* omp-low.c (lower_omp_target): Remove unreachable code & merge
[official-gcc.git] / gcc / function.c
blob70d818c4db9743fb6e3f2625dc69503af12847fa
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "tm_p.h"
45 #include "stringpool.h"
46 #include "expmed.h"
47 #include "optabs.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "rtl-error.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "varasm.h"
56 #include "flags.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "stmt.h"
62 #include "expr.h"
63 #include "optabs-tree.h"
64 #include "libfuncs.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "params.h"
76 #include "bb-reorder.h"
77 #include "shrink-wrap.h"
78 #include "toplev.h"
79 #include "rtl-iter.h"
80 #include "tree-chkp.h"
81 #include "rtl-chkp.h"
82 #include "tree-dfa.h"
84 /* So we can assign to cfun in this file. */
85 #undef cfun
87 #ifndef STACK_ALIGNMENT_NEEDED
88 #define STACK_ALIGNMENT_NEEDED 1
89 #endif
91 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
93 /* Round a value to the lowest integer less than it that is a multiple of
94 the required alignment. Avoid using division in case the value is
95 negative. Assume the alignment is a power of two. */
96 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
98 /* Similar, but round to the next highest integer that meets the
99 alignment. */
100 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
102 /* Nonzero once virtual register instantiation has been done.
103 assign_stack_local uses frame_pointer_rtx when this is nonzero.
104 calls.c:emit_library_call_value_1 uses it to set up
105 post-instantiation libcalls. */
106 int virtuals_instantiated;
108 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
109 static GTY(()) int funcdef_no;
111 /* These variables hold pointers to functions to create and destroy
112 target specific, per-function data structures. */
113 struct machine_function * (*init_machine_status) (void);
115 /* The currently compiled function. */
116 struct function *cfun = 0;
118 /* These hashes record the prologue and epilogue insns. */
120 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
122 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
123 static bool equal (rtx a, rtx b) { return a == b; }
126 static GTY((cache))
127 hash_table<insn_cache_hasher> *prologue_insn_hash;
128 static GTY((cache))
129 hash_table<insn_cache_hasher> *epilogue_insn_hash;
132 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
133 vec<tree, va_gc> *types_used_by_cur_var_decl;
135 /* Forward declarations. */
137 static struct temp_slot *find_temp_slot_from_address (rtx);
138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
139 static void pad_below (struct args_size *, machine_mode, tree);
140 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
141 static int all_blocks (tree, tree *);
142 static tree *get_block_vector (tree, int *);
143 extern tree debug_find_var_in_block_tree (tree, tree);
144 /* We always define `record_insns' even if it's not used so that we
145 can always export `prologue_epilogue_contains'. */
146 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
147 ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
157 static vec<function *> function_context_stack;
159 /* Save the current context for compilation of a nested function.
160 This is called from language-specific code. */
162 void
163 push_function_context (void)
165 if (cfun == 0)
166 allocate_struct_function (NULL, false);
168 function_context_stack.safe_push (cfun);
169 set_cfun (NULL);
172 /* Restore the last saved context, at the end of a nested function.
173 This function is called from language-specific code. */
175 void
176 pop_function_context (void)
178 struct function *p = function_context_stack.pop ();
179 set_cfun (p);
180 current_function_decl = p->decl;
182 /* Reset variables that have known state during rtx generation. */
183 virtuals_instantiated = 0;
184 generating_concat_p = 1;
187 /* Clear out all parts of the state in F that can safely be discarded
188 after the function has been parsed, but not compiled, to let
189 garbage collection reclaim the memory. */
191 void
192 free_after_parsing (struct function *f)
194 f->language = 0;
197 /* Clear out all parts of the state in F that can safely be discarded
198 after the function has been compiled, to let garbage collection
199 reclaim the memory. */
201 void
202 free_after_compilation (struct function *f)
204 prologue_insn_hash = NULL;
205 epilogue_insn_hash = NULL;
207 free (crtl->emit.regno_pointer_align);
209 memset (crtl, 0, sizeof (struct rtl_data));
210 f->eh = NULL;
211 f->machine = NULL;
212 f->cfg = NULL;
213 f->curr_properties &= ~PROP_cfg;
215 regno_reg_rtx = NULL;
218 /* Return size needed for stack frame based on slots so far allocated.
219 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
220 the caller may have to do that. */
222 HOST_WIDE_INT
223 get_frame_size (void)
225 if (FRAME_GROWS_DOWNWARD)
226 return -frame_offset;
227 else
228 return frame_offset;
231 /* Issue an error message and return TRUE if frame OFFSET overflows in
232 the signed target pointer arithmetics for function FUNC. Otherwise
233 return FALSE. */
235 bool
236 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
238 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
240 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
241 /* Leave room for the fixed part of the frame. */
242 - 64 * UNITS_PER_WORD)
244 error_at (DECL_SOURCE_LOCATION (func),
245 "total size of local objects too large");
246 return TRUE;
249 return FALSE;
252 /* Return stack slot alignment in bits for TYPE and MODE. */
254 static unsigned int
255 get_stack_local_alignment (tree type, machine_mode mode)
257 unsigned int alignment;
259 if (mode == BLKmode)
260 alignment = BIGGEST_ALIGNMENT;
261 else
262 alignment = GET_MODE_ALIGNMENT (mode);
264 /* Allow the frond-end to (possibly) increase the alignment of this
265 stack slot. */
266 if (! type)
267 type = lang_hooks.types.type_for_mode (mode, 0);
269 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
272 /* Determine whether it is possible to fit a stack slot of size SIZE and
273 alignment ALIGNMENT into an area in the stack frame that starts at
274 frame offset START and has a length of LENGTH. If so, store the frame
275 offset to be used for the stack slot in *POFFSET and return true;
276 return false otherwise. This function will extend the frame size when
277 given a start/length pair that lies at the end of the frame. */
279 static bool
280 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
281 HOST_WIDE_INT size, unsigned int alignment,
282 HOST_WIDE_INT *poffset)
284 HOST_WIDE_INT this_frame_offset;
285 int frame_off, frame_alignment, frame_phase;
287 /* Calculate how many bytes the start of local variables is off from
288 stack alignment. */
289 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
290 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
291 frame_phase = frame_off ? frame_alignment - frame_off : 0;
293 /* Round the frame offset to the specified alignment. */
295 /* We must be careful here, since FRAME_OFFSET might be negative and
296 division with a negative dividend isn't as well defined as we might
297 like. So we instead assume that ALIGNMENT is a power of two and
298 use logical operations which are unambiguous. */
299 if (FRAME_GROWS_DOWNWARD)
300 this_frame_offset
301 = (FLOOR_ROUND (start + length - size - frame_phase,
302 (unsigned HOST_WIDE_INT) alignment)
303 + frame_phase);
304 else
305 this_frame_offset
306 = (CEIL_ROUND (start - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
308 + frame_phase);
310 /* See if it fits. If this space is at the edge of the frame,
311 consider extending the frame to make it fit. Our caller relies on
312 this when allocating a new slot. */
313 if (frame_offset == start && this_frame_offset < frame_offset)
314 frame_offset = this_frame_offset;
315 else if (this_frame_offset < start)
316 return false;
317 else if (start + length == frame_offset
318 && this_frame_offset + size > start + length)
319 frame_offset = this_frame_offset + size;
320 else if (this_frame_offset + size > start + length)
321 return false;
323 *poffset = this_frame_offset;
324 return true;
327 /* Create a new frame_space structure describing free space in the stack
328 frame beginning at START and ending at END, and chain it into the
329 function's frame_space_list. */
331 static void
332 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
334 struct frame_space *space = ggc_alloc<frame_space> ();
335 space->next = crtl->frame_space_list;
336 crtl->frame_space_list = space;
337 space->start = start;
338 space->length = end - start;
341 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
342 with machine mode MODE.
344 ALIGN controls the amount of alignment for the address of the slot:
345 0 means according to MODE,
346 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
347 -2 means use BITS_PER_UNIT,
348 positive specifies alignment boundary in bits.
350 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
351 alignment and ASLK_RECORD_PAD bit set if we should remember
352 extra space we allocated for alignment purposes. When we are
353 called from assign_stack_temp_for_type, it is not set so we don't
354 track the same stack slot in two independent lists.
356 We do not round to stack_boundary here. */
359 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
360 int align, int kind)
362 rtx x, addr;
363 int bigend_correction = 0;
364 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
365 unsigned int alignment, alignment_in_bits;
367 if (align == 0)
369 alignment = get_stack_local_alignment (NULL, mode);
370 alignment /= BITS_PER_UNIT;
372 else if (align == -1)
374 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
375 size = CEIL_ROUND (size, alignment);
377 else if (align == -2)
378 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
379 else
380 alignment = align / BITS_PER_UNIT;
382 alignment_in_bits = alignment * BITS_PER_UNIT;
384 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
385 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
387 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
388 alignment = alignment_in_bits / BITS_PER_UNIT;
391 if (SUPPORTS_STACK_ALIGNMENT)
393 if (crtl->stack_alignment_estimated < alignment_in_bits)
395 if (!crtl->stack_realign_processed)
396 crtl->stack_alignment_estimated = alignment_in_bits;
397 else
399 /* If stack is realigned and stack alignment value
400 hasn't been finalized, it is OK not to increase
401 stack_alignment_estimated. The bigger alignment
402 requirement is recorded in stack_alignment_needed
403 below. */
404 gcc_assert (!crtl->stack_realign_finalized);
405 if (!crtl->stack_realign_needed)
407 /* It is OK to reduce the alignment as long as the
408 requested size is 0 or the estimated stack
409 alignment >= mode alignment. */
410 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
411 || size == 0
412 || (crtl->stack_alignment_estimated
413 >= GET_MODE_ALIGNMENT (mode)));
414 alignment_in_bits = crtl->stack_alignment_estimated;
415 alignment = alignment_in_bits / BITS_PER_UNIT;
421 if (crtl->stack_alignment_needed < alignment_in_bits)
422 crtl->stack_alignment_needed = alignment_in_bits;
423 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
424 crtl->max_used_stack_slot_alignment = alignment_in_bits;
426 if (mode != BLKmode || size != 0)
428 if (kind & ASLK_RECORD_PAD)
430 struct frame_space **psp;
432 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
434 struct frame_space *space = *psp;
435 if (!try_fit_stack_local (space->start, space->length, size,
436 alignment, &slot_offset))
437 continue;
438 *psp = space->next;
439 if (slot_offset > space->start)
440 add_frame_space (space->start, slot_offset);
441 if (slot_offset + size < space->start + space->length)
442 add_frame_space (slot_offset + size,
443 space->start + space->length);
444 goto found_space;
448 else if (!STACK_ALIGNMENT_NEEDED)
450 slot_offset = frame_offset;
451 goto found_space;
454 old_frame_offset = frame_offset;
456 if (FRAME_GROWS_DOWNWARD)
458 frame_offset -= size;
459 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
461 if (kind & ASLK_RECORD_PAD)
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
469 else
471 frame_offset += size;
472 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
474 if (kind & ASLK_RECORD_PAD)
476 if (slot_offset > old_frame_offset)
477 add_frame_space (old_frame_offset, slot_offset);
478 if (slot_offset + size < frame_offset)
479 add_frame_space (slot_offset + size, frame_offset);
483 found_space:
484 /* On a big-endian machine, if we are allocating more space than we will use,
485 use the least significant bytes of those that are allocated. */
486 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
487 bigend_correction = size - GET_MODE_SIZE (mode);
489 /* If we have already instantiated virtual registers, return the actual
490 address relative to the frame pointer. */
491 if (virtuals_instantiated)
492 addr = plus_constant (Pmode, frame_pointer_rtx,
493 trunc_int_for_mode
494 (slot_offset + bigend_correction
495 + STARTING_FRAME_OFFSET, Pmode));
496 else
497 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
498 trunc_int_for_mode
499 (slot_offset + bigend_correction,
500 Pmode));
502 x = gen_rtx_MEM (mode, addr);
503 set_mem_align (x, alignment_in_bits);
504 MEM_NOTRAP_P (x) = 1;
506 stack_slot_list
507 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
509 if (frame_offset_overflow (frame_offset, current_function_decl))
510 frame_offset = 0;
512 return x;
515 /* Wrap up assign_stack_local_1 with last parameter as false. */
518 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
520 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
523 /* In order to evaluate some expressions, such as function calls returning
524 structures in memory, we need to temporarily allocate stack locations.
525 We record each allocated temporary in the following structure.
527 Associated with each temporary slot is a nesting level. When we pop up
528 one level, all temporaries associated with the previous level are freed.
529 Normally, all temporaries are freed after the execution of the statement
530 in which they were created. However, if we are inside a ({...}) grouping,
531 the result may be in a temporary and hence must be preserved. If the
532 result could be in a temporary, we preserve it if we can determine which
533 one it is in. If we cannot determine which temporary may contain the
534 result, all temporaries are preserved. A temporary is preserved by
535 pretending it was allocated at the previous nesting level. */
537 struct GTY(()) temp_slot {
538 /* Points to next temporary slot. */
539 struct temp_slot *next;
540 /* Points to previous temporary slot. */
541 struct temp_slot *prev;
542 /* The rtx to used to reference the slot. */
543 rtx slot;
544 /* The size, in units, of the slot. */
545 HOST_WIDE_INT size;
546 /* The type of the object in the slot, or zero if it doesn't correspond
547 to a type. We use this to determine whether a slot can be reused.
548 It can be reused if objects of the type of the new slot will always
549 conflict with objects of the type of the old slot. */
550 tree type;
551 /* The alignment (in bits) of the slot. */
552 unsigned int align;
553 /* Nonzero if this temporary is currently in use. */
554 char in_use;
555 /* Nesting level at which this slot is being used. */
556 int level;
557 /* The offset of the slot from the frame_pointer, including extra space
558 for alignment. This info is for combine_temp_slots. */
559 HOST_WIDE_INT base_offset;
560 /* The size of the slot, including extra space for alignment. This
561 info is for combine_temp_slots. */
562 HOST_WIDE_INT full_size;
565 /* Entry for the below hash table. */
566 struct GTY((for_user)) temp_slot_address_entry {
567 hashval_t hash;
568 rtx address;
569 struct temp_slot *temp_slot;
572 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
574 static hashval_t hash (temp_slot_address_entry *);
575 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
578 /* A table of addresses that represent a stack slot. The table is a mapping
579 from address RTXen to a temp slot. */
580 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
581 static size_t n_temp_slots_in_use;
583 /* Removes temporary slot TEMP from LIST. */
585 static void
586 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
588 if (temp->next)
589 temp->next->prev = temp->prev;
590 if (temp->prev)
591 temp->prev->next = temp->next;
592 else
593 *list = temp->next;
595 temp->prev = temp->next = NULL;
598 /* Inserts temporary slot TEMP to LIST. */
600 static void
601 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
603 temp->next = *list;
604 if (*list)
605 (*list)->prev = temp;
606 temp->prev = NULL;
607 *list = temp;
610 /* Returns the list of used temp slots at LEVEL. */
612 static struct temp_slot **
613 temp_slots_at_level (int level)
615 if (level >= (int) vec_safe_length (used_temp_slots))
616 vec_safe_grow_cleared (used_temp_slots, level + 1);
618 return &(*used_temp_slots)[level];
621 /* Returns the maximal temporary slot level. */
623 static int
624 max_slot_level (void)
626 if (!used_temp_slots)
627 return -1;
629 return used_temp_slots->length () - 1;
632 /* Moves temporary slot TEMP to LEVEL. */
634 static void
635 move_slot_to_level (struct temp_slot *temp, int level)
637 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
638 insert_slot_to_list (temp, temp_slots_at_level (level));
639 temp->level = level;
642 /* Make temporary slot TEMP available. */
644 static void
645 make_slot_available (struct temp_slot *temp)
647 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
648 insert_slot_to_list (temp, &avail_temp_slots);
649 temp->in_use = 0;
650 temp->level = -1;
651 n_temp_slots_in_use--;
654 /* Compute the hash value for an address -> temp slot mapping.
655 The value is cached on the mapping entry. */
656 static hashval_t
657 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
659 int do_not_record = 0;
660 return hash_rtx (t->address, GET_MODE (t->address),
661 &do_not_record, NULL, false);
664 /* Return the hash value for an address -> temp slot mapping. */
665 hashval_t
666 temp_address_hasher::hash (temp_slot_address_entry *t)
668 return t->hash;
671 /* Compare two address -> temp slot mapping entries. */
672 bool
673 temp_address_hasher::equal (temp_slot_address_entry *t1,
674 temp_slot_address_entry *t2)
676 return exp_equiv_p (t1->address, t2->address, 0, true);
679 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
680 static void
681 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
683 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
684 t->address = address;
685 t->temp_slot = temp_slot;
686 t->hash = temp_slot_address_compute_hash (t);
687 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
690 /* Remove an address -> temp slot mapping entry if the temp slot is
691 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
693 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
695 const struct temp_slot_address_entry *t = *slot;
696 if (! t->temp_slot->in_use)
697 temp_slot_address_table->clear_slot (slot);
698 return 1;
701 /* Remove all mappings of addresses to unused temp slots. */
702 static void
703 remove_unused_temp_slot_addresses (void)
705 /* Use quicker clearing if there aren't any active temp slots. */
706 if (n_temp_slots_in_use)
707 temp_slot_address_table->traverse
708 <void *, remove_unused_temp_slot_addresses_1> (NULL);
709 else
710 temp_slot_address_table->empty ();
713 /* Find the temp slot corresponding to the object at address X. */
715 static struct temp_slot *
716 find_temp_slot_from_address (rtx x)
718 struct temp_slot *p;
719 struct temp_slot_address_entry tmp, *t;
721 /* First try the easy way:
722 See if X exists in the address -> temp slot mapping. */
723 tmp.address = x;
724 tmp.temp_slot = NULL;
725 tmp.hash = temp_slot_address_compute_hash (&tmp);
726 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
727 if (t)
728 return t->temp_slot;
730 /* If we have a sum involving a register, see if it points to a temp
731 slot. */
732 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
733 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
734 return p;
735 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
736 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
737 return p;
739 /* Last resort: Address is a virtual stack var address. */
740 if (GET_CODE (x) == PLUS
741 && XEXP (x, 0) == virtual_stack_vars_rtx
742 && CONST_INT_P (XEXP (x, 1)))
744 int i;
745 for (i = max_slot_level (); i >= 0; i--)
746 for (p = *temp_slots_at_level (i); p; p = p->next)
748 if (INTVAL (XEXP (x, 1)) >= p->base_offset
749 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
750 return p;
754 return NULL;
757 /* Allocate a temporary stack slot and record it for possible later
758 reuse.
760 MODE is the machine mode to be given to the returned rtx.
762 SIZE is the size in units of the space required. We do no rounding here
763 since assign_stack_local will do any required rounding.
765 TYPE is the type that will be used for the stack slot. */
768 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
769 tree type)
771 unsigned int align;
772 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
773 rtx slot;
775 /* If SIZE is -1 it means that somebody tried to allocate a temporary
776 of a variable size. */
777 gcc_assert (size != -1);
779 align = get_stack_local_alignment (type, mode);
781 /* Try to find an available, already-allocated temporary of the proper
782 mode which meets the size and alignment requirements. Choose the
783 smallest one with the closest alignment.
785 If assign_stack_temp is called outside of the tree->rtl expansion,
786 we cannot reuse the stack slots (that may still refer to
787 VIRTUAL_STACK_VARS_REGNUM). */
788 if (!virtuals_instantiated)
790 for (p = avail_temp_slots; p; p = p->next)
792 if (p->align >= align && p->size >= size
793 && GET_MODE (p->slot) == mode
794 && objects_must_conflict_p (p->type, type)
795 && (best_p == 0 || best_p->size > p->size
796 || (best_p->size == p->size && best_p->align > p->align)))
798 if (p->align == align && p->size == size)
800 selected = p;
801 cut_slot_from_list (selected, &avail_temp_slots);
802 best_p = 0;
803 break;
805 best_p = p;
810 /* Make our best, if any, the one to use. */
811 if (best_p)
813 selected = best_p;
814 cut_slot_from_list (selected, &avail_temp_slots);
816 /* If there are enough aligned bytes left over, make them into a new
817 temp_slot so that the extra bytes don't get wasted. Do this only
818 for BLKmode slots, so that we can be sure of the alignment. */
819 if (GET_MODE (best_p->slot) == BLKmode)
821 int alignment = best_p->align / BITS_PER_UNIT;
822 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
824 if (best_p->size - rounded_size >= alignment)
826 p = ggc_alloc<temp_slot> ();
827 p->in_use = 0;
828 p->size = best_p->size - rounded_size;
829 p->base_offset = best_p->base_offset + rounded_size;
830 p->full_size = best_p->full_size - rounded_size;
831 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
832 p->align = best_p->align;
833 p->type = best_p->type;
834 insert_slot_to_list (p, &avail_temp_slots);
836 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
837 stack_slot_list);
839 best_p->size = rounded_size;
840 best_p->full_size = rounded_size;
845 /* If we still didn't find one, make a new temporary. */
846 if (selected == 0)
848 HOST_WIDE_INT frame_offset_old = frame_offset;
850 p = ggc_alloc<temp_slot> ();
852 /* We are passing an explicit alignment request to assign_stack_local.
853 One side effect of that is assign_stack_local will not round SIZE
854 to ensure the frame offset remains suitably aligned.
856 So for requests which depended on the rounding of SIZE, we go ahead
857 and round it now. We also make sure ALIGNMENT is at least
858 BIGGEST_ALIGNMENT. */
859 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
860 p->slot = assign_stack_local_1 (mode,
861 (mode == BLKmode
862 ? CEIL_ROUND (size,
863 (int) align
864 / BITS_PER_UNIT)
865 : size),
866 align, 0);
868 p->align = align;
870 /* The following slot size computation is necessary because we don't
871 know the actual size of the temporary slot until assign_stack_local
872 has performed all the frame alignment and size rounding for the
873 requested temporary. Note that extra space added for alignment
874 can be either above or below this stack slot depending on which
875 way the frame grows. We include the extra space if and only if it
876 is above this slot. */
877 if (FRAME_GROWS_DOWNWARD)
878 p->size = frame_offset_old - frame_offset;
879 else
880 p->size = size;
882 /* Now define the fields used by combine_temp_slots. */
883 if (FRAME_GROWS_DOWNWARD)
885 p->base_offset = frame_offset;
886 p->full_size = frame_offset_old - frame_offset;
888 else
890 p->base_offset = frame_offset_old;
891 p->full_size = frame_offset - frame_offset_old;
894 selected = p;
897 p = selected;
898 p->in_use = 1;
899 p->type = type;
900 p->level = temp_slot_level;
901 n_temp_slots_in_use++;
903 pp = temp_slots_at_level (p->level);
904 insert_slot_to_list (p, pp);
905 insert_temp_slot_address (XEXP (p->slot, 0), p);
907 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
908 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
909 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
911 /* If we know the alias set for the memory that will be used, use
912 it. If there's no TYPE, then we don't know anything about the
913 alias set for the memory. */
914 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
915 set_mem_align (slot, align);
917 /* If a type is specified, set the relevant flags. */
918 if (type != 0)
919 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
920 MEM_NOTRAP_P (slot) = 1;
922 return slot;
925 /* Allocate a temporary stack slot and record it for possible later
926 reuse. First two arguments are same as in preceding function. */
929 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
931 return assign_stack_temp_for_type (mode, size, NULL_TREE);
934 /* Assign a temporary.
935 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
936 and so that should be used in error messages. In either case, we
937 allocate of the given type.
938 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
939 it is 0 if a register is OK.
940 DONT_PROMOTE is 1 if we should not promote values in register
941 to wider modes. */
944 assign_temp (tree type_or_decl, int memory_required,
945 int dont_promote ATTRIBUTE_UNUSED)
947 tree type, decl;
948 machine_mode mode;
949 #ifdef PROMOTE_MODE
950 int unsignedp;
951 #endif
953 if (DECL_P (type_or_decl))
954 decl = type_or_decl, type = TREE_TYPE (decl);
955 else
956 decl = NULL, type = type_or_decl;
958 mode = TYPE_MODE (type);
959 #ifdef PROMOTE_MODE
960 unsignedp = TYPE_UNSIGNED (type);
961 #endif
963 if (mode == BLKmode || memory_required)
965 HOST_WIDE_INT size = int_size_in_bytes (type);
966 rtx tmp;
968 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
969 problems with allocating the stack space. */
970 if (size == 0)
971 size = 1;
973 /* Unfortunately, we don't yet know how to allocate variable-sized
974 temporaries. However, sometimes we can find a fixed upper limit on
975 the size, so try that instead. */
976 else if (size == -1)
977 size = max_int_size_in_bytes (type);
979 /* The size of the temporary may be too large to fit into an integer. */
980 /* ??? Not sure this should happen except for user silliness, so limit
981 this to things that aren't compiler-generated temporaries. The
982 rest of the time we'll die in assign_stack_temp_for_type. */
983 if (decl && size == -1
984 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
986 error ("size of variable %q+D is too large", decl);
987 size = 1;
990 tmp = assign_stack_temp_for_type (mode, size, type);
991 return tmp;
994 #ifdef PROMOTE_MODE
995 if (! dont_promote)
996 mode = promote_mode (type, mode, &unsignedp);
997 #endif
999 return gen_reg_rtx (mode);
1002 /* Combine temporary stack slots which are adjacent on the stack.
1004 This allows for better use of already allocated stack space. This is only
1005 done for BLKmode slots because we can be sure that we won't have alignment
1006 problems in this case. */
1008 static void
1009 combine_temp_slots (void)
1011 struct temp_slot *p, *q, *next, *next_q;
1012 int num_slots;
1014 /* We can't combine slots, because the information about which slot
1015 is in which alias set will be lost. */
1016 if (flag_strict_aliasing)
1017 return;
1019 /* If there are a lot of temp slots, don't do anything unless
1020 high levels of optimization. */
1021 if (! flag_expensive_optimizations)
1022 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1023 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1024 return;
1026 for (p = avail_temp_slots; p; p = next)
1028 int delete_p = 0;
1030 next = p->next;
1032 if (GET_MODE (p->slot) != BLKmode)
1033 continue;
1035 for (q = p->next; q; q = next_q)
1037 int delete_q = 0;
1039 next_q = q->next;
1041 if (GET_MODE (q->slot) != BLKmode)
1042 continue;
1044 if (p->base_offset + p->full_size == q->base_offset)
1046 /* Q comes after P; combine Q into P. */
1047 p->size += q->size;
1048 p->full_size += q->full_size;
1049 delete_q = 1;
1051 else if (q->base_offset + q->full_size == p->base_offset)
1053 /* P comes after Q; combine P into Q. */
1054 q->size += p->size;
1055 q->full_size += p->full_size;
1056 delete_p = 1;
1057 break;
1059 if (delete_q)
1060 cut_slot_from_list (q, &avail_temp_slots);
1063 /* Either delete P or advance past it. */
1064 if (delete_p)
1065 cut_slot_from_list (p, &avail_temp_slots);
1069 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1070 slot that previously was known by OLD_RTX. */
1072 void
1073 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1075 struct temp_slot *p;
1077 if (rtx_equal_p (old_rtx, new_rtx))
1078 return;
1080 p = find_temp_slot_from_address (old_rtx);
1082 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1083 NEW_RTX is a register, see if one operand of the PLUS is a
1084 temporary location. If so, NEW_RTX points into it. Otherwise,
1085 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1086 in common between them. If so, try a recursive call on those
1087 values. */
1088 if (p == 0)
1090 if (GET_CODE (old_rtx) != PLUS)
1091 return;
1093 if (REG_P (new_rtx))
1095 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1096 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1097 return;
1099 else if (GET_CODE (new_rtx) != PLUS)
1100 return;
1102 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1106 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1107 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1108 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1109 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1111 return;
1114 /* Otherwise add an alias for the temp's address. */
1115 insert_temp_slot_address (new_rtx, p);
1118 /* If X could be a reference to a temporary slot, mark that slot as
1119 belonging to the to one level higher than the current level. If X
1120 matched one of our slots, just mark that one. Otherwise, we can't
1121 easily predict which it is, so upgrade all of them.
1123 This is called when an ({...}) construct occurs and a statement
1124 returns a value in memory. */
1126 void
1127 preserve_temp_slots (rtx x)
1129 struct temp_slot *p = 0, *next;
1131 if (x == 0)
1132 return;
1134 /* If X is a register that is being used as a pointer, see if we have
1135 a temporary slot we know it points to. */
1136 if (REG_P (x) && REG_POINTER (x))
1137 p = find_temp_slot_from_address (x);
1139 /* If X is not in memory or is at a constant address, it cannot be in
1140 a temporary slot. */
1141 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1142 return;
1144 /* First see if we can find a match. */
1145 if (p == 0)
1146 p = find_temp_slot_from_address (XEXP (x, 0));
1148 if (p != 0)
1150 if (p->level == temp_slot_level)
1151 move_slot_to_level (p, temp_slot_level - 1);
1152 return;
1155 /* Otherwise, preserve all non-kept slots at this level. */
1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 next = p->next;
1159 move_slot_to_level (p, temp_slot_level - 1);
1163 /* Free all temporaries used so far. This is normally called at the
1164 end of generating code for a statement. */
1166 void
1167 free_temp_slots (void)
1169 struct temp_slot *p, *next;
1170 bool some_available = false;
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 make_slot_available (p);
1176 some_available = true;
1179 if (some_available)
1181 remove_unused_temp_slot_addresses ();
1182 combine_temp_slots ();
1186 /* Push deeper into the nesting level for stack temporaries. */
1188 void
1189 push_temp_slots (void)
1191 temp_slot_level++;
1194 /* Pop a temporary nesting level. All slots in use in the current level
1195 are freed. */
1197 void
1198 pop_temp_slots (void)
1200 free_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 vec_alloc (used_temp_slots, 0);
1212 temp_slot_level = 0;
1213 n_temp_slots_in_use = 0;
1215 /* Set up the table to map addresses to temp slots. */
1216 if (! temp_slot_address_table)
1217 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1218 else
1219 temp_slot_address_table->empty ();
1222 /* Functions and data structures to keep track of the values hard regs
1223 had at the start of the function. */
1225 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1226 and has_hard_reg_initial_val.. */
1227 struct GTY(()) initial_value_pair {
1228 rtx hard_reg;
1229 rtx pseudo;
1231 /* ??? This could be a VEC but there is currently no way to define an
1232 opaque VEC type. This could be worked around by defining struct
1233 initial_value_pair in function.h. */
1234 struct GTY(()) initial_value_struct {
1235 int num_entries;
1236 int max_entries;
1237 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1240 /* If a pseudo represents an initial hard reg (or expression), return
1241 it, else return NULL_RTX. */
1244 get_hard_reg_initial_reg (rtx reg)
1246 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1247 int i;
1249 if (ivs == 0)
1250 return NULL_RTX;
1252 for (i = 0; i < ivs->num_entries; i++)
1253 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1254 return ivs->entries[i].hard_reg;
1256 return NULL_RTX;
1259 /* Make sure that there's a pseudo register of mode MODE that stores the
1260 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1263 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1265 struct initial_value_struct *ivs;
1266 rtx rv;
1268 rv = has_hard_reg_initial_val (mode, regno);
1269 if (rv)
1270 return rv;
1272 ivs = crtl->hard_reg_initial_vals;
1273 if (ivs == 0)
1275 ivs = ggc_alloc<initial_value_struct> ();
1276 ivs->num_entries = 0;
1277 ivs->max_entries = 5;
1278 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1279 crtl->hard_reg_initial_vals = ivs;
1282 if (ivs->num_entries >= ivs->max_entries)
1284 ivs->max_entries += 5;
1285 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1286 ivs->max_entries);
1289 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1290 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1292 return ivs->entries[ivs->num_entries++].pseudo;
1295 /* See if get_hard_reg_initial_val has been used to create a pseudo
1296 for the initial value of hard register REGNO in mode MODE. Return
1297 the associated pseudo if so, otherwise return NULL. */
1300 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1302 struct initial_value_struct *ivs;
1303 int i;
1305 ivs = crtl->hard_reg_initial_vals;
1306 if (ivs != 0)
1307 for (i = 0; i < ivs->num_entries; i++)
1308 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1309 && REGNO (ivs->entries[i].hard_reg) == regno)
1310 return ivs->entries[i].pseudo;
1312 return NULL_RTX;
1315 unsigned int
1316 emit_initial_value_sets (void)
1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1319 int i;
1320 rtx_insn *seq;
1322 if (ivs == 0)
1323 return 0;
1325 start_sequence ();
1326 for (i = 0; i < ivs->num_entries; i++)
1327 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1328 seq = get_insns ();
1329 end_sequence ();
1331 emit_insn_at_entry (seq);
1332 return 0;
1335 /* Return the hardreg-pseudoreg initial values pair entry I and
1336 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1337 bool
1338 initial_value_entry (int i, rtx *hreg, rtx *preg)
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 if (!ivs || i >= ivs->num_entries)
1342 return false;
1344 *hreg = ivs->entries[i].hard_reg;
1345 *preg = ivs->entries[i].pseudo;
1346 return true;
1349 /* These routines are responsible for converting virtual register references
1350 to the actual hard register references once RTL generation is complete.
1352 The following four variables are used for communication between the
1353 routines. They contain the offsets of the virtual registers from their
1354 respective hard registers. */
1356 static int in_arg_offset;
1357 static int var_offset;
1358 static int dynamic_offset;
1359 static int out_arg_offset;
1360 static int cfa_offset;
1362 /* In most machines, the stack pointer register is equivalent to the bottom
1363 of the stack. */
1365 #ifndef STACK_POINTER_OFFSET
1366 #define STACK_POINTER_OFFSET 0
1367 #endif
1369 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1370 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1371 #endif
1373 /* If not defined, pick an appropriate default for the offset of dynamically
1374 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1375 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1377 #ifndef STACK_DYNAMIC_OFFSET
1379 /* The bottom of the stack points to the actual arguments. If
1380 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1381 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1382 stack space for register parameters is not pushed by the caller, but
1383 rather part of the fixed stack areas and hence not included in
1384 `crtl->outgoing_args_size'. Nevertheless, we must allow
1385 for it when allocating stack dynamic objects. */
1387 #ifdef INCOMING_REG_PARM_STACK_SPACE
1388 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1389 ((ACCUMULATE_OUTGOING_ARGS \
1390 ? (crtl->outgoing_args_size \
1391 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1392 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1393 : 0) + (STACK_POINTER_OFFSET))
1394 #else
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1397 + (STACK_POINTER_OFFSET))
1398 #endif
1399 #endif
1402 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1403 is a virtual register, return the equivalent hard register and set the
1404 offset indirectly through the pointer. Otherwise, return 0. */
1406 static rtx
1407 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1409 rtx new_rtx;
1410 HOST_WIDE_INT offset;
1412 if (x == virtual_incoming_args_rtx)
1414 if (stack_realign_drap)
1416 /* Replace virtual_incoming_args_rtx with internal arg
1417 pointer if DRAP is used to realign stack. */
1418 new_rtx = crtl->args.internal_arg_pointer;
1419 offset = 0;
1421 else
1422 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1424 else if (x == virtual_stack_vars_rtx)
1425 new_rtx = frame_pointer_rtx, offset = var_offset;
1426 else if (x == virtual_stack_dynamic_rtx)
1427 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1428 else if (x == virtual_outgoing_args_rtx)
1429 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1430 else if (x == virtual_cfa_rtx)
1432 #ifdef FRAME_POINTER_CFA_OFFSET
1433 new_rtx = frame_pointer_rtx;
1434 #else
1435 new_rtx = arg_pointer_rtx;
1436 #endif
1437 offset = cfa_offset;
1439 else if (x == virtual_preferred_stack_boundary_rtx)
1441 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1442 offset = 0;
1444 else
1445 return NULL_RTX;
1447 *poffset = offset;
1448 return new_rtx;
1451 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1452 registers present inside of *LOC. The expression is simplified,
1453 as much as possible, but is not to be considered "valid" in any sense
1454 implied by the target. Return true if any change is made. */
1456 static bool
1457 instantiate_virtual_regs_in_rtx (rtx *loc)
1459 if (!*loc)
1460 return false;
1461 bool changed = false;
1462 subrtx_ptr_iterator::array_type array;
1463 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1465 rtx *loc = *iter;
1466 if (rtx x = *loc)
1468 rtx new_rtx;
1469 HOST_WIDE_INT offset;
1470 switch (GET_CODE (x))
1472 case REG:
1473 new_rtx = instantiate_new_reg (x, &offset);
1474 if (new_rtx)
1476 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1477 changed = true;
1479 iter.skip_subrtxes ();
1480 break;
1482 case PLUS:
1483 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1484 if (new_rtx)
1486 XEXP (x, 0) = new_rtx;
1487 *loc = plus_constant (GET_MODE (x), x, offset, true);
1488 changed = true;
1489 iter.skip_subrtxes ();
1490 break;
1493 /* FIXME -- from old code */
1494 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1495 we can commute the PLUS and SUBREG because pointers into the
1496 frame are well-behaved. */
1497 break;
1499 default:
1500 break;
1504 return changed;
1507 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1508 matches the predicate for insn CODE operand OPERAND. */
1510 static int
1511 safe_insn_predicate (int code, int operand, rtx x)
1513 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1516 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1517 registers present inside of insn. The result will be a valid insn. */
1519 static void
1520 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1522 HOST_WIDE_INT offset;
1523 int insn_code, i;
1524 bool any_change = false;
1525 rtx set, new_rtx, x;
1526 rtx_insn *seq;
1528 /* There are some special cases to be handled first. */
1529 set = single_set (insn);
1530 if (set)
1532 /* We're allowed to assign to a virtual register. This is interpreted
1533 to mean that the underlying register gets assigned the inverse
1534 transformation. This is used, for example, in the handling of
1535 non-local gotos. */
1536 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1537 if (new_rtx)
1539 start_sequence ();
1541 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1542 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1543 gen_int_mode (-offset, GET_MODE (new_rtx)));
1544 x = force_operand (x, new_rtx);
1545 if (x != new_rtx)
1546 emit_move_insn (new_rtx, x);
1548 seq = get_insns ();
1549 end_sequence ();
1551 emit_insn_before (seq, insn);
1552 delete_insn (insn);
1553 return;
1556 /* Handle a straight copy from a virtual register by generating a
1557 new add insn. The difference between this and falling through
1558 to the generic case is avoiding a new pseudo and eliminating a
1559 move insn in the initial rtl stream. */
1560 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1561 if (new_rtx && offset != 0
1562 && REG_P (SET_DEST (set))
1563 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1565 start_sequence ();
1567 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1568 gen_int_mode (offset,
1569 GET_MODE (SET_DEST (set))),
1570 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1571 if (x != SET_DEST (set))
1572 emit_move_insn (SET_DEST (set), x);
1574 seq = get_insns ();
1575 end_sequence ();
1577 emit_insn_before (seq, insn);
1578 delete_insn (insn);
1579 return;
1582 extract_insn (insn);
1583 insn_code = INSN_CODE (insn);
1585 /* Handle a plus involving a virtual register by determining if the
1586 operands remain valid if they're modified in place. */
1587 if (GET_CODE (SET_SRC (set)) == PLUS
1588 && recog_data.n_operands >= 3
1589 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1590 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1591 && CONST_INT_P (recog_data.operand[2])
1592 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1594 offset += INTVAL (recog_data.operand[2]);
1596 /* If the sum is zero, then replace with a plain move. */
1597 if (offset == 0
1598 && REG_P (SET_DEST (set))
1599 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1601 start_sequence ();
1602 emit_move_insn (SET_DEST (set), new_rtx);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1613 /* Using validate_change and apply_change_group here leaves
1614 recog_data in an invalid state. Since we know exactly what
1615 we want to check, do those two by hand. */
1616 if (safe_insn_predicate (insn_code, 1, new_rtx)
1617 && safe_insn_predicate (insn_code, 2, x))
1619 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1620 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1621 any_change = true;
1623 /* Fall through into the regular operand fixup loop in
1624 order to take care of operands other than 1 and 2. */
1628 else
1630 extract_insn (insn);
1631 insn_code = INSN_CODE (insn);
1634 /* In the general case, we expect virtual registers to appear only in
1635 operands, and then only as either bare registers or inside memories. */
1636 for (i = 0; i < recog_data.n_operands; ++i)
1638 x = recog_data.operand[i];
1639 switch (GET_CODE (x))
1641 case MEM:
1643 rtx addr = XEXP (x, 0);
1645 if (!instantiate_virtual_regs_in_rtx (&addr))
1646 continue;
1648 start_sequence ();
1649 x = replace_equiv_address (x, addr, true);
1650 /* It may happen that the address with the virtual reg
1651 was valid (e.g. based on the virtual stack reg, which might
1652 be acceptable to the predicates with all offsets), whereas
1653 the address now isn't anymore, for instance when the address
1654 is still offsetted, but the base reg isn't virtual-stack-reg
1655 anymore. Below we would do a force_reg on the whole operand,
1656 but this insn might actually only accept memory. Hence,
1657 before doing that last resort, try to reload the address into
1658 a register, so this operand stays a MEM. */
1659 if (!safe_insn_predicate (insn_code, i, x))
1661 addr = force_reg (GET_MODE (addr), addr);
1662 x = replace_equiv_address (x, addr, true);
1664 seq = get_insns ();
1665 end_sequence ();
1666 if (seq)
1667 emit_insn_before (seq, insn);
1669 break;
1671 case REG:
1672 new_rtx = instantiate_new_reg (x, &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset == 0)
1676 x = new_rtx;
1677 else
1679 start_sequence ();
1681 /* Careful, special mode predicates may have stuff in
1682 insn_data[insn_code].operand[i].mode that isn't useful
1683 to us for computing a new value. */
1684 /* ??? Recognize address_operand and/or "p" constraints
1685 to see if (plus new offset) is a valid before we put
1686 this through expand_simple_binop. */
1687 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1688 gen_int_mode (offset, GET_MODE (x)),
1689 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1690 seq = get_insns ();
1691 end_sequence ();
1692 emit_insn_before (seq, insn);
1694 break;
1696 case SUBREG:
1697 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1698 if (new_rtx == NULL)
1699 continue;
1700 if (offset != 0)
1702 start_sequence ();
1703 new_rtx = expand_simple_binop
1704 (GET_MODE (new_rtx), PLUS, new_rtx,
1705 gen_int_mode (offset, GET_MODE (new_rtx)),
1706 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1707 seq = get_insns ();
1708 end_sequence ();
1709 emit_insn_before (seq, insn);
1711 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1712 GET_MODE (new_rtx), SUBREG_BYTE (x));
1713 gcc_assert (x);
1714 break;
1716 default:
1717 continue;
1720 /* At this point, X contains the new value for the operand.
1721 Validate the new value vs the insn predicate. Note that
1722 asm insns will have insn_code -1 here. */
1723 if (!safe_insn_predicate (insn_code, i, x))
1725 start_sequence ();
1726 if (REG_P (x))
1728 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1729 x = copy_to_reg (x);
1731 else
1732 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1733 seq = get_insns ();
1734 end_sequence ();
1735 if (seq)
1736 emit_insn_before (seq, insn);
1739 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1740 any_change = true;
1743 if (any_change)
1745 /* Propagate operand changes into the duplicates. */
1746 for (i = 0; i < recog_data.n_dups; ++i)
1747 *recog_data.dup_loc[i]
1748 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1750 /* Force re-recognition of the instruction for validation. */
1751 INSN_CODE (insn) = -1;
1754 if (asm_noperands (PATTERN (insn)) >= 0)
1756 if (!check_asm_operands (PATTERN (insn)))
1758 error_for_asm (insn, "impossible constraint in %<asm%>");
1759 /* For asm goto, instead of fixing up all the edges
1760 just clear the template and clear input operands
1761 (asm goto doesn't have any output operands). */
1762 if (JUMP_P (insn))
1764 rtx asm_op = extract_asm_operands (PATTERN (insn));
1765 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1766 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1767 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1769 else
1770 delete_insn (insn);
1773 else
1775 if (recog_memoized (insn) < 0)
1776 fatal_insn_not_found (insn);
1780 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1781 do any instantiation required. */
1783 void
1784 instantiate_decl_rtl (rtx x)
1786 rtx addr;
1788 if (x == 0)
1789 return;
1791 /* If this is a CONCAT, recurse for the pieces. */
1792 if (GET_CODE (x) == CONCAT)
1794 instantiate_decl_rtl (XEXP (x, 0));
1795 instantiate_decl_rtl (XEXP (x, 1));
1796 return;
1799 /* If this is not a MEM, no need to do anything. Similarly if the
1800 address is a constant or a register that is not a virtual register. */
1801 if (!MEM_P (x))
1802 return;
1804 addr = XEXP (x, 0);
1805 if (CONSTANT_P (addr)
1806 || (REG_P (addr)
1807 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1808 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1809 return;
1811 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1814 /* Helper for instantiate_decls called via walk_tree: Process all decls
1815 in the given DECL_VALUE_EXPR. */
1817 static tree
1818 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1820 tree t = *tp;
1821 if (! EXPR_P (t))
1823 *walk_subtrees = 0;
1824 if (DECL_P (t))
1826 if (DECL_RTL_SET_P (t))
1827 instantiate_decl_rtl (DECL_RTL (t));
1828 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1829 && DECL_INCOMING_RTL (t))
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1831 if ((TREE_CODE (t) == VAR_DECL
1832 || TREE_CODE (t) == RESULT_DECL)
1833 && DECL_HAS_VALUE_EXPR_P (t))
1835 tree v = DECL_VALUE_EXPR (t);
1836 walk_tree (&v, instantiate_expr, NULL, NULL);
1840 return NULL;
1843 /* Subroutine of instantiate_decls: Process all decls in the given
1844 BLOCK node and all its subblocks. */
1846 static void
1847 instantiate_decls_1 (tree let)
1849 tree t;
1851 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1853 if (DECL_RTL_SET_P (t))
1854 instantiate_decl_rtl (DECL_RTL (t));
1855 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1857 tree v = DECL_VALUE_EXPR (t);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 /* Process all subblocks. */
1863 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1864 instantiate_decls_1 (t);
1867 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1868 all virtual registers in their DECL_RTL's. */
1870 static void
1871 instantiate_decls (tree fndecl)
1873 tree decl;
1874 unsigned ix;
1876 /* Process all parameters of the function. */
1877 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1881 if (DECL_HAS_VALUE_EXPR_P (decl))
1883 tree v = DECL_VALUE_EXPR (decl);
1884 walk_tree (&v, instantiate_expr, NULL, NULL);
1888 if ((decl = DECL_RESULT (fndecl))
1889 && TREE_CODE (decl) == RESULT_DECL)
1891 if (DECL_RTL_SET_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (decl));
1893 if (DECL_HAS_VALUE_EXPR_P (decl))
1895 tree v = DECL_VALUE_EXPR (decl);
1896 walk_tree (&v, instantiate_expr, NULL, NULL);
1900 /* Process the saved static chain if it exists. */
1901 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1902 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1903 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1905 /* Now process all variables defined in the function or its subblocks. */
1906 instantiate_decls_1 (DECL_INITIAL (fndecl));
1908 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1909 if (DECL_RTL_SET_P (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 vec_free (cfun->local_decls);
1914 /* Pass through the INSNS of function FNDECL and convert virtual register
1915 references to hard register references. */
1917 static unsigned int
1918 instantiate_virtual_regs (void)
1920 rtx_insn *insn;
1922 /* Compute the offsets to use for this function. */
1923 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1924 var_offset = STARTING_FRAME_OFFSET;
1925 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1926 out_arg_offset = STACK_POINTER_OFFSET;
1927 #ifdef FRAME_POINTER_CFA_OFFSET
1928 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1929 #else
1930 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1931 #endif
1933 /* Initialize recognition, indicating that volatile is OK. */
1934 init_recog ();
1936 /* Scan through all the insns, instantiating every virtual register still
1937 present. */
1938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1939 if (INSN_P (insn))
1941 /* These patterns in the instruction stream can never be recognized.
1942 Fortunately, they shouldn't contain virtual registers either. */
1943 if (GET_CODE (PATTERN (insn)) == USE
1944 || GET_CODE (PATTERN (insn)) == CLOBBER
1945 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1946 continue;
1947 else if (DEBUG_INSN_P (insn))
1948 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1949 else
1950 instantiate_virtual_regs_in_insn (insn);
1952 if (insn->deleted ())
1953 continue;
1955 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1957 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1958 if (CALL_P (insn))
1959 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1962 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1963 instantiate_decls (current_function_decl);
1965 targetm.instantiate_decls ();
1967 /* Indicate that, from now on, assign_stack_local should use
1968 frame_pointer_rtx. */
1969 virtuals_instantiated = 1;
1971 return 0;
1974 namespace {
1976 const pass_data pass_data_instantiate_virtual_regs =
1978 RTL_PASS, /* type */
1979 "vregs", /* name */
1980 OPTGROUP_NONE, /* optinfo_flags */
1981 TV_NONE, /* tv_id */
1982 0, /* properties_required */
1983 0, /* properties_provided */
1984 0, /* properties_destroyed */
1985 0, /* todo_flags_start */
1986 0, /* todo_flags_finish */
1989 class pass_instantiate_virtual_regs : public rtl_opt_pass
1991 public:
1992 pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1996 /* opt_pass methods: */
1997 virtual unsigned int execute (function *)
1999 return instantiate_virtual_regs ();
2002 }; // class pass_instantiate_virtual_regs
2004 } // anon namespace
2006 rtl_opt_pass *
2007 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 return new pass_instantiate_virtual_regs (ctxt);
2013 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2014 This means a type for which function calls must pass an address to the
2015 function or get an address back from the function.
2016 EXP may be a type node or an expression (whose type is tested). */
2019 aggregate_value_p (const_tree exp, const_tree fntype)
2021 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2022 int i, regno, nregs;
2023 rtx reg;
2025 if (fntype)
2026 switch (TREE_CODE (fntype))
2028 case CALL_EXPR:
2030 tree fndecl = get_callee_fndecl (fntype);
2031 if (fndecl)
2032 fntype = TREE_TYPE (fndecl);
2033 else if (CALL_EXPR_FN (fntype))
2034 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2035 else
2036 /* For internal functions, assume nothing needs to be
2037 returned in memory. */
2038 return 0;
2040 break;
2041 case FUNCTION_DECL:
2042 fntype = TREE_TYPE (fntype);
2043 break;
2044 case FUNCTION_TYPE:
2045 case METHOD_TYPE:
2046 break;
2047 case IDENTIFIER_NODE:
2048 fntype = NULL_TREE;
2049 break;
2050 default:
2051 /* We don't expect other tree types here. */
2052 gcc_unreachable ();
2055 if (VOID_TYPE_P (type))
2056 return 0;
2058 /* If a record should be passed the same as its first (and only) member
2059 don't pass it as an aggregate. */
2060 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2061 return aggregate_value_p (first_field (type), fntype);
2063 /* If the front end has decided that this needs to be passed by
2064 reference, do so. */
2065 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2066 && DECL_BY_REFERENCE (exp))
2067 return 1;
2069 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2070 if (fntype && TREE_ADDRESSABLE (fntype))
2071 return 1;
2073 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2074 and thus can't be returned in registers. */
2075 if (TREE_ADDRESSABLE (type))
2076 return 1;
2078 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2079 return 1;
2081 if (targetm.calls.return_in_memory (type, fntype))
2082 return 1;
2084 /* Make sure we have suitable call-clobbered regs to return
2085 the value in; if not, we must return it in memory. */
2086 reg = hard_function_value (type, 0, fntype, 0);
2088 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2089 it is OK. */
2090 if (!REG_P (reg))
2091 return 0;
2093 regno = REGNO (reg);
2094 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2095 for (i = 0; i < nregs; i++)
2096 if (! call_used_regs[regno + i])
2097 return 1;
2099 return 0;
2102 /* Return true if we should assign DECL a pseudo register; false if it
2103 should live on the local stack. */
2105 bool
2106 use_register_for_decl (const_tree decl)
2108 if (TREE_CODE (decl) == SSA_NAME)
2110 /* We often try to use the SSA_NAME, instead of its underlying
2111 decl, to get type information and guide decisions, to avoid
2112 differences of behavior between anonymous and named
2113 variables, but in this one case we have to go for the actual
2114 variable if there is one. The main reason is that, at least
2115 at -O0, we want to place user variables on the stack, but we
2116 don't mind using pseudos for anonymous or ignored temps.
2117 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2118 should go in pseudos, whereas their corresponding variables
2119 might have to go on the stack. So, disregarding the decl
2120 here would negatively impact debug info at -O0, enable
2121 coalescing between SSA_NAMEs that ought to get different
2122 stack/pseudo assignments, and get the incoming argument
2123 processing thoroughly confused by PARM_DECLs expected to live
2124 in stack slots but assigned to pseudos. */
2125 if (!SSA_NAME_VAR (decl))
2126 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2127 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2129 decl = SSA_NAME_VAR (decl);
2132 /* Honor volatile. */
2133 if (TREE_SIDE_EFFECTS (decl))
2134 return false;
2136 /* Honor addressability. */
2137 if (TREE_ADDRESSABLE (decl))
2138 return false;
2140 /* RESULT_DECLs are a bit special in that they're assigned without
2141 regard to use_register_for_decl, but we generally only store in
2142 them. If we coalesce their SSA NAMEs, we'd better return a
2143 result that matches the assignment in expand_function_start. */
2144 if (TREE_CODE (decl) == RESULT_DECL)
2146 /* If it's not an aggregate, we're going to use a REG or a
2147 PARALLEL containing a REG. */
2148 if (!aggregate_value_p (decl, current_function_decl))
2149 return true;
2151 /* If expand_function_start determines the return value, we'll
2152 use MEM if it's not by reference. */
2153 if (cfun->returns_pcc_struct
2154 || (targetm.calls.struct_value_rtx
2155 (TREE_TYPE (current_function_decl), 1)))
2156 return DECL_BY_REFERENCE (decl);
2158 /* Otherwise, we're taking an extra all.function_result_decl
2159 argument. It's set up in assign_parms_augmented_arg_list,
2160 under the (negated) conditions above, and then it's used to
2161 set up the RESULT_DECL rtl in assign_params, after looping
2162 over all parameters. Now, if the RESULT_DECL is not by
2163 reference, we'll use a MEM either way. */
2164 if (!DECL_BY_REFERENCE (decl))
2165 return false;
2167 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2168 the function_result_decl's assignment. Since it's a pointer,
2169 we can short-circuit a number of the tests below, and we must
2170 duplicat e them because we don't have the
2171 function_result_decl to test. */
2172 if (!targetm.calls.allocate_stack_slots_for_args ())
2173 return true;
2174 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2175 if (optimize)
2176 return true;
2177 /* We don't set DECL_REGISTER for the function_result_decl. */
2178 return false;
2181 /* Decl is implicitly addressible by bound stores and loads
2182 if it is an aggregate holding bounds. */
2183 if (chkp_function_instrumented_p (current_function_decl)
2184 && TREE_TYPE (decl)
2185 && !BOUNDED_P (decl)
2186 && chkp_type_has_pointer (TREE_TYPE (decl)))
2187 return false;
2189 /* Only register-like things go in registers. */
2190 if (DECL_MODE (decl) == BLKmode)
2191 return false;
2193 /* If -ffloat-store specified, don't put explicit float variables
2194 into registers. */
2195 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2196 propagates values across these stores, and it probably shouldn't. */
2197 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2198 return false;
2200 if (!targetm.calls.allocate_stack_slots_for_args ())
2201 return true;
2203 /* If we're not interested in tracking debugging information for
2204 this decl, then we can certainly put it in a register. */
2205 if (DECL_IGNORED_P (decl))
2206 return true;
2208 if (optimize)
2209 return true;
2211 if (!DECL_REGISTER (decl))
2212 return false;
2214 switch (TREE_CODE (TREE_TYPE (decl)))
2216 case RECORD_TYPE:
2217 case UNION_TYPE:
2218 case QUAL_UNION_TYPE:
2219 /* When not optimizing, disregard register keyword for variables with
2220 types containing methods, otherwise the methods won't be callable
2221 from the debugger. */
2222 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2223 return false;
2224 break;
2225 default:
2226 break;
2229 return true;
2232 /* Structures to communicate between the subroutines of assign_parms.
2233 The first holds data persistent across all parameters, the second
2234 is cleared out for each parameter. */
2236 struct assign_parm_data_all
2238 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2239 should become a job of the target or otherwise encapsulated. */
2240 CUMULATIVE_ARGS args_so_far_v;
2241 cumulative_args_t args_so_far;
2242 struct args_size stack_args_size;
2243 tree function_result_decl;
2244 tree orig_fnargs;
2245 rtx_insn *first_conversion_insn;
2246 rtx_insn *last_conversion_insn;
2247 HOST_WIDE_INT pretend_args_size;
2248 HOST_WIDE_INT extra_pretend_bytes;
2249 int reg_parm_stack_space;
2252 struct assign_parm_data_one
2254 tree nominal_type;
2255 tree passed_type;
2256 rtx entry_parm;
2257 rtx stack_parm;
2258 machine_mode nominal_mode;
2259 machine_mode passed_mode;
2260 machine_mode promoted_mode;
2261 struct locate_and_pad_arg_data locate;
2262 int partial;
2263 BOOL_BITFIELD named_arg : 1;
2264 BOOL_BITFIELD passed_pointer : 1;
2265 BOOL_BITFIELD on_stack : 1;
2266 BOOL_BITFIELD loaded_in_reg : 1;
2269 struct bounds_parm_data
2271 assign_parm_data_one parm_data;
2272 tree bounds_parm;
2273 tree ptr_parm;
2274 rtx ptr_entry;
2275 int bound_no;
2278 /* A subroutine of assign_parms. Initialize ALL. */
2280 static void
2281 assign_parms_initialize_all (struct assign_parm_data_all *all)
2283 tree fntype ATTRIBUTE_UNUSED;
2285 memset (all, 0, sizeof (*all));
2287 fntype = TREE_TYPE (current_function_decl);
2289 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2290 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2291 #else
2292 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2293 current_function_decl, -1);
2294 #endif
2295 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2297 #ifdef INCOMING_REG_PARM_STACK_SPACE
2298 all->reg_parm_stack_space
2299 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2300 #endif
2303 /* If ARGS contains entries with complex types, split the entry into two
2304 entries of the component type. Return a new list of substitutions are
2305 needed, else the old list. */
2307 static void
2308 split_complex_args (vec<tree> *args)
2310 unsigned i;
2311 tree p;
2313 FOR_EACH_VEC_ELT (*args, i, p)
2315 tree type = TREE_TYPE (p);
2316 if (TREE_CODE (type) == COMPLEX_TYPE
2317 && targetm.calls.split_complex_arg (type))
2319 tree decl;
2320 tree subtype = TREE_TYPE (type);
2321 bool addressable = TREE_ADDRESSABLE (p);
2323 /* Rewrite the PARM_DECL's type with its component. */
2324 p = copy_node (p);
2325 TREE_TYPE (p) = subtype;
2326 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2327 DECL_MODE (p) = VOIDmode;
2328 DECL_SIZE (p) = NULL;
2329 DECL_SIZE_UNIT (p) = NULL;
2330 /* If this arg must go in memory, put it in a pseudo here.
2331 We can't allow it to go in memory as per normal parms,
2332 because the usual place might not have the imag part
2333 adjacent to the real part. */
2334 DECL_ARTIFICIAL (p) = addressable;
2335 DECL_IGNORED_P (p) = addressable;
2336 TREE_ADDRESSABLE (p) = 0;
2337 layout_decl (p, 0);
2338 (*args)[i] = p;
2340 /* Build a second synthetic decl. */
2341 decl = build_decl (EXPR_LOCATION (p),
2342 PARM_DECL, NULL_TREE, subtype);
2343 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2344 DECL_ARTIFICIAL (decl) = addressable;
2345 DECL_IGNORED_P (decl) = addressable;
2346 layout_decl (decl, 0);
2347 args->safe_insert (++i, decl);
2352 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2353 the hidden struct return argument, and (abi willing) complex args.
2354 Return the new parameter list. */
2356 static vec<tree>
2357 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2359 tree fndecl = current_function_decl;
2360 tree fntype = TREE_TYPE (fndecl);
2361 vec<tree> fnargs = vNULL;
2362 tree arg;
2364 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2365 fnargs.safe_push (arg);
2367 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2369 /* If struct value address is treated as the first argument, make it so. */
2370 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2371 && ! cfun->returns_pcc_struct
2372 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2374 tree type = build_pointer_type (TREE_TYPE (fntype));
2375 tree decl;
2377 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2378 PARM_DECL, get_identifier (".result_ptr"), type);
2379 DECL_ARG_TYPE (decl) = type;
2380 DECL_ARTIFICIAL (decl) = 1;
2381 DECL_NAMELESS (decl) = 1;
2382 TREE_CONSTANT (decl) = 1;
2383 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2384 changes, the end of the RESULT_DECL handling block in
2385 use_register_for_decl must be adjusted to match. */
2387 DECL_CHAIN (decl) = all->orig_fnargs;
2388 all->orig_fnargs = decl;
2389 fnargs.safe_insert (0, decl);
2391 all->function_result_decl = decl;
2393 /* If function is instrumented then bounds of the
2394 passed structure address is the second argument. */
2395 if (chkp_function_instrumented_p (fndecl))
2397 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2398 PARM_DECL, get_identifier (".result_bnd"),
2399 pointer_bounds_type_node);
2400 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2405 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2406 DECL_CHAIN (all->orig_fnargs) = decl;
2407 fnargs.safe_insert (1, decl);
2411 /* If the target wants to split complex arguments into scalars, do so. */
2412 if (targetm.calls.split_complex_arg)
2413 split_complex_args (&fnargs);
2415 return fnargs;
2418 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2419 data for the parameter. Incorporate ABI specifics such as pass-by-
2420 reference and type promotion. */
2422 static void
2423 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2424 struct assign_parm_data_one *data)
2426 tree nominal_type, passed_type;
2427 machine_mode nominal_mode, passed_mode, promoted_mode;
2428 int unsignedp;
2430 memset (data, 0, sizeof (*data));
2432 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2433 if (!cfun->stdarg)
2434 data->named_arg = 1; /* No variadic parms. */
2435 else if (DECL_CHAIN (parm))
2436 data->named_arg = 1; /* Not the last non-variadic parm. */
2437 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2438 data->named_arg = 1; /* Only variadic ones are unnamed. */
2439 else
2440 data->named_arg = 0; /* Treat as variadic. */
2442 nominal_type = TREE_TYPE (parm);
2443 passed_type = DECL_ARG_TYPE (parm);
2445 /* Look out for errors propagating this far. Also, if the parameter's
2446 type is void then its value doesn't matter. */
2447 if (TREE_TYPE (parm) == error_mark_node
2448 /* This can happen after weird syntax errors
2449 or if an enum type is defined among the parms. */
2450 || TREE_CODE (parm) != PARM_DECL
2451 || passed_type == NULL
2452 || VOID_TYPE_P (nominal_type))
2454 nominal_type = passed_type = void_type_node;
2455 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2456 goto egress;
2459 /* Find mode of arg as it is passed, and mode of arg as it should be
2460 during execution of this function. */
2461 passed_mode = TYPE_MODE (passed_type);
2462 nominal_mode = TYPE_MODE (nominal_type);
2464 /* If the parm is to be passed as a transparent union or record, use the
2465 type of the first field for the tests below. We have already verified
2466 that the modes are the same. */
2467 if ((TREE_CODE (passed_type) == UNION_TYPE
2468 || TREE_CODE (passed_type) == RECORD_TYPE)
2469 && TYPE_TRANSPARENT_AGGR (passed_type))
2470 passed_type = TREE_TYPE (first_field (passed_type));
2472 /* See if this arg was passed by invisible reference. */
2473 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2474 passed_type, data->named_arg))
2476 passed_type = nominal_type = build_pointer_type (passed_type);
2477 data->passed_pointer = true;
2478 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2481 /* Find mode as it is passed by the ABI. */
2482 unsignedp = TYPE_UNSIGNED (passed_type);
2483 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2484 TREE_TYPE (current_function_decl), 0);
2486 egress:
2487 data->nominal_type = nominal_type;
2488 data->passed_type = passed_type;
2489 data->nominal_mode = nominal_mode;
2490 data->passed_mode = passed_mode;
2491 data->promoted_mode = promoted_mode;
2494 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2496 static void
2497 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2498 struct assign_parm_data_one *data, bool no_rtl)
2500 int varargs_pretend_bytes = 0;
2502 targetm.calls.setup_incoming_varargs (all->args_so_far,
2503 data->promoted_mode,
2504 data->passed_type,
2505 &varargs_pretend_bytes, no_rtl);
2507 /* If the back-end has requested extra stack space, record how much is
2508 needed. Do not change pretend_args_size otherwise since it may be
2509 nonzero from an earlier partial argument. */
2510 if (varargs_pretend_bytes > 0)
2511 all->pretend_args_size = varargs_pretend_bytes;
2514 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2515 the incoming location of the current parameter. */
2517 static void
2518 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2519 struct assign_parm_data_one *data)
2521 HOST_WIDE_INT pretend_bytes = 0;
2522 rtx entry_parm;
2523 bool in_regs;
2525 if (data->promoted_mode == VOIDmode)
2527 data->entry_parm = data->stack_parm = const0_rtx;
2528 return;
2531 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2532 data->promoted_mode,
2533 data->passed_type,
2534 data->named_arg);
2536 if (entry_parm == 0)
2537 data->promoted_mode = data->passed_mode;
2539 /* Determine parm's home in the stack, in case it arrives in the stack
2540 or we should pretend it did. Compute the stack position and rtx where
2541 the argument arrives and its size.
2543 There is one complexity here: If this was a parameter that would
2544 have been passed in registers, but wasn't only because it is
2545 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2546 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2547 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2548 as it was the previous time. */
2549 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2550 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2551 in_regs = true;
2552 #endif
2553 if (!in_regs && !data->named_arg)
2555 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2557 rtx tem;
2558 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2559 data->promoted_mode,
2560 data->passed_type, true);
2561 in_regs = tem != NULL;
2565 /* If this parameter was passed both in registers and in the stack, use
2566 the copy on the stack. */
2567 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2568 data->passed_type))
2569 entry_parm = 0;
2571 if (entry_parm)
2573 int partial;
2575 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2576 data->promoted_mode,
2577 data->passed_type,
2578 data->named_arg);
2579 data->partial = partial;
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial != 0 && all->reg_parm_stack_space == 0)
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2604 pretend_bytes = partial;
2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all->extra_pretend_bytes = all->pretend_args_size;
2613 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2614 all->reg_parm_stack_space,
2615 entry_parm ? data->partial : 0, current_function_decl,
2616 &all->stack_args_size, &data->locate);
2618 /* Update parm_stack_boundary if this parameter is passed in the
2619 stack. */
2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2621 crtl->parm_stack_boundary = data->locate.boundary;
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2625 data->locate.slot_offset.constant += pretend_bytes;
2626 data->locate.offset.constant += pretend_bytes;
2628 data->entry_parm = entry_parm;
2631 /* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2634 static bool
2635 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2636 struct assign_parm_data_one *data)
2638 /* Bounds are never passed on the stack to keep compatibility
2639 with not instrumented code. */
2640 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2641 return false;
2642 /* Trivially true if we've no incoming register. */
2643 else if (data->entry_parm == NULL)
2645 /* Also true if we're partially in registers and partially not,
2646 since we've arranged to drop the entire argument on the stack. */
2647 else if (data->partial != 0)
2649 /* Also true if the target says that it's passed in both registers
2650 and on the stack. */
2651 else if (GET_CODE (data->entry_parm) == PARALLEL
2652 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2654 /* Also true if the target says that there's stack allocated for
2655 all register parameters. */
2656 else if (all->reg_parm_stack_space > 0)
2658 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2659 else
2660 return false;
2662 all->stack_args_size.constant += data->locate.size.constant;
2663 if (data->locate.size.var)
2664 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2666 return true;
2669 /* A subroutine of assign_parms. Given that this parameter is allocated
2670 stack space by the ABI, find it. */
2672 static void
2673 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2675 rtx offset_rtx, stack_parm;
2676 unsigned int align, boundary;
2678 /* If we're passing this arg using a reg, make its stack home the
2679 aligned stack slot. */
2680 if (data->entry_parm)
2681 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2682 else
2683 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2685 stack_parm = crtl->args.internal_arg_pointer;
2686 if (offset_rtx != const0_rtx)
2687 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2688 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2690 if (!data->passed_pointer)
2692 set_mem_attributes (stack_parm, parm, 1);
2693 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2694 while promoted mode's size is needed. */
2695 if (data->promoted_mode != BLKmode
2696 && data->promoted_mode != DECL_MODE (parm))
2698 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2699 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2701 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2702 data->promoted_mode);
2703 if (offset)
2704 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2709 boundary = data->locate.boundary;
2710 align = BITS_PER_UNIT;
2712 /* If we're padding upward, we know that the alignment of the slot
2713 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2714 intentionally forcing upward padding. Otherwise we have to come
2715 up with a guess at the alignment based on OFFSET_RTX. */
2716 if (data->locate.where_pad != downward || data->entry_parm)
2717 align = boundary;
2718 else if (CONST_INT_P (offset_rtx))
2720 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2721 align = align & -align;
2723 set_mem_align (stack_parm, align);
2725 if (data->entry_parm)
2726 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2728 data->stack_parm = stack_parm;
2731 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2732 always valid and contiguous. */
2734 static void
2735 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2737 rtx entry_parm = data->entry_parm;
2738 rtx stack_parm = data->stack_parm;
2740 /* If this parm was passed part in regs and part in memory, pretend it
2741 arrived entirely in memory by pushing the register-part onto the stack.
2742 In the special case of a DImode or DFmode that is split, we could put
2743 it together in a pseudoreg directly, but for now that's not worth
2744 bothering with. */
2745 if (data->partial != 0)
2747 /* Handle calls that pass values in multiple non-contiguous
2748 locations. The Irix 6 ABI has examples of this. */
2749 if (GET_CODE (entry_parm) == PARALLEL)
2750 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2751 data->passed_type,
2752 int_size_in_bytes (data->passed_type));
2753 else
2755 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2756 move_block_from_reg (REGNO (entry_parm),
2757 validize_mem (copy_rtx (stack_parm)),
2758 data->partial / UNITS_PER_WORD);
2761 entry_parm = stack_parm;
2764 /* If we didn't decide this parm came in a register, by default it came
2765 on the stack. */
2766 else if (entry_parm == NULL)
2767 entry_parm = stack_parm;
2769 /* When an argument is passed in multiple locations, we can't make use
2770 of this information, but we can save some copying if the whole argument
2771 is passed in a single register. */
2772 else if (GET_CODE (entry_parm) == PARALLEL
2773 && data->nominal_mode != BLKmode
2774 && data->passed_mode != BLKmode)
2776 size_t i, len = XVECLEN (entry_parm, 0);
2778 for (i = 0; i < len; i++)
2779 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2780 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2781 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2782 == data->passed_mode)
2783 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2785 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2786 break;
2790 data->entry_parm = entry_parm;
2793 /* A subroutine of assign_parms. Reconstitute any values which were
2794 passed in multiple registers and would fit in a single register. */
2796 static void
2797 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2799 rtx entry_parm = data->entry_parm;
2801 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2802 This can be done with register operations rather than on the
2803 stack, even if we will store the reconstituted parameter on the
2804 stack later. */
2805 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2807 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2808 emit_group_store (parmreg, entry_parm, data->passed_type,
2809 GET_MODE_SIZE (GET_MODE (entry_parm)));
2810 entry_parm = parmreg;
2813 data->entry_parm = entry_parm;
2816 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2817 always valid and properly aligned. */
2819 static void
2820 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2822 rtx stack_parm = data->stack_parm;
2824 /* If we can't trust the parm stack slot to be aligned enough for its
2825 ultimate type, don't use that slot after entry. We'll make another
2826 stack slot, if we need one. */
2827 if (stack_parm
2828 && ((STRICT_ALIGNMENT
2829 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2830 || (data->nominal_type
2831 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2832 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2833 stack_parm = NULL;
2835 /* If parm was passed in memory, and we need to convert it on entry,
2836 don't store it back in that same slot. */
2837 else if (data->entry_parm == stack_parm
2838 && data->nominal_mode != BLKmode
2839 && data->nominal_mode != data->passed_mode)
2840 stack_parm = NULL;
2842 /* If stack protection is in effect for this function, don't leave any
2843 pointers in their passed stack slots. */
2844 else if (crtl->stack_protect_guard
2845 && (flag_stack_protect == 2
2846 || data->passed_pointer
2847 || POINTER_TYPE_P (data->nominal_type)))
2848 stack_parm = NULL;
2850 data->stack_parm = stack_parm;
2853 /* A subroutine of assign_parms. Return true if the current parameter
2854 should be stored as a BLKmode in the current frame. */
2856 static bool
2857 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2859 if (data->nominal_mode == BLKmode)
2860 return true;
2861 if (GET_MODE (data->entry_parm) == BLKmode)
2862 return true;
2864 #ifdef BLOCK_REG_PADDING
2865 /* Only assign_parm_setup_block knows how to deal with register arguments
2866 that are padded at the least significant end. */
2867 if (REG_P (data->entry_parm)
2868 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2869 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2870 == (BYTES_BIG_ENDIAN ? upward : downward)))
2871 return true;
2872 #endif
2874 return false;
2877 /* A subroutine of assign_parms. Arrange for the parameter to be
2878 present and valid in DATA->STACK_RTL. */
2880 static void
2881 assign_parm_setup_block (struct assign_parm_data_all *all,
2882 tree parm, struct assign_parm_data_one *data)
2884 rtx entry_parm = data->entry_parm;
2885 rtx stack_parm = data->stack_parm;
2886 rtx target_reg = NULL_RTX;
2887 HOST_WIDE_INT size;
2888 HOST_WIDE_INT size_stored;
2890 if (GET_CODE (entry_parm) == PARALLEL)
2891 entry_parm = emit_group_move_into_temps (entry_parm);
2893 /* If we want the parameter in a pseudo, don't use a stack slot. */
2894 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2896 tree def = ssa_default_def (cfun, parm);
2897 gcc_assert (def);
2898 machine_mode mode = promote_ssa_mode (def, NULL);
2899 rtx reg = gen_reg_rtx (mode);
2900 if (GET_CODE (reg) != CONCAT)
2901 stack_parm = reg;
2902 else
2903 /* This will use or allocate a stack slot that we'd rather
2904 avoid. FIXME: Could we avoid it in more cases? */
2905 target_reg = reg;
2906 data->stack_parm = NULL;
2909 size = int_size_in_bytes (data->passed_type);
2910 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2911 if (stack_parm == 0)
2913 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2914 stack_parm = assign_stack_local (BLKmode, size_stored,
2915 DECL_ALIGN (parm));
2916 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2917 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2918 set_mem_attributes (stack_parm, parm, 1);
2921 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2922 calls that pass values in multiple non-contiguous locations. */
2923 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2925 rtx mem;
2927 /* Note that we will be storing an integral number of words.
2928 So we have to be careful to ensure that we allocate an
2929 integral number of words. We do this above when we call
2930 assign_stack_local if space was not allocated in the argument
2931 list. If it was, this will not work if PARM_BOUNDARY is not
2932 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2933 if it becomes a problem. Exception is when BLKmode arrives
2934 with arguments not conforming to word_mode. */
2936 if (data->stack_parm == 0)
2938 else if (GET_CODE (entry_parm) == PARALLEL)
2940 else
2941 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2943 mem = validize_mem (copy_rtx (stack_parm));
2945 /* Handle values in multiple non-contiguous locations. */
2946 if (GET_CODE (entry_parm) == PARALLEL)
2948 push_to_sequence2 (all->first_conversion_insn,
2949 all->last_conversion_insn);
2950 emit_group_store (mem, entry_parm, data->passed_type, size);
2951 all->first_conversion_insn = get_insns ();
2952 all->last_conversion_insn = get_last_insn ();
2953 end_sequence ();
2956 else if (size == 0)
2959 /* If SIZE is that of a mode no bigger than a word, just use
2960 that mode's store operation. */
2961 else if (size <= UNITS_PER_WORD)
2963 machine_mode mode
2964 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2966 if (mode != BLKmode
2967 #ifdef BLOCK_REG_PADDING
2968 && (size == UNITS_PER_WORD
2969 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2970 != (BYTES_BIG_ENDIAN ? upward : downward)))
2971 #endif
2974 rtx reg;
2976 /* We are really truncating a word_mode value containing
2977 SIZE bytes into a value of mode MODE. If such an
2978 operation requires no actual instructions, we can refer
2979 to the value directly in mode MODE, otherwise we must
2980 start with the register in word_mode and explicitly
2981 convert it. */
2982 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2983 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2984 else
2986 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2987 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2989 emit_move_insn (change_address (mem, mode, 0), reg);
2992 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2993 machine must be aligned to the left before storing
2994 to memory. Note that the previous test doesn't
2995 handle all cases (e.g. SIZE == 3). */
2996 else if (size != UNITS_PER_WORD
2997 #ifdef BLOCK_REG_PADDING
2998 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2999 == downward)
3000 #else
3001 && BYTES_BIG_ENDIAN
3002 #endif
3005 rtx tem, x;
3006 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3007 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3009 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3010 tem = change_address (mem, word_mode, 0);
3011 emit_move_insn (tem, x);
3013 else if (!MEM_P (mem))
3014 emit_move_insn (mem, entry_parm);
3015 else
3016 move_block_from_reg (REGNO (entry_parm), mem,
3017 size_stored / UNITS_PER_WORD);
3019 else if (!MEM_P (mem))
3020 emit_move_insn (mem, entry_parm);
3021 else
3022 move_block_from_reg (REGNO (entry_parm), mem,
3023 size_stored / UNITS_PER_WORD);
3025 else if (data->stack_parm == 0)
3027 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3028 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3029 BLOCK_OP_NORMAL);
3030 all->first_conversion_insn = get_insns ();
3031 all->last_conversion_insn = get_last_insn ();
3032 end_sequence ();
3035 if (target_reg)
3037 emit_move_insn (target_reg, stack_parm);
3038 stack_parm = target_reg;
3041 data->stack_parm = stack_parm;
3042 set_parm_rtl (parm, stack_parm);
3045 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3046 parameter. Get it there. Perform all ABI specified conversions. */
3048 static void
3049 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3050 struct assign_parm_data_one *data)
3052 rtx parmreg, validated_mem;
3053 rtx equiv_stack_parm;
3054 machine_mode promoted_nominal_mode;
3055 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3056 bool did_conversion = false;
3057 bool need_conversion, moved;
3058 rtx rtl;
3060 /* Store the parm in a pseudoregister during the function, but we may
3061 need to do it in a wider mode. Using 2 here makes the result
3062 consistent with promote_decl_mode and thus expand_expr_real_1. */
3063 promoted_nominal_mode
3064 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3065 TREE_TYPE (current_function_decl), 2);
3067 parmreg = gen_reg_rtx (promoted_nominal_mode);
3068 if (!DECL_ARTIFICIAL (parm))
3069 mark_user_reg (parmreg);
3071 /* If this was an item that we received a pointer to,
3072 set rtl appropriately. */
3073 if (data->passed_pointer)
3075 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3076 set_mem_attributes (rtl, parm, 1);
3078 else
3079 rtl = parmreg;
3081 assign_parm_remove_parallels (data);
3083 /* Copy the value into the register, thus bridging between
3084 assign_parm_find_data_types and expand_expr_real_1. */
3086 equiv_stack_parm = data->stack_parm;
3087 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3089 need_conversion = (data->nominal_mode != data->passed_mode
3090 || promoted_nominal_mode != data->promoted_mode);
3091 moved = false;
3093 if (need_conversion
3094 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3095 && data->nominal_mode == data->passed_mode
3096 && data->nominal_mode == GET_MODE (data->entry_parm))
3098 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3099 mode, by the caller. We now have to convert it to
3100 NOMINAL_MODE, if different. However, PARMREG may be in
3101 a different mode than NOMINAL_MODE if it is being stored
3102 promoted.
3104 If ENTRY_PARM is a hard register, it might be in a register
3105 not valid for operating in its mode (e.g., an odd-numbered
3106 register for a DFmode). In that case, moves are the only
3107 thing valid, so we can't do a convert from there. This
3108 occurs when the calling sequence allow such misaligned
3109 usages.
3111 In addition, the conversion may involve a call, which could
3112 clobber parameters which haven't been copied to pseudo
3113 registers yet.
3115 First, we try to emit an insn which performs the necessary
3116 conversion. We verify that this insn does not clobber any
3117 hard registers. */
3119 enum insn_code icode;
3120 rtx op0, op1;
3122 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3123 unsignedp);
3125 op0 = parmreg;
3126 op1 = validated_mem;
3127 if (icode != CODE_FOR_nothing
3128 && insn_operand_matches (icode, 0, op0)
3129 && insn_operand_matches (icode, 1, op1))
3131 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3132 rtx_insn *insn, *insns;
3133 rtx t = op1;
3134 HARD_REG_SET hardregs;
3136 start_sequence ();
3137 /* If op1 is a hard register that is likely spilled, first
3138 force it into a pseudo, otherwise combiner might extend
3139 its lifetime too much. */
3140 if (GET_CODE (t) == SUBREG)
3141 t = SUBREG_REG (t);
3142 if (REG_P (t)
3143 && HARD_REGISTER_P (t)
3144 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3145 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3147 t = gen_reg_rtx (GET_MODE (op1));
3148 emit_move_insn (t, op1);
3150 else
3151 t = op1;
3152 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3153 data->passed_mode, unsignedp);
3154 emit_insn (pat);
3155 insns = get_insns ();
3157 moved = true;
3158 CLEAR_HARD_REG_SET (hardregs);
3159 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3161 if (INSN_P (insn))
3162 note_stores (PATTERN (insn), record_hard_reg_sets,
3163 &hardregs);
3164 if (!hard_reg_set_empty_p (hardregs))
3165 moved = false;
3168 end_sequence ();
3170 if (moved)
3172 emit_insn (insns);
3173 if (equiv_stack_parm != NULL_RTX)
3174 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3175 equiv_stack_parm);
3180 if (moved)
3181 /* Nothing to do. */
3183 else if (need_conversion)
3185 /* We did not have an insn to convert directly, or the sequence
3186 generated appeared unsafe. We must first copy the parm to a
3187 pseudo reg, and save the conversion until after all
3188 parameters have been moved. */
3190 int save_tree_used;
3191 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3193 emit_move_insn (tempreg, validated_mem);
3195 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3196 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3198 if (GET_CODE (tempreg) == SUBREG
3199 && GET_MODE (tempreg) == data->nominal_mode
3200 && REG_P (SUBREG_REG (tempreg))
3201 && data->nominal_mode == data->passed_mode
3202 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3203 && GET_MODE_SIZE (GET_MODE (tempreg))
3204 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3206 /* The argument is already sign/zero extended, so note it
3207 into the subreg. */
3208 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3209 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3212 /* TREE_USED gets set erroneously during expand_assignment. */
3213 save_tree_used = TREE_USED (parm);
3214 SET_DECL_RTL (parm, rtl);
3215 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3216 SET_DECL_RTL (parm, NULL_RTX);
3217 TREE_USED (parm) = save_tree_used;
3218 all->first_conversion_insn = get_insns ();
3219 all->last_conversion_insn = get_last_insn ();
3220 end_sequence ();
3222 did_conversion = true;
3224 else
3225 emit_move_insn (parmreg, validated_mem);
3227 /* If we were passed a pointer but the actual value can safely live
3228 in a register, retrieve it and use it directly. */
3229 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3231 /* We can't use nominal_mode, because it will have been set to
3232 Pmode above. We must use the actual mode of the parm. */
3233 if (use_register_for_decl (parm))
3235 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3236 mark_user_reg (parmreg);
3238 else
3240 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3241 TYPE_MODE (TREE_TYPE (parm)),
3242 TYPE_ALIGN (TREE_TYPE (parm)));
3243 parmreg
3244 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3245 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3246 align);
3247 set_mem_attributes (parmreg, parm, 1);
3250 if (GET_MODE (parmreg) != GET_MODE (rtl))
3252 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3253 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3255 push_to_sequence2 (all->first_conversion_insn,
3256 all->last_conversion_insn);
3257 emit_move_insn (tempreg, rtl);
3258 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3259 emit_move_insn (parmreg, tempreg);
3260 all->first_conversion_insn = get_insns ();
3261 all->last_conversion_insn = get_last_insn ();
3262 end_sequence ();
3264 did_conversion = true;
3266 else
3267 emit_move_insn (parmreg, rtl);
3269 rtl = parmreg;
3271 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3272 now the parm. */
3273 data->stack_parm = NULL;
3276 set_parm_rtl (parm, rtl);
3278 /* Mark the register as eliminable if we did no conversion and it was
3279 copied from memory at a fixed offset, and the arg pointer was not
3280 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3281 offset formed an invalid address, such memory-equivalences as we
3282 make here would screw up life analysis for it. */
3283 if (data->nominal_mode == data->passed_mode
3284 && !did_conversion
3285 && data->stack_parm != 0
3286 && MEM_P (data->stack_parm)
3287 && data->locate.offset.var == 0
3288 && reg_mentioned_p (virtual_incoming_args_rtx,
3289 XEXP (data->stack_parm, 0)))
3291 rtx_insn *linsn = get_last_insn ();
3292 rtx_insn *sinsn;
3293 rtx set;
3295 /* Mark complex types separately. */
3296 if (GET_CODE (parmreg) == CONCAT)
3298 machine_mode submode
3299 = GET_MODE_INNER (GET_MODE (parmreg));
3300 int regnor = REGNO (XEXP (parmreg, 0));
3301 int regnoi = REGNO (XEXP (parmreg, 1));
3302 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3303 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3304 GET_MODE_SIZE (submode));
3306 /* Scan backwards for the set of the real and
3307 imaginary parts. */
3308 for (sinsn = linsn; sinsn != 0;
3309 sinsn = prev_nonnote_insn (sinsn))
3311 set = single_set (sinsn);
3312 if (set == 0)
3313 continue;
3315 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3316 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3317 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3318 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3321 else
3322 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3325 /* For pointer data type, suggest pointer register. */
3326 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3327 mark_reg_pointer (parmreg,
3328 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3331 /* A subroutine of assign_parms. Allocate stack space to hold the current
3332 parameter. Get it there. Perform all ABI specified conversions. */
3334 static void
3335 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3336 struct assign_parm_data_one *data)
3338 /* Value must be stored in the stack slot STACK_PARM during function
3339 execution. */
3340 bool to_conversion = false;
3342 assign_parm_remove_parallels (data);
3344 if (data->promoted_mode != data->nominal_mode)
3346 /* Conversion is required. */
3347 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3349 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3351 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3352 to_conversion = true;
3354 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3355 TYPE_UNSIGNED (TREE_TYPE (parm)));
3357 if (data->stack_parm)
3359 int offset = subreg_lowpart_offset (data->nominal_mode,
3360 GET_MODE (data->stack_parm));
3361 /* ??? This may need a big-endian conversion on sparc64. */
3362 data->stack_parm
3363 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3364 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3365 set_mem_offset (data->stack_parm,
3366 MEM_OFFSET (data->stack_parm) + offset);
3370 if (data->entry_parm != data->stack_parm)
3372 rtx src, dest;
3374 if (data->stack_parm == 0)
3376 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3377 GET_MODE (data->entry_parm),
3378 TYPE_ALIGN (data->passed_type));
3379 data->stack_parm
3380 = assign_stack_local (GET_MODE (data->entry_parm),
3381 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3382 align);
3383 set_mem_attributes (data->stack_parm, parm, 1);
3386 dest = validize_mem (copy_rtx (data->stack_parm));
3387 src = validize_mem (copy_rtx (data->entry_parm));
3389 if (MEM_P (src))
3391 /* Use a block move to handle potentially misaligned entry_parm. */
3392 if (!to_conversion)
3393 push_to_sequence2 (all->first_conversion_insn,
3394 all->last_conversion_insn);
3395 to_conversion = true;
3397 emit_block_move (dest, src,
3398 GEN_INT (int_size_in_bytes (data->passed_type)),
3399 BLOCK_OP_NORMAL);
3401 else
3402 emit_move_insn (dest, src);
3405 if (to_conversion)
3407 all->first_conversion_insn = get_insns ();
3408 all->last_conversion_insn = get_last_insn ();
3409 end_sequence ();
3412 set_parm_rtl (parm, data->stack_parm);
3415 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3416 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3418 static void
3419 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3420 vec<tree> fnargs)
3422 tree parm;
3423 tree orig_fnargs = all->orig_fnargs;
3424 unsigned i = 0;
3426 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3428 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3429 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3431 rtx tmp, real, imag;
3432 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3434 real = DECL_RTL (fnargs[i]);
3435 imag = DECL_RTL (fnargs[i + 1]);
3436 if (inner != GET_MODE (real))
3438 real = gen_lowpart_SUBREG (inner, real);
3439 imag = gen_lowpart_SUBREG (inner, imag);
3442 if (TREE_ADDRESSABLE (parm))
3444 rtx rmem, imem;
3445 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3446 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3447 DECL_MODE (parm),
3448 TYPE_ALIGN (TREE_TYPE (parm)));
3450 /* split_complex_arg put the real and imag parts in
3451 pseudos. Move them to memory. */
3452 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3453 set_mem_attributes (tmp, parm, 1);
3454 rmem = adjust_address_nv (tmp, inner, 0);
3455 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3456 push_to_sequence2 (all->first_conversion_insn,
3457 all->last_conversion_insn);
3458 emit_move_insn (rmem, real);
3459 emit_move_insn (imem, imag);
3460 all->first_conversion_insn = get_insns ();
3461 all->last_conversion_insn = get_last_insn ();
3462 end_sequence ();
3464 else
3465 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3466 set_parm_rtl (parm, tmp);
3468 real = DECL_INCOMING_RTL (fnargs[i]);
3469 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3470 if (inner != GET_MODE (real))
3472 real = gen_lowpart_SUBREG (inner, real);
3473 imag = gen_lowpart_SUBREG (inner, imag);
3475 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3476 set_decl_incoming_rtl (parm, tmp, false);
3477 i++;
3482 /* Load bounds of PARM from bounds table. */
3483 static void
3484 assign_parm_load_bounds (struct assign_parm_data_one *data,
3485 tree parm,
3486 rtx entry,
3487 unsigned bound_no)
3489 bitmap_iterator bi;
3490 unsigned i, offs = 0;
3491 int bnd_no = -1;
3492 rtx slot = NULL, ptr = NULL;
3494 if (parm)
3496 bitmap slots;
3497 bitmap_obstack_initialize (NULL);
3498 slots = BITMAP_ALLOC (NULL);
3499 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3500 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3502 if (bound_no)
3503 bound_no--;
3504 else
3506 bnd_no = i;
3507 break;
3510 BITMAP_FREE (slots);
3511 bitmap_obstack_release (NULL);
3514 /* We may have bounds not associated with any pointer. */
3515 if (bnd_no != -1)
3516 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3518 /* Find associated pointer. */
3519 if (bnd_no == -1)
3521 /* If bounds are not associated with any bounds,
3522 then it is passed in a register or special slot. */
3523 gcc_assert (data->entry_parm);
3524 ptr = const0_rtx;
3526 else if (MEM_P (entry))
3527 slot = adjust_address (entry, Pmode, offs);
3528 else if (REG_P (entry))
3529 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3530 else if (GET_CODE (entry) == PARALLEL)
3531 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3532 else
3533 gcc_unreachable ();
3534 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3535 data->entry_parm);
3538 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3540 static void
3541 assign_bounds (vec<bounds_parm_data> &bndargs,
3542 struct assign_parm_data_all &all,
3543 bool assign_regs, bool assign_special,
3544 bool assign_bt)
3546 unsigned i, pass;
3547 bounds_parm_data *pbdata;
3549 if (!bndargs.exists ())
3550 return;
3552 /* We make few passes to store input bounds. Firstly handle bounds
3553 passed in registers. After that we load bounds passed in special
3554 slots. Finally we load bounds from Bounds Table. */
3555 for (pass = 0; pass < 3; pass++)
3556 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3558 /* Pass 0 => regs only. */
3559 if (pass == 0
3560 && (!assign_regs
3561 ||(!pbdata->parm_data.entry_parm
3562 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3563 continue;
3564 /* Pass 1 => slots only. */
3565 else if (pass == 1
3566 && (!assign_special
3567 || (!pbdata->parm_data.entry_parm
3568 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3569 continue;
3570 /* Pass 2 => BT only. */
3571 else if (pass == 2
3572 && (!assign_bt
3573 || pbdata->parm_data.entry_parm))
3574 continue;
3576 if (!pbdata->parm_data.entry_parm
3577 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3578 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3579 pbdata->ptr_entry, pbdata->bound_no);
3581 set_decl_incoming_rtl (pbdata->bounds_parm,
3582 pbdata->parm_data.entry_parm, false);
3584 if (assign_parm_setup_block_p (&pbdata->parm_data))
3585 assign_parm_setup_block (&all, pbdata->bounds_parm,
3586 &pbdata->parm_data);
3587 else if (pbdata->parm_data.passed_pointer
3588 || use_register_for_decl (pbdata->bounds_parm))
3589 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3590 &pbdata->parm_data);
3591 else
3592 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3593 &pbdata->parm_data);
3597 /* Assign RTL expressions to the function's parameters. This may involve
3598 copying them into registers and using those registers as the DECL_RTL. */
3600 static void
3601 assign_parms (tree fndecl)
3603 struct assign_parm_data_all all;
3604 tree parm;
3605 vec<tree> fnargs;
3606 unsigned i, bound_no = 0;
3607 tree last_arg = NULL;
3608 rtx last_arg_entry = NULL;
3609 vec<bounds_parm_data> bndargs = vNULL;
3610 bounds_parm_data bdata;
3612 crtl->args.internal_arg_pointer
3613 = targetm.calls.internal_arg_pointer ();
3615 assign_parms_initialize_all (&all);
3616 fnargs = assign_parms_augmented_arg_list (&all);
3618 FOR_EACH_VEC_ELT (fnargs, i, parm)
3620 struct assign_parm_data_one data;
3622 /* Extract the type of PARM; adjust it according to ABI. */
3623 assign_parm_find_data_types (&all, parm, &data);
3625 /* Early out for errors and void parameters. */
3626 if (data.passed_mode == VOIDmode)
3628 SET_DECL_RTL (parm, const0_rtx);
3629 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3630 continue;
3633 /* Estimate stack alignment from parameter alignment. */
3634 if (SUPPORTS_STACK_ALIGNMENT)
3636 unsigned int align
3637 = targetm.calls.function_arg_boundary (data.promoted_mode,
3638 data.passed_type);
3639 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3640 align);
3641 if (TYPE_ALIGN (data.nominal_type) > align)
3642 align = MINIMUM_ALIGNMENT (data.nominal_type,
3643 TYPE_MODE (data.nominal_type),
3644 TYPE_ALIGN (data.nominal_type));
3645 if (crtl->stack_alignment_estimated < align)
3647 gcc_assert (!crtl->stack_realign_processed);
3648 crtl->stack_alignment_estimated = align;
3652 /* Find out where the parameter arrives in this function. */
3653 assign_parm_find_entry_rtl (&all, &data);
3655 /* Find out where stack space for this parameter might be. */
3656 if (assign_parm_is_stack_parm (&all, &data))
3658 assign_parm_find_stack_rtl (parm, &data);
3659 assign_parm_adjust_entry_rtl (&data);
3661 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3663 /* Remember where last non bounds arg was passed in case
3664 we have to load associated bounds for it from Bounds
3665 Table. */
3666 last_arg = parm;
3667 last_arg_entry = data.entry_parm;
3668 bound_no = 0;
3670 /* Record permanently how this parm was passed. */
3671 if (data.passed_pointer)
3673 rtx incoming_rtl
3674 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3675 data.entry_parm);
3676 set_decl_incoming_rtl (parm, incoming_rtl, true);
3678 else
3679 set_decl_incoming_rtl (parm, data.entry_parm, false);
3681 assign_parm_adjust_stack_rtl (&data);
3683 /* Bounds should be loaded in the particular order to
3684 have registers allocated correctly. Collect info about
3685 input bounds and load them later. */
3686 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3688 /* Expect bounds in instrumented functions only. */
3689 gcc_assert (chkp_function_instrumented_p (fndecl));
3691 bdata.parm_data = data;
3692 bdata.bounds_parm = parm;
3693 bdata.ptr_parm = last_arg;
3694 bdata.ptr_entry = last_arg_entry;
3695 bdata.bound_no = bound_no;
3696 bndargs.safe_push (bdata);
3698 else
3700 if (assign_parm_setup_block_p (&data))
3701 assign_parm_setup_block (&all, parm, &data);
3702 else if (data.passed_pointer || use_register_for_decl (parm))
3703 assign_parm_setup_reg (&all, parm, &data);
3704 else
3705 assign_parm_setup_stack (&all, parm, &data);
3708 if (cfun->stdarg && !DECL_CHAIN (parm))
3710 int pretend_bytes = 0;
3712 assign_parms_setup_varargs (&all, &data, false);
3714 if (chkp_function_instrumented_p (fndecl))
3716 /* We expect this is the last parm. Otherwise it is wrong
3717 to assign bounds right now. */
3718 gcc_assert (i == (fnargs.length () - 1));
3719 assign_bounds (bndargs, all, true, false, false);
3720 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3721 data.promoted_mode,
3722 data.passed_type,
3723 &pretend_bytes,
3724 false);
3725 assign_bounds (bndargs, all, false, true, true);
3726 bndargs.release ();
3730 /* Update info on where next arg arrives in registers. */
3731 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3732 data.passed_type, data.named_arg);
3734 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3735 bound_no++;
3738 assign_bounds (bndargs, all, true, true, true);
3739 bndargs.release ();
3741 if (targetm.calls.split_complex_arg)
3742 assign_parms_unsplit_complex (&all, fnargs);
3744 fnargs.release ();
3746 /* Output all parameter conversion instructions (possibly including calls)
3747 now that all parameters have been copied out of hard registers. */
3748 emit_insn (all.first_conversion_insn);
3750 /* Estimate reload stack alignment from scalar return mode. */
3751 if (SUPPORTS_STACK_ALIGNMENT)
3753 if (DECL_RESULT (fndecl))
3755 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3756 machine_mode mode = TYPE_MODE (type);
3758 if (mode != BLKmode
3759 && mode != VOIDmode
3760 && !AGGREGATE_TYPE_P (type))
3762 unsigned int align = GET_MODE_ALIGNMENT (mode);
3763 if (crtl->stack_alignment_estimated < align)
3765 gcc_assert (!crtl->stack_realign_processed);
3766 crtl->stack_alignment_estimated = align;
3772 /* If we are receiving a struct value address as the first argument, set up
3773 the RTL for the function result. As this might require code to convert
3774 the transmitted address to Pmode, we do this here to ensure that possible
3775 preliminary conversions of the address have been emitted already. */
3776 if (all.function_result_decl)
3778 tree result = DECL_RESULT (current_function_decl);
3779 rtx addr = DECL_RTL (all.function_result_decl);
3780 rtx x;
3782 if (DECL_BY_REFERENCE (result))
3784 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3785 x = addr;
3787 else
3789 SET_DECL_VALUE_EXPR (result,
3790 build1 (INDIRECT_REF, TREE_TYPE (result),
3791 all.function_result_decl));
3792 addr = convert_memory_address (Pmode, addr);
3793 x = gen_rtx_MEM (DECL_MODE (result), addr);
3794 set_mem_attributes (x, result, 1);
3797 DECL_HAS_VALUE_EXPR_P (result) = 1;
3799 set_parm_rtl (result, x);
3802 /* We have aligned all the args, so add space for the pretend args. */
3803 crtl->args.pretend_args_size = all.pretend_args_size;
3804 all.stack_args_size.constant += all.extra_pretend_bytes;
3805 crtl->args.size = all.stack_args_size.constant;
3807 /* Adjust function incoming argument size for alignment and
3808 minimum length. */
3810 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3811 crtl->args.size = CEIL_ROUND (crtl->args.size,
3812 PARM_BOUNDARY / BITS_PER_UNIT);
3814 if (ARGS_GROW_DOWNWARD)
3816 crtl->args.arg_offset_rtx
3817 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3818 : expand_expr (size_diffop (all.stack_args_size.var,
3819 size_int (-all.stack_args_size.constant)),
3820 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3822 else
3823 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3825 /* See how many bytes, if any, of its args a function should try to pop
3826 on return. */
3828 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3829 TREE_TYPE (fndecl),
3830 crtl->args.size);
3832 /* For stdarg.h function, save info about
3833 regs and stack space used by the named args. */
3835 crtl->args.info = all.args_so_far_v;
3837 /* Set the rtx used for the function return value. Put this in its
3838 own variable so any optimizers that need this information don't have
3839 to include tree.h. Do this here so it gets done when an inlined
3840 function gets output. */
3842 crtl->return_rtx
3843 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3844 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3846 /* If scalar return value was computed in a pseudo-reg, or was a named
3847 return value that got dumped to the stack, copy that to the hard
3848 return register. */
3849 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3851 tree decl_result = DECL_RESULT (fndecl);
3852 rtx decl_rtl = DECL_RTL (decl_result);
3854 if (REG_P (decl_rtl)
3855 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3856 : DECL_REGISTER (decl_result))
3858 rtx real_decl_rtl;
3860 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3861 fndecl, true);
3862 if (chkp_function_instrumented_p (fndecl))
3863 crtl->return_bnd
3864 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3865 fndecl, true);
3866 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3867 /* The delay slot scheduler assumes that crtl->return_rtx
3868 holds the hard register containing the return value, not a
3869 temporary pseudo. */
3870 crtl->return_rtx = real_decl_rtl;
3875 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3876 For all seen types, gimplify their sizes. */
3878 static tree
3879 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3881 tree t = *tp;
3883 *walk_subtrees = 0;
3884 if (TYPE_P (t))
3886 if (POINTER_TYPE_P (t))
3887 *walk_subtrees = 1;
3888 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3889 && !TYPE_SIZES_GIMPLIFIED (t))
3891 gimplify_type_sizes (t, (gimple_seq *) data);
3892 *walk_subtrees = 1;
3896 return NULL;
3899 /* Gimplify the parameter list for current_function_decl. This involves
3900 evaluating SAVE_EXPRs of variable sized parameters and generating code
3901 to implement callee-copies reference parameters. Returns a sequence of
3902 statements to add to the beginning of the function. */
3904 gimple_seq
3905 gimplify_parameters (void)
3907 struct assign_parm_data_all all;
3908 tree parm;
3909 gimple_seq stmts = NULL;
3910 vec<tree> fnargs;
3911 unsigned i;
3913 assign_parms_initialize_all (&all);
3914 fnargs = assign_parms_augmented_arg_list (&all);
3916 FOR_EACH_VEC_ELT (fnargs, i, parm)
3918 struct assign_parm_data_one data;
3920 /* Extract the type of PARM; adjust it according to ABI. */
3921 assign_parm_find_data_types (&all, parm, &data);
3923 /* Early out for errors and void parameters. */
3924 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3925 continue;
3927 /* Update info on where next arg arrives in registers. */
3928 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3929 data.passed_type, data.named_arg);
3931 /* ??? Once upon a time variable_size stuffed parameter list
3932 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3933 turned out to be less than manageable in the gimple world.
3934 Now we have to hunt them down ourselves. */
3935 walk_tree_without_duplicates (&data.passed_type,
3936 gimplify_parm_type, &stmts);
3938 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3940 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3941 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3944 if (data.passed_pointer)
3946 tree type = TREE_TYPE (data.passed_type);
3947 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3948 type, data.named_arg))
3950 tree local, t;
3952 /* For constant-sized objects, this is trivial; for
3953 variable-sized objects, we have to play games. */
3954 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3955 && !(flag_stack_check == GENERIC_STACK_CHECK
3956 && compare_tree_int (DECL_SIZE_UNIT (parm),
3957 STACK_CHECK_MAX_VAR_SIZE) > 0))
3959 local = create_tmp_var (type, get_name (parm));
3960 DECL_IGNORED_P (local) = 0;
3961 /* If PARM was addressable, move that flag over
3962 to the local copy, as its address will be taken,
3963 not the PARMs. Keep the parms address taken
3964 as we'll query that flag during gimplification. */
3965 if (TREE_ADDRESSABLE (parm))
3966 TREE_ADDRESSABLE (local) = 1;
3967 else if (TREE_CODE (type) == COMPLEX_TYPE
3968 || TREE_CODE (type) == VECTOR_TYPE)
3969 DECL_GIMPLE_REG_P (local) = 1;
3971 else
3973 tree ptr_type, addr;
3975 ptr_type = build_pointer_type (type);
3976 addr = create_tmp_reg (ptr_type, get_name (parm));
3977 DECL_IGNORED_P (addr) = 0;
3978 local = build_fold_indirect_ref (addr);
3980 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3981 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3982 size_int (DECL_ALIGN (parm)));
3984 /* The call has been built for a variable-sized object. */
3985 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3986 t = fold_convert (ptr_type, t);
3987 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3988 gimplify_and_add (t, &stmts);
3991 gimplify_assign (local, parm, &stmts);
3993 SET_DECL_VALUE_EXPR (parm, local);
3994 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3999 fnargs.release ();
4001 return stmts;
4004 /* Compute the size and offset from the start of the stacked arguments for a
4005 parm passed in mode PASSED_MODE and with type TYPE.
4007 INITIAL_OFFSET_PTR points to the current offset into the stacked
4008 arguments.
4010 The starting offset and size for this parm are returned in
4011 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4012 nonzero, the offset is that of stack slot, which is returned in
4013 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4014 padding required from the initial offset ptr to the stack slot.
4016 IN_REGS is nonzero if the argument will be passed in registers. It will
4017 never be set if REG_PARM_STACK_SPACE is not defined.
4019 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4020 for arguments which are passed in registers.
4022 FNDECL is the function in which the argument was defined.
4024 There are two types of rounding that are done. The first, controlled by
4025 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4026 argument list to be aligned to the specific boundary (in bits). This
4027 rounding affects the initial and starting offsets, but not the argument
4028 size.
4030 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4031 optionally rounds the size of the parm to PARM_BOUNDARY. The
4032 initial offset is not affected by this rounding, while the size always
4033 is and the starting offset may be. */
4035 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4036 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4037 callers pass in the total size of args so far as
4038 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4040 void
4041 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4042 int reg_parm_stack_space, int partial,
4043 tree fndecl ATTRIBUTE_UNUSED,
4044 struct args_size *initial_offset_ptr,
4045 struct locate_and_pad_arg_data *locate)
4047 tree sizetree;
4048 enum direction where_pad;
4049 unsigned int boundary, round_boundary;
4050 int part_size_in_regs;
4052 /* If we have found a stack parm before we reach the end of the
4053 area reserved for registers, skip that area. */
4054 if (! in_regs)
4056 if (reg_parm_stack_space > 0)
4058 if (initial_offset_ptr->var)
4060 initial_offset_ptr->var
4061 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4062 ssize_int (reg_parm_stack_space));
4063 initial_offset_ptr->constant = 0;
4065 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4066 initial_offset_ptr->constant = reg_parm_stack_space;
4070 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4072 sizetree
4073 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4074 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4075 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4076 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4077 type);
4078 locate->where_pad = where_pad;
4080 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4081 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4082 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4084 locate->boundary = boundary;
4086 if (SUPPORTS_STACK_ALIGNMENT)
4088 /* stack_alignment_estimated can't change after stack has been
4089 realigned. */
4090 if (crtl->stack_alignment_estimated < boundary)
4092 if (!crtl->stack_realign_processed)
4093 crtl->stack_alignment_estimated = boundary;
4094 else
4096 /* If stack is realigned and stack alignment value
4097 hasn't been finalized, it is OK not to increase
4098 stack_alignment_estimated. The bigger alignment
4099 requirement is recorded in stack_alignment_needed
4100 below. */
4101 gcc_assert (!crtl->stack_realign_finalized
4102 && crtl->stack_realign_needed);
4107 /* Remember if the outgoing parameter requires extra alignment on the
4108 calling function side. */
4109 if (crtl->stack_alignment_needed < boundary)
4110 crtl->stack_alignment_needed = boundary;
4111 if (crtl->preferred_stack_boundary < boundary)
4112 crtl->preferred_stack_boundary = boundary;
4114 if (ARGS_GROW_DOWNWARD)
4116 locate->slot_offset.constant = -initial_offset_ptr->constant;
4117 if (initial_offset_ptr->var)
4118 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4119 initial_offset_ptr->var);
4122 tree s2 = sizetree;
4123 if (where_pad != none
4124 && (!tree_fits_uhwi_p (sizetree)
4125 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4126 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4127 SUB_PARM_SIZE (locate->slot_offset, s2);
4130 locate->slot_offset.constant += part_size_in_regs;
4132 if (!in_regs || reg_parm_stack_space > 0)
4133 pad_to_arg_alignment (&locate->slot_offset, boundary,
4134 &locate->alignment_pad);
4136 locate->size.constant = (-initial_offset_ptr->constant
4137 - locate->slot_offset.constant);
4138 if (initial_offset_ptr->var)
4139 locate->size.var = size_binop (MINUS_EXPR,
4140 size_binop (MINUS_EXPR,
4141 ssize_int (0),
4142 initial_offset_ptr->var),
4143 locate->slot_offset.var);
4145 /* Pad_below needs the pre-rounded size to know how much to pad
4146 below. */
4147 locate->offset = locate->slot_offset;
4148 if (where_pad == downward)
4149 pad_below (&locate->offset, passed_mode, sizetree);
4152 else
4154 if (!in_regs || reg_parm_stack_space > 0)
4155 pad_to_arg_alignment (initial_offset_ptr, boundary,
4156 &locate->alignment_pad);
4157 locate->slot_offset = *initial_offset_ptr;
4159 #ifdef PUSH_ROUNDING
4160 if (passed_mode != BLKmode)
4161 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4162 #endif
4164 /* Pad_below needs the pre-rounded size to know how much to pad below
4165 so this must be done before rounding up. */
4166 locate->offset = locate->slot_offset;
4167 if (where_pad == downward)
4168 pad_below (&locate->offset, passed_mode, sizetree);
4170 if (where_pad != none
4171 && (!tree_fits_uhwi_p (sizetree)
4172 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4173 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4175 ADD_PARM_SIZE (locate->size, sizetree);
4177 locate->size.constant -= part_size_in_regs;
4180 #ifdef FUNCTION_ARG_OFFSET
4181 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4182 #endif
4185 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4186 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4188 static void
4189 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4190 struct args_size *alignment_pad)
4192 tree save_var = NULL_TREE;
4193 HOST_WIDE_INT save_constant = 0;
4194 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4195 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4197 #ifdef SPARC_STACK_BOUNDARY_HACK
4198 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4199 the real alignment of %sp. However, when it does this, the
4200 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4201 if (SPARC_STACK_BOUNDARY_HACK)
4202 sp_offset = 0;
4203 #endif
4205 if (boundary > PARM_BOUNDARY)
4207 save_var = offset_ptr->var;
4208 save_constant = offset_ptr->constant;
4211 alignment_pad->var = NULL_TREE;
4212 alignment_pad->constant = 0;
4214 if (boundary > BITS_PER_UNIT)
4216 if (offset_ptr->var)
4218 tree sp_offset_tree = ssize_int (sp_offset);
4219 tree offset = size_binop (PLUS_EXPR,
4220 ARGS_SIZE_TREE (*offset_ptr),
4221 sp_offset_tree);
4222 tree rounded;
4223 if (ARGS_GROW_DOWNWARD)
4224 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4225 else
4226 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4228 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4229 /* ARGS_SIZE_TREE includes constant term. */
4230 offset_ptr->constant = 0;
4231 if (boundary > PARM_BOUNDARY)
4232 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4233 save_var);
4235 else
4237 offset_ptr->constant = -sp_offset +
4238 (ARGS_GROW_DOWNWARD
4239 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4240 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4242 if (boundary > PARM_BOUNDARY)
4243 alignment_pad->constant = offset_ptr->constant - save_constant;
4248 static void
4249 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4251 if (passed_mode != BLKmode)
4253 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4254 offset_ptr->constant
4255 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4256 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4257 - GET_MODE_SIZE (passed_mode));
4259 else
4261 if (TREE_CODE (sizetree) != INTEGER_CST
4262 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4264 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4265 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4266 /* Add it in. */
4267 ADD_PARM_SIZE (*offset_ptr, s2);
4268 SUB_PARM_SIZE (*offset_ptr, sizetree);
4274 /* True if register REGNO was alive at a place where `setjmp' was
4275 called and was set more than once or is an argument. Such regs may
4276 be clobbered by `longjmp'. */
4278 static bool
4279 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4281 /* There appear to be cases where some local vars never reach the
4282 backend but have bogus regnos. */
4283 if (regno >= max_reg_num ())
4284 return false;
4286 return ((REG_N_SETS (regno) > 1
4287 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4288 regno))
4289 && REGNO_REG_SET_P (setjmp_crosses, regno));
4292 /* Walk the tree of blocks describing the binding levels within a
4293 function and warn about variables the might be killed by setjmp or
4294 vfork. This is done after calling flow_analysis before register
4295 allocation since that will clobber the pseudo-regs to hard
4296 regs. */
4298 static void
4299 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4301 tree decl, sub;
4303 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4305 if (TREE_CODE (decl) == VAR_DECL
4306 && DECL_RTL_SET_P (decl)
4307 && REG_P (DECL_RTL (decl))
4308 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4309 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4310 " %<longjmp%> or %<vfork%>", decl);
4313 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4314 setjmp_vars_warning (setjmp_crosses, sub);
4317 /* Do the appropriate part of setjmp_vars_warning
4318 but for arguments instead of local variables. */
4320 static void
4321 setjmp_args_warning (bitmap setjmp_crosses)
4323 tree decl;
4324 for (decl = DECL_ARGUMENTS (current_function_decl);
4325 decl; decl = DECL_CHAIN (decl))
4326 if (DECL_RTL (decl) != 0
4327 && REG_P (DECL_RTL (decl))
4328 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4329 warning (OPT_Wclobbered,
4330 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4331 decl);
4334 /* Generate warning messages for variables live across setjmp. */
4336 void
4337 generate_setjmp_warnings (void)
4339 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4341 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4342 || bitmap_empty_p (setjmp_crosses))
4343 return;
4345 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4346 setjmp_args_warning (setjmp_crosses);
4350 /* Reverse the order of elements in the fragment chain T of blocks,
4351 and return the new head of the chain (old last element).
4352 In addition to that clear BLOCK_SAME_RANGE flags when needed
4353 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4354 its super fragment origin. */
4356 static tree
4357 block_fragments_nreverse (tree t)
4359 tree prev = 0, block, next, prev_super = 0;
4360 tree super = BLOCK_SUPERCONTEXT (t);
4361 if (BLOCK_FRAGMENT_ORIGIN (super))
4362 super = BLOCK_FRAGMENT_ORIGIN (super);
4363 for (block = t; block; block = next)
4365 next = BLOCK_FRAGMENT_CHAIN (block);
4366 BLOCK_FRAGMENT_CHAIN (block) = prev;
4367 if ((prev && !BLOCK_SAME_RANGE (prev))
4368 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4369 != prev_super))
4370 BLOCK_SAME_RANGE (block) = 0;
4371 prev_super = BLOCK_SUPERCONTEXT (block);
4372 BLOCK_SUPERCONTEXT (block) = super;
4373 prev = block;
4375 t = BLOCK_FRAGMENT_ORIGIN (t);
4376 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4377 != prev_super)
4378 BLOCK_SAME_RANGE (t) = 0;
4379 BLOCK_SUPERCONTEXT (t) = super;
4380 return prev;
4383 /* Reverse the order of elements in the chain T of blocks,
4384 and return the new head of the chain (old last element).
4385 Also do the same on subblocks and reverse the order of elements
4386 in BLOCK_FRAGMENT_CHAIN as well. */
4388 static tree
4389 blocks_nreverse_all (tree t)
4391 tree prev = 0, block, next;
4392 for (block = t; block; block = next)
4394 next = BLOCK_CHAIN (block);
4395 BLOCK_CHAIN (block) = prev;
4396 if (BLOCK_FRAGMENT_CHAIN (block)
4397 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4399 BLOCK_FRAGMENT_CHAIN (block)
4400 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4401 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4402 BLOCK_SAME_RANGE (block) = 0;
4404 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4405 prev = block;
4407 return prev;
4411 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4412 and create duplicate blocks. */
4413 /* ??? Need an option to either create block fragments or to create
4414 abstract origin duplicates of a source block. It really depends
4415 on what optimization has been performed. */
4417 void
4418 reorder_blocks (void)
4420 tree block = DECL_INITIAL (current_function_decl);
4422 if (block == NULL_TREE)
4423 return;
4425 auto_vec<tree, 10> block_stack;
4427 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4428 clear_block_marks (block);
4430 /* Prune the old trees away, so that they don't get in the way. */
4431 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4432 BLOCK_CHAIN (block) = NULL_TREE;
4434 /* Recreate the block tree from the note nesting. */
4435 reorder_blocks_1 (get_insns (), block, &block_stack);
4436 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4439 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4441 void
4442 clear_block_marks (tree block)
4444 while (block)
4446 TREE_ASM_WRITTEN (block) = 0;
4447 clear_block_marks (BLOCK_SUBBLOCKS (block));
4448 block = BLOCK_CHAIN (block);
4452 static void
4453 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4454 vec<tree> *p_block_stack)
4456 rtx_insn *insn;
4457 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4459 for (insn = insns; insn; insn = NEXT_INSN (insn))
4461 if (NOTE_P (insn))
4463 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4465 tree block = NOTE_BLOCK (insn);
4466 tree origin;
4468 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4469 origin = block;
4471 if (prev_end)
4472 BLOCK_SAME_RANGE (prev_end) = 0;
4473 prev_end = NULL_TREE;
4475 /* If we have seen this block before, that means it now
4476 spans multiple address regions. Create a new fragment. */
4477 if (TREE_ASM_WRITTEN (block))
4479 tree new_block = copy_node (block);
4481 BLOCK_SAME_RANGE (new_block) = 0;
4482 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4483 BLOCK_FRAGMENT_CHAIN (new_block)
4484 = BLOCK_FRAGMENT_CHAIN (origin);
4485 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4487 NOTE_BLOCK (insn) = new_block;
4488 block = new_block;
4491 if (prev_beg == current_block && prev_beg)
4492 BLOCK_SAME_RANGE (block) = 1;
4494 prev_beg = origin;
4496 BLOCK_SUBBLOCKS (block) = 0;
4497 TREE_ASM_WRITTEN (block) = 1;
4498 /* When there's only one block for the entire function,
4499 current_block == block and we mustn't do this, it
4500 will cause infinite recursion. */
4501 if (block != current_block)
4503 tree super;
4504 if (block != origin)
4505 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4506 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4507 (origin))
4508 == current_block);
4509 if (p_block_stack->is_empty ())
4510 super = current_block;
4511 else
4513 super = p_block_stack->last ();
4514 gcc_assert (super == current_block
4515 || BLOCK_FRAGMENT_ORIGIN (super)
4516 == current_block);
4518 BLOCK_SUPERCONTEXT (block) = super;
4519 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4520 BLOCK_SUBBLOCKS (current_block) = block;
4521 current_block = origin;
4523 p_block_stack->safe_push (block);
4525 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4527 NOTE_BLOCK (insn) = p_block_stack->pop ();
4528 current_block = BLOCK_SUPERCONTEXT (current_block);
4529 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4530 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4531 prev_beg = NULL_TREE;
4532 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4533 ? NOTE_BLOCK (insn) : NULL_TREE;
4536 else
4538 prev_beg = NULL_TREE;
4539 if (prev_end)
4540 BLOCK_SAME_RANGE (prev_end) = 0;
4541 prev_end = NULL_TREE;
4546 /* Reverse the order of elements in the chain T of blocks,
4547 and return the new head of the chain (old last element). */
4549 tree
4550 blocks_nreverse (tree t)
4552 tree prev = 0, block, next;
4553 for (block = t; block; block = next)
4555 next = BLOCK_CHAIN (block);
4556 BLOCK_CHAIN (block) = prev;
4557 prev = block;
4559 return prev;
4562 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4563 by modifying the last node in chain 1 to point to chain 2. */
4565 tree
4566 block_chainon (tree op1, tree op2)
4568 tree t1;
4570 if (!op1)
4571 return op2;
4572 if (!op2)
4573 return op1;
4575 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4576 continue;
4577 BLOCK_CHAIN (t1) = op2;
4579 #ifdef ENABLE_TREE_CHECKING
4581 tree t2;
4582 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4583 gcc_assert (t2 != t1);
4585 #endif
4587 return op1;
4590 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4591 non-NULL, list them all into VECTOR, in a depth-first preorder
4592 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4593 blocks. */
4595 static int
4596 all_blocks (tree block, tree *vector)
4598 int n_blocks = 0;
4600 while (block)
4602 TREE_ASM_WRITTEN (block) = 0;
4604 /* Record this block. */
4605 if (vector)
4606 vector[n_blocks] = block;
4608 ++n_blocks;
4610 /* Record the subblocks, and their subblocks... */
4611 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4612 vector ? vector + n_blocks : 0);
4613 block = BLOCK_CHAIN (block);
4616 return n_blocks;
4619 /* Return a vector containing all the blocks rooted at BLOCK. The
4620 number of elements in the vector is stored in N_BLOCKS_P. The
4621 vector is dynamically allocated; it is the caller's responsibility
4622 to call `free' on the pointer returned. */
4624 static tree *
4625 get_block_vector (tree block, int *n_blocks_p)
4627 tree *block_vector;
4629 *n_blocks_p = all_blocks (block, NULL);
4630 block_vector = XNEWVEC (tree, *n_blocks_p);
4631 all_blocks (block, block_vector);
4633 return block_vector;
4636 static GTY(()) int next_block_index = 2;
4638 /* Set BLOCK_NUMBER for all the blocks in FN. */
4640 void
4641 number_blocks (tree fn)
4643 int i;
4644 int n_blocks;
4645 tree *block_vector;
4647 /* For SDB and XCOFF debugging output, we start numbering the blocks
4648 from 1 within each function, rather than keeping a running
4649 count. */
4650 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4651 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4652 next_block_index = 1;
4653 #endif
4655 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4657 /* The top-level BLOCK isn't numbered at all. */
4658 for (i = 1; i < n_blocks; ++i)
4659 /* We number the blocks from two. */
4660 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4662 free (block_vector);
4664 return;
4667 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4669 DEBUG_FUNCTION tree
4670 debug_find_var_in_block_tree (tree var, tree block)
4672 tree t;
4674 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4675 if (t == var)
4676 return block;
4678 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4680 tree ret = debug_find_var_in_block_tree (var, t);
4681 if (ret)
4682 return ret;
4685 return NULL_TREE;
4688 /* Keep track of whether we're in a dummy function context. If we are,
4689 we don't want to invoke the set_current_function hook, because we'll
4690 get into trouble if the hook calls target_reinit () recursively or
4691 when the initial initialization is not yet complete. */
4693 static bool in_dummy_function;
4695 /* Invoke the target hook when setting cfun. Update the optimization options
4696 if the function uses different options than the default. */
4698 static void
4699 invoke_set_current_function_hook (tree fndecl)
4701 if (!in_dummy_function)
4703 tree opts = ((fndecl)
4704 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4705 : optimization_default_node);
4707 if (!opts)
4708 opts = optimization_default_node;
4710 /* Change optimization options if needed. */
4711 if (optimization_current_node != opts)
4713 optimization_current_node = opts;
4714 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4717 targetm.set_current_function (fndecl);
4718 this_fn_optabs = this_target_optabs;
4720 if (opts != optimization_default_node)
4722 init_tree_optimization_optabs (opts);
4723 if (TREE_OPTIMIZATION_OPTABS (opts))
4724 this_fn_optabs = (struct target_optabs *)
4725 TREE_OPTIMIZATION_OPTABS (opts);
4730 /* cfun should never be set directly; use this function. */
4732 void
4733 set_cfun (struct function *new_cfun)
4735 if (cfun != new_cfun)
4737 cfun = new_cfun;
4738 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4742 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4744 static vec<function *> cfun_stack;
4746 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4747 current_function_decl accordingly. */
4749 void
4750 push_cfun (struct function *new_cfun)
4752 gcc_assert ((!cfun && !current_function_decl)
4753 || (cfun && current_function_decl == cfun->decl));
4754 cfun_stack.safe_push (cfun);
4755 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4756 set_cfun (new_cfun);
4759 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4761 void
4762 pop_cfun (void)
4764 struct function *new_cfun = cfun_stack.pop ();
4765 /* When in_dummy_function, we do have a cfun but current_function_decl is
4766 NULL. We also allow pushing NULL cfun and subsequently changing
4767 current_function_decl to something else and have both restored by
4768 pop_cfun. */
4769 gcc_checking_assert (in_dummy_function
4770 || !cfun
4771 || current_function_decl == cfun->decl);
4772 set_cfun (new_cfun);
4773 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4776 /* Return value of funcdef and increase it. */
4778 get_next_funcdef_no (void)
4780 return funcdef_no++;
4783 /* Return value of funcdef. */
4785 get_last_funcdef_no (void)
4787 return funcdef_no;
4790 /* Allocate a function structure for FNDECL and set its contents
4791 to the defaults. Set cfun to the newly-allocated object.
4792 Some of the helper functions invoked during initialization assume
4793 that cfun has already been set. Therefore, assign the new object
4794 directly into cfun and invoke the back end hook explicitly at the
4795 very end, rather than initializing a temporary and calling set_cfun
4796 on it.
4798 ABSTRACT_P is true if this is a function that will never be seen by
4799 the middle-end. Such functions are front-end concepts (like C++
4800 function templates) that do not correspond directly to functions
4801 placed in object files. */
4803 void
4804 allocate_struct_function (tree fndecl, bool abstract_p)
4806 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4808 cfun = ggc_cleared_alloc<function> ();
4810 init_eh_for_function ();
4812 if (init_machine_status)
4813 cfun->machine = (*init_machine_status) ();
4815 #ifdef OVERRIDE_ABI_FORMAT
4816 OVERRIDE_ABI_FORMAT (fndecl);
4817 #endif
4819 if (fndecl != NULL_TREE)
4821 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4822 cfun->decl = fndecl;
4823 current_function_funcdef_no = get_next_funcdef_no ();
4826 invoke_set_current_function_hook (fndecl);
4828 if (fndecl != NULL_TREE)
4830 tree result = DECL_RESULT (fndecl);
4832 if (!abstract_p)
4834 /* Now that we have activated any function-specific attributes
4835 that might affect layout, particularly vector modes, relayout
4836 each of the parameters and the result. */
4837 relayout_decl (result);
4838 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4839 parm = DECL_CHAIN (parm))
4840 relayout_decl (parm);
4842 /* Similarly relayout the function decl. */
4843 targetm.target_option.relayout_function (fndecl);
4846 if (!abstract_p && aggregate_value_p (result, fndecl))
4848 #ifdef PCC_STATIC_STRUCT_RETURN
4849 cfun->returns_pcc_struct = 1;
4850 #endif
4851 cfun->returns_struct = 1;
4854 cfun->stdarg = stdarg_p (fntype);
4856 /* Assume all registers in stdarg functions need to be saved. */
4857 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4858 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4860 /* ??? This could be set on a per-function basis by the front-end
4861 but is this worth the hassle? */
4862 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4863 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4865 if (!profile_flag && !flag_instrument_function_entry_exit)
4866 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4870 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4871 instead of just setting it. */
4873 void
4874 push_struct_function (tree fndecl)
4876 /* When in_dummy_function we might be in the middle of a pop_cfun and
4877 current_function_decl and cfun may not match. */
4878 gcc_assert (in_dummy_function
4879 || (!cfun && !current_function_decl)
4880 || (cfun && current_function_decl == cfun->decl));
4881 cfun_stack.safe_push (cfun);
4882 current_function_decl = fndecl;
4883 allocate_struct_function (fndecl, false);
4886 /* Reset crtl and other non-struct-function variables to defaults as
4887 appropriate for emitting rtl at the start of a function. */
4889 static void
4890 prepare_function_start (void)
4892 gcc_assert (!get_last_insn ());
4893 init_temp_slots ();
4894 init_emit ();
4895 init_varasm_status ();
4896 init_expr ();
4897 default_rtl_profile ();
4899 if (flag_stack_usage_info)
4901 cfun->su = ggc_cleared_alloc<stack_usage> ();
4902 cfun->su->static_stack_size = -1;
4905 cse_not_expected = ! optimize;
4907 /* Caller save not needed yet. */
4908 caller_save_needed = 0;
4910 /* We haven't done register allocation yet. */
4911 reg_renumber = 0;
4913 /* Indicate that we have not instantiated virtual registers yet. */
4914 virtuals_instantiated = 0;
4916 /* Indicate that we want CONCATs now. */
4917 generating_concat_p = 1;
4919 /* Indicate we have no need of a frame pointer yet. */
4920 frame_pointer_needed = 0;
4923 void
4924 push_dummy_function (bool with_decl)
4926 tree fn_decl, fn_type, fn_result_decl;
4928 gcc_assert (!in_dummy_function);
4929 in_dummy_function = true;
4931 if (with_decl)
4933 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4934 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4935 fn_type);
4936 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4937 NULL_TREE, void_type_node);
4938 DECL_RESULT (fn_decl) = fn_result_decl;
4940 else
4941 fn_decl = NULL_TREE;
4943 push_struct_function (fn_decl);
4946 /* Initialize the rtl expansion mechanism so that we can do simple things
4947 like generate sequences. This is used to provide a context during global
4948 initialization of some passes. You must call expand_dummy_function_end
4949 to exit this context. */
4951 void
4952 init_dummy_function_start (void)
4954 push_dummy_function (false);
4955 prepare_function_start ();
4958 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4959 and initialize static variables for generating RTL for the statements
4960 of the function. */
4962 void
4963 init_function_start (tree subr)
4965 if (subr && DECL_STRUCT_FUNCTION (subr))
4966 set_cfun (DECL_STRUCT_FUNCTION (subr));
4967 else
4968 allocate_struct_function (subr, false);
4970 /* Initialize backend, if needed. */
4971 initialize_rtl ();
4973 prepare_function_start ();
4974 decide_function_section (subr);
4976 /* Warn if this value is an aggregate type,
4977 regardless of which calling convention we are using for it. */
4978 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4979 warning (OPT_Waggregate_return, "function returns an aggregate");
4982 /* Expand code to verify the stack_protect_guard. This is invoked at
4983 the end of a function to be protected. */
4985 void
4986 stack_protect_epilogue (void)
4988 tree guard_decl = targetm.stack_protect_guard ();
4989 rtx_code_label *label = gen_label_rtx ();
4990 rtx x, y;
4991 rtx_insn *seq;
4993 x = expand_normal (crtl->stack_protect_guard);
4994 y = expand_normal (guard_decl);
4996 /* Allow the target to compare Y with X without leaking either into
4997 a register. */
4998 if (targetm.have_stack_protect_test ()
4999 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
5000 emit_insn (seq);
5001 else
5002 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5004 /* The noreturn predictor has been moved to the tree level. The rtl-level
5005 predictors estimate this branch about 20%, which isn't enough to get
5006 things moved out of line. Since this is the only extant case of adding
5007 a noreturn function at the rtl level, it doesn't seem worth doing ought
5008 except adding the prediction by hand. */
5009 rtx_insn *tmp = get_last_insn ();
5010 if (JUMP_P (tmp))
5011 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5013 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5014 free_temp_slots ();
5015 emit_label (label);
5018 /* Start the RTL for a new function, and set variables used for
5019 emitting RTL.
5020 SUBR is the FUNCTION_DECL node.
5021 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5022 the function's parameters, which must be run at any return statement. */
5024 void
5025 expand_function_start (tree subr)
5027 /* Make sure volatile mem refs aren't considered
5028 valid operands of arithmetic insns. */
5029 init_recog_no_volatile ();
5031 crtl->profile
5032 = (profile_flag
5033 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5035 crtl->limit_stack
5036 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5038 /* Make the label for return statements to jump to. Do not special
5039 case machines with special return instructions -- they will be
5040 handled later during jump, ifcvt, or epilogue creation. */
5041 return_label = gen_label_rtx ();
5043 /* Initialize rtx used to return the value. */
5044 /* Do this before assign_parms so that we copy the struct value address
5045 before any library calls that assign parms might generate. */
5047 /* Decide whether to return the value in memory or in a register. */
5048 tree res = DECL_RESULT (subr);
5049 if (aggregate_value_p (res, subr))
5051 /* Returning something that won't go in a register. */
5052 rtx value_address = 0;
5054 #ifdef PCC_STATIC_STRUCT_RETURN
5055 if (cfun->returns_pcc_struct)
5057 int size = int_size_in_bytes (TREE_TYPE (res));
5058 value_address = assemble_static_space (size);
5060 else
5061 #endif
5063 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5064 /* Expect to be passed the address of a place to store the value.
5065 If it is passed as an argument, assign_parms will take care of
5066 it. */
5067 if (sv)
5069 value_address = gen_reg_rtx (Pmode);
5070 emit_move_insn (value_address, sv);
5073 if (value_address)
5075 rtx x = value_address;
5076 if (!DECL_BY_REFERENCE (res))
5078 x = gen_rtx_MEM (DECL_MODE (res), x);
5079 set_mem_attributes (x, res, 1);
5081 set_parm_rtl (res, x);
5084 else if (DECL_MODE (res) == VOIDmode)
5085 /* If return mode is void, this decl rtl should not be used. */
5086 set_parm_rtl (res, NULL_RTX);
5087 else
5089 /* Compute the return values into a pseudo reg, which we will copy
5090 into the true return register after the cleanups are done. */
5091 tree return_type = TREE_TYPE (res);
5092 /* If we may coalesce this result, make sure it has the expected
5093 mode. */
5094 if (flag_tree_coalesce_vars && is_gimple_reg (res))
5096 tree def = ssa_default_def (cfun, res);
5097 gcc_assert (def);
5098 machine_mode mode = promote_ssa_mode (def, NULL);
5099 set_parm_rtl (res, gen_reg_rtx (mode));
5101 else if (TYPE_MODE (return_type) != BLKmode
5102 && targetm.calls.return_in_msb (return_type))
5103 /* expand_function_end will insert the appropriate padding in
5104 this case. Use the return value's natural (unpadded) mode
5105 within the function proper. */
5106 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5107 else
5109 /* In order to figure out what mode to use for the pseudo, we
5110 figure out what the mode of the eventual return register will
5111 actually be, and use that. */
5112 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5114 /* Structures that are returned in registers are not
5115 aggregate_value_p, so we may see a PARALLEL or a REG. */
5116 if (REG_P (hard_reg))
5117 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5118 else
5120 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5121 set_parm_rtl (res, gen_group_rtx (hard_reg));
5125 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5126 result to the real return register(s). */
5127 DECL_REGISTER (res) = 1;
5129 if (chkp_function_instrumented_p (current_function_decl))
5131 tree return_type = TREE_TYPE (res);
5132 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5133 subr, 1);
5134 SET_DECL_BOUNDS_RTL (res, bounds);
5138 /* Initialize rtx for parameters and local variables.
5139 In some cases this requires emitting insns. */
5140 assign_parms (subr);
5142 /* If function gets a static chain arg, store it. */
5143 if (cfun->static_chain_decl)
5145 tree parm = cfun->static_chain_decl;
5146 rtx local, chain;
5147 rtx_insn *insn;
5148 int unsignedp;
5150 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5151 chain = targetm.calls.static_chain (current_function_decl, true);
5153 set_decl_incoming_rtl (parm, chain, false);
5154 set_parm_rtl (parm, local);
5155 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5157 if (GET_MODE (local) != GET_MODE (chain))
5159 convert_move (local, chain, unsignedp);
5160 insn = get_last_insn ();
5162 else
5163 insn = emit_move_insn (local, chain);
5165 /* Mark the register as eliminable, similar to parameters. */
5166 if (MEM_P (chain)
5167 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5168 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5170 /* If we aren't optimizing, save the static chain onto the stack. */
5171 if (!optimize)
5173 tree saved_static_chain_decl
5174 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5175 DECL_NAME (parm), TREE_TYPE (parm));
5176 rtx saved_static_chain_rtx
5177 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5178 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5179 emit_move_insn (saved_static_chain_rtx, chain);
5180 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5181 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5185 /* If the function receives a non-local goto, then store the
5186 bits we need to restore the frame pointer. */
5187 if (cfun->nonlocal_goto_save_area)
5189 tree t_save;
5190 rtx r_save;
5192 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5193 gcc_assert (DECL_RTL_SET_P (var));
5195 t_save = build4 (ARRAY_REF,
5196 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5197 cfun->nonlocal_goto_save_area,
5198 integer_zero_node, NULL_TREE, NULL_TREE);
5199 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5200 gcc_assert (GET_MODE (r_save) == Pmode);
5202 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5203 update_nonlocal_goto_save_area ();
5206 /* The following was moved from init_function_start.
5207 The move is supposed to make sdb output more accurate. */
5208 /* Indicate the beginning of the function body,
5209 as opposed to parm setup. */
5210 emit_note (NOTE_INSN_FUNCTION_BEG);
5212 gcc_assert (NOTE_P (get_last_insn ()));
5214 parm_birth_insn = get_last_insn ();
5216 if (crtl->profile)
5218 #ifdef PROFILE_HOOK
5219 PROFILE_HOOK (current_function_funcdef_no);
5220 #endif
5223 /* If we are doing generic stack checking, the probe should go here. */
5224 if (flag_stack_check == GENERIC_STACK_CHECK)
5225 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5228 void
5229 pop_dummy_function (void)
5231 pop_cfun ();
5232 in_dummy_function = false;
5235 /* Undo the effects of init_dummy_function_start. */
5236 void
5237 expand_dummy_function_end (void)
5239 gcc_assert (in_dummy_function);
5241 /* End any sequences that failed to be closed due to syntax errors. */
5242 while (in_sequence_p ())
5243 end_sequence ();
5245 /* Outside function body, can't compute type's actual size
5246 until next function's body starts. */
5248 free_after_parsing (cfun);
5249 free_after_compilation (cfun);
5250 pop_dummy_function ();
5253 /* Helper for diddle_return_value. */
5255 void
5256 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5258 if (! outgoing)
5259 return;
5261 if (REG_P (outgoing))
5262 (*doit) (outgoing, arg);
5263 else if (GET_CODE (outgoing) == PARALLEL)
5265 int i;
5267 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5269 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5271 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5272 (*doit) (x, arg);
5277 /* Call DOIT for each hard register used as a return value from
5278 the current function. */
5280 void
5281 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5283 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5284 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5287 static void
5288 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5290 emit_clobber (reg);
5293 void
5294 clobber_return_register (void)
5296 diddle_return_value (do_clobber_return_reg, NULL);
5298 /* In case we do use pseudo to return value, clobber it too. */
5299 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5301 tree decl_result = DECL_RESULT (current_function_decl);
5302 rtx decl_rtl = DECL_RTL (decl_result);
5303 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5305 do_clobber_return_reg (decl_rtl, NULL);
5310 static void
5311 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5313 emit_use (reg);
5316 static void
5317 use_return_register (void)
5319 diddle_return_value (do_use_return_reg, NULL);
5322 /* Set the location of the insn chain starting at INSN to LOC. */
5324 static void
5325 set_insn_locations (rtx_insn *insn, int loc)
5327 while (insn != NULL)
5329 if (INSN_P (insn))
5330 INSN_LOCATION (insn) = loc;
5331 insn = NEXT_INSN (insn);
5335 /* Generate RTL for the end of the current function. */
5337 void
5338 expand_function_end (void)
5340 /* If arg_pointer_save_area was referenced only from a nested
5341 function, we will not have initialized it yet. Do that now. */
5342 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5343 get_arg_pointer_save_area ();
5345 /* If we are doing generic stack checking and this function makes calls,
5346 do a stack probe at the start of the function to ensure we have enough
5347 space for another stack frame. */
5348 if (flag_stack_check == GENERIC_STACK_CHECK)
5350 rtx_insn *insn, *seq;
5352 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5353 if (CALL_P (insn))
5355 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5356 start_sequence ();
5357 if (STACK_CHECK_MOVING_SP)
5358 anti_adjust_stack_and_probe (max_frame_size, true);
5359 else
5360 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5361 seq = get_insns ();
5362 end_sequence ();
5363 set_insn_locations (seq, prologue_location);
5364 emit_insn_before (seq, stack_check_probe_note);
5365 break;
5369 /* End any sequences that failed to be closed due to syntax errors. */
5370 while (in_sequence_p ())
5371 end_sequence ();
5373 clear_pending_stack_adjust ();
5374 do_pending_stack_adjust ();
5376 /* Output a linenumber for the end of the function.
5377 SDB depends on this. */
5378 set_curr_insn_location (input_location);
5380 /* Before the return label (if any), clobber the return
5381 registers so that they are not propagated live to the rest of
5382 the function. This can only happen with functions that drop
5383 through; if there had been a return statement, there would
5384 have either been a return rtx, or a jump to the return label.
5386 We delay actual code generation after the current_function_value_rtx
5387 is computed. */
5388 rtx_insn *clobber_after = get_last_insn ();
5390 /* Output the label for the actual return from the function. */
5391 emit_label (return_label);
5393 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5395 /* Let except.c know where it should emit the call to unregister
5396 the function context for sjlj exceptions. */
5397 if (flag_exceptions)
5398 sjlj_emit_function_exit_after (get_last_insn ());
5400 else
5402 /* We want to ensure that instructions that may trap are not
5403 moved into the epilogue by scheduling, because we don't
5404 always emit unwind information for the epilogue. */
5405 if (cfun->can_throw_non_call_exceptions)
5406 emit_insn (gen_blockage ());
5409 /* If this is an implementation of throw, do what's necessary to
5410 communicate between __builtin_eh_return and the epilogue. */
5411 expand_eh_return ();
5413 /* If scalar return value was computed in a pseudo-reg, or was a named
5414 return value that got dumped to the stack, copy that to the hard
5415 return register. */
5416 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5418 tree decl_result = DECL_RESULT (current_function_decl);
5419 rtx decl_rtl = DECL_RTL (decl_result);
5421 if (REG_P (decl_rtl)
5422 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5423 : DECL_REGISTER (decl_result))
5425 rtx real_decl_rtl = crtl->return_rtx;
5427 /* This should be set in assign_parms. */
5428 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5430 /* If this is a BLKmode structure being returned in registers,
5431 then use the mode computed in expand_return. Note that if
5432 decl_rtl is memory, then its mode may have been changed,
5433 but that crtl->return_rtx has not. */
5434 if (GET_MODE (real_decl_rtl) == BLKmode)
5435 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5437 /* If a non-BLKmode return value should be padded at the least
5438 significant end of the register, shift it left by the appropriate
5439 amount. BLKmode results are handled using the group load/store
5440 machinery. */
5441 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5442 && REG_P (real_decl_rtl)
5443 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5445 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5446 REGNO (real_decl_rtl)),
5447 decl_rtl);
5448 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5450 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5452 /* If expand_function_start has created a PARALLEL for decl_rtl,
5453 move the result to the real return registers. Otherwise, do
5454 a group load from decl_rtl for a named return. */
5455 if (GET_CODE (decl_rtl) == PARALLEL)
5456 emit_group_move (real_decl_rtl, decl_rtl);
5457 else
5458 emit_group_load (real_decl_rtl, decl_rtl,
5459 TREE_TYPE (decl_result),
5460 int_size_in_bytes (TREE_TYPE (decl_result)));
5462 /* In the case of complex integer modes smaller than a word, we'll
5463 need to generate some non-trivial bitfield insertions. Do that
5464 on a pseudo and not the hard register. */
5465 else if (GET_CODE (decl_rtl) == CONCAT
5466 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5467 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5469 int old_generating_concat_p;
5470 rtx tmp;
5472 old_generating_concat_p = generating_concat_p;
5473 generating_concat_p = 0;
5474 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5475 generating_concat_p = old_generating_concat_p;
5477 emit_move_insn (tmp, decl_rtl);
5478 emit_move_insn (real_decl_rtl, tmp);
5480 /* If a named return value dumped decl_return to memory, then
5481 we may need to re-do the PROMOTE_MODE signed/unsigned
5482 extension. */
5483 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5485 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5486 promote_function_mode (TREE_TYPE (decl_result),
5487 GET_MODE (decl_rtl), &unsignedp,
5488 TREE_TYPE (current_function_decl), 1);
5490 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5492 else
5493 emit_move_insn (real_decl_rtl, decl_rtl);
5497 /* If returning a structure, arrange to return the address of the value
5498 in a place where debuggers expect to find it.
5500 If returning a structure PCC style,
5501 the caller also depends on this value.
5502 And cfun->returns_pcc_struct is not necessarily set. */
5503 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5504 && !targetm.calls.omit_struct_return_reg)
5506 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5507 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5508 rtx outgoing;
5510 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5511 type = TREE_TYPE (type);
5512 else
5513 value_address = XEXP (value_address, 0);
5515 outgoing = targetm.calls.function_value (build_pointer_type (type),
5516 current_function_decl, true);
5518 /* Mark this as a function return value so integrate will delete the
5519 assignment and USE below when inlining this function. */
5520 REG_FUNCTION_VALUE_P (outgoing) = 1;
5522 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5523 value_address = convert_memory_address (GET_MODE (outgoing),
5524 value_address);
5526 emit_move_insn (outgoing, value_address);
5528 /* Show return register used to hold result (in this case the address
5529 of the result. */
5530 crtl->return_rtx = outgoing;
5533 /* Emit the actual code to clobber return register. Don't emit
5534 it if clobber_after is a barrier, then the previous basic block
5535 certainly doesn't fall thru into the exit block. */
5536 if (!BARRIER_P (clobber_after))
5538 start_sequence ();
5539 clobber_return_register ();
5540 rtx_insn *seq = get_insns ();
5541 end_sequence ();
5543 emit_insn_after (seq, clobber_after);
5546 /* Output the label for the naked return from the function. */
5547 if (naked_return_label)
5548 emit_label (naked_return_label);
5550 /* @@@ This is a kludge. We want to ensure that instructions that
5551 may trap are not moved into the epilogue by scheduling, because
5552 we don't always emit unwind information for the epilogue. */
5553 if (cfun->can_throw_non_call_exceptions
5554 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5555 emit_insn (gen_blockage ());
5557 /* If stack protection is enabled for this function, check the guard. */
5558 if (crtl->stack_protect_guard)
5559 stack_protect_epilogue ();
5561 /* If we had calls to alloca, and this machine needs
5562 an accurate stack pointer to exit the function,
5563 insert some code to save and restore the stack pointer. */
5564 if (! EXIT_IGNORE_STACK
5565 && cfun->calls_alloca)
5567 rtx tem = 0;
5569 start_sequence ();
5570 emit_stack_save (SAVE_FUNCTION, &tem);
5571 rtx_insn *seq = get_insns ();
5572 end_sequence ();
5573 emit_insn_before (seq, parm_birth_insn);
5575 emit_stack_restore (SAVE_FUNCTION, tem);
5578 /* ??? This should no longer be necessary since stupid is no longer with
5579 us, but there are some parts of the compiler (eg reload_combine, and
5580 sh mach_dep_reorg) that still try and compute their own lifetime info
5581 instead of using the general framework. */
5582 use_return_register ();
5586 get_arg_pointer_save_area (void)
5588 rtx ret = arg_pointer_save_area;
5590 if (! ret)
5592 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5593 arg_pointer_save_area = ret;
5596 if (! crtl->arg_pointer_save_area_init)
5598 /* Save the arg pointer at the beginning of the function. The
5599 generated stack slot may not be a valid memory address, so we
5600 have to check it and fix it if necessary. */
5601 start_sequence ();
5602 emit_move_insn (validize_mem (copy_rtx (ret)),
5603 crtl->args.internal_arg_pointer);
5604 rtx_insn *seq = get_insns ();
5605 end_sequence ();
5607 push_topmost_sequence ();
5608 emit_insn_after (seq, entry_of_function ());
5609 pop_topmost_sequence ();
5611 crtl->arg_pointer_save_area_init = true;
5614 return ret;
5617 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5618 for the first time. */
5620 static void
5621 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5623 rtx_insn *tmp;
5624 hash_table<insn_cache_hasher> *hash = *hashp;
5626 if (hash == NULL)
5627 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5629 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5631 rtx *slot = hash->find_slot (tmp, INSERT);
5632 gcc_assert (*slot == NULL);
5633 *slot = tmp;
5637 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5638 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5639 insn, then record COPY as well. */
5641 void
5642 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5644 hash_table<insn_cache_hasher> *hash;
5645 rtx *slot;
5647 hash = epilogue_insn_hash;
5648 if (!hash || !hash->find (insn))
5650 hash = prologue_insn_hash;
5651 if (!hash || !hash->find (insn))
5652 return;
5655 slot = hash->find_slot (copy, INSERT);
5656 gcc_assert (*slot == NULL);
5657 *slot = copy;
5660 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5661 we can be running after reorg, SEQUENCE rtl is possible. */
5663 static bool
5664 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5666 if (hash == NULL)
5667 return false;
5669 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5671 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5672 int i;
5673 for (i = seq->len () - 1; i >= 0; i--)
5674 if (hash->find (seq->element (i)))
5675 return true;
5676 return false;
5679 return hash->find (const_cast<rtx> (insn)) != NULL;
5683 prologue_epilogue_contains (const_rtx insn)
5685 if (contains (insn, prologue_insn_hash))
5686 return 1;
5687 if (contains (insn, epilogue_insn_hash))
5688 return 1;
5689 return 0;
5692 /* Insert use of return register before the end of BB. */
5694 static void
5695 emit_use_return_register_into_block (basic_block bb)
5697 start_sequence ();
5698 use_return_register ();
5699 rtx_insn *seq = get_insns ();
5700 end_sequence ();
5701 rtx_insn *insn = BB_END (bb);
5702 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5703 insn = prev_cc0_setter (insn);
5705 emit_insn_before (seq, insn);
5709 /* Create a return pattern, either simple_return or return, depending on
5710 simple_p. */
5712 static rtx_insn *
5713 gen_return_pattern (bool simple_p)
5715 return (simple_p
5716 ? targetm.gen_simple_return ()
5717 : targetm.gen_return ());
5720 /* Insert an appropriate return pattern at the end of block BB. This
5721 also means updating block_for_insn appropriately. SIMPLE_P is
5722 the same as in gen_return_pattern and passed to it. */
5724 void
5725 emit_return_into_block (bool simple_p, basic_block bb)
5727 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5728 BB_END (bb));
5729 rtx pat = PATTERN (jump);
5730 if (GET_CODE (pat) == PARALLEL)
5731 pat = XVECEXP (pat, 0, 0);
5732 gcc_assert (ANY_RETURN_P (pat));
5733 JUMP_LABEL (jump) = pat;
5736 /* Set JUMP_LABEL for a return insn. */
5738 void
5739 set_return_jump_label (rtx_insn *returnjump)
5741 rtx pat = PATTERN (returnjump);
5742 if (GET_CODE (pat) == PARALLEL)
5743 pat = XVECEXP (pat, 0, 0);
5744 if (ANY_RETURN_P (pat))
5745 JUMP_LABEL (returnjump) = pat;
5746 else
5747 JUMP_LABEL (returnjump) = ret_rtx;
5750 /* Return true if there are any active insns between HEAD and TAIL. */
5751 bool
5752 active_insn_between (rtx_insn *head, rtx_insn *tail)
5754 while (tail)
5756 if (active_insn_p (tail))
5757 return true;
5758 if (tail == head)
5759 return false;
5760 tail = PREV_INSN (tail);
5762 return false;
5765 /* LAST_BB is a block that exits, and empty of active instructions.
5766 Examine its predecessors for jumps that can be converted to
5767 (conditional) returns. */
5768 vec<edge>
5769 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5770 vec<edge> unconverted ATTRIBUTE_UNUSED)
5772 int i;
5773 basic_block bb;
5774 edge_iterator ei;
5775 edge e;
5776 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5778 FOR_EACH_EDGE (e, ei, last_bb->preds)
5779 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5780 src_bbs.quick_push (e->src);
5782 rtx_insn *label = BB_HEAD (last_bb);
5784 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5786 rtx_insn *jump = BB_END (bb);
5788 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5789 continue;
5791 e = find_edge (bb, last_bb);
5793 /* If we have an unconditional jump, we can replace that
5794 with a simple return instruction. */
5795 if (simplejump_p (jump))
5797 /* The use of the return register might be present in the exit
5798 fallthru block. Either:
5799 - removing the use is safe, and we should remove the use in
5800 the exit fallthru block, or
5801 - removing the use is not safe, and we should add it here.
5802 For now, we conservatively choose the latter. Either of the
5803 2 helps in crossjumping. */
5804 emit_use_return_register_into_block (bb);
5806 emit_return_into_block (simple_p, bb);
5807 delete_insn (jump);
5810 /* If we have a conditional jump branching to the last
5811 block, we can try to replace that with a conditional
5812 return instruction. */
5813 else if (condjump_p (jump))
5815 rtx dest;
5817 if (simple_p)
5818 dest = simple_return_rtx;
5819 else
5820 dest = ret_rtx;
5821 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5823 if (targetm.have_simple_return () && simple_p)
5825 if (dump_file)
5826 fprintf (dump_file,
5827 "Failed to redirect bb %d branch.\n", bb->index);
5828 unconverted.safe_push (e);
5830 continue;
5833 /* See comment in simplejump_p case above. */
5834 emit_use_return_register_into_block (bb);
5836 /* If this block has only one successor, it both jumps
5837 and falls through to the fallthru block, so we can't
5838 delete the edge. */
5839 if (single_succ_p (bb))
5840 continue;
5842 else
5844 if (targetm.have_simple_return () && simple_p)
5846 if (dump_file)
5847 fprintf (dump_file,
5848 "Failed to redirect bb %d branch.\n", bb->index);
5849 unconverted.safe_push (e);
5851 continue;
5854 /* Fix up the CFG for the successful change we just made. */
5855 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5856 e->flags &= ~EDGE_CROSSING;
5858 src_bbs.release ();
5859 return unconverted;
5862 /* Emit a return insn for the exit fallthru block. */
5863 basic_block
5864 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5866 basic_block last_bb = exit_fallthru_edge->src;
5868 if (JUMP_P (BB_END (last_bb)))
5870 last_bb = split_edge (exit_fallthru_edge);
5871 exit_fallthru_edge = single_succ_edge (last_bb);
5873 emit_barrier_after (BB_END (last_bb));
5874 emit_return_into_block (simple_p, last_bb);
5875 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5876 return last_bb;
5880 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5881 this into place with notes indicating where the prologue ends and where
5882 the epilogue begins. Update the basic block information when possible.
5884 Notes on epilogue placement:
5885 There are several kinds of edges to the exit block:
5886 * a single fallthru edge from LAST_BB
5887 * possibly, edges from blocks containing sibcalls
5888 * possibly, fake edges from infinite loops
5890 The epilogue is always emitted on the fallthru edge from the last basic
5891 block in the function, LAST_BB, into the exit block.
5893 If LAST_BB is empty except for a label, it is the target of every
5894 other basic block in the function that ends in a return. If a
5895 target has a return or simple_return pattern (possibly with
5896 conditional variants), these basic blocks can be changed so that a
5897 return insn is emitted into them, and their target is adjusted to
5898 the real exit block.
5900 Notes on shrink wrapping: We implement a fairly conservative
5901 version of shrink-wrapping rather than the textbook one. We only
5902 generate a single prologue and a single epilogue. This is
5903 sufficient to catch a number of interesting cases involving early
5904 exits.
5906 First, we identify the blocks that require the prologue to occur before
5907 them. These are the ones that modify a call-saved register, or reference
5908 any of the stack or frame pointer registers. To simplify things, we then
5909 mark everything reachable from these blocks as also requiring a prologue.
5910 This takes care of loops automatically, and avoids the need to examine
5911 whether MEMs reference the frame, since it is sufficient to check for
5912 occurrences of the stack or frame pointer.
5914 We then compute the set of blocks for which the need for a prologue
5915 is anticipatable (borrowing terminology from the shrink-wrapping
5916 description in Muchnick's book). These are the blocks which either
5917 require a prologue themselves, or those that have only successors
5918 where the prologue is anticipatable. The prologue needs to be
5919 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5920 is not. For the moment, we ensure that only one such edge exists.
5922 The epilogue is placed as described above, but we make a
5923 distinction between inserting return and simple_return patterns
5924 when modifying other blocks that end in a return. Blocks that end
5925 in a sibcall omit the sibcall_epilogue if the block is not in
5926 ANTIC. */
5928 void
5929 thread_prologue_and_epilogue_insns (void)
5931 bool inserted;
5932 vec<edge> unconverted_simple_returns = vNULL;
5933 bitmap_head bb_flags;
5934 rtx_insn *returnjump;
5935 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5936 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5937 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5938 edge_iterator ei;
5940 df_analyze ();
5942 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5944 inserted = false;
5945 epilogue_end = NULL;
5946 returnjump = NULL;
5948 /* Can't deal with multiple successors of the entry block at the
5949 moment. Function should always have at least one entry
5950 point. */
5951 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5952 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5953 orig_entry_edge = entry_edge;
5955 split_prologue_seq = NULL;
5956 if (flag_split_stack
5957 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5958 == NULL))
5960 start_sequence ();
5961 emit_insn (targetm.gen_split_stack_prologue ());
5962 split_prologue_seq = get_insns ();
5963 end_sequence ();
5965 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5966 set_insn_locations (split_prologue_seq, prologue_location);
5969 prologue_seq = NULL;
5970 if (targetm.have_prologue ())
5972 start_sequence ();
5973 rtx_insn *seq = targetm.gen_prologue ();
5974 emit_insn (seq);
5976 /* Insert an explicit USE for the frame pointer
5977 if the profiling is on and the frame pointer is required. */
5978 if (crtl->profile && frame_pointer_needed)
5979 emit_use (hard_frame_pointer_rtx);
5981 /* Retain a map of the prologue insns. */
5982 record_insns (seq, NULL, &prologue_insn_hash);
5983 emit_note (NOTE_INSN_PROLOGUE_END);
5985 /* Ensure that instructions are not moved into the prologue when
5986 profiling is on. The call to the profiling routine can be
5987 emitted within the live range of a call-clobbered register. */
5988 if (!targetm.profile_before_prologue () && crtl->profile)
5989 emit_insn (gen_blockage ());
5991 prologue_seq = get_insns ();
5992 end_sequence ();
5993 set_insn_locations (prologue_seq, prologue_location);
5996 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5998 /* Try to perform a kind of shrink-wrapping, making sure the
5999 prologue/epilogue is emitted only around those parts of the
6000 function that require it. */
6002 try_shrink_wrapping (&entry_edge, &bb_flags, prologue_seq);
6004 if (split_prologue_seq != NULL_RTX)
6006 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6007 inserted = true;
6009 if (prologue_seq != NULL_RTX)
6011 insert_insn_on_edge (prologue_seq, entry_edge);
6012 inserted = true;
6015 /* If the exit block has no non-fake predecessors, we don't need
6016 an epilogue. */
6017 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6018 if ((e->flags & EDGE_FAKE) == 0)
6019 break;
6020 if (e == NULL)
6021 goto epilogue_done;
6023 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6025 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6027 if (targetm.have_simple_return () && entry_edge != orig_entry_edge)
6028 exit_fallthru_edge
6029 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
6030 &unconverted_simple_returns,
6031 &returnjump);
6032 if (targetm.have_return ())
6034 if (exit_fallthru_edge == NULL)
6035 goto epilogue_done;
6037 if (optimize)
6039 basic_block last_bb = exit_fallthru_edge->src;
6041 if (LABEL_P (BB_HEAD (last_bb))
6042 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6043 convert_jumps_to_returns (last_bb, false, vNULL);
6045 if (EDGE_COUNT (last_bb->preds) != 0
6046 && single_succ_p (last_bb))
6048 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6049 epilogue_end = returnjump = BB_END (last_bb);
6051 /* Emitting the return may add a basic block.
6052 Fix bb_flags for the added block. */
6053 if (targetm.have_simple_return ()
6054 && last_bb != exit_fallthru_edge->src)
6055 bitmap_set_bit (&bb_flags, last_bb->index);
6057 goto epilogue_done;
6062 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6063 this marker for the splits of EH_RETURN patterns, and nothing else
6064 uses the flag in the meantime. */
6065 epilogue_completed = 1;
6067 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6068 some targets, these get split to a special version of the epilogue
6069 code. In order to be able to properly annotate these with unwind
6070 info, try to split them now. If we get a valid split, drop an
6071 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6072 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6074 rtx_insn *prev, *last, *trial;
6076 if (e->flags & EDGE_FALLTHRU)
6077 continue;
6078 last = BB_END (e->src);
6079 if (!eh_returnjump_p (last))
6080 continue;
6082 prev = PREV_INSN (last);
6083 trial = try_split (PATTERN (last), last, 1);
6084 if (trial == last)
6085 continue;
6087 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6088 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6091 /* If nothing falls through into the exit block, we don't need an
6092 epilogue. */
6094 if (exit_fallthru_edge == NULL)
6095 goto epilogue_done;
6097 if (targetm.have_epilogue ())
6099 start_sequence ();
6100 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6101 rtx_insn *seq = targetm.gen_epilogue ();
6102 if (seq)
6103 emit_jump_insn (seq);
6105 /* Retain a map of the epilogue insns. */
6106 record_insns (seq, NULL, &epilogue_insn_hash);
6107 set_insn_locations (seq, epilogue_location);
6109 seq = get_insns ();
6110 returnjump = get_last_insn ();
6111 end_sequence ();
6113 insert_insn_on_edge (seq, exit_fallthru_edge);
6114 inserted = true;
6116 if (JUMP_P (returnjump))
6117 set_return_jump_label (returnjump);
6119 else
6121 basic_block cur_bb;
6123 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6124 goto epilogue_done;
6125 /* We have a fall-through edge to the exit block, the source is not
6126 at the end of the function, and there will be an assembler epilogue
6127 at the end of the function.
6128 We can't use force_nonfallthru here, because that would try to
6129 use return. Inserting a jump 'by hand' is extremely messy, so
6130 we take advantage of cfg_layout_finalize using
6131 fixup_fallthru_exit_predecessor. */
6132 cfg_layout_initialize (0);
6133 FOR_EACH_BB_FN (cur_bb, cfun)
6134 if (cur_bb->index >= NUM_FIXED_BLOCKS
6135 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6136 cur_bb->aux = cur_bb->next_bb;
6137 cfg_layout_finalize ();
6140 epilogue_done:
6142 default_rtl_profile ();
6144 if (inserted)
6146 sbitmap blocks;
6148 commit_edge_insertions ();
6150 /* Look for basic blocks within the prologue insns. */
6151 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6152 bitmap_clear (blocks);
6153 bitmap_set_bit (blocks, entry_edge->dest->index);
6154 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6155 find_many_sub_basic_blocks (blocks);
6156 sbitmap_free (blocks);
6158 /* The epilogue insns we inserted may cause the exit edge to no longer
6159 be fallthru. */
6160 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6162 if (((e->flags & EDGE_FALLTHRU) != 0)
6163 && returnjump_p (BB_END (e->src)))
6164 e->flags &= ~EDGE_FALLTHRU;
6168 if (targetm.have_simple_return ())
6169 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6170 returnjump, unconverted_simple_returns);
6172 /* Emit sibling epilogues before any sibling call sites. */
6173 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6174 ei_safe_edge (ei));
6177 basic_block bb = e->src;
6178 rtx_insn *insn = BB_END (bb);
6180 if (!CALL_P (insn)
6181 || ! SIBLING_CALL_P (insn)
6182 || (targetm.have_simple_return ()
6183 && entry_edge != orig_entry_edge
6184 && !bitmap_bit_p (&bb_flags, bb->index)))
6186 ei_next (&ei);
6187 continue;
6190 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6192 start_sequence ();
6193 emit_note (NOTE_INSN_EPILOGUE_BEG);
6194 emit_insn (ep_seq);
6195 rtx_insn *seq = get_insns ();
6196 end_sequence ();
6198 /* Retain a map of the epilogue insns. Used in life analysis to
6199 avoid getting rid of sibcall epilogue insns. Do this before we
6200 actually emit the sequence. */
6201 record_insns (seq, NULL, &epilogue_insn_hash);
6202 set_insn_locations (seq, epilogue_location);
6204 emit_insn_before (seq, insn);
6206 ei_next (&ei);
6209 if (epilogue_end)
6211 rtx_insn *insn, *next;
6213 /* Similarly, move any line notes that appear after the epilogue.
6214 There is no need, however, to be quite so anal about the existence
6215 of such a note. Also possibly move
6216 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6217 info generation. */
6218 for (insn = epilogue_end; insn; insn = next)
6220 next = NEXT_INSN (insn);
6221 if (NOTE_P (insn)
6222 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6223 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6227 bitmap_clear (&bb_flags);
6229 /* Threading the prologue and epilogue changes the artificial refs
6230 in the entry and exit blocks. */
6231 epilogue_completed = 1;
6232 df_update_entry_exit_and_calls ();
6235 /* Reposition the prologue-end and epilogue-begin notes after
6236 instruction scheduling. */
6238 void
6239 reposition_prologue_and_epilogue_notes (void)
6241 if (!targetm.have_prologue ()
6242 && !targetm.have_epilogue ()
6243 && !targetm.have_sibcall_epilogue ())
6244 return;
6246 /* Since the hash table is created on demand, the fact that it is
6247 non-null is a signal that it is non-empty. */
6248 if (prologue_insn_hash != NULL)
6250 size_t len = prologue_insn_hash->elements ();
6251 rtx_insn *insn, *last = NULL, *note = NULL;
6253 /* Scan from the beginning until we reach the last prologue insn. */
6254 /* ??? While we do have the CFG intact, there are two problems:
6255 (1) The prologue can contain loops (typically probing the stack),
6256 which means that the end of the prologue isn't in the first bb.
6257 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6258 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6260 if (NOTE_P (insn))
6262 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6263 note = insn;
6265 else if (contains (insn, prologue_insn_hash))
6267 last = insn;
6268 if (--len == 0)
6269 break;
6273 if (last)
6275 if (note == NULL)
6277 /* Scan forward looking for the PROLOGUE_END note. It should
6278 be right at the beginning of the block, possibly with other
6279 insn notes that got moved there. */
6280 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6282 if (NOTE_P (note)
6283 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6284 break;
6288 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6289 if (LABEL_P (last))
6290 last = NEXT_INSN (last);
6291 reorder_insns (note, note, last);
6295 if (epilogue_insn_hash != NULL)
6297 edge_iterator ei;
6298 edge e;
6300 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6302 rtx_insn *insn, *first = NULL, *note = NULL;
6303 basic_block bb = e->src;
6305 /* Scan from the beginning until we reach the first epilogue insn. */
6306 FOR_BB_INSNS (bb, insn)
6308 if (NOTE_P (insn))
6310 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6312 note = insn;
6313 if (first != NULL)
6314 break;
6317 else if (first == NULL && contains (insn, epilogue_insn_hash))
6319 first = insn;
6320 if (note != NULL)
6321 break;
6325 if (note)
6327 /* If the function has a single basic block, and no real
6328 epilogue insns (e.g. sibcall with no cleanup), the
6329 epilogue note can get scheduled before the prologue
6330 note. If we have frame related prologue insns, having
6331 them scanned during the epilogue will result in a crash.
6332 In this case re-order the epilogue note to just before
6333 the last insn in the block. */
6334 if (first == NULL)
6335 first = BB_END (bb);
6337 if (PREV_INSN (first) != note)
6338 reorder_insns (note, note, PREV_INSN (first));
6344 /* Returns the name of function declared by FNDECL. */
6345 const char *
6346 fndecl_name (tree fndecl)
6348 if (fndecl == NULL)
6349 return "(nofn)";
6350 return lang_hooks.decl_printable_name (fndecl, 2);
6353 /* Returns the name of function FN. */
6354 const char *
6355 function_name (struct function *fn)
6357 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6358 return fndecl_name (fndecl);
6361 /* Returns the name of the current function. */
6362 const char *
6363 current_function_name (void)
6365 return function_name (cfun);
6369 static unsigned int
6370 rest_of_handle_check_leaf_regs (void)
6372 #ifdef LEAF_REGISTERS
6373 crtl->uses_only_leaf_regs
6374 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6375 #endif
6376 return 0;
6379 /* Insert a TYPE into the used types hash table of CFUN. */
6381 static void
6382 used_types_insert_helper (tree type, struct function *func)
6384 if (type != NULL && func != NULL)
6386 if (func->used_types_hash == NULL)
6387 func->used_types_hash = hash_set<tree>::create_ggc (37);
6389 func->used_types_hash->add (type);
6393 /* Given a type, insert it into the used hash table in cfun. */
6394 void
6395 used_types_insert (tree t)
6397 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6398 if (TYPE_NAME (t))
6399 break;
6400 else
6401 t = TREE_TYPE (t);
6402 if (TREE_CODE (t) == ERROR_MARK)
6403 return;
6404 if (TYPE_NAME (t) == NULL_TREE
6405 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6406 t = TYPE_MAIN_VARIANT (t);
6407 if (debug_info_level > DINFO_LEVEL_NONE)
6409 if (cfun)
6410 used_types_insert_helper (t, cfun);
6411 else
6413 /* So this might be a type referenced by a global variable.
6414 Record that type so that we can later decide to emit its
6415 debug information. */
6416 vec_safe_push (types_used_by_cur_var_decl, t);
6421 /* Helper to Hash a struct types_used_by_vars_entry. */
6423 static hashval_t
6424 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6426 gcc_assert (entry && entry->var_decl && entry->type);
6428 return iterative_hash_object (entry->type,
6429 iterative_hash_object (entry->var_decl, 0));
6432 /* Hash function of the types_used_by_vars_entry hash table. */
6434 hashval_t
6435 used_type_hasher::hash (types_used_by_vars_entry *entry)
6437 return hash_types_used_by_vars_entry (entry);
6440 /*Equality function of the types_used_by_vars_entry hash table. */
6442 bool
6443 used_type_hasher::equal (types_used_by_vars_entry *e1,
6444 types_used_by_vars_entry *e2)
6446 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6449 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6451 void
6452 types_used_by_var_decl_insert (tree type, tree var_decl)
6454 if (type != NULL && var_decl != NULL)
6456 types_used_by_vars_entry **slot;
6457 struct types_used_by_vars_entry e;
6458 e.var_decl = var_decl;
6459 e.type = type;
6460 if (types_used_by_vars_hash == NULL)
6461 types_used_by_vars_hash
6462 = hash_table<used_type_hasher>::create_ggc (37);
6464 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6465 if (*slot == NULL)
6467 struct types_used_by_vars_entry *entry;
6468 entry = ggc_alloc<types_used_by_vars_entry> ();
6469 entry->type = type;
6470 entry->var_decl = var_decl;
6471 *slot = entry;
6476 namespace {
6478 const pass_data pass_data_leaf_regs =
6480 RTL_PASS, /* type */
6481 "*leaf_regs", /* name */
6482 OPTGROUP_NONE, /* optinfo_flags */
6483 TV_NONE, /* tv_id */
6484 0, /* properties_required */
6485 0, /* properties_provided */
6486 0, /* properties_destroyed */
6487 0, /* todo_flags_start */
6488 0, /* todo_flags_finish */
6491 class pass_leaf_regs : public rtl_opt_pass
6493 public:
6494 pass_leaf_regs (gcc::context *ctxt)
6495 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6498 /* opt_pass methods: */
6499 virtual unsigned int execute (function *)
6501 return rest_of_handle_check_leaf_regs ();
6504 }; // class pass_leaf_regs
6506 } // anon namespace
6508 rtl_opt_pass *
6509 make_pass_leaf_regs (gcc::context *ctxt)
6511 return new pass_leaf_regs (ctxt);
6514 static unsigned int
6515 rest_of_handle_thread_prologue_and_epilogue (void)
6517 if (optimize)
6518 cleanup_cfg (CLEANUP_EXPENSIVE);
6520 /* On some machines, the prologue and epilogue code, or parts thereof,
6521 can be represented as RTL. Doing so lets us schedule insns between
6522 it and the rest of the code and also allows delayed branch
6523 scheduling to operate in the epilogue. */
6524 thread_prologue_and_epilogue_insns ();
6526 /* Some non-cold blocks may now be only reachable from cold blocks.
6527 Fix that up. */
6528 fixup_partitions ();
6530 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6531 see PR57320. */
6532 cleanup_cfg (0);
6534 /* The stack usage info is finalized during prologue expansion. */
6535 if (flag_stack_usage_info)
6536 output_stack_usage ();
6538 return 0;
6541 namespace {
6543 const pass_data pass_data_thread_prologue_and_epilogue =
6545 RTL_PASS, /* type */
6546 "pro_and_epilogue", /* name */
6547 OPTGROUP_NONE, /* optinfo_flags */
6548 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6549 0, /* properties_required */
6550 0, /* properties_provided */
6551 0, /* properties_destroyed */
6552 0, /* todo_flags_start */
6553 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6556 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6558 public:
6559 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6560 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6563 /* opt_pass methods: */
6564 virtual unsigned int execute (function *)
6566 return rest_of_handle_thread_prologue_and_epilogue ();
6569 }; // class pass_thread_prologue_and_epilogue
6571 } // anon namespace
6573 rtl_opt_pass *
6574 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6576 return new pass_thread_prologue_and_epilogue (ctxt);
6580 /* This mini-pass fixes fall-out from SSA in asm statements that have
6581 in-out constraints. Say you start with
6583 orig = inout;
6584 asm ("": "+mr" (inout));
6585 use (orig);
6587 which is transformed very early to use explicit output and match operands:
6589 orig = inout;
6590 asm ("": "=mr" (inout) : "0" (inout));
6591 use (orig);
6593 Or, after SSA and copyprop,
6595 asm ("": "=mr" (inout_2) : "0" (inout_1));
6596 use (inout_1);
6598 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6599 they represent two separate values, so they will get different pseudo
6600 registers during expansion. Then, since the two operands need to match
6601 per the constraints, but use different pseudo registers, reload can
6602 only register a reload for these operands. But reloads can only be
6603 satisfied by hardregs, not by memory, so we need a register for this
6604 reload, just because we are presented with non-matching operands.
6605 So, even though we allow memory for this operand, no memory can be
6606 used for it, just because the two operands don't match. This can
6607 cause reload failures on register-starved targets.
6609 So it's a symptom of reload not being able to use memory for reloads
6610 or, alternatively it's also a symptom of both operands not coming into
6611 reload as matching (in which case the pseudo could go to memory just
6612 fine, as the alternative allows it, and no reload would be necessary).
6613 We fix the latter problem here, by transforming
6615 asm ("": "=mr" (inout_2) : "0" (inout_1));
6617 back to
6619 inout_2 = inout_1;
6620 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6622 static void
6623 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6625 int i;
6626 bool changed = false;
6627 rtx op = SET_SRC (p_sets[0]);
6628 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6629 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6630 bool *output_matched = XALLOCAVEC (bool, noutputs);
6632 memset (output_matched, 0, noutputs * sizeof (bool));
6633 for (i = 0; i < ninputs; i++)
6635 rtx input, output;
6636 rtx_insn *insns;
6637 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6638 char *end;
6639 int match, j;
6641 if (*constraint == '%')
6642 constraint++;
6644 match = strtoul (constraint, &end, 10);
6645 if (end == constraint)
6646 continue;
6648 gcc_assert (match < noutputs);
6649 output = SET_DEST (p_sets[match]);
6650 input = RTVEC_ELT (inputs, i);
6651 /* Only do the transformation for pseudos. */
6652 if (! REG_P (output)
6653 || rtx_equal_p (output, input)
6654 || (GET_MODE (input) != VOIDmode
6655 && GET_MODE (input) != GET_MODE (output)))
6656 continue;
6658 /* We can't do anything if the output is also used as input,
6659 as we're going to overwrite it. */
6660 for (j = 0; j < ninputs; j++)
6661 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6662 break;
6663 if (j != ninputs)
6664 continue;
6666 /* Avoid changing the same input several times. For
6667 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6668 only change in once (to out1), rather than changing it
6669 first to out1 and afterwards to out2. */
6670 if (i > 0)
6672 for (j = 0; j < noutputs; j++)
6673 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6674 break;
6675 if (j != noutputs)
6676 continue;
6678 output_matched[match] = true;
6680 start_sequence ();
6681 emit_move_insn (output, input);
6682 insns = get_insns ();
6683 end_sequence ();
6684 emit_insn_before (insns, insn);
6686 /* Now replace all mentions of the input with output. We can't
6687 just replace the occurrence in inputs[i], as the register might
6688 also be used in some other input (or even in an address of an
6689 output), which would mean possibly increasing the number of
6690 inputs by one (namely 'output' in addition), which might pose
6691 a too complicated problem for reload to solve. E.g. this situation:
6693 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6695 Here 'input' is used in two occurrences as input (once for the
6696 input operand, once for the address in the second output operand).
6697 If we would replace only the occurrence of the input operand (to
6698 make the matching) we would be left with this:
6700 output = input
6701 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6703 Now we suddenly have two different input values (containing the same
6704 value, but different pseudos) where we formerly had only one.
6705 With more complicated asms this might lead to reload failures
6706 which wouldn't have happen without this pass. So, iterate over
6707 all operands and replace all occurrences of the register used. */
6708 for (j = 0; j < noutputs; j++)
6709 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6710 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6711 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6712 input, output);
6713 for (j = 0; j < ninputs; j++)
6714 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6715 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6716 input, output);
6718 changed = true;
6721 if (changed)
6722 df_insn_rescan (insn);
6725 /* Add the decl D to the local_decls list of FUN. */
6727 void
6728 add_local_decl (struct function *fun, tree d)
6730 gcc_assert (TREE_CODE (d) == VAR_DECL);
6731 vec_safe_push (fun->local_decls, d);
6734 namespace {
6736 const pass_data pass_data_match_asm_constraints =
6738 RTL_PASS, /* type */
6739 "asmcons", /* name */
6740 OPTGROUP_NONE, /* optinfo_flags */
6741 TV_NONE, /* tv_id */
6742 0, /* properties_required */
6743 0, /* properties_provided */
6744 0, /* properties_destroyed */
6745 0, /* todo_flags_start */
6746 0, /* todo_flags_finish */
6749 class pass_match_asm_constraints : public rtl_opt_pass
6751 public:
6752 pass_match_asm_constraints (gcc::context *ctxt)
6753 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6756 /* opt_pass methods: */
6757 virtual unsigned int execute (function *);
6759 }; // class pass_match_asm_constraints
6761 unsigned
6762 pass_match_asm_constraints::execute (function *fun)
6764 basic_block bb;
6765 rtx_insn *insn;
6766 rtx pat, *p_sets;
6767 int noutputs;
6769 if (!crtl->has_asm_statement)
6770 return 0;
6772 df_set_flags (DF_DEFER_INSN_RESCAN);
6773 FOR_EACH_BB_FN (bb, fun)
6775 FOR_BB_INSNS (bb, insn)
6777 if (!INSN_P (insn))
6778 continue;
6780 pat = PATTERN (insn);
6781 if (GET_CODE (pat) == PARALLEL)
6782 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6783 else if (GET_CODE (pat) == SET)
6784 p_sets = &PATTERN (insn), noutputs = 1;
6785 else
6786 continue;
6788 if (GET_CODE (*p_sets) == SET
6789 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6790 match_asm_constraints_1 (insn, p_sets, noutputs);
6794 return TODO_df_finish;
6797 } // anon namespace
6799 rtl_opt_pass *
6800 make_pass_match_asm_constraints (gcc::context *ctxt)
6802 return new pass_match_asm_constraints (ctxt);
6806 #include "gt-function.h"