* omp-low.c (lower_omp_target): Remove unreachable code & merge
[official-gcc.git] / gcc / gcse.c
blob5ff4ba03414b5368187379b4660bcaefe489333b
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "tm_p.h"
145 #include "expmed.h"
146 #include "insn-config.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "recog.h"
150 #include "diagnostic-core.h"
151 #include "toplev.h"
152 #include "alias.h"
153 #include "flags.h"
154 #include "cfgrtl.h"
155 #include "cfganal.h"
156 #include "lcm.h"
157 #include "cfgcleanup.h"
158 #include "dojump.h"
159 #include "explow.h"
160 #include "calls.h"
161 #include "varasm.h"
162 #include "stmt.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "params.h"
166 #include "cselib.h"
167 #include "intl.h"
168 #include "tree-pass.h"
169 #include "dbgcnt.h"
170 #include "gcse.h"
171 #include "gcse-common.h"
173 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
174 are a superset of those done by classic GCSE.
176 Two passes of copy/constant propagation are done around PRE or hoisting
177 because the first one enables more GCSE and the second one helps to clean
178 up the copies that PRE and HOIST create. This is needed more for PRE than
179 for HOIST because code hoisting will try to use an existing register
180 containing the common subexpression rather than create a new one. This is
181 harder to do for PRE because of the code motion (which HOIST doesn't do).
183 Expressions we are interested in GCSE-ing are of the form
184 (set (pseudo-reg) (expression)).
185 Function want_to_gcse_p says what these are.
187 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
188 This allows PRE to hoist expressions that are expressed in multiple insns,
189 such as complex address calculations (e.g. for PIC code, or loads with a
190 high part and a low part).
192 PRE handles moving invariant expressions out of loops (by treating them as
193 partially redundant).
195 **********************
197 We used to support multiple passes but there are diminishing returns in
198 doing so. The first pass usually makes 90% of the changes that are doable.
199 A second pass can make a few more changes made possible by the first pass.
200 Experiments show any further passes don't make enough changes to justify
201 the expense.
203 A study of spec92 using an unlimited number of passes:
204 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
205 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
206 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
208 It was found doing copy propagation between each pass enables further
209 substitutions.
211 This study was done before expressions in REG_EQUAL notes were added as
212 candidate expressions for optimization, and before the GIMPLE optimizers
213 were added. Probably, multiple passes is even less efficient now than
214 at the time when the study was conducted.
216 PRE is quite expensive in complicated functions because the DFA can take
217 a while to converge. Hence we only perform one pass.
219 **********************
221 The steps for PRE are:
223 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
225 2) Perform the data flow analysis for PRE.
227 3) Delete the redundant instructions
229 4) Insert the required copies [if any] that make the partially
230 redundant instructions fully redundant.
232 5) For other reaching expressions, insert an instruction to copy the value
233 to a newly created pseudo that will reach the redundant instruction.
235 The deletion is done first so that when we do insertions we
236 know which pseudo reg to use.
238 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
239 argue it is not. The number of iterations for the algorithm to converge
240 is typically 2-4 so I don't view it as that expensive (relatively speaking).
242 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
243 we create. To make an expression reach the place where it's redundant,
244 the result of the expression is copied to a new register, and the redundant
245 expression is deleted by replacing it with this new register. Classic GCSE
246 doesn't have this problem as much as it computes the reaching defs of
247 each register in each block and thus can try to use an existing
248 register. */
250 /* GCSE global vars. */
252 struct target_gcse default_target_gcse;
253 #if SWITCHABLE_TARGET
254 struct target_gcse *this_target_gcse = &default_target_gcse;
255 #endif
257 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
258 int flag_rerun_cse_after_global_opts;
260 /* An obstack for our working variables. */
261 static struct obstack gcse_obstack;
263 /* Hash table of expressions. */
265 struct gcse_expr
267 /* The expression. */
268 rtx expr;
269 /* Index in the available expression bitmaps. */
270 int bitmap_index;
271 /* Next entry with the same hash. */
272 struct gcse_expr *next_same_hash;
273 /* List of anticipatable occurrences in basic blocks in the function.
274 An "anticipatable occurrence" is one that is the first occurrence in the
275 basic block, the operands are not modified in the basic block prior
276 to the occurrence and the output is not used between the start of
277 the block and the occurrence. */
278 struct gcse_occr *antic_occr;
279 /* List of available occurrence in basic blocks in the function.
280 An "available occurrence" is one that is the last occurrence in the
281 basic block and the operands are not modified by following statements in
282 the basic block [including this insn]. */
283 struct gcse_occr *avail_occr;
284 /* Non-null if the computation is PRE redundant.
285 The value is the newly created pseudo-reg to record a copy of the
286 expression in all the places that reach the redundant copy. */
287 rtx reaching_reg;
288 /* Maximum distance in instructions this expression can travel.
289 We avoid moving simple expressions for more than a few instructions
290 to keep register pressure under control.
291 A value of "0" removes restrictions on how far the expression can
292 travel. */
293 int max_distance;
296 /* Occurrence of an expression.
297 There is one per basic block. If a pattern appears more than once the
298 last appearance is used [or first for anticipatable expressions]. */
300 struct gcse_occr
302 /* Next occurrence of this expression. */
303 struct gcse_occr *next;
304 /* The insn that computes the expression. */
305 rtx_insn *insn;
306 /* Nonzero if this [anticipatable] occurrence has been deleted. */
307 char deleted_p;
308 /* Nonzero if this [available] occurrence has been copied to
309 reaching_reg. */
310 /* ??? This is mutually exclusive with deleted_p, so they could share
311 the same byte. */
312 char copied_p;
315 typedef struct gcse_occr *occr_t;
317 /* Expression hash tables.
318 Each hash table is an array of buckets.
319 ??? It is known that if it were an array of entries, structure elements
320 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
321 not clear whether in the final analysis a sufficient amount of memory would
322 be saved as the size of the available expression bitmaps would be larger
323 [one could build a mapping table without holes afterwards though].
324 Someday I'll perform the computation and figure it out. */
326 struct gcse_hash_table_d
328 /* The table itself.
329 This is an array of `expr_hash_table_size' elements. */
330 struct gcse_expr **table;
332 /* Size of the hash table, in elements. */
333 unsigned int size;
335 /* Number of hash table elements. */
336 unsigned int n_elems;
339 /* Expression hash table. */
340 static struct gcse_hash_table_d expr_hash_table;
342 /* This is a list of expressions which are MEMs and will be used by load
343 or store motion.
344 Load motion tracks MEMs which aren't killed by anything except itself,
345 i.e. loads and stores to a single location.
346 We can then allow movement of these MEM refs with a little special
347 allowance. (all stores copy the same value to the reaching reg used
348 for the loads). This means all values used to store into memory must have
349 no side effects so we can re-issue the setter value. */
351 struct ls_expr
353 struct gcse_expr * expr; /* Gcse expression reference for LM. */
354 rtx pattern; /* Pattern of this mem. */
355 rtx pattern_regs; /* List of registers mentioned by the mem. */
356 rtx_insn_list *loads; /* INSN list of loads seen. */
357 rtx_insn_list *stores; /* INSN list of stores seen. */
358 struct ls_expr * next; /* Next in the list. */
359 int invalid; /* Invalid for some reason. */
360 int index; /* If it maps to a bitmap index. */
361 unsigned int hash_index; /* Index when in a hash table. */
362 rtx reaching_reg; /* Register to use when re-writing. */
365 /* Head of the list of load/store memory refs. */
366 static struct ls_expr * pre_ldst_mems = NULL;
368 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
370 typedef value_type compare_type;
371 static inline hashval_t hash (const ls_expr *);
372 static inline bool equal (const ls_expr *, const ls_expr *);
375 /* Hashtable helpers. */
376 inline hashval_t
377 pre_ldst_expr_hasher::hash (const ls_expr *x)
379 int do_not_record_p = 0;
380 return
381 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
384 static int expr_equiv_p (const_rtx, const_rtx);
386 inline bool
387 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
388 const ls_expr *ptr2)
390 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
393 /* Hashtable for the load/store memory refs. */
394 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
396 /* Bitmap containing one bit for each register in the program.
397 Used when performing GCSE to track which registers have been set since
398 the start of the basic block. */
399 static regset reg_set_bitmap;
401 /* Array, indexed by basic block number for a list of insns which modify
402 memory within that block. */
403 static vec<rtx_insn *> *modify_mem_list;
404 static bitmap modify_mem_list_set;
406 /* This array parallels modify_mem_list, except that it stores MEMs
407 being set and their canonicalized memory addresses. */
408 static vec<modify_pair> *canon_modify_mem_list;
410 /* Bitmap indexed by block numbers to record which blocks contain
411 function calls. */
412 static bitmap blocks_with_calls;
414 /* Various variables for statistics gathering. */
416 /* Memory used in a pass.
417 This isn't intended to be absolutely precise. Its intent is only
418 to keep an eye on memory usage. */
419 static int bytes_used;
421 /* GCSE substitutions made. */
422 static int gcse_subst_count;
423 /* Number of copy instructions created. */
424 static int gcse_create_count;
426 /* Doing code hoisting. */
427 static bool doing_code_hoisting_p = false;
429 /* For available exprs */
430 static sbitmap *ae_kill;
432 /* Data stored for each basic block. */
433 struct bb_data
435 /* Maximal register pressure inside basic block for given register class
436 (defined only for the pressure classes). */
437 int max_reg_pressure[N_REG_CLASSES];
438 /* Recorded register pressure of basic block before trying to hoist
439 an expression. Will be used to restore the register pressure
440 if the expression should not be hoisted. */
441 int old_pressure;
442 /* Recorded register live_in info of basic block during code hoisting
443 process. BACKUP is used to record live_in info before trying to
444 hoist an expression, and will be used to restore LIVE_IN if the
445 expression should not be hoisted. */
446 bitmap live_in, backup;
449 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
451 static basic_block curr_bb;
453 /* Current register pressure for each pressure class. */
454 static int curr_reg_pressure[N_REG_CLASSES];
457 static void compute_can_copy (void);
458 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
459 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
460 static void *gcse_alloc (unsigned long);
461 static void alloc_gcse_mem (void);
462 static void free_gcse_mem (void);
463 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
464 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
465 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
466 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
467 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
468 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
469 static int oprs_available_p (const_rtx, const rtx_insn *);
470 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
471 int, struct gcse_hash_table_d *);
472 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
473 static void record_last_reg_set_info (rtx_insn *, int);
474 static void record_last_mem_set_info (rtx_insn *);
475 static void record_last_set_info (rtx, const_rtx, void *);
476 static void compute_hash_table (struct gcse_hash_table_d *);
477 static void alloc_hash_table (struct gcse_hash_table_d *);
478 static void free_hash_table (struct gcse_hash_table_d *);
479 static void compute_hash_table_work (struct gcse_hash_table_d *);
480 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
481 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
482 struct gcse_hash_table_d *);
483 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
484 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
485 static void alloc_pre_mem (int, int);
486 static void free_pre_mem (void);
487 static struct edge_list *compute_pre_data (void);
488 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
489 basic_block);
490 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
491 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
492 static void pre_insert_copies (void);
493 static int pre_delete (void);
494 static int pre_gcse (struct edge_list *);
495 static int one_pre_gcse_pass (void);
496 static void add_label_notes (rtx, rtx_insn *);
497 static void alloc_code_hoist_mem (int, int);
498 static void free_code_hoist_mem (void);
499 static void compute_code_hoist_vbeinout (void);
500 static void compute_code_hoist_data (void);
501 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
502 sbitmap, int, int *, enum reg_class,
503 int *, bitmap, rtx_insn *);
504 static int hoist_code (void);
505 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
506 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
507 static int one_code_hoisting_pass (void);
508 static rtx_insn *process_insert_insn (struct gcse_expr *);
509 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
510 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
511 basic_block, char *);
512 static struct ls_expr * ldst_entry (rtx);
513 static void free_ldst_entry (struct ls_expr *);
514 static void free_ld_motion_mems (void);
515 static void print_ldst_list (FILE *);
516 static struct ls_expr * find_rtx_in_ldst (rtx);
517 static int simple_mem (const_rtx);
518 static void invalidate_any_buried_refs (rtx);
519 static void compute_ld_motion_mems (void);
520 static void trim_ld_motion_mems (void);
521 static void update_ld_motion_stores (struct gcse_expr *);
522 static void clear_modify_mem_tables (void);
523 static void free_modify_mem_tables (void);
524 static bool is_too_expensive (const char *);
526 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
527 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
529 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
530 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
532 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
533 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
535 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
536 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
538 /* Misc. utilities. */
540 #define can_copy \
541 (this_target_gcse->x_can_copy)
542 #define can_copy_init_p \
543 (this_target_gcse->x_can_copy_init_p)
545 /* Compute which modes support reg/reg copy operations. */
547 static void
548 compute_can_copy (void)
550 int i;
551 #ifndef AVOID_CCMODE_COPIES
552 rtx reg;
553 rtx_insn *insn;
554 #endif
555 memset (can_copy, 0, NUM_MACHINE_MODES);
557 start_sequence ();
558 for (i = 0; i < NUM_MACHINE_MODES; i++)
559 if (GET_MODE_CLASS (i) == MODE_CC)
561 #ifdef AVOID_CCMODE_COPIES
562 can_copy[i] = 0;
563 #else
564 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
565 insn = emit_insn (gen_rtx_SET (reg, reg));
566 if (recog (PATTERN (insn), insn, NULL) >= 0)
567 can_copy[i] = 1;
568 #endif
570 else
571 can_copy[i] = 1;
573 end_sequence ();
576 /* Returns whether the mode supports reg/reg copy operations. */
578 bool
579 can_copy_p (machine_mode mode)
581 if (! can_copy_init_p)
583 compute_can_copy ();
584 can_copy_init_p = true;
587 return can_copy[mode] != 0;
590 /* Cover function to xmalloc to record bytes allocated. */
592 static void *
593 gmalloc (size_t size)
595 bytes_used += size;
596 return xmalloc (size);
599 /* Cover function to xcalloc to record bytes allocated. */
601 static void *
602 gcalloc (size_t nelem, size_t elsize)
604 bytes_used += nelem * elsize;
605 return xcalloc (nelem, elsize);
608 /* Cover function to obstack_alloc. */
610 static void *
611 gcse_alloc (unsigned long size)
613 bytes_used += size;
614 return obstack_alloc (&gcse_obstack, size);
617 /* Allocate memory for the reg/memory set tracking tables.
618 This is called at the start of each pass. */
620 static void
621 alloc_gcse_mem (void)
623 /* Allocate vars to track sets of regs. */
624 reg_set_bitmap = ALLOC_REG_SET (NULL);
626 /* Allocate array to keep a list of insns which modify memory in each
627 basic block. The two typedefs are needed to work around the
628 pre-processor limitation with template types in macro arguments. */
629 typedef vec<rtx_insn *> vec_rtx_heap;
630 typedef vec<modify_pair> vec_modify_pair_heap;
631 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
632 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
633 last_basic_block_for_fn (cfun));
634 modify_mem_list_set = BITMAP_ALLOC (NULL);
635 blocks_with_calls = BITMAP_ALLOC (NULL);
638 /* Free memory allocated by alloc_gcse_mem. */
640 static void
641 free_gcse_mem (void)
643 FREE_REG_SET (reg_set_bitmap);
645 free_modify_mem_tables ();
646 BITMAP_FREE (modify_mem_list_set);
647 BITMAP_FREE (blocks_with_calls);
650 /* Compute the local properties of each recorded expression.
652 Local properties are those that are defined by the block, irrespective of
653 other blocks.
655 An expression is transparent in a block if its operands are not modified
656 in the block.
658 An expression is computed (locally available) in a block if it is computed
659 at least once and expression would contain the same value if the
660 computation was moved to the end of the block.
662 An expression is locally anticipatable in a block if it is computed at
663 least once and expression would contain the same value if the computation
664 was moved to the beginning of the block.
666 We call this routine for pre and code hoisting. They all compute
667 basically the same information and thus can easily share this code.
669 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
670 properties. If NULL, then it is not necessary to compute or record that
671 particular property.
673 TABLE controls which hash table to look at. */
675 static void
676 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
677 struct gcse_hash_table_d *table)
679 unsigned int i;
681 /* Initialize any bitmaps that were passed in. */
682 if (transp)
684 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
687 if (comp)
688 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
689 if (antloc)
690 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
692 for (i = 0; i < table->size; i++)
694 struct gcse_expr *expr;
696 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
698 int indx = expr->bitmap_index;
699 struct gcse_occr *occr;
701 /* The expression is transparent in this block if it is not killed.
702 We start by assuming all are transparent [none are killed], and
703 then reset the bits for those that are. */
704 if (transp)
705 compute_transp (expr->expr, indx, transp,
706 blocks_with_calls,
707 modify_mem_list_set,
708 canon_modify_mem_list);
710 /* The occurrences recorded in antic_occr are exactly those that
711 we want to set to nonzero in ANTLOC. */
712 if (antloc)
713 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
715 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
717 /* While we're scanning the table, this is a good place to
718 initialize this. */
719 occr->deleted_p = 0;
722 /* The occurrences recorded in avail_occr are exactly those that
723 we want to set to nonzero in COMP. */
724 if (comp)
725 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
727 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
729 /* While we're scanning the table, this is a good place to
730 initialize this. */
731 occr->copied_p = 0;
734 /* While we're scanning the table, this is a good place to
735 initialize this. */
736 expr->reaching_reg = 0;
741 /* Hash table support. */
743 struct reg_avail_info
745 basic_block last_bb;
746 int first_set;
747 int last_set;
750 static struct reg_avail_info *reg_avail_info;
751 static basic_block current_bb;
753 /* See whether X, the source of a set, is something we want to consider for
754 GCSE. */
756 static int
757 want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
759 #ifdef STACK_REGS
760 /* On register stack architectures, don't GCSE constants from the
761 constant pool, as the benefits are often swamped by the overhead
762 of shuffling the register stack between basic blocks. */
763 if (IS_STACK_MODE (GET_MODE (x)))
764 x = avoid_constant_pool_reference (x);
765 #endif
767 /* GCSE'ing constants:
769 We do not specifically distinguish between constant and non-constant
770 expressions in PRE and Hoist. We use set_src_cost below to limit
771 the maximum distance simple expressions can travel.
773 Nevertheless, constants are much easier to GCSE, and, hence,
774 it is easy to overdo the optimizations. Usually, excessive PRE and
775 Hoisting of constant leads to increased register pressure.
777 RA can deal with this by rematerialing some of the constants.
778 Therefore, it is important that the back-end generates sets of constants
779 in a way that allows reload rematerialize them under high register
780 pressure, i.e., a pseudo register with REG_EQUAL to constant
781 is set only once. Failing to do so will result in IRA/reload
782 spilling such constants under high register pressure instead of
783 rematerializing them. */
785 switch (GET_CODE (x))
787 case REG:
788 case SUBREG:
789 case CALL:
790 return 0;
792 CASE_CONST_ANY:
793 if (!doing_code_hoisting_p)
794 /* Do not PRE constants. */
795 return 0;
797 /* FALLTHRU */
799 default:
800 if (doing_code_hoisting_p)
801 /* PRE doesn't implement max_distance restriction. */
803 int cost;
804 int max_distance;
806 gcc_assert (!optimize_function_for_speed_p (cfun)
807 && optimize_function_for_size_p (cfun));
808 cost = set_src_cost (x, mode, 0);
810 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
812 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
813 if (max_distance == 0)
814 return 0;
816 gcc_assert (max_distance > 0);
818 else
819 max_distance = 0;
821 if (max_distance_ptr)
822 *max_distance_ptr = max_distance;
825 return can_assign_to_reg_without_clobbers_p (x);
829 /* Used internally by can_assign_to_reg_without_clobbers_p. */
831 static GTY(()) rtx_insn *test_insn;
833 /* Return true if we can assign X to a pseudo register such that the
834 resulting insn does not result in clobbering a hard register as a
835 side-effect.
837 Additionally, if the target requires it, check that the resulting insn
838 can be copied. If it cannot, this means that X is special and probably
839 has hidden side-effects we don't want to mess with.
841 This function is typically used by code motion passes, to verify
842 that it is safe to insert an insn without worrying about clobbering
843 maybe live hard regs. */
845 bool
846 can_assign_to_reg_without_clobbers_p (rtx x)
848 int num_clobbers = 0;
849 int icode;
850 bool can_assign = false;
852 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
853 if (general_operand (x, GET_MODE (x)))
854 return 1;
855 else if (GET_MODE (x) == VOIDmode)
856 return 0;
858 /* Otherwise, check if we can make a valid insn from it. First initialize
859 our test insn if we haven't already. */
860 if (test_insn == 0)
862 test_insn
863 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
864 FIRST_PSEUDO_REGISTER * 2),
865 const0_rtx));
866 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
867 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
870 /* Now make an insn like the one we would make when GCSE'ing and see if
871 valid. */
872 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
873 SET_SRC (PATTERN (test_insn)) = x;
875 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
877 /* If the test insn is valid and doesn't need clobbers, and the target also
878 has no objections, we're good. */
879 if (icode >= 0
880 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
881 && ! (targetm.cannot_copy_insn_p
882 && targetm.cannot_copy_insn_p (test_insn)))
883 can_assign = true;
885 /* Make sure test_insn doesn't have any pointers into GC space. */
886 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
888 return can_assign;
891 /* Return nonzero if the operands of expression X are unchanged from the
892 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
893 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
895 static int
896 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
898 int i, j;
899 enum rtx_code code;
900 const char *fmt;
902 if (x == 0)
903 return 1;
905 code = GET_CODE (x);
906 switch (code)
908 case REG:
910 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
912 if (info->last_bb != current_bb)
913 return 1;
914 if (avail_p)
915 return info->last_set < DF_INSN_LUID (insn);
916 else
917 return info->first_set >= DF_INSN_LUID (insn);
920 case MEM:
921 if (! flag_gcse_lm
922 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
923 x, avail_p))
924 return 0;
925 else
926 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
928 case PRE_DEC:
929 case PRE_INC:
930 case POST_DEC:
931 case POST_INC:
932 case PRE_MODIFY:
933 case POST_MODIFY:
934 return 0;
936 case PC:
937 case CC0: /*FIXME*/
938 case CONST:
939 CASE_CONST_ANY:
940 case SYMBOL_REF:
941 case LABEL_REF:
942 case ADDR_VEC:
943 case ADDR_DIFF_VEC:
944 return 1;
946 default:
947 break;
950 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
952 if (fmt[i] == 'e')
954 /* If we are about to do the last recursive call needed at this
955 level, change it into iteration. This function is called enough
956 to be worth it. */
957 if (i == 0)
958 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
960 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
961 return 0;
963 else if (fmt[i] == 'E')
964 for (j = 0; j < XVECLEN (x, i); j++)
965 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
966 return 0;
969 return 1;
972 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
974 struct mem_conflict_info
976 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
977 see if a memory store conflicts with this memory load. */
978 const_rtx mem;
980 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
981 references. */
982 bool conflict;
985 /* DEST is the output of an instruction. If it is a memory reference and
986 possibly conflicts with the load found in DATA, then communicate this
987 information back through DATA. */
989 static void
990 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
991 void *data)
993 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
995 while (GET_CODE (dest) == SUBREG
996 || GET_CODE (dest) == ZERO_EXTRACT
997 || GET_CODE (dest) == STRICT_LOW_PART)
998 dest = XEXP (dest, 0);
1000 /* If DEST is not a MEM, then it will not conflict with the load. Note
1001 that function calls are assumed to clobber memory, but are handled
1002 elsewhere. */
1003 if (! MEM_P (dest))
1004 return;
1006 /* If we are setting a MEM in our list of specially recognized MEMs,
1007 don't mark as killed this time. */
1008 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1010 if (!find_rtx_in_ldst (dest))
1011 mci->conflict = true;
1012 return;
1015 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1016 mci->conflict = true;
1019 /* Return nonzero if the expression in X (a memory reference) is killed
1020 in block BB before or after the insn with the LUID in UID_LIMIT.
1021 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1022 before UID_LIMIT.
1024 To check the entire block, set UID_LIMIT to max_uid + 1 and
1025 AVAIL_P to 0. */
1027 static int
1028 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1029 int avail_p)
1031 vec<rtx_insn *> list = modify_mem_list[bb->index];
1032 rtx_insn *setter;
1033 unsigned ix;
1035 /* If this is a readonly then we aren't going to be changing it. */
1036 if (MEM_READONLY_P (x))
1037 return 0;
1039 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1041 struct mem_conflict_info mci;
1043 /* Ignore entries in the list that do not apply. */
1044 if ((avail_p
1045 && DF_INSN_LUID (setter) < uid_limit)
1046 || (! avail_p
1047 && DF_INSN_LUID (setter) > uid_limit))
1048 continue;
1050 /* If SETTER is a call everything is clobbered. Note that calls
1051 to pure functions are never put on the list, so we need not
1052 worry about them. */
1053 if (CALL_P (setter))
1054 return 1;
1056 /* SETTER must be an INSN of some kind that sets memory. Call
1057 note_stores to examine each hunk of memory that is modified. */
1058 mci.mem = x;
1059 mci.conflict = false;
1060 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1061 if (mci.conflict)
1062 return 1;
1064 return 0;
1067 /* Return nonzero if the operands of expression X are unchanged from
1068 the start of INSN's basic block up to but not including INSN. */
1070 static int
1071 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1073 return oprs_unchanged_p (x, insn, 0);
1076 /* Return nonzero if the operands of expression X are unchanged from
1077 INSN to the end of INSN's basic block. */
1079 static int
1080 oprs_available_p (const_rtx x, const rtx_insn *insn)
1082 return oprs_unchanged_p (x, insn, 1);
1085 /* Hash expression X.
1087 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1088 indicating if a volatile operand is found or if the expression contains
1089 something we don't want to insert in the table. HASH_TABLE_SIZE is
1090 the current size of the hash table to be probed. */
1092 static unsigned int
1093 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1094 int hash_table_size)
1096 unsigned int hash;
1098 *do_not_record_p = 0;
1100 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1101 return hash % hash_table_size;
1104 /* Return nonzero if exp1 is equivalent to exp2. */
1106 static int
1107 expr_equiv_p (const_rtx x, const_rtx y)
1109 return exp_equiv_p (x, y, 0, true);
1112 /* Insert expression X in INSN in the hash TABLE.
1113 If it is already present, record it as the last occurrence in INSN's
1114 basic block.
1116 MODE is the mode of the value X is being stored into.
1117 It is only used if X is a CONST_INT.
1119 ANTIC_P is nonzero if X is an anticipatable expression.
1120 AVAIL_P is nonzero if X is an available expression.
1122 MAX_DISTANCE is the maximum distance in instructions this expression can
1123 be moved. */
1125 static void
1126 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1127 int antic_p,
1128 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1130 int found, do_not_record_p;
1131 unsigned int hash;
1132 struct gcse_expr *cur_expr, *last_expr = NULL;
1133 struct gcse_occr *antic_occr, *avail_occr;
1135 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1137 /* Do not insert expression in table if it contains volatile operands,
1138 or if hash_expr determines the expression is something we don't want
1139 to or can't handle. */
1140 if (do_not_record_p)
1141 return;
1143 cur_expr = table->table[hash];
1144 found = 0;
1146 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1148 /* If the expression isn't found, save a pointer to the end of
1149 the list. */
1150 last_expr = cur_expr;
1151 cur_expr = cur_expr->next_same_hash;
1154 if (! found)
1156 cur_expr = GOBNEW (struct gcse_expr);
1157 bytes_used += sizeof (struct gcse_expr);
1158 if (table->table[hash] == NULL)
1159 /* This is the first pattern that hashed to this index. */
1160 table->table[hash] = cur_expr;
1161 else
1162 /* Add EXPR to end of this hash chain. */
1163 last_expr->next_same_hash = cur_expr;
1165 /* Set the fields of the expr element. */
1166 cur_expr->expr = x;
1167 cur_expr->bitmap_index = table->n_elems++;
1168 cur_expr->next_same_hash = NULL;
1169 cur_expr->antic_occr = NULL;
1170 cur_expr->avail_occr = NULL;
1171 gcc_assert (max_distance >= 0);
1172 cur_expr->max_distance = max_distance;
1174 else
1175 gcc_assert (cur_expr->max_distance == max_distance);
1177 /* Now record the occurrence(s). */
1178 if (antic_p)
1180 antic_occr = cur_expr->antic_occr;
1182 if (antic_occr
1183 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1184 antic_occr = NULL;
1186 if (antic_occr)
1187 /* Found another instance of the expression in the same basic block.
1188 Prefer the currently recorded one. We want the first one in the
1189 block and the block is scanned from start to end. */
1190 ; /* nothing to do */
1191 else
1193 /* First occurrence of this expression in this basic block. */
1194 antic_occr = GOBNEW (struct gcse_occr);
1195 bytes_used += sizeof (struct gcse_occr);
1196 antic_occr->insn = insn;
1197 antic_occr->next = cur_expr->antic_occr;
1198 antic_occr->deleted_p = 0;
1199 cur_expr->antic_occr = antic_occr;
1203 if (avail_p)
1205 avail_occr = cur_expr->avail_occr;
1207 if (avail_occr
1208 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1210 /* Found another instance of the expression in the same basic block.
1211 Prefer this occurrence to the currently recorded one. We want
1212 the last one in the block and the block is scanned from start
1213 to end. */
1214 avail_occr->insn = insn;
1216 else
1218 /* First occurrence of this expression in this basic block. */
1219 avail_occr = GOBNEW (struct gcse_occr);
1220 bytes_used += sizeof (struct gcse_occr);
1221 avail_occr->insn = insn;
1222 avail_occr->next = cur_expr->avail_occr;
1223 avail_occr->deleted_p = 0;
1224 cur_expr->avail_occr = avail_occr;
1229 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1231 static void
1232 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1234 rtx src = SET_SRC (set);
1235 rtx dest = SET_DEST (set);
1236 rtx note;
1238 if (GET_CODE (src) == CALL)
1239 hash_scan_call (src, insn, table);
1241 else if (REG_P (dest))
1243 unsigned int regno = REGNO (dest);
1244 int max_distance = 0;
1246 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1248 This allows us to do a single GCSE pass and still eliminate
1249 redundant constants, addresses or other expressions that are
1250 constructed with multiple instructions.
1252 However, keep the original SRC if INSN is a simple reg-reg move.
1253 In this case, there will almost always be a REG_EQUAL note on the
1254 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1255 for INSN, we miss copy propagation opportunities and we perform the
1256 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1257 do more than one PRE GCSE pass.
1259 Note that this does not impede profitable constant propagations. We
1260 "look through" reg-reg sets in lookup_avail_set. */
1261 note = find_reg_equal_equiv_note (insn);
1262 if (note != 0
1263 && REG_NOTE_KIND (note) == REG_EQUAL
1264 && !REG_P (src)
1265 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1266 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1268 /* Only record sets of pseudo-regs in the hash table. */
1269 if (regno >= FIRST_PSEUDO_REGISTER
1270 /* Don't GCSE something if we can't do a reg/reg copy. */
1271 && can_copy_p (GET_MODE (dest))
1272 /* GCSE commonly inserts instruction after the insn. We can't
1273 do that easily for EH edges so disable GCSE on these for now. */
1274 /* ??? We can now easily create new EH landing pads at the
1275 gimple level, for splitting edges; there's no reason we
1276 can't do the same thing at the rtl level. */
1277 && !can_throw_internal (insn)
1278 /* Is SET_SRC something we want to gcse? */
1279 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1280 /* Don't CSE a nop. */
1281 && ! set_noop_p (set)
1282 /* Don't GCSE if it has attached REG_EQUIV note.
1283 At this point this only function parameters should have
1284 REG_EQUIV notes and if the argument slot is used somewhere
1285 explicitly, it means address of parameter has been taken,
1286 so we should not extend the lifetime of the pseudo. */
1287 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1289 /* An expression is not anticipatable if its operands are
1290 modified before this insn or if this is not the only SET in
1291 this insn. The latter condition does not have to mean that
1292 SRC itself is not anticipatable, but we just will not be
1293 able to handle code motion of insns with multiple sets. */
1294 int antic_p = oprs_anticipatable_p (src, insn)
1295 && !multiple_sets (insn);
1296 /* An expression is not available if its operands are
1297 subsequently modified, including this insn. It's also not
1298 available if this is a branch, because we can't insert
1299 a set after the branch. */
1300 int avail_p = (oprs_available_p (src, insn)
1301 && ! JUMP_P (insn));
1303 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1304 max_distance, table);
1307 /* In case of store we want to consider the memory value as available in
1308 the REG stored in that memory. This makes it possible to remove
1309 redundant loads from due to stores to the same location. */
1310 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1312 unsigned int regno = REGNO (src);
1313 int max_distance = 0;
1315 /* Only record sets of pseudo-regs in the hash table. */
1316 if (regno >= FIRST_PSEUDO_REGISTER
1317 /* Don't GCSE something if we can't do a reg/reg copy. */
1318 && can_copy_p (GET_MODE (src))
1319 /* GCSE commonly inserts instruction after the insn. We can't
1320 do that easily for EH edges so disable GCSE on these for now. */
1321 && !can_throw_internal (insn)
1322 /* Is SET_DEST something we want to gcse? */
1323 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1324 /* Don't CSE a nop. */
1325 && ! set_noop_p (set)
1326 /* Don't GCSE if it has attached REG_EQUIV note.
1327 At this point this only function parameters should have
1328 REG_EQUIV notes and if the argument slot is used somewhere
1329 explicitly, it means address of parameter has been taken,
1330 so we should not extend the lifetime of the pseudo. */
1331 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1332 || ! MEM_P (XEXP (note, 0))))
1334 /* Stores are never anticipatable. */
1335 int antic_p = 0;
1336 /* An expression is not available if its operands are
1337 subsequently modified, including this insn. It's also not
1338 available if this is a branch, because we can't insert
1339 a set after the branch. */
1340 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1342 /* Record the memory expression (DEST) in the hash table. */
1343 insert_expr_in_table (dest, GET_MODE (dest), insn,
1344 antic_p, avail_p, max_distance, table);
1349 static void
1350 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1353 /* Currently nothing to do. */
1356 static void
1357 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1358 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1360 /* Currently nothing to do. */
1363 /* Process INSN and add hash table entries as appropriate. */
1365 static void
1366 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1368 rtx pat = PATTERN (insn);
1369 int i;
1371 /* Pick out the sets of INSN and for other forms of instructions record
1372 what's been modified. */
1374 if (GET_CODE (pat) == SET)
1375 hash_scan_set (pat, insn, table);
1377 else if (GET_CODE (pat) == CLOBBER)
1378 hash_scan_clobber (pat, insn, table);
1380 else if (GET_CODE (pat) == CALL)
1381 hash_scan_call (pat, insn, table);
1383 else if (GET_CODE (pat) == PARALLEL)
1384 for (i = 0; i < XVECLEN (pat, 0); i++)
1386 rtx x = XVECEXP (pat, 0, i);
1388 if (GET_CODE (x) == SET)
1389 hash_scan_set (x, insn, table);
1390 else if (GET_CODE (x) == CLOBBER)
1391 hash_scan_clobber (x, insn, table);
1392 else if (GET_CODE (x) == CALL)
1393 hash_scan_call (x, insn, table);
1397 /* Dump the hash table TABLE to file FILE under the name NAME. */
1399 static void
1400 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1402 int i;
1403 /* Flattened out table, so it's printed in proper order. */
1404 struct gcse_expr **flat_table;
1405 unsigned int *hash_val;
1406 struct gcse_expr *expr;
1408 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1409 hash_val = XNEWVEC (unsigned int, table->n_elems);
1411 for (i = 0; i < (int) table->size; i++)
1412 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1414 flat_table[expr->bitmap_index] = expr;
1415 hash_val[expr->bitmap_index] = i;
1418 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1419 name, table->size, table->n_elems);
1421 for (i = 0; i < (int) table->n_elems; i++)
1422 if (flat_table[i] != 0)
1424 expr = flat_table[i];
1425 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1426 expr->bitmap_index, hash_val[i], expr->max_distance);
1427 print_rtl (file, expr->expr);
1428 fprintf (file, "\n");
1431 fprintf (file, "\n");
1433 free (flat_table);
1434 free (hash_val);
1437 /* Record register first/last/block set information for REGNO in INSN.
1439 first_set records the first place in the block where the register
1440 is set and is used to compute "anticipatability".
1442 last_set records the last place in the block where the register
1443 is set and is used to compute "availability".
1445 last_bb records the block for which first_set and last_set are
1446 valid, as a quick test to invalidate them. */
1448 static void
1449 record_last_reg_set_info (rtx_insn *insn, int regno)
1451 struct reg_avail_info *info = &reg_avail_info[regno];
1452 int luid = DF_INSN_LUID (insn);
1454 info->last_set = luid;
1455 if (info->last_bb != current_bb)
1457 info->last_bb = current_bb;
1458 info->first_set = luid;
1462 /* Record memory modification information for INSN. We do not actually care
1463 about the memory location(s) that are set, or even how they are set (consider
1464 a CALL_INSN). We merely need to record which insns modify memory. */
1466 static void
1467 record_last_mem_set_info (rtx_insn *insn)
1469 if (! flag_gcse_lm)
1470 return;
1472 record_last_mem_set_info_common (insn, modify_mem_list,
1473 canon_modify_mem_list,
1474 modify_mem_list_set,
1475 blocks_with_calls);
1478 /* Called from compute_hash_table via note_stores to handle one
1479 SET or CLOBBER in an insn. DATA is really the instruction in which
1480 the SET is taking place. */
1482 static void
1483 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1485 rtx_insn *last_set_insn = (rtx_insn *) data;
1487 if (GET_CODE (dest) == SUBREG)
1488 dest = SUBREG_REG (dest);
1490 if (REG_P (dest))
1491 record_last_reg_set_info (last_set_insn, REGNO (dest));
1492 else if (MEM_P (dest)
1493 /* Ignore pushes, they clobber nothing. */
1494 && ! push_operand (dest, GET_MODE (dest)))
1495 record_last_mem_set_info (last_set_insn);
1498 /* Top level function to create an expression hash table.
1500 Expression entries are placed in the hash table if
1501 - they are of the form (set (pseudo-reg) src),
1502 - src is something we want to perform GCSE on,
1503 - none of the operands are subsequently modified in the block
1505 Currently src must be a pseudo-reg or a const_int.
1507 TABLE is the table computed. */
1509 static void
1510 compute_hash_table_work (struct gcse_hash_table_d *table)
1512 int i;
1514 /* re-Cache any INSN_LIST nodes we have allocated. */
1515 clear_modify_mem_tables ();
1516 /* Some working arrays used to track first and last set in each block. */
1517 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1519 for (i = 0; i < max_reg_num (); ++i)
1520 reg_avail_info[i].last_bb = NULL;
1522 FOR_EACH_BB_FN (current_bb, cfun)
1524 rtx_insn *insn;
1525 unsigned int regno;
1527 /* First pass over the instructions records information used to
1528 determine when registers and memory are first and last set. */
1529 FOR_BB_INSNS (current_bb, insn)
1531 if (!NONDEBUG_INSN_P (insn))
1532 continue;
1534 if (CALL_P (insn))
1536 hard_reg_set_iterator hrsi;
1537 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1538 0, regno, hrsi)
1539 record_last_reg_set_info (insn, regno);
1541 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1542 record_last_mem_set_info (insn);
1545 note_stores (PATTERN (insn), record_last_set_info, insn);
1548 /* The next pass builds the hash table. */
1549 FOR_BB_INSNS (current_bb, insn)
1550 if (NONDEBUG_INSN_P (insn))
1551 hash_scan_insn (insn, table);
1554 free (reg_avail_info);
1555 reg_avail_info = NULL;
1558 /* Allocate space for the set/expr hash TABLE.
1559 It is used to determine the number of buckets to use. */
1561 static void
1562 alloc_hash_table (struct gcse_hash_table_d *table)
1564 int n;
1566 n = get_max_insn_count ();
1568 table->size = n / 4;
1569 if (table->size < 11)
1570 table->size = 11;
1572 /* Attempt to maintain efficient use of hash table.
1573 Making it an odd number is simplest for now.
1574 ??? Later take some measurements. */
1575 table->size |= 1;
1576 n = table->size * sizeof (struct gcse_expr *);
1577 table->table = GNEWVAR (struct gcse_expr *, n);
1580 /* Free things allocated by alloc_hash_table. */
1582 static void
1583 free_hash_table (struct gcse_hash_table_d *table)
1585 free (table->table);
1588 /* Compute the expression hash table TABLE. */
1590 static void
1591 compute_hash_table (struct gcse_hash_table_d *table)
1593 /* Initialize count of number of entries in hash table. */
1594 table->n_elems = 0;
1595 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1597 compute_hash_table_work (table);
1600 /* Expression tracking support. */
1602 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1603 static void
1604 clear_modify_mem_tables (void)
1606 unsigned i;
1607 bitmap_iterator bi;
1609 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1611 modify_mem_list[i].release ();
1612 canon_modify_mem_list[i].release ();
1614 bitmap_clear (modify_mem_list_set);
1615 bitmap_clear (blocks_with_calls);
1618 /* Release memory used by modify_mem_list_set. */
1620 static void
1621 free_modify_mem_tables (void)
1623 clear_modify_mem_tables ();
1624 free (modify_mem_list);
1625 free (canon_modify_mem_list);
1626 modify_mem_list = 0;
1627 canon_modify_mem_list = 0;
1630 /* Compute PRE+LCM working variables. */
1632 /* Local properties of expressions. */
1634 /* Nonzero for expressions that are transparent in the block. */
1635 static sbitmap *transp;
1637 /* Nonzero for expressions that are computed (available) in the block. */
1638 static sbitmap *comp;
1640 /* Nonzero for expressions that are locally anticipatable in the block. */
1641 static sbitmap *antloc;
1643 /* Nonzero for expressions where this block is an optimal computation
1644 point. */
1645 static sbitmap *pre_optimal;
1647 /* Nonzero for expressions which are redundant in a particular block. */
1648 static sbitmap *pre_redundant;
1650 /* Nonzero for expressions which should be inserted on a specific edge. */
1651 static sbitmap *pre_insert_map;
1653 /* Nonzero for expressions which should be deleted in a specific block. */
1654 static sbitmap *pre_delete_map;
1656 /* Allocate vars used for PRE analysis. */
1658 static void
1659 alloc_pre_mem (int n_blocks, int n_exprs)
1661 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1662 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1663 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1665 pre_optimal = NULL;
1666 pre_redundant = NULL;
1667 pre_insert_map = NULL;
1668 pre_delete_map = NULL;
1669 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1671 /* pre_insert and pre_delete are allocated later. */
1674 /* Free vars used for PRE analysis. */
1676 static void
1677 free_pre_mem (void)
1679 sbitmap_vector_free (transp);
1680 sbitmap_vector_free (comp);
1682 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1684 if (pre_optimal)
1685 sbitmap_vector_free (pre_optimal);
1686 if (pre_redundant)
1687 sbitmap_vector_free (pre_redundant);
1688 if (pre_insert_map)
1689 sbitmap_vector_free (pre_insert_map);
1690 if (pre_delete_map)
1691 sbitmap_vector_free (pre_delete_map);
1693 transp = comp = NULL;
1694 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1697 /* Remove certain expressions from anticipatable and transparent
1698 sets of basic blocks that have incoming abnormal edge.
1699 For PRE remove potentially trapping expressions to avoid placing
1700 them on abnormal edges. For hoisting remove memory references that
1701 can be clobbered by calls. */
1703 static void
1704 prune_expressions (bool pre_p)
1706 sbitmap prune_exprs;
1707 struct gcse_expr *expr;
1708 unsigned int ui;
1709 basic_block bb;
1711 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1712 bitmap_clear (prune_exprs);
1713 for (ui = 0; ui < expr_hash_table.size; ui++)
1715 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1717 /* Note potentially trapping expressions. */
1718 if (may_trap_p (expr->expr))
1720 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1721 continue;
1724 if (!pre_p && MEM_P (expr->expr))
1725 /* Note memory references that can be clobbered by a call.
1726 We do not split abnormal edges in hoisting, so would
1727 a memory reference get hoisted along an abnormal edge,
1728 it would be placed /before/ the call. Therefore, only
1729 constant memory references can be hoisted along abnormal
1730 edges. */
1732 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1733 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1734 continue;
1736 if (MEM_READONLY_P (expr->expr)
1737 && !MEM_VOLATILE_P (expr->expr)
1738 && MEM_NOTRAP_P (expr->expr))
1739 /* Constant memory reference, e.g., a PIC address. */
1740 continue;
1742 /* ??? Optimally, we would use interprocedural alias
1743 analysis to determine if this mem is actually killed
1744 by this call. */
1746 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1751 FOR_EACH_BB_FN (bb, cfun)
1753 edge e;
1754 edge_iterator ei;
1756 /* If the current block is the destination of an abnormal edge, we
1757 kill all trapping (for PRE) and memory (for hoist) expressions
1758 because we won't be able to properly place the instruction on
1759 the edge. So make them neither anticipatable nor transparent.
1760 This is fairly conservative.
1762 ??? For hoisting it may be necessary to check for set-and-jump
1763 instructions here, not just for abnormal edges. The general problem
1764 is that when an expression cannot not be placed right at the end of
1765 a basic block we should account for any side-effects of a subsequent
1766 jump instructions that could clobber the expression. It would
1767 be best to implement this check along the lines of
1768 should_hoist_expr_to_dom where the target block is already known
1769 and, hence, there's no need to conservatively prune expressions on
1770 "intermediate" set-and-jump instructions. */
1771 FOR_EACH_EDGE (e, ei, bb->preds)
1772 if ((e->flags & EDGE_ABNORMAL)
1773 && (pre_p || CALL_P (BB_END (e->src))))
1775 bitmap_and_compl (antloc[bb->index],
1776 antloc[bb->index], prune_exprs);
1777 bitmap_and_compl (transp[bb->index],
1778 transp[bb->index], prune_exprs);
1779 break;
1783 sbitmap_free (prune_exprs);
1786 /* It may be necessary to insert a large number of insns on edges to
1787 make the existing occurrences of expressions fully redundant. This
1788 routine examines the set of insertions and deletions and if the ratio
1789 of insertions to deletions is too high for a particular expression, then
1790 the expression is removed from the insertion/deletion sets.
1792 N_ELEMS is the number of elements in the hash table. */
1794 static void
1795 prune_insertions_deletions (int n_elems)
1797 sbitmap_iterator sbi;
1798 sbitmap prune_exprs;
1800 /* We always use I to iterate over blocks/edges and J to iterate over
1801 expressions. */
1802 unsigned int i, j;
1804 /* Counts for the number of times an expression needs to be inserted and
1805 number of times an expression can be removed as a result. */
1806 int *insertions = GCNEWVEC (int, n_elems);
1807 int *deletions = GCNEWVEC (int, n_elems);
1809 /* Set of expressions which require too many insertions relative to
1810 the number of deletions achieved. We will prune these out of the
1811 insertion/deletion sets. */
1812 prune_exprs = sbitmap_alloc (n_elems);
1813 bitmap_clear (prune_exprs);
1815 /* Iterate over the edges counting the number of times each expression
1816 needs to be inserted. */
1817 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1819 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1820 insertions[j]++;
1823 /* Similarly for deletions, but those occur in blocks rather than on
1824 edges. */
1825 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1827 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1828 deletions[j]++;
1831 /* Now that we have accurate counts, iterate over the elements in the
1832 hash table and see if any need too many insertions relative to the
1833 number of evaluations that can be removed. If so, mark them in
1834 PRUNE_EXPRS. */
1835 for (j = 0; j < (unsigned) n_elems; j++)
1836 if (deletions[j]
1837 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1838 bitmap_set_bit (prune_exprs, j);
1840 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1841 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1843 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1844 bitmap_clear_bit (pre_insert_map[i], j);
1846 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1847 bitmap_clear_bit (pre_delete_map[i], j);
1850 sbitmap_free (prune_exprs);
1851 free (insertions);
1852 free (deletions);
1855 /* Top level routine to do the dataflow analysis needed by PRE. */
1857 static struct edge_list *
1858 compute_pre_data (void)
1860 struct edge_list *edge_list;
1861 basic_block bb;
1863 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1864 prune_expressions (true);
1865 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1867 /* Compute ae_kill for each basic block using:
1869 ~(TRANSP | COMP)
1872 FOR_EACH_BB_FN (bb, cfun)
1874 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1875 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1878 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1879 ae_kill, &pre_insert_map, &pre_delete_map);
1880 sbitmap_vector_free (antloc);
1881 antloc = NULL;
1882 sbitmap_vector_free (ae_kill);
1883 ae_kill = NULL;
1885 prune_insertions_deletions (expr_hash_table.n_elems);
1887 return edge_list;
1890 /* PRE utilities */
1892 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1893 block BB.
1895 VISITED is a pointer to a working buffer for tracking which BB's have
1896 been visited. It is NULL for the top-level call.
1898 We treat reaching expressions that go through blocks containing the same
1899 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1900 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1901 2 as not reaching. The intent is to improve the probability of finding
1902 only one reaching expression and to reduce register lifetimes by picking
1903 the closest such expression. */
1905 static int
1906 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1907 basic_block bb, char *visited)
1909 edge pred;
1910 edge_iterator ei;
1912 FOR_EACH_EDGE (pred, ei, bb->preds)
1914 basic_block pred_bb = pred->src;
1916 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1917 /* Has predecessor has already been visited? */
1918 || visited[pred_bb->index])
1919 ;/* Nothing to do. */
1921 /* Does this predecessor generate this expression? */
1922 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1924 /* Is this the occurrence we're looking for?
1925 Note that there's only one generating occurrence per block
1926 so we just need to check the block number. */
1927 if (occr_bb == pred_bb)
1928 return 1;
1930 visited[pred_bb->index] = 1;
1932 /* Ignore this predecessor if it kills the expression. */
1933 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1934 visited[pred_bb->index] = 1;
1936 /* Neither gen nor kill. */
1937 else
1939 visited[pred_bb->index] = 1;
1940 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1941 return 1;
1945 /* All paths have been checked. */
1946 return 0;
1949 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1950 memory allocated for that function is returned. */
1952 static int
1953 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1955 int rval;
1956 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1958 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1960 free (visited);
1961 return rval;
1964 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1966 static rtx_insn *
1967 process_insert_insn (struct gcse_expr *expr)
1969 rtx reg = expr->reaching_reg;
1970 /* Copy the expression to make sure we don't have any sharing issues. */
1971 rtx exp = copy_rtx (expr->expr);
1972 rtx_insn *pat;
1974 start_sequence ();
1976 /* If the expression is something that's an operand, like a constant,
1977 just copy it to a register. */
1978 if (general_operand (exp, GET_MODE (reg)))
1979 emit_move_insn (reg, exp);
1981 /* Otherwise, make a new insn to compute this expression and make sure the
1982 insn will be recognized (this also adds any needed CLOBBERs). */
1983 else
1985 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1987 if (insn_invalid_p (insn, false))
1988 gcc_unreachable ();
1991 pat = get_insns ();
1992 end_sequence ();
1994 return pat;
1997 /* Add EXPR to the end of basic block BB.
1999 This is used by both the PRE and code hoisting. */
2001 static void
2002 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2004 rtx_insn *insn = BB_END (bb);
2005 rtx_insn *new_insn;
2006 rtx reg = expr->reaching_reg;
2007 int regno = REGNO (reg);
2008 rtx_insn *pat, *pat_end;
2010 pat = process_insert_insn (expr);
2011 gcc_assert (pat && INSN_P (pat));
2013 pat_end = pat;
2014 while (NEXT_INSN (pat_end) != NULL_RTX)
2015 pat_end = NEXT_INSN (pat_end);
2017 /* If the last insn is a jump, insert EXPR in front [taking care to
2018 handle cc0, etc. properly]. Similarly we need to care trapping
2019 instructions in presence of non-call exceptions. */
2021 if (JUMP_P (insn)
2022 || (NONJUMP_INSN_P (insn)
2023 && (!single_succ_p (bb)
2024 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2026 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2027 if cc0 isn't set. */
2028 if (HAVE_cc0)
2030 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2031 if (note)
2032 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2033 else
2035 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2036 if (maybe_cc0_setter
2037 && INSN_P (maybe_cc0_setter)
2038 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2039 insn = maybe_cc0_setter;
2043 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2044 new_insn = emit_insn_before_noloc (pat, insn, bb);
2047 /* Likewise if the last insn is a call, as will happen in the presence
2048 of exception handling. */
2049 else if (CALL_P (insn)
2050 && (!single_succ_p (bb)
2051 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2053 /* Keeping in mind targets with small register classes and parameters
2054 in registers, we search backward and place the instructions before
2055 the first parameter is loaded. Do this for everyone for consistency
2056 and a presumption that we'll get better code elsewhere as well. */
2058 /* Since different machines initialize their parameter registers
2059 in different orders, assume nothing. Collect the set of all
2060 parameter registers. */
2061 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2063 /* If we found all the parameter loads, then we want to insert
2064 before the first parameter load.
2066 If we did not find all the parameter loads, then we might have
2067 stopped on the head of the block, which could be a CODE_LABEL.
2068 If we inserted before the CODE_LABEL, then we would be putting
2069 the insn in the wrong basic block. In that case, put the insn
2070 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2071 while (LABEL_P (insn)
2072 || NOTE_INSN_BASIC_BLOCK_P (insn))
2073 insn = NEXT_INSN (insn);
2075 new_insn = emit_insn_before_noloc (pat, insn, bb);
2077 else
2078 new_insn = emit_insn_after_noloc (pat, insn, bb);
2080 while (1)
2082 if (INSN_P (pat))
2083 add_label_notes (PATTERN (pat), new_insn);
2084 if (pat == pat_end)
2085 break;
2086 pat = NEXT_INSN (pat);
2089 gcse_create_count++;
2091 if (dump_file)
2093 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2094 bb->index, INSN_UID (new_insn));
2095 fprintf (dump_file, "copying expression %d to reg %d\n",
2096 expr->bitmap_index, regno);
2100 /* Insert partially redundant expressions on edges in the CFG to make
2101 the expressions fully redundant. */
2103 static int
2104 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2106 int e, i, j, num_edges, set_size, did_insert = 0;
2107 sbitmap *inserted;
2109 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2110 if it reaches any of the deleted expressions. */
2112 set_size = pre_insert_map[0]->size;
2113 num_edges = NUM_EDGES (edge_list);
2114 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2115 bitmap_vector_clear (inserted, num_edges);
2117 for (e = 0; e < num_edges; e++)
2119 int indx;
2120 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2122 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2124 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2126 for (j = indx;
2127 insert && j < (int) expr_hash_table.n_elems;
2128 j++, insert >>= 1)
2129 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2131 struct gcse_expr *expr = index_map[j];
2132 struct gcse_occr *occr;
2134 /* Now look at each deleted occurrence of this expression. */
2135 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2137 if (! occr->deleted_p)
2138 continue;
2140 /* Insert this expression on this edge if it would
2141 reach the deleted occurrence in BB. */
2142 if (!bitmap_bit_p (inserted[e], j))
2144 rtx_insn *insn;
2145 edge eg = INDEX_EDGE (edge_list, e);
2147 /* We can't insert anything on an abnormal and
2148 critical edge, so we insert the insn at the end of
2149 the previous block. There are several alternatives
2150 detailed in Morgans book P277 (sec 10.5) for
2151 handling this situation. This one is easiest for
2152 now. */
2154 if (eg->flags & EDGE_ABNORMAL)
2155 insert_insn_end_basic_block (index_map[j], bb);
2156 else
2158 insn = process_insert_insn (index_map[j]);
2159 insert_insn_on_edge (insn, eg);
2162 if (dump_file)
2164 fprintf (dump_file, "PRE: edge (%d,%d), ",
2165 bb->index,
2166 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2167 fprintf (dump_file, "copy expression %d\n",
2168 expr->bitmap_index);
2171 update_ld_motion_stores (expr);
2172 bitmap_set_bit (inserted[e], j);
2173 did_insert = 1;
2174 gcse_create_count++;
2181 sbitmap_vector_free (inserted);
2182 return did_insert;
2185 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2186 Given "old_reg <- expr" (INSN), instead of adding after it
2187 reaching_reg <- old_reg
2188 it's better to do the following:
2189 reaching_reg <- expr
2190 old_reg <- reaching_reg
2191 because this way copy propagation can discover additional PRE
2192 opportunities. But if this fails, we try the old way.
2193 When "expr" is a store, i.e.
2194 given "MEM <- old_reg", instead of adding after it
2195 reaching_reg <- old_reg
2196 it's better to add it before as follows:
2197 reaching_reg <- old_reg
2198 MEM <- reaching_reg. */
2200 static void
2201 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2203 rtx reg = expr->reaching_reg;
2204 int regno = REGNO (reg);
2205 int indx = expr->bitmap_index;
2206 rtx pat = PATTERN (insn);
2207 rtx set, first_set;
2208 rtx_insn *new_insn;
2209 rtx old_reg;
2210 int i;
2212 /* This block matches the logic in hash_scan_insn. */
2213 switch (GET_CODE (pat))
2215 case SET:
2216 set = pat;
2217 break;
2219 case PARALLEL:
2220 /* Search through the parallel looking for the set whose
2221 source was the expression that we're interested in. */
2222 first_set = NULL_RTX;
2223 set = NULL_RTX;
2224 for (i = 0; i < XVECLEN (pat, 0); i++)
2226 rtx x = XVECEXP (pat, 0, i);
2227 if (GET_CODE (x) == SET)
2229 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2230 may not find an equivalent expression, but in this
2231 case the PARALLEL will have a single set. */
2232 if (first_set == NULL_RTX)
2233 first_set = x;
2234 if (expr_equiv_p (SET_SRC (x), expr->expr))
2236 set = x;
2237 break;
2242 gcc_assert (first_set);
2243 if (set == NULL_RTX)
2244 set = first_set;
2245 break;
2247 default:
2248 gcc_unreachable ();
2251 if (REG_P (SET_DEST (set)))
2253 old_reg = SET_DEST (set);
2254 /* Check if we can modify the set destination in the original insn. */
2255 if (validate_change (insn, &SET_DEST (set), reg, 0))
2257 new_insn = gen_move_insn (old_reg, reg);
2258 new_insn = emit_insn_after (new_insn, insn);
2260 else
2262 new_insn = gen_move_insn (reg, old_reg);
2263 new_insn = emit_insn_after (new_insn, insn);
2266 else /* This is possible only in case of a store to memory. */
2268 old_reg = SET_SRC (set);
2269 new_insn = gen_move_insn (reg, old_reg);
2271 /* Check if we can modify the set source in the original insn. */
2272 if (validate_change (insn, &SET_SRC (set), reg, 0))
2273 new_insn = emit_insn_before (new_insn, insn);
2274 else
2275 new_insn = emit_insn_after (new_insn, insn);
2278 gcse_create_count++;
2280 if (dump_file)
2281 fprintf (dump_file,
2282 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2283 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2284 INSN_UID (insn), regno);
2287 /* Copy available expressions that reach the redundant expression
2288 to `reaching_reg'. */
2290 static void
2291 pre_insert_copies (void)
2293 unsigned int i, added_copy;
2294 struct gcse_expr *expr;
2295 struct gcse_occr *occr;
2296 struct gcse_occr *avail;
2298 /* For each available expression in the table, copy the result to
2299 `reaching_reg' if the expression reaches a deleted one.
2301 ??? The current algorithm is rather brute force.
2302 Need to do some profiling. */
2304 for (i = 0; i < expr_hash_table.size; i++)
2305 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2307 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2308 we don't want to insert a copy here because the expression may not
2309 really be redundant. So only insert an insn if the expression was
2310 deleted. This test also avoids further processing if the
2311 expression wasn't deleted anywhere. */
2312 if (expr->reaching_reg == NULL)
2313 continue;
2315 /* Set when we add a copy for that expression. */
2316 added_copy = 0;
2318 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2320 if (! occr->deleted_p)
2321 continue;
2323 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2325 rtx_insn *insn = avail->insn;
2327 /* No need to handle this one if handled already. */
2328 if (avail->copied_p)
2329 continue;
2331 /* Don't handle this one if it's a redundant one. */
2332 if (insn->deleted ())
2333 continue;
2335 /* Or if the expression doesn't reach the deleted one. */
2336 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2337 expr,
2338 BLOCK_FOR_INSN (occr->insn)))
2339 continue;
2341 added_copy = 1;
2343 /* Copy the result of avail to reaching_reg. */
2344 pre_insert_copy_insn (expr, insn);
2345 avail->copied_p = 1;
2349 if (added_copy)
2350 update_ld_motion_stores (expr);
2354 struct set_data
2356 rtx_insn *insn;
2357 const_rtx set;
2358 int nsets;
2361 /* Increment number of sets and record set in DATA. */
2363 static void
2364 record_set_data (rtx dest, const_rtx set, void *data)
2366 struct set_data *s = (struct set_data *)data;
2368 if (GET_CODE (set) == SET)
2370 /* We allow insns having multiple sets, where all but one are
2371 dead as single set insns. In the common case only a single
2372 set is present, so we want to avoid checking for REG_UNUSED
2373 notes unless necessary. */
2374 if (s->nsets == 1
2375 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2376 && !side_effects_p (s->set))
2377 s->nsets = 0;
2379 if (!s->nsets)
2381 /* Record this set. */
2382 s->nsets += 1;
2383 s->set = set;
2385 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2386 || side_effects_p (set))
2387 s->nsets += 1;
2391 static const_rtx
2392 single_set_gcse (rtx_insn *insn)
2394 struct set_data s;
2395 rtx pattern;
2397 gcc_assert (INSN_P (insn));
2399 /* Optimize common case. */
2400 pattern = PATTERN (insn);
2401 if (GET_CODE (pattern) == SET)
2402 return pattern;
2404 s.insn = insn;
2405 s.nsets = 0;
2406 note_stores (pattern, record_set_data, &s);
2408 /* Considered invariant insns have exactly one set. */
2409 gcc_assert (s.nsets == 1);
2410 return s.set;
2413 /* Emit move from SRC to DEST noting the equivalence with expression computed
2414 in INSN. */
2416 static rtx_insn *
2417 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2419 rtx_insn *new_rtx;
2420 const_rtx set = single_set_gcse (insn);
2421 rtx set2;
2422 rtx note;
2423 rtx eqv = NULL_RTX;
2425 /* This should never fail since we're creating a reg->reg copy
2426 we've verified to be valid. */
2428 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2430 /* Note the equivalence for local CSE pass. Take the note from the old
2431 set if there was one. Otherwise record the SET_SRC from the old set
2432 unless DEST is also an operand of the SET_SRC. */
2433 set2 = single_set (new_rtx);
2434 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2435 return new_rtx;
2436 if ((note = find_reg_equal_equiv_note (insn)))
2437 eqv = XEXP (note, 0);
2438 else if (! REG_P (dest)
2439 || ! reg_mentioned_p (dest, SET_SRC (set)))
2440 eqv = SET_SRC (set);
2442 if (eqv != NULL_RTX)
2443 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2445 return new_rtx;
2448 /* Delete redundant computations.
2449 Deletion is done by changing the insn to copy the `reaching_reg' of
2450 the expression into the result of the SET. It is left to later passes
2451 to propagate the copy or eliminate it.
2453 Return nonzero if a change is made. */
2455 static int
2456 pre_delete (void)
2458 unsigned int i;
2459 int changed;
2460 struct gcse_expr *expr;
2461 struct gcse_occr *occr;
2463 changed = 0;
2464 for (i = 0; i < expr_hash_table.size; i++)
2465 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2467 int indx = expr->bitmap_index;
2469 /* We only need to search antic_occr since we require ANTLOC != 0. */
2470 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2472 rtx_insn *insn = occr->insn;
2473 rtx set;
2474 basic_block bb = BLOCK_FOR_INSN (insn);
2476 /* We only delete insns that have a single_set. */
2477 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2478 && (set = single_set (insn)) != 0
2479 && dbg_cnt (pre_insn))
2481 /* Create a pseudo-reg to store the result of reaching
2482 expressions into. Get the mode for the new pseudo from
2483 the mode of the original destination pseudo. */
2484 if (expr->reaching_reg == NULL)
2485 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2487 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2488 delete_insn (insn);
2489 occr->deleted_p = 1;
2490 changed = 1;
2491 gcse_subst_count++;
2493 if (dump_file)
2495 fprintf (dump_file,
2496 "PRE: redundant insn %d (expression %d) in ",
2497 INSN_UID (insn), indx);
2498 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2499 bb->index, REGNO (expr->reaching_reg));
2505 return changed;
2508 /* Perform GCSE optimizations using PRE.
2509 This is called by one_pre_gcse_pass after all the dataflow analysis
2510 has been done.
2512 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2513 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2514 Compiler Design and Implementation.
2516 ??? A new pseudo reg is created to hold the reaching expression. The nice
2517 thing about the classical approach is that it would try to use an existing
2518 reg. If the register can't be adequately optimized [i.e. we introduce
2519 reload problems], one could add a pass here to propagate the new register
2520 through the block.
2522 ??? We don't handle single sets in PARALLELs because we're [currently] not
2523 able to copy the rest of the parallel when we insert copies to create full
2524 redundancies from partial redundancies. However, there's no reason why we
2525 can't handle PARALLELs in the cases where there are no partial
2526 redundancies. */
2528 static int
2529 pre_gcse (struct edge_list *edge_list)
2531 unsigned int i;
2532 int did_insert, changed;
2533 struct gcse_expr **index_map;
2534 struct gcse_expr *expr;
2536 /* Compute a mapping from expression number (`bitmap_index') to
2537 hash table entry. */
2539 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2540 for (i = 0; i < expr_hash_table.size; i++)
2541 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2542 index_map[expr->bitmap_index] = expr;
2544 /* Delete the redundant insns first so that
2545 - we know what register to use for the new insns and for the other
2546 ones with reaching expressions
2547 - we know which insns are redundant when we go to create copies */
2549 changed = pre_delete ();
2550 did_insert = pre_edge_insert (edge_list, index_map);
2552 /* In other places with reaching expressions, copy the expression to the
2553 specially allocated pseudo-reg that reaches the redundant expr. */
2554 pre_insert_copies ();
2555 if (did_insert)
2557 commit_edge_insertions ();
2558 changed = 1;
2561 free (index_map);
2562 return changed;
2565 /* Top level routine to perform one PRE GCSE pass.
2567 Return nonzero if a change was made. */
2569 static int
2570 one_pre_gcse_pass (void)
2572 int changed = 0;
2574 gcse_subst_count = 0;
2575 gcse_create_count = 0;
2577 /* Return if there's nothing to do, or it is too expensive. */
2578 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2579 || is_too_expensive (_("PRE disabled")))
2580 return 0;
2582 /* We need alias. */
2583 init_alias_analysis ();
2585 bytes_used = 0;
2586 gcc_obstack_init (&gcse_obstack);
2587 alloc_gcse_mem ();
2589 alloc_hash_table (&expr_hash_table);
2590 add_noreturn_fake_exit_edges ();
2591 if (flag_gcse_lm)
2592 compute_ld_motion_mems ();
2594 compute_hash_table (&expr_hash_table);
2595 if (flag_gcse_lm)
2596 trim_ld_motion_mems ();
2597 if (dump_file)
2598 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2600 if (expr_hash_table.n_elems > 0)
2602 struct edge_list *edge_list;
2603 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2604 edge_list = compute_pre_data ();
2605 changed |= pre_gcse (edge_list);
2606 free_edge_list (edge_list);
2607 free_pre_mem ();
2610 if (flag_gcse_lm)
2611 free_ld_motion_mems ();
2612 remove_fake_exit_edges ();
2613 free_hash_table (&expr_hash_table);
2615 free_gcse_mem ();
2616 obstack_free (&gcse_obstack, NULL);
2618 /* We are finished with alias. */
2619 end_alias_analysis ();
2621 if (dump_file)
2623 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2624 current_function_name (), n_basic_blocks_for_fn (cfun),
2625 bytes_used);
2626 fprintf (dump_file, "%d substs, %d insns created\n",
2627 gcse_subst_count, gcse_create_count);
2630 return changed;
2633 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2634 to INSN. If such notes are added to an insn which references a
2635 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2636 that note, because the following loop optimization pass requires
2637 them. */
2639 /* ??? If there was a jump optimization pass after gcse and before loop,
2640 then we would not need to do this here, because jump would add the
2641 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2643 static void
2644 add_label_notes (rtx x, rtx_insn *insn)
2646 enum rtx_code code = GET_CODE (x);
2647 int i, j;
2648 const char *fmt;
2650 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2652 /* This code used to ignore labels that referred to dispatch tables to
2653 avoid flow generating (slightly) worse code.
2655 We no longer ignore such label references (see LABEL_REF handling in
2656 mark_jump_label for additional information). */
2658 /* There's no reason for current users to emit jump-insns with
2659 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2660 notes. */
2661 gcc_assert (!JUMP_P (insn));
2662 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2664 if (LABEL_P (LABEL_REF_LABEL (x)))
2665 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2667 return;
2670 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2672 if (fmt[i] == 'e')
2673 add_label_notes (XEXP (x, i), insn);
2674 else if (fmt[i] == 'E')
2675 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2676 add_label_notes (XVECEXP (x, i, j), insn);
2680 /* Code Hoisting variables and subroutines. */
2682 /* Very busy expressions. */
2683 static sbitmap *hoist_vbein;
2684 static sbitmap *hoist_vbeout;
2686 /* ??? We could compute post dominators and run this algorithm in
2687 reverse to perform tail merging, doing so would probably be
2688 more effective than the tail merging code in jump.c.
2690 It's unclear if tail merging could be run in parallel with
2691 code hoisting. It would be nice. */
2693 /* Allocate vars used for code hoisting analysis. */
2695 static void
2696 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2698 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2699 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2700 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2702 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2703 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2706 /* Free vars used for code hoisting analysis. */
2708 static void
2709 free_code_hoist_mem (void)
2711 sbitmap_vector_free (antloc);
2712 sbitmap_vector_free (transp);
2713 sbitmap_vector_free (comp);
2715 sbitmap_vector_free (hoist_vbein);
2716 sbitmap_vector_free (hoist_vbeout);
2718 free_dominance_info (CDI_DOMINATORS);
2721 /* Compute the very busy expressions at entry/exit from each block.
2723 An expression is very busy if all paths from a given point
2724 compute the expression. */
2726 static void
2727 compute_code_hoist_vbeinout (void)
2729 int changed, passes;
2730 basic_block bb;
2732 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2733 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2735 passes = 0;
2736 changed = 1;
2738 while (changed)
2740 changed = 0;
2742 /* We scan the blocks in the reverse order to speed up
2743 the convergence. */
2744 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2746 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2748 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2749 hoist_vbein, bb);
2751 /* Include expressions in VBEout that are calculated
2752 in BB and available at its end. */
2753 bitmap_ior (hoist_vbeout[bb->index],
2754 hoist_vbeout[bb->index], comp[bb->index]);
2757 changed |= bitmap_or_and (hoist_vbein[bb->index],
2758 antloc[bb->index],
2759 hoist_vbeout[bb->index],
2760 transp[bb->index]);
2763 passes++;
2766 if (dump_file)
2768 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2770 FOR_EACH_BB_FN (bb, cfun)
2772 fprintf (dump_file, "vbein (%d): ", bb->index);
2773 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2774 fprintf (dump_file, "vbeout(%d): ", bb->index);
2775 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2780 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2782 static void
2783 compute_code_hoist_data (void)
2785 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2786 prune_expressions (false);
2787 compute_code_hoist_vbeinout ();
2788 calculate_dominance_info (CDI_DOMINATORS);
2789 if (dump_file)
2790 fprintf (dump_file, "\n");
2793 /* Update register pressure for BB when hoisting an expression from
2794 instruction FROM, if live ranges of inputs are shrunk. Also
2795 maintain live_in information if live range of register referred
2796 in FROM is shrunk.
2798 Return 0 if register pressure doesn't change, otherwise return
2799 the number by which register pressure is decreased.
2801 NOTE: Register pressure won't be increased in this function. */
2803 static int
2804 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2806 rtx dreg;
2807 rtx_insn *insn;
2808 basic_block succ_bb;
2809 df_ref use, op_ref;
2810 edge succ;
2811 edge_iterator ei;
2812 int decreased_pressure = 0;
2813 int nregs;
2814 enum reg_class pressure_class;
2816 FOR_EACH_INSN_USE (use, from)
2818 dreg = DF_REF_REAL_REG (use);
2819 /* The live range of register is shrunk only if it isn't:
2820 1. referred on any path from the end of this block to EXIT, or
2821 2. referred by insns other than FROM in this block. */
2822 FOR_EACH_EDGE (succ, ei, bb->succs)
2824 succ_bb = succ->dest;
2825 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2826 continue;
2828 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2829 break;
2831 if (succ != NULL)
2832 continue;
2834 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2835 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2837 if (!DF_REF_INSN_INFO (op_ref))
2838 continue;
2840 insn = DF_REF_INSN (op_ref);
2841 if (BLOCK_FOR_INSN (insn) == bb
2842 && NONDEBUG_INSN_P (insn) && insn != from)
2843 break;
2846 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2847 /* Decrease register pressure and update live_in information for
2848 this block. */
2849 if (!op_ref && pressure_class != NO_REGS)
2851 decreased_pressure += nregs;
2852 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2853 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2856 return decreased_pressure;
2859 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2860 flow graph, if it can reach BB unimpared. Stop the search if the
2861 expression would need to be moved more than DISTANCE instructions.
2863 DISTANCE is the number of instructions through which EXPR can be
2864 hoisted up in flow graph.
2866 BB_SIZE points to an array which contains the number of instructions
2867 for each basic block.
2869 PRESSURE_CLASS and NREGS are register class and number of hard registers
2870 for storing EXPR.
2872 HOISTED_BBS points to a bitmap indicating basic blocks through which
2873 EXPR is hoisted.
2875 FROM is the instruction from which EXPR is hoisted.
2877 It's unclear exactly what Muchnick meant by "unimpared". It seems
2878 to me that the expression must either be computed or transparent in
2879 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2880 would allow the expression to be hoisted out of loops, even if
2881 the expression wasn't a loop invariant.
2883 Contrast this to reachability for PRE where an expression is
2884 considered reachable if *any* path reaches instead of *all*
2885 paths. */
2887 static int
2888 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2889 basic_block bb, sbitmap visited, int distance,
2890 int *bb_size, enum reg_class pressure_class,
2891 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2893 unsigned int i;
2894 edge pred;
2895 edge_iterator ei;
2896 sbitmap_iterator sbi;
2897 int visited_allocated_locally = 0;
2898 int decreased_pressure = 0;
2900 if (flag_ira_hoist_pressure)
2902 /* Record old information of basic block BB when it is visited
2903 at the first time. */
2904 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2906 struct bb_data *data = BB_DATA (bb);
2907 bitmap_copy (data->backup, data->live_in);
2908 data->old_pressure = data->max_reg_pressure[pressure_class];
2910 decreased_pressure = update_bb_reg_pressure (bb, from);
2912 /* Terminate the search if distance, for which EXPR is allowed to move,
2913 is exhausted. */
2914 if (distance > 0)
2916 if (flag_ira_hoist_pressure)
2918 /* Prefer to hoist EXPR if register pressure is decreased. */
2919 if (decreased_pressure > *nregs)
2920 distance += bb_size[bb->index];
2921 /* Let EXPR be hoisted through basic block at no cost if one
2922 of following conditions is satisfied:
2924 1. The basic block has low register pressure.
2925 2. Register pressure won't be increases after hoisting EXPR.
2927 Constant expressions is handled conservatively, because
2928 hoisting constant expression aggressively results in worse
2929 code. This decision is made by the observation of CSiBE
2930 on ARM target, while it has no obvious effect on other
2931 targets like x86, x86_64, mips and powerpc. */
2932 else if (CONST_INT_P (expr->expr)
2933 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2934 >= ira_class_hard_regs_num[pressure_class]
2935 && decreased_pressure < *nregs))
2936 distance -= bb_size[bb->index];
2938 else
2939 distance -= bb_size[bb->index];
2941 if (distance <= 0)
2942 return 0;
2944 else
2945 gcc_assert (distance == 0);
2947 if (visited == NULL)
2949 visited_allocated_locally = 1;
2950 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2951 bitmap_clear (visited);
2954 FOR_EACH_EDGE (pred, ei, bb->preds)
2956 basic_block pred_bb = pred->src;
2958 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2959 break;
2960 else if (pred_bb == expr_bb)
2961 continue;
2962 else if (bitmap_bit_p (visited, pred_bb->index))
2963 continue;
2964 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2965 break;
2966 /* Not killed. */
2967 else
2969 bitmap_set_bit (visited, pred_bb->index);
2970 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2971 visited, distance, bb_size,
2972 pressure_class, nregs,
2973 hoisted_bbs, from))
2974 break;
2977 if (visited_allocated_locally)
2979 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2980 which EXPR is hoisted in hoisted_bbs. */
2981 if (flag_ira_hoist_pressure && !pred)
2983 /* Record the basic block from which EXPR is hoisted. */
2984 bitmap_set_bit (visited, bb->index);
2985 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2986 bitmap_set_bit (hoisted_bbs, i);
2988 sbitmap_free (visited);
2991 return (pred == NULL);
2994 /* Find occurrence in BB. */
2996 static struct gcse_occr *
2997 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
2999 /* Find the right occurrence of this expression. */
3000 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3001 occr = occr->next;
3003 return occr;
3006 /* Actually perform code hoisting.
3008 The code hoisting pass can hoist multiple computations of the same
3009 expression along dominated path to a dominating basic block, like
3010 from b2/b3 to b1 as depicted below:
3012 b1 ------
3013 /\ |
3014 / \ |
3015 bx by distance
3016 / \ |
3017 / \ |
3018 b2 b3 ------
3020 Unfortunately code hoisting generally extends the live range of an
3021 output pseudo register, which increases register pressure and hurts
3022 register allocation. To address this issue, an attribute MAX_DISTANCE
3023 is computed and attached to each expression. The attribute is computed
3024 from rtx cost of the corresponding expression and it's used to control
3025 how long the expression can be hoisted up in flow graph. As the
3026 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3027 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3028 register pressure if live ranges of inputs are shrunk.
3030 Option "-fira-hoist-pressure" implements register pressure directed
3031 hoist based on upper method. The rationale is:
3032 1. Calculate register pressure for each basic block by reusing IRA
3033 facility.
3034 2. When expression is hoisted through one basic block, GCC checks
3035 the change of live ranges for inputs/output. The basic block's
3036 register pressure will be increased because of extended live
3037 range of output. However, register pressure will be decreased
3038 if the live ranges of inputs are shrunk.
3039 3. After knowing how hoisting affects register pressure, GCC prefers
3040 to hoist the expression if it can decrease register pressure, by
3041 increasing DISTANCE of the corresponding expression.
3042 4. If hoisting the expression increases register pressure, GCC checks
3043 register pressure of the basic block and decrease DISTANCE only if
3044 the register pressure is high. In other words, expression will be
3045 hoisted through at no cost if the basic block has low register
3046 pressure.
3047 5. Update register pressure information for basic blocks through
3048 which expression is hoisted. */
3050 static int
3051 hoist_code (void)
3053 basic_block bb, dominated;
3054 vec<basic_block> dom_tree_walk;
3055 unsigned int dom_tree_walk_index;
3056 vec<basic_block> domby;
3057 unsigned int i, j, k;
3058 struct gcse_expr **index_map;
3059 struct gcse_expr *expr;
3060 int *to_bb_head;
3061 int *bb_size;
3062 int changed = 0;
3063 struct bb_data *data;
3064 /* Basic blocks that have occurrences reachable from BB. */
3065 bitmap from_bbs;
3066 /* Basic blocks through which expr is hoisted. */
3067 bitmap hoisted_bbs = NULL;
3068 bitmap_iterator bi;
3070 /* Compute a mapping from expression number (`bitmap_index') to
3071 hash table entry. */
3073 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3074 for (i = 0; i < expr_hash_table.size; i++)
3075 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3076 index_map[expr->bitmap_index] = expr;
3078 /* Calculate sizes of basic blocks and note how far
3079 each instruction is from the start of its block. We then use this
3080 data to restrict distance an expression can travel. */
3082 to_bb_head = XCNEWVEC (int, get_max_uid ());
3083 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3085 FOR_EACH_BB_FN (bb, cfun)
3087 rtx_insn *insn;
3088 int to_head;
3090 to_head = 0;
3091 FOR_BB_INSNS (bb, insn)
3093 /* Don't count debug instructions to avoid them affecting
3094 decision choices. */
3095 if (NONDEBUG_INSN_P (insn))
3096 to_bb_head[INSN_UID (insn)] = to_head++;
3099 bb_size[bb->index] = to_head;
3102 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3103 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3104 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3106 from_bbs = BITMAP_ALLOC (NULL);
3107 if (flag_ira_hoist_pressure)
3108 hoisted_bbs = BITMAP_ALLOC (NULL);
3110 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3111 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3113 /* Walk over each basic block looking for potentially hoistable
3114 expressions, nothing gets hoisted from the entry block. */
3115 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3117 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3119 if (domby.length () == 0)
3120 continue;
3122 /* Examine each expression that is very busy at the exit of this
3123 block. These are the potentially hoistable expressions. */
3124 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3126 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3128 int nregs = 0;
3129 enum reg_class pressure_class = NO_REGS;
3130 /* Current expression. */
3131 struct gcse_expr *expr = index_map[i];
3132 /* Number of occurrences of EXPR that can be hoisted to BB. */
3133 int hoistable = 0;
3134 /* Occurrences reachable from BB. */
3135 vec<occr_t> occrs_to_hoist = vNULL;
3136 /* We want to insert the expression into BB only once, so
3137 note when we've inserted it. */
3138 int insn_inserted_p;
3139 occr_t occr;
3141 /* If an expression is computed in BB and is available at end of
3142 BB, hoist all occurrences dominated by BB to BB. */
3143 if (bitmap_bit_p (comp[bb->index], i))
3145 occr = find_occr_in_bb (expr->antic_occr, bb);
3147 if (occr)
3149 /* An occurrence might've been already deleted
3150 while processing a dominator of BB. */
3151 if (!occr->deleted_p)
3153 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3154 hoistable++;
3157 else
3158 hoistable++;
3161 /* We've found a potentially hoistable expression, now
3162 we look at every block BB dominates to see if it
3163 computes the expression. */
3164 FOR_EACH_VEC_ELT (domby, j, dominated)
3166 int max_distance;
3168 /* Ignore self dominance. */
3169 if (bb == dominated)
3170 continue;
3171 /* We've found a dominated block, now see if it computes
3172 the busy expression and whether or not moving that
3173 expression to the "beginning" of that block is safe. */
3174 if (!bitmap_bit_p (antloc[dominated->index], i))
3175 continue;
3177 occr = find_occr_in_bb (expr->antic_occr, dominated);
3178 gcc_assert (occr);
3180 /* An occurrence might've been already deleted
3181 while processing a dominator of BB. */
3182 if (occr->deleted_p)
3183 continue;
3184 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3186 max_distance = expr->max_distance;
3187 if (max_distance > 0)
3188 /* Adjust MAX_DISTANCE to account for the fact that
3189 OCCR won't have to travel all of DOMINATED, but
3190 only part of it. */
3191 max_distance += (bb_size[dominated->index]
3192 - to_bb_head[INSN_UID (occr->insn)]);
3194 pressure_class = get_pressure_class_and_nregs (occr->insn,
3195 &nregs);
3197 /* Note if the expression should be hoisted from the dominated
3198 block to BB if it can reach DOMINATED unimpared.
3200 Keep track of how many times this expression is hoistable
3201 from a dominated block into BB. */
3202 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3203 max_distance, bb_size,
3204 pressure_class, &nregs,
3205 hoisted_bbs, occr->insn))
3207 hoistable++;
3208 occrs_to_hoist.safe_push (occr);
3209 bitmap_set_bit (from_bbs, dominated->index);
3213 /* If we found more than one hoistable occurrence of this
3214 expression, then note it in the vector of expressions to
3215 hoist. It makes no sense to hoist things which are computed
3216 in only one BB, and doing so tends to pessimize register
3217 allocation. One could increase this value to try harder
3218 to avoid any possible code expansion due to register
3219 allocation issues; however experiments have shown that
3220 the vast majority of hoistable expressions are only movable
3221 from two successors, so raising this threshold is likely
3222 to nullify any benefit we get from code hoisting. */
3223 if (hoistable > 1 && dbg_cnt (hoist_insn))
3225 /* If (hoistable != vec::length), then there is
3226 an occurrence of EXPR in BB itself. Don't waste
3227 time looking for LCA in this case. */
3228 if ((unsigned) hoistable == occrs_to_hoist.length ())
3230 basic_block lca;
3232 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3233 from_bbs);
3234 if (lca != bb)
3235 /* Punt, it's better to hoist these occurrences to
3236 LCA. */
3237 occrs_to_hoist.release ();
3240 else
3241 /* Punt, no point hoisting a single occurrence. */
3242 occrs_to_hoist.release ();
3244 if (flag_ira_hoist_pressure
3245 && !occrs_to_hoist.is_empty ())
3247 /* Increase register pressure of basic blocks to which
3248 expr is hoisted because of extended live range of
3249 output. */
3250 data = BB_DATA (bb);
3251 data->max_reg_pressure[pressure_class] += nregs;
3252 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3254 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3255 data->max_reg_pressure[pressure_class] += nregs;
3258 else if (flag_ira_hoist_pressure)
3260 /* Restore register pressure and live_in info for basic
3261 blocks recorded in hoisted_bbs when expr will not be
3262 hoisted. */
3263 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3265 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3266 bitmap_copy (data->live_in, data->backup);
3267 data->max_reg_pressure[pressure_class]
3268 = data->old_pressure;
3272 if (flag_ira_hoist_pressure)
3273 bitmap_clear (hoisted_bbs);
3275 insn_inserted_p = 0;
3277 /* Walk through occurrences of I'th expressions we want
3278 to hoist to BB and make the transformations. */
3279 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3281 rtx_insn *insn;
3282 const_rtx set;
3284 gcc_assert (!occr->deleted_p);
3286 insn = occr->insn;
3287 set = single_set_gcse (insn);
3289 /* Create a pseudo-reg to store the result of reaching
3290 expressions into. Get the mode for the new pseudo
3291 from the mode of the original destination pseudo.
3293 It is important to use new pseudos whenever we
3294 emit a set. This will allow reload to use
3295 rematerialization for such registers. */
3296 if (!insn_inserted_p)
3297 expr->reaching_reg
3298 = gen_reg_rtx_and_attrs (SET_DEST (set));
3300 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3301 insn);
3302 delete_insn (insn);
3303 occr->deleted_p = 1;
3304 changed = 1;
3305 gcse_subst_count++;
3307 if (!insn_inserted_p)
3309 insert_insn_end_basic_block (expr, bb);
3310 insn_inserted_p = 1;
3314 occrs_to_hoist.release ();
3315 bitmap_clear (from_bbs);
3318 domby.release ();
3321 dom_tree_walk.release ();
3322 BITMAP_FREE (from_bbs);
3323 if (flag_ira_hoist_pressure)
3324 BITMAP_FREE (hoisted_bbs);
3326 free (bb_size);
3327 free (to_bb_head);
3328 free (index_map);
3330 return changed;
3333 /* Return pressure class and number of needed hard registers (through
3334 *NREGS) of register REGNO. */
3335 static enum reg_class
3336 get_regno_pressure_class (int regno, int *nregs)
3338 if (regno >= FIRST_PSEUDO_REGISTER)
3340 enum reg_class pressure_class;
3342 pressure_class = reg_allocno_class (regno);
3343 pressure_class = ira_pressure_class_translate[pressure_class];
3344 *nregs
3345 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3346 return pressure_class;
3348 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3349 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3351 *nregs = 1;
3352 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3354 else
3356 *nregs = 0;
3357 return NO_REGS;
3361 /* Return pressure class and number of hard registers (through *NREGS)
3362 for destination of INSN. */
3363 static enum reg_class
3364 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3366 rtx reg;
3367 enum reg_class pressure_class;
3368 const_rtx set = single_set_gcse (insn);
3370 reg = SET_DEST (set);
3371 if (GET_CODE (reg) == SUBREG)
3372 reg = SUBREG_REG (reg);
3373 if (MEM_P (reg))
3375 *nregs = 0;
3376 pressure_class = NO_REGS;
3378 else
3380 gcc_assert (REG_P (reg));
3381 pressure_class = reg_allocno_class (REGNO (reg));
3382 pressure_class = ira_pressure_class_translate[pressure_class];
3383 *nregs
3384 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3386 return pressure_class;
3389 /* Increase (if INCR_P) or decrease current register pressure for
3390 register REGNO. */
3391 static void
3392 change_pressure (int regno, bool incr_p)
3394 int nregs;
3395 enum reg_class pressure_class;
3397 pressure_class = get_regno_pressure_class (regno, &nregs);
3398 if (! incr_p)
3399 curr_reg_pressure[pressure_class] -= nregs;
3400 else
3402 curr_reg_pressure[pressure_class] += nregs;
3403 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3404 < curr_reg_pressure[pressure_class])
3405 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3406 = curr_reg_pressure[pressure_class];
3410 /* Calculate register pressure for each basic block by walking insns
3411 from last to first. */
3412 static void
3413 calculate_bb_reg_pressure (void)
3415 int i;
3416 unsigned int j;
3417 rtx_insn *insn;
3418 basic_block bb;
3419 bitmap curr_regs_live;
3420 bitmap_iterator bi;
3423 ira_setup_eliminable_regset ();
3424 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3425 FOR_EACH_BB_FN (bb, cfun)
3427 curr_bb = bb;
3428 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3429 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3430 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3431 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3432 for (i = 0; i < ira_pressure_classes_num; i++)
3433 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3434 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3435 change_pressure (j, true);
3437 FOR_BB_INSNS_REVERSE (bb, insn)
3439 rtx dreg;
3440 int regno;
3441 df_ref def, use;
3443 if (! NONDEBUG_INSN_P (insn))
3444 continue;
3446 FOR_EACH_INSN_DEF (def, insn)
3448 dreg = DF_REF_REAL_REG (def);
3449 gcc_assert (REG_P (dreg));
3450 regno = REGNO (dreg);
3451 if (!(DF_REF_FLAGS (def)
3452 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3454 if (bitmap_clear_bit (curr_regs_live, regno))
3455 change_pressure (regno, false);
3459 FOR_EACH_INSN_USE (use, insn)
3461 dreg = DF_REF_REAL_REG (use);
3462 gcc_assert (REG_P (dreg));
3463 regno = REGNO (dreg);
3464 if (bitmap_set_bit (curr_regs_live, regno))
3465 change_pressure (regno, true);
3469 BITMAP_FREE (curr_regs_live);
3471 if (dump_file == NULL)
3472 return;
3474 fprintf (dump_file, "\nRegister Pressure: \n");
3475 FOR_EACH_BB_FN (bb, cfun)
3477 fprintf (dump_file, " Basic block %d: \n", bb->index);
3478 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3480 enum reg_class pressure_class;
3482 pressure_class = ira_pressure_classes[i];
3483 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3484 continue;
3486 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3487 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3490 fprintf (dump_file, "\n");
3493 /* Top level routine to perform one code hoisting (aka unification) pass
3495 Return nonzero if a change was made. */
3497 static int
3498 one_code_hoisting_pass (void)
3500 int changed = 0;
3502 gcse_subst_count = 0;
3503 gcse_create_count = 0;
3505 /* Return if there's nothing to do, or it is too expensive. */
3506 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3507 || is_too_expensive (_("GCSE disabled")))
3508 return 0;
3510 doing_code_hoisting_p = true;
3512 /* Calculate register pressure for each basic block. */
3513 if (flag_ira_hoist_pressure)
3515 regstat_init_n_sets_and_refs ();
3516 ira_set_pseudo_classes (false, dump_file);
3517 alloc_aux_for_blocks (sizeof (struct bb_data));
3518 calculate_bb_reg_pressure ();
3519 regstat_free_n_sets_and_refs ();
3522 /* We need alias. */
3523 init_alias_analysis ();
3525 bytes_used = 0;
3526 gcc_obstack_init (&gcse_obstack);
3527 alloc_gcse_mem ();
3529 alloc_hash_table (&expr_hash_table);
3530 compute_hash_table (&expr_hash_table);
3531 if (dump_file)
3532 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3534 if (expr_hash_table.n_elems > 0)
3536 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3537 expr_hash_table.n_elems);
3538 compute_code_hoist_data ();
3539 changed = hoist_code ();
3540 free_code_hoist_mem ();
3543 if (flag_ira_hoist_pressure)
3545 free_aux_for_blocks ();
3546 free_reg_info ();
3548 free_hash_table (&expr_hash_table);
3549 free_gcse_mem ();
3550 obstack_free (&gcse_obstack, NULL);
3552 /* We are finished with alias. */
3553 end_alias_analysis ();
3555 if (dump_file)
3557 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3558 current_function_name (), n_basic_blocks_for_fn (cfun),
3559 bytes_used);
3560 fprintf (dump_file, "%d substs, %d insns created\n",
3561 gcse_subst_count, gcse_create_count);
3564 doing_code_hoisting_p = false;
3566 return changed;
3569 /* Here we provide the things required to do store motion towards the exit.
3570 In order for this to be effective, gcse also needed to be taught how to
3571 move a load when it is killed only by a store to itself.
3573 int i;
3574 float a[10];
3576 void foo(float scale)
3578 for (i=0; i<10; i++)
3579 a[i] *= scale;
3582 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3583 the load out since its live around the loop, and stored at the bottom
3584 of the loop.
3586 The 'Load Motion' referred to and implemented in this file is
3587 an enhancement to gcse which when using edge based LCM, recognizes
3588 this situation and allows gcse to move the load out of the loop.
3590 Once gcse has hoisted the load, store motion can then push this
3591 load towards the exit, and we end up with no loads or stores of 'i'
3592 in the loop. */
3594 /* This will search the ldst list for a matching expression. If it
3595 doesn't find one, we create one and initialize it. */
3597 static struct ls_expr *
3598 ldst_entry (rtx x)
3600 int do_not_record_p = 0;
3601 struct ls_expr * ptr;
3602 unsigned int hash;
3603 ls_expr **slot;
3604 struct ls_expr e;
3606 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3607 NULL, /*have_reg_qty=*/false);
3609 e.pattern = x;
3610 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3611 if (*slot)
3612 return *slot;
3614 ptr = XNEW (struct ls_expr);
3616 ptr->next = pre_ldst_mems;
3617 ptr->expr = NULL;
3618 ptr->pattern = x;
3619 ptr->pattern_regs = NULL_RTX;
3620 ptr->loads = NULL;
3621 ptr->stores = NULL;
3622 ptr->reaching_reg = NULL_RTX;
3623 ptr->invalid = 0;
3624 ptr->index = 0;
3625 ptr->hash_index = hash;
3626 pre_ldst_mems = ptr;
3627 *slot = ptr;
3629 return ptr;
3632 /* Free up an individual ldst entry. */
3634 static void
3635 free_ldst_entry (struct ls_expr * ptr)
3637 free_INSN_LIST_list (& ptr->loads);
3638 free_INSN_LIST_list (& ptr->stores);
3640 free (ptr);
3643 /* Free up all memory associated with the ldst list. */
3645 static void
3646 free_ld_motion_mems (void)
3648 delete pre_ldst_table;
3649 pre_ldst_table = NULL;
3651 while (pre_ldst_mems)
3653 struct ls_expr * tmp = pre_ldst_mems;
3655 pre_ldst_mems = pre_ldst_mems->next;
3657 free_ldst_entry (tmp);
3660 pre_ldst_mems = NULL;
3663 /* Dump debugging info about the ldst list. */
3665 static void
3666 print_ldst_list (FILE * file)
3668 struct ls_expr * ptr;
3670 fprintf (file, "LDST list: \n");
3672 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3674 fprintf (file, " Pattern (%3d): ", ptr->index);
3676 print_rtl (file, ptr->pattern);
3678 fprintf (file, "\n Loads : ");
3680 if (ptr->loads)
3681 print_rtl (file, ptr->loads);
3682 else
3683 fprintf (file, "(nil)");
3685 fprintf (file, "\n Stores : ");
3687 if (ptr->stores)
3688 print_rtl (file, ptr->stores);
3689 else
3690 fprintf (file, "(nil)");
3692 fprintf (file, "\n\n");
3695 fprintf (file, "\n");
3698 /* Returns 1 if X is in the list of ldst only expressions. */
3700 static struct ls_expr *
3701 find_rtx_in_ldst (rtx x)
3703 struct ls_expr e;
3704 ls_expr **slot;
3705 if (!pre_ldst_table)
3706 return NULL;
3707 e.pattern = x;
3708 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3709 if (!slot || (*slot)->invalid)
3710 return NULL;
3711 return *slot;
3714 /* Load Motion for loads which only kill themselves. */
3716 /* Return true if x, a MEM, is a simple access with no side effects.
3717 These are the types of loads we consider for the ld_motion list,
3718 otherwise we let the usual aliasing take care of it. */
3720 static int
3721 simple_mem (const_rtx x)
3723 if (MEM_VOLATILE_P (x))
3724 return 0;
3726 if (GET_MODE (x) == BLKmode)
3727 return 0;
3729 /* If we are handling exceptions, we must be careful with memory references
3730 that may trap. If we are not, the behavior is undefined, so we may just
3731 continue. */
3732 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3733 return 0;
3735 if (side_effects_p (x))
3736 return 0;
3738 /* Do not consider function arguments passed on stack. */
3739 if (reg_mentioned_p (stack_pointer_rtx, x))
3740 return 0;
3742 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3743 return 0;
3745 return 1;
3748 /* Make sure there isn't a buried reference in this pattern anywhere.
3749 If there is, invalidate the entry for it since we're not capable
3750 of fixing it up just yet.. We have to be sure we know about ALL
3751 loads since the aliasing code will allow all entries in the
3752 ld_motion list to not-alias itself. If we miss a load, we will get
3753 the wrong value since gcse might common it and we won't know to
3754 fix it up. */
3756 static void
3757 invalidate_any_buried_refs (rtx x)
3759 const char * fmt;
3760 int i, j;
3761 struct ls_expr * ptr;
3763 /* Invalidate it in the list. */
3764 if (MEM_P (x) && simple_mem (x))
3766 ptr = ldst_entry (x);
3767 ptr->invalid = 1;
3770 /* Recursively process the insn. */
3771 fmt = GET_RTX_FORMAT (GET_CODE (x));
3773 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3775 if (fmt[i] == 'e')
3776 invalidate_any_buried_refs (XEXP (x, i));
3777 else if (fmt[i] == 'E')
3778 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3779 invalidate_any_buried_refs (XVECEXP (x, i, j));
3783 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3784 being defined as MEM loads and stores to symbols, with no side effects
3785 and no registers in the expression. For a MEM destination, we also
3786 check that the insn is still valid if we replace the destination with a
3787 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3788 which don't match this criteria, they are invalidated and trimmed out
3789 later. */
3791 static void
3792 compute_ld_motion_mems (void)
3794 struct ls_expr * ptr;
3795 basic_block bb;
3796 rtx_insn *insn;
3798 pre_ldst_mems = NULL;
3799 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3801 FOR_EACH_BB_FN (bb, cfun)
3803 FOR_BB_INSNS (bb, insn)
3805 if (NONDEBUG_INSN_P (insn))
3807 if (GET_CODE (PATTERN (insn)) == SET)
3809 rtx src = SET_SRC (PATTERN (insn));
3810 rtx dest = SET_DEST (PATTERN (insn));
3811 rtx note = find_reg_equal_equiv_note (insn);
3812 rtx src_eq;
3814 /* Check for a simple LOAD... */
3815 if (MEM_P (src) && simple_mem (src))
3817 ptr = ldst_entry (src);
3818 if (REG_P (dest))
3819 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3820 else
3821 ptr->invalid = 1;
3823 else
3825 /* Make sure there isn't a buried load somewhere. */
3826 invalidate_any_buried_refs (src);
3829 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3830 src_eq = XEXP (note, 0);
3831 else
3832 src_eq = NULL_RTX;
3834 if (src_eq != NULL_RTX
3835 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3836 invalidate_any_buried_refs (src_eq);
3838 /* Check for stores. Don't worry about aliased ones, they
3839 will block any movement we might do later. We only care
3840 about this exact pattern since those are the only
3841 circumstance that we will ignore the aliasing info. */
3842 if (MEM_P (dest) && simple_mem (dest))
3844 ptr = ldst_entry (dest);
3846 if (! MEM_P (src)
3847 && GET_CODE (src) != ASM_OPERANDS
3848 /* Check for REG manually since want_to_gcse_p
3849 returns 0 for all REGs. */
3850 && can_assign_to_reg_without_clobbers_p (src))
3851 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3852 else
3853 ptr->invalid = 1;
3856 else
3857 invalidate_any_buried_refs (PATTERN (insn));
3863 /* Remove any references that have been either invalidated or are not in the
3864 expression list for pre gcse. */
3866 static void
3867 trim_ld_motion_mems (void)
3869 struct ls_expr * * last = & pre_ldst_mems;
3870 struct ls_expr * ptr = pre_ldst_mems;
3872 while (ptr != NULL)
3874 struct gcse_expr * expr;
3876 /* Delete if entry has been made invalid. */
3877 if (! ptr->invalid)
3879 /* Delete if we cannot find this mem in the expression list. */
3880 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3882 for (expr = expr_hash_table.table[hash];
3883 expr != NULL;
3884 expr = expr->next_same_hash)
3885 if (expr_equiv_p (expr->expr, ptr->pattern))
3886 break;
3888 else
3889 expr = (struct gcse_expr *) 0;
3891 if (expr)
3893 /* Set the expression field if we are keeping it. */
3894 ptr->expr = expr;
3895 last = & ptr->next;
3896 ptr = ptr->next;
3898 else
3900 *last = ptr->next;
3901 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3902 free_ldst_entry (ptr);
3903 ptr = * last;
3907 /* Show the world what we've found. */
3908 if (dump_file && pre_ldst_mems != NULL)
3909 print_ldst_list (dump_file);
3912 /* This routine will take an expression which we are replacing with
3913 a reaching register, and update any stores that are needed if
3914 that expression is in the ld_motion list. Stores are updated by
3915 copying their SRC to the reaching register, and then storing
3916 the reaching register into the store location. These keeps the
3917 correct value in the reaching register for the loads. */
3919 static void
3920 update_ld_motion_stores (struct gcse_expr * expr)
3922 struct ls_expr * mem_ptr;
3924 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3926 /* We can try to find just the REACHED stores, but is shouldn't
3927 matter to set the reaching reg everywhere... some might be
3928 dead and should be eliminated later. */
3930 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3931 where reg is the reaching reg used in the load. We checked in
3932 compute_ld_motion_mems that we can replace (set mem expr) with
3933 (set reg expr) in that insn. */
3934 rtx list = mem_ptr->stores;
3936 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3938 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3939 rtx pat = PATTERN (insn);
3940 rtx src = SET_SRC (pat);
3941 rtx reg = expr->reaching_reg;
3943 /* If we've already copied it, continue. */
3944 if (expr->reaching_reg == src)
3945 continue;
3947 if (dump_file)
3949 fprintf (dump_file, "PRE: store updated with reaching reg ");
3950 print_rtl (dump_file, reg);
3951 fprintf (dump_file, ":\n ");
3952 print_inline_rtx (dump_file, insn, 8);
3953 fprintf (dump_file, "\n");
3956 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3957 emit_insn_before (copy, insn);
3958 SET_SRC (pat) = reg;
3959 df_insn_rescan (insn);
3961 /* un-recognize this pattern since it's probably different now. */
3962 INSN_CODE (insn) = -1;
3963 gcse_create_count++;
3968 /* Return true if the graph is too expensive to optimize. PASS is the
3969 optimization about to be performed. */
3971 static bool
3972 is_too_expensive (const char *pass)
3974 /* Trying to perform global optimizations on flow graphs which have
3975 a high connectivity will take a long time and is unlikely to be
3976 particularly useful.
3978 In normal circumstances a cfg should have about twice as many
3979 edges as blocks. But we do not want to punish small functions
3980 which have a couple switch statements. Rather than simply
3981 threshold the number of blocks, uses something with a more
3982 graceful degradation. */
3983 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3985 warning (OPT_Wdisabled_optimization,
3986 "%s: %d basic blocks and %d edges/basic block",
3987 pass, n_basic_blocks_for_fn (cfun),
3988 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3990 return true;
3993 /* If allocating memory for the dataflow bitmaps would take up too much
3994 storage it's better just to disable the optimization. */
3995 if ((n_basic_blocks_for_fn (cfun)
3996 * SBITMAP_SET_SIZE (max_reg_num ())
3997 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
3999 warning (OPT_Wdisabled_optimization,
4000 "%s: %d basic blocks and %d registers",
4001 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4003 return true;
4006 return false;
4009 static unsigned int
4010 execute_rtl_pre (void)
4012 int changed;
4013 delete_unreachable_blocks ();
4014 df_analyze ();
4015 changed = one_pre_gcse_pass ();
4016 flag_rerun_cse_after_global_opts |= changed;
4017 if (changed)
4018 cleanup_cfg (0);
4019 return 0;
4022 static unsigned int
4023 execute_rtl_hoist (void)
4025 int changed;
4026 delete_unreachable_blocks ();
4027 df_analyze ();
4028 changed = one_code_hoisting_pass ();
4029 flag_rerun_cse_after_global_opts |= changed;
4030 if (changed)
4031 cleanup_cfg (0);
4032 return 0;
4035 namespace {
4037 const pass_data pass_data_rtl_pre =
4039 RTL_PASS, /* type */
4040 "rtl pre", /* name */
4041 OPTGROUP_NONE, /* optinfo_flags */
4042 TV_PRE, /* tv_id */
4043 PROP_cfglayout, /* properties_required */
4044 0, /* properties_provided */
4045 0, /* properties_destroyed */
4046 0, /* todo_flags_start */
4047 TODO_df_finish, /* todo_flags_finish */
4050 class pass_rtl_pre : public rtl_opt_pass
4052 public:
4053 pass_rtl_pre (gcc::context *ctxt)
4054 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4057 /* opt_pass methods: */
4058 virtual bool gate (function *);
4059 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4061 }; // class pass_rtl_pre
4063 /* We do not construct an accurate cfg in functions which call
4064 setjmp, so none of these passes runs if the function calls
4065 setjmp.
4066 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4068 bool
4069 pass_rtl_pre::gate (function *fun)
4071 return optimize > 0 && flag_gcse
4072 && !fun->calls_setjmp
4073 && optimize_function_for_speed_p (fun)
4074 && dbg_cnt (pre);
4077 } // anon namespace
4079 rtl_opt_pass *
4080 make_pass_rtl_pre (gcc::context *ctxt)
4082 return new pass_rtl_pre (ctxt);
4085 namespace {
4087 const pass_data pass_data_rtl_hoist =
4089 RTL_PASS, /* type */
4090 "hoist", /* name */
4091 OPTGROUP_NONE, /* optinfo_flags */
4092 TV_HOIST, /* tv_id */
4093 PROP_cfglayout, /* properties_required */
4094 0, /* properties_provided */
4095 0, /* properties_destroyed */
4096 0, /* todo_flags_start */
4097 TODO_df_finish, /* todo_flags_finish */
4100 class pass_rtl_hoist : public rtl_opt_pass
4102 public:
4103 pass_rtl_hoist (gcc::context *ctxt)
4104 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4107 /* opt_pass methods: */
4108 virtual bool gate (function *);
4109 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4111 }; // class pass_rtl_hoist
4113 bool
4114 pass_rtl_hoist::gate (function *)
4116 return optimize > 0 && flag_gcse
4117 && !cfun->calls_setjmp
4118 /* It does not make sense to run code hoisting unless we are optimizing
4119 for code size -- it rarely makes programs faster, and can make then
4120 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4121 && optimize_function_for_size_p (cfun)
4122 && dbg_cnt (hoist);
4125 } // anon namespace
4127 rtl_opt_pass *
4128 make_pass_rtl_hoist (gcc::context *ctxt)
4130 return new pass_rtl_hoist (ctxt);
4133 /* Reset all state within gcse.c so that we can rerun the compiler
4134 within the same process. For use by toplev::finalize. */
4136 void
4137 gcse_c_finalize (void)
4139 test_insn = NULL;
4142 #include "gt-gcse.h"