET)
3147 && i == 0), unique_copy);
3149 /* If we found that we will have to reject this combination,
3150 indicate that by returning the CLOBBER ourselves, rather than
3151 an expression containing it. This will speed things up as
3152 well as prevent accidents where two CLOBBERs are considered
3153 to be equal, thus producing an incorrect simplification. */
3155 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3156 return new;
3158 SUBST (XEXP (x, i), new);
3162 /* Try to simplify X. If the simplification changed the code, it is likely
3163 that further simplification will help, so loop, but limit the number
3164 of repetitions that will be performed. */
3166 for (i = 0; i < 4; i++)
3168 /* If X is sufficiently simple, don't bother trying to do anything
3169 with it. */
3170 if (code != CONST_INT && code != REG && code != CLOBBER)
3171 x = simplify_rtx (x, op0_mode, i == 3, in_dest);
3173 if (GET_CODE (x) == code)
3174 break;
3176 code = GET_CODE (x);
3178 /* We no longer know the original mode of operand 0 since we
3179 have changed the form of X) */
3180 op0_mode = VOIDmode;
3183 return x;
3186 /* Simplify X, a piece of RTL. We just operate on the expression at the
3187 outer level; call `subst' to simplify recursively. Return the new
3188 expression.
3190 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3191 will be the iteration even if an expression with a code different from
3192 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3194 static rtx
3195 simplify_rtx (x, op0_mode, last, in_dest)
3196 rtx x;
3197 enum machine_mode op0_mode;
3198 int last;
3199 int in_dest;
3201 enum rtx_code code = GET_CODE (x);
3202 enum machine_mode mode = GET_MODE (x);
3203 rtx temp;
3204 int i;
3206 /* If this is a commutative operation, put a constant last and a complex
3207 expression first. We don't need to do this for comparisons here. */
3208 if (GET_RTX_CLASS (code) == 'c'
3209 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3210 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3211 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3212 || (GET_CODE (XEXP (x, 0)) == SUBREG
3213 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3214 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3216 temp = XEXP (x, 0);
3217 SUBST (XEXP (x, 0), XEXP (x, 1));
3218 SUBST (XEXP (x, 1), temp);
3221 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3222 sign extension of a PLUS with a constant, reverse the order of the sign
3223 extension and the addition. Note that this not the same as the original
3224 code, but overflow is undefined for signed values. Also note that the
3225 PLUS will have been partially moved "inside" the sign-extension, so that
3226 the first operand of X will really look like:
3227 (ashiftrt (plus (ashift A C4) C5) C4).
3228 We convert this to
3229 (plus (ashiftrt (ashift A C4) C2) C4)
3230 and replace the first operand of X with that expression. Later parts
3231 of this function may simplify the expression further.
3233 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3234 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3235 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3237 We do this to simplify address expressions. */
3239 if ((code == PLUS || code == MINUS || code == MULT)
3240 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3241 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3242 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3243 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3244 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3245 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3246 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3247 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3248 XEXP (XEXP (XEXP (x, 0), 0), 1),
3249 XEXP (XEXP (x, 0), 1))) != 0)
3251 rtx new
3252 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3253 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3254 INTVAL (XEXP (XEXP (x, 0), 1)));
3256 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3257 INTVAL (XEXP (XEXP (x, 0), 1)));
3259 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3262 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3263 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3264 things. Check for cases where both arms are testing the same
3265 condition.
3267 Don't do anything if all operands are very simple. */
3269 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3270 || GET_RTX_CLASS (code) == '<')
3271 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3272 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3273 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3274 == 'o')))
3275 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3276 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3277 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3278 == 'o')))))
3279 || (GET_RTX_CLASS (code) == '1'
3280 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3281 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3282 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3283 == 'o'))))))
3285 rtx cond, true, false;
3287 cond = if_then_else_cond (x, &true, &false);
3288 if (cond != 0
3289 /* If everything is a comparison, what we have is highly unlikely
3290 to be simpler, so don't use it. */
3291 && ! (GET_RTX_CLASS (code) == '<'
3292 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3293 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3295 rtx cop1 = const0_rtx;
3296 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3298 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3299 return x;
3301 /* Simplify the alternative arms; this may collapse the true and
3302 false arms to store-flag values. */
3303 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3304 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3306 /* Restarting if we generate a store-flag expression will cause
3307 us to loop. Just drop through in this case. */
3309 /* If the result values are STORE_FLAG_VALUE and zero, we can
3310 just make the comparison operation. */
3311 if (true == const_true_rtx && false == const0_rtx)
3312 x = gen_binary (cond_code, mode, cond, cop1);
3313 else if (true == const0_rtx && false == const_true_rtx)
3314 x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
3316 /* Likewise, we can make the negate of a comparison operation
3317 if the result values are - STORE_FLAG_VALUE and zero. */
3318 else if (GET_CODE (true) == CONST_INT
3319 && INTVAL (true) == - STORE_FLAG_VALUE
3320 && false == const0_rtx)
3321 x = gen_unary (NEG, mode, mode,
3322 gen_binary (cond_code, mode, cond, cop1));
3323 else if (GET_CODE (false) == CONST_INT
3324 && INTVAL (false) == - STORE_FLAG_VALUE
3325 && true == const0_rtx)
3326 x = gen_unary (NEG, mode, mode,
3327 gen_binary (reverse_condition (cond_code),
3328 mode, cond, cop1));
3329 else
3330 return gen_rtx_IF_THEN_ELSE (mode,
3331 gen_binary (cond_code, VOIDmode,
3332 cond, cop1),
3333 true, false);
3335 code = GET_CODE (x);
3336 op0_mode = VOIDmode;
3340 /* Try to fold this expression in case we have constants that weren't
3341 present before. */
3342 temp = 0;
3343 switch (GET_RTX_CLASS (code))
3345 case '1':
3346 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3347 break;
3348 case '<':
3349 temp = simplify_relational_operation (code, op0_mode,
3350 XEXP (x, 0), XEXP (x, 1));
3351 #ifdef FLOAT_STORE_FLAG_VALUE
3352 if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
3353 temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
3354 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
3355 #endif
3356 break;
3357 case 'c':
3358 case '2':
3359 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3360 break;
3361 case 'b':
3362 case '3':
3363 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3364 XEXP (x, 1), XEXP (x, 2));
3365 break;
3368 if (temp)
3369 x = temp, code = GET_CODE (temp);
3371 /* First see if we can apply the inverse distributive law. */
3372 if (code == PLUS || code == MINUS
3373 || code == AND || code == IOR || code == XOR)
3375 x = apply_distributive_law (x);
3376 code = GET_CODE (x);
3379 /* If CODE is an associative operation not otherwise handled, see if we
3380 can associate some operands. This can win if they are constants or
3381 if they are logically related (i.e. (a & b) & a. */
3382 if ((code == PLUS || code == MINUS
3383 || code == MULT || code == AND || code == IOR || code == XOR
3384 || code == DIV || code == UDIV
3385 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3386 && INTEGRAL_MODE_P (mode))
3388 if (GET_CODE (XEXP (x, 0)) == code)
3390 rtx other = XEXP (XEXP (x, 0), 0);
3391 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3392 rtx inner_op1 = XEXP (x, 1);
3393 rtx inner;
3395 /* Make sure we pass the constant operand if any as the second
3396 one if this is a commutative operation. */
3397 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3399 rtx tem = inner_op0;
3400 inner_op0 = inner_op1;
3401 inner_op1 = tem;
3403 inner = simplify_binary_operation (code == MINUS ? PLUS
3404 : code == DIV ? MULT
3405 : code == UDIV ? MULT
3406 : code,
3407 mode, inner_op0, inner_op1);
3409 /* For commutative operations, try the other pair if that one
3410 didn't simplify. */
3411 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3413 other = XEXP (XEXP (x, 0), 1);
3414 inner = simplify_binary_operation (code, mode,
3415 XEXP (XEXP (x, 0), 0),
3416 XEXP (x, 1));
3419 if (inner)
3420 return gen_binary (code, mode, other, inner);
3424 /* A little bit of algebraic simplification here. */
3425 switch (code)
3427 case MEM:
3428 /* Ensure that our address has any ASHIFTs converted to MULT in case
3429 address-recognizing predicates are called later. */
3430 temp = make_compound_operation (XEXP (x, 0), MEM);
3431 SUBST (XEXP (x, 0), temp);
3432 break;
3434 case SUBREG:
3435 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3436 is paradoxical. If we can't do that safely, then it becomes
3437 something nonsensical so that this combination won't take place. */
3439 if (GET_CODE (SUBREG_REG (x)) == MEM
3440 && (GET_MODE_SIZE (mode)
3441 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3443 rtx inner = SUBREG_REG (x);
3444 int endian_offset = 0;
3445 /* Don't change the mode of the MEM
3446 if that would change the meaning of the address. */
3447 if (MEM_VOLATILE_P (SUBREG_REG (x))
3448 || mode_dependent_address_p (XEXP (inner, 0)))
3449 return gen_rtx_CLOBBER (mode, const0_rtx);
3451 if (BYTES_BIG_ENDIAN)
3453 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3454 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3455 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3456 endian_offset -= (UNITS_PER_WORD
3457 - GET_MODE_SIZE (GET_MODE (inner)));
3459 /* Note if the plus_constant doesn't make a valid address
3460 then this combination won't be accepted. */
3461 x = gen_rtx_MEM (mode,
3462 plus_constant (XEXP (inner, 0),
3463 (SUBREG_WORD (x) * UNITS_PER_WORD
3464 + endian_offset)));
3465 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
3466 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
3467 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
3468 return x;
3471 /* If we are in a SET_DEST, these other cases can't apply. */
3472 if (in_dest)
3473 return x;
3475 /* Changing mode twice with SUBREG => just change it once,
3476 or not at all if changing back to starting mode. */
3477 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3479 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3480 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3481 return SUBREG_REG (SUBREG_REG (x));
3483 SUBST_INT (SUBREG_WORD (x),
3484 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3485 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3488 /* SUBREG of a hard register => just change the register number
3489 and/or mode. If the hard register is not valid in that mode,
3490 suppress this combination. If the hard register is the stack,
3491 frame, or argument pointer, leave this as a SUBREG. */
3493 if (GET_CODE (SUBREG_REG (x)) == REG
3494 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3495 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3496 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3497 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3498 #endif
3499 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3500 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3501 #endif
3502 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3504 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3505 mode))
3506 return gen_rtx_REG (mode,
3507 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3508 else
3509 return gen_rtx_CLOBBER (mode, const0_rtx);
3512 /* For a constant, try to pick up the part we want. Handle a full
3513 word and low-order part. Only do this if we are narrowing
3514 the constant; if it is being widened, we have no idea what
3515 the extra bits will have been set to. */
3517 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3518 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3519 && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3520 && GET_MODE_CLASS (mode) == MODE_INT)
3522 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3523 0, op0_mode);
3524 if (temp)
3525 return temp;
3528 /* If we want a subreg of a constant, at offset 0,
3529 take the low bits. On a little-endian machine, that's
3530 always valid. On a big-endian machine, it's valid
3531 only if the constant's mode fits in one word. Note that we
3532 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3533 if (CONSTANT_P (SUBREG_REG (x))
3534 && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3535 || ! WORDS_BIG_ENDIAN)
3536 ? SUBREG_WORD (x) == 0
3537 : (SUBREG_WORD (x)
3538 == ((GET_MODE_SIZE (op0_mode)
3539 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3540 / UNITS_PER_WORD)))
3541 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3542 && (! WORDS_BIG_ENDIAN
3543 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3544 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3546 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3547 since we are saying that the high bits don't matter. */
3548 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3549 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3550 return SUBREG_REG (x);
3552 /* Note that we cannot do any narrowing for non-constants since
3553 we might have been counting on using the fact that some bits were
3554 zero. We now do this in the SET. */
3556 break;
3558 case NOT:
3559 /* (not (plus X -1)) can become (neg X). */
3560 if (GET_CODE (XEXP (x, 0)) == PLUS
3561 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3562 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3564 /* Similarly, (not (neg X)) is (plus X -1). */
3565 if (GET_CODE (XEXP (x, 0)) == NEG)
3566 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3567 constm1_rtx);
3569 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3570 if (GET_CODE (XEXP (x, 0)) == XOR
3571 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3572 && (temp = simplify_unary_operation (NOT, mode,
3573 XEXP (XEXP (x, 0), 1),
3574 mode)) != 0)
3575 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3577 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3578 other than 1, but that is not valid. We could do a similar
3579 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3580 but this doesn't seem common enough to bother with. */
3581 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3582 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3583 return gen_rtx_ROTATE (mode, gen_unary (NOT, mode, mode, const1_rtx),
3584 XEXP (XEXP (x, 0), 1));
3586 if (GET_CODE (XEXP (x, 0)) == SUBREG
3587 && subreg_lowpart_p (XEXP (x, 0))
3588 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3589 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3590 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3591 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3593 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3595 x = gen_rtx_ROTATE (inner_mode,
3596 gen_unary (NOT, inner_mode, inner_mode,
3597 const1_rtx),
3598 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3599 return gen_lowpart_for_combine (mode, x);
3602 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3603 reversing the comparison code if valid. */
3604 if (STORE_FLAG_VALUE == -1
3605 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3606 && reversible_comparison_p (XEXP (x, 0)))
3607 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3608 mode, XEXP (XEXP (x, 0), 0),
3609 XEXP (XEXP (x, 0), 1));
3611 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3612 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3613 perform the above simplification. */
3615 if (STORE_FLAG_VALUE == -1
3616 && XEXP (x, 1) == const1_rtx
3617 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3618 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3619 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3620 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3622 /* Apply De Morgan's laws to reduce number of patterns for machines
3623 with negating logical insns (and-not, nand, etc.). If result has
3624 only one NOT, put it first, since that is how the patterns are
3625 coded. */
3627 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3629 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3631 if (GET_CODE (in1) == NOT)
3632 in1 = XEXP (in1, 0);
3633 else
3634 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3636 if (GET_CODE (in2) == NOT)
3637 in2 = XEXP (in2, 0);
3638 else if (GET_CODE (in2) == CONST_INT
3639 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3640 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3641 else
3642 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3644 if (GET_CODE (in2) == NOT)
3646 rtx tem = in2;
3647 in2 = in1; in1 = tem;
3650 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3651 mode, in1, in2);
3653 break;
3655 case NEG:
3656 /* (neg (plus X 1)) can become (not X). */
3657 if (GET_CODE (XEXP (x, 0)) == PLUS
3658 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3659 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3661 /* Similarly, (neg (not X)) is (plus X 1). */
3662 if (GET_CODE (XEXP (x, 0)) == NOT)
3663 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3665 /* (neg (minus X Y)) can become (minus Y X). */
3666 if (GET_CODE (XEXP (x, 0)) == MINUS
3667 && (! FLOAT_MODE_P (mode)
3668 /* x-y != -(y-x) with IEEE floating point. */
3669 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3670 || flag_fast_math))
3671 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3672 XEXP (XEXP (x, 0), 0));
3674 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3675 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3676 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3677 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3679 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3680 if we can then eliminate the NEG (e.g.,
3681 if the operand is a constant). */
3683 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3685 temp = simplify_unary_operation (NEG, mode,
3686 XEXP (XEXP (x, 0), 0), mode);
3687 if (temp)
3689 SUBST (XEXP (XEXP (x, 0), 0), temp);
3690 return XEXP (x, 0);
3694 temp = expand_compound_operation (XEXP (x, 0));
3696 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3697 replaced by (lshiftrt X C). This will convert
3698 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3700 if (GET_CODE (temp) == ASHIFTRT
3701 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3702 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3703 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3704 INTVAL (XEXP (temp, 1)));
3706 /* If X has only a single bit that might be nonzero, say, bit I, convert
3707 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3708 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3709 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3710 or a SUBREG of one since we'd be making the expression more
3711 complex if it was just a register. */
3713 if (GET_CODE (temp) != REG
3714 && ! (GET_CODE (temp) == SUBREG
3715 && GET_CODE (SUBREG_REG (temp)) == REG)
3716 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3718 rtx temp1 = simplify_shift_const
3719 (NULL_RTX, ASHIFTRT, mode,
3720 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3721 GET_MODE_BITSIZE (mode) - 1 - i),
3722 GET_MODE_BITSIZE (mode) - 1 - i);
3724 /* If all we did was surround TEMP with the two shifts, we
3725 haven't improved anything, so don't use it. Otherwise,
3726 we are better off with TEMP1. */
3727 if (GET_CODE (temp1) != ASHIFTRT
3728 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3729 || XEXP (XEXP (temp1, 0), 0) != temp)
3730 return temp1;
3732 break;
3734 case TRUNCATE:
3735 /* We can't handle truncation to a partial integer mode here
3736 because we don't know the real bitsize of the partial
3737 integer mode. */
3738 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3739 break;
3741 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3742 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3743 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3744 SUBST (XEXP (x, 0),
3745 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3746 GET_MODE_MASK (mode), NULL_RTX, 0));
3748 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3749 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3750 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3751 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3752 return XEXP (XEXP (x, 0), 0);
3754 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3755 (OP:SI foo:SI) if OP is NEG or ABS. */
3756 if ((GET_CODE (XEXP (x, 0)) == ABS
3757 || GET_CODE (XEXP (x, 0)) == NEG)
3758 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3759 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3760 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3761 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3762 XEXP (XEXP (XEXP (x, 0), 0), 0));
3764 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3765 (truncate:SI x). */
3766 if (GET_CODE (XEXP (x, 0)) == SUBREG
3767 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3768 && subreg_lowpart_p (XEXP (x, 0)))
3769 return SUBREG_REG (XEXP (x, 0));
3771 /* If we know that the value is already truncated, we can
3772 replace the TRUNCATE with a SUBREG. */
3773 if (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) <= HOST_BITS_PER_WIDE_INT
3774 && (nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3775 &~ GET_MODE_MASK (mode)) == 0)
3776 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3778 /* A truncate of a comparison can be replaced with a subreg if
3779 STORE_FLAG_VALUE permits. This is like the previous test,
3780 but it works even if the comparison is done in a mode larger
3781 than HOST_BITS_PER_WIDE_INT. */
3782 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3783 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3784 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0)
3785 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3787 /* Similarly, a truncate of a register whose value is a
3788 comparison can be replaced with a subreg if STORE_FLAG_VALUE
3789 permits. */
3790 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3791 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0
3792 && (temp = get_last_value (XEXP (x, 0)))
3793 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
3794 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3796 break;
3798 case FLOAT_TRUNCATE:
3799 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
3800 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3801 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3802 return XEXP (XEXP (x, 0), 0);
3804 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
3805 (OP:SF foo:SF) if OP is NEG or ABS. */
3806 if ((GET_CODE (XEXP (x, 0)) == ABS
3807 || GET_CODE (XEXP (x, 0)) == NEG)
3808 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
3809 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3810 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3811 XEXP (XEXP (XEXP (x, 0), 0), 0));
3813 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
3814 is (float_truncate:SF x). */
3815 if (GET_CODE (XEXP (x, 0)) == SUBREG
3816 && subreg_lowpart_p (XEXP (x, 0))
3817 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
3818 return SUBREG_REG (XEXP (x, 0));
3819 break;
3821 #ifdef HAVE_cc0
3822 case COMPARE:
3823 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3824 using cc0, in which case we want to leave it as a COMPARE
3825 so we can distinguish it from a register-register-copy. */
3826 if (XEXP (x, 1) == const0_rtx)
3827 return XEXP (x, 0);
3829 /* In IEEE floating point, x-0 is not the same as x. */
3830 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3831 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
3832 || flag_fast_math)
3833 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3834 return XEXP (x, 0);
3835 break;
3836 #endif
3838 case CONST:
3839 /* (const (const X)) can become (const X). Do it this way rather than
3840 returning the inner CONST since CONST can be shared with a
3841 REG_EQUAL note. */
3842 if (GET_CODE (XEXP (x, 0)) == CONST)
3843 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3844 break;
3846 #ifdef HAVE_lo_sum
3847 case LO_SUM:
3848 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
3849 can add in an offset. find_split_point will split this address up
3850 again if it doesn't match. */
3851 if (GET_CODE (XEXP (x, 0)) == HIGH
3852 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3853 return XEXP (x, 1);
3854 break;
3855 #endif
3857 case PLUS:
3858 /* If we have (plus (plus (A const) B)), associate it so that CONST is
3859 outermost. That's because that's the way indexed addresses are
3860 supposed to appear. This code used to check many more cases, but
3861 they are now checked elsewhere. */
3862 if (GET_CODE (XEXP (x, 0)) == PLUS
3863 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3864 return gen_binary (PLUS, mode,
3865 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3866 XEXP (x, 1)),
3867 XEXP (XEXP (x, 0), 1));
3869 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3870 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3871 bit-field and can be replaced by either a sign_extend or a
3872 sign_extract. The `and' may be a zero_extend. */
3873 if (GET_CODE (XEXP (x, 0)) == XOR
3874 && GET_CODE (XEXP (x, 1)) == CONST_INT
3875 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3876 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3877 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3878 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3879 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3880 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3881 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3882 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3883 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3884 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3885 == i + 1))))
3886 return simplify_shift_const
3887 (NULL_RTX, ASHIFTRT, mode,
3888 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3889 XEXP (XEXP (XEXP (x, 0), 0), 0),
3890 GET_MODE_BITSIZE (mode) - (i + 1)),
3891 GET_MODE_BITSIZE (mode) - (i + 1));
3893 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
3894 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
3895 is 1. This produces better code than the alternative immediately
3896 below. */
3897 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3898 && reversible_comparison_p (XEXP (x, 0))
3899 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
3900 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
3901 return
3902 gen_unary (NEG, mode, mode,
3903 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3904 mode, XEXP (XEXP (x, 0), 0),
3905 XEXP (XEXP (x, 0), 1)));
3907 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
3908 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3909 the bitsize of the mode - 1. This allows simplification of
3910 "a = (b & 8) == 0;" */
3911 if (XEXP (x, 1) == constm1_rtx
3912 && GET_CODE (XEXP (x, 0)) != REG
3913 && ! (GET_CODE (XEXP (x,0)) == SUBREG
3914 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3915 && nonzero_bits (XEXP (x, 0), mode) == 1)
3916 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
3917 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3918 gen_rtx_combine (XOR, mode,
3919 XEXP (x, 0), const1_rtx),
3920 GET_MODE_BITSIZE (mode) - 1),
3921 GET_MODE_BITSIZE (mode) - 1);
3923 /* If we are adding two things that have no bits in common, convert
3924 the addition into an IOR. This will often be further simplified,
3925 for example in cases like ((a & 1) + (a & 2)), which can
3926 become a & 3. */
3928 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3929 && (nonzero_bits (XEXP (x, 0), mode)
3930 & nonzero_bits (XEXP (x, 1), mode)) == 0)
3931 return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3932 break;
3934 case MINUS:
3935 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
3936 by reversing the comparison code if valid. */
3937 if (STORE_FLAG_VALUE == 1
3938 && XEXP (x, 0) == const1_rtx
3939 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
3940 && reversible_comparison_p (XEXP (x, 1)))
3941 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
3942 mode, XEXP (XEXP (x, 1), 0),
3943 XEXP (XEXP (x, 1), 1));
3945 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3946 (and <foo> (const_int pow2-1)) */
3947 if (GET_CODE (XEXP (x, 1)) == AND
3948 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3949 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3950 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3951 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3952 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3954 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
3955 integers. */
3956 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
3957 return gen_binary (MINUS, mode,
3958 gen_binary (MINUS, mode, XEXP (x, 0),
3959 XEXP (XEXP (x, 1), 0)),
3960 XEXP (XEXP (x, 1), 1));
3961 break;
3963 case MULT:
3964 /* If we have (mult (plus A B) C), apply the distributive law and then
3965 the inverse distributive law to see if things simplify. This
3966 occurs mostly in addresses, often when unrolling loops. */
3968 if (GET_CODE (XEXP (x, 0)) == PLUS)
3970 x = apply_distributive_law
3971 (gen_binary (PLUS, mode,
3972 gen_binary (MULT, mode,
3973 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3974 gen_binary (MULT, mode,
3975 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3977 if (GET_CODE (x) != MULT)
3978 return x;
3980 break;
3982 case UDIV:
3983 /* If this is a divide by a power of two, treat it as a shift if
3984 its first operand is a shift. */
3985 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3986 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
3987 && (GET_CODE (XEXP (x, 0)) == ASHIFT
3988 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
3989 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
3990 || GET_CODE (XEXP (x, 0)) == ROTATE
3991 || GET_CODE (XEXP (x, 0)) == ROTATERT))
3992 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
3993 break;
3995 case EQ: case NE:
3996 case GT: case GTU: case GE: case GEU:
3997 case LT: case LTU: case LE: case LEU:
3998 /* If the first operand is a condition code, we can't do anything
3999 with it. */
4000 if (GET_CODE (XEXP (x, 0)) == COMPARE
4001 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4002 #ifdef HAVE_cc0
4003 && XEXP (x, 0) != cc0_rtx
4004 #endif
4007 rtx op0 = XEXP (x, 0);
4008 rtx op1 = XEXP (x, 1);
4009 enum rtx_code new_code;
4011 if (GET_CODE (op0) == COMPARE)
4012 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4014 /* Simplify our comparison, if possible. */
4015 new_code = simplify_comparison (code, &op0, &op1);
4017 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4018 if only the low-order bit is possibly nonzero in X (such as when
4019 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4020 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4021 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4022 (plus X 1).
4024 Remove any ZERO_EXTRACT we made when thinking this was a
4025 comparison. It may now be simpler to use, e.g., an AND. If a
4026 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4027 the call to make_compound_operation in the SET case. */
4029 if (STORE_FLAG_VALUE == 1
4030 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4031 && op1 == const0_rtx && nonzero_bits (op0, mode) == 1)
4032 return gen_lowpart_for_combine (mode,
4033 expand_compound_operation (op0));
4035 else if (STORE_FLAG_VALUE == 1
4036 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4037 && op1 == const0_rtx
4038 && (num_sign_bit_copies (op0, mode)
4039 == GET_MODE_BITSIZE (mode)))
4041 op0 = expand_compound_operation (op0);
4042 return gen_unary (NEG, mode, mode,
4043 gen_lowpart_for_combine (mode, op0));
4046 else if (STORE_FLAG_VALUE == 1
4047 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4048 && op1 == const0_rtx
4049 && nonzero_bits (op0, mode) == 1)
4051 op0 = expand_compound_operation (op0);
4052 return gen_binary (XOR, mode,
4053 gen_lowpart_for_combine (mode, op0),
4054 const1_rtx);
4057 else if (STORE_FLAG_VALUE == 1
4058 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4059 && op1 == const0_rtx
4060 && (num_sign_bit_copies (op0, mode)
4061 == GET_MODE_BITSIZE (mode)))
4063 op0 = expand_compound_operation (op0);
4064 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4067 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4068 those above. */
4069 if (STORE_FLAG_VALUE == -1
4070 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4071 && op1 == const0_rtx
4072 && (num_sign_bit_copies (op0, mode)
4073 == GET_MODE_BITSIZE (mode)))
4074 return gen_lowpart_for_combine (mode,
4075 expand_compound_operation (op0));
4077 else if (STORE_FLAG_VALUE == -1
4078 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4079 && op1 == const0_rtx
4080 && nonzero_bits (op0, mode) == 1)
4082 op0 = expand_compound_operation (op0);
4083 return gen_unary (NEG, mode, mode,
4084 gen_lowpart_for_combine (mode, op0));
4087 else if (STORE_FLAG_VALUE == -1
4088 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4089 && op1 == const0_rtx
4090 && (num_sign_bit_copies (op0, mode)
4091 == GET_MODE_BITSIZE (mode)))
4093 op0 = expand_compound_operation (op0);
4094 return gen_unary (NOT, mode, mode,
4095 gen_lowpart_for_combine (mode, op0));
4098 /* If X is 0/1, (eq X 0) is X-1. */
4099 else if (STORE_FLAG_VALUE == -1
4100 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4101 && op1 == const0_rtx
4102 && nonzero_bits (op0, mode) == 1)
4104 op0 = expand_compound_operation (op0);
4105 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4108 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4109 one bit that might be nonzero, we can convert (ne x 0) to
4110 (ashift x c) where C puts the bit in the sign bit. Remove any
4111 AND with STORE_FLAG_VALUE when we are done, since we are only
4112 going to test the sign bit. */
4113 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4114 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4115 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4116 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4117 && op1 == const0_rtx
4118 && mode == GET_MODE (op0)
4119 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4121 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4122 expand_compound_operation (op0),
4123 GET_MODE_BITSIZE (mode) - 1 - i);
4124 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4125 return XEXP (x, 0);
4126 else
4127 return x;
4130 /* If the code changed, return a whole new comparison. */
4131 if (new_code != code)
4132 return gen_rtx_combine (new_code, mode, op0, op1);
4134 /* Otherwise, keep this operation, but maybe change its operands.
4135 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4136 SUBST (XEXP (x, 0), op0);
4137 SUBST (XEXP (x, 1), op1);
4139 break;
4141 case IF_THEN_ELSE:
4142 return simplify_if_then_else (x);
4144 case ZERO_EXTRACT:
4145 case SIGN_EXTRACT:
4146 case ZERO_EXTEND:
4147 case SIGN_EXTEND:
4148 /* If we are processing SET_DEST, we are done. */
4149 if (in_dest)
4150 return x;
4152 return expand_compound_operation (x);
4154 case SET:
4155 return simplify_set (x);
4157 case AND:
4158 case IOR:
4159 case XOR:
4160 return simplify_logical (x, last);
4162 case ABS:
4163 /* (abs (neg <foo>)) -> (abs <foo>) */
4164 if (GET_CODE (XEXP (x, 0)) == NEG)
4165 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4167 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4168 do nothing. */
4169 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4170 break;
4172 /* If operand is something known to be positive, ignore the ABS. */
4173 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4174 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4175 <= HOST_BITS_PER_WIDE_INT)
4176 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4177 & ((HOST_WIDE_INT) 1
4178 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4179 == 0)))
4180 return XEXP (x, 0);
4183 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4184 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4185 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4187 break;
4189 case FFS:
4190 /* (ffs (*_extend <X>)) = (ffs <X>) */
4191 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4192 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4193 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4194 break;
4196 case FLOAT:
4197 /* (float (sign_extend <X>)) = (float <X>). */
4198 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4199 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4200 break;
4202 case ASHIFT:
4203 case LSHIFTRT:
4204 case ASHIFTRT:
4205 case ROTATE:
4206 case ROTATERT:
4207 /* If this is a shift by a constant amount, simplify it. */
4208 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4209 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4210 INTVAL (XEXP (x, 1)));
4212 #ifdef SHIFT_COUNT_TRUNCATED
4213 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4214 SUBST (XEXP (x, 1),
4215 force_to_mode (XEXP (x, 1), GET_MODE (x),
4216 ((HOST_WIDE_INT) 1
4217 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4218 - 1,
4219 NULL_RTX, 0));
4220 #endif
4222 break;
4224 default:
4225 break;
4228 return x;
4231 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4233 static rtx
4234 simplify_if_then_else (x)
4235 rtx x;
4237 enum machine_mode mode = GET_MODE (x);
4238 rtx cond = XEXP (x, 0);
4239 rtx true = XEXP (x, 1);
4240 rtx false = XEXP (x, 2);
4241 enum rtx_code true_code = GET_CODE (cond);
4242 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4243 rtx temp;
4244 int i;
4246 /* Simplify storing of the truth value. */
4247 if (comparison_p && true == const_true_rtx && false == const0_rtx)
4248 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4250 /* Also when the truth value has to be reversed. */
4251 if (comparison_p && reversible_comparison_p (cond)
4252 && true == const0_rtx && false == const_true_rtx)
4253 return gen_binary (reverse_condition (true_code),
4254 mode, XEXP (cond, 0), XEXP (cond, 1));
4256 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4257 in it is being compared against certain values. Get the true and false
4258 comparisons and see if that says anything about the value of each arm. */
4260 if (comparison_p && reversible_comparison_p (cond)
4261 && GET_CODE (XEXP (cond, 0)) == REG)
4263 HOST_WIDE_INT nzb;
4264 rtx from = XEXP (cond, 0);
4265 enum rtx_code false_code = reverse_condition (true_code);
4266 rtx true_val = XEXP (cond, 1);
4267 rtx false_val = true_val;
4268 int swapped = 0;
4270 /* If FALSE_CODE is EQ, swap the codes and arms. */
4272 if (false_code == EQ)
4274 swapped = 1, true_code = EQ, false_code = NE;
4275 temp = true, true = false, false = temp;
4278 /* If we are comparing against zero and the expression being tested has
4279 only a single bit that might be nonzero, that is its value when it is
4280 not equal to zero. Similarly if it is known to be -1 or 0. */
4282 if (true_code == EQ && true_val == const0_rtx
4283 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4284 false_code = EQ, false_val = GEN_INT (nzb);
4285 else if (true_code == EQ && true_val == const0_rtx
4286 && (num_sign_bit_copies (from, GET_MODE (from))
4287 == GET_MODE_BITSIZE (GET_MODE (from))))
4288 false_code = EQ, false_val = constm1_rtx;
4290 /* Now simplify an arm if we know the value of the register in the
4291 branch and it is used in the arm. Be careful due to the potential
4292 of locally-shared RTL. */
4294 if (reg_mentioned_p (from, true))
4295 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4296 pc_rtx, pc_rtx, 0, 0);
4297 if (reg_mentioned_p (from, false))
4298 false = subst (known_cond (copy_rtx (false), false_code,
4299 from, false_val),
4300 pc_rtx, pc_rtx, 0, 0);
4302 SUBST (XEXP (x, 1), swapped ? false : true);
4303 SUBST (XEXP (x, 2), swapped ? true : false);
4305 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4308 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4309 reversed, do so to avoid needing two sets of patterns for
4310 subtract-and-branch insns. Similarly if we have a constant in the true
4311 arm, the false arm is the same as the first operand of the comparison, or
4312 the false arm is more complicated than the true arm. */
4314 if (comparison_p && reversible_comparison_p (cond)
4315 && (true == pc_rtx
4316 || (CONSTANT_P (true)
4317 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4318 || true == const0_rtx
4319 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4320 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4321 || (GET_CODE (true) == SUBREG
4322 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4323 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4324 || reg_mentioned_p (true, false)
4325 || rtx_equal_p (false, XEXP (cond, 0))))
4327 true_code = reverse_condition (true_code);
4328 SUBST (XEXP (x, 0),
4329 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4330 XEXP (cond, 1)));
4332 SUBST (XEXP (x, 1), false);
4333 SUBST (XEXP (x, 2), true);
4335 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4337 /* It is possible that the conditional has been simplified out. */
4338 true_code = GET_CODE (cond);
4339 comparison_p = GET_RTX_CLASS (true_code) == '<';
4342 /* If the two arms are identical, we don't need the comparison. */
4344 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4345 return true;
4347 /* Convert a == b ? b : a to "a". */
4348 if (true_code == EQ && ! side_effects_p (cond)
4349 && rtx_equal_p (XEXP (cond, 0), false)
4350 && rtx_equal_p (XEXP (cond, 1), true))
4351 return false;
4352 else if (true_code == NE && ! side_effects_p (cond)
4353 && rtx_equal_p (XEXP (cond, 0), true)
4354 && rtx_equal_p (XEXP (cond, 1), false))
4355 return true;
4357 /* Look for cases where we have (abs x) or (neg (abs X)). */
4359 if (GET_MODE_CLASS (mode) == MODE_INT
4360 && GET_CODE (false) == NEG
4361 && rtx_equal_p (true, XEXP (false, 0))
4362 && comparison_p
4363 && rtx_equal_p (true, XEXP (cond, 0))
4364 && ! side_effects_p (true))
4365 switch (true_code)
4367 case GT:
4368 case GE:
4369 return gen_unary (ABS, mode, mode, true);
4370 case LT:
4371 case LE:
4372 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4373 default:
4374 break;
4377 /* Look for MIN or MAX. */
4379 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4380 && comparison_p
4381 && rtx_equal_p (XEXP (cond, 0), true)
4382 && rtx_equal_p (XEXP (cond, 1), false)
4383 && ! side_effects_p (cond))
4384 switch (true_code)
4386 case GE:
4387 case GT:
4388 return gen_binary (SMAX, mode, true, false);
4389 case LE:
4390 case LT:
4391 return gen_binary (SMIN, mode, true, false);
4392 case GEU:
4393 case GTU:
4394 return gen_binary (UMAX, mode, true, false);
4395 case LEU:
4396 case LTU:
4397 return gen_binary (UMIN, mode, true, false);
4398 default:
4399 break;
4402 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4403 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4404 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4405 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4406 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4407 neither 1 or -1, but it isn't worth checking for. */
4409 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4410 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4412 rtx t = make_compound_operation (true, SET);
4413 rtx f = make_compound_operation (false, SET);
4414 rtx cond_op0 = XEXP (cond, 0);
4415 rtx cond_op1 = XEXP (cond, 1);
4416 enum rtx_code op, extend_op = NIL;
4417 enum machine_mode m = mode;
4418 rtx z = 0, c1;
4420 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4421 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4422 || GET_CODE (t) == ASHIFT
4423 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4424 && rtx_equal_p (XEXP (t, 0), f))
4425 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4427 /* If an identity-zero op is commutative, check whether there
4428 would be a match if we swapped the operands. */
4429 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4430 || GET_CODE (t) == XOR)
4431 && rtx_equal_p (XEXP (t, 1), f))
4432 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4433 else if (GET_CODE (t) == SIGN_EXTEND
4434 && (GET_CODE (XEXP (t, 0)) == PLUS
4435 || GET_CODE (XEXP (t, 0)) == MINUS
4436 || GET_CODE (XEXP (t, 0)) == IOR
4437 || GET_CODE (XEXP (t, 0)) == XOR
4438 || GET_CODE (XEXP (t, 0)) == ASHIFT
4439 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4440 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4441 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4442 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4443 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4444 && (num_sign_bit_copies (f, GET_MODE (f))
4445 > (GET_MODE_BITSIZE (mode)
4446 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4448 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4449 extend_op = SIGN_EXTEND;
4450 m = GET_MODE (XEXP (t, 0));
4452 else if (GET_CODE (t) == SIGN_EXTEND
4453 && (GET_CODE (XEXP (t, 0)) == PLUS
4454 || GET_CODE (XEXP (t, 0)) == IOR
4455 || GET_CODE (XEXP (t, 0)) == XOR)
4456 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4457 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4458 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4459 && (num_sign_bit_copies (f, GET_MODE (f))
4460 > (GET_MODE_BITSIZE (mode)
4461 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4463 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4464 extend_op = SIGN_EXTEND;
4465 m = GET_MODE (XEXP (t, 0));
4467 else if (GET_CODE (t) == ZERO_EXTEND
4468 && (GET_CODE (XEXP (t, 0)) == PLUS
4469 || GET_CODE (XEXP (t, 0)) == MINUS
4470 || GET_CODE (XEXP (t, 0)) == IOR
4471 || GET_CODE (XEXP (t, 0)) == XOR
4472 || GET_CODE (XEXP (t, 0)) == ASHIFT
4473 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4474 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4475 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4476 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4477 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4478 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4479 && ((nonzero_bits (f, GET_MODE (f))
4480 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4481 == 0))
4483 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4484 extend_op = ZERO_EXTEND;
4485 m = GET_MODE (XEXP (t, 0));
4487 else if (GET_CODE (t) == ZERO_EXTEND
4488 && (GET_CODE (XEXP (t, 0)) == PLUS
4489 || GET_CODE (XEXP (t, 0)) == IOR
4490 || GET_CODE (XEXP (t, 0)) == XOR)
4491 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4492 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4493 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4494 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4495 && ((nonzero_bits (f, GET_MODE (f))
4496 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4497 == 0))
4499 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4500 extend_op = ZERO_EXTEND;
4501 m = GET_MODE (XEXP (t, 0));
4504 if (z)
4506 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4507 pc_rtx, pc_rtx, 0, 0);
4508 temp = gen_binary (MULT, m, temp,
4509 gen_binary (MULT, m, c1, const_true_rtx));
4510 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4511 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4513 if (extend_op != NIL)
4514 temp = gen_unary (extend_op, mode, m, temp);
4516 return temp;
4520 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4521 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4522 negation of a single bit, we can convert this operation to a shift. We
4523 can actually do this more generally, but it doesn't seem worth it. */
4525 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4526 && false == const0_rtx && GET_CODE (true) == CONST_INT
4527 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4528 && (i = exact_log2 (INTVAL (true))) >= 0)
4529 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4530 == GET_MODE_BITSIZE (mode))
4531 && (i = exact_log2 (- INTVAL (true))) >= 0)))
4532 return
4533 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4534 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4536 return x;
4539 /* Simplify X, a SET expression. Return the new expression. */
4541 static rtx
4542 simplify_set (x)
4543 rtx x;
4545 rtx src = SET_SRC (x);
4546 rtx dest = SET_DEST (x);
4547 enum machine_mode mode
4548 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4549 rtx other_insn;
4550 rtx *cc_use;
4552 /* (set (pc) (return)) gets written as (return). */
4553 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4554 return src;
4556 /* Now that we know for sure which bits of SRC we are using, see if we can
4557 simplify the expression for the object knowing that we only need the
4558 low-order bits. */
4560 if (GET_MODE_CLASS (mode) == MODE_INT)
4561 src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4563 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4564 the comparison result and try to simplify it unless we already have used
4565 undobuf.other_insn. */
4566 if ((GET_CODE (src) == COMPARE
4567 #ifdef HAVE_cc0
4568 || dest == cc0_rtx
4569 #endif
4571 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4572 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4573 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4574 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4576 enum rtx_code old_code = GET_CODE (*cc_use);
4577 enum rtx_code new_code;
4578 rtx op0, op1;
4579 int other_changed = 0;
4580 enum machine_mode compare_mode = GET_MODE (dest);
4582 if (GET_CODE (src) == COMPARE)
4583 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4584 else
4585 op0 = src, op1 = const0_rtx;
4587 /* Simplify our comparison, if possible. */
4588 new_code = simplify_comparison (old_code, &op0, &op1);
4590 #ifdef EXTRA_CC_MODES
4591 /* If this machine has CC modes other than CCmode, check to see if we
4592 need to use a different CC mode here. */
4593 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4594 #endif /* EXTRA_CC_MODES */
4596 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4597 /* If the mode changed, we have to change SET_DEST, the mode in the
4598 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4599 a hard register, just build new versions with the proper mode. If it
4600 is a pseudo, we lose unless it is only time we set the pseudo, in
4601 which case we can safely change its mode. */
4602 if (compare_mode != GET_MODE (dest))
4604 int regno = REGNO (dest);
4605 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4607 if (regno < FIRST_PSEUDO_REGISTER
4608 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4610 if (regno >= FIRST_PSEUDO_REGISTER)
4611 SUBST (regno_reg_rtx[regno], new_dest);
4613 SUBST (SET_DEST (x), new_dest);
4614 SUBST (XEXP (*cc_use, 0), new_dest);
4615 other_changed = 1;
4617 dest = new_dest;
4620 #endif
4622 /* If the code changed, we have to build a new comparison in
4623 undobuf.other_insn. */
4624 if (new_code != old_code)
4626 unsigned HOST_WIDE_INT mask;
4628 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4629 dest, const0_rtx));
4631 /* If the only change we made was to change an EQ into an NE or
4632 vice versa, OP0 has only one bit that might be nonzero, and OP1
4633 is zero, check if changing the user of the condition code will
4634 produce a valid insn. If it won't, we can keep the original code
4635 in that insn by surrounding our operation with an XOR. */
4637 if (((old_code == NE && new_code == EQ)
4638 || (old_code == EQ && new_code == NE))
4639 && ! other_changed && op1 == const0_rtx
4640 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4641 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4643 rtx pat = PATTERN (other_insn), note = 0;
4644 int scratches;
4646 if ((recog_for_combine (&pat, other_insn, &note, &scratches) < 0
4647 && ! check_asm_operands (pat)))
4649 PUT_CODE (*cc_use, old_code);
4650 other_insn = 0;
4652 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4656 other_changed = 1;
4659 if (other_changed)
4660 undobuf.other_insn = other_insn;
4662 #ifdef HAVE_cc0
4663 /* If we are now comparing against zero, change our source if
4664 needed. If we do not use cc0, we always have a COMPARE. */
4665 if (op1 == const0_rtx && dest == cc0_rtx)
4667 SUBST (SET_SRC (x), op0);
4668 src = op0;
4670 else
4671 #endif
4673 /* Otherwise, if we didn't previously have a COMPARE in the
4674 correct mode, we need one. */
4675 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4677 SUBST (SET_SRC (x),
4678 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4679 src = SET_SRC (x);
4681 else
4683 /* Otherwise, update the COMPARE if needed. */
4684 SUBST (XEXP (src, 0), op0);
4685 SUBST (XEXP (src, 1), op1);
4688 else
4690 /* Get SET_SRC in a form where we have placed back any
4691 compound expressions. Then do the checks below. */
4692 src = make_compound_operation (src, SET);
4693 SUBST (SET_SRC (x), src);
4696 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4697 and X being a REG or (subreg (reg)), we may be able to convert this to
4698 (set (subreg:m2 x) (op)).
4700 We can always do this if M1 is narrower than M2 because that means that
4701 we only care about the low bits of the result.
4703 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4704 perform a narrower operation that requested since the high-order bits will
4705 be undefined. On machine where it is defined, this transformation is safe
4706 as long as M1 and M2 have the same number of words. */
4708 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4709 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
4710 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
4711 / UNITS_PER_WORD)
4712 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4713 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
4714 #ifndef WORD_REGISTER_OPERATIONS
4715 && (GET_MODE_SIZE (GET_MODE (src))
4716 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4717 #endif
4718 #ifdef CLASS_CANNOT_CHANGE_SIZE
4719 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
4720 && (TEST_HARD_REG_BIT
4721 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
4722 REGNO (dest)))
4723 && (GET_MODE_SIZE (GET_MODE (src))
4724 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4725 #endif
4726 && (GET_CODE (dest) == REG
4727 || (GET_CODE (dest) == SUBREG
4728 && GET_CODE (SUBREG_REG (dest)) == REG)))
4730 SUBST (SET_DEST (x),
4731 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
4732 dest));
4733 SUBST (SET_SRC (x), SUBREG_REG (src));
4735 src = SET_SRC (x), dest = SET_DEST (x);
4738 #ifdef LOAD_EXTEND_OP
4739 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4740 would require a paradoxical subreg. Replace the subreg with a
4741 zero_extend to avoid the reload that would otherwise be required. */
4743 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4744 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
4745 && SUBREG_WORD (src) == 0
4746 && (GET_MODE_SIZE (GET_MODE (src))
4747 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4748 && GET_CODE (SUBREG_REG (src)) == MEM)
4750 SUBST (SET_SRC (x),
4751 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
4752 GET_MODE (src), XEXP (src, 0)));
4754 src = SET_SRC (x);
4756 #endif
4758 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4759 are comparing an item known to be 0 or -1 against 0, use a logical
4760 operation instead. Check for one of the arms being an IOR of the other
4761 arm with some value. We compute three terms to be IOR'ed together. In
4762 practice, at most two will be nonzero. Then we do the IOR's. */
4764 if (GET_CODE (dest) != PC
4765 && GET_CODE (src) == IF_THEN_ELSE
4766 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
4767 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
4768 && XEXP (XEXP (src, 0), 1) == const0_rtx
4769 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
4770 #ifdef HAVE_conditional_move
4771 && ! can_conditionally_move_p (GET_MODE (src))
4772 #endif
4773 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
4774 GET_MODE (XEXP (XEXP (src, 0), 0)))
4775 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
4776 && ! side_effects_p (src))
4778 rtx true = (GET_CODE (XEXP (src, 0)) == NE
4779 ? XEXP (src, 1) : XEXP (src, 2));
4780 rtx false = (GET_CODE (XEXP (src, 0)) == NE
4781 ? XEXP (src, 2) : XEXP (src, 1));
4782 rtx term1 = const0_rtx, term2, term3;
4784 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
4785 term1 = false, true = XEXP (true, 1), false = const0_rtx;
4786 else if (GET_CODE (true) == IOR
4787 && rtx_equal_p (XEXP (true, 1), false))
4788 term1 = false, true = XEXP (true, 0), false = const0_rtx;
4789 else if (GET_CODE (false) == IOR
4790 && rtx_equal_p (XEXP (false, 0), true))
4791 term1 = true, false = XEXP (false, 1), true = const0_rtx;
4792 else if (GET_CODE (false) == IOR
4793 && rtx_equal_p (XEXP (false, 1), true))
4794 term1 = true, false = XEXP (false, 0), true = const0_rtx;
4796 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
4797 term3 = gen_binary (AND, GET_MODE (src),
4798 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
4799 XEXP (XEXP (src, 0), 0)),
4800 false);
4802 SUBST (SET_SRC (x),
4803 gen_binary (IOR, GET_MODE (src),
4804 gen_binary (IOR, GET_MODE (src), term1, term2),
4805 term3));
4807 src = SET_SRC (x);
4810 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
4811 whole thing fail. */
4812 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
4813 return src;
4814 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
4815 return dest;
4816 else
4817 /* Convert this into a field assignment operation, if possible. */
4818 return make_field_assignment (x);
4821 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
4822 result. LAST is nonzero if this is the last retry. */
4824 static rtx
4825 simplify_logical (x, last)
4826 rtx x;
4827 int last;
4829 enum machine_mode mode = GET_MODE (x);
4830 rtx op0 = XEXP (x, 0);
4831 rtx op1 = XEXP (x, 1);
4833 switch (GET_CODE (x))
4835 case AND:
4836 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
4837 insn (and may simplify more). */
4838 if (GET_CODE (op0) == XOR
4839 && rtx_equal_p (XEXP (op0, 0), op1)
4840 && ! side_effects_p (op1))
4841 x = gen_binary (AND, mode,
4842 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
4844 if (GET_CODE (op0) == XOR
4845 && rtx_equal_p (XEXP (op0, 1), op1)
4846 && ! side_effects_p (op1))
4847 x = gen_binary (AND, mode,
4848 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
4850 /* Similarly for (~ (A ^ B)) & A. */
4851 if (GET_CODE (op0) == NOT
4852 && GET_CODE (XEXP (op0, 0)) == XOR
4853 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
4854 && ! side_effects_p (op1))
4855 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
4857 if (GET_CODE (op0) == NOT
4858 && GET_CODE (XEXP (op0, 0)) == XOR
4859 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
4860 && ! side_effects_p (op1))
4861 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
4863 if (GET_CODE (op1) == CONST_INT)
4865 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
4867 /* If we have (ior (and (X C1) C2)) and the next restart would be
4868 the last, simplify this by making C1 as small as possible
4869 and then exit. */
4870 if (last
4871 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
4872 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4873 && GET_CODE (op1) == CONST_INT)
4874 return gen_binary (IOR, mode,
4875 gen_binary (AND, mode, XEXP (op0, 0),
4876 GEN_INT (INTVAL (XEXP (op0, 1))
4877 & ~ INTVAL (op1))), op1);
4879 if (GET_CODE (x) != AND)
4880 return x;
4882 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
4883 || GET_RTX_CLASS (GET_CODE (x)) == '2')
4884 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4887 /* Convert (A | B) & A to A. */
4888 if (GET_CODE (op0) == IOR
4889 && (rtx_equal_p (XEXP (op0, 0), op1)
4890 || rtx_equal_p (XEXP (op0, 1), op1))
4891 && ! side_effects_p (XEXP (op0, 0))
4892 && ! side_effects_p (XEXP (op0, 1)))
4893 return op1;
4895 /* In the following group of tests (and those in case IOR below),
4896 we start with some combination of logical operations and apply
4897 the distributive law followed by the inverse distributive law.
4898 Most of the time, this results in no change. However, if some of
4899 the operands are the same or inverses of each other, simplifications
4900 will result.
4902 For example, (and (ior A B) (not B)) can occur as the result of
4903 expanding a bit field assignment. When we apply the distributive
4904 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
4905 which then simplifies to (and (A (not B))).
4907 If we have (and (ior A B) C), apply the distributive law and then
4908 the inverse distributive law to see if things simplify. */
4910 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
4912 x = apply_distributive_law
4913 (gen_binary (GET_CODE (op0), mode,
4914 gen_binary (AND, mode, XEXP (op0, 0), op1),
4915 gen_binary (AND, mode, XEXP (op0, 1), op1)));
4916 if (GET_CODE (x) != AND)
4917 return x;
4920 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
4921 return apply_distributive_law
4922 (gen_binary (GET_CODE (op1), mode,
4923 gen_binary (AND, mode, XEXP (op1, 0), op0),
4924 gen_binary (AND, mode, XEXP (op1, 1), op0)));
4926 /* Similarly, taking advantage of the fact that
4927 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
4929 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
4930 return apply_distributive_law
4931 (gen_binary (XOR, mode,
4932 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
4933 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
4935 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
4936 return apply_distributive_law
4937 (gen_binary (XOR, mode,
4938 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
4939 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
4940 break;
4942 case IOR:
4943 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
4944 if (GET_CODE (op1) == CONST_INT
4945 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4946 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
4947 return op1;
4949 /* Convert (A & B) | A to A. */
4950 if (GET_CODE (op0) == AND
4951 && (rtx_equal_p (XEXP (op0, 0), op1)
4952 || rtx_equal_p (XEXP (op0, 1), op1))
4953 && ! side_effects_p (XEXP (op0, 0))
4954 && ! side_effects_p (XEXP (op0, 1)))
4955 return op1;
4957 /* If we have (ior (and A B) C), apply the distributive law and then
4958 the inverse distributive law to see if things simplify. */
4960 if (GET_CODE (op0) == AND)
4962 x = apply_distributive_law
4963 (gen_binary (AND, mode,
4964 gen_binary (IOR, mode, XEXP (op0, 0), op1),
4965 gen_binary (IOR, mode, XEXP (op0, 1), op1)));
4967 if (GET_CODE (x) != IOR)
4968 return x;
4971 if (GET_CODE (op1) == AND)
4973 x = apply_distributive_law
4974 (gen_binary (AND, mode,
4975 gen_binary (IOR, mode, XEXP (op1, 0), op0),
4976 gen_binary (IOR, mode, XEXP (op1, 1), op0)));
4978 if (GET_CODE (x) != IOR)
4979 return x;
4982 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
4983 mode size to (rotate A CX). */
4985 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
4986 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
4987 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
4988 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4989 && GET_CODE (XEXP (op1, 1)) == CONST_INT
4990 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
4991 == GET_MODE_BITSIZE (mode)))
4992 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
4993 (GET_CODE (op0) == ASHIFT
4994 ? XEXP (op0, 1) : XEXP (op1, 1)));
4996 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
4997 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
4998 does not affect any of the bits in OP1, it can really be done
4999 as a PLUS and we can associate. We do this by seeing if OP1
5000 can be safely shifted left C bits. */
5001 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5002 && GET_CODE (XEXP (op0, 0)) == PLUS
5003 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5004 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5005 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5007 int count = INTVAL (XEXP (op0, 1));
5008 HOST_WIDE_INT mask = INTVAL (op1) << count;
5010 if (mask >> count == INTVAL (op1)
5011 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5013 SUBST (XEXP (XEXP (op0, 0), 1),
5014 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5015 return op0;
5018 break;
5020 case XOR:
5021 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5022 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5023 (NOT y). */
5025 int num_negated = 0;
5027 if (GET_CODE (op0) == NOT)
5028 num_negated++, op0 = XEXP (op0, 0);
5029 if (GET_CODE (op1) == NOT)
5030 num_negated++, op1 = XEXP (op1, 0);
5032 if (num_negated == 2)
5034 SUBST (XEXP (x, 0), op0);
5035 SUBST (XEXP (x, 1), op1);
5037 else if (num_negated == 1)
5038 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
5041 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5042 correspond to a machine insn or result in further simplifications
5043 if B is a constant. */
5045 if (GET_CODE (op0) == AND
5046 && rtx_equal_p (XEXP (op0, 1), op1)
5047 && ! side_effects_p (op1))
5048 return gen_binary (AND, mode,
5049 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
5050 op1);
5052 else if (GET_CODE (op0) == AND
5053 && rtx_equal_p (XEXP (op0, 0), op1)
5054 && ! side_effects_p (op1))
5055 return gen_binary (AND, mode,
5056 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
5057 op1);
5059 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5060 comparison if STORE_FLAG_VALUE is 1. */
5061 if (STORE_FLAG_VALUE == 1
5062 && op1 == const1_rtx
5063 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5064 && reversible_comparison_p (op0))
5065 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5066 mode, XEXP (op0, 0), XEXP (op0, 1));
5068 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5069 is (lt foo (const_int 0)), so we can perform the above
5070 simplification if STORE_FLAG_VALUE is 1. */
5072 if (STORE_FLAG_VALUE == 1
5073 && op1 == const1_rtx
5074 && GET_CODE (op0) == LSHIFTRT
5075 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5076 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5077 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
5079 /* (xor (comparison foo bar) (const_int sign-bit))
5080 when STORE_FLAG_VALUE is the sign bit. */
5081 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5082 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5083 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5084 && op1 == const_true_rtx
5085 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5086 && reversible_comparison_p (op0))
5087 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5088 mode, XEXP (op0, 0), XEXP (op0, 1));
5089 break;
5091 default:
5092 abort ();
5095 return x;
5098 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5099 operations" because they can be replaced with two more basic operations.
5100 ZERO_EXTEND is also considered "compound" because it can be replaced with
5101 an AND operation, which is simpler, though only one operation.
5103 The function expand_compound_operation is called with an rtx expression
5104 and will convert it to the appropriate shifts and AND operations,
5105 simplifying at each stage.
5107 The function make_compound_operation is called to convert an expression
5108 consisting of shifts and ANDs into the equivalent compound expression.
5109 It is the inverse of this function, loosely speaking. */
5111 static rtx
5112 expand_compound_operation (x)
5113 rtx x;
5115 int pos = 0, len;
5116 int unsignedp = 0;
5117 int modewidth;
5118 rtx tem;
5120 switch (GET_CODE (x))
5122 case ZERO_EXTEND:
5123 unsignedp = 1;
5124 case SIGN_EXTEND:
5125 /* We can't necessarily use a const_int for a multiword mode;
5126 it depends on implicitly extending the value.
5127 Since we don't know the right way to extend it,
5128 we can't tell whether the implicit way is right.
5130 Even for a mode that is no wider than a const_int,
5131 we can't win, because we need to sign extend one of its bits through
5132 the rest of it, and we don't know which bit. */
5133 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5134 return x;
5136 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5137 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5138 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5139 reloaded. If not for that, MEM's would very rarely be safe.
5141 Reject MODEs bigger than a word, because we might not be able
5142 to reference a two-register group starting with an arbitrary register
5143 (and currently gen_lowpart might crash for a SUBREG). */
5145 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5146 return x;
5148 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5149 /* If the inner object has VOIDmode (the only way this can happen
5150 is if it is a ASM_OPERANDS), we can't do anything since we don't
5151 know how much masking to do. */
5152 if (len == 0)
5153 return x;
5155 break;
5157 case ZERO_EXTRACT:
5158 unsignedp = 1;
5159 case SIGN_EXTRACT:
5160 /* If the operand is a CLOBBER, just return it. */
5161 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5162 return XEXP (x, 0);
5164 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5165 || GET_CODE (XEXP (x, 2)) != CONST_INT
5166 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5167 return x;
5169 len = INTVAL (XEXP (x, 1));
5170 pos = INTVAL (XEXP (x, 2));
5172 /* If this goes outside the object being extracted, replace the object
5173 with a (use (mem ...)) construct that only combine understands
5174 and is used only for this purpose. */
5175 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5176 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5178 if (BITS_BIG_ENDIAN)
5179 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5181 break;
5183 default:
5184 return x;
5187 /* We can optimize some special cases of ZERO_EXTEND. */
5188 if (GET_CODE (x) == ZERO_EXTEND)
5190 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5191 know that the last value didn't have any inappropriate bits
5192 set. */
5193 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5194 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5195 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5196 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5197 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5198 return XEXP (XEXP (x, 0), 0);
5200 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5201 if (GET_CODE (XEXP (x, 0)) == SUBREG
5202 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5203 && subreg_lowpart_p (XEXP (x, 0))
5204 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5205 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5206 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0)
5207 return SUBREG_REG (XEXP (x, 0));
5209 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5210 is a comparison and STORE_FLAG_VALUE permits. This is like
5211 the first case, but it works even when GET_MODE (x) is larger
5212 than HOST_WIDE_INT. */
5213 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5214 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5215 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5216 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5217 <= HOST_BITS_PER_WIDE_INT)
5218 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5219 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5220 return XEXP (XEXP (x, 0), 0);
5222 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5223 if (GET_CODE (XEXP (x, 0)) == SUBREG
5224 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5225 && subreg_lowpart_p (XEXP (x, 0))
5226 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5227 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5228 <= HOST_BITS_PER_WIDE_INT)
5229 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5230 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5231 return SUBREG_REG (XEXP (x, 0));
5233 /* If sign extension is cheaper than zero extension, then use it
5234 if we know that no extraneous bits are set, and that the high
5235 bit is not set. */
5236 if (flag_expensive_optimizations
5237 && ((GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5238 && ((nonzero_bits (XEXP (x, 0), GET_MODE (x))
5239 & ~ (((unsigned HOST_WIDE_INT)
5240 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5241 >> 1))
5242 == 0))
5243 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
5244 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5245 <= HOST_BITS_PER_WIDE_INT)
5246 && (((HOST_WIDE_INT) STORE_FLAG_VALUE
5247 & ~ (((unsigned HOST_WIDE_INT)
5248 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5249 >> 1))
5250 == 0))))
5252 rtx temp = gen_rtx_SIGN_EXTEND (GET_MODE (x), XEXP (x, 0));
5254 if (rtx_cost (temp, SET) < rtx_cost (x, SET))
5255 return expand_compound_operation (temp);
5259 /* If we reach here, we want to return a pair of shifts. The inner
5260 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5261 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5262 logical depending on the value of UNSIGNEDP.
5264 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5265 converted into an AND of a shift.
5267 We must check for the case where the left shift would have a negative
5268 count. This can happen in a case like (x >> 31) & 255 on machines
5269 that can't shift by a constant. On those machines, we would first
5270 combine the shift with the AND to produce a variable-position
5271 extraction. Then the constant of 31 would be substituted in to produce
5272 a such a position. */
5274 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5275 if (modewidth >= pos - len)
5276 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5277 GET_MODE (x),
5278 simplify_shift_const (NULL_RTX, ASHIFT,
5279 GET_MODE (x),
5280 XEXP (x, 0),
5281 modewidth - pos - len),
5282 modewidth - len);
5284 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5285 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5286 simplify_shift_const (NULL_RTX, LSHIFTRT,
5287 GET_MODE (x),
5288 XEXP (x, 0), pos),
5289 ((HOST_WIDE_INT) 1 << len) - 1);
5290 else
5291 /* Any other cases we can't handle. */
5292 return x;
5295 /* If we couldn't do this for some reason, return the original
5296 expression. */
5297 if (GET_CODE (tem) == CLOBBER)
5298 return x;
5300 return tem;
5303 /* X is a SET which contains an assignment of one object into
5304 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5305 or certain SUBREGS). If possible, convert it into a series of
5306 logical operations.
5308 We half-heartedly support variable positions, but do not at all
5309 support variable lengths. */
5311 static rtx
5312 expand_field_assignment (x)
5313 rtx x;
5315 rtx inner;
5316 rtx pos; /* Always counts from low bit. */
5317 int len;
5318 rtx mask;
5319 enum machine_mode compute_mode;
5321 /* Loop until we find something we can't simplify. */
5322 while (1)
5324 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5325 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5327 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5328 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5329 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5331 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5332 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5334 inner = XEXP (SET_DEST (x), 0);
5335 len = INTVAL (XEXP (SET_DEST (x), 1));
5336 pos = XEXP (SET_DEST (x), 2);
5338 /* If the position is constant and spans the width of INNER,
5339 surround INNER with a USE to indicate this. */
5340 if (GET_CODE (pos) == CONST_INT
5341 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5342 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5344 if (BITS_BIG_ENDIAN)
5346 if (GET_CODE (pos) == CONST_INT)
5347 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5348 - INTVAL (pos));
5349 else if (GET_CODE (pos) == MINUS
5350 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5351 && (INTVAL (XEXP (pos, 1))
5352 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5353 /* If position is ADJUST - X, new position is X. */
5354 pos = XEXP (pos, 0);
5355 else
5356 pos = gen_binary (MINUS, GET_MODE (pos),
5357 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5358 - len),
5359 pos);
5363 /* A SUBREG between two modes that occupy the same numbers of words
5364 can be done by moving the SUBREG to the source. */
5365 else if (GET_CODE (SET_DEST (x)) == SUBREG
5366 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5367 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5368 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5369 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5371 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5372 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
5373 SET_SRC (x)));
5374 continue;
5376 else
5377 break;
5379 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5380 inner = SUBREG_REG (inner);
5382 compute_mode = GET_MODE (inner);
5384 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5385 if (len < HOST_BITS_PER_WIDE_INT)
5386 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5387 else
5388 break;
5390 /* Now compute the equivalent expression. Make a copy of INNER
5391 for the SET_DEST in case it is a MEM into which we will substitute;
5392 we don't want shared RTL in that case. */
5393 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5394 gen_binary (IOR, compute_mode,
5395 gen_binary (AND, compute_mode,
5396 gen_unary (NOT, compute_mode,
5397 compute_mode,
5398 gen_binary (ASHIFT,
5399 compute_mode,
5400 mask, pos)),
5401 inner),
5402 gen_binary (ASHIFT, compute_mode,
5403 gen_binary (AND, compute_mode,
5404 gen_lowpart_for_combine
5405 (compute_mode,
5406 SET_SRC (x)),
5407 mask),
5408 pos)));
5411 return x;
5414 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5415 it is an RTX that represents a variable starting position; otherwise,
5416 POS is the (constant) starting bit position (counted from the LSB).
5418 INNER may be a USE. This will occur when we started with a bitfield
5419 that went outside the boundary of the object in memory, which is
5420 allowed on most machines. To isolate this case, we produce a USE
5421 whose mode is wide enough and surround the MEM with it. The only
5422 code that understands the USE is this routine. If it is not removed,
5423 it will cause the resulting insn not to match.
5425 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5426 signed reference.
5428 IN_DEST is non-zero if this is a reference in the destination of a
5429 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5430 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5431 be used.
5433 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5434 ZERO_EXTRACT should be built even for bits starting at bit 0.
5436 MODE is the desired mode of the result (if IN_DEST == 0).
5438 The result is an RTX for the extraction or NULL_RTX if the target
5439 can't handle it. */
5441 static rtx
5442 make_extraction (mode, inner, pos, pos_rtx, len,
5443 unsignedp, in_dest, in_compare)
5444 enum machine_mode mode;
5445 rtx inner;
5446 int pos;
5447 rtx pos_rtx;
5448 int len;
5449 int unsignedp;
5450 int in_dest, in_compare;
5452 /* This mode describes the size of the storage area
5453 to fetch the overall value from. Within that, we
5454 ignore the POS lowest bits, etc. */
5455 enum machine_mode is_mode = GET_MODE (inner);
5456 enum machine_mode inner_mode;
5457 enum machine_mode wanted_inner_mode = byte_mode;
5458 enum machine_mode wanted_inner_reg_mode = word_mode;
5459 enum machine_mode pos_mode = word_mode;
5460 enum machine_mode extraction_mode = word_mode;
5461 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5462 int spans_byte = 0;
5463 rtx new = 0;
5464 rtx orig_pos_rtx = pos_rtx;
5465 int orig_pos;
5467 /* Get some information about INNER and get the innermost object. */
5468 if (GET_CODE (inner) == USE)
5469 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5470 /* We don't need to adjust the position because we set up the USE
5471 to pretend that it was a full-word object. */
5472 spans_byte = 1, inner = XEXP (inner, 0);
5473 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5475 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5476 consider just the QI as the memory to extract from.
5477 The subreg adds or removes high bits; its mode is
5478 irrelevant to the meaning of this extraction,
5479 since POS and LEN count from the lsb. */
5480 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5481 is_mode = GET_MODE (SUBREG_REG (inner));
5482 inner = SUBREG_REG (inner);
5485 inner_mode = GET_MODE (inner);
5487 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5488 pos = INTVAL (pos_rtx), pos_rtx = 0;
5490 /* See if this can be done without an extraction. We never can if the
5491 width of the field is not the same as that of some integer mode. For
5492 registers, we can only avoid the extraction if the position is at the
5493 low-order bit and this is either not in the destination or we have the
5494 appropriate STRICT_LOW_PART operation available.
5496 For MEM, we can avoid an extract if the field starts on an appropriate
5497 boundary and we can change the mode of the memory reference. However,
5498 we cannot directly access the MEM if we have a USE and the underlying
5499 MEM is not TMODE. This combination means that MEM was being used in a
5500 context where bits outside its mode were being referenced; that is only
5501 valid in bit-field insns. */
5503 if (tmode != BLKmode
5504 && ! (spans_byte && inner_mode != tmode)
5505 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5506 && GET_CODE (inner) != MEM
5507 && (! in_dest
5508 || (GET_CODE (inner) == REG
5509 && (movstrict_optab->handlers[(int) tmode].insn_code
5510 != CODE_FOR_nothing))))
5511 || (GET_CODE (inner) == MEM && pos_rtx == 0
5512 && (pos
5513 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5514 : BITS_PER_UNIT)) == 0
5515 /* We can't do this if we are widening INNER_MODE (it
5516 may not be aligned, for one thing). */
5517 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5518 && (inner_mode == tmode
5519 || (! mode_dependent_address_p (XEXP (inner, 0))
5520 && ! MEM_VOLATILE_P (inner))))))
5522 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5523 field. If the original and current mode are the same, we need not
5524 adjust the offset. Otherwise, we do if bytes big endian.
5526 If INNER is not a MEM, get a piece consisting of just the field
5527 of interest (in this case POS % BITS_PER_WORD must be 0). */
5529 if (GET_CODE (inner) == MEM)
5531 int offset;
5532 /* POS counts from lsb, but make OFFSET count in memory order. */
5533 if (BYTES_BIG_ENDIAN)
5534 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5535 else
5536 offset = pos / BITS_PER_UNIT;
5538 new = gen_rtx_MEM (tmode, plus_constant (XEXP (inner, 0), offset));
5539 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
5540 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
5541 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
5543 else if (GET_CODE (inner) == REG)
5545 /* We can't call gen_lowpart_for_combine here since we always want
5546 a SUBREG and it would sometimes return a new hard register. */
5547 if (tmode != inner_mode)
5548 new = gen_rtx_SUBREG (tmode, inner,
5549 (WORDS_BIG_ENDIAN
5550 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
5551 ? (((GET_MODE_SIZE (inner_mode)
5552 - GET_MODE_SIZE (tmode))
5553 / UNITS_PER_WORD)
5554 - pos / BITS_PER_WORD)
5555 : pos / BITS_PER_WORD));
5556 else
5557 new = inner;
5559 else
5560 new = force_to_mode (inner, tmode,
5561 len >= HOST_BITS_PER_WIDE_INT
5562 ? GET_MODE_MASK (tmode)
5563 : ((HOST_WIDE_INT) 1 << len) - 1,
5564 NULL_RTX, 0);
5566 /* If this extraction is going into the destination of a SET,
5567 make a STRICT_LOW_PART unless we made a MEM. */
5569 if (in_dest)
5570 return (GET_CODE (new) == MEM ? new
5571 : (GET_CODE (new) != SUBREG
5572 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5573 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5575 /* Otherwise, sign- or zero-extend unless we already are in the
5576 proper mode. */
5578 return (mode == tmode ? new
5579 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5580 mode, new));
5583 /* Unless this is a COMPARE or we have a funny memory reference,
5584 don't do anything with zero-extending field extracts starting at
5585 the low-order bit since they are simple AND operations. */
5586 if (pos_rtx == 0 && pos == 0 && ! in_dest
5587 && ! in_compare && ! spans_byte && unsignedp)
5588 return 0;
5590 /* Unless we are allowed to span bytes, reject this if we would be
5591 spanning bytes or if the position is not a constant and the length
5592 is not 1. In all other cases, we would only be going outside
5593 out object in cases when an original shift would have been
5594 undefined. */
5595 if (! spans_byte
5596 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5597 || (pos_rtx != 0 && len != 1)))
5598 return 0;
5600 /* Get the mode to use should INNER not be a MEM, the mode for the position,
5601 and the mode for the result. */
5602 #ifdef HAVE_insv
5603 if (in_dest)
5605 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
5606 pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
5607 extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
5609 #endif
5611 #ifdef HAVE_extzv
5612 if (! in_dest && unsignedp)
5614 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
5615 pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
5616 extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
5618 #endif
5620 #ifdef HAVE_extv
5621 if (! in_dest && ! unsignedp)
5623 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
5624 pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
5625 extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
5627 #endif
5629 /* Never narrow an object, since that might not be safe. */
5631 if (mode != VOIDmode
5632 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
5633 extraction_mode = mode;
5635 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
5636 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5637 pos_mode = GET_MODE (pos_rtx);
5639 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
5640 if we have to change the mode of memory and cannot, the desired mode is
5641 EXTRACTION_MODE. */
5642 if (GET_CODE (inner) != MEM)
5643 wanted_inner_mode = wanted_inner_reg_mode;
5644 else if (inner_mode != wanted_inner_mode
5645 && (mode_dependent_address_p (XEXP (inner, 0))
5646 || MEM_VOLATILE_P (inner)))
5647 wanted_inner_mode = extraction_mode;
5649 orig_pos = pos;
5651 if (BITS_BIG_ENDIAN)
5653 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
5654 BITS_BIG_ENDIAN style. If position is constant, compute new
5655 position. Otherwise, build subtraction.
5656 Note that POS is relative to the mode of the original argument.
5657 If it's a MEM we need to recompute POS relative to that.
5658 However, if we're extracting from (or inserting into) a register,
5659 we want to recompute POS relative to wanted_inner_mode. */
5660 int width = (GET_CODE (inner) == MEM
5661 ? GET_MODE_BITSIZE (is_mode)
5662 : GET_MODE_BITSIZE (wanted_inner_mode));
5664 if (pos_rtx == 0)
5665 pos = width - len - pos;
5666 else
5667 pos_rtx
5668 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
5669 GEN_INT (width - len), pos_rtx);
5670 /* POS may be less than 0 now, but we check for that below.
5671 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
5674 /* If INNER has a wider mode, make it smaller. If this is a constant
5675 extract, try to adjust the byte to point to the byte containing
5676 the value. */
5677 if (wanted_inner_mode != VOIDmode
5678 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
5679 && ((GET_CODE (inner) == MEM
5680 && (inner_mode == wanted_inner_mode
5681 || (! mode_dependent_address_p (XEXP (inner, 0))
5682 && ! MEM_VOLATILE_P (inner))))))
5684 int offset = 0;
5686 /* The computations below will be correct if the machine is big
5687 endian in both bits and bytes or little endian in bits and bytes.
5688 If it is mixed, we must adjust. */
5690 /* If bytes are big endian and we had a paradoxical SUBREG, we must
5691 adjust OFFSET to compensate. */
5692 if (BYTES_BIG_ENDIAN
5693 && ! spans_byte
5694 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
5695 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
5697 /* If this is a constant position, we can move to the desired byte. */
5698 if (pos_rtx == 0)
5700 offset += pos / BITS_PER_UNIT;
5701 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
5704 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
5705 && ! spans_byte
5706 && is_mode != wanted_inner_mode)
5707 offset = (GET_MODE_SIZE (is_mode)
5708 - GET_MODE_SIZE (wanted_inner_mode) - offset);
5710 if (offset != 0 || inner_mode != wanted_inner_mode)
5712 rtx newmem = gen_rtx_MEM (wanted_inner_mode,
5713 plus_constant (XEXP (inner, 0), offset));
5714 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
5715 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
5716 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
5717 inner = newmem;
5721 /* If INNER is not memory, we can always get it into the proper mode. If we
5722 are changing its mode, POS must be a constant and smaller than the size
5723 of the new mode. */
5724 else if (GET_CODE (inner) != MEM)
5726 if (GET_MODE (inner) != wanted_inner_mode
5727 && (pos_rtx != 0
5728 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
5729 return 0;
5731 inner = force_to_mode (inner, wanted_inner_mode,
5732 pos_rtx
5733 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
5734 ? GET_MODE_MASK (wanted_inner_mode)
5735 : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
5736 NULL_RTX, 0);
5739 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
5740 have to zero extend. Otherwise, we can just use a SUBREG. */
5741 if (pos_rtx != 0
5742 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
5743 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
5744 else if (pos_rtx != 0
5745 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5746 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
5748 /* Make POS_RTX unless we already have it and it is correct. If we don't
5749 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
5750 be a CONST_INT. */
5751 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
5752 pos_rtx = orig_pos_rtx;
5754 else if (pos_rtx == 0)
5755 pos_rtx = GEN_INT (pos);
5757 /* Make the required operation. See if we can use existing rtx. */
5758 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5759 extraction_mode, inner, GEN_INT (len), pos_rtx);
5760 if (! in_dest)
5761 new = gen_lowpart_for_combine (mode, new);
5763 return new;
5766 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
5767 with any other operations in X. Return X without that shift if so. */
5769 static rtx
5770 extract_left_shift (x, count)
5771 rtx x;
5772 int count;
5774 enum rtx_code code = GET_CODE (x);
5775 enum machine_mode mode = GET_MODE (x);
5776 rtx tem;
5778 switch (code)
5780 case ASHIFT:
5781 /* This is the shift itself. If it is wide enough, we will return
5782 either the value being shifted if the shift count is equal to
5783 COUNT or a shift for the difference. */
5784 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5785 && INTVAL (XEXP (x, 1)) >= count)
5786 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
5787 INTVAL (XEXP (x, 1)) - count);
5788 break;
5790 case NEG: case NOT:
5791 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5792 return gen_unary (code, mode, mode, tem);
5794 break;
5796 case PLUS: case IOR: case XOR: case AND:
5797 /* If we can safely shift this constant and we find the inner shift,
5798 make a new operation. */
5799 if (GET_CODE (XEXP (x,1)) == CONST_INT
5800 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
5801 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5802 return gen_binary (code, mode, tem,
5803 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
5805 break;
5807 default:
5808 break;
5811 return 0;
5814 /* Look at the expression rooted at X. Look for expressions
5815 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
5816 Form these expressions.
5818 Return the new rtx, usually just X.
5820 Also, for machines like the Vax that don't have logical shift insns,
5821 try to convert logical to arithmetic shift operations in cases where
5822 they are equivalent. This undoes the canonicalizations to logical
5823 shifts done elsewhere.
5825 We try, as much as possible, to re-use rtl expressions to save memory.
5827 IN_CODE says what kind of expression we are processing. Normally, it is
5828 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
5829 being kludges), it is MEM. When processing the arguments of a comparison
5830 or a COMPARE against zero, it is COMPARE. */
5832 static rtx
5833 make_compound_operation (x, in_code)
5834 rtx x;
5835 enum rtx_code in_code;
5837 enum rtx_code code = GET_CODE (x);
5838 enum machine_mode mode = GET_MODE (x);
5839 int mode_width = GET_MODE_BITSIZE (mode);
5840 rtx rhs, lhs;
5841 enum rtx_code next_code;
5842 int i;
5843 rtx new = 0;
5844 rtx tem;
5845 char *fmt;
5847 /* Select the code to be used in recursive calls. Once we are inside an
5848 address, we stay there. If we have a comparison, set to COMPARE,
5849 but once inside, go back to our default of SET. */
5851 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
5852 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
5853 && XEXP (x, 1) == const0_rtx) ? COMPARE
5854 : in_code == COMPARE ? SET : in_code);
5856 /* Process depending on the code of this operation. If NEW is set
5857 non-zero, it will be returned. */
5859 switch (code)
5861 case ASHIFT:
5862 /* Convert shifts by constants into multiplications if inside
5863 an address. */
5864 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5865 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5866 && INTVAL (XEXP (x, 1)) >= 0)
5868 new = make_compound_operation (XEXP (x, 0), next_code);
5869 new = gen_rtx_combine (MULT, mode, new,
5870 GEN_INT ((HOST_WIDE_INT) 1
5871 << INTVAL (XEXP (x, 1))));
5873 break;
5875 case AND:
5876 /* If the second operand is not a constant, we can't do anything
5877 with it. */
5878 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5879 break;
5881 /* If the constant is a power of two minus one and the first operand
5882 is a logical right shift, make an extraction. */
5883 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5884 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5886 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5887 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
5888 0, in_code == COMPARE);
5891 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
5892 else if (GET_CODE (XEXP (x, 0)) == SUBREG
5893 && subreg_lowpart_p (XEXP (x, 0))
5894 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
5895 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5897 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
5898 next_code);
5899 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
5900 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
5901 0, in_code == COMPARE);
5903 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
5904 else if ((GET_CODE (XEXP (x, 0)) == XOR
5905 || GET_CODE (XEXP (x, 0)) == IOR)
5906 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
5907 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
5908 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5910 /* Apply the distributive law, and then try to make extractions. */
5911 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
5912 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
5913 XEXP (x, 1)),
5914 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
5915 XEXP (x, 1)));
5916 new = make_compound_operation (new, in_code);
5919 /* If we are have (and (rotate X C) M) and C is larger than the number
5920 of bits in M, this is an extraction. */
5922 else if (GET_CODE (XEXP (x, 0)) == ROTATE
5923 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5924 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
5925 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
5927 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5928 new = make_extraction (mode, new,
5929 (GET_MODE_BITSIZE (mode)
5930 - INTVAL (XEXP (XEXP (x, 0), 1))),
5931 NULL_RTX, i, 1, 0, in_code == COMPARE);
5934 /* On machines without logical shifts, if the operand of the AND is
5935 a logical shift and our mask turns off all the propagated sign
5936 bits, we can replace the logical shift with an arithmetic shift. */
5937 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5938 && (lshr_optab->handlers[(int) mode].insn_code
5939 == CODE_FOR_nothing)
5940 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
5941 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5942 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5943 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
5944 && mode_width <= HOST_BITS_PER_WIDE_INT)
5946 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
5948 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
5949 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
5950 SUBST (XEXP (x, 0),
5951 gen_rtx_combine (ASHIFTRT, mode,
5952 make_compound_operation (XEXP (XEXP (x, 0), 0),
5953 next_code),
5954 XEXP (XEXP (x, 0), 1)));
5957 /* If the constant is one less than a power of two, this might be
5958 representable by an extraction even if no shift is present.
5959 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
5960 we are in a COMPARE. */
5961 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5962 new = make_extraction (mode,
5963 make_compound_operation (XEXP (x, 0),
5964 next_code),
5965 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
5967 /* If we are in a comparison and this is an AND with a power of two,
5968 convert this into the appropriate bit extract. */
5969 else if (in_code == COMPARE
5970 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5971 new = make_extraction (mode,
5972 make_compound_operation (XEXP (x, 0),
5973 next_code),
5974 i, NULL_RTX, 1, 1, 0, 1);
5976 break;
5978 case LSHIFTRT:
5979 /* If the sign bit is known to be zero, replace this with an
5980 arithmetic shift. */
5981 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
5982 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5983 && mode_width <= HOST_BITS_PER_WIDE_INT
5984 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
5986 new = gen_rtx_combine (ASHIFTRT, mode,
5987 make_compound_operation (XEXP (x, 0),
5988 next_code),
5989 XEXP (x, 1));
5990 break;
5993 /* ... fall through ... */
5995 case ASHIFTRT:
5996 lhs = XEXP (x, 0);
5997 rhs = XEXP (x, 1);
5999 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6000 this is a SIGN_EXTRACT. */
6001 if (GET_CODE (rhs) == CONST_INT
6002 && GET_CODE (lhs) == ASHIFT
6003 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6004 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6006 new = make_compound_operation (XEXP (lhs, 0), next_code);
6007 new = make_extraction (mode, new,
6008 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6009 NULL_RTX, mode_width - INTVAL (rhs),
6010 code == LSHIFTRT, 0, in_code == COMPARE);
6013 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6014 If so, try to merge the shifts into a SIGN_EXTEND. We could
6015 also do this for some cases of SIGN_EXTRACT, but it doesn't
6016 seem worth the effort; the case checked for occurs on Alpha. */
6018 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6019 && ! (GET_CODE (lhs) == SUBREG
6020 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6021 && GET_CODE (rhs) == CONST_INT
6022 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6023 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6024 new = make_extraction (mode, make_compound_operation (new, next_code),
6025 0, NULL_RTX, mode_width - INTVAL (rhs),
6026 code == LSHIFTRT, 0, in_code == COMPARE);
6028 break;
6030 case SUBREG:
6031 /* Call ourselves recursively on the inner expression. If we are
6032 narrowing the object and it has a different RTL code from
6033 what it originally did, do this SUBREG as a force_to_mode. */
6035 tem = make_compound_operation (SUBREG_REG (x), in_code);
6036 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6037 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6038 && subreg_lowpart_p (x))
6040 rtx newer = force_to_mode (tem, mode,
6041 GET_MODE_MASK (mode), NULL_RTX, 0);
6043 /* If we have something other than a SUBREG, we might have
6044 done an expansion, so rerun outselves. */
6045 if (GET_CODE (newer) != SUBREG)
6046 newer = make_compound_operation (newer, in_code);
6048 return newer;
6051 /* If this is a paradoxical subreg, and the new code is a sign or
6052 zero extension, omit the subreg and widen the extension. If it
6053 is a regular subreg, we can still get rid of the subreg by not
6054 widening so much, or in fact removing the extension entirely. */
6055 if ((GET_CODE (tem) == SIGN_EXTEND
6056 || GET_CODE (tem) == ZERO_EXTEND)
6057 && subreg_lowpart_p (x))
6059 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6060 || (GET_MODE_SIZE (mode) >
6061 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6062 tem = gen_rtx_combine (GET_CODE (tem), mode, XEXP (tem, 0));
6063 else
6064 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6065 return tem;
6067 break;
6069 default:
6070 break;
6073 if (new)
6075 x = gen_lowpart_for_combine (mode, new);
6076 code = GET_CODE (x);
6079 /* Now recursively process each operand of this operation. */
6080 fmt = GET_RTX_FORMAT (code);
6081 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6082 if (fmt[i] == 'e')
6084 new = make_compound_operation (XEXP (x, i), next_code);
6085 SUBST (XEXP (x, i), new);
6088 return x;
6091 /* Given M see if it is a value that would select a field of bits
6092 within an item, but not the entire word. Return -1 if not.
6093 Otherwise, return the starting position of the field, where 0 is the
6094 low-order bit.
6096 *PLEN is set to the length of the field. */
6098 static int
6099 get_pos_from_mask (m, plen)
6100 unsigned HOST_WIDE_INT m;
6101 int *plen;
6103 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6104 int pos = exact_log2 (m & - m);
6106 if (pos < 0)
6107 return -1;
6109 /* Now shift off the low-order zero bits and see if we have a power of
6110 two minus 1. */
6111 *plen = exact_log2 ((m >> pos) + 1);
6113 if (*plen <= 0)
6114 return -1;
6116 return pos;
6119 /* See if X can be simplified knowing that we will only refer to it in
6120 MODE and will only refer to those bits that are nonzero in MASK.
6121 If other bits are being computed or if masking operations are done
6122 that select a superset of the bits in MASK, they can sometimes be
6123 ignored.
6125 Return a possibly simplified expression, but always convert X to
6126 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6128 Also, if REG is non-zero and X is a register equal in value to REG,
6129 replace X with REG.
6131 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6132 are all off in X. This is used when X will be complemented, by either
6133 NOT, NEG, or XOR. */
6135 static rtx
6136 force_to_mode (x, mode, mask, reg, just_select)
6137 rtx x;
6138 enum machine_mode mode;
6139 unsigned HOST_WIDE_INT mask;
6140 rtx reg;
6141 int just_select;
6143 enum rtx_code code = GET_CODE (x);
6144 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6145 enum machine_mode op_mode;
6146 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6147 rtx op0, op1, temp;
6149 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6150 code below will do the wrong thing since the mode of such an
6151 expression is VOIDmode.
6153 Also do nothing if X is a CLOBBER; this can happen if X was
6154 the return value from a call to gen_lowpart_for_combine. */
6155 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6156 return x;
6158 /* We want to perform the operation is its present mode unless we know
6159 that the operation is valid in MODE, in which case we do the operation
6160 in MODE. */
6161 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6162 && code_to_optab[(int) code] != 0
6163 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6164 != CODE_FOR_nothing))
6165 ? mode : GET_MODE (x));
6167 /* It is not valid to do a right-shift in a narrower mode
6168 than the one it came in with. */
6169 if ((code == LSHIFTRT || code == ASHIFTRT)
6170 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6171 op_mode = GET_MODE (x);
6173 /* Truncate MASK to fit OP_MODE. */
6174 if (op_mode)
6175 mask &= GET_MODE_MASK (op_mode);
6177 /* When we have an arithmetic operation, or a shift whose count we
6178 do not know, we need to assume that all bit the up to the highest-order
6179 bit in MASK will be needed. This is how we form such a mask. */
6180 if (op_mode)
6181 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6182 ? GET_MODE_MASK (op_mode)
6183 : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
6184 else
6185 fuller_mask = ~ (HOST_WIDE_INT) 0;
6187 /* Determine what bits of X are guaranteed to be (non)zero. */
6188 nonzero = nonzero_bits (x, mode);
6190 /* If none of the bits in X are needed, return a zero. */
6191 if (! just_select && (nonzero & mask) == 0)
6192 return const0_rtx;
6194 /* If X is a CONST_INT, return a new one. Do this here since the
6195 test below will fail. */
6196 if (GET_CODE (x) == CONST_INT)
6198 HOST_WIDE_INT cval = INTVAL (x) & mask;
6199 int width = GET_MODE_BITSIZE (mode);
6201 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6202 number, sign extend it. */
6203 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6204 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6205 cval |= (HOST_WIDE_INT) -1 << width;
6207 return GEN_INT (cval);
6210 /* If X is narrower than MODE and we want all the bits in X's mode, just
6211 get X in the proper mode. */
6212 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6213 && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
6214 return gen_lowpart_for_combine (mode, x);
6216 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6217 MASK are already known to be zero in X, we need not do anything. */
6218 if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
6219 return x;
6221 switch (code)
6223 case CLOBBER:
6224 /* If X is a (clobber (const_int)), return it since we know we are
6225 generating something that won't match. */
6226 return x;
6228 case USE:
6229 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6230 spanned the boundary of the MEM. If we are now masking so it is
6231 within that boundary, we don't need the USE any more. */
6232 if (! BITS_BIG_ENDIAN
6233 && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6234 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6235 break;
6237 case SIGN_EXTEND:
6238 case ZERO_EXTEND:
6239 case ZERO_EXTRACT:
6240 case SIGN_EXTRACT:
6241 x = expand_compound_operation (x);
6242 if (GET_CODE (x) != code)
6243 return force_to_mode (x, mode, mask, reg, next_select);
6244 break;
6246 case REG:
6247 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6248 || rtx_equal_p (reg, get_last_value (x))))
6249 x = reg;
6250 break;
6252 case SUBREG:
6253 if (subreg_lowpart_p (x)
6254 /* We can ignore the effect of this SUBREG if it narrows the mode or
6255 if the constant masks to zero all the bits the mode doesn't
6256 have. */
6257 && ((GET_MODE_SIZE (GET_MODE (x))
6258 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6259 || (0 == (mask
6260 & GET_MODE_MASK (GET_MODE (x))
6261 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6262 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6263 break;
6265 case AND:
6266 /* If this is an AND with a constant, convert it into an AND
6267 whose constant is the AND of that constant with MASK. If it
6268 remains an AND of MASK, delete it since it is redundant. */
6270 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6272 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6273 mask & INTVAL (XEXP (x, 1)));
6275 /* If X is still an AND, see if it is an AND with a mask that
6276 is just some low-order bits. If so, and it is MASK, we don't
6277 need it. */
6279 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6280 && INTVAL (XEXP (x, 1)) == mask)
6281 x = XEXP (x, 0);
6283 /* If it remains an AND, try making another AND with the bits
6284 in the mode mask that aren't in MASK turned on. If the
6285 constant in the AND is wide enough, this might make a
6286 cheaper constant. */
6288 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6289 && GET_MODE_MASK (GET_MODE (x)) != mask
6290 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6292 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6293 | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
6294 int width = GET_MODE_BITSIZE (GET_MODE (x));
6295 rtx y;
6297 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6298 number, sign extend it. */
6299 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6300 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6301 cval |= (HOST_WIDE_INT) -1 << width;
6303 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6304 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6305 x = y;
6308 break;
6311 goto binop;
6313 case PLUS:
6314 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6315 low-order bits (as in an alignment operation) and FOO is already
6316 aligned to that boundary, mask C1 to that boundary as well.
6317 This may eliminate that PLUS and, later, the AND. */
6320 int width = GET_MODE_BITSIZE (mode);
6321 unsigned HOST_WIDE_INT smask = mask;
6323 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6324 number, sign extend it. */
6326 if (width < HOST_BITS_PER_WIDE_INT
6327 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6328 smask |= (HOST_WIDE_INT) -1 << width;
6330 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6331 && exact_log2 (- smask) >= 0)
6333 #ifdef STACK_BIAS
6334 if (STACK_BIAS
6335 && (XEXP (x, 0) == stack_pointer_rtx
6336 || XEXP (x, 0) == frame_pointer_rtx))
6338 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6339 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6341 sp_mask &= ~ (sp_alignment - 1);
6342 if ((sp_mask & ~ mask) == 0
6343 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~ mask) != 0)
6344 return force_to_mode (plus_constant (XEXP (x, 0),
6345 ((INTVAL (XEXP (x, 1)) -
6346 STACK_BIAS) & mask)
6347 + STACK_BIAS),
6348 mode, mask, reg, next_select);
6350 #endif
6351 if ((nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
6352 && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
6353 return force_to_mode (plus_constant (XEXP (x, 0),
6354 INTVAL (XEXP (x, 1)) & mask),
6355 mode, mask, reg, next_select);
6359 /* ... fall through ... */
6361 case MINUS:
6362 case MULT:
6363 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6364 most significant bit in MASK since carries from those bits will
6365 affect the bits we are interested in. */
6366 mask = fuller_mask;
6367 goto binop;
6369 case IOR:
6370 case XOR:
6371 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6372 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6373 operation which may be a bitfield extraction. Ensure that the
6374 constant we form is not wider than the mode of X. */
6376 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6377 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6378 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6379 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6380 && GET_CODE (XEXP (x, 1)) == CONST_INT
6381 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6382 + floor_log2 (INTVAL (XEXP (x, 1))))
6383 < GET_MODE_BITSIZE (GET_MODE (x)))
6384 && (INTVAL (XEXP (x, 1))
6385 & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6387 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6388 << INTVAL (XEXP (XEXP (x, 0), 1)));
6389 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6390 XEXP (XEXP (x, 0), 0), temp);
6391 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6392 XEXP (XEXP (x, 0), 1));
6393 return force_to_mode (x, mode, mask, reg, next_select);
6396 binop:
6397 /* For most binary operations, just propagate into the operation and
6398 change the mode if we have an operation of that mode. */
6400 op0 = gen_lowpart_for_combine (op_mode,
6401 force_to_mode (XEXP (x, 0), mode, mask,
6402 reg, next_select));
6403 op1 = gen_lowpart_for_combine (op_mode,
6404 force_to_mode (XEXP (x, 1), mode, mask,
6405 reg, next_select));
6407 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6408 MASK since OP1 might have been sign-extended but we never want
6409 to turn on extra bits, since combine might have previously relied
6410 on them being off. */
6411 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6412 && (INTVAL (op1) & mask) != 0)
6413 op1 = GEN_INT (INTVAL (op1) & mask);
6415 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6416 x = gen_binary (code, op_mode, op0, op1);
6417 break;
6419 case ASHIFT:
6420 /* For left shifts, do the same, but just for the first operand.
6421 However, we cannot do anything with shifts where we cannot
6422 guarantee that the counts are smaller than the size of the mode
6423 because such a count will have a different meaning in a
6424 wider mode. */
6426 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6427 && INTVAL (XEXP (x, 1)) >= 0
6428 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6429 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6430 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6431 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6432 break;
6434 /* If the shift count is a constant and we can do arithmetic in
6435 the mode of the shift, refine which bits we need. Otherwise, use the
6436 conservative form of the mask. */
6437 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6438 && INTVAL (XEXP (x, 1)) >= 0
6439 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6440 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6441 mask >>= INTVAL (XEXP (x, 1));
6442 else
6443 mask = fuller_mask;
6445 op0 = gen_lowpart_for_combine (op_mode,
6446 force_to_mode (XEXP (x, 0), op_mode,
6447 mask, reg, next_select));
6449 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6450 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6451 break;
6453 case LSHIFTRT:
6454 /* Here we can only do something if the shift count is a constant,
6455 this shift constant is valid for the host, and we can do arithmetic
6456 in OP_MODE. */
6458 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6459 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6460 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6462 rtx inner = XEXP (x, 0);
6464 /* Select the mask of the bits we need for the shift operand. */
6465 mask <<= INTVAL (XEXP (x, 1));
6467 /* We can only change the mode of the shift if we can do arithmetic
6468 in the mode of the shift and MASK is no wider than the width of
6469 OP_MODE. */
6470 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6471 || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
6472 op_mode = GET_MODE (x);
6474 inner = force_to_mode (inner, op_mode, mask, reg, next_select);
6476 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6477 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6480 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6481 shift and AND produces only copies of the sign bit (C2 is one less
6482 than a power of two), we can do this with just a shift. */
6484 if (GET_CODE (x) == LSHIFTRT
6485 && GET_CODE (XEXP (x, 1)) == CONST_INT
6486 && ((INTVAL (XEXP (x, 1))
6487 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6488 >= GET_MODE_BITSIZE (GET_MODE (x)))
6489 && exact_log2 (mask + 1) >= 0
6490 && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6491 >= exact_log2 (mask + 1)))
6492 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6493 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6494 - exact_log2 (mask + 1)));
6495 break;
6497 case ASHIFTRT:
6498 /* If we are just looking for the sign bit, we don't need this shift at
6499 all, even if it has a variable count. */
6500 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6501 && (mask == ((HOST_WIDE_INT) 1
6502 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6503 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6505 /* If this is a shift by a constant, get a mask that contains those bits
6506 that are not copies of the sign bit. We then have two cases: If
6507 MASK only includes those bits, this can be a logical shift, which may
6508 allow simplifications. If MASK is a single-bit field not within
6509 those bits, we are requesting a copy of the sign bit and hence can
6510 shift the sign bit to the appropriate location. */
6512 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6513 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6515 int i = -1;
6517 /* If the considered data is wider then HOST_WIDE_INT, we can't
6518 represent a mask for all its bits in a single scalar.
6519 But we only care about the lower bits, so calculate these. */
6521 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6523 nonzero = ~ (HOST_WIDE_INT) 0;
6525 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6526 is the number of bits a full-width mask would have set.
6527 We need only shift if these are fewer than nonzero can
6528 hold. If not, we must keep all bits set in nonzero. */
6530 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6531 < HOST_BITS_PER_WIDE_INT)
6532 nonzero >>= INTVAL (XEXP (x, 1))
6533 + HOST_BITS_PER_WIDE_INT
6534 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6536 else
6538 nonzero = GET_MODE_MASK (GET_MODE (x));
6539 nonzero >>= INTVAL (XEXP (x, 1));
6542 if ((mask & ~ nonzero) == 0
6543 || (i = exact_log2 (mask)) >= 0)
6545 x = simplify_shift_const
6546 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6547 i < 0 ? INTVAL (XEXP (x, 1))
6548 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
6550 if (GET_CODE (x) != ASHIFTRT)
6551 return force_to_mode (x, mode, mask, reg, next_select);
6555 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
6556 even if the shift count isn't a constant. */
6557 if (mask == 1)
6558 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
6560 /* If this is a sign-extension operation that just affects bits
6561 we don't care about, remove it. Be sure the call above returned
6562 something that is still a shift. */
6564 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
6565 && GET_CODE (XEXP (x, 1)) == CONST_INT
6566 && INTVAL (XEXP (x, 1)) >= 0
6567 && (INTVAL (XEXP (x, 1))
6568 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
6569 && GET_CODE (XEXP (x, 0)) == ASHIFT
6570 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6571 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
6572 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
6573 reg, next_select);
6575 break;
6577 case ROTATE:
6578 case ROTATERT:
6579 /* If the shift count is constant and we can do computations
6580 in the mode of X, compute where the bits we care about are.
6581 Otherwise, we can't do anything. Don't change the mode of
6582 the shift or propagate MODE into the shift, though. */
6583 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6584 && INTVAL (XEXP (x, 1)) >= 0)
6586 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
6587 GET_MODE (x), GEN_INT (mask),
6588 XEXP (x, 1));
6589 if (temp && GET_CODE(temp) == CONST_INT)
6590 SUBST (XEXP (x, 0),
6591 force_to_mode (XEXP (x, 0), GET_MODE (x),
6592 INTVAL (temp), reg, next_select));
6594 break;
6596 case NEG:
6597 /* If we just want the low-order bit, the NEG isn't needed since it
6598 won't change the low-order bit. */
6599 if (mask == 1)
6600 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
6602 /* We need any bits less significant than the most significant bit in
6603 MASK since carries from those bits will affect the bits we are
6604 interested in. */
6605 mask = fuller_mask;
6606 goto unop;
6608 case NOT:
6609 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
6610 same as the XOR case above. Ensure that the constant we form is not
6611 wider than the mode of X. */
6613 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6614 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6615 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6616 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
6617 < GET_MODE_BITSIZE (GET_MODE (x)))
6618 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
6620 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
6621 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
6622 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6624 return force_to_mode (x, mode, mask, reg, next_select);
6627 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
6628 use the full mask inside the NOT. */
6629 mask = fuller_mask;
6631 unop:
6632 op0 = gen_lowpart_for_combine (op_mode,
6633 force_to_mode (XEXP (x, 0), mode, mask,
6634 reg, next_select));
6635 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6636 x = gen_unary (code, op_mode, op_mode, op0);
6637 break;
6639 case NE:
6640 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
6641 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
6642 which is equal to STORE_FLAG_VALUE. */
6643 if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
6644 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
6645 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
6646 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6648 break;
6650 case IF_THEN_ELSE:
6651 /* We have no way of knowing if the IF_THEN_ELSE can itself be
6652 written in a narrower mode. We play it safe and do not do so. */
6654 SUBST (XEXP (x, 1),
6655 gen_lowpart_for_combine (GET_MODE (x),
6656 force_to_mode (XEXP (x, 1), mode,
6657 mask, reg, next_select)));
6658 SUBST (XEXP (x, 2),
6659 gen_lowpart_for_combine (GET_MODE (x),
6660 force_to_mode (XEXP (x, 2), mode,
6661 mask, reg,next_select)));
6662 break;
6664 default:
6665 break;
6668 /* Ensure we return a value of the proper mode. */
6669 return gen_lowpart_for_combine (mode, x);
6672 /* Return nonzero if X is an expression that has one of two values depending on
6673 whether some other value is zero or nonzero. In that case, we return the
6674 value that is being tested, *PTRUE is set to the value if the rtx being
6675 returned has a nonzero value, and *PFALSE is set to the other alternative.
6677 If we return zero, we set *PTRUE and *PFALSE to X. */
6679 static rtx
6680 if_then_else_cond (x, ptrue, pfalse)
6681 rtx x;
6682 rtx *ptrue, *pfalse;
6684 enum machine_mode mode = GET_MODE (x);
6685 enum rtx_code code = GET_CODE (x);
6686 int size = GET_MODE_BITSIZE (mode);
6687 rtx cond0, cond1, true0, true1, false0, false1;
6688 unsigned HOST_WIDE_INT nz;
6690 /* If this is a unary operation whose operand has one of two values, apply
6691 our opcode to compute those values. */
6692 if (GET_RTX_CLASS (code) == '1'
6693 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
6695 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
6696 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
6697 return cond0;
6700 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
6701 make can't possibly match and would suppress other optimizations. */
6702 else if (code == COMPARE)
6705 /* If this is a binary operation, see if either side has only one of two
6706 values. If either one does or if both do and they are conditional on
6707 the same value, compute the new true and false values. */
6708 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
6709 || GET_RTX_CLASS (code) == '<')
6711 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
6712 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
6714 if ((cond0 != 0 || cond1 != 0)
6715 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
6717 /* If if_then_else_cond returned zero, then true/false are the
6718 same rtl. We must copy one of them to prevent invalid rtl
6719 sharing. */
6720 if (cond0 == 0)
6721 true0 = copy_rtx (true0);
6722 else if (cond1 == 0)
6723 true1 = copy_rtx (true1);
6725 *ptrue = gen_binary (code, mode, true0, true1);
6726 *pfalse = gen_binary (code, mode, false0, false1);
6727 return cond0 ? cond0 : cond1;
6730 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
6731 operands is zero when the other is non-zero, and vice-versa,
6732 and STORE_FLAG_VALUE is 1 or -1. */
6734 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6735 && (code == PLUS || code == IOR || code == XOR || code == MINUS
6736 || code == UMAX)
6737 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6739 rtx op0 = XEXP (XEXP (x, 0), 1);
6740 rtx op1 = XEXP (XEXP (x, 1), 1);
6742 cond0 = XEXP (XEXP (x, 0), 0);
6743 cond1 = XEXP (XEXP (x, 1), 0);
6745 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6746 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6747 && reversible_comparison_p (cond1)
6748 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6749 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6750 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6751 || ((swap_condition (GET_CODE (cond0))
6752 == reverse_condition (GET_CODE (cond1)))
6753 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6754 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6755 && ! side_effects_p (x))
6757 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
6758 *pfalse = gen_binary (MULT, mode,
6759 (code == MINUS
6760 ? gen_unary (NEG, mode, mode, op1) : op1),
6761 const_true_rtx);
6762 return cond0;
6766 /* Similarly for MULT, AND and UMIN, execpt that for these the result
6767 is always zero. */
6768 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6769 && (code == MULT || code == AND || code == UMIN)
6770 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6772 cond0 = XEXP (XEXP (x, 0), 0);
6773 cond1 = XEXP (XEXP (x, 1), 0);
6775 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6776 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6777 && reversible_comparison_p (cond1)
6778 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6779 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6780 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6781 || ((swap_condition (GET_CODE (cond0))
6782 == reverse_condition (GET_CODE (cond1)))
6783 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6784 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6785 && ! side_effects_p (x))
6787 *ptrue = *pfalse = const0_rtx;
6788 return cond0;
6793 else if (code == IF_THEN_ELSE)
6795 /* If we have IF_THEN_ELSE already, extract the condition and
6796 canonicalize it if it is NE or EQ. */
6797 cond0 = XEXP (x, 0);
6798 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
6799 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
6800 return XEXP (cond0, 0);
6801 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
6803 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
6804 return XEXP (cond0, 0);
6806 else
6807 return cond0;
6810 /* If X is a normal SUBREG with both inner and outer modes integral,
6811 we can narrow both the true and false values of the inner expression,
6812 if there is a condition. */
6813 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
6814 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
6815 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
6816 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
6817 &true0, &false0)))
6819 *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6820 *pfalse
6821 = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6823 return cond0;
6826 /* If X is a constant, this isn't special and will cause confusions
6827 if we treat it as such. Likewise if it is equivalent to a constant. */
6828 else if (CONSTANT_P (x)
6829 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
6832 /* If X is known to be either 0 or -1, those are the true and
6833 false values when testing X. */
6834 else if (num_sign_bit_copies (x, mode) == size)
6836 *ptrue = constm1_rtx, *pfalse = const0_rtx;
6837 return x;
6840 /* Likewise for 0 or a single bit. */
6841 else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
6843 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
6844 return x;
6847 /* Otherwise fail; show no condition with true and false values the same. */
6848 *ptrue = *pfalse = x;
6849 return 0;
6852 /* Return the value of expression X given the fact that condition COND
6853 is known to be true when applied to REG as its first operand and VAL
6854 as its second. X is known to not be shared and so can be modified in
6855 place.
6857 We only handle the simplest cases, and specifically those cases that
6858 arise with IF_THEN_ELSE expressions. */
6860 static rtx
6861 known_cond (x, cond, reg, val)
6862 rtx x;
6863 enum rtx_code cond;
6864 rtx reg, val;
6866 enum rtx_code code = GET_CODE (x);
6867 rtx temp;
6868 char *fmt;
6869 int i, j;
6871 if (side_effects_p (x))
6872 return x;
6874 if (cond == EQ && rtx_equal_p (x, reg))
6875 return val;
6877 /* If X is (abs REG) and we know something about REG's relationship
6878 with zero, we may be able to simplify this. */
6880 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
6881 switch (cond)
6883 case GE: case GT: case EQ:
6884 return XEXP (x, 0);
6885 case LT: case LE:
6886 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
6887 XEXP (x, 0));
6888 default:
6889 break;
6892 /* The only other cases we handle are MIN, MAX, and comparisons if the
6893 operands are the same as REG and VAL. */
6895 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
6897 if (rtx_equal_p (XEXP (x, 0), val))
6898 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
6900 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
6902 if (GET_RTX_CLASS (code) == '<')
6903 return (comparison_dominates_p (cond, code) ? const_true_rtx
6904 : (comparison_dominates_p (cond,
6905 reverse_condition (code))
6906 ? const0_rtx : x));
6908 else if (code == SMAX || code == SMIN
6909 || code == UMIN || code == UMAX)
6911 int unsignedp = (code == UMIN || code == UMAX);
6913 if (code == SMAX || code == UMAX)
6914 cond = reverse_condition (cond);
6916 switch (cond)
6918 case GE: case GT:
6919 return unsignedp ? x : XEXP (x, 1);
6920 case LE: case LT:
6921 return unsignedp ? x : XEXP (x, 0);
6922 case GEU: case GTU:
6923 return unsignedp ? XEXP (x, 1) : x;
6924 case LEU: case LTU:
6925 return unsignedp ? XEXP (x, 0) : x;
6926 default:
6927 break;
6933 fmt = GET_RTX_FORMAT (code);
6934 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6936 if (fmt[i] == 'e')
6937 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
6938 else if (fmt[i] == 'E')
6939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6940 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
6941 cond, reg, val));
6944 return x;
6947 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
6948 assignment as a field assignment. */
6950 static int
6951 rtx_equal_for_field_assignment_p (x, y)
6952 rtx x;
6953 rtx y;
6955 rtx last_x, last_y;
6957 if (x == y || rtx_equal_p (x, y))
6958 return 1;
6960 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
6961 return 0;
6963 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
6964 Note that all SUBREGs of MEM are paradoxical; otherwise they
6965 would have been rewritten. */
6966 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
6967 && GET_CODE (SUBREG_REG (y)) == MEM
6968 && rtx_equal_p (SUBREG_REG (y),
6969 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
6970 return 1;
6972 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
6973 && GET_CODE (SUBREG_REG (x)) == MEM
6974 && rtx_equal_p (SUBREG_REG (x),
6975 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
6976 return 1;
6978 last_x = get_last_value (x);
6979 last_y = get_last_value (y);
6981 return ((last_x != 0
6982 && GET_CODE (last_x) != CLOBBER
6983 && rtx_equal_for_field_assignment_p (last_x, y))
6984 || (last_y != 0
6985 && GET_CODE (last_y) != CLOBBER
6986 && rtx_equal_for_field_assignment_p (x, last_y))
6987 || (last_x != 0 && last_y != 0
6988 && GET_CODE (last_x) != CLOBBER
6989 && GET_CODE (last_y) != CLOBBER
6990 && rtx_equal_for_field_assignment_p (last_x, last_y)));
6993 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
6994 Return that assignment if so.
6996 We only handle the most common cases. */
6998 static rtx
6999 make_field_assignment (x)
7000 rtx x;
7002 rtx dest = SET_DEST (x);
7003 rtx src = SET_SRC (x);
7004 rtx assign;
7005 rtx rhs, lhs;
7006 HOST_WIDE_INT c1;
7007 int pos, len;
7008 rtx other;
7009 enum machine_mode mode;
7011 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7012 a clear of a one-bit field. We will have changed it to
7013 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7014 for a SUBREG. */
7016 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7017 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7018 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7019 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7021 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7022 1, 1, 1, 0);
7023 if (assign != 0)
7024 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7025 return x;
7028 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7029 && subreg_lowpart_p (XEXP (src, 0))
7030 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7031 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7032 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7033 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7034 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7036 assign = make_extraction (VOIDmode, dest, 0,
7037 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7038 1, 1, 1, 0);
7039 if (assign != 0)
7040 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7041 return x;
7044 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7045 one-bit field. */
7046 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7047 && XEXP (XEXP (src, 0), 0) == const1_rtx
7048 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7050 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7051 1, 1, 1, 0);
7052 if (assign != 0)
7053 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7054 return x;
7057 /* The other case we handle is assignments into a constant-position
7058 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7059 a mask that has all one bits except for a group of zero bits and
7060 OTHER is known to have zeros where C1 has ones, this is such an
7061 assignment. Compute the position and length from C1. Shift OTHER
7062 to the appropriate position, force it to the required mode, and
7063 make the extraction. Check for the AND in both operands. */
7065 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7066 return x;
7068 rhs = expand_compound_operation (XEXP (src, 0));
7069 lhs = expand_compound_operation (XEXP (src, 1));
7071 if (GET_CODE (rhs) == AND
7072 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7073 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7074 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7075 else if (GET_CODE (lhs) == AND
7076 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7077 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7078 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7079 else
7080 return x;
7082 pos = get_pos_from_mask ((~ c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7083 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7084 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7085 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7086 return x;
7088 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7089 if (assign == 0)
7090 return x;
7092 /* The mode to use for the source is the mode of the assignment, or of
7093 what is inside a possible STRICT_LOW_PART. */
7094 mode = (GET_CODE (assign) == STRICT_LOW_PART
7095 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7097 /* Shift OTHER right POS places and make it the source, restricting it
7098 to the proper length and mode. */
7100 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7101 GET_MODE (src), other, pos),
7102 mode,
7103 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7104 ? GET_MODE_MASK (mode)
7105 : ((HOST_WIDE_INT) 1 << len) - 1,
7106 dest, 0);
7108 return gen_rtx_combine (SET, VOIDmode, assign, src);
7111 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7112 if so. */
7114 static rtx
7115 apply_distributive_law (x)
7116 rtx x;
7118 enum rtx_code code = GET_CODE (x);
7119 rtx lhs, rhs, other;
7120 rtx tem;
7121 enum rtx_code inner_code;
7123 /* Distributivity is not true for floating point.
7124 It can change the value. So don't do it.
7125 -- rms and moshier@world.std.com. */
7126 if (FLOAT_MODE_P (GET_MODE (x)))
7127 return x;
7129 /* The outer operation can only be one of the following: */
7130 if (code != IOR && code != AND && code != XOR
7131 && code != PLUS && code != MINUS)
7132 return x;
7134 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7136 /* If either operand is a primitive we can't do anything, so get out
7137 fast. */
7138 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7139 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7140 return x;
7142 lhs = expand_compound_operation (lhs);
7143 rhs = expand_compound_operation (rhs);
7144 inner_code = GET_CODE (lhs);
7145 if (inner_code != GET_CODE (rhs))
7146 return x;
7148 /* See if the inner and outer operations distribute. */
7149 switch (inner_code)
7151 case LSHIFTRT:
7152 case ASHIFTRT:
7153 case AND:
7154 case IOR:
7155 /* These all distribute except over PLUS. */
7156 if (code == PLUS || code == MINUS)
7157 return x;
7158 break;
7160 case MULT:
7161 if (code != PLUS && code != MINUS)
7162 return x;
7163 break;
7165 case ASHIFT:
7166 /* This is also a multiply, so it distributes over everything. */
7167 break;
7169 case SUBREG:
7170 /* Non-paradoxical SUBREGs distributes over all operations, provided
7171 the inner modes and word numbers are the same, this is an extraction
7172 of a low-order part, we don't convert an fp operation to int or
7173 vice versa, and we would not be converting a single-word
7174 operation into a multi-word operation. The latter test is not
7175 required, but it prevents generating unneeded multi-word operations.
7176 Some of the previous tests are redundant given the latter test, but
7177 are retained because they are required for correctness.
7179 We produce the result slightly differently in this case. */
7181 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7182 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
7183 || ! subreg_lowpart_p (lhs)
7184 || (GET_MODE_CLASS (GET_MODE (lhs))
7185 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7186 || (GET_MODE_SIZE (GET_MODE (lhs))
7187 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7188 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7189 return x;
7191 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7192 SUBREG_REG (lhs), SUBREG_REG (rhs));
7193 return gen_lowpart_for_combine (GET_MODE (x), tem);
7195 default:
7196 return x;
7199 /* Set LHS and RHS to the inner operands (A and B in the example
7200 above) and set OTHER to the common operand (C in the example).
7201 These is only one way to do this unless the inner operation is
7202 commutative. */
7203 if (GET_RTX_CLASS (inner_code) == 'c'
7204 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7205 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7206 else if (GET_RTX_CLASS (inner_code) == 'c'
7207 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7208 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7209 else if (GET_RTX_CLASS (inner_code) == 'c'
7210 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7211 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7212 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7213 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7214 else
7215 return x;
7217 /* Form the new inner operation, seeing if it simplifies first. */
7218 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7220 /* There is one exception to the general way of distributing:
7221 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7222 if (code == XOR && inner_code == IOR)
7224 inner_code = AND;
7225 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7228 /* We may be able to continuing distributing the result, so call
7229 ourselves recursively on the inner operation before forming the
7230 outer operation, which we return. */
7231 return gen_binary (inner_code, GET_MODE (x),
7232 apply_distributive_law (tem), other);
7235 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7236 in MODE.
7238 Return an equivalent form, if different from X. Otherwise, return X. If
7239 X is zero, we are to always construct the equivalent form. */
7241 static rtx
7242 simplify_and_const_int (x, mode, varop, constop)
7243 rtx x;
7244 enum machine_mode mode;
7245 rtx varop;
7246 unsigned HOST_WIDE_INT constop;
7248 unsigned HOST_WIDE_INT nonzero;
7249 int width = GET_MODE_BITSIZE (mode);
7250 int i;
7252 /* Simplify VAROP knowing that we will be only looking at some of the
7253 bits in it. */
7254 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7256 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7257 CONST_INT, we are done. */
7258 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7259 return varop;
7261 /* See what bits may be nonzero in VAROP. Unlike the general case of
7262 a call to nonzero_bits, here we don't care about bits outside
7263 MODE. */
7265 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7267 /* If this would be an entire word for the target, but is not for
7268 the host, then sign-extend on the host so that the number will look
7269 the same way on the host that it would on the target.
7271 For example, when building a 64 bit alpha hosted 32 bit sparc
7272 targeted compiler, then we want the 32 bit unsigned value -1 to be
7273 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
7274 The later confuses the sparc backend. */
7276 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
7277 && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
7278 nonzero |= ((HOST_WIDE_INT) (-1) << width);
7280 /* Turn off all bits in the constant that are known to already be zero.
7281 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7282 which is tested below. */
7284 constop &= nonzero;
7286 /* If we don't have any bits left, return zero. */
7287 if (constop == 0)
7288 return const0_rtx;
7290 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7291 a power of two, we can replace this with a ASHIFT. */
7292 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7293 && (i = exact_log2 (constop)) >= 0)
7294 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7296 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7297 or XOR, then try to apply the distributive law. This may eliminate
7298 operations if either branch can be simplified because of the AND.
7299 It may also make some cases more complex, but those cases probably
7300 won't match a pattern either with or without this. */
7302 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7303 return
7304 gen_lowpart_for_combine
7305 (mode,
7306 apply_distributive_law
7307 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7308 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7309 XEXP (varop, 0), constop),
7310 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7311 XEXP (varop, 1), constop))));
7313 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7314 if we already had one (just check for the simplest cases). */
7315 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7316 && GET_MODE (XEXP (x, 0)) == mode
7317 && SUBREG_REG (XEXP (x, 0)) == varop)
7318 varop = XEXP (x, 0);
7319 else
7320 varop = gen_lowpart_for_combine (mode, varop);
7322 /* If we can't make the SUBREG, try to return what we were given. */
7323 if (GET_CODE (varop) == CLOBBER)
7324 return x ? x : varop;
7326 /* If we are only masking insignificant bits, return VAROP. */
7327 if (constop == nonzero)
7328 x = varop;
7330 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7331 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7332 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7334 else
7336 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7337 || INTVAL (XEXP (x, 1)) != constop)
7338 SUBST (XEXP (x, 1), GEN_INT (constop));
7340 SUBST (XEXP (x, 0), varop);
7343 return x;
7346 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7347 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7348 is less useful. We can't allow both, because that results in exponential
7349 run time recursion. There is a nullstone testcase that triggered
7350 this. This macro avoids accidental uses of num_sign_bit_copies. */
7351 #define num_sign_bit_copies()
7353 /* Given an expression, X, compute which bits in X can be non-zero.
7354 We don't care about bits outside of those defined in MODE.
7356 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7357 a shift, AND, or zero_extract, we can do better. */
7359 static unsigned HOST_WIDE_INT
7360 nonzero_bits (x, mode)
7361 rtx x;
7362 enum machine_mode mode;
7364 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7365 unsigned HOST_WIDE_INT inner_nz;
7366 enum rtx_code code;
7367 int mode_width = GET_MODE_BITSIZE (mode);
7368 rtx tem;
7370 /* For floating-point values, assume all bits are needed. */
7371 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7372 return nonzero;
7374 /* If X is wider than MODE, use its mode instead. */
7375 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7377 mode = GET_MODE (x);
7378 nonzero = GET_MODE_MASK (mode);
7379 mode_width = GET_MODE_BITSIZE (mode);
7382 if (mode_width > HOST_BITS_PER_WIDE_INT)
7383 /* Our only callers in this case look for single bit values. So
7384 just return the mode mask. Those tests will then be false. */
7385 return nonzero;
7387 #ifndef WORD_REGISTER_OPERATIONS
7388 /* If MODE is wider than X, but both are a single word for both the host
7389 and target machines, we can compute this from which bits of the
7390 object might be nonzero in its own mode, taking into account the fact
7391 that on many CISC machines, accessing an object in a wider mode
7392 causes the high-order bits to become undefined. So they are
7393 not known to be zero. */
7395 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7396 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7397 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7398 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7400 nonzero &= nonzero_bits (x, GET_MODE (x));
7401 nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
7402 return nonzero;
7404 #endif
7406 code = GET_CODE (x);
7407 switch (code)
7409 case REG:
7410 #ifdef POINTERS_EXTEND_UNSIGNED
7411 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7412 all the bits above ptr_mode are known to be zero. */
7413 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7414 && REGNO_POINTER_FLAG (REGNO (x)))
7415 nonzero &= GET_MODE_MASK (ptr_mode);
7416 #endif
7418 #ifdef STACK_BOUNDARY
7419 /* If this is the stack pointer, we may know something about its
7420 alignment. If PUSH_ROUNDING is defined, it is possible for the
7421 stack to be momentarily aligned only to that amount, so we pick
7422 the least alignment. */
7424 /* We can't check for arg_pointer_rtx here, because it is not
7425 guaranteed to have as much alignment as the stack pointer.
7426 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7427 alignment but the argument pointer has only 64 bit alignment. */
7429 if ((x == frame_pointer_rtx
7430 || x == stack_pointer_rtx
7431 || x == hard_frame_pointer_rtx
7432 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7433 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7434 #ifdef STACK_BIAS
7435 && !STACK_BIAS
7436 #endif
7439 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7441 #ifdef PUSH_ROUNDING
7442 if (REGNO (x) == STACK_POINTER_REGNUM)
7443 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7444 #endif
7446 /* We must return here, otherwise we may get a worse result from
7447 one of the choices below. There is nothing useful below as
7448 far as the stack pointer is concerned. */
7449 return nonzero &= ~ (sp_alignment - 1);
7451 #endif
7453 /* If X is a register whose nonzero bits value is current, use it.
7454 Otherwise, if X is a register whose value we can find, use that
7455 value. Otherwise, use the previously-computed global nonzero bits
7456 for this register. */
7458 if (reg_last_set_value[REGNO (x)] != 0
7459 && reg_last_set_mode[REGNO (x)] == mode
7460 && (REG_N_SETS (REGNO (x)) == 1
7461 || reg_last_set_label[REGNO (x)] == label_tick)
7462 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7463 return reg_last_set_nonzero_bits[REGNO (x)];
7465 tem = get_last_value (x);
7467 if (tem)
7469 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7470 /* If X is narrower than MODE and TEM is a non-negative
7471 constant that would appear negative in the mode of X,
7472 sign-extend it for use in reg_nonzero_bits because some
7473 machines (maybe most) will actually do the sign-extension
7474 and this is the conservative approach.
7476 ??? For 2.5, try to tighten up the MD files in this regard
7477 instead of this kludge. */
7479 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7480 && GET_CODE (tem) == CONST_INT
7481 && INTVAL (tem) > 0
7482 && 0 != (INTVAL (tem)
7483 & ((HOST_WIDE_INT) 1
7484 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7485 tem = GEN_INT (INTVAL (tem)
7486 | ((HOST_WIDE_INT) (-1)
7487 << GET_MODE_BITSIZE (GET_MODE (x))));
7488 #endif
7489 return nonzero_bits (tem, mode);
7491 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7492 return reg_nonzero_bits[REGNO (x)] & nonzero;
7493 else
7494 return nonzero;
7496 case CONST_INT:
7497 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7498 /* If X is negative in MODE, sign-extend the value. */
7499 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7500 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7501 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7502 #endif
7504 return INTVAL (x);
7506 case MEM:
7507 #ifdef LOAD_EXTEND_OP
7508 /* In many, if not most, RISC machines, reading a byte from memory
7509 zeros the rest of the register. Noticing that fact saves a lot
7510 of extra zero-extends. */
7511 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7512 nonzero &= GET_MODE_MASK (GET_MODE (x));
7513 #endif
7514 break;
7516 case EQ: case NE:
7517 case GT: case GTU:
7518 case LT: case LTU:
7519 case GE: case GEU:
7520 case LE: case LEU:
7522 /* If this produces an integer result, we know which bits are set.
7523 Code here used to clear bits outside the mode of X, but that is
7524 now done above. */
7526 if (GET_MODE_CLASS (mode) == MODE_INT
7527 && mode_width <= HOST_BITS_PER_WIDE_INT)
7528 nonzero = STORE_FLAG_VALUE;
7529 break;
7531 case NEG:
7532 #if 0
7533 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7534 and num_sign_bit_copies. */
7535 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7536 == GET_MODE_BITSIZE (GET_MODE (x)))
7537 nonzero = 1;
7538 #endif
7540 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
7541 nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
7542 break;
7544 case ABS:
7545 #if 0
7546 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7547 and num_sign_bit_copies. */
7548 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7549 == GET_MODE_BITSIZE (GET_MODE (x)))
7550 nonzero = 1;
7551 #endif
7552 break;
7554 case TRUNCATE:
7555 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
7556 break;
7558 case ZERO_EXTEND:
7559 nonzero &= nonzero_bits (XEXP (x, 0), mode);
7560 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7561 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7562 break;
7564 case SIGN_EXTEND:
7565 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
7566 Otherwise, show all the bits in the outer mode but not the inner
7567 may be non-zero. */
7568 inner_nz = nonzero_bits (XEXP (x, 0), mode);
7569 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7571 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7572 if (inner_nz
7573 & (((HOST_WIDE_INT) 1
7574 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
7575 inner_nz |= (GET_MODE_MASK (mode)
7576 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
7579 nonzero &= inner_nz;
7580 break;
7582 case AND:
7583 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7584 & nonzero_bits (XEXP (x, 1), mode));
7585 break;
7587 case XOR: case IOR:
7588 case UMIN: case UMAX: case SMIN: case SMAX:
7589 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7590 | nonzero_bits (XEXP (x, 1), mode));
7591 break;
7593 case PLUS: case MINUS:
7594 case MULT:
7595 case DIV: case UDIV:
7596 case MOD: case UMOD:
7597 /* We can apply the rules of arithmetic to compute the number of
7598 high- and low-order zero bits of these operations. We start by
7599 computing the width (position of the highest-order non-zero bit)
7600 and the number of low-order zero bits for each value. */
7602 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
7603 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
7604 int width0 = floor_log2 (nz0) + 1;
7605 int width1 = floor_log2 (nz1) + 1;
7606 int low0 = floor_log2 (nz0 & -nz0);
7607 int low1 = floor_log2 (nz1 & -nz1);
7608 HOST_WIDE_INT op0_maybe_minusp
7609 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7610 HOST_WIDE_INT op1_maybe_minusp
7611 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7612 int result_width = mode_width;
7613 int result_low = 0;
7615 switch (code)
7617 case PLUS:
7618 #ifdef STACK_BIAS
7619 if (STACK_BIAS
7620 && (XEXP (x, 0) == stack_pointer_rtx
7621 || XEXP (x, 0) == frame_pointer_rtx)
7622 && GET_CODE (XEXP (x, 1)) == CONST_INT)
7624 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7626 nz0 = (GET_MODE_MASK (mode) & ~ (sp_alignment - 1));
7627 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
7628 width0 = floor_log2 (nz0) + 1;
7629 width1 = floor_log2 (nz1) + 1;
7630 low0 = floor_log2 (nz0 & -nz0);
7631 low1 = floor_log2 (nz1 & -nz1);
7633 #endif
7634 result_width = MAX (width0, width1) + 1;
7635 result_low = MIN (low0, low1);
7636 break;
7637 case MINUS:
7638 result_low = MIN (low0, low1);
7639 break;
7640 case MULT:
7641 result_width = width0 + width1;
7642 result_low = low0 + low1;
7643 break;
7644 case DIV:
7645 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7646 result_width = width0;
7647 break;
7648 case UDIV:
7649 result_width = width0;
7650 break;
7651 case MOD:
7652 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7653 result_width = MIN (width0, width1);
7654 result_low = MIN (low0, low1);
7655 break;
7656 case UMOD:
7657 result_width = MIN (width0, width1);
7658 result_low = MIN (low0, low1);
7659 break;
7660 default:
7661 abort ();
7664 if (result_width < mode_width)
7665 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
7667 if (result_low > 0)
7668 nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
7670 break;
7672 case ZERO_EXTRACT:
7673 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7674 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7675 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
7676 break;
7678 case SUBREG:
7679 /* If this is a SUBREG formed for a promoted variable that has
7680 been zero-extended, we know that at least the high-order bits
7681 are zero, though others might be too. */
7683 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
7684 nonzero = (GET_MODE_MASK (GET_MODE (x))
7685 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
7687 /* If the inner mode is a single word for both the host and target
7688 machines, we can compute this from which bits of the inner
7689 object might be nonzero. */
7690 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
7691 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7692 <= HOST_BITS_PER_WIDE_INT))
7694 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
7696 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
7697 /* If this is a typical RISC machine, we only have to worry
7698 about the way loads are extended. */
7699 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
7700 ? (nonzero
7701 & (1L << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1)))
7702 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
7703 #endif
7705 /* On many CISC machines, accessing an object in a wider mode
7706 causes the high-order bits to become undefined. So they are
7707 not known to be zero. */
7708 if (GET_MODE_SIZE (GET_MODE (x))
7709 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7710 nonzero |= (GET_MODE_MASK (GET_MODE (x))
7711 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
7714 break;
7716 case ASHIFTRT:
7717 case LSHIFTRT:
7718 case ASHIFT:
7719 case ROTATE:
7720 /* The nonzero bits are in two classes: any bits within MODE
7721 that aren't in GET_MODE (x) are always significant. The rest of the
7722 nonzero bits are those that are significant in the operand of
7723 the shift when shifted the appropriate number of bits. This
7724 shows that high-order bits are cleared by the right shift and
7725 low-order bits by left shifts. */
7726 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7727 && INTVAL (XEXP (x, 1)) >= 0
7728 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7730 enum machine_mode inner_mode = GET_MODE (x);
7731 int width = GET_MODE_BITSIZE (inner_mode);
7732 int count = INTVAL (XEXP (x, 1));
7733 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
7734 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
7735 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
7736 unsigned HOST_WIDE_INT outer = 0;
7738 if (mode_width > width)
7739 outer = (op_nonzero & nonzero & ~ mode_mask);
7741 if (code == LSHIFTRT)
7742 inner >>= count;
7743 else if (code == ASHIFTRT)
7745 inner >>= count;
7747 /* If the sign bit may have been nonzero before the shift, we
7748 need to mark all the places it could have been copied to
7749 by the shift as possibly nonzero. */
7750 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
7751 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
7753 else if (code == ASHIFT)
7754 inner <<= count;
7755 else
7756 inner = ((inner << (count % width)
7757 | (inner >> (width - (count % width)))) & mode_mask);
7759 nonzero &= (outer | inner);
7761 break;
7763 case FFS:
7764 /* This is at most the number of bits in the mode. */
7765 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
7766 break;
7768 case IF_THEN_ELSE:
7769 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
7770 | nonzero_bits (XEXP (x, 2), mode));
7771 break;
7773 default:
7774 break;
7777 return nonzero;
7780 /* See the macro definition above. */
7781 #undef num_sign_bit_copies
7783 /* Return the number of bits at the high-order end of X that are known to
7784 be equal to the sign bit. X will be used in mode MODE; if MODE is
7785 VOIDmode, X will be used in its own mode. The returned value will always
7786 be between 1 and the number of bits in MODE. */
7788 static int
7789 num_sign_bit_copies (x, mode)
7790 rtx x;
7791 enum machine_mode mode;
7793 enum rtx_code code = GET_CODE (x);
7794 int bitwidth;
7795 int num0, num1, result;
7796 unsigned HOST_WIDE_INT nonzero;
7797 rtx tem;
7799 /* If we weren't given a mode, use the mode of X. If the mode is still
7800 VOIDmode, we don't know anything. Likewise if one of the modes is
7801 floating-point. */
7803 if (mode == VOIDmode)
7804 mode = GET_MODE (x);
7806 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
7807 return 1;
7809 bitwidth = GET_MODE_BITSIZE (mode);
7811 /* For a smaller object, just ignore the high bits. */
7812 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
7813 return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
7814 - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
7816 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
7818 #ifndef WORD_REGISTER_OPERATIONS
7819 /* If this machine does not do all register operations on the entire
7820 register and MODE is wider than the mode of X, we can say nothing
7821 at all about the high-order bits. */
7822 return 1;
7823 #else
7824 /* Likewise on machines that do, if the mode of the object is smaller
7825 than a word and loads of that size don't sign extend, we can say
7826 nothing about the high order bits. */
7827 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
7828 #ifdef LOAD_EXTEND_OP
7829 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
7830 #endif
7832 return 1;
7833 #endif
7836 switch (code)
7838 case REG:
7840 #ifdef POINTERS_EXTEND_UNSIGNED
7841 /* If pointers extend signed and this is a pointer in Pmode, say that
7842 all the bits above ptr_mode are known to be sign bit copies. */
7843 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
7844 && REGNO_POINTER_FLAG (REGNO (x)))
7845 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
7846 #endif
7848 if (reg_last_set_value[REGNO (x)] != 0
7849 && reg_last_set_mode[REGNO (x)] == mode
7850 && (REG_N_SETS (REGNO (x)) == 1
7851 || reg_last_set_label[REGNO (x)] == label_tick)
7852 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7853 return reg_last_set_sign_bit_copies[REGNO (x)];
7855 tem = get_last_value (x);
7856 if (tem != 0)
7857 return num_sign_bit_copies (tem, mode);
7859 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
7860 return reg_sign_bit_copies[REGNO (x)];
7861 break;
7863 case MEM:
7864 #ifdef LOAD_EXTEND_OP
7865 /* Some RISC machines sign-extend all loads of smaller than a word. */
7866 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
7867 return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
7868 #endif
7869 break;
7871 case CONST_INT:
7872 /* If the constant is negative, take its 1's complement and remask.
7873 Then see how many zero bits we have. */
7874 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
7875 if (bitwidth <= HOST_BITS_PER_WIDE_INT
7876 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7877 nonzero = (~ nonzero) & GET_MODE_MASK (mode);
7879 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
7881 case SUBREG:
7882 /* If this is a SUBREG for a promoted object that is sign-extended
7883 and we are looking at it in a wider mode, we know that at least the
7884 high-order bits are known to be sign bit copies. */
7886 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
7887 return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
7888 num_sign_bit_copies (SUBREG_REG (x), mode));
7890 /* For a smaller object, just ignore the high bits. */
7891 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
7893 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
7894 return MAX (1, (num0
7895 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7896 - bitwidth)));
7899 #ifdef WORD_REGISTER_OPERATIONS
7900 #ifdef LOAD_EXTEND_OP
7901 /* For paradoxical SUBREGs on machines where all register operations
7902 affect the entire register, just look inside. Note that we are
7903 passing MODE to the recursive call, so the number of sign bit copies
7904 will remain relative to that mode, not the inner mode. */
7906 /* This works only if loads sign extend. Otherwise, if we get a
7907 reload for the inner part, it may be loaded from the stack, and
7908 then we lose all sign bit copies that existed before the store
7909 to the stack. */
7911 if ((GET_MODE_SIZE (GET_MODE (x))
7912 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7913 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
7914 return num_sign_bit_copies (SUBREG_REG (x), mode);
7915 #endif
7916 #endif
7917 break;
7919 case SIGN_EXTRACT:
7920 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7921 return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
7922 break;
7924 case SIGN_EXTEND:
7925 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7926 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
7928 case TRUNCATE:
7929 /* For a smaller object, just ignore the high bits. */
7930 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
7931 return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7932 - bitwidth)));
7934 case NOT:
7935 return num_sign_bit_copies (XEXP (x, 0), mode);
7937 case ROTATE: case ROTATERT:
7938 /* If we are rotating left by a number of bits less than the number
7939 of sign bit copies, we can just subtract that amount from the
7940 number. */
7941 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7942 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
7944 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7945 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
7946 : bitwidth - INTVAL (XEXP (x, 1))));
7948 break;
7950 case NEG:
7951 /* In general, this subtracts one sign bit copy. But if the value
7952 is known to be positive, the number of sign bit copies is the
7953 same as that of the input. Finally, if the input has just one bit
7954 that might be nonzero, all the bits are copies of the sign bit. */
7955 nonzero = nonzero_bits (XEXP (x, 0), mode);
7956 if (nonzero == 1)
7957 return bitwidth;
7959 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7960 if (num0 > 1
7961 && bitwidth <= HOST_BITS_PER_WIDE_INT
7962 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
7963 num0--;
7965 return num0;
7967 case IOR: case AND: case XOR:
7968 case SMIN: case SMAX: case UMIN: case UMAX:
7969 /* Logical operations will preserve the number of sign-bit copies.
7970 MIN and MAX operations always return one of the operands. */
7971 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7972 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7973 return MIN (num0, num1);
7975 case PLUS: case MINUS:
7976 /* For addition and subtraction, we can have a 1-bit carry. However,
7977 if we are subtracting 1 from a positive number, there will not
7978 be such a carry. Furthermore, if the positive number is known to
7979 be 0 or 1, we know the result is either -1 or 0. */
7981 if (code == PLUS && XEXP (x, 1) == constm1_rtx
7982 && bitwidth <= HOST_BITS_PER_WIDE_INT)
7984 nonzero = nonzero_bits (XEXP (x, 0), mode);
7985 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
7986 return (nonzero == 1 || nonzero == 0 ? bitwidth
7987 : bitwidth - floor_log2 (nonzero) - 1);
7990 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7991 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7992 return MAX (1, MIN (num0, num1) - 1);
7994 case MULT:
7995 /* The number of bits of the product is the sum of the number of
7996 bits of both terms. However, unless one of the terms if known
7997 to be positive, we must allow for an additional bit since negating
7998 a negative number can remove one sign bit copy. */
8000 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8001 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8003 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8004 if (result > 0
8005 && bitwidth <= HOST_BITS_PER_WIDE_INT
8006 && ((nonzero_bits (XEXP (x, 0), mode)
8007 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8008 && ((nonzero_bits (XEXP (x, 1), mode)
8009 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8010 result--;
8012 return MAX (1, result);
8014 case UDIV:
8015 /* The result must be <= the first operand. */
8016 return num_sign_bit_copies (XEXP (x, 0), mode);
8018 case UMOD:
8019 /* The result must be <= the scond operand. */
8020 return num_sign_bit_copies (XEXP (x, 1), mode);
8022 case DIV:
8023 /* Similar to unsigned division, except that we have to worry about
8024 the case where the divisor is negative, in which case we have
8025 to add 1. */
8026 result = num_sign_bit_copies (XEXP (x, 0), mode);
8027 if (result > 1
8028 && bitwidth <= HOST_BITS_PER_WIDE_INT
8029 && (nonzero_bits (XEXP (x, 1), mode)
8030 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8031 result --;
8033 return result;
8035 case MOD:
8036 result = num_sign_bit_copies (XEXP (x, 1), mode);
8037 if (result > 1
8038 && bitwidth <= HOST_BITS_PER_WIDE_INT
8039 && (nonzero_bits (XEXP (x, 1), mode)
8040 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8041 result --;
8043 return result;
8045 case ASHIFTRT:
8046 /* Shifts by a constant add to the number of bits equal to the
8047 sign bit. */
8048 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8049 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8050 && INTVAL (XEXP (x, 1)) > 0)
8051 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
8053 return num0;
8055 case ASHIFT:
8056 /* Left shifts destroy copies. */
8057 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8058 || INTVAL (XEXP (x, 1)) < 0
8059 || INTVAL (XEXP (x, 1)) >= bitwidth)
8060 return 1;
8062 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8063 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8065 case IF_THEN_ELSE:
8066 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8067 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8068 return MIN (num0, num1);
8070 case EQ: case NE: case GE: case GT: case LE: case LT:
8071 case GEU: case GTU: case LEU: case LTU:
8072 if (STORE_FLAG_VALUE == -1)
8073 return bitwidth;
8074 break;
8076 default:
8077 break;
8080 /* If we haven't been able to figure it out by one of the above rules,
8081 see if some of the high-order bits are known to be zero. If so,
8082 count those bits and return one less than that amount. If we can't
8083 safely compute the mask for this mode, always return BITWIDTH. */
8085 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8086 return 1;
8088 nonzero = nonzero_bits (x, mode);
8089 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8090 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8093 /* Return the number of "extended" bits there are in X, when interpreted
8094 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8095 unsigned quantities, this is the number of high-order zero bits.
8096 For signed quantities, this is the number of copies of the sign bit
8097 minus 1. In both case, this function returns the number of "spare"
8098 bits. For example, if two quantities for which this function returns
8099 at least 1 are added, the addition is known not to overflow.
8101 This function will always return 0 unless called during combine, which
8102 implies that it must be called from a define_split. */
8105 extended_count (x, mode, unsignedp)
8106 rtx x;
8107 enum machine_mode mode;
8108 int unsignedp;
8110 if (nonzero_sign_valid == 0)
8111 return 0;
8113 return (unsignedp
8114 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8115 && (GET_MODE_BITSIZE (mode) - 1
8116 - floor_log2 (nonzero_bits (x, mode))))
8117 : num_sign_bit_copies (x, mode) - 1);
8120 /* This function is called from `simplify_shift_const' to merge two
8121 outer operations. Specifically, we have already found that we need
8122 to perform operation *POP0 with constant *PCONST0 at the outermost
8123 position. We would now like to also perform OP1 with constant CONST1
8124 (with *POP0 being done last).
8126 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8127 the resulting operation. *PCOMP_P is set to 1 if we would need to
8128 complement the innermost operand, otherwise it is unchanged.
8130 MODE is the mode in which the operation will be done. No bits outside
8131 the width of this mode matter. It is assumed that the width of this mode
8132 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8134 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8135 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8136 result is simply *PCONST0.
8138 If the resulting operation cannot be expressed as one operation, we
8139 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8141 static int
8142 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8143 enum rtx_code *pop0;
8144 HOST_WIDE_INT *pconst0;
8145 enum rtx_code op1;
8146 HOST_WIDE_INT const1;
8147 enum machine_mode mode;
8148 int *pcomp_p;
8150 enum rtx_code op0 = *pop0;
8151 HOST_WIDE_INT const0 = *pconst0;
8152 int width = GET_MODE_BITSIZE (mode);
8154 const0 &= GET_MODE_MASK (mode);
8155 const1 &= GET_MODE_MASK (mode);
8157 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8158 if (op0 == AND)
8159 const1 &= const0;
8161 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8162 if OP0 is SET. */
8164 if (op1 == NIL || op0 == SET)
8165 return 1;
8167 else if (op0 == NIL)
8168 op0 = op1, const0 = const1;
8170 else if (op0 == op1)
8172 switch (op0)
8174 case AND:
8175 const0 &= const1;
8176 break;
8177 case IOR:
8178 const0 |= const1;
8179 break;
8180 case XOR:
8181 const0 ^= const1;
8182 break;
8183 case PLUS:
8184 const0 += const1;
8185 break;
8186 case NEG:
8187 op0 = NIL;
8188 break;
8189 default:
8190 break;
8194 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8195 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8196 return 0;
8198 /* If the two constants aren't the same, we can't do anything. The
8199 remaining six cases can all be done. */
8200 else if (const0 != const1)
8201 return 0;
8203 else
8204 switch (op0)
8206 case IOR:
8207 if (op1 == AND)
8208 /* (a & b) | b == b */
8209 op0 = SET;
8210 else /* op1 == XOR */
8211 /* (a ^ b) | b == a | b */
8213 break;
8215 case XOR:
8216 if (op1 == AND)
8217 /* (a & b) ^ b == (~a) & b */
8218 op0 = AND, *pcomp_p = 1;
8219 else /* op1 == IOR */
8220 /* (a | b) ^ b == a & ~b */
8221 op0 = AND, *pconst0 = ~ const0;
8222 break;
8224 case AND:
8225 if (op1 == IOR)
8226 /* (a | b) & b == b */
8227 op0 = SET;
8228 else /* op1 == XOR */
8229 /* (a ^ b) & b) == (~a) & b */
8230 *pcomp_p = 1;
8231 break;
8232 default:
8233 break;
8236 /* Check for NO-OP cases. */
8237 const0 &= GET_MODE_MASK (mode);
8238 if (const0 == 0
8239 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8240 op0 = NIL;
8241 else if (const0 == 0 && op0 == AND)
8242 op0 = SET;
8243 else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
8244 op0 = NIL;
8246 /* If this would be an entire word for the target, but is not for
8247 the host, then sign-extend on the host so that the number will look
8248 the same way on the host that it would on the target.
8250 For example, when building a 64 bit alpha hosted 32 bit sparc
8251 targeted compiler, then we want the 32 bit unsigned value -1 to be
8252 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
8253 The later confuses the sparc backend. */
8255 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
8256 && (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
8257 const0 |= ((HOST_WIDE_INT) (-1) << width);
8259 *pop0 = op0;
8260 *pconst0 = const0;
8262 return 1;
8265 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8266 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8267 that we started with.
8269 The shift is normally computed in the widest mode we find in VAROP, as
8270 long as it isn't a different number of words than RESULT_MODE. Exceptions
8271 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8273 static rtx
8274 simplify_shift_const (x, code, result_mode, varop, count)
8275 rtx x;
8276 enum rtx_code code;
8277 enum machine_mode result_mode;
8278 rtx varop;
8279 int count;
8281 enum rtx_code orig_code = code;
8282 int orig_count = count;
8283 enum machine_mode mode = result_mode;
8284 enum machine_mode shift_mode, tmode;
8285 int mode_words
8286 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8287 /* We form (outer_op (code varop count) (outer_const)). */
8288 enum rtx_code outer_op = NIL;
8289 HOST_WIDE_INT outer_const = 0;
8290 rtx const_rtx;
8291 int complement_p = 0;
8292 rtx new;
8294 /* If we were given an invalid count, don't do anything except exactly
8295 what was requested. */
8297 if (count < 0 || count > GET_MODE_BITSIZE (mode))
8299 if (x)
8300 return x;
8302 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (count));
8305 /* Unless one of the branches of the `if' in this loop does a `continue',
8306 we will `break' the loop after the `if'. */
8308 while (count != 0)
8310 /* If we have an operand of (clobber (const_int 0)), just return that
8311 value. */
8312 if (GET_CODE (varop) == CLOBBER)
8313 return varop;
8315 /* If we discovered we had to complement VAROP, leave. Making a NOT
8316 here would cause an infinite loop. */
8317 if (complement_p)
8318 break;
8320 /* Convert ROTATERT to ROTATE. */
8321 if (code == ROTATERT)
8322 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8324 /* We need to determine what mode we will do the shift in. If the
8325 shift is a right shift or a ROTATE, we must always do it in the mode
8326 it was originally done in. Otherwise, we can do it in MODE, the
8327 widest mode encountered. */
8328 shift_mode
8329 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8330 ? result_mode : mode);
8332 /* Handle cases where the count is greater than the size of the mode
8333 minus 1. For ASHIFT, use the size minus one as the count (this can
8334 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8335 take the count modulo the size. For other shifts, the result is
8336 zero.
8338 Since these shifts are being produced by the compiler by combining
8339 multiple operations, each of which are defined, we know what the
8340 result is supposed to be. */
8342 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8344 if (code == ASHIFTRT)
8345 count = GET_MODE_BITSIZE (shift_mode) - 1;
8346 else if (code == ROTATE || code == ROTATERT)
8347 count %= GET_MODE_BITSIZE (shift_mode);
8348 else
8350 /* We can't simply return zero because there may be an
8351 outer op. */
8352 varop = const0_rtx;
8353 count = 0;
8354 break;
8358 /* Negative counts are invalid and should not have been made (a
8359 programmer-specified negative count should have been handled
8360 above). */
8361 else if (count < 0)
8362 abort ();
8364 /* An arithmetic right shift of a quantity known to be -1 or 0
8365 is a no-op. */
8366 if (code == ASHIFTRT
8367 && (num_sign_bit_copies (varop, shift_mode)
8368 == GET_MODE_BITSIZE (shift_mode)))
8370 count = 0;
8371 break;
8374 /* If we are doing an arithmetic right shift and discarding all but
8375 the sign bit copies, this is equivalent to doing a shift by the
8376 bitsize minus one. Convert it into that shift because it will often
8377 allow other simplifications. */
8379 if (code == ASHIFTRT
8380 && (count + num_sign_bit_copies (varop, shift_mode)
8381 >= GET_MODE_BITSIZE (shift_mode)))
8382 count = GET_MODE_BITSIZE (shift_mode) - 1;
8384 /* We simplify the tests below and elsewhere by converting
8385 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8386 `make_compound_operation' will convert it to a ASHIFTRT for
8387 those machines (such as Vax) that don't have a LSHIFTRT. */
8388 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8389 && code == ASHIFTRT
8390 && ((nonzero_bits (varop, shift_mode)
8391 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8392 == 0))
8393 code = LSHIFTRT;
8395 switch (GET_CODE (varop))
8397 case SIGN_EXTEND:
8398 case ZERO_EXTEND:
8399 case SIGN_EXTRACT:
8400 case ZERO_EXTRACT:
8401 new = expand_compound_operation (varop);
8402 if (new != varop)
8404 varop = new;
8405 continue;
8407 break;
8409 case MEM:
8410 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8411 minus the width of a smaller mode, we can do this with a
8412 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8413 if ((code == ASHIFTRT || code == LSHIFTRT)
8414 && ! mode_dependent_address_p (XEXP (varop, 0))
8415 && ! MEM_VOLATILE_P (varop)
8416 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8417 MODE_INT, 1)) != BLKmode)
8419 if (BYTES_BIG_ENDIAN)
8420 new = gen_rtx_MEM (tmode, XEXP (varop, 0));
8421 else
8422 new = gen_rtx_MEM (tmode,
8423 plus_constant (XEXP (varop, 0),
8424 count / BITS_PER_UNIT));
8425 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
8426 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
8427 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
8428 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8429 : ZERO_EXTEND, mode, new);
8430 count = 0;
8431 continue;
8433 break;
8435 case USE:
8436 /* Similar to the case above, except that we can only do this if
8437 the resulting mode is the same as that of the underlying
8438 MEM and adjust the address depending on the *bits* endianness
8439 because of the way that bit-field extract insns are defined. */
8440 if ((code == ASHIFTRT || code == LSHIFTRT)
8441 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8442 MODE_INT, 1)) != BLKmode
8443 && tmode == GET_MODE (XEXP (varop, 0)))
8445 if (BITS_BIG_ENDIAN)
8446 new = XEXP (varop, 0);
8447 else
8449 new = copy_rtx (XEXP (varop, 0));
8450 SUBST (XEXP (new, 0),
8451 plus_constant (XEXP (new, 0),
8452 count / BITS_PER_UNIT));
8455 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8456 : ZERO_EXTEND, mode, new);
8457 count = 0;
8458 continue;
8460 break;
8462 case SUBREG:
8463 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8464 the same number of words as what we've seen so far. Then store
8465 the widest mode in MODE. */
8466 if (subreg_lowpart_p (varop)
8467 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8468 > GET_MODE_SIZE (GET_MODE (varop)))
8469 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8470 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8471 == mode_words))
8473 varop = SUBREG_REG (varop);
8474 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8475 mode = GET_MODE (varop);
8476 continue;
8478 break;
8480 case MULT:
8481 /* Some machines use MULT instead of ASHIFT because MULT
8482 is cheaper. But it is still better on those machines to
8483 merge two shifts into one. */
8484 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8485 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8487 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8488 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
8489 continue;
8491 break;
8493 case UDIV:
8494 /* Similar, for when divides are cheaper. */
8495 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8496 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8498 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8499 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8500 continue;
8502 break;
8504 case ASHIFTRT:
8505 /* If we are extracting just the sign bit of an arithmetic right
8506 shift, that shift is not needed. */
8507 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
8509 varop = XEXP (varop, 0);
8510 continue;
8513 /* ... fall through ... */
8515 case LSHIFTRT:
8516 case ASHIFT:
8517 case ROTATE:
8518 /* Here we have two nested shifts. The result is usually the
8519 AND of a new shift with a mask. We compute the result below. */
8520 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8521 && INTVAL (XEXP (varop, 1)) >= 0
8522 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8523 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8524 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8526 enum rtx_code first_code = GET_CODE (varop);
8527 int first_count = INTVAL (XEXP (varop, 1));
8528 unsigned HOST_WIDE_INT mask;
8529 rtx mask_rtx;
8531 /* We have one common special case. We can't do any merging if
8532 the inner code is an ASHIFTRT of a smaller mode. However, if
8533 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8534 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8535 we can convert it to
8536 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8537 This simplifies certain SIGN_EXTEND operations. */
8538 if (code == ASHIFT && first_code == ASHIFTRT
8539 && (GET_MODE_BITSIZE (result_mode)
8540 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
8542 /* C3 has the low-order C1 bits zero. */
8544 mask = (GET_MODE_MASK (mode)
8545 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
8547 varop = simplify_and_const_int (NULL_RTX, result_mode,
8548 XEXP (varop, 0), mask);
8549 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8550 varop, count);
8551 count = first_count;
8552 code = ASHIFTRT;
8553 continue;
8556 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8557 than C1 high-order bits equal to the sign bit, we can convert
8558 this to either an ASHIFT or a ASHIFTRT depending on the
8559 two counts.
8561 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8563 if (code == ASHIFTRT && first_code == ASHIFT
8564 && GET_MODE (varop) == shift_mode
8565 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8566 > first_count))
8568 count -= first_count;
8569 if (count < 0)
8570 count = - count, code = ASHIFT;
8571 varop = XEXP (varop, 0);
8572 continue;
8575 /* There are some cases we can't do. If CODE is ASHIFTRT,
8576 we can only do this if FIRST_CODE is also ASHIFTRT.
8578 We can't do the case when CODE is ROTATE and FIRST_CODE is
8579 ASHIFTRT.
8581 If the mode of this shift is not the mode of the outer shift,
8582 we can't do this if either shift is a right shift or ROTATE.
8584 Finally, we can't do any of these if the mode is too wide
8585 unless the codes are the same.
8587 Handle the case where the shift codes are the same
8588 first. */
8590 if (code == first_code)
8592 if (GET_MODE (varop) != result_mode
8593 && (code == ASHIFTRT || code == LSHIFTRT
8594 || code == ROTATE))
8595 break;
8597 count += first_count;
8598 varop = XEXP (varop, 0);
8599 continue;
8602 if (code == ASHIFTRT
8603 || (code == ROTATE && first_code == ASHIFTRT)
8604 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8605 || (GET_MODE (varop) != result_mode
8606 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8607 || first_code == ROTATE
8608 || code == ROTATE)))
8609 break;
8611 /* To compute the mask to apply after the shift, shift the
8612 nonzero bits of the inner shift the same way the
8613 outer shift will. */
8615 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8617 mask_rtx
8618 = simplify_binary_operation (code, result_mode, mask_rtx,
8619 GEN_INT (count));
8621 /* Give up if we can't compute an outer operation to use. */
8622 if (mask_rtx == 0
8623 || GET_CODE (mask_rtx) != CONST_INT
8624 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8625 INTVAL (mask_rtx),
8626 result_mode, &complement_p))
8627 break;
8629 /* If the shifts are in the same direction, we add the
8630 counts. Otherwise, we subtract them. */
8631 if ((code == ASHIFTRT || code == LSHIFTRT)
8632 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8633 count += first_count;
8634 else
8635 count -= first_count;
8637 /* If COUNT is positive, the new shift is usually CODE,
8638 except for the two exceptions below, in which case it is
8639 FIRST_CODE. If the count is negative, FIRST_CODE should
8640 always be used */
8641 if (count > 0
8642 && ((first_code == ROTATE && code == ASHIFT)
8643 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8644 code = first_code;
8645 else if (count < 0)
8646 code = first_code, count = - count;
8648 varop = XEXP (varop, 0);
8649 continue;
8652 /* If we have (A << B << C) for any shift, we can convert this to
8653 (A << C << B). This wins if A is a constant. Only try this if
8654 B is not a constant. */
8656 else if (GET_CODE (varop) == code
8657 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8658 && 0 != (new
8659 = simplify_binary_operation (code, mode,
8660 XEXP (varop, 0),
8661 GEN_INT (count))))
8663 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
8664 count = 0;
8665 continue;
8667 break;
8669 case NOT:
8670 /* Make this fit the case below. */
8671 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
8672 GEN_INT (GET_MODE_MASK (mode)));
8673 continue;
8675 case IOR:
8676 case AND:
8677 case XOR:
8678 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8679 with C the size of VAROP - 1 and the shift is logical if
8680 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8681 we have an (le X 0) operation. If we have an arithmetic shift
8682 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8683 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8685 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8686 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8687 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8688 && (code == LSHIFTRT || code == ASHIFTRT)
8689 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8690 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8692 count = 0;
8693 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
8694 const0_rtx);
8696 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8697 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8699 continue;
8702 /* If we have (shift (logical)), move the logical to the outside
8703 to allow it to possibly combine with another logical and the
8704 shift to combine with another shift. This also canonicalizes to
8705 what a ZERO_EXTRACT looks like. Also, some machines have
8706 (and (shift)) insns. */
8708 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8709 && (new = simplify_binary_operation (code, result_mode,
8710 XEXP (varop, 1),
8711 GEN_INT (count))) != 0
8712 && GET_CODE(new) == CONST_INT
8713 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8714 INTVAL (new), result_mode, &complement_p))
8716 varop = XEXP (varop, 0);
8717 continue;
8720 /* If we can't do that, try to simplify the shift in each arm of the
8721 logical expression, make a new logical expression, and apply
8722 the inverse distributive law. */
8724 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8725 XEXP (varop, 0), count);
8726 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8727 XEXP (varop, 1), count);
8729 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8730 varop = apply_distributive_law (varop);
8732 count = 0;
8734 break;
8736 case EQ:
8737 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8738 says that the sign bit can be tested, FOO has mode MODE, C is
8739 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8740 that may be nonzero. */
8741 if (code == LSHIFTRT
8742 && XEXP (varop, 1) == const0_rtx
8743 && GET_MODE (XEXP (varop, 0)) == result_mode
8744 && count == GET_MODE_BITSIZE (result_mode) - 1
8745 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8746 && ((STORE_FLAG_VALUE
8747 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
8748 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8749 && merge_outer_ops (&outer_op, &outer_const, XOR,
8750 (HOST_WIDE_INT) 1, result_mode,
8751 &complement_p))
8753 varop = XEXP (varop, 0);
8754 count = 0;
8755 continue;
8757 break;
8759 case NEG:
8760 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8761 than the number of bits in the mode is equivalent to A. */
8762 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8763 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8765 varop = XEXP (varop, 0);
8766 count = 0;
8767 continue;
8770 /* NEG commutes with ASHIFT since it is multiplication. Move the
8771 NEG outside to allow shifts to combine. */
8772 if (code == ASHIFT
8773 && merge_outer_ops (&outer_op, &outer_const, NEG,
8774 (HOST_WIDE_INT) 0, result_mode,
8775 &complement_p))
8777 varop = XEXP (varop, 0);
8778 continue;
8780 break;
8782 case PLUS:
8783 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8784 is one less than the number of bits in the mode is
8785 equivalent to (xor A 1). */
8786 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8787 && XEXP (varop, 1) == constm1_rtx
8788 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8789 && merge_outer_ops (&outer_op, &outer_const, XOR,
8790 (HOST_WIDE_INT) 1, result_mode,
8791 &complement_p))
8793 count = 0;
8794 varop = XEXP (varop, 0);
8795 continue;
8798 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8799 that might be nonzero in BAR are those being shifted out and those
8800 bits are known zero in FOO, we can replace the PLUS with FOO.
8801 Similarly in the other operand order. This code occurs when
8802 we are computing the size of a variable-size array. */
8804 if ((code == ASHIFTRT || code == LSHIFTRT)
8805 && count < HOST_BITS_PER_WIDE_INT
8806 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8807 && (nonzero_bits (XEXP (varop, 1), result_mode)
8808 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8810 varop = XEXP (varop, 0);
8811 continue;
8813 else if ((code == ASHIFTRT || code == LSHIFTRT)
8814 && count < HOST_BITS_PER_WIDE_INT
8815 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8816 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8817 >> count)
8818 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8819 & nonzero_bits (XEXP (varop, 1),
8820 result_mode)))
8822 varop = XEXP (varop, 1);
8823 continue;
8826 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
8827 if (code == ASHIFT
8828 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8829 && (new = simplify_binary_operation (ASHIFT, result_mode,
8830 XEXP (varop, 1),
8831 GEN_INT (count))) != 0
8832 && GET_CODE(new) == CONST_INT
8833 && merge_outer_ops (&outer_op, &outer_const, PLUS,
8834 INTVAL (new), result_mode, &complement_p))
8836 varop = XEXP (varop, 0);
8837 continue;
8839 break;
8841 case MINUS:
8842 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8843 with C the size of VAROP - 1 and the shift is logical if
8844 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8845 we have a (gt X 0) operation. If the shift is arithmetic with
8846 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8847 we have a (neg (gt X 0)) operation. */
8849 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8850 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8851 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8852 && (code == LSHIFTRT || code == ASHIFTRT)
8853 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8854 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8855 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8857 count = 0;
8858 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
8859 const0_rtx);
8861 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8862 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8864 continue;
8866 break;
8868 case TRUNCATE:
8869 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
8870 if the truncate does not affect the value. */
8871 if (code == LSHIFTRT
8872 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
8873 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8874 && (INTVAL (XEXP (XEXP (varop, 0), 1))
8875 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
8876 - GET_MODE_BITSIZE (GET_MODE (varop)))))
8878 rtx varop_inner = XEXP (varop, 0);
8880 varop_inner = gen_rtx_combine (LSHIFTRT,
8881 GET_MODE (varop_inner),
8882 XEXP (varop_inner, 0),
8883 GEN_INT (count + INTVAL (XEXP (varop_inner, 1))));
8884 varop = gen_rtx_combine (TRUNCATE, GET_MODE (varop),
8885 varop_inner);
8886 count = 0;
8887 continue;
8889 break;
8891 default:
8892 break;
8895 break;
8898 /* We need to determine what mode to do the shift in. If the shift is
8899 a right shift or ROTATE, we must always do it in the mode it was
8900 originally done in. Otherwise, we can do it in MODE, the widest mode
8901 encountered. The code we care about is that of the shift that will
8902 actually be done, not the shift that was originally requested. */
8903 shift_mode
8904 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8905 ? result_mode : mode);
8907 /* We have now finished analyzing the shift. The result should be
8908 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
8909 OUTER_OP is non-NIL, it is an operation that needs to be applied
8910 to the result of the shift. OUTER_CONST is the relevant constant,
8911 but we must turn off all bits turned off in the shift.
8913 If we were passed a value for X, see if we can use any pieces of
8914 it. If not, make new rtx. */
8916 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
8917 && GET_CODE (XEXP (x, 1)) == CONST_INT
8918 && INTVAL (XEXP (x, 1)) == count)
8919 const_rtx = XEXP (x, 1);
8920 else
8921 const_rtx = GEN_INT (count);
8923 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8924 && GET_MODE (XEXP (x, 0)) == shift_mode
8925 && SUBREG_REG (XEXP (x, 0)) == varop)
8926 varop = XEXP (x, 0);
8927 else if (GET_MODE (varop) != shift_mode)
8928 varop = gen_lowpart_for_combine (shift_mode, varop);
8930 /* If we can't make the SUBREG, try to return what we were given. */
8931 if (GET_CODE (varop) == CLOBBER)
8932 return x ? x : varop;
8934 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
8935 if (new != 0)
8936 x = new;
8937 else
8939 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
8940 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
8942 SUBST (XEXP (x, 0), varop);
8943 SUBST (XEXP (x, 1), const_rtx);
8946 /* If we have an outer operation and we just made a shift, it is
8947 possible that we could have simplified the shift were it not
8948 for the outer operation. So try to do the simplification
8949 recursively. */
8951 if (outer_op != NIL && GET_CODE (x) == code
8952 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8953 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
8954 INTVAL (XEXP (x, 1)));
8956 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
8957 turn off all the bits that the shift would have turned off. */
8958 if (orig_code == LSHIFTRT && result_mode != shift_mode)
8959 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
8960 GET_MODE_MASK (result_mode) >> orig_count);
8962 /* Do the remainder of the processing in RESULT_MODE. */
8963 x = gen_lowpart_for_combine (result_mode, x);
8965 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
8966 operation. */
8967 if (complement_p)
8968 x = gen_unary (NOT, result_mode, result_mode, x);
8970 if (outer_op != NIL)
8972 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
8974 int width = GET_MODE_BITSIZE (result_mode);
8976 outer_const &= GET_MODE_MASK (result_mode);
8978 /* If this would be an entire word for the target, but is not for
8979 the host, then sign-extend on the host so that the number will
8980 look the same way on the host that it would on the target.
8982 For example, when building a 64 bit alpha hosted 32 bit sparc
8983 targeted compiler, then we want the 32 bit unsigned value -1 to be
8984 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
8985 The later confuses the sparc backend. */
8987 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
8988 && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
8989 outer_const |= ((HOST_WIDE_INT) (-1) << width);
8992 if (outer_op == AND)
8993 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
8994 else if (outer_op == SET)
8995 /* This means that we have determined that the result is
8996 equivalent to a constant. This should be rare. */
8997 x = GEN_INT (outer_const);
8998 else if (GET_RTX_CLASS (outer_op) == '1')
8999 x = gen_unary (outer_op, result_mode, result_mode, x);
9000 else
9001 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9004 return x;
9007 /* Like recog, but we receive the address of a pointer to a new pattern.
9008 We try to match the rtx that the pointer points to.
9009 If that fails, we may try to modify or replace the pattern,
9010 storing the replacement into the same pointer object.
9012 Modifications include deletion or addition of CLOBBERs.
9014 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9015 the CLOBBERs are placed.
9017 PADDED_SCRATCHES is set to the number of (clobber (scratch)) patterns
9018 we had to add.
9020 The value is the final insn code from the pattern ultimately matched,
9021 or -1. */
9023 static int
9024 recog_for_combine (pnewpat, insn, pnotes, padded_scratches)
9025 rtx *pnewpat;
9026 rtx insn;
9027 rtx *pnotes;
9028 int *padded_scratches;
9030 register rtx pat = *pnewpat;
9031 int insn_code_number;
9032 int num_clobbers_to_add = 0;
9033 int i;
9034 rtx notes = 0;
9036 *padded_scratches = 0;
9038 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9039 we use to indicate that something didn't match. If we find such a
9040 thing, force rejection. */
9041 if (GET_CODE (pat) == PARALLEL)
9042 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9043 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9044 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9045 return -1;
9047 /* Is the result of combination a valid instruction? */
9048 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9050 /* If it isn't, there is the possibility that we previously had an insn
9051 that clobbered some register as a side effect, but the combined
9052 insn doesn't need to do that. So try once more without the clobbers
9053 unless this represents an ASM insn. */
9055 if (insn_code_number < 0 && ! check_asm_operands (pat)
9056 && GET_CODE (pat) == PARALLEL)
9058 int pos;
9060 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9061 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9063 if (i != pos)
9064 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9065 pos++;
9068 SUBST_INT (XVECLEN (pat, 0), pos);
9070 if (pos == 1)
9071 pat = XVECEXP (pat, 0, 0);
9073 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9076 /* If we had any clobbers to add, make a new pattern than contains
9077 them. Then check to make sure that all of them are dead. */
9078 if (num_clobbers_to_add)
9080 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9081 gen_rtvec (GET_CODE (pat) == PARALLEL
9082 ? XVECLEN (pat, 0) + num_clobbers_to_add
9083 : num_clobbers_to_add + 1));
9085 if (GET_CODE (pat) == PARALLEL)
9086 for (i = 0; i < XVECLEN (pat, 0); i++)
9087 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9088 else
9089 XVECEXP (newpat, 0, 0) = pat;
9091 add_clobbers (newpat, insn_code_number);
9093 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9094 i < XVECLEN (newpat, 0); i++)
9096 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9097 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9098 return -1;
9099 else if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == SCRATCH)
9100 (*padded_scratches)++;
9101 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9102 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9104 pat = newpat;
9107 *pnewpat = pat;
9108 *pnotes = notes;
9110 return insn_code_number;
9113 /* Like gen_lowpart but for use by combine. In combine it is not possible
9114 to create any new pseudoregs. However, it is safe to create
9115 invalid memory addresses, because combine will try to recognize
9116 them and all they will do is make the combine attempt fail.
9118 If for some reason this cannot do its job, an rtx
9119 (clobber (const_int 0)) is returned.
9120 An insn containing that will not be recognized. */
9122 #undef gen_lowpart
9124 static rtx
9125 gen_lowpart_for_combine (mode, x)
9126 enum machine_mode mode;
9127 register rtx x;
9129 rtx result;
9131 if (GET_MODE (x) == mode)
9132 return x;
9134 /* We can only support MODE being wider than a word if X is a
9135 constant integer or has a mode the same size. */
9137 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9138 && ! ((GET_MODE (x) == VOIDmode
9139 && (GET_CODE (x) == CONST_INT
9140 || GET_CODE (x) == CONST_DOUBLE))
9141 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9142 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9144 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9145 won't know what to do. So we will strip off the SUBREG here and
9146 process normally. */
9147 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9149 x = SUBREG_REG (x);
9150 if (GET_MODE (x) == mode)
9151 return x;
9154 result = gen_lowpart_common (mode, x);
9155 if (result != 0
9156 && GET_CODE (result) == SUBREG
9157 && GET_CODE (SUBREG_REG (result)) == REG
9158 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9159 && (GET_MODE_SIZE (GET_MODE (result))
9160 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
9161 REG_CHANGES_SIZE (REGNO (SUBREG_REG (result))) = 1;
9163 if (result)
9164 return result;
9166 if (GET_CODE (x) == MEM)
9168 register int offset = 0;
9169 rtx new;
9171 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9172 address. */
9173 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9174 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9176 /* If we want to refer to something bigger than the original memref,
9177 generate a perverse subreg instead. That will force a reload
9178 of the original memref X. */
9179 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9180 return gen_rtx_SUBREG (mode, x, 0);
9182 if (WORDS_BIG_ENDIAN)
9183 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9184 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9185 if (BYTES_BIG_ENDIAN)
9187 /* Adjust the address so that the address-after-the-data is
9188 unchanged. */
9189 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9190 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9192 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
9193 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
9194 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
9195 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
9196 return new;
9199 /* If X is a comparison operator, rewrite it in a new mode. This
9200 probably won't match, but may allow further simplifications. */
9201 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9202 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9204 /* If we couldn't simplify X any other way, just enclose it in a
9205 SUBREG. Normally, this SUBREG won't match, but some patterns may
9206 include an explicit SUBREG or we may simplify it further in combine. */
9207 else
9209 int word = 0;
9211 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
9212 word = ((GET_MODE_SIZE (GET_MODE (x))
9213 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
9214 / UNITS_PER_WORD);
9215 return gen_rtx_SUBREG (mode, x, word);
9219 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9220 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9222 If the identical expression was previously in the insn (in the undobuf),
9223 it will be returned. Only if it is not found will a new expression
9224 be made. */
9226 /*VARARGS2*/
9227 static rtx
9228 gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
9230 #ifndef __STDC__
9231 enum rtx_code code;
9232 enum machine_mode mode;
9233 #endif
9234 va_list p;
9235 int n_args;
9236 rtx args[3];
9237 int j;
9238 char *fmt;
9239 rtx rt;
9240 struct undo *undo;
9242 VA_START (p, mode);
9244 #ifndef __STDC__
9245 code = va_arg (p, enum rtx_code);
9246 mode = va_arg (p, enum machine_mode);
9247 #endif
9249 n_args = GET_RTX_LENGTH (code);
9250 fmt = GET_RTX_FORMAT (code);
9252 if (n_args == 0 || n_args > 3)
9253 abort ();
9255 /* Get each arg and verify that it is supposed to be an expression. */
9256 for (j = 0; j < n_args; j++)
9258 if (*fmt++ != 'e')
9259 abort ();
9261 args[j] = va_arg (p, rtx);
9264 /* See if this is in undobuf. Be sure we don't use objects that came
9265 from another insn; this could produce circular rtl structures. */
9267 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
9268 if (!undo->is_int
9269 && GET_CODE (undo->old_contents.r) == code
9270 && GET_MODE (undo->old_contents.r) == mode)
9272 for (j = 0; j < n_args; j++)
9273 if (XEXP (undo->old_contents.r, j) != args[j])
9274 break;
9276 if (j == n_args)
9277 return undo->old_contents.r;
9280 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9281 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9282 rt = rtx_alloc (code);
9283 PUT_MODE (rt, mode);
9284 XEXP (rt, 0) = args[0];
9285 if (n_args > 1)
9287 XEXP (rt, 1) = args[1];
9288 if (n_args > 2)
9289 XEXP (rt, 2) = args[2];
9291 return rt;
9294 /* These routines make binary and unary operations by first seeing if they
9295 fold; if not, a new expression is allocated. */
9297 static rtx
9298 gen_binary (code, mode, op0, op1)
9299 enum rtx_code code;
9300 enum machine_mode mode;
9301 rtx op0, op1;
9303 rtx result;
9304 rtx tem;
9306 if (GET_RTX_CLASS (code) == 'c'
9307 && (GET_CODE (op0) == CONST_INT
9308 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9309 tem = op0, op0 = op1, op1 = tem;
9311 if (GET_RTX_CLASS (code) == '<')
9313 enum machine_mode op_mode = GET_MODE (op0);
9315 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9316 just (REL_OP X Y). */
9317 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9319 op1 = XEXP (op0, 1);
9320 op0 = XEXP (op0, 0);
9321 op_mode = GET_MODE (op0);
9324 if (op_mode == VOIDmode)
9325 op_mode = GET_MODE (op1);
9326 result = simplify_relational_operation (code, op_mode, op0, op1);
9328 else
9329 result = simplify_binary_operation (code, mode, op0, op1);
9331 if (result)
9332 return result;
9334 /* Put complex operands first and constants second. */
9335 if (GET_RTX_CLASS (code) == 'c'
9336 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9337 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
9338 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
9339 || (GET_CODE (op0) == SUBREG
9340 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
9341 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
9342 return gen_rtx_combine (code, mode, op1, op0);
9344 /* If we are turning off bits already known off in OP0, we need not do
9345 an AND. */
9346 else if (code == AND && GET_CODE (op1) == CONST_INT
9347 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9348 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
9349 return op0;
9351 return gen_rtx_combine (code, mode, op0, op1);
9354 static rtx
9355 gen_unary (code, mode, op0_mode, op0)
9356 enum rtx_code code;
9357 enum machine_mode mode, op0_mode;
9358 rtx op0;
9360 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
9362 if (result)
9363 return result;
9365 return gen_rtx_combine (code, mode, op0);
9368 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9369 comparison code that will be tested.
9371 The result is a possibly different comparison code to use. *POP0 and
9372 *POP1 may be updated.
9374 It is possible that we might detect that a comparison is either always
9375 true or always false. However, we do not perform general constant
9376 folding in combine, so this knowledge isn't useful. Such tautologies
9377 should have been detected earlier. Hence we ignore all such cases. */
9379 static enum rtx_code
9380 simplify_comparison (code, pop0, pop1)
9381 enum rtx_code code;
9382 rtx *pop0;
9383 rtx *pop1;
9385 rtx op0 = *pop0;
9386 rtx op1 = *pop1;
9387 rtx tem, tem1;
9388 int i;
9389 enum machine_mode mode, tmode;
9391 /* Try a few ways of applying the same transformation to both operands. */
9392 while (1)
9394 #ifndef WORD_REGISTER_OPERATIONS
9395 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9396 so check specially. */
9397 if (code != GTU && code != GEU && code != LTU && code != LEU
9398 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9399 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9400 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9401 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9402 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9403 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9404 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9405 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9406 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9407 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9408 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9409 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9410 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9411 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9412 && (INTVAL (XEXP (op0, 1))
9413 == (GET_MODE_BITSIZE (GET_MODE (op0))
9414 - (GET_MODE_BITSIZE
9415 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9417 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9418 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9420 #endif
9422 /* If both operands are the same constant shift, see if we can ignore the
9423 shift. We can if the shift is a rotate or if the bits shifted out of
9424 this shift are known to be zero for both inputs and if the type of
9425 comparison is compatible with the shift. */
9426 if (GET_CODE (op0) == GET_CODE (op1)
9427 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9428 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9429 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9430 && (code != GT && code != LT && code != GE && code != LE))
9431 || (GET_CODE (op0) == ASHIFTRT
9432 && (code != GTU && code != LTU
9433 && code != GEU && code != GEU)))
9434 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9435 && INTVAL (XEXP (op0, 1)) >= 0
9436 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9437 && XEXP (op0, 1) == XEXP (op1, 1))
9439 enum machine_mode mode = GET_MODE (op0);
9440 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9441 int shift_count = INTVAL (XEXP (op0, 1));
9443 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9444 mask &= (mask >> shift_count) << shift_count;
9445 else if (GET_CODE (op0) == ASHIFT)
9446 mask = (mask & (mask << shift_count)) >> shift_count;
9448 if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
9449 && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
9450 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9451 else
9452 break;
9455 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9456 SUBREGs are of the same mode, and, in both cases, the AND would
9457 be redundant if the comparison was done in the narrower mode,
9458 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9459 and the operand's possibly nonzero bits are 0xffffff01; in that case
9460 if we only care about QImode, we don't need the AND). This case
9461 occurs if the output mode of an scc insn is not SImode and
9462 STORE_FLAG_VALUE == 1 (e.g., the 386).
9464 Similarly, check for a case where the AND's are ZERO_EXTEND
9465 operations from some narrower mode even though a SUBREG is not
9466 present. */
9468 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9469 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9470 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9472 rtx inner_op0 = XEXP (op0, 0);
9473 rtx inner_op1 = XEXP (op1, 0);
9474 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9475 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9476 int changed = 0;
9478 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9479 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9480 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9481 && (GET_MODE (SUBREG_REG (inner_op0))
9482 == GET_MODE (SUBREG_REG (inner_op1)))
9483 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9484 <= HOST_BITS_PER_WIDE_INT)
9485 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9486 GET_MODE (SUBREG_REG (op0)))))
9487 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9488 GET_MODE (SUBREG_REG (inner_op1))))))
9490 op0 = SUBREG_REG (inner_op0);
9491 op1 = SUBREG_REG (inner_op1);
9493 /* The resulting comparison is always unsigned since we masked
9494 off the original sign bit. */
9495 code = unsigned_condition (code);
9497 changed = 1;
9500 else if (c0 == c1)
9501 for (tmode = GET_CLASS_NARROWEST_MODE
9502 (GET_MODE_CLASS (GET_MODE (op0)));
9503 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9504 if (c0 == GET_MODE_MASK (tmode))
9506 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9507 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9508 code = unsigned_condition (code);
9509 changed = 1;
9510 break;
9513 if (! changed)
9514 break;
9517 /* If both operands are NOT, we can strip off the outer operation
9518 and adjust the comparison code for swapped operands; similarly for
9519 NEG, except that this must be an equality comparison. */
9520 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9521 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9522 && (code == EQ || code == NE)))
9523 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9525 else
9526 break;
9529 /* If the first operand is a constant, swap the operands and adjust the
9530 comparison code appropriately, but don't do this if the second operand
9531 is already a constant integer. */
9532 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9534 tem = op0, op0 = op1, op1 = tem;
9535 code = swap_condition (code);
9538 /* We now enter a loop during which we will try to simplify the comparison.
9539 For the most part, we only are concerned with comparisons with zero,
9540 but some things may really be comparisons with zero but not start
9541 out looking that way. */
9543 while (GET_CODE (op1) == CONST_INT)
9545 enum machine_mode mode = GET_MODE (op0);
9546 int mode_width = GET_MODE_BITSIZE (mode);
9547 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9548 int equality_comparison_p;
9549 int sign_bit_comparison_p;
9550 int unsigned_comparison_p;
9551 HOST_WIDE_INT const_op;
9553 /* We only want to handle integral modes. This catches VOIDmode,
9554 CCmode, and the floating-point modes. An exception is that we
9555 can handle VOIDmode if OP0 is a COMPARE or a comparison
9556 operation. */
9558 if (GET_MODE_CLASS (mode) != MODE_INT
9559 && ! (mode == VOIDmode
9560 && (GET_CODE (op0) == COMPARE
9561 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
9562 break;
9564 /* Get the constant we are comparing against and turn off all bits
9565 not on in our mode. */
9566 const_op = INTVAL (op1);
9567 if (mode_width <= HOST_BITS_PER_WIDE_INT)
9568 const_op &= mask;
9570 /* If we are comparing against a constant power of two and the value
9571 being compared can only have that single bit nonzero (e.g., it was
9572 `and'ed with that bit), we can replace this with a comparison
9573 with zero. */
9574 if (const_op
9575 && (code == EQ || code == NE || code == GE || code == GEU
9576 || code == LT || code == LTU)
9577 && mode_width <= HOST_BITS_PER_WIDE_INT
9578 && exact_log2 (const_op) >= 0
9579 && nonzero_bits (op0, mode) == const_op)
9581 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9582 op1 = const0_rtx, const_op = 0;
9585 /* Similarly, if we are comparing a value known to be either -1 or
9586 0 with -1, change it to the opposite comparison against zero. */
9588 if (const_op == -1
9589 && (code == EQ || code == NE || code == GT || code == LE
9590 || code == GEU || code == LTU)
9591 && num_sign_bit_copies (op0, mode) == mode_width)
9593 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9594 op1 = const0_rtx, const_op = 0;
9597 /* Do some canonicalizations based on the comparison code. We prefer
9598 comparisons against zero and then prefer equality comparisons.
9599 If we can reduce the size of a constant, we will do that too. */
9601 switch (code)
9603 case LT:
9604 /* < C is equivalent to <= (C - 1) */
9605 if (const_op > 0)
9607 const_op -= 1;
9608 op1 = GEN_INT (const_op);
9609 code = LE;
9610 /* ... fall through to LE case below. */
9612 else
9613 break;
9615 case LE:
9616 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9617 if (const_op < 0)
9619 const_op += 1;
9620 op1 = GEN_INT (const_op);
9621 code = LT;
9624 /* If we are doing a <= 0 comparison on a value known to have
9625 a zero sign bit, we can replace this with == 0. */
9626 else if (const_op == 0
9627 && mode_width <= HOST_BITS_PER_WIDE_INT
9628 && (nonzero_bits (op0, mode)
9629 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9630 code = EQ;
9631 break;
9633 case GE:
9634 /* >= C is equivalent to > (C - 1). */
9635 if (const_op > 0)
9637 const_op -= 1;
9638 op1 = GEN_INT (const_op);
9639 code = GT;
9640 /* ... fall through to GT below. */
9642 else
9643 break;
9645 case GT:
9646 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
9647 if (const_op < 0)
9649 const_op += 1;
9650 op1 = GEN_INT (const_op);
9651 code = GE;
9654 /* If we are doing a > 0 comparison on a value known to have
9655 a zero sign bit, we can replace this with != 0. */
9656 else if (const_op == 0
9657 && mode_width <= HOST_BITS_PER_WIDE_INT
9658 && (nonzero_bits (op0, mode)
9659 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9660 code = NE;
9661 break;
9663 case LTU:
9664 /* < C is equivalent to <= (C - 1). */
9665 if (const_op > 0)
9667 const_op -= 1;
9668 op1 = GEN_INT (const_op);
9669 code = LEU;
9670 /* ... fall through ... */
9673 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9674 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9675 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9677 const_op = 0, op1 = const0_rtx;
9678 code = GE;
9679 break;
9681 else
9682 break;
9684 case LEU:
9685 /* unsigned <= 0 is equivalent to == 0 */
9686 if (const_op == 0)
9687 code = EQ;
9689 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9690 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9691 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9693 const_op = 0, op1 = const0_rtx;
9694 code = GE;
9696 break;
9698 case GEU:
9699 /* >= C is equivalent to < (C - 1). */
9700 if (const_op > 1)
9702 const_op -= 1;
9703 op1 = GEN_INT (const_op);
9704 code = GTU;
9705 /* ... fall through ... */
9708 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9709 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9710 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9712 const_op = 0, op1 = const0_rtx;
9713 code = LT;
9714 break;
9716 else
9717 break;
9719 case GTU:
9720 /* unsigned > 0 is equivalent to != 0 */
9721 if (const_op == 0)
9722 code = NE;
9724 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9725 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9726 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9728 const_op = 0, op1 = const0_rtx;
9729 code = LT;
9731 break;
9733 default:
9734 break;
9737 /* Compute some predicates to simplify code below. */
9739 equality_comparison_p = (code == EQ || code == NE);
9740 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9741 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9742 || code == LEU);
9744 /* If this is a sign bit comparison and we can do arithmetic in
9745 MODE, say that we will only be needing the sign bit of OP0. */
9746 if (sign_bit_comparison_p
9747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9748 op0 = force_to_mode (op0, mode,
9749 ((HOST_WIDE_INT) 1
9750 << (GET_MODE_BITSIZE (mode) - 1)),
9751 NULL_RTX, 0);
9753 /* Now try cases based on the opcode of OP0. If none of the cases
9754 does a "continue", we exit this loop immediately after the
9755 switch. */
9757 switch (GET_CODE (op0))
9759 case ZERO_EXTRACT:
9760 /* If we are extracting a single bit from a variable position in
9761 a constant that has only a single bit set and are comparing it
9762 with zero, we can convert this into an equality comparison
9763 between the position and the location of the single bit. */
9765 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
9766 && XEXP (op0, 1) == const1_rtx
9767 && equality_comparison_p && const_op == 0
9768 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9770 if (BITS_BIG_ENDIAN)
9771 #ifdef HAVE_extzv
9772 i = (GET_MODE_BITSIZE
9773 (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
9774 #else
9775 i = BITS_PER_WORD - 1 - i;
9776 #endif
9778 op0 = XEXP (op0, 2);
9779 op1 = GEN_INT (i);
9780 const_op = i;
9782 /* Result is nonzero iff shift count is equal to I. */
9783 code = reverse_condition (code);
9784 continue;
9787 /* ... fall through ... */
9789 case SIGN_EXTRACT:
9790 tem = expand_compound_operation (op0);
9791 if (tem != op0)
9793 op0 = tem;
9794 continue;
9796 break;
9798 case NOT:
9799 /* If testing for equality, we can take the NOT of the constant. */
9800 if (equality_comparison_p
9801 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9803 op0 = XEXP (op0, 0);
9804 op1 = tem;
9805 continue;
9808 /* If just looking at the sign bit, reverse the sense of the
9809 comparison. */
9810 if (sign_bit_comparison_p)
9812 op0 = XEXP (op0, 0);
9813 code = (code == GE ? LT : GE);
9814 continue;
9816 break;
9818 case NEG:
9819 /* If testing for equality, we can take the NEG of the constant. */
9820 if (equality_comparison_p
9821 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9823 op0 = XEXP (op0, 0);
9824 op1 = tem;
9825 continue;
9828 /* The remaining cases only apply to comparisons with zero. */
9829 if (const_op != 0)
9830 break;
9832 /* When X is ABS or is known positive,
9833 (neg X) is < 0 if and only if X != 0. */
9835 if (sign_bit_comparison_p
9836 && (GET_CODE (XEXP (op0, 0)) == ABS
9837 || (mode_width <= HOST_BITS_PER_WIDE_INT
9838 && (nonzero_bits (XEXP (op0, 0), mode)
9839 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9841 op0 = XEXP (op0, 0);
9842 code = (code == LT ? NE : EQ);
9843 continue;
9846 /* If we have NEG of something whose two high-order bits are the
9847 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9848 if (num_sign_bit_copies (op0, mode) >= 2)
9850 op0 = XEXP (op0, 0);
9851 code = swap_condition (code);
9852 continue;
9854 break;
9856 case ROTATE:
9857 /* If we are testing equality and our count is a constant, we
9858 can perform the inverse operation on our RHS. */
9859 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9860 && (tem = simplify_binary_operation (ROTATERT, mode,
9861 op1, XEXP (op0, 1))) != 0)
9863 op0 = XEXP (op0, 0);
9864 op1 = tem;
9865 continue;
9868 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9869 a particular bit. Convert it to an AND of a constant of that
9870 bit. This will be converted into a ZERO_EXTRACT. */
9871 if (const_op == 0 && sign_bit_comparison_p
9872 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9873 && mode_width <= HOST_BITS_PER_WIDE_INT)
9875 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9876 ((HOST_WIDE_INT) 1
9877 << (mode_width - 1
9878 - INTVAL (XEXP (op0, 1)))));
9879 code = (code == LT ? NE : EQ);
9880 continue;
9883 /* ... fall through ... */
9885 case ABS:
9886 /* ABS is ignorable inside an equality comparison with zero. */
9887 if (const_op == 0 && equality_comparison_p)
9889 op0 = XEXP (op0, 0);
9890 continue;
9892 break;
9895 case SIGN_EXTEND:
9896 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9897 to (compare FOO CONST) if CONST fits in FOO's mode and we
9898 are either testing inequality or have an unsigned comparison
9899 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9900 if (! unsigned_comparison_p
9901 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9902 <= HOST_BITS_PER_WIDE_INT)
9903 && ((unsigned HOST_WIDE_INT) const_op
9904 < (((HOST_WIDE_INT) 1
9905 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9907 op0 = XEXP (op0, 0);
9908 continue;
9910 break;
9912 case SUBREG:
9913 /* Check for the case where we are comparing A - C1 with C2,
9914 both constants are smaller than 1/2 the maximum positive
9915 value in MODE, and the comparison is equality or unsigned.
9916 In that case, if A is either zero-extended to MODE or has
9917 sufficient sign bits so that the high-order bit in MODE
9918 is a copy of the sign in the inner mode, we can prove that it is
9919 safe to do the operation in the wider mode. This simplifies
9920 many range checks. */
9922 if (mode_width <= HOST_BITS_PER_WIDE_INT
9923 && subreg_lowpart_p (op0)
9924 && GET_CODE (SUBREG_REG (op0)) == PLUS
9925 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
9926 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
9927 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
9928 < GET_MODE_MASK (mode) / 2)
9929 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
9930 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
9931 GET_MODE (SUBREG_REG (op0)))
9932 & ~ GET_MODE_MASK (mode))
9933 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
9934 GET_MODE (SUBREG_REG (op0)))
9935 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9936 - GET_MODE_BITSIZE (mode)))))
9938 op0 = SUBREG_REG (op0);
9939 continue;
9942 /* If the inner mode is narrower and we are extracting the low part,
9943 we can treat the SUBREG as if it were a ZERO_EXTEND. */
9944 if (subreg_lowpart_p (op0)
9945 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
9946 /* Fall through */ ;
9947 else
9948 break;
9950 /* ... fall through ... */
9952 case ZERO_EXTEND:
9953 if ((unsigned_comparison_p || equality_comparison_p)
9954 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9955 <= HOST_BITS_PER_WIDE_INT)
9956 && ((unsigned HOST_WIDE_INT) const_op
9957 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
9959 op0 = XEXP (op0, 0);
9960 continue;
9962 break;
9964 case PLUS:
9965 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
9966 this for equality comparisons due to pathological cases involving
9967 overflows. */
9968 if (equality_comparison_p
9969 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9970 op1, XEXP (op0, 1))))
9972 op0 = XEXP (op0, 0);
9973 op1 = tem;
9974 continue;
9977 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
9978 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
9979 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
9981 op0 = XEXP (XEXP (op0, 0), 0);
9982 code = (code == LT ? EQ : NE);
9983 continue;
9985 break;
9987 case MINUS:
9988 /* (eq (minus A B) C) -> (eq A (plus B C)) or
9989 (eq B (minus A C)), whichever simplifies. We can only do
9990 this for equality comparisons due to pathological cases involving
9991 overflows. */
9992 if (equality_comparison_p
9993 && 0 != (tem = simplify_binary_operation (PLUS, mode,
9994 XEXP (op0, 1), op1)))
9996 op0 = XEXP (op0, 0);
9997 op1 = tem;
9998 continue;
10001 if (equality_comparison_p
10002 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10003 XEXP (op0, 0), op1)))
10005 op0 = XEXP (op0, 1);
10006 op1 = tem;
10007 continue;
10010 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10011 of bits in X minus 1, is one iff X > 0. */
10012 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10013 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10014 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10015 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10017 op0 = XEXP (op0, 1);
10018 code = (code == GE ? LE : GT);
10019 continue;
10021 break;
10023 case XOR:
10024 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10025 if C is zero or B is a constant. */
10026 if (equality_comparison_p
10027 && 0 != (tem = simplify_binary_operation (XOR, mode,
10028 XEXP (op0, 1), op1)))
10030 op0 = XEXP (op0, 0);
10031 op1 = tem;
10032 continue;
10034 break;
10036 case EQ: case NE:
10037 case LT: case LTU: case LE: case LEU:
10038 case GT: case GTU: case GE: case GEU:
10039 /* We can't do anything if OP0 is a condition code value, rather
10040 than an actual data value. */
10041 if (const_op != 0
10042 #ifdef HAVE_cc0
10043 || XEXP (op0, 0) == cc0_rtx
10044 #endif
10045 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10046 break;
10048 /* Get the two operands being compared. */
10049 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10050 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10051 else
10052 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10054 /* Check for the cases where we simply want the result of the
10055 earlier test or the opposite of that result. */
10056 if (code == NE
10057 || (code == EQ && reversible_comparison_p (op0))
10058 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10059 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10060 && (STORE_FLAG_VALUE
10061 & (((HOST_WIDE_INT) 1
10062 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10063 && (code == LT
10064 || (code == GE && reversible_comparison_p (op0)))))
10066 code = (code == LT || code == NE
10067 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
10068 op0 = tem, op1 = tem1;
10069 continue;
10071 break;
10073 case IOR:
10074 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10075 iff X <= 0. */
10076 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10077 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10078 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10080 op0 = XEXP (op0, 1);
10081 code = (code == GE ? GT : LE);
10082 continue;
10084 break;
10086 case AND:
10087 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10088 will be converted to a ZERO_EXTRACT later. */
10089 if (const_op == 0 && equality_comparison_p
10090 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10091 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10093 op0 = simplify_and_const_int
10094 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10095 XEXP (op0, 1),
10096 XEXP (XEXP (op0, 0), 1)),
10097 (HOST_WIDE_INT) 1);
10098 continue;
10101 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10102 zero and X is a comparison and C1 and C2 describe only bits set
10103 in STORE_FLAG_VALUE, we can compare with X. */
10104 if (const_op == 0 && equality_comparison_p
10105 && mode_width <= HOST_BITS_PER_WIDE_INT
10106 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10107 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10108 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10109 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10110 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10112 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10113 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10114 if ((~ STORE_FLAG_VALUE & mask) == 0
10115 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10116 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10117 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10119 op0 = XEXP (XEXP (op0, 0), 0);
10120 continue;
10124 /* If we are doing an equality comparison of an AND of a bit equal
10125 to the sign bit, replace this with a LT or GE comparison of
10126 the underlying value. */
10127 if (equality_comparison_p
10128 && const_op == 0
10129 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10130 && mode_width <= HOST_BITS_PER_WIDE_INT
10131 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10132 == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10134 op0 = XEXP (op0, 0);
10135 code = (code == EQ ? GE : LT);
10136 continue;
10139 /* If this AND operation is really a ZERO_EXTEND from a narrower
10140 mode, the constant fits within that mode, and this is either an
10141 equality or unsigned comparison, try to do this comparison in
10142 the narrower mode. */
10143 if ((equality_comparison_p || unsigned_comparison_p)
10144 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10145 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10146 & GET_MODE_MASK (mode))
10147 + 1)) >= 0
10148 && const_op >> i == 0
10149 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10151 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10152 continue;
10155 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10156 in both M1 and M2 and the SUBREG is either paradoxical or
10157 represents the low part, permute the SUBREG and the AND and
10158 try again. */
10159 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10160 && ((mode_width
10161 >= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10162 || subreg_lowpart_p (XEXP (op0, 0)))
10163 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10164 && mode_width <= HOST_BITS_PER_WIDE_INT
10165 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10166 <= HOST_BITS_PER_WIDE_INT)
10167 && (INTVAL (XEXP (op0, 1)) & ~ mask) == 0
10168 && 0 == (~ GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10169 & INTVAL (XEXP (op0, 1))))
10173 = gen_lowpart_for_combine
10174 (mode,
10175 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10176 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10177 continue;
10180 break;
10182 case ASHIFT:
10183 /* If we have (compare (ashift FOO N) (const_int C)) and
10184 the high order N bits of FOO (N+1 if an inequality comparison)
10185 are known to be zero, we can do this by comparing FOO with C
10186 shifted right N bits so long as the low-order N bits of C are
10187 zero. */
10188 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10189 && INTVAL (XEXP (op0, 1)) >= 0
10190 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10191 < HOST_BITS_PER_WIDE_INT)
10192 && ((const_op
10193 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10194 && mode_width <= HOST_BITS_PER_WIDE_INT
10195 && (nonzero_bits (XEXP (op0, 0), mode)
10196 & ~ (mask >> (INTVAL (XEXP (op0, 1))
10197 + ! equality_comparison_p))) == 0)
10199 const_op >>= INTVAL (XEXP (op0, 1));
10200 op1 = GEN_INT (const_op);
10201 op0 = XEXP (op0, 0);
10202 continue;
10205 /* If we are doing a sign bit comparison, it means we are testing
10206 a particular bit. Convert it to the appropriate AND. */
10207 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10208 && mode_width <= HOST_BITS_PER_WIDE_INT)
10210 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10211 ((HOST_WIDE_INT) 1
10212 << (mode_width - 1
10213 - INTVAL (XEXP (op0, 1)))));
10214 code = (code == LT ? NE : EQ);
10215 continue;
10218 /* If this an equality comparison with zero and we are shifting
10219 the low bit to the sign bit, we can convert this to an AND of the
10220 low-order bit. */
10221 if (const_op == 0 && equality_comparison_p
10222 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10223 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10225 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10226 (HOST_WIDE_INT) 1);
10227 continue;
10229 break;
10231 case ASHIFTRT:
10232 /* If this is an equality comparison with zero, we can do this
10233 as a logical shift, which might be much simpler. */
10234 if (equality_comparison_p && const_op == 0
10235 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10237 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10238 XEXP (op0, 0),
10239 INTVAL (XEXP (op0, 1)));
10240 continue;
10243 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10244 do the comparison in a narrower mode. */
10245 if (! unsigned_comparison_p
10246 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10247 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10248 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10249 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10250 MODE_INT, 1)) != BLKmode
10251 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10252 || ((unsigned HOST_WIDE_INT) - const_op
10253 <= GET_MODE_MASK (tmode))))
10255 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10256 continue;
10259 /* ... fall through ... */
10260 case LSHIFTRT:
10261 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10262 the low order N bits of FOO are known to be zero, we can do this
10263 by comparing FOO with C shifted left N bits so long as no
10264 overflow occurs. */
10265 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10266 && INTVAL (XEXP (op0, 1)) >= 0
10267 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10268 && mode_width <= HOST_BITS_PER_WIDE_INT
10269 && (nonzero_bits (XEXP (op0, 0), mode)
10270 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10271 && (const_op == 0
10272 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10273 < mode_width)))
10275 const_op <<= INTVAL (XEXP (op0, 1));
10276 op1 = GEN_INT (const_op);
10277 op0 = XEXP (op0, 0);
10278 continue;
10281 /* If we are using this shift to extract just the sign bit, we
10282 can replace this with an LT or GE comparison. */
10283 if (const_op == 0
10284 && (equality_comparison_p || sign_bit_comparison_p)
10285 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10286 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10288 op0 = XEXP (op0, 0);
10289 code = (code == NE || code == GT ? LT : GE);
10290 continue;
10292 break;
10294 default:
10295 break;
10298 break;
10301 /* Now make any compound operations involved in this comparison. Then,
10302 check for an outmost SUBREG on OP0 that is not doing anything or is
10303 paradoxical. The latter case can only occur when it is known that the
10304 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10305 We can never remove a SUBREG for a non-equality comparison because the
10306 sign bit is in a different place in the underlying object. */
10308 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10309 op1 = make_compound_operation (op1, SET);
10311 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10312 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10313 && (code == NE || code == EQ)
10314 && ((GET_MODE_SIZE (GET_MODE (op0))
10315 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10317 op0 = SUBREG_REG (op0);
10318 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10321 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10322 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10323 && (code == NE || code == EQ)
10324 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10325 <= HOST_BITS_PER_WIDE_INT)
10326 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10327 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
10328 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10329 op1),
10330 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10331 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
10332 op0 = SUBREG_REG (op0), op1 = tem;
10334 /* We now do the opposite procedure: Some machines don't have compare
10335 insns in all modes. If OP0's mode is an integer mode smaller than a
10336 word and we can't do a compare in that mode, see if there is a larger
10337 mode for which we can do the compare. There are a number of cases in
10338 which we can use the wider mode. */
10340 mode = GET_MODE (op0);
10341 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10342 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10343 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10344 for (tmode = GET_MODE_WIDER_MODE (mode);
10345 (tmode != VOIDmode
10346 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10347 tmode = GET_MODE_WIDER_MODE (tmode))
10348 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10350 /* If the only nonzero bits in OP0 and OP1 are those in the
10351 narrower mode and this is an equality or unsigned comparison,
10352 we can use the wider mode. Similarly for sign-extended
10353 values, in which case it is true for all comparisons. */
10354 if (((code == EQ || code == NE
10355 || code == GEU || code == GTU || code == LEU || code == LTU)
10356 && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
10357 && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
10358 || ((num_sign_bit_copies (op0, tmode)
10359 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10360 && (num_sign_bit_copies (op1, tmode)
10361 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10363 op0 = gen_lowpart_for_combine (tmode, op0);
10364 op1 = gen_lowpart_for_combine (tmode, op1);
10365 break;
10368 /* If this is a test for negative, we can make an explicit
10369 test of the sign bit. */
10371 if (op1 == const0_rtx && (code == LT || code == GE)
10372 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10374 op0 = gen_binary (AND, tmode,
10375 gen_lowpart_for_combine (tmode, op0),
10376 GEN_INT ((HOST_WIDE_INT) 1
10377 << (GET_MODE_BITSIZE (mode) - 1)));
10378 code = (code == LT) ? NE : EQ;
10379 break;
10383 #ifdef CANONICALIZE_COMPARISON
10384 /* If this machine only supports a subset of valid comparisons, see if we
10385 can convert an unsupported one into a supported one. */
10386 CANONICALIZE_COMPARISON (code, op0, op1);
10387 #endif
10389 *pop0 = op0;
10390 *pop1 = op1;
10392 return code;
10395 /* Return 1 if we know that X, a comparison operation, is not operating
10396 on a floating-point value or is EQ or NE, meaning that we can safely
10397 reverse it. */
10399 static int
10400 reversible_comparison_p (x)
10401 rtx x;
10403 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
10404 || flag_fast_math
10405 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
10406 return 1;
10408 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
10410 case MODE_INT:
10411 case MODE_PARTIAL_INT:
10412 case MODE_COMPLEX_INT:
10413 return 1;
10415 case MODE_CC:
10416 /* If the mode of the condition codes tells us that this is safe,
10417 we need look no further. */
10418 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
10419 return 1;
10421 /* Otherwise try and find where the condition codes were last set and
10422 use that. */
10423 x = get_last_value (XEXP (x, 0));
10424 return (x && GET_CODE (x) == COMPARE
10425 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
10427 default:
10428 return 0;
10432 /* Utility function for following routine. Called when X is part of a value
10433 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10434 for each register mentioned. Similar to mention_regs in cse.c */
10436 static void
10437 update_table_tick (x)
10438 rtx x;
10440 register enum rtx_code code = GET_CODE (x);
10441 register char *fmt = GET_RTX_FORMAT (code);
10442 register int i;
10444 if (code == REG)
10446 int regno = REGNO (x);
10447 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10448 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10450 for (i = regno; i < endregno; i++)
10451 reg_last_set_table_tick[i] = label_tick;
10453 return;
10456 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10457 /* Note that we can't have an "E" in values stored; see
10458 get_last_value_validate. */
10459 if (fmt[i] == 'e')
10460 update_table_tick (XEXP (x, i));
10463 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10464 are saying that the register is clobbered and we no longer know its
10465 value. If INSN is zero, don't update reg_last_set; this is only permitted
10466 with VALUE also zero and is used to invalidate the register. */
10468 static void
10469 record_value_for_reg (reg, insn, value)
10470 rtx reg;
10471 rtx insn;
10472 rtx value;
10474 int regno = REGNO (reg);
10475 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10476 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
10477 int i;
10479 /* If VALUE contains REG and we have a previous value for REG, substitute
10480 the previous value. */
10481 if (value && insn && reg_overlap_mentioned_p (reg, value))
10483 rtx tem;
10485 /* Set things up so get_last_value is allowed to see anything set up to
10486 our insn. */
10487 subst_low_cuid = INSN_CUID (insn);
10488 tem = get_last_value (reg);
10490 if (tem)
10491 value = replace_rtx (copy_rtx (value), reg, tem);
10494 /* For each register modified, show we don't know its value, that
10495 we don't know about its bitwise content, that its value has been
10496 updated, and that we don't know the location of the death of the
10497 register. */
10498 for (i = regno; i < endregno; i ++)
10500 if (insn)
10501 reg_last_set[i] = insn;
10502 reg_last_set_value[i] = 0;
10503 reg_last_set_mode[i] = 0;
10504 reg_last_set_nonzero_bits[i] = 0;
10505 reg_last_set_sign_bit_copies[i] = 0;
10506 reg_last_death[i] = 0;
10509 /* Mark registers that are being referenced in this value. */
10510 if (value)
10511 update_table_tick (value);
10513 /* Now update the status of each register being set.
10514 If someone is using this register in this block, set this register
10515 to invalid since we will get confused between the two lives in this
10516 basic block. This makes using this register always invalid. In cse, we
10517 scan the table to invalidate all entries using this register, but this
10518 is too much work for us. */
10520 for (i = regno; i < endregno; i++)
10522 reg_last_set_label[i] = label_tick;
10523 if (value && reg_last_set_table_tick[i] == label_tick)
10524 reg_last_set_invalid[i] = 1;
10525 else
10526 reg_last_set_invalid[i] = 0;
10529 /* The value being assigned might refer to X (like in "x++;"). In that
10530 case, we must replace it with (clobber (const_int 0)) to prevent
10531 infinite loops. */
10532 if (value && ! get_last_value_validate (&value, insn,
10533 reg_last_set_label[regno], 0))
10535 value = copy_rtx (value);
10536 if (! get_last_value_validate (&value, insn,
10537 reg_last_set_label[regno], 1))
10538 value = 0;
10541 /* For the main register being modified, update the value, the mode, the
10542 nonzero bits, and the number of sign bit copies. */
10544 reg_last_set_value[regno] = value;
10546 if (value)
10548 subst_low_cuid = INSN_CUID (insn);
10549 reg_last_set_mode[regno] = GET_MODE (reg);
10550 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
10551 reg_last_set_sign_bit_copies[regno]
10552 = num_sign_bit_copies (value, GET_MODE (reg));
10556 /* Used for communication between the following two routines. */
10557 static rtx record_dead_insn;
10559 /* Called via note_stores from record_dead_and_set_regs to handle one
10560 SET or CLOBBER in an insn. */
10562 static void
10563 record_dead_and_set_regs_1 (dest, setter)
10564 rtx dest, setter;
10566 if (GET_CODE (dest) == SUBREG)
10567 dest = SUBREG_REG (dest);
10569 if (GET_CODE (dest) == REG)
10571 /* If we are setting the whole register, we know its value. Otherwise
10572 show that we don't know the value. We can handle SUBREG in
10573 some cases. */
10574 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10575 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10576 else if (GET_CODE (setter) == SET
10577 && GET_CODE (SET_DEST (setter)) == SUBREG
10578 && SUBREG_REG (SET_DEST (setter)) == dest
10579 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10580 && subreg_lowpart_p (SET_DEST (setter)))
10581 record_value_for_reg (dest, record_dead_insn,
10582 gen_lowpart_for_combine (GET_MODE (dest),
10583 SET_SRC (setter)));
10584 else
10585 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10587 else if (GET_CODE (dest) == MEM
10588 /* Ignore pushes, they clobber nothing. */
10589 && ! push_operand (dest, GET_MODE (dest)))
10590 mem_last_set = INSN_CUID (record_dead_insn);
10593 /* Update the records of when each REG was most recently set or killed
10594 for the things done by INSN. This is the last thing done in processing
10595 INSN in the combiner loop.
10597 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
10598 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
10599 and also the similar information mem_last_set (which insn most recently
10600 modified memory) and last_call_cuid (which insn was the most recent
10601 subroutine call). */
10603 static void
10604 record_dead_and_set_regs (insn)
10605 rtx insn;
10607 register rtx link;
10608 int i;
10610 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10612 if (REG_NOTE_KIND (link) == REG_DEAD
10613 && GET_CODE (XEXP (link, 0)) == REG)
10615 int regno = REGNO (XEXP (link, 0));
10616 int endregno
10617 = regno + (regno < FIRST_PSEUDO_REGISTER
10618 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
10619 : 1);
10621 for (i = regno; i < endregno; i++)
10622 reg_last_death[i] = insn;
10624 else if (REG_NOTE_KIND (link) == REG_INC)
10625 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10628 if (GET_CODE (insn) == CALL_INSN)
10630 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10631 if (call_used_regs[i])
10633 reg_last_set_value[i] = 0;
10634 reg_last_set_mode[i] = 0;
10635 reg_last_set_nonzero_bits[i] = 0;
10636 reg_last_set_sign_bit_copies[i] = 0;
10637 reg_last_death[i] = 0;
10640 last_call_cuid = mem_last_set = INSN_CUID (insn);
10643 record_dead_insn = insn;
10644 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
10647 /* Utility routine for the following function. Verify that all the registers
10648 mentioned in *LOC are valid when *LOC was part of a value set when
10649 label_tick == TICK. Return 0 if some are not.
10651 If REPLACE is non-zero, replace the invalid reference with
10652 (clobber (const_int 0)) and return 1. This replacement is useful because
10653 we often can get useful information about the form of a value (e.g., if
10654 it was produced by a shift that always produces -1 or 0) even though
10655 we don't know exactly what registers it was produced from. */
10657 static int
10658 get_last_value_validate (loc, insn, tick, replace)
10659 rtx *loc;
10660 rtx insn;
10661 int tick;
10662 int replace;
10664 rtx x = *loc;
10665 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10666 int len = GET_RTX_LENGTH (GET_CODE (x));
10667 int i;
10669 if (GET_CODE (x) == REG)
10671 int regno = REGNO (x);
10672 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10673 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10674 int j;
10676 for (j = regno; j < endregno; j++)
10677 if (reg_last_set_invalid[j]
10678 /* If this is a pseudo-register that was only set once, it is
10679 always valid. */
10680 || (! (regno >= FIRST_PSEUDO_REGISTER && REG_N_SETS (regno) == 1)
10681 && reg_last_set_label[j] > tick))
10683 if (replace)
10684 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10685 return replace;
10688 return 1;
10690 /* If this is a memory reference, make sure that there were
10691 no stores after it that might have clobbered the value. We don't
10692 have alias info, so we assume any store invalidates it. */
10693 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
10694 && INSN_CUID (insn) <= mem_last_set)
10696 if (replace)
10697 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10698 return replace;
10701 for (i = 0; i < len; i++)
10702 if ((fmt[i] == 'e'
10703 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
10704 /* Don't bother with these. They shouldn't occur anyway. */
10705 || fmt[i] == 'E')
10706 return 0;
10708 /* If we haven't found a reason for it to be invalid, it is valid. */
10709 return 1;
10712 /* Get the last value assigned to X, if known. Some registers
10713 in the value may be replaced with (clobber (const_int 0)) if their value
10714 is known longer known reliably. */
10716 static rtx
10717 get_last_value (x)
10718 rtx x;
10720 int regno;
10721 rtx value;
10723 /* If this is a non-paradoxical SUBREG, get the value of its operand and
10724 then convert it to the desired mode. If this is a paradoxical SUBREG,
10725 we cannot predict what values the "extra" bits might have. */
10726 if (GET_CODE (x) == SUBREG
10727 && subreg_lowpart_p (x)
10728 && (GET_MODE_SIZE (GET_MODE (x))
10729 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
10730 && (value = get_last_value (SUBREG_REG (x))) != 0)
10731 return gen_lowpart_for_combine (GET_MODE (x), value);
10733 if (GET_CODE (x) != REG)
10734 return 0;
10736 regno = REGNO (x);
10737 value = reg_last_set_value[regno];
10739 /* If we don't have a value or if it isn't for this basic block,
10740 return 0. */
10742 if (value == 0
10743 || (REG_N_SETS (regno) != 1
10744 && reg_last_set_label[regno] != label_tick))
10745 return 0;
10747 /* If the value was set in a later insn than the ones we are processing,
10748 we can't use it even if the register was only set once, but make a quick
10749 check to see if the previous insn set it to something. This is commonly
10750 the case when the same pseudo is used by repeated insns.
10752 This does not work if there exists an instruction which is temporarily
10753 not on the insn chain. */
10755 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
10757 rtx insn, set;
10759 /* We can not do anything useful in this case, because there is
10760 an instruction which is not on the insn chain. */
10761 if (subst_prev_insn)
10762 return 0;
10764 /* Skip over USE insns. They are not useful here, and they may have
10765 been made by combine, in which case they do not have a INSN_CUID
10766 value. We can't use prev_real_insn, because that would incorrectly
10767 take us backwards across labels. Skip over BARRIERs also, since
10768 they could have been made by combine. If we see one, we must be
10769 optimizing dead code, so it doesn't matter what we do. */
10770 for (insn = prev_nonnote_insn (subst_insn);
10771 insn && ((GET_CODE (insn) == INSN
10772 && GET_CODE (PATTERN (insn)) == USE)
10773 || GET_CODE (insn) == BARRIER
10774 || INSN_CUID (insn) >= subst_low_cuid);
10775 insn = prev_nonnote_insn (insn))
10778 if (insn
10779 && (set = single_set (insn)) != 0
10780 && rtx_equal_p (SET_DEST (set), x))
10782 value = SET_SRC (set);
10784 /* Make sure that VALUE doesn't reference X. Replace any
10785 explicit references with a CLOBBER. If there are any remaining
10786 references (rare), don't use the value. */
10788 if (reg_mentioned_p (x, value))
10789 value = replace_rtx (copy_rtx (value), x,
10790 gen_rtx_CLOBBER (GET_MODE (x), const0_rtx));
10792 if (reg_overlap_mentioned_p (x, value))
10793 return 0;
10795 else
10796 return 0;
10799 /* If the value has all its registers valid, return it. */
10800 if (get_last_value_validate (&value, reg_last_set[regno],
10801 reg_last_set_label[regno], 0))
10802 return value;
10804 /* Otherwise, make a copy and replace any invalid register with
10805 (clobber (const_int 0)). If that fails for some reason, return 0. */
10807 value = copy_rtx (value);
10808 if (get_last_value_validate (&value, reg_last_set[regno],
10809 reg_last_set_label[regno], 1))
10810 return value;
10812 return 0;
10815 /* Return nonzero if expression X refers to a REG or to memory
10816 that is set in an instruction more recent than FROM_CUID. */
10818 static int
10819 use_crosses_set_p (x, from_cuid)
10820 register rtx x;
10821 int from_cuid;
10823 register char *fmt;
10824 register int i;
10825 register enum rtx_code code = GET_CODE (x);
10827 if (code == REG)
10829 register int regno = REGNO (x);
10830 int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
10831 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10833 #ifdef PUSH_ROUNDING
10834 /* Don't allow uses of the stack pointer to be moved,
10835 because we don't know whether the move crosses a push insn. */
10836 if (regno == STACK_POINTER_REGNUM)
10837 return 1;
10838 #endif
10839 for (;regno < endreg; regno++)
10840 if (reg_last_set[regno]
10841 && INSN_CUID (reg_last_set[regno]) > from_cuid)
10842 return 1;
10843 return 0;
10846 if (code == MEM && mem_last_set > from_cuid)
10847 return 1;
10849 fmt = GET_RTX_FORMAT (code);
10851 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10853 if (fmt[i] == 'E')
10855 register int j;
10856 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10857 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
10858 return 1;
10860 else if (fmt[i] == 'e'
10861 && use_crosses_set_p (XEXP (x, i), from_cuid))
10862 return 1;
10864 return 0;
10867 /* Define three variables used for communication between the following
10868 routines. */
10870 static int reg_dead_regno, reg_dead_endregno;
10871 static int reg_dead_flag;
10873 /* Function called via note_stores from reg_dead_at_p.
10875 If DEST is within [reg_dead_regno, reg_dead_endregno), set
10876 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
10878 static void
10879 reg_dead_at_p_1 (dest, x)
10880 rtx dest;
10881 rtx x;
10883 int regno, endregno;
10885 if (GET_CODE (dest) != REG)
10886 return;
10888 regno = REGNO (dest);
10889 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10890 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
10892 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
10893 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
10896 /* Return non-zero if REG is known to be dead at INSN.
10898 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
10899 referencing REG, it is dead. If we hit a SET referencing REG, it is
10900 live. Otherwise, see if it is live or dead at the start of the basic
10901 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
10902 must be assumed to be always live. */
10904 static int
10905 reg_dead_at_p (reg, insn)
10906 rtx reg;
10907 rtx insn;
10909 int block, i;
10911 /* Set variables for reg_dead_at_p_1. */
10912 reg_dead_regno = REGNO (reg);
10913 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
10914 ? HARD_REGNO_NREGS (reg_dead_regno,
10915 GET_MODE (reg))
10916 : 1);
10918 reg_dead_flag = 0;
10920 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
10921 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
10923 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10924 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
10925 return 0;
10928 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
10929 beginning of function. */
10930 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
10931 insn = prev_nonnote_insn (insn))
10933 note_stores (PATTERN (insn), reg_dead_at_p_1);
10934 if (reg_dead_flag)
10935 return reg_dead_flag == 1 ? 1 : 0;
10937 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
10938 return 1;
10941 /* Get the basic block number that we were in. */
10942 if (insn == 0)
10943 block = 0;
10944 else
10946 for (block = 0; block < n_basic_blocks; block++)
10947 if (insn == basic_block_head[block])
10948 break;
10950 if (block == n_basic_blocks)
10951 return 0;
10954 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10955 if (REGNO_REG_SET_P (basic_block_live_at_start[block], i))
10956 return 0;
10958 return 1;
10961 /* Note hard registers in X that are used. This code is similar to
10962 that in flow.c, but much simpler since we don't care about pseudos. */
10964 static void
10965 mark_used_regs_combine (x)
10966 rtx x;
10968 register RTX_CODE code = GET_CODE (x);
10969 register int regno;
10970 int i;
10972 switch (code)
10974 case LABEL_REF:
10975 case SYMBOL_REF:
10976 case CONST_INT:
10977 case CONST:
10978 case CONST_DOUBLE:
10979 case PC:
10980 case ADDR_VEC:
10981 case ADDR_DIFF_VEC:
10982 case ASM_INPUT:
10983 #ifdef HAVE_cc0
10984 /* CC0 must die in the insn after it is set, so we don't need to take
10985 special note of it here. */
10986 case CC0:
10987 #endif
10988 return;
10990 case CLOBBER:
10991 /* If we are clobbering a MEM, mark any hard registers inside the
10992 address as used. */
10993 if (GET_CODE (XEXP (x, 0)) == MEM)
10994 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
10995 return;
10997 case REG:
10998 regno = REGNO (x);
10999 /* A hard reg in a wide mode may really be multiple registers.
11000 If so, mark all of them just like the first. */
11001 if (regno < FIRST_PSEUDO_REGISTER)
11003 /* None of this applies to the stack, frame or arg pointers */
11004 if (regno == STACK_POINTER_REGNUM
11005 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11006 || regno == HARD_FRAME_POINTER_REGNUM
11007 #endif
11008 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11009 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11010 #endif
11011 || regno == FRAME_POINTER_REGNUM)
11012 return;
11014 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
11015 while (i-- > 0)
11016 SET_HARD_REG_BIT (newpat_used_regs, regno + i);
11018 return;
11020 case SET:
11022 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11023 the address. */
11024 register rtx testreg = SET_DEST (x);
11026 while (GET_CODE (testreg) == SUBREG
11027 || GET_CODE (testreg) == ZERO_EXTRACT
11028 || GET_CODE (testreg) == SIGN_EXTRACT
11029 || GET_CODE (testreg) == STRICT_LOW_PART)
11030 testreg = XEXP (testreg, 0);
11032 if (GET_CODE (testreg) == MEM)
11033 mark_used_regs_combine (XEXP (testreg, 0));
11035 mark_used_regs_combine (SET_SRC (x));
11037 return;
11039 default:
11040 break;
11043 /* Recursively scan the operands of this expression. */
11046 register char *fmt = GET_RTX_FORMAT (code);
11048 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11050 if (fmt[i] == 'e')
11051 mark_used_regs_combine (XEXP (x, i));
11052 else if (fmt[i] == 'E')
11054 register int j;
11056 for (j = 0; j < XVECLEN (x, i); j++)
11057 mark_used_regs_combine (XVECEXP (x, i, j));
11064 /* Remove register number REGNO from the dead registers list of INSN.
11066 Return the note used to record the death, if there was one. */
11069 remove_death (regno, insn)
11070 int regno;
11071 rtx insn;
11073 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11075 if (note)
11077 REG_N_DEATHS (regno)--;
11078 remove_note (insn, note);
11081 return note;
11084 /* For each register (hardware or pseudo) used within expression X, if its
11085 death is in an instruction with cuid between FROM_CUID (inclusive) and
11086 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11087 list headed by PNOTES.
11089 That said, don't move registers killed by maybe_kill_insn.
11091 This is done when X is being merged by combination into TO_INSN. These
11092 notes will then be distributed as needed. */
11094 static void
11095 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11096 rtx x;
11097 rtx maybe_kill_insn;
11098 int from_cuid;
11099 rtx to_insn;
11100 rtx *pnotes;
11102 register char *fmt;
11103 register int len, i;
11104 register enum rtx_code code = GET_CODE (x);
11106 if (code == REG)
11108 register int regno = REGNO (x);
11109 register rtx where_dead = reg_last_death[regno];
11110 register rtx before_dead, after_dead;
11112 /* Don't move the register if it gets killed in between from and to */
11113 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11114 && !reg_referenced_p (x, maybe_kill_insn))
11115 return;
11117 /* WHERE_DEAD could be a USE insn made by combine, so first we
11118 make sure that we have insns with valid INSN_CUID values. */
11119 before_dead = where_dead;
11120 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11121 before_dead = PREV_INSN (before_dead);
11122 after_dead = where_dead;
11123 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11124 after_dead = NEXT_INSN (after_dead);
11126 if (before_dead && after_dead
11127 && INSN_CUID (before_dead) >= from_cuid
11128 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11129 || (where_dead != after_dead
11130 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11132 rtx note = remove_death (regno, where_dead);
11134 /* It is possible for the call above to return 0. This can occur
11135 when reg_last_death points to I2 or I1 that we combined with.
11136 In that case make a new note.
11138 We must also check for the case where X is a hard register
11139 and NOTE is a death note for a range of hard registers
11140 including X. In that case, we must put REG_DEAD notes for
11141 the remaining registers in place of NOTE. */
11143 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11144 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11145 > GET_MODE_SIZE (GET_MODE (x))))
11147 int deadregno = REGNO (XEXP (note, 0));
11148 int deadend
11149 = (deadregno + HARD_REGNO_NREGS (deadregno,
11150 GET_MODE (XEXP (note, 0))));
11151 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11152 int i;
11154 for (i = deadregno; i < deadend; i++)
11155 if (i < regno || i >= ourend)
11156 REG_NOTES (where_dead)
11157 = gen_rtx_EXPR_LIST (REG_DEAD,
11158 gen_rtx_REG (reg_raw_mode[i], i),
11159 REG_NOTES (where_dead));
11161 /* If we didn't find any note, or if we found a REG_DEAD note that
11162 covers only part of the given reg, and we have a multi-reg hard
11163 register, then to be safe we must check for REG_DEAD notes
11164 for each register other than the first. They could have
11165 their own REG_DEAD notes lying around. */
11166 else if ((note == 0
11167 || (note != 0
11168 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11169 < GET_MODE_SIZE (GET_MODE (x)))))
11170 && regno < FIRST_PSEUDO_REGISTER
11171 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11173 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11174 int i, offset;
11175 rtx oldnotes = 0;
11177 if (note)
11178 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11179 else
11180 offset = 1;
11182 for (i = regno + offset; i < ourend; i++)
11183 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11184 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11187 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11189 XEXP (note, 1) = *pnotes;
11190 *pnotes = note;
11192 else
11193 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11195 REG_N_DEATHS (regno)++;
11198 return;
11201 else if (GET_CODE (x) == SET)
11203 rtx dest = SET_DEST (x);
11205 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11207 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11208 that accesses one word of a multi-word item, some
11209 piece of everything register in the expression is used by
11210 this insn, so remove any old death. */
11212 if (GET_CODE (dest) == ZERO_EXTRACT
11213 || GET_CODE (dest) == STRICT_LOW_PART
11214 || (GET_CODE (dest) == SUBREG
11215 && (((GET_MODE_SIZE (GET_MODE (dest))
11216 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11217 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11218 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11220 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11221 return;
11224 /* If this is some other SUBREG, we know it replaces the entire
11225 value, so use that as the destination. */
11226 if (GET_CODE (dest) == SUBREG)
11227 dest = SUBREG_REG (dest);
11229 /* If this is a MEM, adjust deaths of anything used in the address.
11230 For a REG (the only other possibility), the entire value is
11231 being replaced so the old value is not used in this insn. */
11233 if (GET_CODE (dest) == MEM)
11234 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11235 to_insn, pnotes);
11236 return;
11239 else if (GET_CODE (x) == CLOBBER)
11240 return;
11242 len = GET_RTX_LENGTH (code);
11243 fmt = GET_RTX_FORMAT (code);
11245 for (i = 0; i < len; i++)
11247 if (fmt[i] == 'E')
11249 register int j;
11250 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11251 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11252 to_insn, pnotes);
11254 else if (fmt[i] == 'e')
11255 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11259 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11260 pattern of an insn. X must be a REG. */
11262 static int
11263 reg_bitfield_target_p (x, body)
11264 rtx x;
11265 rtx body;
11267 int i;
11269 if (GET_CODE (body) == SET)
11271 rtx dest = SET_DEST (body);
11272 rtx target;
11273 int regno, tregno, endregno, endtregno;
11275 if (GET_CODE (dest) == ZERO_EXTRACT)
11276 target = XEXP (dest, 0);
11277 else if (GET_CODE (dest) == STRICT_LOW_PART)
11278 target = SUBREG_REG (XEXP (dest, 0));
11279 else
11280 return 0;
11282 if (GET_CODE (target) == SUBREG)
11283 target = SUBREG_REG (target);
11285 if (GET_CODE (target) != REG)
11286 return 0;
11288 tregno = REGNO (target), regno = REGNO (x);
11289 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11290 return target == x;
11292 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11293 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11295 return endregno > tregno && regno < endtregno;
11298 else if (GET_CODE (body) == PARALLEL)
11299 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11300 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11301 return 1;
11303 return 0;
11306 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11307 as appropriate. I3 and I2 are the insns resulting from the combination
11308 insns including FROM (I2 may be zero).
11310 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11311 not need REG_DEAD notes because they are being substituted for. This
11312 saves searching in the most common cases.
11314 Each note in the list is either ignored or placed on some insns, depending
11315 on the type of note. */
11317 static void
11318 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11319 rtx notes;
11320 rtx from_insn;
11321 rtx i3, i2;
11322 rtx elim_i2, elim_i1;
11324 rtx note, next_note;
11325 rtx tem;
11327 for (note = notes; note; note = next_note)
11329 rtx place = 0, place2 = 0;
11331 /* If this NOTE references a pseudo register, ensure it references
11332 the latest copy of that register. */
11333 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11334 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11335 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11337 next_note = XEXP (note, 1);
11338 switch (REG_NOTE_KIND (note))
11340 case REG_BR_PROB:
11341 case REG_EXEC_COUNT:
11342 /* Doesn't matter much where we put this, as long as it's somewhere.
11343 It is preferable to keep these notes on branches, which is most
11344 likely to be i3. */
11345 place = i3;
11346 break;
11348 case REG_UNUSED:
11349 /* Any clobbers for i3 may still exist, and so we must process
11350 REG_UNUSED notes from that insn.
11352 Any clobbers from i2 or i1 can only exist if they were added by
11353 recog_for_combine. In that case, recog_for_combine created the
11354 necessary REG_UNUSED notes. Trying to keep any original
11355 REG_UNUSED notes from these insns can cause incorrect output
11356 if it is for the same register as the original i3 dest.
11357 In that case, we will notice that the register is set in i3,
11358 and then add a REG_UNUSED note for the destination of i3, which
11359 is wrong. However, it is possible to have REG_UNUSED notes from
11360 i2 or i1 for register which were both used and clobbered, so
11361 we keep notes from i2 or i1 if they will turn into REG_DEAD
11362 notes. */
11364 /* If this register is set or clobbered in I3, put the note there
11365 unless there is one already. */
11366 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11368 if (from_insn != i3)
11369 break;
11371 if (! (GET_CODE (XEXP (note, 0)) == REG
11372 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11373 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11374 place = i3;
11376 /* Otherwise, if this register is used by I3, then this register
11377 now dies here, so we must put a REG_DEAD note here unless there
11378 is one already. */
11379 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11380 && ! (GET_CODE (XEXP (note, 0)) == REG
11381 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
11382 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11384 PUT_REG_NOTE_KIND (note, REG_DEAD);
11385 place = i3;
11387 break;
11389 case REG_EQUAL:
11390 case REG_EQUIV:
11391 case REG_NONNEG:
11392 case REG_NOALIAS:
11393 /* These notes say something about results of an insn. We can
11394 only support them if they used to be on I3 in which case they
11395 remain on I3. Otherwise they are ignored.
11397 If the note refers to an expression that is not a constant, we
11398 must also ignore the note since we cannot tell whether the
11399 equivalence is still true. It might be possible to do
11400 slightly better than this (we only have a problem if I2DEST
11401 or I1DEST is present in the expression), but it doesn't
11402 seem worth the trouble. */
11404 if (from_insn == i3
11405 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11406 place = i3;
11407 break;
11409 case REG_INC:
11410 case REG_NO_CONFLICT:
11411 case REG_LABEL:
11412 /* These notes say something about how a register is used. They must
11413 be present on any use of the register in I2 or I3. */
11414 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11415 place = i3;
11417 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11419 if (place)
11420 place2 = i2;
11421 else
11422 place = i2;
11424 break;
11426 case REG_WAS_0:
11427 /* It is too much trouble to try to see if this note is still
11428 correct in all situations. It is better to simply delete it. */
11429 break;
11431 case REG_RETVAL:
11432 /* If the insn previously containing this note still exists,
11433 put it back where it was. Otherwise move it to the previous
11434 insn. Adjust the corresponding REG_LIBCALL note. */
11435 if (GET_CODE (from_insn) != NOTE)
11436 place = from_insn;
11437 else
11439 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11440 place = prev_real_insn (from_insn);
11441 if (tem && place)
11442 XEXP (tem, 0) = place;
11444 break;
11446 case REG_LIBCALL:
11447 /* This is handled similarly to REG_RETVAL. */
11448 if (GET_CODE (from_insn) != NOTE)
11449 place = from_insn;
11450 else
11452 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11453 place = next_real_insn (from_insn);
11454 if (tem && place)
11455 XEXP (tem, 0) = place;
11457 break;
11459 case REG_DEAD:
11460 /* If the register is used as an input in I3, it dies there.
11461 Similarly for I2, if it is non-zero and adjacent to I3.
11463 If the register is not used as an input in either I3 or I2
11464 and it is not one of the registers we were supposed to eliminate,
11465 there are two possibilities. We might have a non-adjacent I2
11466 or we might have somehow eliminated an additional register
11467 from a computation. For example, we might have had A & B where
11468 we discover that B will always be zero. In this case we will
11469 eliminate the reference to A.
11471 In both cases, we must search to see if we can find a previous
11472 use of A and put the death note there. */
11474 if (from_insn
11475 && GET_CODE (from_insn) == CALL_INSN
11476 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11477 place = from_insn;
11478 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11479 place = i3;
11480 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11481 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11482 place = i2;
11484 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
11485 break;
11487 /* If the register is used in both I2 and I3 and it dies in I3,
11488 we might have added another reference to it. If reg_n_refs
11489 was 2, bump it to 3. This has to be correct since the
11490 register must have been set somewhere. The reason this is
11491 done is because local-alloc.c treats 2 references as a
11492 special case. */
11494 if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
11495 && REG_N_REFS (REGNO (XEXP (note, 0)))== 2
11496 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11497 REG_N_REFS (REGNO (XEXP (note, 0))) = 3;
11499 if (place == 0)
11501 for (tem = prev_nonnote_insn (i3);
11502 place == 0 && tem
11503 && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
11504 tem = prev_nonnote_insn (tem))
11506 /* If the register is being set at TEM, see if that is all
11507 TEM is doing. If so, delete TEM. Otherwise, make this
11508 into a REG_UNUSED note instead. */
11509 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
11511 rtx set = single_set (tem);
11512 rtx inner_dest = 0;
11514 if (set != 0)
11515 for (inner_dest = SET_DEST (set);
11516 GET_CODE (inner_dest) == STRICT_LOW_PART
11517 || GET_CODE (inner_dest) == SUBREG
11518 || GET_CODE (inner_dest) == ZERO_EXTRACT;
11519 inner_dest = XEXP (inner_dest, 0))
11522 /* Verify that it was the set, and not a clobber that
11523 modified the register. */
11525 if (set != 0 && ! side_effects_p (SET_SRC (set))
11526 && rtx_equal_p (XEXP (note, 0), inner_dest))
11528 /* Move the notes and links of TEM elsewhere.
11529 This might delete other dead insns recursively.
11530 First set the pattern to something that won't use
11531 any register. */
11533 PATTERN (tem) = pc_rtx;
11535 distribute_notes (REG_NOTES (tem), tem, tem,
11536 NULL_RTX, NULL_RTX, NULL_RTX);
11537 distribute_links (LOG_LINKS (tem));
11539 PUT_CODE (tem, NOTE);
11540 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
11541 NOTE_SOURCE_FILE (tem) = 0;
11543 /* If the register is both set and used here, put the
11544 REG_DEAD note here, but place a REG_UNUSED note
11545 here too unless there already is one. */
11546 else if (reg_referenced_p (XEXP (note, 0),
11547 PATTERN (tem)))
11549 place = tem;
11551 if (! find_regno_note (tem, REG_UNUSED,
11552 REGNO (XEXP (note, 0))))
11553 REG_NOTES (tem)
11554 = gen_rtx (EXPR_LIST, REG_UNUSED, XEXP (note, 0),
11555 REG_NOTES (tem));
11557 else
11559 PUT_REG_NOTE_KIND (note, REG_UNUSED);
11561 /* If there isn't already a REG_UNUSED note, put one
11562 here. */
11563 if (! find_regno_note (tem, REG_UNUSED,
11564 REGNO (XEXP (note, 0))))
11565 place = tem;
11566 break;
11569 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
11570 || (GET_CODE (tem) == CALL_INSN
11571 && find_reg_fusage (tem, USE, XEXP (note, 0))))
11573 place = tem;
11575 /* If we are doing a 3->2 combination, and we have a
11576 register which formerly died in i3 and was not used
11577 by i2, which now no longer dies in i3 and is used in
11578 i2 but does not die in i2, and place is between i2
11579 and i3, then we may need to move a link from place to
11580 i2. */
11581 if (i2 && INSN_UID (place) <= max_uid_cuid
11582 && INSN_CUID (place) > INSN_CUID (i2)
11583 && from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
11584 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11586 rtx links = LOG_LINKS (place);
11587 LOG_LINKS (place) = 0;
11588 distribute_links (links);
11590 break;
11594 /* If we haven't found an insn for the death note and it
11595 is still a REG_DEAD note, but we have hit a CODE_LABEL,
11596 insert a USE insn for the register at that label and
11597 put the death node there. This prevents problems with
11598 call-state tracking in caller-save.c. */
11599 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
11601 place
11602 = emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (note, 0)),
11603 tem);
11605 /* If this insn was emitted between blocks, then update
11606 basic_block_head of the current block to include it. */
11607 if (basic_block_end[this_basic_block - 1] == tem)
11608 basic_block_head[this_basic_block] = place;
11612 /* If the register is set or already dead at PLACE, we needn't do
11613 anything with this note if it is still a REG_DEAD note.
11614 We can here if it is set at all, not if is it totally replace,
11615 which is what `dead_or_set_p' checks, so also check for it being
11616 set partially. */
11619 if (place && REG_NOTE_KIND (note) == REG_DEAD)
11621 int regno = REGNO (XEXP (note, 0));
11623 if (dead_or_set_p (place, XEXP (note, 0))
11624 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
11626 /* Unless the register previously died in PLACE, clear
11627 reg_last_death. [I no longer understand why this is
11628 being done.] */
11629 if (reg_last_death[regno] != place)
11630 reg_last_death[regno] = 0;
11631 place = 0;
11633 else
11634 reg_last_death[regno] = place;
11636 /* If this is a death note for a hard reg that is occupying
11637 multiple registers, ensure that we are still using all
11638 parts of the object. If we find a piece of the object
11639 that is unused, we must add a USE for that piece before
11640 PLACE and put the appropriate REG_DEAD note on it.
11642 An alternative would be to put a REG_UNUSED for the pieces
11643 on the insn that set the register, but that can't be done if
11644 it is not in the same block. It is simpler, though less
11645 efficient, to add the USE insns. */
11647 if (place && regno < FIRST_PSEUDO_REGISTER
11648 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
11650 int endregno
11651 = regno + HARD_REGNO_NREGS (regno,
11652 GET_MODE (XEXP (note, 0)));
11653 int all_used = 1;
11654 int i;
11656 for (i = regno; i < endregno; i++)
11657 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
11658 && ! find_regno_fusage (place, USE, i))
11660 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
11661 rtx p;
11663 /* See if we already placed a USE note for this
11664 register in front of PLACE. */
11665 for (p = place;
11666 GET_CODE (PREV_INSN (p)) == INSN
11667 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
11668 p = PREV_INSN (p))
11669 if (rtx_equal_p (piece,
11670 XEXP (PATTERN (PREV_INSN (p)), 0)))
11672 p = 0;
11673 break;
11676 if (p)
11678 rtx use_insn
11679 = emit_insn_before (gen_rtx_USE (VOIDmode,
11680 piece),
11682 REG_NOTES (use_insn)
11683 = gen_rtx_EXPR_LIST (REG_DEAD, piece,
11684 REG_NOTES (use_insn));
11687 all_used = 0;
11690 /* Check for the case where the register dying partially
11691 overlaps the register set by this insn. */
11692 if (all_used)
11693 for (i = regno; i < endregno; i++)
11694 if (dead_or_set_regno_p (place, i))
11696 all_used = 0;
11697 break;
11700 if (! all_used)
11702 /* Put only REG_DEAD notes for pieces that are
11703 still used and that are not already dead or set. */
11705 for (i = regno; i < endregno; i++)
11707 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
11709 if ((reg_referenced_p (piece, PATTERN (place))
11710 || (GET_CODE (place) == CALL_INSN
11711 && find_reg_fusage (place, USE, piece)))
11712 && ! dead_or_set_p (place, piece)
11713 && ! reg_bitfield_target_p (piece,
11714 PATTERN (place)))
11715 REG_NOTES (place)
11716 = gen_rtx_EXPR_LIST (REG_DEAD,
11717 piece, REG_NOTES (place));
11720 place = 0;
11724 break;
11726 default:
11727 /* Any other notes should not be present at this point in the
11728 compilation. */
11729 abort ();
11732 if (place)
11734 XEXP (note, 1) = REG_NOTES (place);
11735 REG_NOTES (place) = note;
11737 else if ((REG_NOTE_KIND (note) == REG_DEAD
11738 || REG_NOTE_KIND (note) == REG_UNUSED)
11739 && GET_CODE (XEXP (note, 0)) == REG)
11740 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
11742 if (place2)
11744 if ((REG_NOTE_KIND (note) == REG_DEAD
11745 || REG_NOTE_KIND (note) == REG_UNUSED)
11746 && GET_CODE (XEXP (note, 0)) == REG)
11747 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
11749 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
11750 REG_NOTE_KIND (note),
11751 XEXP (note, 0),
11752 REG_NOTES (place2));
11757 /* Similarly to above, distribute the LOG_LINKS that used to be present on
11758 I3, I2, and I1 to new locations. This is also called in one case to
11759 add a link pointing at I3 when I3's destination is changed. */
11761 static void
11762 distribute_links (links)
11763 rtx links;
11765 rtx link, next_link;
11767 for (link = links; link; link = next_link)
11769 rtx place = 0;
11770 rtx insn;
11771 rtx set, reg;
11773 next_link = XEXP (link, 1);
11775 /* If the insn that this link points to is a NOTE or isn't a single
11776 set, ignore it. In the latter case, it isn't clear what we
11777 can do other than ignore the link, since we can't tell which
11778 register it was for. Such links wouldn't be used by combine
11779 anyway.
11781 It is not possible for the destination of the target of the link to
11782 have been changed by combine. The only potential of this is if we
11783 replace I3, I2, and I1 by I3 and I2. But in that case the
11784 destination of I2 also remains unchanged. */
11786 if (GET_CODE (XEXP (link, 0)) == NOTE
11787 || (set = single_set (XEXP (link, 0))) == 0)
11788 continue;
11790 reg = SET_DEST (set);
11791 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
11792 || GET_CODE (reg) == SIGN_EXTRACT
11793 || GET_CODE (reg) == STRICT_LOW_PART)
11794 reg = XEXP (reg, 0);
11796 /* A LOG_LINK is defined as being placed on the first insn that uses
11797 a register and points to the insn that sets the register. Start
11798 searching at the next insn after the target of the link and stop
11799 when we reach a set of the register or the end of the basic block.
11801 Note that this correctly handles the link that used to point from
11802 I3 to I2. Also note that not much searching is typically done here
11803 since most links don't point very far away. */
11805 for (insn = NEXT_INSN (XEXP (link, 0));
11806 (insn && (this_basic_block == n_basic_blocks - 1
11807 || basic_block_head[this_basic_block + 1] != insn));
11808 insn = NEXT_INSN (insn))
11809 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
11810 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
11812 if (reg_referenced_p (reg, PATTERN (insn)))
11813 place = insn;
11814 break;
11816 else if (GET_CODE (insn) == CALL_INSN
11817 && find_reg_fusage (insn, USE, reg))
11819 place = insn;
11820 break;
11823 /* If we found a place to put the link, place it there unless there
11824 is already a link to the same insn as LINK at that point. */
11826 if (place)
11828 rtx link2;
11830 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
11831 if (XEXP (link2, 0) == XEXP (link, 0))
11832 break;
11834 if (link2 == 0)
11836 XEXP (link, 1) = LOG_LINKS (place);
11837 LOG_LINKS (place) = link;
11839 /* Set added_links_insn to the earliest insn we added a
11840 link to. */
11841 if (added_links_insn == 0
11842 || INSN_CUID (added_links_insn) > INSN_CUID (place))
11843 added_links_insn = place;
11849 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
11851 static int
11852 insn_cuid (insn)
11853 rtx insn;
11855 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
11856 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
11857 insn = NEXT_INSN (insn);
11859 if (INSN_UID (insn) > max_uid_cuid)
11860 abort ();
11862 return INSN_CUID (insn);
11865 void
11866 dump_combine_stats (file)
11867 FILE *file;
11869 fprintf
11870 (file,
11871 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
11872 combine_attempts, combine_merges, combine_extras, combine_successes);
11875 void
11876 dump_combine_total_stats (file)
11877 FILE *file;
11879 fprintf
11880 (file,
11881 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
11882 total_attempts, total_merges, total_extras, total_successes);