1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
56 #include "insn-config.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
65 #include "insn-attr.h"
66 #include "conditions.h"
70 #include "rtl-error.h"
71 #include "toplev.h" /* exact_log2, floor_log2 */
75 #include "targhooks.h"
82 #include "tree-pass.h"
88 #include "print-rtl.h"
90 #ifdef XCOFF_DEBUGGING_INFO
91 #include "xcoffout.h" /* Needed for external data declarations. */
94 #include "dwarf2out.h"
96 #ifdef DBX_DEBUGGING_INFO
100 #ifdef SDB_DEBUGGING_INFO
104 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
105 So define a null default for it to save conditionalization later. */
106 #ifndef CC_STATUS_INIT
107 #define CC_STATUS_INIT
110 /* Is the given character a logical line separator for the assembler? */
111 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
112 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #ifndef JUMP_TABLES_IN_TEXT_SECTION
116 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 /* Bitflags used by final_scan_insn. */
121 #define SEEN_EMITTED 2
123 /* Last insn processed by final_scan_insn. */
124 static rtx_insn
*debug_insn
;
125 rtx_insn
*current_output_insn
;
127 /* Line number of last NOTE. */
128 static int last_linenum
;
130 /* Last discriminator written to assembly. */
131 static int last_discriminator
;
133 /* Discriminator of current block. */
134 static int discriminator
;
136 /* Highest line number in current block. */
137 static int high_block_linenum
;
139 /* Likewise for function. */
140 static int high_function_linenum
;
142 /* Filename of last NOTE. */
143 static const char *last_filename
;
145 /* Override filename and line number. */
146 static const char *override_filename
;
147 static int override_linenum
;
149 /* Whether to force emission of a line note before the next insn. */
150 static bool force_source_line
= false;
152 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
154 /* Nonzero while outputting an `asm' with operands.
155 This means that inconsistencies are the user's fault, so don't die.
156 The precise value is the insn being output, to pass to error_for_asm. */
157 const rtx_insn
*this_is_asm_operands
;
159 /* Number of operands of this insn, for an `asm' with operands. */
160 static unsigned int insn_noperands
;
162 /* Compare optimization flag. */
164 static rtx last_ignored_compare
= 0;
166 /* Assign a unique number to each insn that is output.
167 This can be used to generate unique local labels. */
169 static int insn_counter
= 0;
171 /* This variable contains machine-dependent flags (defined in tm.h)
172 set and examined by output routines
173 that describe how to interpret the condition codes properly. */
177 /* During output of an insn, this contains a copy of cc_status
178 from before the insn. */
180 CC_STATUS cc_prev_status
;
182 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
184 static int block_depth
;
186 /* Nonzero if have enabled APP processing of our assembler output. */
190 /* If we are outputting an insn sequence, this contains the sequence rtx.
193 rtx_sequence
*final_sequence
;
195 #ifdef ASSEMBLER_DIALECT
197 /* Number of the assembler dialect to use, starting at 0. */
198 static int dialect_number
;
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate
;
204 /* True if printing into -fdump-final-insns= dump. */
205 bool final_insns_dump_p
;
207 /* True if profile_function should be called, but hasn't been called yet. */
208 static bool need_profile_function
;
210 static int asm_insn_count (rtx
);
211 static void profile_function (FILE *);
212 static void profile_after_prologue (FILE *);
213 static bool notice_source_line (rtx_insn
*, bool *);
214 static rtx
walk_alter_subreg (rtx
*, bool *);
215 static void output_asm_name (void);
216 static void output_alternate_entry_point (FILE *, rtx_insn
*);
217 static tree
get_mem_expr_from_op (rtx
, int *);
218 static void output_asm_operand_names (rtx
*, int *, int);
219 #ifdef LEAF_REGISTERS
220 static void leaf_renumber_regs (rtx_insn
*);
223 static int alter_cond (rtx
);
225 #ifndef ADDR_VEC_ALIGN
226 static int final_addr_vec_align (rtx
);
228 static int align_fuzz (rtx
, rtx
, int, unsigned);
229 static void collect_fn_hard_reg_usage (void);
230 static tree
get_call_fndecl (rtx_insn
*);
232 /* Initialize data in final at the beginning of a compilation. */
235 init_final (const char *filename ATTRIBUTE_UNUSED
)
240 #ifdef ASSEMBLER_DIALECT
241 dialect_number
= ASSEMBLER_DIALECT
;
245 /* Default target function prologue and epilogue assembler output.
247 If not overridden for epilogue code, then the function body itself
248 contains return instructions wherever needed. */
250 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
251 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
256 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
257 tree decl ATTRIBUTE_UNUSED
,
258 bool new_is_cold ATTRIBUTE_UNUSED
)
262 /* Default target hook that outputs nothing to a stream. */
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
276 fputs (ASM_APP_ON
, asm_out_file
);
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
289 fputs (ASM_APP_OFF
, asm_out_file
);
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
299 dbr_sequence_length (void)
301 if (final_sequence
!= 0)
302 return XVECLEN (final_sequence
, 0) - 1;
307 /* The next two pages contain routines used to compute the length of an insn
308 and to shorten branches. */
310 /* Arrays for insn lengths, and addresses. The latter is referenced by
311 `insn_current_length'. */
313 static int *insn_lengths
;
315 vec
<int> insn_addresses_
;
317 /* Max uid for which the above arrays are valid. */
318 static int insn_lengths_max_uid
;
320 /* Address of insn being processed. Used by `insn_current_length'. */
321 int insn_current_address
;
323 /* Address of insn being processed in previous iteration. */
324 int insn_last_address
;
326 /* known invariant alignment of insn being processed. */
327 int insn_current_align
;
329 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
330 gives the next following alignment insn that increases the known
331 alignment, or NULL_RTX if there is no such insn.
332 For any alignment obtained this way, we can again index uid_align with
333 its uid to obtain the next following align that in turn increases the
334 alignment, till we reach NULL_RTX; the sequence obtained this way
335 for each insn we'll call the alignment chain of this insn in the following
338 struct label_alignment
344 static rtx
*uid_align
;
345 static int *uid_shuid
;
346 static struct label_alignment
*label_align
;
348 /* Indicate that branch shortening hasn't yet been done. */
351 init_insn_lengths (void)
362 insn_lengths_max_uid
= 0;
364 if (HAVE_ATTR_length
)
365 INSN_ADDRESSES_FREE ();
373 /* Obtain the current length of an insn. If branch shortening has been done,
374 get its actual length. Otherwise, use FALLBACK_FN to calculate the
377 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
383 if (!HAVE_ATTR_length
)
386 if (insn_lengths_max_uid
> INSN_UID (insn
))
387 return insn_lengths
[INSN_UID (insn
)];
389 switch (GET_CODE (insn
))
399 length
= fallback_fn (insn
);
403 body
= PATTERN (insn
);
404 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
407 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
408 length
= asm_insn_count (body
) * fallback_fn (insn
);
409 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
410 for (i
= 0; i
< seq
->len (); i
++)
411 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
413 length
= fallback_fn (insn
);
420 #ifdef ADJUST_INSN_LENGTH
421 ADJUST_INSN_LENGTH (insn
, length
);
426 /* Obtain the current length of an insn. If branch shortening has been done,
427 get its actual length. Otherwise, get its maximum length. */
429 get_attr_length (rtx_insn
*insn
)
431 return get_attr_length_1 (insn
, insn_default_length
);
434 /* Obtain the current length of an insn. If branch shortening has been done,
435 get its actual length. Otherwise, get its minimum length. */
437 get_attr_min_length (rtx_insn
*insn
)
439 return get_attr_length_1 (insn
, insn_min_length
);
442 /* Code to handle alignment inside shorten_branches. */
444 /* Here is an explanation how the algorithm in align_fuzz can give
447 Call a sequence of instructions beginning with alignment point X
448 and continuing until the next alignment point `block X'. When `X'
449 is used in an expression, it means the alignment value of the
452 Call the distance between the start of the first insn of block X, and
453 the end of the last insn of block X `IX', for the `inner size of X'.
454 This is clearly the sum of the instruction lengths.
456 Likewise with the next alignment-delimited block following X, which we
459 Call the distance between the start of the first insn of block X, and
460 the start of the first insn of block Y `OX', for the `outer size of X'.
462 The estimated padding is then OX - IX.
464 OX can be safely estimated as
469 OX = round_up(IX, X) + Y - X
471 Clearly est(IX) >= real(IX), because that only depends on the
472 instruction lengths, and those being overestimated is a given.
474 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
475 we needn't worry about that when thinking about OX.
477 When X >= Y, the alignment provided by Y adds no uncertainty factor
478 for branch ranges starting before X, so we can just round what we have.
479 But when X < Y, we don't know anything about the, so to speak,
480 `middle bits', so we have to assume the worst when aligning up from an
481 address mod X to one mod Y, which is Y - X. */
484 #define LABEL_ALIGN(LABEL) align_labels_log
488 #define LOOP_ALIGN(LABEL) align_loops_log
491 #ifndef LABEL_ALIGN_AFTER_BARRIER
492 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
496 #define JUMP_ALIGN(LABEL) align_jumps_log
500 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
506 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
508 return align_loops_max_skip
;
512 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
514 return align_labels_max_skip
;
518 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
520 return align_jumps_max_skip
;
523 #ifndef ADDR_VEC_ALIGN
525 final_addr_vec_align (rtx addr_vec
)
527 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
529 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
530 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
531 return exact_log2 (align
);
535 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
538 #ifndef INSN_LENGTH_ALIGNMENT
539 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
542 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
544 static int min_labelno
, max_labelno
;
546 #define LABEL_TO_ALIGNMENT(LABEL) \
547 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
549 #define LABEL_TO_MAX_SKIP(LABEL) \
550 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
552 /* For the benefit of port specific code do this also as a function. */
555 label_to_alignment (rtx label
)
557 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
558 return LABEL_TO_ALIGNMENT (label
);
563 label_to_max_skip (rtx label
)
565 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
566 return LABEL_TO_MAX_SKIP (label
);
570 /* The differences in addresses
571 between a branch and its target might grow or shrink depending on
572 the alignment the start insn of the range (the branch for a forward
573 branch or the label for a backward branch) starts out on; if these
574 differences are used naively, they can even oscillate infinitely.
575 We therefore want to compute a 'worst case' address difference that
576 is independent of the alignment the start insn of the range end
577 up on, and that is at least as large as the actual difference.
578 The function align_fuzz calculates the amount we have to add to the
579 naively computed difference, by traversing the part of the alignment
580 chain of the start insn of the range that is in front of the end insn
581 of the range, and considering for each alignment the maximum amount
582 that it might contribute to a size increase.
584 For casesi tables, we also want to know worst case minimum amounts of
585 address difference, in case a machine description wants to introduce
586 some common offset that is added to all offsets in a table.
587 For this purpose, align_fuzz with a growth argument of 0 computes the
588 appropriate adjustment. */
590 /* Compute the maximum delta by which the difference of the addresses of
591 START and END might grow / shrink due to a different address for start
592 which changes the size of alignment insns between START and END.
593 KNOWN_ALIGN_LOG is the alignment known for START.
594 GROWTH should be ~0 if the objective is to compute potential code size
595 increase, and 0 if the objective is to compute potential shrink.
596 The return value is undefined for any other value of GROWTH. */
599 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
601 int uid
= INSN_UID (start
);
603 int known_align
= 1 << known_align_log
;
604 int end_shuid
= INSN_SHUID (end
);
607 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
609 int align_addr
, new_align
;
611 uid
= INSN_UID (align_label
);
612 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
613 if (uid_shuid
[uid
] > end_shuid
)
615 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
616 new_align
= 1 << known_align_log
;
617 if (new_align
< known_align
)
619 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
620 known_align
= new_align
;
625 /* Compute a worst-case reference address of a branch so that it
626 can be safely used in the presence of aligned labels. Since the
627 size of the branch itself is unknown, the size of the branch is
628 not included in the range. I.e. for a forward branch, the reference
629 address is the end address of the branch as known from the previous
630 branch shortening pass, minus a value to account for possible size
631 increase due to alignment. For a backward branch, it is the start
632 address of the branch as known from the current pass, plus a value
633 to account for possible size increase due to alignment.
634 NB.: Therefore, the maximum offset allowed for backward branches needs
635 to exclude the branch size. */
638 insn_current_reference_address (rtx_insn
*branch
)
643 if (! INSN_ADDRESSES_SET_P ())
646 rtx_insn
*seq
= NEXT_INSN (PREV_INSN (branch
));
647 seq_uid
= INSN_UID (seq
);
648 if (!JUMP_P (branch
))
649 /* This can happen for example on the PA; the objective is to know the
650 offset to address something in front of the start of the function.
651 Thus, we can treat it like a backward branch.
652 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
653 any alignment we'd encounter, so we skip the call to align_fuzz. */
654 return insn_current_address
;
655 dest
= JUMP_LABEL (branch
);
657 /* BRANCH has no proper alignment chain set, so use SEQ.
658 BRANCH also has no INSN_SHUID. */
659 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
661 /* Forward branch. */
662 return (insn_last_address
+ insn_lengths
[seq_uid
]
663 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
667 /* Backward branch. */
668 return (insn_current_address
669 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
673 /* Compute branch alignments based on frequency information in the
677 compute_alignments (void)
679 int log
, max_skip
, max_log
;
682 int freq_threshold
= 0;
690 max_labelno
= max_label_num ();
691 min_labelno
= get_first_label_num ();
692 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
694 /* If not optimizing or optimizing for size, don't assign any alignments. */
695 if (! optimize
|| optimize_function_for_size_p (cfun
))
700 dump_reg_info (dump_file
);
701 dump_flow_info (dump_file
, TDF_DETAILS
);
702 flow_loops_dump (dump_file
, NULL
, 1);
704 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
705 FOR_EACH_BB_FN (bb
, cfun
)
706 if (bb
->frequency
> freq_max
)
707 freq_max
= bb
->frequency
;
708 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
711 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
712 FOR_EACH_BB_FN (bb
, cfun
)
714 rtx_insn
*label
= BB_HEAD (bb
);
715 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
720 || optimize_bb_for_size_p (bb
))
724 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
725 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
729 max_log
= LABEL_ALIGN (label
);
730 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
732 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
734 if (e
->flags
& EDGE_FALLTHRU
)
735 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
737 branch_frequency
+= EDGE_FREQUENCY (e
);
741 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
742 " %2i fall %4i branch %4i",
743 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
745 fallthru_frequency
, branch_frequency
);
746 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
747 fprintf (dump_file
, " inner_loop");
748 if (bb
->loop_father
->header
== bb
)
749 fprintf (dump_file
, " loop_header");
750 fprintf (dump_file
, "\n");
753 /* There are two purposes to align block with no fallthru incoming edge:
754 1) to avoid fetch stalls when branch destination is near cache boundary
755 2) to improve cache efficiency in case the previous block is not executed
756 (so it does not need to be in the cache).
758 We to catch first case, we align frequently executed blocks.
759 To catch the second, we align blocks that are executed more frequently
760 than the predecessor and the predecessor is likely to not be executed
761 when function is called. */
764 && (branch_frequency
> freq_threshold
765 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
766 && (bb
->prev_bb
->frequency
767 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
769 log
= JUMP_ALIGN (label
);
771 fprintf (dump_file
, " jump alignment added.\n");
775 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
778 /* In case block is frequent and reached mostly by non-fallthru edge,
779 align it. It is most likely a first block of loop. */
781 && !(single_succ_p (bb
)
782 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
783 && optimize_bb_for_speed_p (bb
)
784 && branch_frequency
+ fallthru_frequency
> freq_threshold
786 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
788 log
= LOOP_ALIGN (label
);
790 fprintf (dump_file
, " internal loop alignment added.\n");
794 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
797 LABEL_TO_ALIGNMENT (label
) = max_log
;
798 LABEL_TO_MAX_SKIP (label
) = max_skip
;
801 loop_optimizer_finalize ();
802 free_dominance_info (CDI_DOMINATORS
);
806 /* Grow the LABEL_ALIGN array after new labels are created. */
809 grow_label_align (void)
811 int old
= max_labelno
;
815 max_labelno
= max_label_num ();
817 n_labels
= max_labelno
- min_labelno
+ 1;
818 n_old_labels
= old
- min_labelno
+ 1;
820 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
822 /* Range of labels grows monotonically in the function. Failing here
823 means that the initialization of array got lost. */
824 gcc_assert (n_old_labels
<= n_labels
);
826 memset (label_align
+ n_old_labels
, 0,
827 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
830 /* Update the already computed alignment information. LABEL_PAIRS is a vector
831 made up of pairs of labels for which the alignment information of the first
832 element will be copied from that of the second element. */
835 update_alignments (vec
<rtx
> &label_pairs
)
838 rtx iter
, label
= NULL_RTX
;
840 if (max_labelno
!= max_label_num ())
843 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
846 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
847 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
855 const pass_data pass_data_compute_alignments
=
858 "alignments", /* name */
859 OPTGROUP_NONE
, /* optinfo_flags */
861 0, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
868 class pass_compute_alignments
: public rtl_opt_pass
871 pass_compute_alignments (gcc::context
*ctxt
)
872 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
875 /* opt_pass methods: */
876 virtual unsigned int execute (function
*) { return compute_alignments (); }
878 }; // class pass_compute_alignments
883 make_pass_compute_alignments (gcc::context
*ctxt
)
885 return new pass_compute_alignments (ctxt
);
889 /* Make a pass over all insns and compute their actual lengths by shortening
890 any branches of variable length if possible. */
892 /* shorten_branches might be called multiple times: for example, the SH
893 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894 In order to do this, it needs proper length information, which it obtains
895 by calling shorten_branches. This cannot be collapsed with
896 shorten_branches itself into a single pass unless we also want to integrate
897 reorg.c, since the branch splitting exposes new instructions with delay
901 shorten_branches (rtx_insn
*first
)
908 #define MAX_CODE_ALIGN 16
910 int something_changed
= 1;
911 char *varying_length
;
914 rtx align_tab
[MAX_CODE_ALIGN
];
916 /* Compute maximum UID and allocate label_align / uid_shuid. */
917 max_uid
= get_max_uid ();
919 /* Free uid_shuid before reallocating it. */
922 uid_shuid
= XNEWVEC (int, max_uid
);
924 if (max_labelno
!= max_label_num ())
927 /* Initialize label_align and set up uid_shuid to be strictly
928 monotonically rising with insn order. */
929 /* We use max_log here to keep track of the maximum alignment we want to
930 impose on the next CODE_LABEL (or the current one if we are processing
931 the CODE_LABEL itself). */
936 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
940 INSN_SHUID (insn
) = i
++;
947 bool next_is_jumptable
;
949 /* Merge in alignments computed by compute_alignments. */
950 log
= LABEL_TO_ALIGNMENT (insn
);
954 max_skip
= LABEL_TO_MAX_SKIP (insn
);
957 next
= next_nonnote_insn (insn
);
958 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
959 if (!next_is_jumptable
)
961 log
= LABEL_ALIGN (insn
);
965 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
968 /* ADDR_VECs only take room if read-only data goes into the text
970 if ((JUMP_TABLES_IN_TEXT_SECTION
971 || readonly_data_section
== text_section
)
972 && next_is_jumptable
)
974 log
= ADDR_VEC_ALIGN (next
);
978 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
981 LABEL_TO_ALIGNMENT (insn
) = max_log
;
982 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
986 else if (BARRIER_P (insn
))
990 for (label
= insn
; label
&& ! INSN_P (label
);
991 label
= NEXT_INSN (label
))
994 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
998 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1004 if (!HAVE_ATTR_length
)
1007 /* Allocate the rest of the arrays. */
1008 insn_lengths
= XNEWVEC (int, max_uid
);
1009 insn_lengths_max_uid
= max_uid
;
1010 /* Syntax errors can lead to labels being outside of the main insn stream.
1011 Initialize insn_addresses, so that we get reproducible results. */
1012 INSN_ADDRESSES_ALLOC (max_uid
);
1014 varying_length
= XCNEWVEC (char, max_uid
);
1016 /* Initialize uid_align. We scan instructions
1017 from end to start, and keep in align_tab[n] the last seen insn
1018 that does an alignment of at least n+1, i.e. the successor
1019 in the alignment chain for an insn that does / has a known
1021 uid_align
= XCNEWVEC (rtx
, max_uid
);
1023 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1024 align_tab
[i
] = NULL_RTX
;
1025 seq
= get_last_insn ();
1026 for (; seq
; seq
= PREV_INSN (seq
))
1028 int uid
= INSN_UID (seq
);
1030 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1031 uid_align
[uid
] = align_tab
[0];
1034 /* Found an alignment label. */
1035 uid_align
[uid
] = align_tab
[log
];
1036 for (i
= log
- 1; i
>= 0; i
--)
1041 /* When optimizing, we start assuming minimum length, and keep increasing
1042 lengths as we find the need for this, till nothing changes.
1043 When not optimizing, we start assuming maximum lengths, and
1044 do a single pass to update the lengths. */
1045 bool increasing
= optimize
!= 0;
1047 #ifdef CASE_VECTOR_SHORTEN_MODE
1050 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1053 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1054 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1057 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1059 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1060 int len
, i
, min
, max
, insn_shuid
;
1062 addr_diff_vec_flags flags
;
1064 if (! JUMP_TABLE_DATA_P (insn
)
1065 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1067 pat
= PATTERN (insn
);
1068 len
= XVECLEN (pat
, 1);
1069 gcc_assert (len
> 0);
1070 min_align
= MAX_CODE_ALIGN
;
1071 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1073 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1074 int shuid
= INSN_SHUID (lab
);
1085 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1086 min_align
= LABEL_TO_ALIGNMENT (lab
);
1088 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1089 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1090 insn_shuid
= INSN_SHUID (insn
);
1091 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1092 memset (&flags
, 0, sizeof (flags
));
1093 flags
.min_align
= min_align
;
1094 flags
.base_after_vec
= rel
> insn_shuid
;
1095 flags
.min_after_vec
= min
> insn_shuid
;
1096 flags
.max_after_vec
= max
> insn_shuid
;
1097 flags
.min_after_base
= min
> rel
;
1098 flags
.max_after_base
= max
> rel
;
1099 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1102 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1105 #endif /* CASE_VECTOR_SHORTEN_MODE */
1107 /* Compute initial lengths, addresses, and varying flags for each insn. */
1108 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1110 for (insn_current_address
= 0, insn
= first
;
1112 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1114 uid
= INSN_UID (insn
);
1116 insn_lengths
[uid
] = 0;
1120 int log
= LABEL_TO_ALIGNMENT (insn
);
1123 int align
= 1 << log
;
1124 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1125 insn_lengths
[uid
] = new_address
- insn_current_address
;
1129 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1131 if (NOTE_P (insn
) || BARRIER_P (insn
)
1132 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1134 if (insn
->deleted ())
1137 body
= PATTERN (insn
);
1138 if (JUMP_TABLE_DATA_P (insn
))
1140 /* This only takes room if read-only data goes into the text
1142 if (JUMP_TABLES_IN_TEXT_SECTION
1143 || readonly_data_section
== text_section
)
1144 insn_lengths
[uid
] = (XVECLEN (body
,
1145 GET_CODE (body
) == ADDR_DIFF_VEC
)
1146 * GET_MODE_SIZE (GET_MODE (body
)));
1147 /* Alignment is handled by ADDR_VEC_ALIGN. */
1149 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1150 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1151 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1154 int const_delay_slots
;
1156 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1158 const_delay_slots
= 0;
1160 int (*inner_length_fun
) (rtx_insn
*)
1161 = const_delay_slots
? length_fun
: insn_default_length
;
1162 /* Inside a delay slot sequence, we do not do any branch shortening
1163 if the shortening could change the number of delay slots
1165 for (i
= 0; i
< body_seq
->len (); i
++)
1167 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1168 int inner_uid
= INSN_UID (inner_insn
);
1171 if (GET_CODE (body
) == ASM_INPUT
1172 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1173 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1174 * insn_default_length (inner_insn
));
1176 inner_length
= inner_length_fun (inner_insn
);
1178 insn_lengths
[inner_uid
] = inner_length
;
1179 if (const_delay_slots
)
1181 if ((varying_length
[inner_uid
]
1182 = insn_variable_length_p (inner_insn
)) != 0)
1183 varying_length
[uid
] = 1;
1184 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1185 + insn_lengths
[uid
]);
1188 varying_length
[inner_uid
] = 0;
1189 insn_lengths
[uid
] += inner_length
;
1192 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1194 insn_lengths
[uid
] = length_fun (insn
);
1195 varying_length
[uid
] = insn_variable_length_p (insn
);
1198 /* If needed, do any adjustment. */
1199 #ifdef ADJUST_INSN_LENGTH
1200 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1201 if (insn_lengths
[uid
] < 0)
1202 fatal_insn ("negative insn length", insn
);
1206 /* Now loop over all the insns finding varying length insns. For each,
1207 get the current insn length. If it has changed, reflect the change.
1208 When nothing changes for a full pass, we are done. */
1210 while (something_changed
)
1212 something_changed
= 0;
1213 insn_current_align
= MAX_CODE_ALIGN
- 1;
1214 for (insn_current_address
= 0, insn
= first
;
1216 insn
= NEXT_INSN (insn
))
1219 #ifdef ADJUST_INSN_LENGTH
1224 uid
= INSN_UID (insn
);
1228 int log
= LABEL_TO_ALIGNMENT (insn
);
1230 #ifdef CASE_VECTOR_SHORTEN_MODE
1231 /* If the mode of a following jump table was changed, we
1232 may need to update the alignment of this label. */
1234 bool next_is_jumptable
;
1236 next
= next_nonnote_insn (insn
);
1237 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1238 if ((JUMP_TABLES_IN_TEXT_SECTION
1239 || readonly_data_section
== text_section
)
1240 && next_is_jumptable
)
1242 int newlog
= ADDR_VEC_ALIGN (next
);
1246 LABEL_TO_ALIGNMENT (insn
) = log
;
1247 something_changed
= 1;
1252 if (log
> insn_current_align
)
1254 int align
= 1 << log
;
1255 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1256 insn_lengths
[uid
] = new_address
- insn_current_address
;
1257 insn_current_align
= log
;
1258 insn_current_address
= new_address
;
1261 insn_lengths
[uid
] = 0;
1262 INSN_ADDRESSES (uid
) = insn_current_address
;
1266 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1267 if (length_align
< insn_current_align
)
1268 insn_current_align
= length_align
;
1270 insn_last_address
= INSN_ADDRESSES (uid
);
1271 INSN_ADDRESSES (uid
) = insn_current_address
;
1273 #ifdef CASE_VECTOR_SHORTEN_MODE
1275 && JUMP_TABLE_DATA_P (insn
)
1276 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1278 rtx body
= PATTERN (insn
);
1279 int old_length
= insn_lengths
[uid
];
1281 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1282 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1283 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1284 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1285 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1286 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1289 addr_diff_vec_flags flags
;
1290 machine_mode vec_mode
;
1292 /* Avoid automatic aggregate initialization. */
1293 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1295 /* Try to find a known alignment for rel_lab. */
1296 for (prev
= rel_lab
;
1298 && ! insn_lengths
[INSN_UID (prev
)]
1299 && ! (varying_length
[INSN_UID (prev
)] & 1);
1300 prev
= PREV_INSN (prev
))
1301 if (varying_length
[INSN_UID (prev
)] & 2)
1303 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1307 /* See the comment on addr_diff_vec_flags in rtl.h for the
1308 meaning of the flags values. base: REL_LAB vec: INSN */
1309 /* Anything after INSN has still addresses from the last
1310 pass; adjust these so that they reflect our current
1311 estimate for this pass. */
1312 if (flags
.base_after_vec
)
1313 rel_addr
+= insn_current_address
- insn_last_address
;
1314 if (flags
.min_after_vec
)
1315 min_addr
+= insn_current_address
- insn_last_address
;
1316 if (flags
.max_after_vec
)
1317 max_addr
+= insn_current_address
- insn_last_address
;
1318 /* We want to know the worst case, i.e. lowest possible value
1319 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1320 its offset is positive, and we have to be wary of code shrink;
1321 otherwise, it is negative, and we have to be vary of code
1323 if (flags
.min_after_base
)
1325 /* If INSN is between REL_LAB and MIN_LAB, the size
1326 changes we are about to make can change the alignment
1327 within the observed offset, therefore we have to break
1328 it up into two parts that are independent. */
1329 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1331 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1332 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1335 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1339 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1341 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1342 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1345 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1347 /* Likewise, determine the highest lowest possible value
1348 for the offset of MAX_LAB. */
1349 if (flags
.max_after_base
)
1351 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1353 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1354 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1357 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1361 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1363 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1364 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1367 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1369 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1370 max_addr
- rel_addr
, body
);
1372 || (GET_MODE_SIZE (vec_mode
)
1373 >= GET_MODE_SIZE (GET_MODE (body
))))
1374 PUT_MODE (body
, vec_mode
);
1375 if (JUMP_TABLES_IN_TEXT_SECTION
1376 || readonly_data_section
== text_section
)
1379 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1380 insn_current_address
+= insn_lengths
[uid
];
1381 if (insn_lengths
[uid
] != old_length
)
1382 something_changed
= 1;
1387 #endif /* CASE_VECTOR_SHORTEN_MODE */
1389 if (! (varying_length
[uid
]))
1391 if (NONJUMP_INSN_P (insn
)
1392 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1396 body
= PATTERN (insn
);
1397 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1399 rtx inner_insn
= XVECEXP (body
, 0, i
);
1400 int inner_uid
= INSN_UID (inner_insn
);
1402 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1404 insn_current_address
+= insn_lengths
[inner_uid
];
1408 insn_current_address
+= insn_lengths
[uid
];
1413 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1415 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1418 body
= PATTERN (insn
);
1420 for (i
= 0; i
< seqn
->len (); i
++)
1422 rtx_insn
*inner_insn
= seqn
->insn (i
);
1423 int inner_uid
= INSN_UID (inner_insn
);
1426 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1428 /* insn_current_length returns 0 for insns with a
1429 non-varying length. */
1430 if (! varying_length
[inner_uid
])
1431 inner_length
= insn_lengths
[inner_uid
];
1433 inner_length
= insn_current_length (inner_insn
);
1435 if (inner_length
!= insn_lengths
[inner_uid
])
1437 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1439 insn_lengths
[inner_uid
] = inner_length
;
1440 something_changed
= 1;
1443 inner_length
= insn_lengths
[inner_uid
];
1445 insn_current_address
+= inner_length
;
1446 new_length
+= inner_length
;
1451 new_length
= insn_current_length (insn
);
1452 insn_current_address
+= new_length
;
1455 #ifdef ADJUST_INSN_LENGTH
1456 /* If needed, do any adjustment. */
1457 tmp_length
= new_length
;
1458 ADJUST_INSN_LENGTH (insn
, new_length
);
1459 insn_current_address
+= (new_length
- tmp_length
);
1462 if (new_length
!= insn_lengths
[uid
]
1463 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1465 insn_lengths
[uid
] = new_length
;
1466 something_changed
= 1;
1469 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1471 /* For a non-optimizing compile, do only a single pass. */
1476 free (varying_length
);
1479 /* Given the body of an INSN known to be generated by an ASM statement, return
1480 the number of machine instructions likely to be generated for this insn.
1481 This is used to compute its length. */
1484 asm_insn_count (rtx body
)
1488 if (GET_CODE (body
) == ASM_INPUT
)
1489 templ
= XSTR (body
, 0);
1491 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1493 return asm_str_count (templ
);
1496 /* Return the number of machine instructions likely to be generated for the
1497 inline-asm template. */
1499 asm_str_count (const char *templ
)
1506 for (; *templ
; templ
++)
1507 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1514 /* ??? This is probably the wrong place for these. */
1515 /* Structure recording the mapping from source file and directory
1516 names at compile time to those to be embedded in debug
1518 struct debug_prefix_map
1520 const char *old_prefix
;
1521 const char *new_prefix
;
1524 struct debug_prefix_map
*next
;
1527 /* Linked list of such structures. */
1528 static debug_prefix_map
*debug_prefix_maps
;
1531 /* Record a debug file prefix mapping. ARG is the argument to
1532 -fdebug-prefix-map and must be of the form OLD=NEW. */
1535 add_debug_prefix_map (const char *arg
)
1537 debug_prefix_map
*map
;
1540 p
= strchr (arg
, '=');
1543 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1546 map
= XNEW (debug_prefix_map
);
1547 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1548 map
->old_len
= p
- arg
;
1550 map
->new_prefix
= xstrdup (p
);
1551 map
->new_len
= strlen (p
);
1552 map
->next
= debug_prefix_maps
;
1553 debug_prefix_maps
= map
;
1556 /* Perform user-specified mapping of debug filename prefixes. Return
1557 the new name corresponding to FILENAME. */
1560 remap_debug_filename (const char *filename
)
1562 debug_prefix_map
*map
;
1567 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1568 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1572 name
= filename
+ map
->old_len
;
1573 name_len
= strlen (name
) + 1;
1574 s
= (char *) alloca (name_len
+ map
->new_len
);
1575 memcpy (s
, map
->new_prefix
, map
->new_len
);
1576 memcpy (s
+ map
->new_len
, name
, name_len
);
1577 return ggc_strdup (s
);
1580 /* Return true if DWARF2 debug info can be emitted for DECL. */
1583 dwarf2_debug_info_emitted_p (tree decl
)
1585 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1588 if (DECL_IGNORED_P (decl
))
1594 /* Return scope resulting from combination of S1 and S2. */
1596 choose_inner_scope (tree s1
, tree s2
)
1602 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1607 /* Emit lexical block notes needed to change scope from S1 to S2. */
1610 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1612 rtx_insn
*insn
= orig_insn
;
1613 tree com
= NULL_TREE
;
1614 tree ts1
= s1
, ts2
= s2
;
1619 gcc_assert (ts1
&& ts2
);
1620 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1621 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1622 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1623 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1626 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1627 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1636 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1637 NOTE_BLOCK (note
) = s
;
1638 s
= BLOCK_SUPERCONTEXT (s
);
1645 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1646 NOTE_BLOCK (insn
) = s
;
1647 s
= BLOCK_SUPERCONTEXT (s
);
1651 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1652 on the scope tree and the newly reordered instructions. */
1655 reemit_insn_block_notes (void)
1657 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1661 insn
= get_insns ();
1662 for (; insn
; insn
= NEXT_INSN (insn
))
1666 /* Prevent lexical blocks from straddling section boundaries. */
1667 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1669 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1670 s
= BLOCK_SUPERCONTEXT (s
))
1672 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1673 NOTE_BLOCK (note
) = s
;
1674 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1675 NOTE_BLOCK (note
) = s
;
1679 if (!active_insn_p (insn
))
1682 /* Avoid putting scope notes between jump table and its label. */
1683 if (JUMP_TABLE_DATA_P (insn
))
1686 this_block
= insn_scope (insn
);
1687 /* For sequences compute scope resulting from merging all scopes
1688 of instructions nested inside. */
1689 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1694 for (i
= 0; i
< body
->len (); i
++)
1695 this_block
= choose_inner_scope (this_block
,
1696 insn_scope (body
->insn (i
)));
1700 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1703 this_block
= DECL_INITIAL (cfun
->decl
);
1706 if (this_block
!= cur_block
)
1708 change_scope (insn
, cur_block
, this_block
);
1709 cur_block
= this_block
;
1713 /* change_scope emits before the insn, not after. */
1714 note
= emit_note (NOTE_INSN_DELETED
);
1715 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1721 static const char *some_local_dynamic_name
;
1723 /* Locate some local-dynamic symbol still in use by this function
1724 so that we can print its name in local-dynamic base patterns.
1725 Return null if there are no local-dynamic references. */
1728 get_some_local_dynamic_name ()
1730 subrtx_iterator::array_type array
;
1733 if (some_local_dynamic_name
)
1734 return some_local_dynamic_name
;
1736 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1737 if (NONDEBUG_INSN_P (insn
))
1738 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1740 const_rtx x
= *iter
;
1741 if (GET_CODE (x
) == SYMBOL_REF
)
1743 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1744 return some_local_dynamic_name
= XSTR (x
, 0);
1745 if (CONSTANT_POOL_ADDRESS_P (x
))
1746 iter
.substitute (get_pool_constant (x
));
1753 /* Output assembler code for the start of a function,
1754 and initialize some of the variables in this file
1755 for the new function. The label for the function and associated
1756 assembler pseudo-ops have already been output in `assemble_start_function'.
1758 FIRST is the first insn of the rtl for the function being compiled.
1759 FILE is the file to write assembler code to.
1760 OPTIMIZE_P is nonzero if we should eliminate redundant
1761 test and compare insns. */
1764 final_start_function (rtx_insn
*first
, FILE *file
,
1765 int optimize_p ATTRIBUTE_UNUSED
)
1769 this_is_asm_operands
= 0;
1771 need_profile_function
= false;
1773 last_filename
= LOCATION_FILE (prologue_location
);
1774 last_linenum
= LOCATION_LINE (prologue_location
);
1775 last_discriminator
= discriminator
= 0;
1777 high_block_linenum
= high_function_linenum
= last_linenum
;
1779 if (flag_sanitize
& SANITIZE_ADDRESS
)
1780 asan_function_start ();
1782 if (!DECL_IGNORED_P (current_function_decl
))
1783 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1785 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1786 dwarf2out_begin_prologue (0, NULL
);
1788 #ifdef LEAF_REG_REMAP
1789 if (crtl
->uses_only_leaf_regs
)
1790 leaf_renumber_regs (first
);
1793 /* The Sun386i and perhaps other machines don't work right
1794 if the profiling code comes after the prologue. */
1795 if (targetm
.profile_before_prologue () && crtl
->profile
)
1797 if (targetm
.asm_out
.function_prologue
== default_function_pro_epilogue
1798 && targetm
.have_prologue ())
1801 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1807 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1808 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1810 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1811 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1820 need_profile_function
= true;
1822 profile_function (file
);
1825 profile_function (file
);
1828 /* If debugging, assign block numbers to all of the blocks in this
1832 reemit_insn_block_notes ();
1833 number_blocks (current_function_decl
);
1834 /* We never actually put out begin/end notes for the top-level
1835 block in the function. But, conceptually, that block is
1837 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1840 if (warn_frame_larger_than
1841 && get_frame_size () > frame_larger_than_size
)
1843 /* Issue a warning */
1844 warning (OPT_Wframe_larger_than_
,
1845 "the frame size of %wd bytes is larger than %wd bytes",
1846 get_frame_size (), frame_larger_than_size
);
1849 /* First output the function prologue: code to set up the stack frame. */
1850 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1852 /* If the machine represents the prologue as RTL, the profiling code must
1853 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1854 if (! targetm
.have_prologue ())
1855 profile_after_prologue (file
);
1859 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1861 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1862 profile_function (file
);
1866 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1868 #ifndef NO_PROFILE_COUNTERS
1869 # define NO_PROFILE_COUNTERS 0
1871 #ifdef ASM_OUTPUT_REG_PUSH
1872 rtx sval
= NULL
, chain
= NULL
;
1874 if (cfun
->returns_struct
)
1875 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1877 if (cfun
->static_chain_decl
)
1878 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1879 #endif /* ASM_OUTPUT_REG_PUSH */
1881 if (! NO_PROFILE_COUNTERS
)
1883 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1884 switch_to_section (data_section
);
1885 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1886 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1887 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1890 switch_to_section (current_function_section ());
1892 #ifdef ASM_OUTPUT_REG_PUSH
1893 if (sval
&& REG_P (sval
))
1894 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1895 if (chain
&& REG_P (chain
))
1896 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1899 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1901 #ifdef ASM_OUTPUT_REG_PUSH
1902 if (chain
&& REG_P (chain
))
1903 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1904 if (sval
&& REG_P (sval
))
1905 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1909 /* Output assembler code for the end of a function.
1910 For clarity, args are same as those of `final_start_function'
1911 even though not all of them are needed. */
1914 final_end_function (void)
1918 if (!DECL_IGNORED_P (current_function_decl
))
1919 debug_hooks
->end_function (high_function_linenum
);
1921 /* Finally, output the function epilogue:
1922 code to restore the stack frame and return to the caller. */
1923 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1925 /* And debug output. */
1926 if (!DECL_IGNORED_P (current_function_decl
))
1927 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1929 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1930 && dwarf2out_do_frame ())
1931 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1933 some_local_dynamic_name
= 0;
1937 /* Dumper helper for basic block information. FILE is the assembly
1938 output file, and INSN is the instruction being emitted. */
1941 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1942 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1946 if (!flag_debug_asm
)
1949 if (INSN_UID (insn
) < bb_map_size
1950 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1955 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1957 fprintf (file
, " freq:%d", bb
->frequency
);
1959 fprintf (file
, " count:%" PRId64
,
1961 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1962 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1963 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1965 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1967 fprintf (file
, "\n");
1969 if (INSN_UID (insn
) < bb_map_size
1970 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1975 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1976 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1978 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1980 fprintf (file
, "\n");
1984 /* Output assembler code for some insns: all or part of a function.
1985 For description of args, see `final_start_function', above. */
1988 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
1990 rtx_insn
*insn
, *next
;
1993 /* Used for -dA dump. */
1994 basic_block
*start_to_bb
= NULL
;
1995 basic_block
*end_to_bb
= NULL
;
1996 int bb_map_size
= 0;
1999 last_ignored_compare
= 0;
2002 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2004 /* If CC tracking across branches is enabled, record the insn which
2005 jumps to each branch only reached from one place. */
2006 if (optimize_p
&& JUMP_P (insn
))
2008 rtx lab
= JUMP_LABEL (insn
);
2009 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2011 LABEL_REFS (lab
) = insn
;
2024 bb_map_size
= get_max_uid () + 1;
2025 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2026 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2028 /* There is no cfg for a thunk. */
2029 if (!cfun
->is_thunk
)
2030 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2032 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2033 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2037 /* Output the insns. */
2038 for (insn
= first
; insn
;)
2040 if (HAVE_ATTR_length
)
2042 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2044 /* This can be triggered by bugs elsewhere in the compiler if
2045 new insns are created after init_insn_lengths is called. */
2046 gcc_assert (NOTE_P (insn
));
2047 insn_current_address
= -1;
2050 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2053 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2054 bb_map_size
, &bb_seqn
);
2055 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2064 /* Remove CFI notes, to avoid compare-debug failures. */
2065 for (insn
= first
; insn
; insn
= next
)
2067 next
= NEXT_INSN (insn
);
2069 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2070 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2076 get_insn_template (int code
, rtx insn
)
2078 switch (insn_data
[code
].output_format
)
2080 case INSN_OUTPUT_FORMAT_SINGLE
:
2081 return insn_data
[code
].output
.single
;
2082 case INSN_OUTPUT_FORMAT_MULTI
:
2083 return insn_data
[code
].output
.multi
[which_alternative
];
2084 case INSN_OUTPUT_FORMAT_FUNCTION
:
2086 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2087 as_a
<rtx_insn
*> (insn
));
2094 /* Emit the appropriate declaration for an alternate-entry-point
2095 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2096 LABEL_KIND != LABEL_NORMAL.
2098 The case fall-through in this function is intentional. */
2100 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2102 const char *name
= LABEL_NAME (insn
);
2104 switch (LABEL_KIND (insn
))
2106 case LABEL_WEAK_ENTRY
:
2107 #ifdef ASM_WEAKEN_LABEL
2108 ASM_WEAKEN_LABEL (file
, name
);
2110 case LABEL_GLOBAL_ENTRY
:
2111 targetm
.asm_out
.globalize_label (file
, name
);
2112 case LABEL_STATIC_ENTRY
:
2113 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2114 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2116 ASM_OUTPUT_LABEL (file
, name
);
2125 /* Given a CALL_INSN, find and return the nested CALL. */
2127 call_from_call_insn (rtx_call_insn
*insn
)
2130 gcc_assert (CALL_P (insn
));
2133 while (GET_CODE (x
) != CALL
)
2135 switch (GET_CODE (x
))
2140 x
= COND_EXEC_CODE (x
);
2143 x
= XVECEXP (x
, 0, 0);
2153 /* The final scan for one insn, INSN.
2154 Args are same as in `final', except that INSN
2155 is the insn being scanned.
2156 Value returned is the next insn to be scanned.
2158 NOPEEPHOLES is the flag to disallow peephole processing (currently
2159 used for within delayed branch sequence output).
2161 SEEN is used to track the end of the prologue, for emitting
2162 debug information. We force the emission of a line note after
2163 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2166 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2167 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2176 /* Ignore deleted insns. These can occur when we split insns (due to a
2177 template of "#") while not optimizing. */
2178 if (insn
->deleted ())
2179 return NEXT_INSN (insn
);
2181 switch (GET_CODE (insn
))
2184 switch (NOTE_KIND (insn
))
2186 case NOTE_INSN_DELETED
:
2187 case NOTE_INSN_UPDATE_SJLJ_CONTEXT
:
2190 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2191 in_cold_section_p
= !in_cold_section_p
;
2193 if (dwarf2out_do_frame ())
2194 dwarf2out_switch_text_section ();
2195 else if (!DECL_IGNORED_P (current_function_decl
))
2196 debug_hooks
->switch_text_section ();
2198 switch_to_section (current_function_section ());
2199 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2200 current_function_decl
,
2202 /* Emit a label for the split cold section. Form label name by
2203 suffixing "cold" to the original function's name. */
2204 if (in_cold_section_p
)
2207 = clone_function_name (current_function_decl
, "cold");
2208 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2209 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file
,
2211 (cold_function_name
),
2212 current_function_decl
);
2214 ASM_OUTPUT_LABEL (asm_out_file
,
2215 IDENTIFIER_POINTER (cold_function_name
));
2220 case NOTE_INSN_BASIC_BLOCK
:
2221 if (need_profile_function
)
2223 profile_function (asm_out_file
);
2224 need_profile_function
= false;
2227 if (targetm
.asm_out
.unwind_emit
)
2228 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2230 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2234 case NOTE_INSN_EH_REGION_BEG
:
2235 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2236 NOTE_EH_HANDLER (insn
));
2239 case NOTE_INSN_EH_REGION_END
:
2240 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2241 NOTE_EH_HANDLER (insn
));
2244 case NOTE_INSN_PROLOGUE_END
:
2245 targetm
.asm_out
.function_end_prologue (file
);
2246 profile_after_prologue (file
);
2248 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2250 *seen
|= SEEN_EMITTED
;
2251 force_source_line
= true;
2258 case NOTE_INSN_EPILOGUE_BEG
:
2259 if (!DECL_IGNORED_P (current_function_decl
))
2260 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2261 targetm
.asm_out
.function_begin_epilogue (file
);
2265 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2268 case NOTE_INSN_CFI_LABEL
:
2269 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2270 NOTE_LABEL_NUMBER (insn
));
2273 case NOTE_INSN_FUNCTION_BEG
:
2274 if (need_profile_function
)
2276 profile_function (asm_out_file
);
2277 need_profile_function
= false;
2281 if (!DECL_IGNORED_P (current_function_decl
))
2282 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2284 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2286 *seen
|= SEEN_EMITTED
;
2287 force_source_line
= true;
2294 case NOTE_INSN_BLOCK_BEG
:
2295 if (debug_info_level
== DINFO_LEVEL_NORMAL
2296 || debug_info_level
== DINFO_LEVEL_VERBOSE
2297 || write_symbols
== DWARF2_DEBUG
2298 || write_symbols
== VMS_AND_DWARF2_DEBUG
2299 || write_symbols
== VMS_DEBUG
)
2301 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2305 high_block_linenum
= last_linenum
;
2307 /* Output debugging info about the symbol-block beginning. */
2308 if (!DECL_IGNORED_P (current_function_decl
))
2309 debug_hooks
->begin_block (last_linenum
, n
);
2311 /* Mark this block as output. */
2312 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2314 if (write_symbols
== DBX_DEBUG
2315 || write_symbols
== SDB_DEBUG
)
2317 location_t
*locus_ptr
2318 = block_nonartificial_location (NOTE_BLOCK (insn
));
2320 if (locus_ptr
!= NULL
)
2322 override_filename
= LOCATION_FILE (*locus_ptr
);
2323 override_linenum
= LOCATION_LINE (*locus_ptr
);
2328 case NOTE_INSN_BLOCK_END
:
2329 if (debug_info_level
== DINFO_LEVEL_NORMAL
2330 || debug_info_level
== DINFO_LEVEL_VERBOSE
2331 || write_symbols
== DWARF2_DEBUG
2332 || write_symbols
== VMS_AND_DWARF2_DEBUG
2333 || write_symbols
== VMS_DEBUG
)
2335 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2339 /* End of a symbol-block. */
2341 gcc_assert (block_depth
>= 0);
2343 if (!DECL_IGNORED_P (current_function_decl
))
2344 debug_hooks
->end_block (high_block_linenum
, n
);
2346 if (write_symbols
== DBX_DEBUG
2347 || write_symbols
== SDB_DEBUG
)
2349 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2350 location_t
*locus_ptr
2351 = block_nonartificial_location (outer_block
);
2353 if (locus_ptr
!= NULL
)
2355 override_filename
= LOCATION_FILE (*locus_ptr
);
2356 override_linenum
= LOCATION_LINE (*locus_ptr
);
2360 override_filename
= NULL
;
2361 override_linenum
= 0;
2366 case NOTE_INSN_DELETED_LABEL
:
2367 /* Emit the label. We may have deleted the CODE_LABEL because
2368 the label could be proved to be unreachable, though still
2369 referenced (in the form of having its address taken. */
2370 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2373 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2374 /* Similarly, but need to use different namespace for it. */
2375 if (CODE_LABEL_NUMBER (insn
) != -1)
2376 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2379 case NOTE_INSN_VAR_LOCATION
:
2380 case NOTE_INSN_CALL_ARG_LOCATION
:
2381 if (!DECL_IGNORED_P (current_function_decl
))
2382 debug_hooks
->var_location (insn
);
2395 /* The target port might emit labels in the output function for
2396 some insn, e.g. sh.c output_branchy_insn. */
2397 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2399 int align
= LABEL_TO_ALIGNMENT (insn
);
2400 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2401 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2404 if (align
&& NEXT_INSN (insn
))
2406 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2407 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2409 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2410 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2412 ASM_OUTPUT_ALIGN (file
, align
);
2419 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2420 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2424 next
= next_nonnote_insn (insn
);
2425 /* If this label is followed by a jump-table, make sure we put
2426 the label in the read-only section. Also possibly write the
2427 label and jump table together. */
2428 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2430 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2431 /* In this case, the case vector is being moved by the
2432 target, so don't output the label at all. Leave that
2433 to the back end macros. */
2435 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2439 switch_to_section (targetm
.asm_out
.function_rodata_section
2440 (current_function_decl
));
2442 #ifdef ADDR_VEC_ALIGN
2443 log_align
= ADDR_VEC_ALIGN (next
);
2445 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2447 ASM_OUTPUT_ALIGN (file
, log_align
);
2450 switch_to_section (current_function_section ());
2452 #ifdef ASM_OUTPUT_CASE_LABEL
2453 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2456 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2461 if (LABEL_ALT_ENTRY_P (insn
))
2462 output_alternate_entry_point (file
, insn
);
2464 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2469 rtx body
= PATTERN (insn
);
2470 int insn_code_number
;
2474 /* Reset this early so it is correct for ASM statements. */
2475 current_insn_predicate
= NULL_RTX
;
2477 /* An INSN, JUMP_INSN or CALL_INSN.
2478 First check for special kinds that recog doesn't recognize. */
2480 if (GET_CODE (body
) == USE
/* These are just declarations. */
2481 || GET_CODE (body
) == CLOBBER
)
2486 /* If there is a REG_CC_SETTER note on this insn, it means that
2487 the setting of the condition code was done in the delay slot
2488 of the insn that branched here. So recover the cc status
2489 from the insn that set it. */
2491 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2494 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2495 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2496 cc_prev_status
= cc_status
;
2501 /* Detect insns that are really jump-tables
2502 and output them as such. */
2504 if (JUMP_TABLE_DATA_P (insn
))
2506 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2510 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2511 switch_to_section (targetm
.asm_out
.function_rodata_section
2512 (current_function_decl
));
2514 switch_to_section (current_function_section ());
2518 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2519 if (GET_CODE (body
) == ADDR_VEC
)
2521 #ifdef ASM_OUTPUT_ADDR_VEC
2522 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2529 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2530 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2536 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2537 for (idx
= 0; idx
< vlen
; idx
++)
2539 if (GET_CODE (body
) == ADDR_VEC
)
2541 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2542 ASM_OUTPUT_ADDR_VEC_ELT
2543 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2550 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2551 ASM_OUTPUT_ADDR_DIFF_ELT
2554 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2555 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2561 #ifdef ASM_OUTPUT_CASE_END
2562 ASM_OUTPUT_CASE_END (file
,
2563 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2568 switch_to_section (current_function_section ());
2572 /* Output this line note if it is the first or the last line
2574 if (!DECL_IGNORED_P (current_function_decl
)
2575 && notice_source_line (insn
, &is_stmt
))
2576 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2577 last_discriminator
, is_stmt
);
2579 if (GET_CODE (body
) == ASM_INPUT
)
2581 const char *string
= XSTR (body
, 0);
2583 /* There's no telling what that did to the condition codes. */
2588 expanded_location loc
;
2591 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2592 if (*loc
.file
&& loc
.line
)
2593 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2594 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2595 fprintf (asm_out_file
, "\t%s\n", string
);
2596 #if HAVE_AS_LINE_ZERO
2597 if (*loc
.file
&& loc
.line
)
2598 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2604 /* Detect `asm' construct with operands. */
2605 if (asm_noperands (body
) >= 0)
2607 unsigned int noperands
= asm_noperands (body
);
2608 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2611 expanded_location expanded
;
2613 /* There's no telling what that did to the condition codes. */
2616 /* Get out the operand values. */
2617 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2618 /* Inhibit dying on what would otherwise be compiler bugs. */
2619 insn_noperands
= noperands
;
2620 this_is_asm_operands
= insn
;
2621 expanded
= expand_location (loc
);
2623 #ifdef FINAL_PRESCAN_INSN
2624 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2627 /* Output the insn using them. */
2631 if (expanded
.file
&& expanded
.line
)
2632 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2633 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2634 output_asm_insn (string
, ops
);
2635 #if HAVE_AS_LINE_ZERO
2636 if (expanded
.file
&& expanded
.line
)
2637 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2641 if (targetm
.asm_out
.final_postscan_insn
)
2642 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2645 this_is_asm_operands
= 0;
2651 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2653 /* A delayed-branch sequence */
2656 final_sequence
= seq
;
2658 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2659 force the restoration of a comparison that was previously
2660 thought unnecessary. If that happens, cancel this sequence
2661 and cause that insn to be restored. */
2663 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2664 if (next
!= seq
->insn (1))
2670 for (i
= 1; i
< seq
->len (); i
++)
2672 rtx_insn
*insn
= seq
->insn (i
);
2673 rtx_insn
*next
= NEXT_INSN (insn
);
2674 /* We loop in case any instruction in a delay slot gets
2677 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2678 while (insn
!= next
);
2680 #ifdef DBR_OUTPUT_SEQEND
2681 DBR_OUTPUT_SEQEND (file
);
2685 /* If the insn requiring the delay slot was a CALL_INSN, the
2686 insns in the delay slot are actually executed before the
2687 called function. Hence we don't preserve any CC-setting
2688 actions in these insns and the CC must be marked as being
2689 clobbered by the function. */
2690 if (CALL_P (seq
->insn (0)))
2697 /* We have a real machine instruction as rtl. */
2699 body
= PATTERN (insn
);
2702 set
= single_set (insn
);
2704 /* Check for redundant test and compare instructions
2705 (when the condition codes are already set up as desired).
2706 This is done only when optimizing; if not optimizing,
2707 it should be possible for the user to alter a variable
2708 with the debugger in between statements
2709 and the next statement should reexamine the variable
2710 to compute the condition codes. */
2715 && GET_CODE (SET_DEST (set
)) == CC0
2716 && insn
!= last_ignored_compare
)
2719 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2720 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2722 src1
= SET_SRC (set
);
2724 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2726 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2727 XEXP (SET_SRC (set
), 0)
2728 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2729 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2730 XEXP (SET_SRC (set
), 1)
2731 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2732 if (XEXP (SET_SRC (set
), 1)
2733 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2734 src2
= XEXP (SET_SRC (set
), 0);
2736 if ((cc_status
.value1
!= 0
2737 && rtx_equal_p (src1
, cc_status
.value1
))
2738 || (cc_status
.value2
!= 0
2739 && rtx_equal_p (src1
, cc_status
.value2
))
2740 || (src2
!= 0 && cc_status
.value1
!= 0
2741 && rtx_equal_p (src2
, cc_status
.value1
))
2742 || (src2
!= 0 && cc_status
.value2
!= 0
2743 && rtx_equal_p (src2
, cc_status
.value2
)))
2745 /* Don't delete insn if it has an addressing side-effect. */
2746 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2747 /* or if anything in it is volatile. */
2748 && ! volatile_refs_p (PATTERN (insn
)))
2750 /* We don't really delete the insn; just ignore it. */
2751 last_ignored_compare
= insn
;
2758 /* If this is a conditional branch, maybe modify it
2759 if the cc's are in a nonstandard state
2760 so that it accomplishes the same thing that it would
2761 do straightforwardly if the cc's were set up normally. */
2763 if (cc_status
.flags
!= 0
2765 && GET_CODE (body
) == SET
2766 && SET_DEST (body
) == pc_rtx
2767 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2768 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2769 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2771 /* This function may alter the contents of its argument
2772 and clear some of the cc_status.flags bits.
2773 It may also return 1 meaning condition now always true
2774 or -1 meaning condition now always false
2775 or 2 meaning condition nontrivial but altered. */
2776 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2777 /* If condition now has fixed value, replace the IF_THEN_ELSE
2778 with its then-operand or its else-operand. */
2780 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2782 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2784 /* The jump is now either unconditional or a no-op.
2785 If it has become a no-op, don't try to output it.
2786 (It would not be recognized.) */
2787 if (SET_SRC (body
) == pc_rtx
)
2792 else if (ANY_RETURN_P (SET_SRC (body
)))
2793 /* Replace (set (pc) (return)) with (return). */
2794 PATTERN (insn
) = body
= SET_SRC (body
);
2796 /* Rerecognize the instruction if it has changed. */
2798 INSN_CODE (insn
) = -1;
2801 /* If this is a conditional trap, maybe modify it if the cc's
2802 are in a nonstandard state so that it accomplishes the same
2803 thing that it would do straightforwardly if the cc's were
2805 if (cc_status
.flags
!= 0
2806 && NONJUMP_INSN_P (insn
)
2807 && GET_CODE (body
) == TRAP_IF
2808 && COMPARISON_P (TRAP_CONDITION (body
))
2809 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2811 /* This function may alter the contents of its argument
2812 and clear some of the cc_status.flags bits.
2813 It may also return 1 meaning condition now always true
2814 or -1 meaning condition now always false
2815 or 2 meaning condition nontrivial but altered. */
2816 int result
= alter_cond (TRAP_CONDITION (body
));
2818 /* If TRAP_CONDITION has become always false, delete the
2826 /* If TRAP_CONDITION has become always true, replace
2827 TRAP_CONDITION with const_true_rtx. */
2829 TRAP_CONDITION (body
) = const_true_rtx
;
2831 /* Rerecognize the instruction if it has changed. */
2833 INSN_CODE (insn
) = -1;
2836 /* Make same adjustments to instructions that examine the
2837 condition codes without jumping and instructions that
2838 handle conditional moves (if this machine has either one). */
2840 if (cc_status
.flags
!= 0
2843 rtx cond_rtx
, then_rtx
, else_rtx
;
2846 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2848 cond_rtx
= XEXP (SET_SRC (set
), 0);
2849 then_rtx
= XEXP (SET_SRC (set
), 1);
2850 else_rtx
= XEXP (SET_SRC (set
), 2);
2854 cond_rtx
= SET_SRC (set
);
2855 then_rtx
= const_true_rtx
;
2856 else_rtx
= const0_rtx
;
2859 if (COMPARISON_P (cond_rtx
)
2860 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2863 result
= alter_cond (cond_rtx
);
2865 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2866 else if (result
== -1)
2867 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2868 else if (result
== 2)
2869 INSN_CODE (insn
) = -1;
2870 if (SET_DEST (set
) == SET_SRC (set
))
2877 /* Do machine-specific peephole optimizations if desired. */
2879 if (HAVE_peephole
&& optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2881 rtx_insn
*next
= peephole (insn
);
2882 /* When peepholing, if there were notes within the peephole,
2883 emit them before the peephole. */
2884 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2886 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2888 for (note
= NEXT_INSN (insn
); note
!= next
;
2889 note
= NEXT_INSN (note
))
2890 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2892 /* Put the notes in the proper position for a later
2893 rescan. For example, the SH target can do this
2894 when generating a far jump in a delayed branch
2896 note
= NEXT_INSN (insn
);
2897 SET_PREV_INSN (note
) = prev
;
2898 SET_NEXT_INSN (prev
) = note
;
2899 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2900 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2901 SET_NEXT_INSN (insn
) = next
;
2902 SET_PREV_INSN (next
) = insn
;
2905 /* PEEPHOLE might have changed this. */
2906 body
= PATTERN (insn
);
2909 /* Try to recognize the instruction.
2910 If successful, verify that the operands satisfy the
2911 constraints for the instruction. Crash if they don't,
2912 since `reload' should have changed them so that they do. */
2914 insn_code_number
= recog_memoized (insn
);
2915 cleanup_subreg_operands (insn
);
2917 /* Dump the insn in the assembly for debugging (-dAP).
2918 If the final dump is requested as slim RTL, dump slim
2919 RTL to the assembly file also. */
2920 if (flag_dump_rtl_in_asm
)
2922 print_rtx_head
= ASM_COMMENT_START
;
2923 if (! (dump_flags
& TDF_SLIM
))
2924 print_rtl_single (asm_out_file
, insn
);
2926 dump_insn_slim (asm_out_file
, insn
);
2927 print_rtx_head
= "";
2930 if (! constrain_operands_cached (insn
, 1))
2931 fatal_insn_not_found (insn
);
2933 /* Some target machines need to prescan each insn before
2936 #ifdef FINAL_PRESCAN_INSN
2937 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2940 if (targetm
.have_conditional_execution ()
2941 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2942 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2945 cc_prev_status
= cc_status
;
2947 /* Update `cc_status' for this instruction.
2948 The instruction's output routine may change it further.
2949 If the output routine for a jump insn needs to depend
2950 on the cc status, it should look at cc_prev_status. */
2952 NOTICE_UPDATE_CC (body
, insn
);
2955 current_output_insn
= debug_insn
= insn
;
2957 /* Find the proper template for this insn. */
2958 templ
= get_insn_template (insn_code_number
, insn
);
2960 /* If the C code returns 0, it means that it is a jump insn
2961 which follows a deleted test insn, and that test insn
2962 needs to be reinserted. */
2967 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2969 /* We have already processed the notes between the setter and
2970 the user. Make sure we don't process them again, this is
2971 particularly important if one of the notes is a block
2972 scope note or an EH note. */
2974 prev
!= last_ignored_compare
;
2975 prev
= PREV_INSN (prev
))
2978 delete_insn (prev
); /* Use delete_note. */
2984 /* If the template is the string "#", it means that this insn must
2986 if (templ
[0] == '#' && templ
[1] == '\0')
2988 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
2990 /* If we didn't split the insn, go away. */
2991 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2992 fatal_insn ("could not split insn", insn
);
2994 /* If we have a length attribute, this instruction should have
2995 been split in shorten_branches, to ensure that we would have
2996 valid length info for the splitees. */
2997 gcc_assert (!HAVE_ATTR_length
);
3002 /* ??? This will put the directives in the wrong place if
3003 get_insn_template outputs assembly directly. However calling it
3004 before get_insn_template breaks if the insns is split. */
3005 if (targetm
.asm_out
.unwind_emit_before_insn
3006 && targetm
.asm_out
.unwind_emit
)
3007 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3009 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3011 rtx x
= call_from_call_insn (call_insn
);
3013 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3017 t
= SYMBOL_REF_DECL (x
);
3019 assemble_external (t
);
3021 if (!DECL_IGNORED_P (current_function_decl
))
3022 debug_hooks
->var_location (insn
);
3025 /* Output assembler code from the template. */
3026 output_asm_insn (templ
, recog_data
.operand
);
3028 /* Some target machines need to postscan each insn after
3030 if (targetm
.asm_out
.final_postscan_insn
)
3031 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3032 recog_data
.n_operands
);
3034 if (!targetm
.asm_out
.unwind_emit_before_insn
3035 && targetm
.asm_out
.unwind_emit
)
3036 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3038 current_output_insn
= debug_insn
= 0;
3041 return NEXT_INSN (insn
);
3044 /* Return whether a source line note needs to be emitted before INSN.
3045 Sets IS_STMT to TRUE if the line should be marked as a possible
3046 breakpoint location. */
3049 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3051 const char *filename
;
3054 if (override_filename
)
3056 filename
= override_filename
;
3057 linenum
= override_linenum
;
3059 else if (INSN_HAS_LOCATION (insn
))
3061 expanded_location xloc
= insn_location (insn
);
3062 filename
= xloc
.file
;
3063 linenum
= xloc
.line
;
3071 if (filename
== NULL
)
3074 if (force_source_line
3075 || filename
!= last_filename
3076 || last_linenum
!= linenum
)
3078 force_source_line
= false;
3079 last_filename
= filename
;
3080 last_linenum
= linenum
;
3081 last_discriminator
= discriminator
;
3083 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3084 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3088 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3090 /* If the discriminator changed, but the line number did not,
3091 output the line table entry with is_stmt false so the
3092 debugger does not treat this as a breakpoint location. */
3093 last_discriminator
= discriminator
;
3101 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3102 directly to the desired hard register. */
3105 cleanup_subreg_operands (rtx_insn
*insn
)
3108 bool changed
= false;
3109 extract_insn_cached (insn
);
3110 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3112 /* The following test cannot use recog_data.operand when testing
3113 for a SUBREG: the underlying object might have been changed
3114 already if we are inside a match_operator expression that
3115 matches the else clause. Instead we test the underlying
3116 expression directly. */
3117 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3119 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3122 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3123 || GET_CODE (recog_data
.operand
[i
]) == MULT
3124 || MEM_P (recog_data
.operand
[i
]))
3125 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3128 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3130 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3132 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3135 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3136 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3137 || MEM_P (*recog_data
.dup_loc
[i
]))
3138 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3141 df_insn_rescan (insn
);
3144 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3145 the thing it is a subreg of. Do it anyway if FINAL_P. */
3148 alter_subreg (rtx
*xp
, bool final_p
)
3151 rtx y
= SUBREG_REG (x
);
3153 /* simplify_subreg does not remove subreg from volatile references.
3154 We are required to. */
3157 int offset
= SUBREG_BYTE (x
);
3159 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3160 contains 0 instead of the proper offset. See simplify_subreg. */
3162 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3164 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3165 - GET_MODE_SIZE (GET_MODE (x
));
3166 if (WORDS_BIG_ENDIAN
)
3167 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3168 if (BYTES_BIG_ENDIAN
)
3169 offset
+= difference
% UNITS_PER_WORD
;
3173 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3175 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3177 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3179 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3184 else if (final_p
&& REG_P (y
))
3186 /* Simplify_subreg can't handle some REG cases, but we have to. */
3188 HOST_WIDE_INT offset
;
3190 regno
= subreg_regno (x
);
3191 if (subreg_lowpart_p (x
))
3192 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3194 offset
= SUBREG_BYTE (x
);
3195 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3202 /* Do alter_subreg on all the SUBREGs contained in X. */
3205 walk_alter_subreg (rtx
*xp
, bool *changed
)
3208 switch (GET_CODE (x
))
3213 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3214 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3219 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3224 return alter_subreg (xp
, true);
3235 /* Given BODY, the body of a jump instruction, alter the jump condition
3236 as required by the bits that are set in cc_status.flags.
3237 Not all of the bits there can be handled at this level in all cases.
3239 The value is normally 0.
3240 1 means that the condition has become always true.
3241 -1 means that the condition has become always false.
3242 2 means that COND has been altered. */
3245 alter_cond (rtx cond
)
3249 if (cc_status
.flags
& CC_REVERSED
)
3252 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3255 if (cc_status
.flags
& CC_INVERTED
)
3258 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3261 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3262 switch (GET_CODE (cond
))
3267 /* Jump becomes unconditional. */
3273 /* Jump becomes no-op. */
3277 PUT_CODE (cond
, EQ
);
3282 PUT_CODE (cond
, NE
);
3290 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3291 switch (GET_CODE (cond
))
3295 /* Jump becomes unconditional. */
3300 /* Jump becomes no-op. */
3305 PUT_CODE (cond
, EQ
);
3311 PUT_CODE (cond
, NE
);
3319 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3320 switch (GET_CODE (cond
))
3323 /* Jump becomes unconditional. */
3327 PUT_CODE (cond
, EQ
);
3332 PUT_CODE (cond
, NE
);
3337 /* Jump becomes no-op. */
3344 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3345 switch (GET_CODE (cond
))
3351 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3356 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3361 if (cc_status
.flags
& CC_NOT_SIGNED
)
3362 /* The flags are valid if signed condition operators are converted
3364 switch (GET_CODE (cond
))
3367 PUT_CODE (cond
, LEU
);
3372 PUT_CODE (cond
, LTU
);
3377 PUT_CODE (cond
, GTU
);
3382 PUT_CODE (cond
, GEU
);
3394 /* Report inconsistency between the assembler template and the operands.
3395 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3398 output_operand_lossage (const char *cmsgid
, ...)
3402 const char *pfx_str
;
3405 va_start (ap
, cmsgid
);
3407 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3408 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3409 new_message
= xvasprintf (fmt_string
, ap
);
3411 if (this_is_asm_operands
)
3412 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3414 internal_error ("%s", new_message
);
3421 /* Output of assembler code from a template, and its subroutines. */
3423 /* Annotate the assembly with a comment describing the pattern and
3424 alternative used. */
3427 output_asm_name (void)
3431 int num
= INSN_CODE (debug_insn
);
3432 fprintf (asm_out_file
, "\t%s %d\t%s",
3433 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3434 insn_data
[num
].name
);
3435 if (insn_data
[num
].n_alternatives
> 1)
3436 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3438 if (HAVE_ATTR_length
)
3439 fprintf (asm_out_file
, "\t[length = %d]",
3440 get_attr_length (debug_insn
));
3442 /* Clear this so only the first assembler insn
3443 of any rtl insn will get the special comment for -dp. */
3448 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3449 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3450 corresponds to the address of the object and 0 if to the object. */
3453 get_mem_expr_from_op (rtx op
, int *paddressp
)
3461 return REG_EXPR (op
);
3462 else if (!MEM_P (op
))
3465 if (MEM_EXPR (op
) != 0)
3466 return MEM_EXPR (op
);
3468 /* Otherwise we have an address, so indicate it and look at the address. */
3472 /* First check if we have a decl for the address, then look at the right side
3473 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3474 But don't allow the address to itself be indirect. */
3475 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3477 else if (GET_CODE (op
) == PLUS
3478 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3482 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3485 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3486 return inner_addressp
? 0 : expr
;
3489 /* Output operand names for assembler instructions. OPERANDS is the
3490 operand vector, OPORDER is the order to write the operands, and NOPS
3491 is the number of operands to write. */
3494 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3499 for (i
= 0; i
< nops
; i
++)
3502 rtx op
= operands
[oporder
[i
]];
3503 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3505 fprintf (asm_out_file
, "%c%s",
3506 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3510 fprintf (asm_out_file
, "%s",
3511 addressp
? "*" : "");
3512 print_mem_expr (asm_out_file
, expr
);
3515 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3516 && ORIGINAL_REGNO (op
) != REGNO (op
))
3517 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3521 #ifdef ASSEMBLER_DIALECT
3522 /* Helper function to parse assembler dialects in the asm string.
3523 This is called from output_asm_insn and asm_fprintf. */
3525 do_assembler_dialects (const char *p
, int *dialect
)
3536 output_operand_lossage ("nested assembly dialect alternatives");
3540 /* If we want the first dialect, do nothing. Otherwise, skip
3541 DIALECT_NUMBER of strings ending with '|'. */
3542 for (i
= 0; i
< dialect_number
; i
++)
3544 while (*p
&& *p
!= '}')
3552 /* Skip over any character after a percent sign. */
3564 output_operand_lossage ("unterminated assembly dialect alternative");
3571 /* Skip to close brace. */
3576 output_operand_lossage ("unterminated assembly dialect alternative");
3580 /* Skip over any character after a percent sign. */
3581 if (*p
== '%' && p
[1])
3595 putc (c
, asm_out_file
);
3600 putc (c
, asm_out_file
);
3611 /* Output text from TEMPLATE to the assembler output file,
3612 obeying %-directions to substitute operands taken from
3613 the vector OPERANDS.
3615 %N (for N a digit) means print operand N in usual manner.
3616 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3617 and print the label name with no punctuation.
3618 %cN means require operand N to be a constant
3619 and print the constant expression with no punctuation.
3620 %aN means expect operand N to be a memory address
3621 (not a memory reference!) and print a reference
3623 %nN means expect operand N to be a constant
3624 and print a constant expression for minus the value
3625 of the operand, with no other punctuation. */
3628 output_asm_insn (const char *templ
, rtx
*operands
)
3632 #ifdef ASSEMBLER_DIALECT
3635 int oporder
[MAX_RECOG_OPERANDS
];
3636 char opoutput
[MAX_RECOG_OPERANDS
];
3639 /* An insn may return a null string template
3640 in a case where no assembler code is needed. */
3644 memset (opoutput
, 0, sizeof opoutput
);
3646 putc ('\t', asm_out_file
);
3648 #ifdef ASM_OUTPUT_OPCODE
3649 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3656 if (flag_verbose_asm
)
3657 output_asm_operand_names (operands
, oporder
, ops
);
3658 if (flag_print_asm_name
)
3662 memset (opoutput
, 0, sizeof opoutput
);
3664 putc (c
, asm_out_file
);
3665 #ifdef ASM_OUTPUT_OPCODE
3666 while ((c
= *p
) == '\t')
3668 putc (c
, asm_out_file
);
3671 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3675 #ifdef ASSEMBLER_DIALECT
3679 p
= do_assembler_dialects (p
, &dialect
);
3684 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3685 if ASSEMBLER_DIALECT defined and these characters have a special
3686 meaning as dialect delimiters.*/
3688 #ifdef ASSEMBLER_DIALECT
3689 || *p
== '{' || *p
== '}' || *p
== '|'
3693 putc (*p
, asm_out_file
);
3696 /* %= outputs a number which is unique to each insn in the entire
3697 compilation. This is useful for making local labels that are
3698 referred to more than once in a given insn. */
3702 fprintf (asm_out_file
, "%d", insn_counter
);
3704 /* % followed by a letter and some digits
3705 outputs an operand in a special way depending on the letter.
3706 Letters `acln' are implemented directly.
3707 Other letters are passed to `output_operand' so that
3708 the TARGET_PRINT_OPERAND hook can define them. */
3709 else if (ISALPHA (*p
))
3712 unsigned long opnum
;
3715 opnum
= strtoul (p
, &endptr
, 10);
3718 output_operand_lossage ("operand number missing "
3720 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3721 output_operand_lossage ("operand number out of range");
3722 else if (letter
== 'l')
3723 output_asm_label (operands
[opnum
]);
3724 else if (letter
== 'a')
3725 output_address (operands
[opnum
]);
3726 else if (letter
== 'c')
3728 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3729 output_addr_const (asm_out_file
, operands
[opnum
]);
3731 output_operand (operands
[opnum
], 'c');
3733 else if (letter
== 'n')
3735 if (CONST_INT_P (operands
[opnum
]))
3736 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3737 - INTVAL (operands
[opnum
]));
3740 putc ('-', asm_out_file
);
3741 output_addr_const (asm_out_file
, operands
[opnum
]);
3745 output_operand (operands
[opnum
], letter
);
3747 if (!opoutput
[opnum
])
3748 oporder
[ops
++] = opnum
;
3749 opoutput
[opnum
] = 1;
3754 /* % followed by a digit outputs an operand the default way. */
3755 else if (ISDIGIT (*p
))
3757 unsigned long opnum
;
3760 opnum
= strtoul (p
, &endptr
, 10);
3761 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3762 output_operand_lossage ("operand number out of range");
3764 output_operand (operands
[opnum
], 0);
3766 if (!opoutput
[opnum
])
3767 oporder
[ops
++] = opnum
;
3768 opoutput
[opnum
] = 1;
3773 /* % followed by punctuation: output something for that
3774 punctuation character alone, with no operand. The
3775 TARGET_PRINT_OPERAND hook decides what is actually done. */
3776 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3777 output_operand (NULL_RTX
, *p
++);
3779 output_operand_lossage ("invalid %%-code");
3783 putc (c
, asm_out_file
);
3786 /* Write out the variable names for operands, if we know them. */
3787 if (flag_verbose_asm
)
3788 output_asm_operand_names (operands
, oporder
, ops
);
3789 if (flag_print_asm_name
)
3792 putc ('\n', asm_out_file
);
3795 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3798 output_asm_label (rtx x
)
3802 if (GET_CODE (x
) == LABEL_REF
)
3803 x
= LABEL_REF_LABEL (x
);
3806 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3807 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3809 output_operand_lossage ("'%%l' operand isn't a label");
3811 assemble_name (asm_out_file
, buf
);
3814 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3817 mark_symbol_refs_as_used (rtx x
)
3819 subrtx_iterator::array_type array
;
3820 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3822 const_rtx x
= *iter
;
3823 if (GET_CODE (x
) == SYMBOL_REF
)
3824 if (tree t
= SYMBOL_REF_DECL (x
))
3825 assemble_external (t
);
3829 /* Print operand X using machine-dependent assembler syntax.
3830 CODE is a non-digit that preceded the operand-number in the % spec,
3831 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3832 between the % and the digits.
3833 When CODE is a non-letter, X is 0.
3835 The meanings of the letters are machine-dependent and controlled
3836 by TARGET_PRINT_OPERAND. */
3839 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3841 if (x
&& GET_CODE (x
) == SUBREG
)
3842 x
= alter_subreg (&x
, true);
3844 /* X must not be a pseudo reg. */
3845 if (!targetm
.no_register_allocation
)
3846 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3848 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3853 mark_symbol_refs_as_used (x
);
3856 /* Print a memory reference operand for address X using
3857 machine-dependent assembler syntax. */
3860 output_address (rtx x
)
3862 bool changed
= false;
3863 walk_alter_subreg (&x
, &changed
);
3864 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3867 /* Print an integer constant expression in assembler syntax.
3868 Addition and subtraction are the only arithmetic
3869 that may appear in these expressions. */
3872 output_addr_const (FILE *file
, rtx x
)
3877 switch (GET_CODE (x
))
3884 if (SYMBOL_REF_DECL (x
))
3885 assemble_external (SYMBOL_REF_DECL (x
));
3886 #ifdef ASM_OUTPUT_SYMBOL_REF
3887 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3889 assemble_name (file
, XSTR (x
, 0));
3894 x
= LABEL_REF_LABEL (x
);
3897 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3898 #ifdef ASM_OUTPUT_LABEL_REF
3899 ASM_OUTPUT_LABEL_REF (file
, buf
);
3901 assemble_name (file
, buf
);
3906 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3910 /* This used to output parentheses around the expression,
3911 but that does not work on the 386 (either ATT or BSD assembler). */
3912 output_addr_const (file
, XEXP (x
, 0));
3915 case CONST_WIDE_INT
:
3916 /* We do not know the mode here so we have to use a round about
3917 way to build a wide-int to get it printed properly. */
3919 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3920 CONST_WIDE_INT_NUNITS (x
),
3921 CONST_WIDE_INT_NUNITS (x
)
3922 * HOST_BITS_PER_WIDE_INT
,
3924 print_decs (w
, file
);
3929 if (CONST_DOUBLE_AS_INT_P (x
))
3931 /* We can use %d if the number is one word and positive. */
3932 if (CONST_DOUBLE_HIGH (x
))
3933 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3934 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3935 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3936 else if (CONST_DOUBLE_LOW (x
) < 0)
3937 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3938 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3940 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3943 /* We can't handle floating point constants;
3944 PRINT_OPERAND must handle them. */
3945 output_operand_lossage ("floating constant misused");
3949 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3953 /* Some assemblers need integer constants to appear last (eg masm). */
3954 if (CONST_INT_P (XEXP (x
, 0)))
3956 output_addr_const (file
, XEXP (x
, 1));
3957 if (INTVAL (XEXP (x
, 0)) >= 0)
3958 fprintf (file
, "+");
3959 output_addr_const (file
, XEXP (x
, 0));
3963 output_addr_const (file
, XEXP (x
, 0));
3964 if (!CONST_INT_P (XEXP (x
, 1))
3965 || INTVAL (XEXP (x
, 1)) >= 0)
3966 fprintf (file
, "+");
3967 output_addr_const (file
, XEXP (x
, 1));
3972 /* Avoid outputting things like x-x or x+5-x,
3973 since some assemblers can't handle that. */
3974 x
= simplify_subtraction (x
);
3975 if (GET_CODE (x
) != MINUS
)
3978 output_addr_const (file
, XEXP (x
, 0));
3979 fprintf (file
, "-");
3980 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3981 || GET_CODE (XEXP (x
, 1)) == PC
3982 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3983 output_addr_const (file
, XEXP (x
, 1));
3986 fputs (targetm
.asm_out
.open_paren
, file
);
3987 output_addr_const (file
, XEXP (x
, 1));
3988 fputs (targetm
.asm_out
.close_paren
, file
);
3996 output_addr_const (file
, XEXP (x
, 0));
4000 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4003 output_operand_lossage ("invalid expression as operand");
4007 /* Output a quoted string. */
4010 output_quoted_string (FILE *asm_file
, const char *string
)
4012 #ifdef OUTPUT_QUOTED_STRING
4013 OUTPUT_QUOTED_STRING (asm_file
, string
);
4017 putc ('\"', asm_file
);
4018 while ((c
= *string
++) != 0)
4022 if (c
== '\"' || c
== '\\')
4023 putc ('\\', asm_file
);
4027 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4029 putc ('\"', asm_file
);
4033 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4036 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4038 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4043 char *p
= buf
+ sizeof (buf
);
4045 *--p
= "0123456789abcdef"[value
% 16];
4046 while ((value
/= 16) != 0);
4049 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4053 /* Internal function that prints an unsigned long in decimal in reverse.
4054 The output string IS NOT null-terminated. */
4057 sprint_ul_rev (char *s
, unsigned long value
)
4062 s
[i
] = "0123456789"[value
% 10];
4065 /* alternate version, without modulo */
4066 /* oldval = value; */
4068 /* s[i] = "0123456789" [oldval - 10*value]; */
4075 /* Write an unsigned long as decimal to a file, fast. */
4078 fprint_ul (FILE *f
, unsigned long value
)
4080 /* python says: len(str(2**64)) == 20 */
4084 i
= sprint_ul_rev (s
, value
);
4086 /* It's probably too small to bother with string reversal and fputs. */
4095 /* Write an unsigned long as decimal to a string, fast.
4096 s must be wide enough to not overflow, at least 21 chars.
4097 Returns the length of the string (without terminating '\0'). */
4100 sprint_ul (char *s
, unsigned long value
)
4102 int len
= sprint_ul_rev (s
, value
);
4105 std::reverse (s
, s
+ len
);
4109 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4110 %R prints the value of REGISTER_PREFIX.
4111 %L prints the value of LOCAL_LABEL_PREFIX.
4112 %U prints the value of USER_LABEL_PREFIX.
4113 %I prints the value of IMMEDIATE_PREFIX.
4114 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4115 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4117 We handle alternate assembler dialects here, just like output_asm_insn. */
4120 asm_fprintf (FILE *file
, const char *p
, ...)
4124 #ifdef ASSEMBLER_DIALECT
4129 va_start (argptr
, p
);
4136 #ifdef ASSEMBLER_DIALECT
4140 p
= do_assembler_dialects (p
, &dialect
);
4147 while (strchr ("-+ #0", c
))
4152 while (ISDIGIT (c
) || c
== '.')
4163 case 'd': case 'i': case 'u':
4164 case 'x': case 'X': case 'o':
4168 fprintf (file
, buf
, va_arg (argptr
, int));
4172 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4173 'o' cases, but we do not check for those cases. It
4174 means that the value is a HOST_WIDE_INT, which may be
4175 either `long' or `long long'. */
4176 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4177 q
+= strlen (HOST_WIDE_INT_PRINT
);
4180 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4185 #ifdef HAVE_LONG_LONG
4191 fprintf (file
, buf
, va_arg (argptr
, long long));
4198 fprintf (file
, buf
, va_arg (argptr
, long));
4206 fprintf (file
, buf
, va_arg (argptr
, char *));
4210 #ifdef ASM_OUTPUT_OPCODE
4211 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4216 #ifdef REGISTER_PREFIX
4217 fprintf (file
, "%s", REGISTER_PREFIX
);
4222 #ifdef IMMEDIATE_PREFIX
4223 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4228 #ifdef LOCAL_LABEL_PREFIX
4229 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4234 fputs (user_label_prefix
, file
);
4237 #ifdef ASM_FPRINTF_EXTENSIONS
4238 /* Uppercase letters are reserved for general use by asm_fprintf
4239 and so are not available to target specific code. In order to
4240 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4241 they are defined here. As they get turned into real extensions
4242 to asm_fprintf they should be removed from this list. */
4243 case 'A': case 'B': case 'C': case 'D': case 'E':
4244 case 'F': case 'G': case 'H': case 'J': case 'K':
4245 case 'M': case 'N': case 'P': case 'Q': case 'S':
4246 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4249 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4262 /* Return nonzero if this function has no function calls. */
4265 leaf_function_p (void)
4269 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4270 functions even if they call mcount. */
4271 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4274 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4277 && ! SIBLING_CALL_P (insn
))
4279 if (NONJUMP_INSN_P (insn
)
4280 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4281 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4282 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4289 /* Return 1 if branch is a forward branch.
4290 Uses insn_shuid array, so it works only in the final pass. May be used by
4291 output templates to customary add branch prediction hints.
4294 final_forward_branch_p (rtx_insn
*insn
)
4296 int insn_id
, label_id
;
4298 gcc_assert (uid_shuid
);
4299 insn_id
= INSN_SHUID (insn
);
4300 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4301 /* We've hit some insns that does not have id information available. */
4302 gcc_assert (insn_id
&& label_id
);
4303 return insn_id
< label_id
;
4306 /* On some machines, a function with no call insns
4307 can run faster if it doesn't create its own register window.
4308 When output, the leaf function should use only the "output"
4309 registers. Ordinarily, the function would be compiled to use
4310 the "input" registers to find its arguments; it is a candidate
4311 for leaf treatment if it uses only the "input" registers.
4312 Leaf function treatment means renumbering so the function
4313 uses the "output" registers instead. */
4315 #ifdef LEAF_REGISTERS
4317 /* Return 1 if this function uses only the registers that can be
4318 safely renumbered. */
4321 only_leaf_regs_used (void)
4324 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4326 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4327 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4328 && ! permitted_reg_in_leaf_functions
[i
])
4331 if (crtl
->uses_pic_offset_table
4332 && pic_offset_table_rtx
!= 0
4333 && REG_P (pic_offset_table_rtx
)
4334 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4340 /* Scan all instructions and renumber all registers into those
4341 available in leaf functions. */
4344 leaf_renumber_regs (rtx_insn
*first
)
4348 /* Renumber only the actual patterns.
4349 The reg-notes can contain frame pointer refs,
4350 and renumbering them could crash, and should not be needed. */
4351 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4353 leaf_renumber_regs_insn (PATTERN (insn
));
4356 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4357 available in leaf functions. */
4360 leaf_renumber_regs_insn (rtx in_rtx
)
4363 const char *format_ptr
;
4368 /* Renumber all input-registers into output-registers.
4369 renumbered_regs would be 1 for an output-register;
4376 /* Don't renumber the same reg twice. */
4380 newreg
= REGNO (in_rtx
);
4381 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4382 to reach here as part of a REG_NOTE. */
4383 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4388 newreg
= LEAF_REG_REMAP (newreg
);
4389 gcc_assert (newreg
>= 0);
4390 df_set_regs_ever_live (REGNO (in_rtx
), false);
4391 df_set_regs_ever_live (newreg
, true);
4392 SET_REGNO (in_rtx
, newreg
);
4397 if (INSN_P (in_rtx
))
4399 /* Inside a SEQUENCE, we find insns.
4400 Renumber just the patterns of these insns,
4401 just as we do for the top-level insns. */
4402 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4406 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4408 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4409 switch (*format_ptr
++)
4412 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4416 if (NULL
!= XVEC (in_rtx
, i
))
4418 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4419 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4438 /* Turn the RTL into assembly. */
4440 rest_of_handle_final (void)
4442 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4444 assemble_start_function (current_function_decl
, fnname
);
4445 final_start_function (get_insns (), asm_out_file
, optimize
);
4446 final (get_insns (), asm_out_file
, optimize
);
4448 collect_fn_hard_reg_usage ();
4449 final_end_function ();
4451 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4452 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4453 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4454 output_function_exception_table (fnname
);
4456 assemble_end_function (current_function_decl
, fnname
);
4458 user_defined_section_attribute
= false;
4460 /* Free up reg info memory. */
4464 fflush (asm_out_file
);
4466 /* Write DBX symbols if requested. */
4468 /* Note that for those inline functions where we don't initially
4469 know for certain that we will be generating an out-of-line copy,
4470 the first invocation of this routine (rest_of_compilation) will
4471 skip over this code by doing a `goto exit_rest_of_compilation;'.
4472 Later on, wrapup_global_declarations will (indirectly) call
4473 rest_of_compilation again for those inline functions that need
4474 to have out-of-line copies generated. During that call, we
4475 *will* be routed past here. */
4477 timevar_push (TV_SYMOUT
);
4478 if (!DECL_IGNORED_P (current_function_decl
))
4479 debug_hooks
->function_decl (current_function_decl
);
4480 timevar_pop (TV_SYMOUT
);
4482 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4483 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4485 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4486 && targetm
.have_ctors_dtors
)
4487 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4488 decl_init_priority_lookup
4489 (current_function_decl
));
4490 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4491 && targetm
.have_ctors_dtors
)
4492 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4493 decl_fini_priority_lookup
4494 (current_function_decl
));
4500 const pass_data pass_data_final
=
4502 RTL_PASS
, /* type */
4504 OPTGROUP_NONE
, /* optinfo_flags */
4505 TV_FINAL
, /* tv_id */
4506 0, /* properties_required */
4507 0, /* properties_provided */
4508 0, /* properties_destroyed */
4509 0, /* todo_flags_start */
4510 0, /* todo_flags_finish */
4513 class pass_final
: public rtl_opt_pass
4516 pass_final (gcc::context
*ctxt
)
4517 : rtl_opt_pass (pass_data_final
, ctxt
)
4520 /* opt_pass methods: */
4521 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4523 }; // class pass_final
4528 make_pass_final (gcc::context
*ctxt
)
4530 return new pass_final (ctxt
);
4535 rest_of_handle_shorten_branches (void)
4537 /* Shorten branches. */
4538 shorten_branches (get_insns ());
4544 const pass_data pass_data_shorten_branches
=
4546 RTL_PASS
, /* type */
4547 "shorten", /* name */
4548 OPTGROUP_NONE
, /* optinfo_flags */
4549 TV_SHORTEN_BRANCH
, /* tv_id */
4550 0, /* properties_required */
4551 0, /* properties_provided */
4552 0, /* properties_destroyed */
4553 0, /* todo_flags_start */
4554 0, /* todo_flags_finish */
4557 class pass_shorten_branches
: public rtl_opt_pass
4560 pass_shorten_branches (gcc::context
*ctxt
)
4561 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4564 /* opt_pass methods: */
4565 virtual unsigned int execute (function
*)
4567 return rest_of_handle_shorten_branches ();
4570 }; // class pass_shorten_branches
4575 make_pass_shorten_branches (gcc::context
*ctxt
)
4577 return new pass_shorten_branches (ctxt
);
4582 rest_of_clean_state (void)
4584 rtx_insn
*insn
, *next
;
4585 FILE *final_output
= NULL
;
4586 int save_unnumbered
= flag_dump_unnumbered
;
4587 int save_noaddr
= flag_dump_noaddr
;
4589 if (flag_dump_final_insns
)
4591 final_output
= fopen (flag_dump_final_insns
, "a");
4594 error ("could not open final insn dump file %qs: %m",
4595 flag_dump_final_insns
);
4596 flag_dump_final_insns
= NULL
;
4600 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4601 if (flag_compare_debug_opt
|| flag_compare_debug
)
4602 dump_flags
|= TDF_NOUID
;
4603 dump_function_header (final_output
, current_function_decl
,
4605 final_insns_dump_p
= true;
4607 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4609 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4613 set_block_for_insn (insn
, NULL
);
4614 INSN_UID (insn
) = 0;
4619 /* It is very important to decompose the RTL instruction chain here:
4620 debug information keeps pointing into CODE_LABEL insns inside the function
4621 body. If these remain pointing to the other insns, we end up preserving
4622 whole RTL chain and attached detailed debug info in memory. */
4623 for (insn
= get_insns (); insn
; insn
= next
)
4625 next
= NEXT_INSN (insn
);
4626 SET_NEXT_INSN (insn
) = NULL
;
4627 SET_PREV_INSN (insn
) = NULL
;
4630 && (!NOTE_P (insn
) ||
4631 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4632 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4633 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4634 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4635 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4636 print_rtl_single (final_output
, insn
);
4641 flag_dump_noaddr
= save_noaddr
;
4642 flag_dump_unnumbered
= save_unnumbered
;
4643 final_insns_dump_p
= false;
4645 if (fclose (final_output
))
4647 error ("could not close final insn dump file %qs: %m",
4648 flag_dump_final_insns
);
4649 flag_dump_final_insns
= NULL
;
4653 /* In case the function was not output,
4654 don't leave any temporary anonymous types
4655 queued up for sdb output. */
4656 #ifdef SDB_DEBUGGING_INFO
4657 if (write_symbols
== SDB_DEBUG
)
4658 sdbout_types (NULL_TREE
);
4661 flag_rerun_cse_after_global_opts
= 0;
4662 reload_completed
= 0;
4663 epilogue_completed
= 0;
4665 regstack_completed
= 0;
4668 /* Clear out the insn_length contents now that they are no
4670 init_insn_lengths ();
4672 /* Show no temporary slots allocated. */
4675 free_bb_for_insn ();
4677 delete_tree_ssa (cfun
);
4679 /* We can reduce stack alignment on call site only when we are sure that
4680 the function body just produced will be actually used in the final
4682 if (decl_binds_to_current_def_p (current_function_decl
))
4684 unsigned int pref
= crtl
->preferred_stack_boundary
;
4685 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4686 pref
= crtl
->stack_alignment_needed
;
4687 cgraph_node::rtl_info (current_function_decl
)
4688 ->preferred_incoming_stack_boundary
= pref
;
4691 /* Make sure volatile mem refs aren't considered valid operands for
4692 arithmetic insns. We must call this here if this is a nested inline
4693 function, since the above code leaves us in the init_recog state,
4694 and the function context push/pop code does not save/restore volatile_ok.
4696 ??? Maybe it isn't necessary for expand_start_function to call this
4697 anymore if we do it here? */
4699 init_recog_no_volatile ();
4701 /* We're done with this function. Free up memory if we can. */
4702 free_after_parsing (cfun
);
4703 free_after_compilation (cfun
);
4709 const pass_data pass_data_clean_state
=
4711 RTL_PASS
, /* type */
4712 "*clean_state", /* name */
4713 OPTGROUP_NONE
, /* optinfo_flags */
4714 TV_FINAL
, /* tv_id */
4715 0, /* properties_required */
4716 0, /* properties_provided */
4717 PROP_rtl
, /* properties_destroyed */
4718 0, /* todo_flags_start */
4719 0, /* todo_flags_finish */
4722 class pass_clean_state
: public rtl_opt_pass
4725 pass_clean_state (gcc::context
*ctxt
)
4726 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4729 /* opt_pass methods: */
4730 virtual unsigned int execute (function
*)
4732 return rest_of_clean_state ();
4735 }; // class pass_clean_state
4740 make_pass_clean_state (gcc::context
*ctxt
)
4742 return new pass_clean_state (ctxt
);
4745 /* Return true if INSN is a call to the current function. */
4748 self_recursive_call_p (rtx_insn
*insn
)
4750 tree fndecl
= get_call_fndecl (insn
);
4751 return (fndecl
== current_function_decl
4752 && decl_binds_to_current_def_p (fndecl
));
4755 /* Collect hard register usage for the current function. */
4758 collect_fn_hard_reg_usage (void)
4764 struct cgraph_rtl_info
*node
;
4765 HARD_REG_SET function_used_regs
;
4767 /* ??? To be removed when all the ports have been fixed. */
4768 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4771 CLEAR_HARD_REG_SET (function_used_regs
);
4773 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4775 HARD_REG_SET insn_used_regs
;
4777 if (!NONDEBUG_INSN_P (insn
))
4781 && !self_recursive_call_p (insn
))
4783 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4787 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4790 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4791 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4794 /* Be conservative - mark fixed and global registers as used. */
4795 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4798 /* Handle STACK_REGS conservatively, since the df-framework does not
4799 provide accurate information for them. */
4801 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4802 SET_HARD_REG_BIT (function_used_regs
, i
);
4805 /* The information we have gathered is only interesting if it exposes a
4806 register from the call_used_regs that is not used in this function. */
4807 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4810 node
= cgraph_node::rtl_info (current_function_decl
);
4811 gcc_assert (node
!= NULL
);
4813 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4814 node
->function_used_regs_valid
= 1;
4817 /* Get the declaration of the function called by INSN. */
4820 get_call_fndecl (rtx_insn
*insn
)
4824 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4825 if (note
== NULL_RTX
)
4828 datum
= XEXP (note
, 0);
4829 if (datum
!= NULL_RTX
)
4830 return SYMBOL_REF_DECL (datum
);
4835 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4836 call targets that can be overwritten. */
4838 static struct cgraph_rtl_info
*
4839 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4843 if (insn
== NULL_RTX
)
4846 fndecl
= get_call_fndecl (insn
);
4847 if (fndecl
== NULL_TREE
4848 || !decl_binds_to_current_def_p (fndecl
))
4851 return cgraph_node::rtl_info (fndecl
);
4854 /* Find hard registers used by function call instruction INSN, and return them
4855 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4858 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4859 HARD_REG_SET default_set
)
4863 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4865 && node
->function_used_regs_valid
)
4867 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4868 AND_HARD_REG_SET (*reg_set
, default_set
);
4873 COPY_HARD_REG_SET (*reg_set
, default_set
);