[48/77] Make subroutines of num_sign_bit_copies operate on scalar_int_mode
[official-gcc.git] / gcc / ipa-inline.c
blobdd46cb613624c5eb7de0a1313a707ec19428eef9
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "params.h"
109 #include "profile.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-fnsummary.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116 #include "sreal.h"
117 #include "auto-profile.h"
118 #include "builtins.h"
119 #include "fibonacci_heap.h"
120 #include "stringpool.h"
121 #include "attribs.h"
122 #include "asan.h"
124 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
125 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
127 /* Statistics we collect about inlining algorithm. */
128 static int overall_size;
129 static profile_count max_count;
130 static profile_count spec_rem;
132 /* Pre-computed constants 1/CGRAPH_FREQ_BASE and 1/100. */
133 static sreal cgraph_freq_base_rec, percent_rec;
135 /* Return false when inlining edge E would lead to violating
136 limits on function unit growth or stack usage growth.
138 The relative function body growth limit is present generally
139 to avoid problems with non-linear behavior of the compiler.
140 To allow inlining huge functions into tiny wrapper, the limit
141 is always based on the bigger of the two functions considered.
143 For stack growth limits we always base the growth in stack usage
144 of the callers. We want to prevent applications from segfaulting
145 on stack overflow when functions with huge stack frames gets
146 inlined. */
148 static bool
149 caller_growth_limits (struct cgraph_edge *e)
151 struct cgraph_node *to = e->caller;
152 struct cgraph_node *what = e->callee->ultimate_alias_target ();
153 int newsize;
154 int limit = 0;
155 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
156 ipa_fn_summary *info, *what_info, *outer_info = ipa_fn_summaries->get (to);
158 /* Look for function e->caller is inlined to. While doing
159 so work out the largest function body on the way. As
160 described above, we want to base our function growth
161 limits based on that. Not on the self size of the
162 outer function, not on the self size of inline code
163 we immediately inline to. This is the most relaxed
164 interpretation of the rule "do not grow large functions
165 too much in order to prevent compiler from exploding". */
166 while (true)
168 info = ipa_fn_summaries->get (to);
169 if (limit < info->self_size)
170 limit = info->self_size;
171 if (stack_size_limit < info->estimated_self_stack_size)
172 stack_size_limit = info->estimated_self_stack_size;
173 if (to->global.inlined_to)
174 to = to->callers->caller;
175 else
176 break;
179 what_info = ipa_fn_summaries->get (what);
181 if (limit < what_info->self_size)
182 limit = what_info->self_size;
184 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
186 /* Check the size after inlining against the function limits. But allow
187 the function to shrink if it went over the limits by forced inlining. */
188 newsize = estimate_size_after_inlining (to, e);
189 if (newsize >= info->size
190 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
191 && newsize > limit)
193 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
194 return false;
197 if (!what_info->estimated_stack_size)
198 return true;
200 /* FIXME: Stack size limit often prevents inlining in Fortran programs
201 due to large i/o datastructures used by the Fortran front-end.
202 We ought to ignore this limit when we know that the edge is executed
203 on every invocation of the caller (i.e. its call statement dominates
204 exit block). We do not track this information, yet. */
205 stack_size_limit += ((gcov_type)stack_size_limit
206 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
208 inlined_stack = (outer_info->stack_frame_offset
209 + outer_info->estimated_self_stack_size
210 + what_info->estimated_stack_size);
211 /* Check new stack consumption with stack consumption at the place
212 stack is used. */
213 if (inlined_stack > stack_size_limit
214 /* If function already has large stack usage from sibling
215 inline call, we can inline, too.
216 This bit overoptimistically assume that we are good at stack
217 packing. */
218 && inlined_stack > info->estimated_stack_size
219 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
221 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
222 return false;
224 return true;
227 /* Dump info about why inlining has failed. */
229 static void
230 report_inline_failed_reason (struct cgraph_edge *e)
232 if (dump_file)
234 fprintf (dump_file, " not inlinable: %s -> %s, %s\n",
235 e->caller->dump_name (),
236 e->callee->dump_name (),
237 cgraph_inline_failed_string (e->inline_failed));
238 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
239 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
240 && e->caller->lto_file_data
241 && e->callee->ultimate_alias_target ()->lto_file_data)
243 fprintf (dump_file, " LTO objects: %s, %s\n",
244 e->caller->lto_file_data->file_name,
245 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
247 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
248 cl_target_option_print_diff
249 (dump_file, 2, target_opts_for_fn (e->caller->decl),
250 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
251 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
252 cl_optimization_print_diff
253 (dump_file, 2, opts_for_fn (e->caller->decl),
254 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
258 /* Decide whether sanitizer-related attributes allow inlining. */
260 static bool
261 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
263 if (!caller || !callee)
264 return true;
266 return sanitize_flags_p (SANITIZE_ADDRESS, caller)
267 == sanitize_flags_p (SANITIZE_ADDRESS, callee);
270 /* Used for flags where it is safe to inline when caller's value is
271 grater than callee's. */
272 #define check_maybe_up(flag) \
273 (opts_for_fn (caller->decl)->x_##flag \
274 != opts_for_fn (callee->decl)->x_##flag \
275 && (!always_inline \
276 || opts_for_fn (caller->decl)->x_##flag \
277 < opts_for_fn (callee->decl)->x_##flag))
278 /* Used for flags where it is safe to inline when caller's value is
279 smaller than callee's. */
280 #define check_maybe_down(flag) \
281 (opts_for_fn (caller->decl)->x_##flag \
282 != opts_for_fn (callee->decl)->x_##flag \
283 && (!always_inline \
284 || opts_for_fn (caller->decl)->x_##flag \
285 > opts_for_fn (callee->decl)->x_##flag))
286 /* Used for flags where exact match is needed for correctness. */
287 #define check_match(flag) \
288 (opts_for_fn (caller->decl)->x_##flag \
289 != opts_for_fn (callee->decl)->x_##flag)
291 /* Decide if we can inline the edge and possibly update
292 inline_failed reason.
293 We check whether inlining is possible at all and whether
294 caller growth limits allow doing so.
296 if REPORT is true, output reason to the dump file.
298 if DISREGARD_LIMITS is true, ignore size limits.*/
300 static bool
301 can_inline_edge_p (struct cgraph_edge *e, bool report,
302 bool disregard_limits = false, bool early = false)
304 gcc_checking_assert (e->inline_failed);
306 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
308 if (report)
309 report_inline_failed_reason (e);
310 return false;
313 bool inlinable = true;
314 enum availability avail;
315 cgraph_node *caller = e->caller->global.inlined_to
316 ? e->caller->global.inlined_to : e->caller;
317 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
318 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
319 tree callee_tree
320 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
322 if (!callee->definition)
324 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
325 inlinable = false;
327 if (!early && !opt_for_fn (callee->decl, optimize))
329 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
330 inlinable = false;
332 else if (callee->calls_comdat_local)
334 e->inline_failed = CIF_USES_COMDAT_LOCAL;
335 inlinable = false;
337 else if (avail <= AVAIL_INTERPOSABLE)
339 e->inline_failed = CIF_OVERWRITABLE;
340 inlinable = false;
342 /* All edges with call_stmt_cannot_inline_p should have inline_failed
343 initialized to one of FINAL_ERROR reasons. */
344 else if (e->call_stmt_cannot_inline_p)
345 gcc_unreachable ();
346 /* Don't inline if the functions have different EH personalities. */
347 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
348 && DECL_FUNCTION_PERSONALITY (callee->decl)
349 && (DECL_FUNCTION_PERSONALITY (caller->decl)
350 != DECL_FUNCTION_PERSONALITY (callee->decl)))
352 e->inline_failed = CIF_EH_PERSONALITY;
353 inlinable = false;
355 /* TM pure functions should not be inlined into non-TM_pure
356 functions. */
357 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
359 e->inline_failed = CIF_UNSPECIFIED;
360 inlinable = false;
362 /* Check compatibility of target optimization options. */
363 else if (!targetm.target_option.can_inline_p (caller->decl,
364 callee->decl))
366 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
367 inlinable = false;
369 else if (!ipa_fn_summaries->get (callee)->inlinable)
371 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
372 inlinable = false;
374 /* Don't inline a function with mismatched sanitization attributes. */
375 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
377 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
378 inlinable = false;
380 /* Check if caller growth allows the inlining. */
381 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
382 && !disregard_limits
383 && !lookup_attribute ("flatten",
384 DECL_ATTRIBUTES (caller->decl))
385 && !caller_growth_limits (e))
386 inlinable = false;
387 /* Don't inline a function with a higher optimization level than the
388 caller. FIXME: this is really just tip of iceberg of handling
389 optimization attribute. */
390 else if (caller_tree != callee_tree)
392 bool always_inline =
393 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
394 && lookup_attribute ("always_inline",
395 DECL_ATTRIBUTES (callee->decl)));
396 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
397 ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
399 /* Until GCC 4.9 we did not check the semantics alterning flags
400 bellow and inline across optimization boundry.
401 Enabling checks bellow breaks several packages by refusing
402 to inline library always_inline functions. See PR65873.
403 Disable the check for early inlining for now until better solution
404 is found. */
405 if (always_inline && early)
407 /* There are some options that change IL semantics which means
408 we cannot inline in these cases for correctness reason.
409 Not even for always_inline declared functions. */
410 else if (check_match (flag_wrapv)
411 || check_match (flag_trapv)
412 || check_match (flag_pcc_struct_return)
413 /* When caller or callee does FP math, be sure FP codegen flags
414 compatible. */
415 || ((caller_info->fp_expressions && callee_info->fp_expressions)
416 && (check_maybe_up (flag_rounding_math)
417 || check_maybe_up (flag_trapping_math)
418 || check_maybe_down (flag_unsafe_math_optimizations)
419 || check_maybe_down (flag_finite_math_only)
420 || check_maybe_up (flag_signaling_nans)
421 || check_maybe_down (flag_cx_limited_range)
422 || check_maybe_up (flag_signed_zeros)
423 || check_maybe_down (flag_associative_math)
424 || check_maybe_down (flag_reciprocal_math)
425 || check_maybe_down (flag_fp_int_builtin_inexact)
426 /* Strictly speaking only when the callee contains function
427 calls that may end up setting errno. */
428 || check_maybe_up (flag_errno_math)))
429 /* We do not want to make code compiled with exceptions to be
430 brought into a non-EH function unless we know that the callee
431 does not throw.
432 This is tracked by DECL_FUNCTION_PERSONALITY. */
433 || (check_maybe_up (flag_non_call_exceptions)
434 && DECL_FUNCTION_PERSONALITY (callee->decl))
435 || (check_maybe_up (flag_exceptions)
436 && DECL_FUNCTION_PERSONALITY (callee->decl))
437 /* When devirtualization is diabled for callee, it is not safe
438 to inline it as we possibly mangled the type info.
439 Allow early inlining of always inlines. */
440 || (!early && check_maybe_down (flag_devirtualize)))
442 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
443 inlinable = false;
445 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
446 else if (always_inline)
448 /* When user added an attribute to the callee honor it. */
449 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
450 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
452 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
453 inlinable = false;
455 /* If explicit optimize attribute are not used, the mismatch is caused
456 by different command line options used to build different units.
457 Do not care about COMDAT functions - those are intended to be
458 optimized with the optimization flags of module they are used in.
459 Also do not care about mixing up size/speed optimization when
460 DECL_DISREGARD_INLINE_LIMITS is set. */
461 else if ((callee->merged_comdat
462 && !lookup_attribute ("optimize",
463 DECL_ATTRIBUTES (caller->decl)))
464 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
466 /* If mismatch is caused by merging two LTO units with different
467 optimizationflags we want to be bit nicer. However never inline
468 if one of functions is not optimized at all. */
469 else if (!opt_for_fn (callee->decl, optimize)
470 || !opt_for_fn (caller->decl, optimize))
472 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
473 inlinable = false;
475 /* If callee is optimized for size and caller is not, allow inlining if
476 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
477 is inline (and thus likely an unified comdat). This will allow caller
478 to run faster. */
479 else if (opt_for_fn (callee->decl, optimize_size)
480 > opt_for_fn (caller->decl, optimize_size))
482 int growth = estimate_edge_growth (e);
483 if (growth > 0
484 && (!DECL_DECLARED_INLINE_P (callee->decl)
485 && growth >= MAX (MAX_INLINE_INSNS_SINGLE,
486 MAX_INLINE_INSNS_AUTO)))
488 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
489 inlinable = false;
492 /* If callee is more aggressively optimized for performance than caller,
493 we generally want to inline only cheap (runtime wise) functions. */
494 else if (opt_for_fn (callee->decl, optimize_size)
495 < opt_for_fn (caller->decl, optimize_size)
496 || (opt_for_fn (callee->decl, optimize)
497 > opt_for_fn (caller->decl, optimize)))
499 if (estimate_edge_time (e)
500 >= 20 + ipa_call_summaries->get (e)->call_stmt_time)
502 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
503 inlinable = false;
509 if (!inlinable && report)
510 report_inline_failed_reason (e);
511 return inlinable;
515 /* Return true if the edge E is inlinable during early inlining. */
517 static bool
518 can_early_inline_edge_p (struct cgraph_edge *e)
520 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
521 /* Early inliner might get called at WPA stage when IPA pass adds new
522 function. In this case we can not really do any of early inlining
523 because function bodies are missing. */
524 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
525 return false;
526 if (!gimple_has_body_p (callee->decl))
528 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
529 return false;
531 /* In early inliner some of callees may not be in SSA form yet
532 (i.e. the callgraph is cyclic and we did not process
533 the callee by early inliner, yet). We don't have CIF code for this
534 case; later we will re-do the decision in the real inliner. */
535 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
536 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
538 if (dump_file)
539 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
540 return false;
542 if (!can_inline_edge_p (e, true, false, true))
543 return false;
544 return true;
548 /* Return number of calls in N. Ignore cheap builtins. */
550 static int
551 num_calls (struct cgraph_node *n)
553 struct cgraph_edge *e;
554 int num = 0;
556 for (e = n->callees; e; e = e->next_callee)
557 if (!is_inexpensive_builtin (e->callee->decl))
558 num++;
559 return num;
563 /* Return true if we are interested in inlining small function. */
565 static bool
566 want_early_inline_function_p (struct cgraph_edge *e)
568 bool want_inline = true;
569 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
571 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
573 /* For AutoFDO, we need to make sure that before profile summary, all
574 hot paths' IR look exactly the same as profiled binary. As a result,
575 in einliner, we will disregard size limit and inline those callsites
576 that are:
577 * inlined in the profiled binary, and
578 * the cloned callee has enough samples to be considered "hot". */
579 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
581 else if (!DECL_DECLARED_INLINE_P (callee->decl)
582 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
584 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
585 report_inline_failed_reason (e);
586 want_inline = false;
588 else
590 int growth = estimate_edge_growth (e);
591 int n;
593 if (growth <= 0)
595 else if (!e->maybe_hot_p ()
596 && growth > 0)
598 if (dump_file)
599 fprintf (dump_file, " will not early inline: %s->%s, "
600 "call is cold and code would grow by %i\n",
601 e->caller->dump_name (),
602 callee->dump_name (),
603 growth);
604 want_inline = false;
606 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
608 if (dump_file)
609 fprintf (dump_file, " will not early inline: %s->%s, "
610 "growth %i exceeds --param early-inlining-insns\n",
611 e->caller->dump_name (),
612 callee->dump_name (),
613 growth);
614 want_inline = false;
616 else if ((n = num_calls (callee)) != 0
617 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
619 if (dump_file)
620 fprintf (dump_file, " will not early inline: %s->%s, "
621 "growth %i exceeds --param early-inlining-insns "
622 "divided by number of calls\n",
623 e->caller->dump_name (),
624 callee->dump_name (),
625 growth);
626 want_inline = false;
629 return want_inline;
632 /* Compute time of the edge->caller + edge->callee execution when inlining
633 does not happen. */
635 inline sreal
636 compute_uninlined_call_time (struct cgraph_edge *edge,
637 sreal uninlined_call_time)
639 cgraph_node *caller = (edge->caller->global.inlined_to
640 ? edge->caller->global.inlined_to
641 : edge->caller);
643 if (edge->count > profile_count::zero ()
644 && caller->count > profile_count::zero ())
645 uninlined_call_time *= (sreal)edge->count.to_gcov_type ()
646 / caller->count.to_gcov_type ();
647 if (edge->frequency)
648 uninlined_call_time *= cgraph_freq_base_rec * edge->frequency;
649 else
650 uninlined_call_time = uninlined_call_time >> 11;
652 sreal caller_time = ipa_fn_summaries->get (caller)->time;
653 return uninlined_call_time + caller_time;
656 /* Same as compute_uinlined_call_time but compute time when inlining
657 does happen. */
659 inline sreal
660 compute_inlined_call_time (struct cgraph_edge *edge,
661 sreal time)
663 cgraph_node *caller = (edge->caller->global.inlined_to
664 ? edge->caller->global.inlined_to
665 : edge->caller);
666 sreal caller_time = ipa_fn_summaries->get (caller)->time;
668 if (edge->count > profile_count::zero ()
669 && caller->count > profile_count::zero ())
670 time *= (sreal)edge->count.to_gcov_type () / caller->count.to_gcov_type ();
671 if (edge->frequency)
672 time *= cgraph_freq_base_rec * edge->frequency;
673 else
674 time = time >> 11;
676 /* This calculation should match one in ipa-inline-analysis.c
677 (estimate_edge_size_and_time). */
678 time -= (sreal) edge->frequency
679 * ipa_call_summaries->get (edge)->call_stmt_time / CGRAPH_FREQ_BASE;
680 time += caller_time;
681 if (time <= 0)
682 time = ((sreal) 1) >> 8;
683 gcc_checking_assert (time >= 0);
684 return time;
687 /* Return true if the speedup for inlining E is bigger than
688 PARAM_MAX_INLINE_MIN_SPEEDUP. */
690 static bool
691 big_speedup_p (struct cgraph_edge *e)
693 sreal unspec_time;
694 sreal spec_time = estimate_edge_time (e, &unspec_time);
695 sreal time = compute_uninlined_call_time (e, unspec_time);
696 sreal inlined_time = compute_inlined_call_time (e, spec_time);
698 if (time - inlined_time
699 > (sreal) (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP))
700 * percent_rec)
701 return true;
702 return false;
705 /* Return true if we are interested in inlining small function.
706 When REPORT is true, report reason to dump file. */
708 static bool
709 want_inline_small_function_p (struct cgraph_edge *e, bool report)
711 bool want_inline = true;
712 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
714 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
716 else if (!DECL_DECLARED_INLINE_P (callee->decl)
717 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
719 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
720 want_inline = false;
722 /* Do fast and conservative check if the function can be good
723 inline candidate. At the moment we allow inline hints to
724 promote non-inline functions to inline and we increase
725 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
726 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
727 && (!e->count.initialized_p () || !e->maybe_hot_p ()))
728 && ipa_fn_summaries->get (callee)->min_size
729 - ipa_call_summaries->get (e)->call_stmt_size
730 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
732 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
733 want_inline = false;
735 else if ((DECL_DECLARED_INLINE_P (callee->decl)
736 || e->count > profile_count::zero ())
737 && ipa_fn_summaries->get (callee)->min_size
738 - ipa_call_summaries->get (e)->call_stmt_size
739 > 16 * MAX_INLINE_INSNS_SINGLE)
741 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
742 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
743 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
744 want_inline = false;
746 else
748 int growth = estimate_edge_growth (e);
749 ipa_hints hints = estimate_edge_hints (e);
750 bool big_speedup = big_speedup_p (e);
752 if (growth <= 0)
754 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
755 hints suggests that inlining given function is very profitable. */
756 else if (DECL_DECLARED_INLINE_P (callee->decl)
757 && growth >= MAX_INLINE_INSNS_SINGLE
758 && ((!big_speedup
759 && !(hints & (INLINE_HINT_indirect_call
760 | INLINE_HINT_known_hot
761 | INLINE_HINT_loop_iterations
762 | INLINE_HINT_array_index
763 | INLINE_HINT_loop_stride)))
764 || growth >= MAX_INLINE_INSNS_SINGLE * 16))
766 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
767 want_inline = false;
769 else if (!DECL_DECLARED_INLINE_P (callee->decl)
770 && !opt_for_fn (e->caller->decl, flag_inline_functions))
772 /* growth_likely_positive is expensive, always test it last. */
773 if (growth >= MAX_INLINE_INSNS_SINGLE
774 || growth_likely_positive (callee, growth))
776 e->inline_failed = CIF_NOT_DECLARED_INLINED;
777 want_inline = false;
780 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
781 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
782 inlining given function is very profitable. */
783 else if (!DECL_DECLARED_INLINE_P (callee->decl)
784 && !big_speedup
785 && !(hints & INLINE_HINT_known_hot)
786 && growth >= ((hints & (INLINE_HINT_indirect_call
787 | INLINE_HINT_loop_iterations
788 | INLINE_HINT_array_index
789 | INLINE_HINT_loop_stride))
790 ? MAX (MAX_INLINE_INSNS_AUTO,
791 MAX_INLINE_INSNS_SINGLE)
792 : MAX_INLINE_INSNS_AUTO))
794 /* growth_likely_positive is expensive, always test it last. */
795 if (growth >= MAX_INLINE_INSNS_SINGLE
796 || growth_likely_positive (callee, growth))
798 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
799 want_inline = false;
802 /* If call is cold, do not inline when function body would grow. */
803 else if (!e->maybe_hot_p ()
804 && (growth >= MAX_INLINE_INSNS_SINGLE
805 || growth_likely_positive (callee, growth)))
807 e->inline_failed = CIF_UNLIKELY_CALL;
808 want_inline = false;
811 if (!want_inline && report)
812 report_inline_failed_reason (e);
813 return want_inline;
816 /* EDGE is self recursive edge.
817 We hand two cases - when function A is inlining into itself
818 or when function A is being inlined into another inliner copy of function
819 A within function B.
821 In first case OUTER_NODE points to the toplevel copy of A, while
822 in the second case OUTER_NODE points to the outermost copy of A in B.
824 In both cases we want to be extra selective since
825 inlining the call will just introduce new recursive calls to appear. */
827 static bool
828 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
829 struct cgraph_node *outer_node,
830 bool peeling,
831 int depth)
833 char const *reason = NULL;
834 bool want_inline = true;
835 int caller_freq = CGRAPH_FREQ_BASE;
836 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
838 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
839 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
841 if (!edge->maybe_hot_p ())
843 reason = "recursive call is cold";
844 want_inline = false;
846 else if (outer_node->count == profile_count::zero ())
848 reason = "not executed in profile";
849 want_inline = false;
851 else if (depth > max_depth)
853 reason = "--param max-inline-recursive-depth exceeded.";
854 want_inline = false;
857 if (outer_node->global.inlined_to)
858 caller_freq = outer_node->callers->frequency;
860 if (!caller_freq)
862 reason = "function is inlined and unlikely";
863 want_inline = false;
866 if (!want_inline)
868 /* Inlining of self recursive function into copy of itself within other function
869 is transformation similar to loop peeling.
871 Peeling is profitable if we can inline enough copies to make probability
872 of actual call to the self recursive function very small. Be sure that
873 the probability of recursion is small.
875 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
876 This way the expected number of recision is at most max_depth. */
877 else if (peeling)
879 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
880 / max_depth);
881 int i;
882 for (i = 1; i < depth; i++)
883 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
884 if (max_count > profile_count::zero () && edge->count > profile_count::zero ()
885 && (edge->count.to_gcov_type () * CGRAPH_FREQ_BASE
886 / outer_node->count.to_gcov_type ()
887 >= max_prob))
889 reason = "profile of recursive call is too large";
890 want_inline = false;
892 if (max_count == profile_count::zero ()
893 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
894 >= max_prob))
896 reason = "frequency of recursive call is too large";
897 want_inline = false;
900 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
901 depth is large. We reduce function call overhead and increase chances that
902 things fit in hardware return predictor.
904 Recursive inlining might however increase cost of stack frame setup
905 actually slowing down functions whose recursion tree is wide rather than
906 deep.
908 Deciding reliably on when to do recursive inlining without profile feedback
909 is tricky. For now we disable recursive inlining when probability of self
910 recursion is low.
912 Recursive inlining of self recursive call within loop also results in large loop
913 depths that generally optimize badly. We may want to throttle down inlining
914 in those cases. In particular this seems to happen in one of libstdc++ rb tree
915 methods. */
916 else
918 if (max_count > profile_count::zero () && edge->count.initialized_p ()
919 && (edge->count.to_gcov_type () * 100
920 / outer_node->count.to_gcov_type ()
921 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
923 reason = "profile of recursive call is too small";
924 want_inline = false;
926 else if ((max_count == profile_count::zero ()
927 || !edge->count.initialized_p ())
928 && (edge->frequency * 100 / caller_freq
929 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
931 reason = "frequency of recursive call is too small";
932 want_inline = false;
935 if (!want_inline && dump_file)
936 fprintf (dump_file, " not inlining recursively: %s\n", reason);
937 return want_inline;
940 /* Return true when NODE has uninlinable caller;
941 set HAS_HOT_CALL if it has hot call.
942 Worker for cgraph_for_node_and_aliases. */
944 static bool
945 check_callers (struct cgraph_node *node, void *has_hot_call)
947 struct cgraph_edge *e;
948 for (e = node->callers; e; e = e->next_caller)
950 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
951 || !opt_for_fn (e->caller->decl, optimize))
952 return true;
953 if (!can_inline_edge_p (e, true))
954 return true;
955 if (e->recursive_p ())
956 return true;
957 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
958 *(bool *)has_hot_call = true;
960 return false;
963 /* If NODE has a caller, return true. */
965 static bool
966 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
968 if (node->callers)
969 return true;
970 return false;
973 /* Decide if inlining NODE would reduce unit size by eliminating
974 the offline copy of function.
975 When COLD is true the cold calls are considered, too. */
977 static bool
978 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
980 bool has_hot_call = false;
982 /* Aliases gets inlined along with the function they alias. */
983 if (node->alias)
984 return false;
985 /* Already inlined? */
986 if (node->global.inlined_to)
987 return false;
988 /* Does it have callers? */
989 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
990 return false;
991 /* Inlining into all callers would increase size? */
992 if (estimate_growth (node) > 0)
993 return false;
994 /* All inlines must be possible. */
995 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
996 true))
997 return false;
998 if (!cold && !has_hot_call)
999 return false;
1000 return true;
1003 /* A cost model driving the inlining heuristics in a way so the edges with
1004 smallest badness are inlined first. After each inlining is performed
1005 the costs of all caller edges of nodes affected are recomputed so the
1006 metrics may accurately depend on values such as number of inlinable callers
1007 of the function or function body size. */
1009 static sreal
1010 edge_badness (struct cgraph_edge *edge, bool dump)
1012 sreal badness;
1013 int growth;
1014 sreal edge_time, unspec_edge_time;
1015 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1016 struct ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
1017 ipa_hints hints;
1018 cgraph_node *caller = (edge->caller->global.inlined_to
1019 ? edge->caller->global.inlined_to
1020 : edge->caller);
1022 growth = estimate_edge_growth (edge);
1023 edge_time = estimate_edge_time (edge, &unspec_edge_time);
1024 hints = estimate_edge_hints (edge);
1025 gcc_checking_assert (edge_time >= 0);
1026 /* Check that inlined time is better, but tolerate some roundoff issues. */
1027 gcc_checking_assert ((edge_time - callee_info->time).to_int () <= 0);
1028 gcc_checking_assert (growth <= callee_info->size);
1030 if (dump)
1032 fprintf (dump_file, " Badness calculation for %s -> %s\n",
1033 edge->caller->dump_name (),
1034 edge->callee->dump_name ());
1035 fprintf (dump_file, " size growth %i, time %f unspec %f ",
1036 growth,
1037 edge_time.to_double (),
1038 unspec_edge_time.to_double ());
1039 ipa_dump_hints (dump_file, hints);
1040 if (big_speedup_p (edge))
1041 fprintf (dump_file, " big_speedup");
1042 fprintf (dump_file, "\n");
1045 /* Always prefer inlining saving code size. */
1046 if (growth <= 0)
1048 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1049 if (dump)
1050 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1051 growth);
1053 /* Inlining into EXTERNAL functions is not going to change anything unless
1054 they are themselves inlined. */
1055 else if (DECL_EXTERNAL (caller->decl))
1057 if (dump)
1058 fprintf (dump_file, " max: function is external\n");
1059 return sreal::max ();
1061 /* When profile is available. Compute badness as:
1063 time_saved * caller_count
1064 goodness = -------------------------------------------------
1065 growth_of_caller * overall_growth * combined_size
1067 badness = - goodness
1069 Again use negative value to make calls with profile appear hotter
1070 then calls without.
1072 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1073 || caller->count > profile_count::zero ())
1075 sreal numerator, denominator;
1076 int overall_growth;
1077 sreal inlined_time = compute_inlined_call_time (edge, edge_time);
1079 numerator = (compute_uninlined_call_time (edge, unspec_edge_time)
1080 - inlined_time);
1081 if (numerator == 0)
1082 numerator = ((sreal) 1 >> 8);
1083 if (caller->count > profile_count::zero ())
1084 numerator *= caller->count.to_gcov_type ();
1085 else if (caller->count.initialized_p ())
1086 numerator = numerator >> 11;
1087 denominator = growth;
1089 overall_growth = callee_info->growth;
1091 /* Look for inliner wrappers of the form:
1093 inline_caller ()
1095 do_fast_job...
1096 if (need_more_work)
1097 noninline_callee ();
1099 Withhout panilizing this case, we usually inline noninline_callee
1100 into the inline_caller because overall_growth is small preventing
1101 further inlining of inline_caller.
1103 Penalize only callgraph edges to functions with small overall
1104 growth ...
1106 if (growth > overall_growth
1107 /* ... and having only one caller which is not inlined ... */
1108 && callee_info->single_caller
1109 && !edge->caller->global.inlined_to
1110 /* ... and edges executed only conditionally ... */
1111 && edge->frequency < CGRAPH_FREQ_BASE
1112 /* ... consider case where callee is not inline but caller is ... */
1113 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1114 && DECL_DECLARED_INLINE_P (caller->decl))
1115 /* ... or when early optimizers decided to split and edge
1116 frequency still indicates splitting is a win ... */
1117 || (callee->split_part && !caller->split_part
1118 && edge->frequency
1119 < CGRAPH_FREQ_BASE
1120 * PARAM_VALUE
1121 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY) / 100
1122 /* ... and do not overwrite user specified hints. */
1123 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1124 || DECL_DECLARED_INLINE_P (caller->decl)))))
1126 struct ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
1127 int caller_growth = caller_info->growth;
1129 /* Only apply the penalty when caller looks like inline candidate,
1130 and it is not called once and. */
1131 if (!caller_info->single_caller && overall_growth < caller_growth
1132 && caller_info->inlinable
1133 && caller_info->size
1134 < (DECL_DECLARED_INLINE_P (caller->decl)
1135 ? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
1137 if (dump)
1138 fprintf (dump_file,
1139 " Wrapper penalty. Increasing growth %i to %i\n",
1140 overall_growth, caller_growth);
1141 overall_growth = caller_growth;
1144 if (overall_growth > 0)
1146 /* Strongly preffer functions with few callers that can be inlined
1147 fully. The square root here leads to smaller binaries at average.
1148 Watch however for extreme cases and return to linear function
1149 when growth is large. */
1150 if (overall_growth < 256)
1151 overall_growth *= overall_growth;
1152 else
1153 overall_growth += 256 * 256 - 256;
1154 denominator *= overall_growth;
1156 denominator *= inlined_time;
1158 badness = - numerator / denominator;
1160 if (dump)
1162 fprintf (dump_file,
1163 " %f: guessed profile. frequency %f, count %" PRId64
1164 " caller count %" PRId64
1165 " time w/o inlining %f, time with inlining %f"
1166 " overall growth %i (current) %i (original)"
1167 " %i (compensated)\n",
1168 badness.to_double (),
1169 (double)edge->frequency / CGRAPH_FREQ_BASE,
1170 edge->count.initialized_p () ? edge->count.to_gcov_type () : -1,
1171 caller->count.initialized_p () ? caller->count.to_gcov_type () : -1,
1172 compute_uninlined_call_time (edge,
1173 unspec_edge_time).to_double (),
1174 compute_inlined_call_time (edge, edge_time).to_double (),
1175 estimate_growth (callee),
1176 callee_info->growth, overall_growth);
1179 /* When function local profile is not available or it does not give
1180 useful information (ie frequency is zero), base the cost on
1181 loop nest and overall size growth, so we optimize for overall number
1182 of functions fully inlined in program. */
1183 else
1185 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1186 badness = growth;
1188 /* Decrease badness if call is nested. */
1189 if (badness > 0)
1190 badness = badness >> nest;
1191 else
1192 badness = badness << nest;
1193 if (dump)
1194 fprintf (dump_file, " %f: no profile. nest %i\n",
1195 badness.to_double (), nest);
1197 gcc_checking_assert (badness != 0);
1199 if (edge->recursive_p ())
1200 badness = badness.shift (badness > 0 ? 4 : -4);
1201 if ((hints & (INLINE_HINT_indirect_call
1202 | INLINE_HINT_loop_iterations
1203 | INLINE_HINT_array_index
1204 | INLINE_HINT_loop_stride))
1205 || callee_info->growth <= 0)
1206 badness = badness.shift (badness > 0 ? -2 : 2);
1207 if (hints & (INLINE_HINT_same_scc))
1208 badness = badness.shift (badness > 0 ? 3 : -3);
1209 else if (hints & (INLINE_HINT_in_scc))
1210 badness = badness.shift (badness > 0 ? 2 : -2);
1211 else if (hints & (INLINE_HINT_cross_module))
1212 badness = badness.shift (badness > 0 ? 1 : -1);
1213 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1214 badness = badness.shift (badness > 0 ? -4 : 4);
1215 else if ((hints & INLINE_HINT_declared_inline))
1216 badness = badness.shift (badness > 0 ? -3 : 3);
1217 if (dump)
1218 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1219 return badness;
1222 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1223 static inline void
1224 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1226 sreal badness = edge_badness (edge, false);
1227 if (edge->aux)
1229 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1230 gcc_checking_assert (n->get_data () == edge);
1232 /* fibonacci_heap::replace_key does busy updating of the
1233 heap that is unnecesarily expensive.
1234 We do lazy increases: after extracting minimum if the key
1235 turns out to be out of date, it is re-inserted into heap
1236 with correct value. */
1237 if (badness < n->get_key ())
1239 if (dump_file && (dump_flags & TDF_DETAILS))
1241 fprintf (dump_file,
1242 " decreasing badness %s -> %s, %f to %f\n",
1243 edge->caller->dump_name (),
1244 edge->callee->dump_name (),
1245 n->get_key ().to_double (),
1246 badness.to_double ());
1248 heap->decrease_key (n, badness);
1251 else
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1255 fprintf (dump_file,
1256 " enqueuing call %s -> %s, badness %f\n",
1257 edge->caller->dump_name (),
1258 edge->callee->dump_name (),
1259 badness.to_double ());
1261 edge->aux = heap->insert (badness, edge);
1266 /* NODE was inlined.
1267 All caller edges needs to be resetted because
1268 size estimates change. Similarly callees needs reset
1269 because better context may be known. */
1271 static void
1272 reset_edge_caches (struct cgraph_node *node)
1274 struct cgraph_edge *edge;
1275 struct cgraph_edge *e = node->callees;
1276 struct cgraph_node *where = node;
1277 struct ipa_ref *ref;
1279 if (where->global.inlined_to)
1280 where = where->global.inlined_to;
1282 for (edge = where->callers; edge; edge = edge->next_caller)
1283 if (edge->inline_failed)
1284 reset_edge_growth_cache (edge);
1286 FOR_EACH_ALIAS (where, ref)
1287 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1289 if (!e)
1290 return;
1292 while (true)
1293 if (!e->inline_failed && e->callee->callees)
1294 e = e->callee->callees;
1295 else
1297 if (e->inline_failed)
1298 reset_edge_growth_cache (e);
1299 if (e->next_callee)
1300 e = e->next_callee;
1301 else
1305 if (e->caller == node)
1306 return;
1307 e = e->caller->callers;
1309 while (!e->next_callee);
1310 e = e->next_callee;
1315 /* Recompute HEAP nodes for each of caller of NODE.
1316 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1317 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1318 it is inlinable. Otherwise check all edges. */
1320 static void
1321 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1322 bitmap updated_nodes,
1323 struct cgraph_edge *check_inlinablity_for)
1325 struct cgraph_edge *edge;
1326 struct ipa_ref *ref;
1328 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1329 || node->global.inlined_to)
1330 return;
1331 if (!bitmap_set_bit (updated_nodes, node->uid))
1332 return;
1334 FOR_EACH_ALIAS (node, ref)
1336 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1337 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1340 for (edge = node->callers; edge; edge = edge->next_caller)
1341 if (edge->inline_failed)
1343 if (!check_inlinablity_for
1344 || check_inlinablity_for == edge)
1346 if (can_inline_edge_p (edge, false)
1347 && want_inline_small_function_p (edge, false))
1348 update_edge_key (heap, edge);
1349 else if (edge->aux)
1351 report_inline_failed_reason (edge);
1352 heap->delete_node ((edge_heap_node_t *) edge->aux);
1353 edge->aux = NULL;
1356 else if (edge->aux)
1357 update_edge_key (heap, edge);
1361 /* Recompute HEAP nodes for each uninlined call in NODE.
1362 This is used when we know that edge badnesses are going only to increase
1363 (we introduced new call site) and thus all we need is to insert newly
1364 created edges into heap. */
1366 static void
1367 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1368 bitmap updated_nodes)
1370 struct cgraph_edge *e = node->callees;
1372 if (!e)
1373 return;
1374 while (true)
1375 if (!e->inline_failed && e->callee->callees)
1376 e = e->callee->callees;
1377 else
1379 enum availability avail;
1380 struct cgraph_node *callee;
1381 /* We do not reset callee growth cache here. Since we added a new call,
1382 growth chould have just increased and consequentely badness metric
1383 don't need updating. */
1384 if (e->inline_failed
1385 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1386 && ipa_fn_summaries->get (callee)->inlinable
1387 && avail >= AVAIL_AVAILABLE
1388 && !bitmap_bit_p (updated_nodes, callee->uid))
1390 if (can_inline_edge_p (e, false)
1391 && want_inline_small_function_p (e, false))
1392 update_edge_key (heap, e);
1393 else if (e->aux)
1395 report_inline_failed_reason (e);
1396 heap->delete_node ((edge_heap_node_t *) e->aux);
1397 e->aux = NULL;
1400 if (e->next_callee)
1401 e = e->next_callee;
1402 else
1406 if (e->caller == node)
1407 return;
1408 e = e->caller->callers;
1410 while (!e->next_callee);
1411 e = e->next_callee;
1416 /* Enqueue all recursive calls from NODE into priority queue depending on
1417 how likely we want to recursively inline the call. */
1419 static void
1420 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1421 edge_heap_t *heap)
1423 struct cgraph_edge *e;
1424 enum availability avail;
1426 for (e = where->callees; e; e = e->next_callee)
1427 if (e->callee == node
1428 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1429 && avail > AVAIL_INTERPOSABLE))
1431 /* When profile feedback is available, prioritize by expected number
1432 of calls. */
1433 heap->insert (!(max_count > 0) || !e->count.initialized_p () ? -e->frequency
1434 : -(e->count.to_gcov_type ()
1435 / ((max_count.to_gcov_type () + (1<<24) - 1)
1436 / (1<<24))),
1439 for (e = where->callees; e; e = e->next_callee)
1440 if (!e->inline_failed)
1441 lookup_recursive_calls (node, e->callee, heap);
1444 /* Decide on recursive inlining: in the case function has recursive calls,
1445 inline until body size reaches given argument. If any new indirect edges
1446 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1447 is NULL. */
1449 static bool
1450 recursive_inlining (struct cgraph_edge *edge,
1451 vec<cgraph_edge *> *new_edges)
1453 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1454 edge_heap_t heap (sreal::min ());
1455 struct cgraph_node *node;
1456 struct cgraph_edge *e;
1457 struct cgraph_node *master_clone = NULL, *next;
1458 int depth = 0;
1459 int n = 0;
1461 node = edge->caller;
1462 if (node->global.inlined_to)
1463 node = node->global.inlined_to;
1465 if (DECL_DECLARED_INLINE_P (node->decl))
1466 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1468 /* Make sure that function is small enough to be considered for inlining. */
1469 if (estimate_size_after_inlining (node, edge) >= limit)
1470 return false;
1471 lookup_recursive_calls (node, node, &heap);
1472 if (heap.empty ())
1473 return false;
1475 if (dump_file)
1476 fprintf (dump_file,
1477 " Performing recursive inlining on %s\n",
1478 node->name ());
1480 /* Do the inlining and update list of recursive call during process. */
1481 while (!heap.empty ())
1483 struct cgraph_edge *curr = heap.extract_min ();
1484 struct cgraph_node *cnode, *dest = curr->callee;
1486 if (!can_inline_edge_p (curr, true))
1487 continue;
1489 /* MASTER_CLONE is produced in the case we already started modified
1490 the function. Be sure to redirect edge to the original body before
1491 estimating growths otherwise we will be seeing growths after inlining
1492 the already modified body. */
1493 if (master_clone)
1495 curr->redirect_callee (master_clone);
1496 reset_edge_growth_cache (curr);
1499 if (estimate_size_after_inlining (node, curr) > limit)
1501 curr->redirect_callee (dest);
1502 reset_edge_growth_cache (curr);
1503 break;
1506 depth = 1;
1507 for (cnode = curr->caller;
1508 cnode->global.inlined_to; cnode = cnode->callers->caller)
1509 if (node->decl
1510 == curr->callee->ultimate_alias_target ()->decl)
1511 depth++;
1513 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1515 curr->redirect_callee (dest);
1516 reset_edge_growth_cache (curr);
1517 continue;
1520 if (dump_file)
1522 fprintf (dump_file,
1523 " Inlining call of depth %i", depth);
1524 if (node->count > profile_count::zero ())
1526 fprintf (dump_file, " called approx. %.2f times per call",
1527 (double)curr->count.to_gcov_type ()
1528 / node->count.to_gcov_type ());
1530 fprintf (dump_file, "\n");
1532 if (!master_clone)
1534 /* We need original clone to copy around. */
1535 master_clone = node->create_clone (node->decl, node->count,
1536 CGRAPH_FREQ_BASE, false, vNULL,
1537 true, NULL, NULL);
1538 for (e = master_clone->callees; e; e = e->next_callee)
1539 if (!e->inline_failed)
1540 clone_inlined_nodes (e, true, false, NULL, CGRAPH_FREQ_BASE);
1541 curr->redirect_callee (master_clone);
1542 reset_edge_growth_cache (curr);
1545 inline_call (curr, false, new_edges, &overall_size, true);
1546 lookup_recursive_calls (node, curr->callee, &heap);
1547 n++;
1550 if (!heap.empty () && dump_file)
1551 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1553 if (!master_clone)
1554 return false;
1556 if (dump_file)
1557 fprintf (dump_file,
1558 "\n Inlined %i times, "
1559 "body grown from size %i to %i, time %f to %f\n", n,
1560 ipa_fn_summaries->get (master_clone)->size,
1561 ipa_fn_summaries->get (node)->size,
1562 ipa_fn_summaries->get (master_clone)->time.to_double (),
1563 ipa_fn_summaries->get (node)->time.to_double ());
1565 /* Remove master clone we used for inlining. We rely that clones inlined
1566 into master clone gets queued just before master clone so we don't
1567 need recursion. */
1568 for (node = symtab->first_function (); node != master_clone;
1569 node = next)
1571 next = symtab->next_function (node);
1572 if (node->global.inlined_to == master_clone)
1573 node->remove ();
1575 master_clone->remove ();
1576 return true;
1580 /* Given whole compilation unit estimate of INSNS, compute how large we can
1581 allow the unit to grow. */
1583 static int
1584 compute_max_insns (int insns)
1586 int max_insns = insns;
1587 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1588 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1590 return ((int64_t) max_insns
1591 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1595 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1597 static void
1598 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1600 while (new_edges.length () > 0)
1602 struct cgraph_edge *edge = new_edges.pop ();
1604 gcc_assert (!edge->aux);
1605 if (edge->inline_failed
1606 && can_inline_edge_p (edge, true)
1607 && want_inline_small_function_p (edge, true))
1608 edge->aux = heap->insert (edge_badness (edge, false), edge);
1612 /* Remove EDGE from the fibheap. */
1614 static void
1615 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1617 if (e->aux)
1619 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1620 e->aux = NULL;
1624 /* Return true if speculation of edge E seems useful.
1625 If ANTICIPATE_INLINING is true, be conservative and hope that E
1626 may get inlined. */
1628 bool
1629 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1631 enum availability avail;
1632 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1633 e->caller);
1634 struct cgraph_edge *direct, *indirect;
1635 struct ipa_ref *ref;
1637 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1639 if (!e->maybe_hot_p ())
1640 return false;
1642 /* See if IP optimizations found something potentially useful about the
1643 function. For now we look only for CONST/PURE flags. Almost everything
1644 else we propagate is useless. */
1645 if (avail >= AVAIL_AVAILABLE)
1647 int ecf_flags = flags_from_decl_or_type (target->decl);
1648 if (ecf_flags & ECF_CONST)
1650 e->speculative_call_info (direct, indirect, ref);
1651 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1652 return true;
1654 else if (ecf_flags & ECF_PURE)
1656 e->speculative_call_info (direct, indirect, ref);
1657 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1658 return true;
1661 /* If we did not managed to inline the function nor redirect
1662 to an ipa-cp clone (that are seen by having local flag set),
1663 it is probably pointless to inline it unless hardware is missing
1664 indirect call predictor. */
1665 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1666 return false;
1667 /* For overwritable targets there is not much to do. */
1668 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1669 return false;
1670 /* OK, speculation seems interesting. */
1671 return true;
1674 /* We know that EDGE is not going to be inlined.
1675 See if we can remove speculation. */
1677 static void
1678 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1680 if (edge->speculative && !speculation_useful_p (edge, false))
1682 struct cgraph_node *node = edge->caller;
1683 struct cgraph_node *where = node->global.inlined_to
1684 ? node->global.inlined_to : node;
1685 auto_bitmap updated_nodes;
1687 spec_rem += edge->count;
1688 edge->resolve_speculation ();
1689 reset_edge_caches (where);
1690 ipa_update_overall_fn_summary (where);
1691 update_caller_keys (edge_heap, where,
1692 updated_nodes, NULL);
1693 update_callee_keys (edge_heap, where,
1694 updated_nodes);
1698 /* Return true if NODE should be accounted for overall size estimate.
1699 Skip all nodes optimized for size so we can measure the growth of hot
1700 part of program no matter of the padding. */
1702 bool
1703 inline_account_function_p (struct cgraph_node *node)
1705 return (!DECL_EXTERNAL (node->decl)
1706 && !opt_for_fn (node->decl, optimize_size)
1707 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1710 /* Count number of callers of NODE and store it into DATA (that
1711 points to int. Worker for cgraph_for_node_and_aliases. */
1713 static bool
1714 sum_callers (struct cgraph_node *node, void *data)
1716 struct cgraph_edge *e;
1717 int *num_calls = (int *)data;
1719 for (e = node->callers; e; e = e->next_caller)
1720 (*num_calls)++;
1721 return false;
1724 /* We use greedy algorithm for inlining of small functions:
1725 All inline candidates are put into prioritized heap ordered in
1726 increasing badness.
1728 The inlining of small functions is bounded by unit growth parameters. */
1730 static void
1731 inline_small_functions (void)
1733 struct cgraph_node *node;
1734 struct cgraph_edge *edge;
1735 edge_heap_t edge_heap (sreal::min ());
1736 auto_bitmap updated_nodes;
1737 int min_size, max_size;
1738 auto_vec<cgraph_edge *> new_indirect_edges;
1739 int initial_size = 0;
1740 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1741 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1742 new_indirect_edges.create (8);
1744 edge_removal_hook_holder
1745 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1747 /* Compute overall unit size and other global parameters used by badness
1748 metrics. */
1750 max_count = profile_count::uninitialized ();
1751 ipa_reduced_postorder (order, true, true, NULL);
1752 free (order);
1754 FOR_EACH_DEFINED_FUNCTION (node)
1755 if (!node->global.inlined_to)
1757 if (!node->alias && node->analyzed
1758 && (node->has_gimple_body_p () || node->thunk.thunk_p)
1759 && opt_for_fn (node->decl, optimize))
1761 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
1762 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1764 /* Do not account external functions, they will be optimized out
1765 if not inlined. Also only count the non-cold portion of program. */
1766 if (inline_account_function_p (node))
1767 initial_size += info->size;
1768 info->growth = estimate_growth (node);
1770 int num_calls = 0;
1771 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1772 true);
1773 if (num_calls == 1)
1774 info->single_caller = true;
1775 if (dfs && dfs->next_cycle)
1777 struct cgraph_node *n2;
1778 int id = dfs->scc_no + 1;
1779 for (n2 = node; n2;
1780 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1781 if (opt_for_fn (n2->decl, optimize))
1783 struct ipa_fn_summary *info2 = ipa_fn_summaries->get (n2);
1784 if (info2->scc_no)
1785 break;
1786 info2->scc_no = id;
1791 for (edge = node->callers; edge; edge = edge->next_caller)
1792 if (!(max_count >= edge->count))
1793 max_count = edge->count;
1795 ipa_free_postorder_info ();
1796 initialize_growth_caches ();
1798 if (dump_file)
1799 fprintf (dump_file,
1800 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1801 initial_size);
1803 overall_size = initial_size;
1804 max_size = compute_max_insns (overall_size);
1805 min_size = overall_size;
1807 /* Populate the heap with all edges we might inline. */
1809 FOR_EACH_DEFINED_FUNCTION (node)
1811 bool update = false;
1812 struct cgraph_edge *next = NULL;
1813 bool has_speculative = false;
1815 if (!opt_for_fn (node->decl, optimize))
1816 continue;
1818 if (dump_file)
1819 fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
1821 for (edge = node->callees; edge; edge = next)
1823 next = edge->next_callee;
1824 if (edge->inline_failed
1825 && !edge->aux
1826 && can_inline_edge_p (edge, true)
1827 && want_inline_small_function_p (edge, true)
1828 && edge->inline_failed)
1830 gcc_assert (!edge->aux);
1831 update_edge_key (&edge_heap, edge);
1833 if (edge->speculative)
1834 has_speculative = true;
1836 if (has_speculative)
1837 for (edge = node->callees; edge; edge = next)
1838 if (edge->speculative && !speculation_useful_p (edge,
1839 edge->aux != NULL))
1841 edge->resolve_speculation ();
1842 update = true;
1844 if (update)
1846 struct cgraph_node *where = node->global.inlined_to
1847 ? node->global.inlined_to : node;
1848 ipa_update_overall_fn_summary (where);
1849 reset_edge_caches (where);
1850 update_caller_keys (&edge_heap, where,
1851 updated_nodes, NULL);
1852 update_callee_keys (&edge_heap, where,
1853 updated_nodes);
1854 bitmap_clear (updated_nodes);
1858 gcc_assert (in_lto_p
1859 || !(max_count > 0)
1860 || (profile_info && flag_branch_probabilities));
1862 while (!edge_heap.empty ())
1864 int old_size = overall_size;
1865 struct cgraph_node *where, *callee;
1866 sreal badness = edge_heap.min_key ();
1867 sreal current_badness;
1868 int growth;
1870 edge = edge_heap.extract_min ();
1871 gcc_assert (edge->aux);
1872 edge->aux = NULL;
1873 if (!edge->inline_failed || !edge->callee->analyzed)
1874 continue;
1876 #if CHECKING_P
1877 /* Be sure that caches are maintained consistent. */
1878 sreal cached_badness = edge_badness (edge, false);
1880 int old_size_est = estimate_edge_size (edge);
1881 sreal old_time_est = estimate_edge_time (edge);
1882 int old_hints_est = estimate_edge_hints (edge);
1884 reset_edge_growth_cache (edge);
1885 gcc_assert (old_size_est == estimate_edge_size (edge));
1886 gcc_assert (old_time_est == estimate_edge_time (edge));
1887 /* FIXME:
1889 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1891 fails with profile feedback because some hints depends on
1892 maybe_hot_edge_p predicate and because callee gets inlined to other
1893 calls, the edge may become cold.
1894 This ought to be fixed by computing relative probabilities
1895 for given invocation but that will be better done once whole
1896 code is converted to sreals. Disable for now and revert to "wrong"
1897 value so enable/disable checking paths agree. */
1898 edge_growth_cache[edge->uid].hints = old_hints_est + 1;
1900 /* When updating the edge costs, we only decrease badness in the keys.
1901 Increases of badness are handled lazilly; when we see key with out
1902 of date value on it, we re-insert it now. */
1903 current_badness = edge_badness (edge, false);
1904 gcc_assert (cached_badness == current_badness);
1905 gcc_assert (current_badness >= badness);
1906 #else
1907 current_badness = edge_badness (edge, false);
1908 #endif
1909 if (current_badness != badness)
1911 if (edge_heap.min () && current_badness > edge_heap.min_key ())
1913 edge->aux = edge_heap.insert (current_badness, edge);
1914 continue;
1916 else
1917 badness = current_badness;
1920 if (!can_inline_edge_p (edge, true))
1922 resolve_noninline_speculation (&edge_heap, edge);
1923 continue;
1926 callee = edge->callee->ultimate_alias_target ();
1927 growth = estimate_edge_growth (edge);
1928 if (dump_file)
1930 fprintf (dump_file,
1931 "\nConsidering %s with %i size\n",
1932 callee->dump_name (),
1933 ipa_fn_summaries->get (callee)->size);
1934 fprintf (dump_file,
1935 " to be inlined into %s in %s:%i\n"
1936 " Estimated badness is %f, frequency %.2f.\n",
1937 edge->caller->dump_name (),
1938 edge->call_stmt
1939 && (LOCATION_LOCUS (gimple_location ((const gimple *)
1940 edge->call_stmt))
1941 > BUILTINS_LOCATION)
1942 ? gimple_filename ((const gimple *) edge->call_stmt)
1943 : "unknown",
1944 edge->call_stmt
1945 ? gimple_lineno ((const gimple *) edge->call_stmt)
1946 : -1,
1947 badness.to_double (),
1948 edge->frequency / (double)CGRAPH_FREQ_BASE);
1949 if (edge->count.initialized_p ())
1951 fprintf (dump_file, " Called ");
1952 edge->count.dump (dump_file);
1953 fprintf (dump_file, "times\n");
1955 if (dump_flags & TDF_DETAILS)
1956 edge_badness (edge, true);
1959 if (overall_size + growth > max_size
1960 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1962 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1963 report_inline_failed_reason (edge);
1964 resolve_noninline_speculation (&edge_heap, edge);
1965 continue;
1968 if (!want_inline_small_function_p (edge, true))
1970 resolve_noninline_speculation (&edge_heap, edge);
1971 continue;
1974 /* Heuristics for inlining small functions work poorly for
1975 recursive calls where we do effects similar to loop unrolling.
1976 When inlining such edge seems profitable, leave decision on
1977 specific inliner. */
1978 if (edge->recursive_p ())
1980 where = edge->caller;
1981 if (where->global.inlined_to)
1982 where = where->global.inlined_to;
1983 if (!recursive_inlining (edge,
1984 opt_for_fn (edge->caller->decl,
1985 flag_indirect_inlining)
1986 ? &new_indirect_edges : NULL))
1988 edge->inline_failed = CIF_RECURSIVE_INLINING;
1989 resolve_noninline_speculation (&edge_heap, edge);
1990 continue;
1992 reset_edge_caches (where);
1993 /* Recursive inliner inlines all recursive calls of the function
1994 at once. Consequently we need to update all callee keys. */
1995 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
1996 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
1997 update_callee_keys (&edge_heap, where, updated_nodes);
1998 bitmap_clear (updated_nodes);
2000 else
2002 struct cgraph_node *outer_node = NULL;
2003 int depth = 0;
2005 /* Consider the case where self recursive function A is inlined
2006 into B. This is desired optimization in some cases, since it
2007 leads to effect similar of loop peeling and we might completely
2008 optimize out the recursive call. However we must be extra
2009 selective. */
2011 where = edge->caller;
2012 while (where->global.inlined_to)
2014 if (where->decl == callee->decl)
2015 outer_node = where, depth++;
2016 where = where->callers->caller;
2018 if (outer_node
2019 && !want_inline_self_recursive_call_p (edge, outer_node,
2020 true, depth))
2022 edge->inline_failed
2023 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
2024 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
2025 resolve_noninline_speculation (&edge_heap, edge);
2026 continue;
2028 else if (depth && dump_file)
2029 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
2031 gcc_checking_assert (!callee->global.inlined_to);
2032 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2033 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2035 reset_edge_caches (edge->callee);
2037 update_callee_keys (&edge_heap, where, updated_nodes);
2039 where = edge->caller;
2040 if (where->global.inlined_to)
2041 where = where->global.inlined_to;
2043 /* Our profitability metric can depend on local properties
2044 such as number of inlinable calls and size of the function body.
2045 After inlining these properties might change for the function we
2046 inlined into (since it's body size changed) and for the functions
2047 called by function we inlined (since number of it inlinable callers
2048 might change). */
2049 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2050 /* Offline copy count has possibly changed, recompute if profile is
2051 available. */
2052 if (max_count > profile_count::zero ())
2054 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2055 if (n != edge->callee && n->analyzed)
2056 update_callee_keys (&edge_heap, n, updated_nodes);
2058 bitmap_clear (updated_nodes);
2060 if (dump_file)
2062 fprintf (dump_file,
2063 " Inlined %s into %s which now has time %f and size %i, "
2064 "net change of %+i.\n",
2065 xstrdup_for_dump (edge->callee->name ()),
2066 xstrdup_for_dump (edge->caller->name ()),
2067 ipa_fn_summaries->get (edge->caller)->time.to_double (),
2068 ipa_fn_summaries->get (edge->caller)->size,
2069 overall_size - old_size);
2071 if (min_size > overall_size)
2073 min_size = overall_size;
2074 max_size = compute_max_insns (min_size);
2076 if (dump_file)
2077 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2081 free_growth_caches ();
2082 if (dump_file)
2083 fprintf (dump_file,
2084 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2085 initial_size, overall_size,
2086 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2087 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2090 /* Flatten NODE. Performed both during early inlining and
2091 at IPA inlining time. */
2093 static void
2094 flatten_function (struct cgraph_node *node, bool early)
2096 struct cgraph_edge *e;
2098 /* We shouldn't be called recursively when we are being processed. */
2099 gcc_assert (node->aux == NULL);
2101 node->aux = (void *) node;
2103 for (e = node->callees; e; e = e->next_callee)
2105 struct cgraph_node *orig_callee;
2106 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2108 /* We've hit cycle? It is time to give up. */
2109 if (callee->aux)
2111 if (dump_file)
2112 fprintf (dump_file,
2113 "Not inlining %s into %s to avoid cycle.\n",
2114 xstrdup_for_dump (callee->name ()),
2115 xstrdup_for_dump (e->caller->name ()));
2116 e->inline_failed = CIF_RECURSIVE_INLINING;
2117 continue;
2120 /* When the edge is already inlined, we just need to recurse into
2121 it in order to fully flatten the leaves. */
2122 if (!e->inline_failed)
2124 flatten_function (callee, early);
2125 continue;
2128 /* Flatten attribute needs to be processed during late inlining. For
2129 extra code quality we however do flattening during early optimization,
2130 too. */
2131 if (!early
2132 ? !can_inline_edge_p (e, true)
2133 : !can_early_inline_edge_p (e))
2134 continue;
2136 if (e->recursive_p ())
2138 if (dump_file)
2139 fprintf (dump_file, "Not inlining: recursive call.\n");
2140 continue;
2143 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2144 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2146 if (dump_file)
2147 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
2148 continue;
2151 /* Inline the edge and flatten the inline clone. Avoid
2152 recursing through the original node if the node was cloned. */
2153 if (dump_file)
2154 fprintf (dump_file, " Inlining %s into %s.\n",
2155 xstrdup_for_dump (callee->name ()),
2156 xstrdup_for_dump (e->caller->name ()));
2157 orig_callee = callee;
2158 inline_call (e, true, NULL, NULL, false);
2159 if (e->callee != orig_callee)
2160 orig_callee->aux = (void *) node;
2161 flatten_function (e->callee, early);
2162 if (e->callee != orig_callee)
2163 orig_callee->aux = NULL;
2166 node->aux = NULL;
2167 if (!node->global.inlined_to)
2168 ipa_update_overall_fn_summary (node);
2171 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2172 DATA points to number of calls originally found so we avoid infinite
2173 recursion. */
2175 static bool
2176 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2177 hash_set<cgraph_node *> *callers)
2179 int *num_calls = (int *)data;
2180 bool callee_removed = false;
2182 while (node->callers && !node->global.inlined_to)
2184 struct cgraph_node *caller = node->callers->caller;
2186 if (!can_inline_edge_p (node->callers, true)
2187 || node->callers->recursive_p ())
2189 if (dump_file)
2190 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2191 *num_calls = 0;
2192 return false;
2195 if (dump_file)
2197 fprintf (dump_file,
2198 "\nInlining %s size %i.\n",
2199 node->name (),
2200 ipa_fn_summaries->get (node)->size);
2201 fprintf (dump_file,
2202 " Called once from %s %i insns.\n",
2203 node->callers->caller->name (),
2204 ipa_fn_summaries->get (node->callers->caller)->size);
2207 /* Remember which callers we inlined to, delaying updating the
2208 overall summary. */
2209 callers->add (node->callers->caller);
2210 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2211 if (dump_file)
2212 fprintf (dump_file,
2213 " Inlined into %s which now has %i size\n",
2214 caller->name (),
2215 ipa_fn_summaries->get (caller)->size);
2216 if (!(*num_calls)--)
2218 if (dump_file)
2219 fprintf (dump_file, "New calls found; giving up.\n");
2220 return callee_removed;
2222 if (callee_removed)
2223 return true;
2225 return false;
2228 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2229 update. */
2231 static bool
2232 inline_to_all_callers (struct cgraph_node *node, void *data)
2234 hash_set<cgraph_node *> callers;
2235 bool res = inline_to_all_callers_1 (node, data, &callers);
2236 /* Perform the delayed update of the overall summary of all callers
2237 processed. This avoids quadratic behavior in the cases where
2238 we have a lot of calls to the same function. */
2239 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2240 i != callers.end (); ++i)
2241 ipa_update_overall_fn_summary (*i);
2242 return res;
2245 /* Output overall time estimate. */
2246 static void
2247 dump_overall_stats (void)
2249 sreal sum_weighted = 0, sum = 0;
2250 struct cgraph_node *node;
2252 FOR_EACH_DEFINED_FUNCTION (node)
2253 if (!node->global.inlined_to
2254 && !node->alias)
2256 sreal time = ipa_fn_summaries->get (node)->time;
2257 sum += time;
2258 if (node->count.initialized_p ())
2259 sum_weighted += time * node->count.to_gcov_type ();
2261 fprintf (dump_file, "Overall time estimate: "
2262 "%f weighted by profile: "
2263 "%f\n", sum.to_double (), sum_weighted.to_double ());
2266 /* Output some useful stats about inlining. */
2268 static void
2269 dump_inline_stats (void)
2271 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2272 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2273 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2274 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2275 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2276 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2277 int64_t reason[CIF_N_REASONS][3];
2278 int i;
2279 struct cgraph_node *node;
2281 memset (reason, 0, sizeof (reason));
2282 FOR_EACH_DEFINED_FUNCTION (node)
2284 struct cgraph_edge *e;
2285 for (e = node->callees; e; e = e->next_callee)
2287 if (e->inline_failed)
2289 if (e->count.initialized_p ())
2290 reason[(int) e->inline_failed][0] += e->count.to_gcov_type ();
2291 reason[(int) e->inline_failed][1] += e->frequency;
2292 reason[(int) e->inline_failed][2] ++;
2293 if (DECL_VIRTUAL_P (e->callee->decl)
2294 && e->count.initialized_p ())
2296 if (e->indirect_inlining_edge)
2297 noninlined_virt_indir_cnt += e->count.to_gcov_type ();
2298 else
2299 noninlined_virt_cnt += e->count.to_gcov_type ();
2301 else if (e->count.initialized_p ())
2303 if (e->indirect_inlining_edge)
2304 noninlined_indir_cnt += e->count.to_gcov_type ();
2305 else
2306 noninlined_cnt += e->count.to_gcov_type ();
2309 else if (e->count.initialized_p ())
2311 if (e->speculative)
2313 if (DECL_VIRTUAL_P (e->callee->decl))
2314 inlined_speculative_ply += e->count.to_gcov_type ();
2315 else
2316 inlined_speculative += e->count.to_gcov_type ();
2318 else if (DECL_VIRTUAL_P (e->callee->decl))
2320 if (e->indirect_inlining_edge)
2321 inlined_virt_indir_cnt += e->count.to_gcov_type ();
2322 else
2323 inlined_virt_cnt += e->count.to_gcov_type ();
2325 else
2327 if (e->indirect_inlining_edge)
2328 inlined_indir_cnt += e->count.to_gcov_type ();
2329 else
2330 inlined_cnt += e->count.to_gcov_type ();
2334 for (e = node->indirect_calls; e; e = e->next_callee)
2335 if (e->indirect_info->polymorphic
2336 & e->count.initialized_p ())
2337 indirect_poly_cnt += e->count.to_gcov_type ();
2338 else if (e->count.initialized_p ())
2339 indirect_cnt += e->count.to_gcov_type ();
2341 if (max_count.initialized_p ())
2343 fprintf (dump_file,
2344 "Inlined %" PRId64 " + speculative "
2345 "%" PRId64 " + speculative polymorphic "
2346 "%" PRId64 " + previously indirect "
2347 "%" PRId64 " + virtual "
2348 "%" PRId64 " + virtual and previously indirect "
2349 "%" PRId64 "\n" "Not inlined "
2350 "%" PRId64 " + previously indirect "
2351 "%" PRId64 " + virtual "
2352 "%" PRId64 " + virtual and previously indirect "
2353 "%" PRId64 " + stil indirect "
2354 "%" PRId64 " + still indirect polymorphic "
2355 "%" PRId64 "\n", inlined_cnt,
2356 inlined_speculative, inlined_speculative_ply,
2357 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2358 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2359 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2360 fprintf (dump_file, "Removed speculations ");
2361 spec_rem.dump (dump_file);
2362 fprintf (dump_file, "\n");
2364 dump_overall_stats ();
2365 fprintf (dump_file, "\nWhy inlining failed?\n");
2366 for (i = 0; i < CIF_N_REASONS; i++)
2367 if (reason[i][2])
2368 fprintf (dump_file, "%-50s: %8i calls, %8i freq, %" PRId64" count\n",
2369 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2370 (int) reason[i][2], (int) reason[i][1], reason[i][0]);
2373 /* Decide on the inlining. We do so in the topological order to avoid
2374 expenses on updating data structures. */
2376 static unsigned int
2377 ipa_inline (void)
2379 struct cgraph_node *node;
2380 int nnodes;
2381 struct cgraph_node **order;
2382 int i;
2383 int cold;
2384 bool remove_functions = false;
2386 cgraph_freq_base_rec = (sreal) 1 / (sreal) CGRAPH_FREQ_BASE;
2387 percent_rec = (sreal) 1 / (sreal) 100;
2389 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2391 if (dump_file)
2392 ipa_dump_fn_summaries (dump_file);
2394 nnodes = ipa_reverse_postorder (order);
2396 FOR_EACH_FUNCTION (node)
2398 node->aux = 0;
2400 /* Recompute the default reasons for inlining because they may have
2401 changed during merging. */
2402 if (in_lto_p)
2404 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2406 gcc_assert (e->inline_failed);
2407 initialize_inline_failed (e);
2409 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2410 initialize_inline_failed (e);
2414 if (dump_file)
2415 fprintf (dump_file, "\nFlattening functions:\n");
2417 /* In the first pass handle functions to be flattened. Do this with
2418 a priority so none of our later choices will make this impossible. */
2419 for (i = nnodes - 1; i >= 0; i--)
2421 node = order[i];
2423 /* Handle nodes to be flattened.
2424 Ideally when processing callees we stop inlining at the
2425 entry of cycles, possibly cloning that entry point and
2426 try to flatten itself turning it into a self-recursive
2427 function. */
2428 if (lookup_attribute ("flatten",
2429 DECL_ATTRIBUTES (node->decl)) != NULL)
2431 if (dump_file)
2432 fprintf (dump_file,
2433 "Flattening %s\n", node->name ());
2434 flatten_function (node, false);
2437 if (dump_file)
2438 dump_overall_stats ();
2440 inline_small_functions ();
2442 gcc_assert (symtab->state == IPA_SSA);
2443 symtab->state = IPA_SSA_AFTER_INLINING;
2444 /* Do first after-inlining removal. We want to remove all "stale" extern
2445 inline functions and virtual functions so we really know what is called
2446 once. */
2447 symtab->remove_unreachable_nodes (dump_file);
2448 free (order);
2450 /* Inline functions with a property that after inlining into all callers the
2451 code size will shrink because the out-of-line copy is eliminated.
2452 We do this regardless on the callee size as long as function growth limits
2453 are met. */
2454 if (dump_file)
2455 fprintf (dump_file,
2456 "\nDeciding on functions to be inlined into all callers and "
2457 "removing useless speculations:\n");
2459 /* Inlining one function called once has good chance of preventing
2460 inlining other function into the same callee. Ideally we should
2461 work in priority order, but probably inlining hot functions first
2462 is good cut without the extra pain of maintaining the queue.
2464 ??? this is not really fitting the bill perfectly: inlining function
2465 into callee often leads to better optimization of callee due to
2466 increased context for optimization.
2467 For example if main() function calls a function that outputs help
2468 and then function that does the main optmization, we should inline
2469 the second with priority even if both calls are cold by themselves.
2471 We probably want to implement new predicate replacing our use of
2472 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2473 to be hot. */
2474 for (cold = 0; cold <= 1; cold ++)
2476 FOR_EACH_DEFINED_FUNCTION (node)
2478 struct cgraph_edge *edge, *next;
2479 bool update=false;
2481 if (!opt_for_fn (node->decl, optimize)
2482 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2483 continue;
2485 for (edge = node->callees; edge; edge = next)
2487 next = edge->next_callee;
2488 if (edge->speculative && !speculation_useful_p (edge, false))
2490 edge->resolve_speculation ();
2491 spec_rem += edge->count;
2492 update = true;
2493 remove_functions = true;
2496 if (update)
2498 struct cgraph_node *where = node->global.inlined_to
2499 ? node->global.inlined_to : node;
2500 reset_edge_caches (where);
2501 ipa_update_overall_fn_summary (where);
2503 if (want_inline_function_to_all_callers_p (node, cold))
2505 int num_calls = 0;
2506 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2507 true);
2508 while (node->call_for_symbol_and_aliases
2509 (inline_to_all_callers, &num_calls, true))
2511 remove_functions = true;
2516 /* Free ipa-prop structures if they are no longer needed. */
2517 ipa_free_all_structures_after_iinln ();
2519 if (dump_file)
2521 fprintf (dump_file,
2522 "\nInlined %i calls, eliminated %i functions\n\n",
2523 ncalls_inlined, nfunctions_inlined);
2524 dump_inline_stats ();
2527 if (dump_file)
2528 ipa_dump_fn_summaries (dump_file);
2529 /* In WPA we use inline summaries for partitioning process. */
2530 if (!flag_wpa)
2531 ipa_free_fn_summary ();
2532 return remove_functions ? TODO_remove_functions : 0;
2535 /* Inline always-inline function calls in NODE. */
2537 static bool
2538 inline_always_inline_functions (struct cgraph_node *node)
2540 struct cgraph_edge *e;
2541 bool inlined = false;
2543 for (e = node->callees; e; e = e->next_callee)
2545 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2546 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2547 continue;
2549 if (e->recursive_p ())
2551 if (dump_file)
2552 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2553 e->callee->name ());
2554 e->inline_failed = CIF_RECURSIVE_INLINING;
2555 continue;
2558 if (!can_early_inline_edge_p (e))
2560 /* Set inlined to true if the callee is marked "always_inline" but
2561 is not inlinable. This will allow flagging an error later in
2562 expand_call_inline in tree-inline.c. */
2563 if (lookup_attribute ("always_inline",
2564 DECL_ATTRIBUTES (callee->decl)) != NULL)
2565 inlined = true;
2566 continue;
2569 if (dump_file)
2570 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2571 xstrdup_for_dump (e->callee->name ()),
2572 xstrdup_for_dump (e->caller->name ()));
2573 inline_call (e, true, NULL, NULL, false);
2574 inlined = true;
2576 if (inlined)
2577 ipa_update_overall_fn_summary (node);
2579 return inlined;
2582 /* Decide on the inlining. We do so in the topological order to avoid
2583 expenses on updating data structures. */
2585 static bool
2586 early_inline_small_functions (struct cgraph_node *node)
2588 struct cgraph_edge *e;
2589 bool inlined = false;
2591 for (e = node->callees; e; e = e->next_callee)
2593 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2594 if (!ipa_fn_summaries->get (callee)->inlinable
2595 || !e->inline_failed)
2596 continue;
2598 /* Do not consider functions not declared inline. */
2599 if (!DECL_DECLARED_INLINE_P (callee->decl)
2600 && !opt_for_fn (node->decl, flag_inline_small_functions)
2601 && !opt_for_fn (node->decl, flag_inline_functions))
2602 continue;
2604 if (dump_file)
2605 fprintf (dump_file, "Considering inline candidate %s.\n",
2606 callee->name ());
2608 if (!can_early_inline_edge_p (e))
2609 continue;
2611 if (e->recursive_p ())
2613 if (dump_file)
2614 fprintf (dump_file, " Not inlining: recursive call.\n");
2615 continue;
2618 if (!want_early_inline_function_p (e))
2619 continue;
2621 if (dump_file)
2622 fprintf (dump_file, " Inlining %s into %s.\n",
2623 xstrdup_for_dump (callee->name ()),
2624 xstrdup_for_dump (e->caller->name ()));
2625 inline_call (e, true, NULL, NULL, false);
2626 inlined = true;
2629 if (inlined)
2630 ipa_update_overall_fn_summary (node);
2632 return inlined;
2635 unsigned int
2636 early_inliner (function *fun)
2638 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2639 struct cgraph_edge *edge;
2640 unsigned int todo = 0;
2641 int iterations = 0;
2642 bool inlined = false;
2644 if (seen_error ())
2645 return 0;
2647 /* Do nothing if datastructures for ipa-inliner are already computed. This
2648 happens when some pass decides to construct new function and
2649 cgraph_add_new_function calls lowering passes and early optimization on
2650 it. This may confuse ourself when early inliner decide to inline call to
2651 function clone, because function clones don't have parameter list in
2652 ipa-prop matching their signature. */
2653 if (ipa_node_params_sum)
2654 return 0;
2656 if (flag_checking)
2657 node->verify ();
2658 node->remove_all_references ();
2660 /* Rebuild this reference because it dosn't depend on
2661 function's body and it's required to pass cgraph_node
2662 verification. */
2663 if (node->instrumented_version
2664 && !node->instrumentation_clone)
2665 node->create_reference (node->instrumented_version, IPA_REF_CHKP, NULL);
2667 /* Even when not optimizing or not inlining inline always-inline
2668 functions. */
2669 inlined = inline_always_inline_functions (node);
2671 if (!optimize
2672 || flag_no_inline
2673 || !flag_early_inlining
2674 /* Never inline regular functions into always-inline functions
2675 during incremental inlining. This sucks as functions calling
2676 always inline functions will get less optimized, but at the
2677 same time inlining of functions calling always inline
2678 function into an always inline function might introduce
2679 cycles of edges to be always inlined in the callgraph.
2681 We might want to be smarter and just avoid this type of inlining. */
2682 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2683 && lookup_attribute ("always_inline",
2684 DECL_ATTRIBUTES (node->decl))))
2686 else if (lookup_attribute ("flatten",
2687 DECL_ATTRIBUTES (node->decl)) != NULL)
2689 /* When the function is marked to be flattened, recursively inline
2690 all calls in it. */
2691 if (dump_file)
2692 fprintf (dump_file,
2693 "Flattening %s\n", node->name ());
2694 flatten_function (node, true);
2695 inlined = true;
2697 else
2699 /* If some always_inline functions was inlined, apply the changes.
2700 This way we will not account always inline into growth limits and
2701 moreover we will inline calls from always inlines that we skipped
2702 previously because of conditional above. */
2703 if (inlined)
2705 timevar_push (TV_INTEGRATION);
2706 todo |= optimize_inline_calls (current_function_decl);
2707 /* optimize_inline_calls call above might have introduced new
2708 statements that don't have inline parameters computed. */
2709 for (edge = node->callees; edge; edge = edge->next_callee)
2711 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2712 es->call_stmt_size
2713 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2714 es->call_stmt_time
2715 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2717 ipa_update_overall_fn_summary (node);
2718 inlined = false;
2719 timevar_pop (TV_INTEGRATION);
2721 /* We iterate incremental inlining to get trivial cases of indirect
2722 inlining. */
2723 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2724 && early_inline_small_functions (node))
2726 timevar_push (TV_INTEGRATION);
2727 todo |= optimize_inline_calls (current_function_decl);
2729 /* Technically we ought to recompute inline parameters so the new
2730 iteration of early inliner works as expected. We however have
2731 values approximately right and thus we only need to update edge
2732 info that might be cleared out for newly discovered edges. */
2733 for (edge = node->callees; edge; edge = edge->next_callee)
2735 /* We have no summary for new bound store calls yet. */
2736 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2737 es->call_stmt_size
2738 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2739 es->call_stmt_time
2740 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2742 if (edge->callee->decl
2743 && !gimple_check_call_matching_types (
2744 edge->call_stmt, edge->callee->decl, false))
2746 edge->inline_failed = CIF_MISMATCHED_ARGUMENTS;
2747 edge->call_stmt_cannot_inline_p = true;
2750 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2751 ipa_update_overall_fn_summary (node);
2752 timevar_pop (TV_INTEGRATION);
2753 iterations++;
2754 inlined = false;
2756 if (dump_file)
2757 fprintf (dump_file, "Iterations: %i\n", iterations);
2760 if (inlined)
2762 timevar_push (TV_INTEGRATION);
2763 todo |= optimize_inline_calls (current_function_decl);
2764 timevar_pop (TV_INTEGRATION);
2767 fun->always_inline_functions_inlined = true;
2769 return todo;
2772 /* Do inlining of small functions. Doing so early helps profiling and other
2773 passes to be somewhat more effective and avoids some code duplication in
2774 later real inlining pass for testcases with very many function calls. */
2776 namespace {
2778 const pass_data pass_data_early_inline =
2780 GIMPLE_PASS, /* type */
2781 "einline", /* name */
2782 OPTGROUP_INLINE, /* optinfo_flags */
2783 TV_EARLY_INLINING, /* tv_id */
2784 PROP_ssa, /* properties_required */
2785 0, /* properties_provided */
2786 0, /* properties_destroyed */
2787 0, /* todo_flags_start */
2788 0, /* todo_flags_finish */
2791 class pass_early_inline : public gimple_opt_pass
2793 public:
2794 pass_early_inline (gcc::context *ctxt)
2795 : gimple_opt_pass (pass_data_early_inline, ctxt)
2798 /* opt_pass methods: */
2799 virtual unsigned int execute (function *);
2801 }; // class pass_early_inline
2803 unsigned int
2804 pass_early_inline::execute (function *fun)
2806 return early_inliner (fun);
2809 } // anon namespace
2811 gimple_opt_pass *
2812 make_pass_early_inline (gcc::context *ctxt)
2814 return new pass_early_inline (ctxt);
2817 namespace {
2819 const pass_data pass_data_ipa_inline =
2821 IPA_PASS, /* type */
2822 "inline", /* name */
2823 OPTGROUP_INLINE, /* optinfo_flags */
2824 TV_IPA_INLINING, /* tv_id */
2825 0, /* properties_required */
2826 0, /* properties_provided */
2827 0, /* properties_destroyed */
2828 0, /* todo_flags_start */
2829 ( TODO_dump_symtab ), /* todo_flags_finish */
2832 class pass_ipa_inline : public ipa_opt_pass_d
2834 public:
2835 pass_ipa_inline (gcc::context *ctxt)
2836 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2837 NULL, /* generate_summary */
2838 NULL, /* write_summary */
2839 NULL, /* read_summary */
2840 NULL, /* write_optimization_summary */
2841 NULL, /* read_optimization_summary */
2842 NULL, /* stmt_fixup */
2843 0, /* function_transform_todo_flags_start */
2844 inline_transform, /* function_transform */
2845 NULL) /* variable_transform */
2848 /* opt_pass methods: */
2849 virtual unsigned int execute (function *) { return ipa_inline (); }
2851 }; // class pass_ipa_inline
2853 } // anon namespace
2855 ipa_opt_pass_d *
2856 make_pass_ipa_inline (gcc::context *ctxt)
2858 return new pass_ipa_inline (ctxt);