[48/77] Make subroutines of num_sign_bit_copies operate on scalar_int_mode
[official-gcc.git] / gcc / internal-fn.c
blobf8a02f309fc4d8aa17bd3fce2e6b3610ca3cdf8b
1 /* Internal functions.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "stringpool.h"
30 #include "tree-vrp.h"
31 #include "tree-ssanames.h"
32 #include "expmed.h"
33 #include "memmodel.h"
34 #include "optabs.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "internal-fn.h"
39 #include "stor-layout.h"
40 #include "dojump.h"
41 #include "expr.h"
42 #include "stringpool.h"
43 #include "attribs.h"
44 #include "asan.h"
45 #include "ubsan.h"
46 #include "recog.h"
47 #include "builtins.h"
48 #include "optabs-tree.h"
50 /* The names of each internal function, indexed by function number. */
51 const char *const internal_fn_name_array[] = {
52 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE,
53 #include "internal-fn.def"
54 "<invalid-fn>"
57 /* The ECF_* flags of each internal function, indexed by function number. */
58 const int internal_fn_flags_array[] = {
59 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS,
60 #include "internal-fn.def"
64 /* Fnspec of each internal function, indexed by function number. */
65 const_tree internal_fn_fnspec_array[IFN_LAST + 1];
67 void
68 init_internal_fns ()
70 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
71 if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \
72 build_string ((int) sizeof (FNSPEC), FNSPEC ? FNSPEC : "");
73 #include "internal-fn.def"
74 internal_fn_fnspec_array[IFN_LAST] = 0;
77 /* Create static initializers for the information returned by
78 direct_internal_fn. */
79 #define not_direct { -2, -2, false }
80 #define mask_load_direct { -1, 2, false }
81 #define load_lanes_direct { -1, -1, false }
82 #define mask_store_direct { 3, 2, false }
83 #define store_lanes_direct { 0, 0, false }
84 #define unary_direct { 0, 0, true }
85 #define binary_direct { 0, 0, true }
87 const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = {
88 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct,
89 #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct,
90 #include "internal-fn.def"
91 not_direct
94 /* ARRAY_TYPE is an array of vector modes. Return the associated insn
95 for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */
97 static enum insn_code
98 get_multi_vector_move (tree array_type, convert_optab optab)
100 machine_mode imode;
101 machine_mode vmode;
103 gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE);
104 imode = TYPE_MODE (array_type);
105 vmode = TYPE_MODE (TREE_TYPE (array_type));
107 return convert_optab_handler (optab, imode, vmode);
110 /* Expand LOAD_LANES call STMT using optab OPTAB. */
112 static void
113 expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
115 struct expand_operand ops[2];
116 tree type, lhs, rhs;
117 rtx target, mem;
119 lhs = gimple_call_lhs (stmt);
120 rhs = gimple_call_arg (stmt, 0);
121 type = TREE_TYPE (lhs);
123 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
124 mem = expand_normal (rhs);
126 gcc_assert (MEM_P (mem));
127 PUT_MODE (mem, TYPE_MODE (type));
129 create_output_operand (&ops[0], target, TYPE_MODE (type));
130 create_fixed_operand (&ops[1], mem);
131 expand_insn (get_multi_vector_move (type, optab), 2, ops);
134 /* Expand STORE_LANES call STMT using optab OPTAB. */
136 static void
137 expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
139 struct expand_operand ops[2];
140 tree type, lhs, rhs;
141 rtx target, reg;
143 lhs = gimple_call_lhs (stmt);
144 rhs = gimple_call_arg (stmt, 0);
145 type = TREE_TYPE (rhs);
147 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
148 reg = expand_normal (rhs);
150 gcc_assert (MEM_P (target));
151 PUT_MODE (target, TYPE_MODE (type));
153 create_fixed_operand (&ops[0], target);
154 create_input_operand (&ops[1], reg, TYPE_MODE (type));
155 expand_insn (get_multi_vector_move (type, optab), 2, ops);
158 static void
159 expand_ANNOTATE (internal_fn, gcall *)
161 gcc_unreachable ();
164 /* This should get expanded in omp_device_lower pass. */
166 static void
167 expand_GOMP_USE_SIMT (internal_fn, gcall *)
169 gcc_unreachable ();
172 /* This should get expanded in omp_device_lower pass. */
174 static void
175 expand_GOMP_SIMT_ENTER (internal_fn, gcall *)
177 gcc_unreachable ();
180 /* Allocate per-lane storage and begin non-uniform execution region. */
182 static void
183 expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt)
185 rtx target;
186 tree lhs = gimple_call_lhs (stmt);
187 if (lhs)
188 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
189 else
190 target = gen_reg_rtx (Pmode);
191 rtx size = expand_normal (gimple_call_arg (stmt, 0));
192 rtx align = expand_normal (gimple_call_arg (stmt, 1));
193 struct expand_operand ops[3];
194 create_output_operand (&ops[0], target, Pmode);
195 create_input_operand (&ops[1], size, Pmode);
196 create_input_operand (&ops[2], align, Pmode);
197 gcc_assert (targetm.have_omp_simt_enter ());
198 expand_insn (targetm.code_for_omp_simt_enter, 3, ops);
201 /* Deallocate per-lane storage and leave non-uniform execution region. */
203 static void
204 expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt)
206 gcc_checking_assert (!gimple_call_lhs (stmt));
207 rtx arg = expand_normal (gimple_call_arg (stmt, 0));
208 struct expand_operand ops[1];
209 create_input_operand (&ops[0], arg, Pmode);
210 gcc_assert (targetm.have_omp_simt_exit ());
211 expand_insn (targetm.code_for_omp_simt_exit, 1, ops);
214 /* Lane index on SIMT targets: thread index in the warp on NVPTX. On targets
215 without SIMT execution this should be expanded in omp_device_lower pass. */
217 static void
218 expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt)
220 tree lhs = gimple_call_lhs (stmt);
221 if (!lhs)
222 return;
224 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
225 gcc_assert (targetm.have_omp_simt_lane ());
226 emit_insn (targetm.gen_omp_simt_lane (target));
229 /* This should get expanded in omp_device_lower pass. */
231 static void
232 expand_GOMP_SIMT_VF (internal_fn, gcall *)
234 gcc_unreachable ();
237 /* Lane index of the first SIMT lane that supplies a non-zero argument.
238 This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the
239 lane that executed the last iteration for handling OpenMP lastprivate. */
241 static void
242 expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt)
244 tree lhs = gimple_call_lhs (stmt);
245 if (!lhs)
246 return;
248 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
249 rtx cond = expand_normal (gimple_call_arg (stmt, 0));
250 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
251 struct expand_operand ops[2];
252 create_output_operand (&ops[0], target, mode);
253 create_input_operand (&ops[1], cond, mode);
254 gcc_assert (targetm.have_omp_simt_last_lane ());
255 expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops);
258 /* Non-transparent predicate used in SIMT lowering of OpenMP "ordered". */
260 static void
261 expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt)
263 tree lhs = gimple_call_lhs (stmt);
264 if (!lhs)
265 return;
267 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
268 rtx ctr = expand_normal (gimple_call_arg (stmt, 0));
269 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
270 struct expand_operand ops[2];
271 create_output_operand (&ops[0], target, mode);
272 create_input_operand (&ops[1], ctr, mode);
273 gcc_assert (targetm.have_omp_simt_ordered ());
274 expand_insn (targetm.code_for_omp_simt_ordered, 2, ops);
277 /* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if
278 any lane supplies a non-zero argument. */
280 static void
281 expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt)
283 tree lhs = gimple_call_lhs (stmt);
284 if (!lhs)
285 return;
287 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
288 rtx cond = expand_normal (gimple_call_arg (stmt, 0));
289 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
290 struct expand_operand ops[2];
291 create_output_operand (&ops[0], target, mode);
292 create_input_operand (&ops[1], cond, mode);
293 gcc_assert (targetm.have_omp_simt_vote_any ());
294 expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops);
297 /* Exchange between SIMT lanes with a "butterfly" pattern: source lane index
298 is destination lane index XOR given offset. */
300 static void
301 expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt)
303 tree lhs = gimple_call_lhs (stmt);
304 if (!lhs)
305 return;
307 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
308 rtx src = expand_normal (gimple_call_arg (stmt, 0));
309 rtx idx = expand_normal (gimple_call_arg (stmt, 1));
310 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
311 struct expand_operand ops[3];
312 create_output_operand (&ops[0], target, mode);
313 create_input_operand (&ops[1], src, mode);
314 create_input_operand (&ops[2], idx, SImode);
315 gcc_assert (targetm.have_omp_simt_xchg_bfly ());
316 expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops);
319 /* Exchange between SIMT lanes according to given source lane index. */
321 static void
322 expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt)
324 tree lhs = gimple_call_lhs (stmt);
325 if (!lhs)
326 return;
328 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
329 rtx src = expand_normal (gimple_call_arg (stmt, 0));
330 rtx idx = expand_normal (gimple_call_arg (stmt, 1));
331 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
332 struct expand_operand ops[3];
333 create_output_operand (&ops[0], target, mode);
334 create_input_operand (&ops[1], src, mode);
335 create_input_operand (&ops[2], idx, SImode);
336 gcc_assert (targetm.have_omp_simt_xchg_idx ());
337 expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops);
340 /* This should get expanded in adjust_simduid_builtins. */
342 static void
343 expand_GOMP_SIMD_LANE (internal_fn, gcall *)
345 gcc_unreachable ();
348 /* This should get expanded in adjust_simduid_builtins. */
350 static void
351 expand_GOMP_SIMD_VF (internal_fn, gcall *)
353 gcc_unreachable ();
356 /* This should get expanded in adjust_simduid_builtins. */
358 static void
359 expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *)
361 gcc_unreachable ();
364 /* This should get expanded in adjust_simduid_builtins. */
366 static void
367 expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *)
369 gcc_unreachable ();
372 /* This should get expanded in adjust_simduid_builtins. */
374 static void
375 expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *)
377 gcc_unreachable ();
380 /* This should get expanded in the sanopt pass. */
382 static void
383 expand_UBSAN_NULL (internal_fn, gcall *)
385 gcc_unreachable ();
388 /* This should get expanded in the sanopt pass. */
390 static void
391 expand_UBSAN_BOUNDS (internal_fn, gcall *)
393 gcc_unreachable ();
396 /* This should get expanded in the sanopt pass. */
398 static void
399 expand_UBSAN_VPTR (internal_fn, gcall *)
401 gcc_unreachable ();
404 /* This should get expanded in the sanopt pass. */
406 static void
407 expand_UBSAN_PTR (internal_fn, gcall *)
409 gcc_unreachable ();
412 /* This should get expanded in the sanopt pass. */
414 static void
415 expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *)
417 gcc_unreachable ();
420 /* This should get expanded in the sanopt pass. */
422 static void
423 expand_ASAN_CHECK (internal_fn, gcall *)
425 gcc_unreachable ();
428 /* This should get expanded in the sanopt pass. */
430 static void
431 expand_ASAN_MARK (internal_fn, gcall *)
433 gcc_unreachable ();
436 /* This should get expanded in the sanopt pass. */
438 static void
439 expand_ASAN_POISON (internal_fn, gcall *)
441 gcc_unreachable ();
444 /* This should get expanded in the sanopt pass. */
446 static void
447 expand_ASAN_POISON_USE (internal_fn, gcall *)
449 gcc_unreachable ();
452 /* This should get expanded in the tsan pass. */
454 static void
455 expand_TSAN_FUNC_EXIT (internal_fn, gcall *)
457 gcc_unreachable ();
460 /* This should get expanded in the lower pass. */
462 static void
463 expand_FALLTHROUGH (internal_fn, gcall *call)
465 error_at (gimple_location (call),
466 "invalid use of attribute %<fallthrough%>");
469 /* Return minimum precision needed to represent all values
470 of ARG in SIGNed integral type. */
472 static int
473 get_min_precision (tree arg, signop sign)
475 int prec = TYPE_PRECISION (TREE_TYPE (arg));
476 int cnt = 0;
477 signop orig_sign = sign;
478 if (TREE_CODE (arg) == INTEGER_CST)
480 int p;
481 if (TYPE_SIGN (TREE_TYPE (arg)) != sign)
483 widest_int w = wi::to_widest (arg);
484 w = wi::ext (w, prec, sign);
485 p = wi::min_precision (w, sign);
487 else
488 p = wi::min_precision (arg, sign);
489 return MIN (p, prec);
491 while (CONVERT_EXPR_P (arg)
492 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
493 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
495 arg = TREE_OPERAND (arg, 0);
496 if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
498 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
499 sign = UNSIGNED;
500 else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
501 return prec + (orig_sign != sign);
502 prec = TYPE_PRECISION (TREE_TYPE (arg));
504 if (++cnt > 30)
505 return prec + (orig_sign != sign);
507 if (TREE_CODE (arg) != SSA_NAME)
508 return prec + (orig_sign != sign);
509 wide_int arg_min, arg_max;
510 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
512 gimple *g = SSA_NAME_DEF_STMT (arg);
513 if (is_gimple_assign (g)
514 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
516 tree t = gimple_assign_rhs1 (g);
517 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
518 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
520 arg = t;
521 if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
523 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
524 sign = UNSIGNED;
525 else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
526 return prec + (orig_sign != sign);
527 prec = TYPE_PRECISION (TREE_TYPE (arg));
529 if (++cnt > 30)
530 return prec + (orig_sign != sign);
531 continue;
534 return prec + (orig_sign != sign);
536 if (sign == TYPE_SIGN (TREE_TYPE (arg)))
538 int p1 = wi::min_precision (arg_min, sign);
539 int p2 = wi::min_precision (arg_max, sign);
540 p1 = MAX (p1, p2);
541 prec = MIN (prec, p1);
543 else if (sign == UNSIGNED && !wi::neg_p (arg_min, SIGNED))
545 int p = wi::min_precision (arg_max, UNSIGNED);
546 prec = MIN (prec, p);
548 return prec + (orig_sign != sign);
551 /* Helper for expand_*_overflow. Set the __imag__ part to true
552 (1 except for signed:1 type, in which case store -1). */
554 static void
555 expand_arith_set_overflow (tree lhs, rtx target)
557 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1
558 && !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))))
559 write_complex_part (target, constm1_rtx, true);
560 else
561 write_complex_part (target, const1_rtx, true);
564 /* Helper for expand_*_overflow. Store RES into the __real__ part
565 of TARGET. If RES has larger MODE than __real__ part of TARGET,
566 set the __imag__ part to 1 if RES doesn't fit into it. Similarly
567 if LHS has smaller precision than its mode. */
569 static void
570 expand_arith_overflow_result_store (tree lhs, rtx target,
571 machine_mode mode, rtx res)
573 scalar_int_mode tgtmode
574 = as_a <scalar_int_mode> (GET_MODE_INNER (GET_MODE (target)));
575 rtx lres = res;
576 if (tgtmode != mode)
578 rtx_code_label *done_label = gen_label_rtx ();
579 int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
580 lres = convert_modes (tgtmode, mode, res, uns);
581 gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode));
582 do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns),
583 EQ, true, mode, NULL_RTX, NULL, done_label,
584 profile_probability::very_likely ());
585 expand_arith_set_overflow (lhs, target);
586 emit_label (done_label);
588 int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs)));
589 int tgtprec = GET_MODE_PRECISION (tgtmode);
590 if (prec < tgtprec)
592 rtx_code_label *done_label = gen_label_rtx ();
593 int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
594 res = lres;
595 if (uns)
597 rtx mask
598 = immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec),
599 tgtmode);
600 lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX,
601 true, OPTAB_LIB_WIDEN);
603 else
605 lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec,
606 NULL_RTX, 1);
607 lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec,
608 NULL_RTX, 0);
610 do_compare_rtx_and_jump (res, lres,
611 EQ, true, tgtmode, NULL_RTX, NULL, done_label,
612 profile_probability::very_likely ());
613 expand_arith_set_overflow (lhs, target);
614 emit_label (done_label);
616 write_complex_part (target, lres, false);
619 /* Helper for expand_*_overflow. Store RES into TARGET. */
621 static void
622 expand_ubsan_result_store (rtx target, rtx res)
624 if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
625 /* If this is a scalar in a register that is stored in a wider mode
626 than the declared mode, compute the result into its declared mode
627 and then convert to the wider mode. Our value is the computed
628 expression. */
629 convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target));
630 else
631 emit_move_insn (target, res);
634 /* Add sub/add overflow checking to the statement STMT.
635 CODE says whether the operation is +, or -. */
637 static void
638 expand_addsub_overflow (location_t loc, tree_code code, tree lhs,
639 tree arg0, tree arg1, bool unsr_p, bool uns0_p,
640 bool uns1_p, bool is_ubsan, tree *datap)
642 rtx res, target = NULL_RTX;
643 tree fn;
644 rtx_code_label *done_label = gen_label_rtx ();
645 rtx_code_label *do_error = gen_label_rtx ();
646 do_pending_stack_adjust ();
647 rtx op0 = expand_normal (arg0);
648 rtx op1 = expand_normal (arg1);
649 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
650 int prec = GET_MODE_PRECISION (mode);
651 rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
652 bool do_xor = false;
654 if (is_ubsan)
655 gcc_assert (!unsr_p && !uns0_p && !uns1_p);
657 if (lhs)
659 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
660 if (!is_ubsan)
661 write_complex_part (target, const0_rtx, true);
664 /* We assume both operands and result have the same precision
665 here (GET_MODE_BITSIZE (mode)), S stands for signed type
666 with that precision, U for unsigned type with that precision,
667 sgn for unsigned most significant bit in that precision.
668 s1 is signed first operand, u1 is unsigned first operand,
669 s2 is signed second operand, u2 is unsigned second operand,
670 sr is signed result, ur is unsigned result and the following
671 rules say how to compute result (which is always result of
672 the operands as if both were unsigned, cast to the right
673 signedness) and how to compute whether operation overflowed.
675 s1 + s2 -> sr
676 res = (S) ((U) s1 + (U) s2)
677 ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow)
678 s1 - s2 -> sr
679 res = (S) ((U) s1 - (U) s2)
680 ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow)
681 u1 + u2 -> ur
682 res = u1 + u2
683 ovf = res < u1 (or jump on carry, but RTL opts will handle it)
684 u1 - u2 -> ur
685 res = u1 - u2
686 ovf = res > u1 (or jump on carry, but RTL opts will handle it)
687 s1 + u2 -> sr
688 res = (S) ((U) s1 + u2)
689 ovf = ((U) res ^ sgn) < u2
690 s1 + u2 -> ur
691 t1 = (S) (u2 ^ sgn)
692 t2 = s1 + t1
693 res = (U) t2 ^ sgn
694 ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow)
695 s1 - u2 -> sr
696 res = (S) ((U) s1 - u2)
697 ovf = u2 > ((U) s1 ^ sgn)
698 s1 - u2 -> ur
699 res = (U) s1 - u2
700 ovf = s1 < 0 || u2 > (U) s1
701 u1 - s2 -> sr
702 res = u1 - (U) s2
703 ovf = u1 >= ((U) s2 ^ sgn)
704 u1 - s2 -> ur
705 t1 = u1 ^ sgn
706 t2 = t1 - (U) s2
707 res = t2 ^ sgn
708 ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow)
709 s1 + s2 -> ur
710 res = (U) s1 + (U) s2
711 ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0)
712 u1 + u2 -> sr
713 res = (S) (u1 + u2)
714 ovf = (U) res < u2 || res < 0
715 u1 - u2 -> sr
716 res = (S) (u1 - u2)
717 ovf = u1 >= u2 ? res < 0 : res >= 0
718 s1 - s2 -> ur
719 res = (U) s1 - (U) s2
720 ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */
722 if (code == PLUS_EXPR && uns0_p && !uns1_p)
724 /* PLUS_EXPR is commutative, if operand signedness differs,
725 canonicalize to the first operand being signed and second
726 unsigned to simplify following code. */
727 std::swap (op0, op1);
728 std::swap (arg0, arg1);
729 uns0_p = false;
730 uns1_p = true;
733 /* u1 +- u2 -> ur */
734 if (uns0_p && uns1_p && unsr_p)
736 insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab
737 : usubv4_optab, mode);
738 if (icode != CODE_FOR_nothing)
740 struct expand_operand ops[4];
741 rtx_insn *last = get_last_insn ();
743 res = gen_reg_rtx (mode);
744 create_output_operand (&ops[0], res, mode);
745 create_input_operand (&ops[1], op0, mode);
746 create_input_operand (&ops[2], op1, mode);
747 create_fixed_operand (&ops[3], do_error);
748 if (maybe_expand_insn (icode, 4, ops))
750 last = get_last_insn ();
751 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
752 && JUMP_P (last)
753 && any_condjump_p (last)
754 && !find_reg_note (last, REG_BR_PROB, 0))
755 add_reg_br_prob_note (last,
756 profile_probability::very_unlikely ());
757 emit_jump (done_label);
758 goto do_error_label;
761 delete_insns_since (last);
764 /* Compute the operation. On RTL level, the addition is always
765 unsigned. */
766 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
767 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
768 rtx tem = op0;
769 /* For PLUS_EXPR, the operation is commutative, so we can pick
770 operand to compare against. For prec <= BITS_PER_WORD, I think
771 preferring REG operand is better over CONST_INT, because
772 the CONST_INT might enlarge the instruction or CSE would need
773 to figure out we'd already loaded it into a register before.
774 For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial,
775 as then the multi-word comparison can be perhaps simplified. */
776 if (code == PLUS_EXPR
777 && (prec <= BITS_PER_WORD
778 ? (CONST_SCALAR_INT_P (op0) && REG_P (op1))
779 : CONST_SCALAR_INT_P (op1)))
780 tem = op1;
781 do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU,
782 true, mode, NULL_RTX, NULL, done_label,
783 profile_probability::very_likely ());
784 goto do_error_label;
787 /* s1 +- u2 -> sr */
788 if (!uns0_p && uns1_p && !unsr_p)
790 /* Compute the operation. On RTL level, the addition is always
791 unsigned. */
792 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
793 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
794 rtx tem = expand_binop (mode, add_optab,
795 code == PLUS_EXPR ? res : op0, sgn,
796 NULL_RTX, false, OPTAB_LIB_WIDEN);
797 do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL,
798 done_label, profile_probability::very_likely ());
799 goto do_error_label;
802 /* s1 + u2 -> ur */
803 if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p)
805 op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
806 OPTAB_LIB_WIDEN);
807 /* As we've changed op1, we have to avoid using the value range
808 for the original argument. */
809 arg1 = error_mark_node;
810 do_xor = true;
811 goto do_signed;
814 /* u1 - s2 -> ur */
815 if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p)
817 op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false,
818 OPTAB_LIB_WIDEN);
819 /* As we've changed op0, we have to avoid using the value range
820 for the original argument. */
821 arg0 = error_mark_node;
822 do_xor = true;
823 goto do_signed;
826 /* s1 - u2 -> ur */
827 if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p)
829 /* Compute the operation. On RTL level, the addition is always
830 unsigned. */
831 res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
832 OPTAB_LIB_WIDEN);
833 int pos_neg = get_range_pos_neg (arg0);
834 if (pos_neg == 2)
835 /* If ARG0 is known to be always negative, this is always overflow. */
836 emit_jump (do_error);
837 else if (pos_neg == 3)
838 /* If ARG0 is not known to be always positive, check at runtime. */
839 do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX,
840 NULL, do_error, profile_probability::very_unlikely ());
841 do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL,
842 done_label, profile_probability::very_likely ());
843 goto do_error_label;
846 /* u1 - s2 -> sr */
847 if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p)
849 /* Compute the operation. On RTL level, the addition is always
850 unsigned. */
851 res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
852 OPTAB_LIB_WIDEN);
853 rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
854 OPTAB_LIB_WIDEN);
855 do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL,
856 done_label, profile_probability::very_likely ());
857 goto do_error_label;
860 /* u1 + u2 -> sr */
861 if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p)
863 /* Compute the operation. On RTL level, the addition is always
864 unsigned. */
865 res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false,
866 OPTAB_LIB_WIDEN);
867 do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
868 NULL, do_error, profile_probability::very_unlikely ());
869 rtx tem = op1;
870 /* The operation is commutative, so we can pick operand to compare
871 against. For prec <= BITS_PER_WORD, I think preferring REG operand
872 is better over CONST_INT, because the CONST_INT might enlarge the
873 instruction or CSE would need to figure out we'd already loaded it
874 into a register before. For prec > BITS_PER_WORD, I think CONST_INT
875 might be more beneficial, as then the multi-word comparison can be
876 perhaps simplified. */
877 if (prec <= BITS_PER_WORD
878 ? (CONST_SCALAR_INT_P (op1) && REG_P (op0))
879 : CONST_SCALAR_INT_P (op0))
880 tem = op0;
881 do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL,
882 done_label, profile_probability::very_likely ());
883 goto do_error_label;
886 /* s1 +- s2 -> ur */
887 if (!uns0_p && !uns1_p && unsr_p)
889 /* Compute the operation. On RTL level, the addition is always
890 unsigned. */
891 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
892 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
893 int pos_neg = get_range_pos_neg (arg1);
894 if (code == PLUS_EXPR)
896 int pos_neg0 = get_range_pos_neg (arg0);
897 if (pos_neg0 != 3 && pos_neg == 3)
899 std::swap (op0, op1);
900 pos_neg = pos_neg0;
903 rtx tem;
904 if (pos_neg != 3)
906 tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR))
907 ? and_optab : ior_optab,
908 op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN);
909 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL,
910 NULL, done_label, profile_probability::very_likely ());
912 else
914 rtx_code_label *do_ior_label = gen_label_rtx ();
915 do_compare_rtx_and_jump (op1, const0_rtx,
916 code == MINUS_EXPR ? GE : LT, false, mode,
917 NULL_RTX, NULL, do_ior_label,
918 profile_probability::even ());
919 tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false,
920 OPTAB_LIB_WIDEN);
921 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
922 NULL, done_label, profile_probability::very_likely ());
923 emit_jump (do_error);
924 emit_label (do_ior_label);
925 tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false,
926 OPTAB_LIB_WIDEN);
927 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
928 NULL, done_label, profile_probability::very_likely ());
930 goto do_error_label;
933 /* u1 - u2 -> sr */
934 if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p)
936 /* Compute the operation. On RTL level, the addition is always
937 unsigned. */
938 res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
939 OPTAB_LIB_WIDEN);
940 rtx_code_label *op0_geu_op1 = gen_label_rtx ();
941 do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL,
942 op0_geu_op1, profile_probability::even ());
943 do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
944 NULL, done_label, profile_probability::very_likely ());
945 emit_jump (do_error);
946 emit_label (op0_geu_op1);
947 do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
948 NULL, done_label, profile_probability::very_likely ());
949 goto do_error_label;
952 gcc_assert (!uns0_p && !uns1_p && !unsr_p);
954 /* s1 +- s2 -> sr */
955 do_signed:
957 insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab
958 : subv4_optab, mode);
959 if (icode != CODE_FOR_nothing)
961 struct expand_operand ops[4];
962 rtx_insn *last = get_last_insn ();
964 res = gen_reg_rtx (mode);
965 create_output_operand (&ops[0], res, mode);
966 create_input_operand (&ops[1], op0, mode);
967 create_input_operand (&ops[2], op1, mode);
968 create_fixed_operand (&ops[3], do_error);
969 if (maybe_expand_insn (icode, 4, ops))
971 last = get_last_insn ();
972 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
973 && JUMP_P (last)
974 && any_condjump_p (last)
975 && !find_reg_note (last, REG_BR_PROB, 0))
976 add_reg_br_prob_note (last,
977 profile_probability::very_unlikely ());
978 emit_jump (done_label);
979 goto do_error_label;
982 delete_insns_since (last);
985 /* Compute the operation. On RTL level, the addition is always
986 unsigned. */
987 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
988 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
990 /* If we can prove that one of the arguments (for MINUS_EXPR only
991 the second operand, as subtraction is not commutative) is always
992 non-negative or always negative, we can do just one comparison
993 and conditional jump. */
994 int pos_neg = get_range_pos_neg (arg1);
995 if (code == PLUS_EXPR)
997 int pos_neg0 = get_range_pos_neg (arg0);
998 if (pos_neg0 != 3 && pos_neg == 3)
1000 std::swap (op0, op1);
1001 pos_neg = pos_neg0;
1005 /* Addition overflows if and only if the two operands have the same sign,
1006 and the result has the opposite sign. Subtraction overflows if and
1007 only if the two operands have opposite sign, and the subtrahend has
1008 the same sign as the result. Here 0 is counted as positive. */
1009 if (pos_neg == 3)
1011 /* Compute op0 ^ op1 (operands have opposite sign). */
1012 rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
1013 OPTAB_LIB_WIDEN);
1015 /* Compute res ^ op1 (result and 2nd operand have opposite sign). */
1016 rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false,
1017 OPTAB_LIB_WIDEN);
1019 rtx tem;
1020 if (code == PLUS_EXPR)
1022 /* Compute (res ^ op1) & ~(op0 ^ op1). */
1023 tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false);
1024 tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false,
1025 OPTAB_LIB_WIDEN);
1027 else
1029 /* Compute (op0 ^ op1) & ~(res ^ op1). */
1030 tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false);
1031 tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false,
1032 OPTAB_LIB_WIDEN);
1035 /* No overflow if the result has bit sign cleared. */
1036 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
1037 NULL, done_label, profile_probability::very_likely ());
1040 /* Compare the result of the operation with the first operand.
1041 No overflow for addition if second operand is positive and result
1042 is larger or second operand is negative and result is smaller.
1043 Likewise for subtraction with sign of second operand flipped. */
1044 else
1045 do_compare_rtx_and_jump (res, op0,
1046 (pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE,
1047 false, mode, NULL_RTX, NULL, done_label,
1048 profile_probability::very_likely ());
1051 do_error_label:
1052 emit_label (do_error);
1053 if (is_ubsan)
1055 /* Expand the ubsan builtin call. */
1056 push_temp_slots ();
1057 fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0),
1058 arg0, arg1, datap);
1059 expand_normal (fn);
1060 pop_temp_slots ();
1061 do_pending_stack_adjust ();
1063 else if (lhs)
1064 expand_arith_set_overflow (lhs, target);
1066 /* We're done. */
1067 emit_label (done_label);
1069 if (lhs)
1071 if (is_ubsan)
1072 expand_ubsan_result_store (target, res);
1073 else
1075 if (do_xor)
1076 res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false,
1077 OPTAB_LIB_WIDEN);
1079 expand_arith_overflow_result_store (lhs, target, mode, res);
1084 /* Add negate overflow checking to the statement STMT. */
1086 static void
1087 expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan,
1088 tree *datap)
1090 rtx res, op1;
1091 tree fn;
1092 rtx_code_label *done_label, *do_error;
1093 rtx target = NULL_RTX;
1095 done_label = gen_label_rtx ();
1096 do_error = gen_label_rtx ();
1098 do_pending_stack_adjust ();
1099 op1 = expand_normal (arg1);
1101 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg1));
1102 if (lhs)
1104 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1105 if (!is_ubsan)
1106 write_complex_part (target, const0_rtx, true);
1109 enum insn_code icode = optab_handler (negv3_optab, mode);
1110 if (icode != CODE_FOR_nothing)
1112 struct expand_operand ops[3];
1113 rtx_insn *last = get_last_insn ();
1115 res = gen_reg_rtx (mode);
1116 create_output_operand (&ops[0], res, mode);
1117 create_input_operand (&ops[1], op1, mode);
1118 create_fixed_operand (&ops[2], do_error);
1119 if (maybe_expand_insn (icode, 3, ops))
1121 last = get_last_insn ();
1122 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
1123 && JUMP_P (last)
1124 && any_condjump_p (last)
1125 && !find_reg_note (last, REG_BR_PROB, 0))
1126 add_reg_br_prob_note (last,
1127 profile_probability::very_unlikely ());
1128 emit_jump (done_label);
1130 else
1132 delete_insns_since (last);
1133 icode = CODE_FOR_nothing;
1137 if (icode == CODE_FOR_nothing)
1139 /* Compute the operation. On RTL level, the addition is always
1140 unsigned. */
1141 res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
1143 /* Compare the operand with the most negative value. */
1144 rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
1145 do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL,
1146 done_label, profile_probability::very_likely ());
1149 emit_label (do_error);
1150 if (is_ubsan)
1152 /* Expand the ubsan builtin call. */
1153 push_temp_slots ();
1154 fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1),
1155 arg1, NULL_TREE, datap);
1156 expand_normal (fn);
1157 pop_temp_slots ();
1158 do_pending_stack_adjust ();
1160 else if (lhs)
1161 expand_arith_set_overflow (lhs, target);
1163 /* We're done. */
1164 emit_label (done_label);
1166 if (lhs)
1168 if (is_ubsan)
1169 expand_ubsan_result_store (target, res);
1170 else
1171 expand_arith_overflow_result_store (lhs, target, mode, res);
1175 /* Add mul overflow checking to the statement STMT. */
1177 static void
1178 expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1,
1179 bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan,
1180 tree *datap)
1182 rtx res, op0, op1;
1183 tree fn, type;
1184 rtx_code_label *done_label, *do_error;
1185 rtx target = NULL_RTX;
1186 signop sign;
1187 enum insn_code icode;
1189 done_label = gen_label_rtx ();
1190 do_error = gen_label_rtx ();
1192 do_pending_stack_adjust ();
1193 op0 = expand_normal (arg0);
1194 op1 = expand_normal (arg1);
1196 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
1197 bool uns = unsr_p;
1198 if (lhs)
1200 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1201 if (!is_ubsan)
1202 write_complex_part (target, const0_rtx, true);
1205 if (is_ubsan)
1206 gcc_assert (!unsr_p && !uns0_p && !uns1_p);
1208 /* We assume both operands and result have the same precision
1209 here (GET_MODE_BITSIZE (mode)), S stands for signed type
1210 with that precision, U for unsigned type with that precision,
1211 sgn for unsigned most significant bit in that precision.
1212 s1 is signed first operand, u1 is unsigned first operand,
1213 s2 is signed second operand, u2 is unsigned second operand,
1214 sr is signed result, ur is unsigned result and the following
1215 rules say how to compute result (which is always result of
1216 the operands as if both were unsigned, cast to the right
1217 signedness) and how to compute whether operation overflowed.
1218 main_ovf (false) stands for jump on signed multiplication
1219 overflow or the main algorithm with uns == false.
1220 main_ovf (true) stands for jump on unsigned multiplication
1221 overflow or the main algorithm with uns == true.
1223 s1 * s2 -> sr
1224 res = (S) ((U) s1 * (U) s2)
1225 ovf = main_ovf (false)
1226 u1 * u2 -> ur
1227 res = u1 * u2
1228 ovf = main_ovf (true)
1229 s1 * u2 -> ur
1230 res = (U) s1 * u2
1231 ovf = (s1 < 0 && u2) || main_ovf (true)
1232 u1 * u2 -> sr
1233 res = (S) (u1 * u2)
1234 ovf = res < 0 || main_ovf (true)
1235 s1 * u2 -> sr
1236 res = (S) ((U) s1 * u2)
1237 ovf = (S) u2 >= 0 ? main_ovf (false)
1238 : (s1 != 0 && (s1 != -1 || u2 != (U) res))
1239 s1 * s2 -> ur
1240 t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1)
1241 t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2)
1242 res = t1 * t2
1243 ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */
1245 if (uns0_p && !uns1_p)
1247 /* Multiplication is commutative, if operand signedness differs,
1248 canonicalize to the first operand being signed and second
1249 unsigned to simplify following code. */
1250 std::swap (op0, op1);
1251 std::swap (arg0, arg1);
1252 uns0_p = false;
1253 uns1_p = true;
1256 int pos_neg0 = get_range_pos_neg (arg0);
1257 int pos_neg1 = get_range_pos_neg (arg1);
1259 /* s1 * u2 -> ur */
1260 if (!uns0_p && uns1_p && unsr_p)
1262 switch (pos_neg0)
1264 case 1:
1265 /* If s1 is non-negative, just perform normal u1 * u2 -> ur. */
1266 goto do_main;
1267 case 2:
1268 /* If s1 is negative, avoid the main code, just multiply and
1269 signal overflow if op1 is not 0. */
1270 struct separate_ops ops;
1271 ops.code = MULT_EXPR;
1272 ops.type = TREE_TYPE (arg1);
1273 ops.op0 = make_tree (ops.type, op0);
1274 ops.op1 = make_tree (ops.type, op1);
1275 ops.op2 = NULL_TREE;
1276 ops.location = loc;
1277 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1278 do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
1279 NULL, done_label, profile_probability::very_likely ());
1280 goto do_error_label;
1281 case 3:
1282 rtx_code_label *do_main_label;
1283 do_main_label = gen_label_rtx ();
1284 do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX,
1285 NULL, do_main_label, profile_probability::very_likely ());
1286 do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
1287 NULL, do_main_label, profile_probability::very_likely ());
1288 expand_arith_set_overflow (lhs, target);
1289 emit_label (do_main_label);
1290 goto do_main;
1291 default:
1292 gcc_unreachable ();
1296 /* u1 * u2 -> sr */
1297 if (uns0_p && uns1_p && !unsr_p)
1299 uns = true;
1300 /* Rest of handling of this case after res is computed. */
1301 goto do_main;
1304 /* s1 * u2 -> sr */
1305 if (!uns0_p && uns1_p && !unsr_p)
1307 switch (pos_neg1)
1309 case 1:
1310 goto do_main;
1311 case 2:
1312 /* If (S) u2 is negative (i.e. u2 is larger than maximum of S,
1313 avoid the main code, just multiply and signal overflow
1314 unless 0 * u2 or -1 * ((U) Smin). */
1315 struct separate_ops ops;
1316 ops.code = MULT_EXPR;
1317 ops.type = TREE_TYPE (arg1);
1318 ops.op0 = make_tree (ops.type, op0);
1319 ops.op1 = make_tree (ops.type, op1);
1320 ops.op2 = NULL_TREE;
1321 ops.location = loc;
1322 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1323 do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
1324 NULL, done_label, profile_probability::very_likely ());
1325 do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
1326 NULL, do_error, profile_probability::very_unlikely ());
1327 int prec;
1328 prec = GET_MODE_PRECISION (mode);
1329 rtx sgn;
1330 sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
1331 do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX,
1332 NULL, done_label, profile_probability::very_likely ());
1333 goto do_error_label;
1334 case 3:
1335 /* Rest of handling of this case after res is computed. */
1336 goto do_main;
1337 default:
1338 gcc_unreachable ();
1342 /* s1 * s2 -> ur */
1343 if (!uns0_p && !uns1_p && unsr_p)
1345 rtx tem, tem2;
1346 switch (pos_neg0 | pos_neg1)
1348 case 1: /* Both operands known to be non-negative. */
1349 goto do_main;
1350 case 2: /* Both operands known to be negative. */
1351 op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false);
1352 op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
1353 /* Avoid looking at arg0/arg1 ranges, as we've changed
1354 the arguments. */
1355 arg0 = error_mark_node;
1356 arg1 = error_mark_node;
1357 goto do_main;
1358 case 3:
1359 if ((pos_neg0 ^ pos_neg1) == 3)
1361 /* If one operand is known to be negative and the other
1362 non-negative, this overflows always, unless the non-negative
1363 one is 0. Just do normal multiply and set overflow
1364 unless one of the operands is 0. */
1365 struct separate_ops ops;
1366 ops.code = MULT_EXPR;
1367 ops.type
1368 = build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
1370 ops.op0 = make_tree (ops.type, op0);
1371 ops.op1 = make_tree (ops.type, op1);
1372 ops.op2 = NULL_TREE;
1373 ops.location = loc;
1374 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1375 tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
1376 OPTAB_LIB_WIDEN);
1377 do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode,
1378 NULL_RTX, NULL, done_label,
1379 profile_probability::very_likely ());
1380 goto do_error_label;
1382 /* The general case, do all the needed comparisons at runtime. */
1383 rtx_code_label *do_main_label, *after_negate_label;
1384 rtx rop0, rop1;
1385 rop0 = gen_reg_rtx (mode);
1386 rop1 = gen_reg_rtx (mode);
1387 emit_move_insn (rop0, op0);
1388 emit_move_insn (rop1, op1);
1389 op0 = rop0;
1390 op1 = rop1;
1391 do_main_label = gen_label_rtx ();
1392 after_negate_label = gen_label_rtx ();
1393 tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
1394 OPTAB_LIB_WIDEN);
1395 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
1396 NULL, after_negate_label, profile_probability::very_likely ());
1397 /* Both arguments negative here, negate them and continue with
1398 normal unsigned overflow checking multiplication. */
1399 emit_move_insn (op0, expand_unop (mode, neg_optab, op0,
1400 NULL_RTX, false));
1401 emit_move_insn (op1, expand_unop (mode, neg_optab, op1,
1402 NULL_RTX, false));
1403 /* Avoid looking at arg0/arg1 ranges, as we might have changed
1404 the arguments. */
1405 arg0 = error_mark_node;
1406 arg1 = error_mark_node;
1407 emit_jump (do_main_label);
1408 emit_label (after_negate_label);
1409 tem2 = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
1410 OPTAB_LIB_WIDEN);
1411 do_compare_rtx_and_jump (tem2, const0_rtx, GE, false, mode, NULL_RTX,
1412 NULL, do_main_label, profile_probability::very_likely ());
1413 /* One argument is negative here, the other positive. This
1414 overflows always, unless one of the arguments is 0. But
1415 if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1
1416 is, thus we can keep do_main code oring in overflow as is. */
1417 do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode, NULL_RTX,
1418 NULL, do_main_label, profile_probability::very_likely ());
1419 expand_arith_set_overflow (lhs, target);
1420 emit_label (do_main_label);
1421 goto do_main;
1422 default:
1423 gcc_unreachable ();
1427 do_main:
1428 type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns);
1429 sign = uns ? UNSIGNED : SIGNED;
1430 icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode);
1431 if (icode != CODE_FOR_nothing)
1433 struct expand_operand ops[4];
1434 rtx_insn *last = get_last_insn ();
1436 res = gen_reg_rtx (mode);
1437 create_output_operand (&ops[0], res, mode);
1438 create_input_operand (&ops[1], op0, mode);
1439 create_input_operand (&ops[2], op1, mode);
1440 create_fixed_operand (&ops[3], do_error);
1441 if (maybe_expand_insn (icode, 4, ops))
1443 last = get_last_insn ();
1444 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
1445 && JUMP_P (last)
1446 && any_condjump_p (last)
1447 && !find_reg_note (last, REG_BR_PROB, 0))
1448 add_reg_br_prob_note (last,
1449 profile_probability::very_unlikely ());
1450 emit_jump (done_label);
1452 else
1454 delete_insns_since (last);
1455 icode = CODE_FOR_nothing;
1459 if (icode == CODE_FOR_nothing)
1461 struct separate_ops ops;
1462 int prec = GET_MODE_PRECISION (mode);
1463 scalar_int_mode hmode;
1464 machine_mode wmode;
1465 ops.op0 = make_tree (type, op0);
1466 ops.op1 = make_tree (type, op1);
1467 ops.op2 = NULL_TREE;
1468 ops.location = loc;
1469 if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode)
1470 && targetm.scalar_mode_supported_p (wmode))
1472 ops.code = WIDEN_MULT_EXPR;
1473 ops.type
1474 = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns);
1476 res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
1477 rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec,
1478 NULL_RTX, uns);
1479 hipart = convert_modes (mode, wmode, hipart, uns);
1480 res = convert_modes (mode, wmode, res, uns);
1481 if (uns)
1482 /* For the unsigned multiplication, there was overflow if
1483 HIPART is non-zero. */
1484 do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
1485 NULL_RTX, NULL, done_label,
1486 profile_probability::very_likely ());
1487 else
1489 rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
1490 NULL_RTX, 0);
1491 /* RES is low half of the double width result, HIPART
1492 the high half. There was overflow if
1493 HIPART is different from RES < 0 ? -1 : 0. */
1494 do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
1495 NULL_RTX, NULL, done_label,
1496 profile_probability::very_likely ());
1499 else if (int_mode_for_size (prec / 2, 1).exists (&hmode)
1500 && 2 * GET_MODE_PRECISION (hmode) == prec)
1502 rtx_code_label *large_op0 = gen_label_rtx ();
1503 rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
1504 rtx_code_label *one_small_one_large = gen_label_rtx ();
1505 rtx_code_label *both_ops_large = gen_label_rtx ();
1506 rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx ();
1507 rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx ();
1508 rtx_code_label *do_overflow = gen_label_rtx ();
1509 rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx ();
1511 unsigned int hprec = GET_MODE_PRECISION (hmode);
1512 rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
1513 NULL_RTX, uns);
1514 hipart0 = convert_modes (hmode, mode, hipart0, uns);
1515 rtx lopart0 = convert_modes (hmode, mode, op0, uns);
1516 rtx signbit0 = const0_rtx;
1517 if (!uns)
1518 signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
1519 NULL_RTX, 0);
1520 rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
1521 NULL_RTX, uns);
1522 hipart1 = convert_modes (hmode, mode, hipart1, uns);
1523 rtx lopart1 = convert_modes (hmode, mode, op1, uns);
1524 rtx signbit1 = const0_rtx;
1525 if (!uns)
1526 signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
1527 NULL_RTX, 0);
1529 res = gen_reg_rtx (mode);
1531 /* True if op0 resp. op1 are known to be in the range of
1532 halfstype. */
1533 bool op0_small_p = false;
1534 bool op1_small_p = false;
1535 /* True if op0 resp. op1 are known to have all zeros or all ones
1536 in the upper half of bits, but are not known to be
1537 op{0,1}_small_p. */
1538 bool op0_medium_p = false;
1539 bool op1_medium_p = false;
1540 /* -1 if op{0,1} is known to be negative, 0 if it is known to be
1541 nonnegative, 1 if unknown. */
1542 int op0_sign = 1;
1543 int op1_sign = 1;
1545 if (pos_neg0 == 1)
1546 op0_sign = 0;
1547 else if (pos_neg0 == 2)
1548 op0_sign = -1;
1549 if (pos_neg1 == 1)
1550 op1_sign = 0;
1551 else if (pos_neg1 == 2)
1552 op1_sign = -1;
1554 unsigned int mprec0 = prec;
1555 if (arg0 != error_mark_node)
1556 mprec0 = get_min_precision (arg0, sign);
1557 if (mprec0 <= hprec)
1558 op0_small_p = true;
1559 else if (!uns && mprec0 <= hprec + 1)
1560 op0_medium_p = true;
1561 unsigned int mprec1 = prec;
1562 if (arg1 != error_mark_node)
1563 mprec1 = get_min_precision (arg1, sign);
1564 if (mprec1 <= hprec)
1565 op1_small_p = true;
1566 else if (!uns && mprec1 <= hprec + 1)
1567 op1_medium_p = true;
1569 int smaller_sign = 1;
1570 int larger_sign = 1;
1571 if (op0_small_p)
1573 smaller_sign = op0_sign;
1574 larger_sign = op1_sign;
1576 else if (op1_small_p)
1578 smaller_sign = op1_sign;
1579 larger_sign = op0_sign;
1581 else if (op0_sign == op1_sign)
1583 smaller_sign = op0_sign;
1584 larger_sign = op0_sign;
1587 if (!op0_small_p)
1588 do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode,
1589 NULL_RTX, NULL, large_op0,
1590 profile_probability::unlikely ());
1592 if (!op1_small_p)
1593 do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
1594 NULL_RTX, NULL, small_op0_large_op1,
1595 profile_probability::unlikely ());
1597 /* If both op0 and op1 are sign (!uns) or zero (uns) extended from
1598 hmode to mode, the multiplication will never overflow. We can
1599 do just one hmode x hmode => mode widening multiplication. */
1600 rtx lopart0s = lopart0, lopart1s = lopart1;
1601 if (GET_CODE (lopart0) == SUBREG)
1603 lopart0s = shallow_copy_rtx (lopart0);
1604 SUBREG_PROMOTED_VAR_P (lopart0s) = 1;
1605 SUBREG_PROMOTED_SET (lopart0s, uns ? SRP_UNSIGNED : SRP_SIGNED);
1607 if (GET_CODE (lopart1) == SUBREG)
1609 lopart1s = shallow_copy_rtx (lopart1);
1610 SUBREG_PROMOTED_VAR_P (lopart1s) = 1;
1611 SUBREG_PROMOTED_SET (lopart1s, uns ? SRP_UNSIGNED : SRP_SIGNED);
1613 tree halfstype = build_nonstandard_integer_type (hprec, uns);
1614 ops.op0 = make_tree (halfstype, lopart0s);
1615 ops.op1 = make_tree (halfstype, lopart1s);
1616 ops.code = WIDEN_MULT_EXPR;
1617 ops.type = type;
1618 rtx thisres
1619 = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1620 emit_move_insn (res, thisres);
1621 emit_jump (done_label);
1623 emit_label (small_op0_large_op1);
1625 /* If op0 is sign (!uns) or zero (uns) extended from hmode to mode,
1626 but op1 is not, just swap the arguments and handle it as op1
1627 sign/zero extended, op0 not. */
1628 rtx larger = gen_reg_rtx (mode);
1629 rtx hipart = gen_reg_rtx (hmode);
1630 rtx lopart = gen_reg_rtx (hmode);
1631 emit_move_insn (larger, op1);
1632 emit_move_insn (hipart, hipart1);
1633 emit_move_insn (lopart, lopart0);
1634 emit_jump (one_small_one_large);
1636 emit_label (large_op0);
1638 if (!op1_small_p)
1639 do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
1640 NULL_RTX, NULL, both_ops_large,
1641 profile_probability::unlikely ());
1643 /* If op1 is sign (!uns) or zero (uns) extended from hmode to mode,
1644 but op0 is not, prepare larger, hipart and lopart pseudos and
1645 handle it together with small_op0_large_op1. */
1646 emit_move_insn (larger, op0);
1647 emit_move_insn (hipart, hipart0);
1648 emit_move_insn (lopart, lopart1);
1650 emit_label (one_small_one_large);
1652 /* lopart is the low part of the operand that is sign extended
1653 to mode, larger is the other operand, hipart is the
1654 high part of larger and lopart0 and lopart1 are the low parts
1655 of both operands.
1656 We perform lopart0 * lopart1 and lopart * hipart widening
1657 multiplications. */
1658 tree halfutype = build_nonstandard_integer_type (hprec, 1);
1659 ops.op0 = make_tree (halfutype, lopart0);
1660 ops.op1 = make_tree (halfutype, lopart1);
1661 rtx lo0xlo1
1662 = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1664 ops.op0 = make_tree (halfutype, lopart);
1665 ops.op1 = make_tree (halfutype, hipart);
1666 rtx loxhi = gen_reg_rtx (mode);
1667 rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1668 emit_move_insn (loxhi, tem);
1670 if (!uns)
1672 /* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */
1673 if (larger_sign == 0)
1674 emit_jump (after_hipart_neg);
1675 else if (larger_sign != -1)
1676 do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode,
1677 NULL_RTX, NULL, after_hipart_neg,
1678 profile_probability::even ());
1680 tem = convert_modes (mode, hmode, lopart, 1);
1681 tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
1682 tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
1683 1, OPTAB_DIRECT);
1684 emit_move_insn (loxhi, tem);
1686 emit_label (after_hipart_neg);
1688 /* if (lopart < 0) loxhi -= larger; */
1689 if (smaller_sign == 0)
1690 emit_jump (after_lopart_neg);
1691 else if (smaller_sign != -1)
1692 do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode,
1693 NULL_RTX, NULL, after_lopart_neg,
1694 profile_probability::even ());
1696 tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
1697 1, OPTAB_DIRECT);
1698 emit_move_insn (loxhi, tem);
1700 emit_label (after_lopart_neg);
1703 /* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */
1704 tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
1705 tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
1706 1, OPTAB_DIRECT);
1707 emit_move_insn (loxhi, tem);
1709 /* if (loxhi >> (bitsize / 2)
1710 == (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns)
1711 if (loxhi >> (bitsize / 2) == 0 (if uns). */
1712 rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
1713 NULL_RTX, 0);
1714 hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0);
1715 rtx signbitloxhi = const0_rtx;
1716 if (!uns)
1717 signbitloxhi = expand_shift (RSHIFT_EXPR, hmode,
1718 convert_modes (hmode, mode,
1719 loxhi, 0),
1720 hprec - 1, NULL_RTX, 0);
1722 do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode,
1723 NULL_RTX, NULL, do_overflow,
1724 profile_probability::very_unlikely ());
1726 /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */
1727 rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
1728 NULL_RTX, 1);
1729 tem = convert_modes (mode, hmode,
1730 convert_modes (hmode, mode, lo0xlo1, 1), 1);
1732 tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
1733 1, OPTAB_DIRECT);
1734 if (tem != res)
1735 emit_move_insn (res, tem);
1736 emit_jump (done_label);
1738 emit_label (both_ops_large);
1740 /* If both operands are large (not sign (!uns) or zero (uns)
1741 extended from hmode), then perform the full multiplication
1742 which will be the result of the operation.
1743 The only cases which don't overflow are for signed multiplication
1744 some cases where both hipart0 and highpart1 are 0 or -1.
1745 For unsigned multiplication when high parts are both non-zero
1746 this overflows always. */
1747 ops.code = MULT_EXPR;
1748 ops.op0 = make_tree (type, op0);
1749 ops.op1 = make_tree (type, op1);
1750 tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1751 emit_move_insn (res, tem);
1753 if (!uns)
1755 if (!op0_medium_p)
1757 tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
1758 NULL_RTX, 1, OPTAB_DIRECT);
1759 do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
1760 NULL_RTX, NULL, do_error,
1761 profile_probability::very_unlikely ());
1764 if (!op1_medium_p)
1766 tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
1767 NULL_RTX, 1, OPTAB_DIRECT);
1768 do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
1769 NULL_RTX, NULL, do_error,
1770 profile_probability::very_unlikely ());
1773 /* At this point hipart{0,1} are both in [-1, 0]. If they are
1774 the same, overflow happened if res is negative, if they are
1775 different, overflow happened if res is positive. */
1776 if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
1777 emit_jump (hipart_different);
1778 else if (op0_sign == 1 || op1_sign == 1)
1779 do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode,
1780 NULL_RTX, NULL, hipart_different,
1781 profile_probability::even ());
1783 do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode,
1784 NULL_RTX, NULL, do_error,
1785 profile_probability::very_unlikely ());
1786 emit_jump (done_label);
1788 emit_label (hipart_different);
1790 do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode,
1791 NULL_RTX, NULL, do_error,
1792 profile_probability::very_unlikely ());
1793 emit_jump (done_label);
1796 emit_label (do_overflow);
1798 /* Overflow, do full multiplication and fallthru into do_error. */
1799 ops.op0 = make_tree (type, op0);
1800 ops.op1 = make_tree (type, op1);
1801 tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1802 emit_move_insn (res, tem);
1804 else
1806 gcc_assert (!is_ubsan);
1807 ops.code = MULT_EXPR;
1808 ops.type = type;
1809 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1810 emit_jump (done_label);
1814 do_error_label:
1815 emit_label (do_error);
1816 if (is_ubsan)
1818 /* Expand the ubsan builtin call. */
1819 push_temp_slots ();
1820 fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0),
1821 arg0, arg1, datap);
1822 expand_normal (fn);
1823 pop_temp_slots ();
1824 do_pending_stack_adjust ();
1826 else if (lhs)
1827 expand_arith_set_overflow (lhs, target);
1829 /* We're done. */
1830 emit_label (done_label);
1832 /* u1 * u2 -> sr */
1833 if (uns0_p && uns1_p && !unsr_p)
1835 rtx_code_label *all_done_label = gen_label_rtx ();
1836 do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
1837 NULL, all_done_label, profile_probability::very_likely ());
1838 expand_arith_set_overflow (lhs, target);
1839 emit_label (all_done_label);
1842 /* s1 * u2 -> sr */
1843 if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3)
1845 rtx_code_label *all_done_label = gen_label_rtx ();
1846 rtx_code_label *set_noovf = gen_label_rtx ();
1847 do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX,
1848 NULL, all_done_label, profile_probability::very_likely ());
1849 expand_arith_set_overflow (lhs, target);
1850 do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
1851 NULL, set_noovf, profile_probability::very_likely ());
1852 do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
1853 NULL, all_done_label, profile_probability::very_unlikely ());
1854 do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL,
1855 all_done_label, profile_probability::very_unlikely ());
1856 emit_label (set_noovf);
1857 write_complex_part (target, const0_rtx, true);
1858 emit_label (all_done_label);
1861 if (lhs)
1863 if (is_ubsan)
1864 expand_ubsan_result_store (target, res);
1865 else
1866 expand_arith_overflow_result_store (lhs, target, mode, res);
1870 /* Expand UBSAN_CHECK_* internal function if it has vector operands. */
1872 static void
1873 expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs,
1874 tree arg0, tree arg1)
1876 int cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1877 rtx_code_label *loop_lab = NULL;
1878 rtx cntvar = NULL_RTX;
1879 tree cntv = NULL_TREE;
1880 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
1881 tree sz = TYPE_SIZE (eltype);
1882 tree data = NULL_TREE;
1883 tree resv = NULL_TREE;
1884 rtx lhsr = NULL_RTX;
1885 rtx resvr = NULL_RTX;
1887 if (lhs)
1889 optab op;
1890 lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1891 if (!VECTOR_MODE_P (GET_MODE (lhsr))
1892 || (op = optab_for_tree_code (code, TREE_TYPE (arg0),
1893 optab_default)) == unknown_optab
1894 || (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0)))
1895 == CODE_FOR_nothing))
1897 if (MEM_P (lhsr))
1898 resv = make_tree (TREE_TYPE (lhs), lhsr);
1899 else
1901 resvr = assign_temp (TREE_TYPE (lhs), 1, 1);
1902 resv = make_tree (TREE_TYPE (lhs), resvr);
1906 if (cnt > 4)
1908 do_pending_stack_adjust ();
1909 loop_lab = gen_label_rtx ();
1910 cntvar = gen_reg_rtx (TYPE_MODE (sizetype));
1911 cntv = make_tree (sizetype, cntvar);
1912 emit_move_insn (cntvar, const0_rtx);
1913 emit_label (loop_lab);
1915 if (TREE_CODE (arg0) != VECTOR_CST)
1917 rtx arg0r = expand_normal (arg0);
1918 arg0 = make_tree (TREE_TYPE (arg0), arg0r);
1920 if (TREE_CODE (arg1) != VECTOR_CST)
1922 rtx arg1r = expand_normal (arg1);
1923 arg1 = make_tree (TREE_TYPE (arg1), arg1r);
1925 for (int i = 0; i < (cnt > 4 ? 1 : cnt); i++)
1927 tree op0, op1, res = NULL_TREE;
1928 if (cnt > 4)
1930 tree atype = build_array_type_nelts (eltype, cnt);
1931 op0 = uniform_vector_p (arg0);
1932 if (op0 == NULL_TREE)
1934 op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0);
1935 op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv,
1936 NULL_TREE, NULL_TREE);
1938 op1 = uniform_vector_p (arg1);
1939 if (op1 == NULL_TREE)
1941 op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1);
1942 op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv,
1943 NULL_TREE, NULL_TREE);
1945 if (resv)
1947 res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv);
1948 res = build4_loc (loc, ARRAY_REF, eltype, res, cntv,
1949 NULL_TREE, NULL_TREE);
1952 else
1954 tree bitpos = bitsize_int (tree_to_uhwi (sz) * i);
1955 op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos);
1956 op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos);
1957 if (resv)
1958 res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz,
1959 bitpos);
1961 switch (code)
1963 case PLUS_EXPR:
1964 expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1,
1965 false, false, false, true, &data);
1966 break;
1967 case MINUS_EXPR:
1968 if (cnt > 4 ? integer_zerop (arg0) : integer_zerop (op0))
1969 expand_neg_overflow (loc, res, op1, true, &data);
1970 else
1971 expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1,
1972 false, false, false, true, &data);
1973 break;
1974 case MULT_EXPR:
1975 expand_mul_overflow (loc, res, op0, op1, false, false, false,
1976 true, &data);
1977 break;
1978 default:
1979 gcc_unreachable ();
1982 if (cnt > 4)
1984 struct separate_ops ops;
1985 ops.code = PLUS_EXPR;
1986 ops.type = TREE_TYPE (cntv);
1987 ops.op0 = cntv;
1988 ops.op1 = build_int_cst (TREE_TYPE (cntv), 1);
1989 ops.op2 = NULL_TREE;
1990 ops.location = loc;
1991 rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype),
1992 EXPAND_NORMAL);
1993 if (ret != cntvar)
1994 emit_move_insn (cntvar, ret);
1995 do_compare_rtx_and_jump (cntvar, GEN_INT (cnt), NE, false,
1996 TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab,
1997 profile_probability::very_likely ());
1999 if (lhs && resv == NULL_TREE)
2001 struct separate_ops ops;
2002 ops.code = code;
2003 ops.type = TREE_TYPE (arg0);
2004 ops.op0 = arg0;
2005 ops.op1 = arg1;
2006 ops.op2 = NULL_TREE;
2007 ops.location = loc;
2008 rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)),
2009 EXPAND_NORMAL);
2010 if (ret != lhsr)
2011 emit_move_insn (lhsr, ret);
2013 else if (resvr)
2014 emit_move_insn (lhsr, resvr);
2017 /* Expand UBSAN_CHECK_ADD call STMT. */
2019 static void
2020 expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt)
2022 location_t loc = gimple_location (stmt);
2023 tree lhs = gimple_call_lhs (stmt);
2024 tree arg0 = gimple_call_arg (stmt, 0);
2025 tree arg1 = gimple_call_arg (stmt, 1);
2026 if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
2027 expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1);
2028 else
2029 expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1,
2030 false, false, false, true, NULL);
2033 /* Expand UBSAN_CHECK_SUB call STMT. */
2035 static void
2036 expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt)
2038 location_t loc = gimple_location (stmt);
2039 tree lhs = gimple_call_lhs (stmt);
2040 tree arg0 = gimple_call_arg (stmt, 0);
2041 tree arg1 = gimple_call_arg (stmt, 1);
2042 if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
2043 expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1);
2044 else if (integer_zerop (arg0))
2045 expand_neg_overflow (loc, lhs, arg1, true, NULL);
2046 else
2047 expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1,
2048 false, false, false, true, NULL);
2051 /* Expand UBSAN_CHECK_MUL call STMT. */
2053 static void
2054 expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt)
2056 location_t loc = gimple_location (stmt);
2057 tree lhs = gimple_call_lhs (stmt);
2058 tree arg0 = gimple_call_arg (stmt, 0);
2059 tree arg1 = gimple_call_arg (stmt, 1);
2060 if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
2061 expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1);
2062 else
2063 expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true,
2064 NULL);
2067 /* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */
2069 static void
2070 expand_arith_overflow (enum tree_code code, gimple *stmt)
2072 tree lhs = gimple_call_lhs (stmt);
2073 if (lhs == NULL_TREE)
2074 return;
2075 tree arg0 = gimple_call_arg (stmt, 0);
2076 tree arg1 = gimple_call_arg (stmt, 1);
2077 tree type = TREE_TYPE (TREE_TYPE (lhs));
2078 int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
2079 int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1));
2080 int unsr_p = TYPE_UNSIGNED (type);
2081 int prec0 = TYPE_PRECISION (TREE_TYPE (arg0));
2082 int prec1 = TYPE_PRECISION (TREE_TYPE (arg1));
2083 int precres = TYPE_PRECISION (type);
2084 location_t loc = gimple_location (stmt);
2085 if (!uns0_p && get_range_pos_neg (arg0) == 1)
2086 uns0_p = true;
2087 if (!uns1_p && get_range_pos_neg (arg1) == 1)
2088 uns1_p = true;
2089 int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED);
2090 prec0 = MIN (prec0, pr);
2091 pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED);
2092 prec1 = MIN (prec1, pr);
2094 /* If uns0_p && uns1_p, precop is minimum needed precision
2095 of unsigned type to hold the exact result, otherwise
2096 precop is minimum needed precision of signed type to
2097 hold the exact result. */
2098 int precop;
2099 if (code == MULT_EXPR)
2100 precop = prec0 + prec1 + (uns0_p != uns1_p);
2101 else
2103 if (uns0_p == uns1_p)
2104 precop = MAX (prec0, prec1) + 1;
2105 else if (uns0_p)
2106 precop = MAX (prec0 + 1, prec1) + 1;
2107 else
2108 precop = MAX (prec0, prec1 + 1) + 1;
2110 int orig_precres = precres;
2114 if ((uns0_p && uns1_p)
2115 ? ((precop + !unsr_p) <= precres
2116 /* u1 - u2 -> ur can overflow, no matter what precision
2117 the result has. */
2118 && (code != MINUS_EXPR || !unsr_p))
2119 : (!unsr_p && precop <= precres))
2121 /* The infinity precision result will always fit into result. */
2122 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2123 write_complex_part (target, const0_rtx, true);
2124 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2125 struct separate_ops ops;
2126 ops.code = code;
2127 ops.type = type;
2128 ops.op0 = fold_convert_loc (loc, type, arg0);
2129 ops.op1 = fold_convert_loc (loc, type, arg1);
2130 ops.op2 = NULL_TREE;
2131 ops.location = loc;
2132 rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
2133 expand_arith_overflow_result_store (lhs, target, mode, tem);
2134 return;
2137 /* For operations with low precision, if target doesn't have them, start
2138 with precres widening right away, otherwise do it only if the most
2139 simple cases can't be used. */
2140 const int min_precision = targetm.min_arithmetic_precision ();
2141 if (orig_precres == precres && precres < min_precision)
2143 else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres
2144 && prec1 <= precres)
2145 || ((!uns0_p || !uns1_p) && !unsr_p
2146 && prec0 + uns0_p <= precres
2147 && prec1 + uns1_p <= precres))
2149 arg0 = fold_convert_loc (loc, type, arg0);
2150 arg1 = fold_convert_loc (loc, type, arg1);
2151 switch (code)
2153 case MINUS_EXPR:
2154 if (integer_zerop (arg0) && !unsr_p)
2156 expand_neg_overflow (loc, lhs, arg1, false, NULL);
2157 return;
2159 /* FALLTHRU */
2160 case PLUS_EXPR:
2161 expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
2162 unsr_p, unsr_p, false, NULL);
2163 return;
2164 case MULT_EXPR:
2165 expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
2166 unsr_p, unsr_p, false, NULL);
2167 return;
2168 default:
2169 gcc_unreachable ();
2173 /* For sub-word operations, retry with a wider type first. */
2174 if (orig_precres == precres && precop <= BITS_PER_WORD)
2176 int p = MAX (min_precision, precop);
2177 scalar_int_mode m = smallest_int_mode_for_size (p);
2178 tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
2179 uns0_p && uns1_p
2180 && unsr_p);
2181 p = TYPE_PRECISION (optype);
2182 if (p > precres)
2184 precres = p;
2185 unsr_p = TYPE_UNSIGNED (optype);
2186 type = optype;
2187 continue;
2191 if (prec0 <= precres && prec1 <= precres)
2193 tree types[2];
2194 if (unsr_p)
2196 types[0] = build_nonstandard_integer_type (precres, 0);
2197 types[1] = type;
2199 else
2201 types[0] = type;
2202 types[1] = build_nonstandard_integer_type (precres, 1);
2204 arg0 = fold_convert_loc (loc, types[uns0_p], arg0);
2205 arg1 = fold_convert_loc (loc, types[uns1_p], arg1);
2206 if (code != MULT_EXPR)
2207 expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
2208 uns0_p, uns1_p, false, NULL);
2209 else
2210 expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
2211 uns0_p, uns1_p, false, NULL);
2212 return;
2215 /* Retry with a wider type. */
2216 if (orig_precres == precres)
2218 int p = MAX (prec0, prec1);
2219 scalar_int_mode m = smallest_int_mode_for_size (p);
2220 tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
2221 uns0_p && uns1_p
2222 && unsr_p);
2223 p = TYPE_PRECISION (optype);
2224 if (p > precres)
2226 precres = p;
2227 unsr_p = TYPE_UNSIGNED (optype);
2228 type = optype;
2229 continue;
2233 gcc_unreachable ();
2235 while (1);
2238 /* Expand ADD_OVERFLOW STMT. */
2240 static void
2241 expand_ADD_OVERFLOW (internal_fn, gcall *stmt)
2243 expand_arith_overflow (PLUS_EXPR, stmt);
2246 /* Expand SUB_OVERFLOW STMT. */
2248 static void
2249 expand_SUB_OVERFLOW (internal_fn, gcall *stmt)
2251 expand_arith_overflow (MINUS_EXPR, stmt);
2254 /* Expand MUL_OVERFLOW STMT. */
2256 static void
2257 expand_MUL_OVERFLOW (internal_fn, gcall *stmt)
2259 expand_arith_overflow (MULT_EXPR, stmt);
2262 /* This should get folded in tree-vectorizer.c. */
2264 static void
2265 expand_LOOP_VECTORIZED (internal_fn, gcall *)
2267 gcc_unreachable ();
2270 /* This should get folded in tree-vectorizer.c. */
2272 static void
2273 expand_LOOP_DIST_ALIAS (internal_fn, gcall *)
2275 gcc_unreachable ();
2278 /* Expand MASK_LOAD call STMT using optab OPTAB. */
2280 static void
2281 expand_mask_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
2283 struct expand_operand ops[3];
2284 tree type, lhs, rhs, maskt, ptr;
2285 rtx mem, target, mask;
2286 unsigned align;
2288 maskt = gimple_call_arg (stmt, 2);
2289 lhs = gimple_call_lhs (stmt);
2290 if (lhs == NULL_TREE)
2291 return;
2292 type = TREE_TYPE (lhs);
2293 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
2294 align = tree_to_shwi (gimple_call_arg (stmt, 1));
2295 if (TYPE_ALIGN (type) != align)
2296 type = build_aligned_type (type, align);
2297 rhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
2299 mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2300 gcc_assert (MEM_P (mem));
2301 mask = expand_normal (maskt);
2302 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2303 create_output_operand (&ops[0], target, TYPE_MODE (type));
2304 create_fixed_operand (&ops[1], mem);
2305 create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
2306 expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
2307 TYPE_MODE (TREE_TYPE (maskt))),
2308 3, ops);
2311 /* Expand MASK_STORE call STMT using optab OPTAB. */
2313 static void
2314 expand_mask_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
2316 struct expand_operand ops[3];
2317 tree type, lhs, rhs, maskt, ptr;
2318 rtx mem, reg, mask;
2319 unsigned align;
2321 maskt = gimple_call_arg (stmt, 2);
2322 rhs = gimple_call_arg (stmt, 3);
2323 type = TREE_TYPE (rhs);
2324 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
2325 align = tree_to_shwi (gimple_call_arg (stmt, 1));
2326 if (TYPE_ALIGN (type) != align)
2327 type = build_aligned_type (type, align);
2328 lhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
2330 mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2331 gcc_assert (MEM_P (mem));
2332 mask = expand_normal (maskt);
2333 reg = expand_normal (rhs);
2334 create_fixed_operand (&ops[0], mem);
2335 create_input_operand (&ops[1], reg, TYPE_MODE (type));
2336 create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
2337 expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
2338 TYPE_MODE (TREE_TYPE (maskt))),
2339 3, ops);
2342 static void
2343 expand_ABNORMAL_DISPATCHER (internal_fn, gcall *)
2347 static void
2348 expand_BUILTIN_EXPECT (internal_fn, gcall *stmt)
2350 /* When guessing was done, the hints should be already stripped away. */
2351 gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());
2353 rtx target;
2354 tree lhs = gimple_call_lhs (stmt);
2355 if (lhs)
2356 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2357 else
2358 target = const0_rtx;
2359 rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
2360 if (lhs && val != target)
2361 emit_move_insn (target, val);
2364 /* IFN_VA_ARG is supposed to be expanded at pass_stdarg. So this dummy function
2365 should never be called. */
2367 static void
2368 expand_VA_ARG (internal_fn, gcall *)
2370 gcc_unreachable ();
2373 /* Expand the IFN_UNIQUE function according to its first argument. */
2375 static void
2376 expand_UNIQUE (internal_fn, gcall *stmt)
2378 rtx pattern = NULL_RTX;
2379 enum ifn_unique_kind kind
2380 = (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0));
2382 switch (kind)
2384 default:
2385 gcc_unreachable ();
2387 case IFN_UNIQUE_UNSPEC:
2388 if (targetm.have_unique ())
2389 pattern = targetm.gen_unique ();
2390 break;
2392 case IFN_UNIQUE_OACC_FORK:
2393 case IFN_UNIQUE_OACC_JOIN:
2394 if (targetm.have_oacc_fork () && targetm.have_oacc_join ())
2396 tree lhs = gimple_call_lhs (stmt);
2397 rtx target = const0_rtx;
2399 if (lhs)
2400 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2402 rtx data_dep = expand_normal (gimple_call_arg (stmt, 1));
2403 rtx axis = expand_normal (gimple_call_arg (stmt, 2));
2405 if (kind == IFN_UNIQUE_OACC_FORK)
2406 pattern = targetm.gen_oacc_fork (target, data_dep, axis);
2407 else
2408 pattern = targetm.gen_oacc_join (target, data_dep, axis);
2410 else
2411 gcc_unreachable ();
2412 break;
2415 if (pattern)
2416 emit_insn (pattern);
2419 /* The size of an OpenACC compute dimension. */
2421 static void
2422 expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt)
2424 tree lhs = gimple_call_lhs (stmt);
2426 if (!lhs)
2427 return;
2429 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2430 if (targetm.have_oacc_dim_size ())
2432 rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
2433 VOIDmode, EXPAND_NORMAL);
2434 emit_insn (targetm.gen_oacc_dim_size (target, dim));
2436 else
2437 emit_move_insn (target, GEN_INT (1));
2440 /* The position of an OpenACC execution engine along one compute axis. */
2442 static void
2443 expand_GOACC_DIM_POS (internal_fn, gcall *stmt)
2445 tree lhs = gimple_call_lhs (stmt);
2447 if (!lhs)
2448 return;
2450 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2451 if (targetm.have_oacc_dim_pos ())
2453 rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
2454 VOIDmode, EXPAND_NORMAL);
2455 emit_insn (targetm.gen_oacc_dim_pos (target, dim));
2457 else
2458 emit_move_insn (target, const0_rtx);
2461 /* This is expanded by oacc_device_lower pass. */
2463 static void
2464 expand_GOACC_LOOP (internal_fn, gcall *)
2466 gcc_unreachable ();
2469 /* This is expanded by oacc_device_lower pass. */
2471 static void
2472 expand_GOACC_REDUCTION (internal_fn, gcall *)
2474 gcc_unreachable ();
2477 /* This is expanded by oacc_device_lower pass. */
2479 static void
2480 expand_GOACC_TILE (internal_fn, gcall *)
2482 gcc_unreachable ();
2485 /* Set errno to EDOM. */
2487 static void
2488 expand_SET_EDOM (internal_fn, gcall *)
2490 #ifdef TARGET_EDOM
2491 #ifdef GEN_ERRNO_RTX
2492 rtx errno_rtx = GEN_ERRNO_RTX;
2493 #else
2494 rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
2495 #endif
2496 emit_move_insn (errno_rtx,
2497 gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx)));
2498 #else
2499 gcc_unreachable ();
2500 #endif
2503 /* Expand atomic bit test and set. */
2505 static void
2506 expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call)
2508 expand_ifn_atomic_bit_test_and (call);
2511 /* Expand atomic bit test and complement. */
2513 static void
2514 expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call)
2516 expand_ifn_atomic_bit_test_and (call);
2519 /* Expand atomic bit test and reset. */
2521 static void
2522 expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call)
2524 expand_ifn_atomic_bit_test_and (call);
2527 /* Expand atomic bit test and set. */
2529 static void
2530 expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call)
2532 expand_ifn_atomic_compare_exchange (call);
2535 /* Expand LAUNDER to assignment, lhs = arg0. */
2537 static void
2538 expand_LAUNDER (internal_fn, gcall *call)
2540 tree lhs = gimple_call_lhs (call);
2542 if (!lhs)
2543 return;
2545 expand_assignment (lhs, gimple_call_arg (call, 0), false);
2548 /* Expand DIVMOD() using:
2549 a) optab handler for udivmod/sdivmod if it is available.
2550 b) If optab_handler doesn't exist, generate call to
2551 target-specific divmod libfunc. */
2553 static void
2554 expand_DIVMOD (internal_fn, gcall *call_stmt)
2556 tree lhs = gimple_call_lhs (call_stmt);
2557 tree arg0 = gimple_call_arg (call_stmt, 0);
2558 tree arg1 = gimple_call_arg (call_stmt, 1);
2560 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
2561 tree type = TREE_TYPE (TREE_TYPE (lhs));
2562 machine_mode mode = TYPE_MODE (type);
2563 bool unsignedp = TYPE_UNSIGNED (type);
2564 optab tab = (unsignedp) ? udivmod_optab : sdivmod_optab;
2566 rtx op0 = expand_normal (arg0);
2567 rtx op1 = expand_normal (arg1);
2568 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2570 rtx quotient, remainder, libfunc;
2572 /* Check if optab_handler exists for divmod_optab for given mode. */
2573 if (optab_handler (tab, mode) != CODE_FOR_nothing)
2575 quotient = gen_reg_rtx (mode);
2576 remainder = gen_reg_rtx (mode);
2577 expand_twoval_binop (tab, op0, op1, quotient, remainder, unsignedp);
2580 /* Generate call to divmod libfunc if it exists. */
2581 else if ((libfunc = optab_libfunc (tab, mode)) != NULL_RTX)
2582 targetm.expand_divmod_libfunc (libfunc, mode, op0, op1,
2583 &quotient, &remainder);
2585 else
2586 gcc_unreachable ();
2588 /* Wrap the return value (quotient, remainder) within COMPLEX_EXPR. */
2589 expand_expr (build2 (COMPLEX_EXPR, TREE_TYPE (lhs),
2590 make_tree (TREE_TYPE (arg0), quotient),
2591 make_tree (TREE_TYPE (arg1), remainder)),
2592 target, VOIDmode, EXPAND_NORMAL);
2595 /* Expand a call to FN using the operands in STMT. FN has a single
2596 output operand and NARGS input operands. */
2598 static void
2599 expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab,
2600 unsigned int nargs)
2602 expand_operand *ops = XALLOCAVEC (expand_operand, nargs + 1);
2604 tree_pair types = direct_internal_fn_types (fn, stmt);
2605 insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first));
2607 tree lhs = gimple_call_lhs (stmt);
2608 tree lhs_type = TREE_TYPE (lhs);
2609 rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2610 create_output_operand (&ops[0], lhs_rtx, insn_data[icode].operand[0].mode);
2612 for (unsigned int i = 0; i < nargs; ++i)
2614 tree rhs = gimple_call_arg (stmt, i);
2615 tree rhs_type = TREE_TYPE (rhs);
2616 rtx rhs_rtx = expand_normal (rhs);
2617 if (INTEGRAL_TYPE_P (rhs_type))
2618 create_convert_operand_from (&ops[i + 1], rhs_rtx,
2619 TYPE_MODE (rhs_type),
2620 TYPE_UNSIGNED (rhs_type));
2621 else
2622 create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type));
2625 expand_insn (icode, nargs + 1, ops);
2626 if (!rtx_equal_p (lhs_rtx, ops[0].value))
2628 /* If the return value has an integral type, convert the instruction
2629 result to that type. This is useful for things that return an
2630 int regardless of the size of the input. If the instruction result
2631 is smaller than required, assume that it is signed.
2633 If the return value has a nonintegral type, its mode must match
2634 the instruction result. */
2635 if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx))
2637 /* If this is a scalar in a register that is stored in a wider
2638 mode than the declared mode, compute the result into its
2639 declared mode and then convert to the wider mode. */
2640 gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
2641 rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0);
2642 convert_move (SUBREG_REG (lhs_rtx), tmp,
2643 SUBREG_PROMOTED_SIGN (lhs_rtx));
2645 else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value))
2646 emit_move_insn (lhs_rtx, ops[0].value);
2647 else
2649 gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
2650 convert_move (lhs_rtx, ops[0].value, 0);
2655 /* Expanders for optabs that can use expand_direct_optab_fn. */
2657 #define expand_unary_optab_fn(FN, STMT, OPTAB) \
2658 expand_direct_optab_fn (FN, STMT, OPTAB, 1)
2660 #define expand_binary_optab_fn(FN, STMT, OPTAB) \
2661 expand_direct_optab_fn (FN, STMT, OPTAB, 2)
2663 /* RETURN_TYPE and ARGS are a return type and argument list that are
2664 in principle compatible with FN (which satisfies direct_internal_fn_p).
2665 Return the types that should be used to determine whether the
2666 target supports FN. */
2668 tree_pair
2669 direct_internal_fn_types (internal_fn fn, tree return_type, tree *args)
2671 const direct_internal_fn_info &info = direct_internal_fn (fn);
2672 tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0]));
2673 tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1]));
2674 return tree_pair (type0, type1);
2677 /* CALL is a call whose return type and arguments are in principle
2678 compatible with FN (which satisfies direct_internal_fn_p). Return the
2679 types that should be used to determine whether the target supports FN. */
2681 tree_pair
2682 direct_internal_fn_types (internal_fn fn, gcall *call)
2684 const direct_internal_fn_info &info = direct_internal_fn (fn);
2685 tree op0 = (info.type0 < 0
2686 ? gimple_call_lhs (call)
2687 : gimple_call_arg (call, info.type0));
2688 tree op1 = (info.type1 < 0
2689 ? gimple_call_lhs (call)
2690 : gimple_call_arg (call, info.type1));
2691 return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1));
2694 /* Return true if OPTAB is supported for TYPES (whose modes should be
2695 the same) when the optimization type is OPT_TYPE. Used for simple
2696 direct optabs. */
2698 static bool
2699 direct_optab_supported_p (direct_optab optab, tree_pair types,
2700 optimization_type opt_type)
2702 machine_mode mode = TYPE_MODE (types.first);
2703 gcc_checking_assert (mode == TYPE_MODE (types.second));
2704 return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing;
2707 /* Return true if load/store lanes optab OPTAB is supported for
2708 array type TYPES.first when the optimization type is OPT_TYPE. */
2710 static bool
2711 multi_vector_optab_supported_p (convert_optab optab, tree_pair types,
2712 optimization_type opt_type)
2714 gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE);
2715 machine_mode imode = TYPE_MODE (types.first);
2716 machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first));
2717 return (convert_optab_handler (optab, imode, vmode, opt_type)
2718 != CODE_FOR_nothing);
2721 #define direct_unary_optab_supported_p direct_optab_supported_p
2722 #define direct_binary_optab_supported_p direct_optab_supported_p
2723 #define direct_mask_load_optab_supported_p direct_optab_supported_p
2724 #define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p
2725 #define direct_mask_store_optab_supported_p direct_optab_supported_p
2726 #define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p
2728 /* Return true if FN is supported for the types in TYPES when the
2729 optimization type is OPT_TYPE. The types are those associated with
2730 the "type0" and "type1" fields of FN's direct_internal_fn_info
2731 structure. */
2733 bool
2734 direct_internal_fn_supported_p (internal_fn fn, tree_pair types,
2735 optimization_type opt_type)
2737 switch (fn)
2739 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
2740 case IFN_##CODE: break;
2741 #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
2742 case IFN_##CODE: \
2743 return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \
2744 opt_type);
2745 #include "internal-fn.def"
2747 case IFN_LAST:
2748 break;
2750 gcc_unreachable ();
2753 /* Return true if FN is supported for type TYPE when the optimization
2754 type is OPT_TYPE. The caller knows that the "type0" and "type1"
2755 fields of FN's direct_internal_fn_info structure are the same. */
2757 bool
2758 direct_internal_fn_supported_p (internal_fn fn, tree type,
2759 optimization_type opt_type)
2761 const direct_internal_fn_info &info = direct_internal_fn (fn);
2762 gcc_checking_assert (info.type0 == info.type1);
2763 return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type);
2766 /* Return true if IFN_SET_EDOM is supported. */
2768 bool
2769 set_edom_supported_p (void)
2771 #ifdef TARGET_EDOM
2772 return true;
2773 #else
2774 return false;
2775 #endif
2778 #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
2779 static void \
2780 expand_##CODE (internal_fn fn, gcall *stmt) \
2782 expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab); \
2784 #include "internal-fn.def"
2786 /* Routines to expand each internal function, indexed by function number.
2787 Each routine has the prototype:
2789 expand_<NAME> (gcall *stmt)
2791 where STMT is the statement that performs the call. */
2792 static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = {
2793 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE,
2794 #include "internal-fn.def"
2798 /* Expand STMT as though it were a call to internal function FN. */
2800 void
2801 expand_internal_call (internal_fn fn, gcall *stmt)
2803 internal_fn_expanders[fn] (fn, stmt);
2806 /* Expand STMT, which is a call to internal function FN. */
2808 void
2809 expand_internal_call (gcall *stmt)
2811 expand_internal_call (gimple_call_internal_fn (stmt), stmt);
2814 void
2815 expand_PHI (internal_fn, gcall *)
2817 gcc_unreachable ();