* omp-low.c (lower_omp_target): Remove unreachable code & merge
[official-gcc.git] / gcc / df-core.c
blobc3003d5e59cddf8457677d85e2dd268e1b138bdd
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 OVERVIEW:
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
69 USAGE:
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
77 df_analyze ();
79 df_dump (stderr);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
133 INCREMENTAL SCANNING
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
204 DATA STRUCTURES
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
221 PHILOSOPHY:
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
247 DATA STRUCTURES:
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
261 ACCESSING INSNS:
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
287 ACCESSING REFS:
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
355 NOTES:
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "backend.h"
381 #include "rtl.h"
382 #include "df.h"
383 #include "tm_p.h"
384 #include "insn-config.h"
385 #include "regs.h"
386 #include "emit-rtl.h"
387 #include "recog.h"
388 #include "flags.h"
389 #include "cfganal.h"
390 #include "tree-pass.h"
391 #include "params.h"
392 #include "cfgloop.h"
394 static void *df_get_bb_info (struct dataflow *, unsigned int);
395 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
396 static void df_clear_bb_info (struct dataflow *, unsigned int);
397 #ifdef DF_DEBUG_CFG
398 static void df_set_clean_cfg (void);
399 #endif
401 /* The obstack on which regsets are allocated. */
402 struct bitmap_obstack reg_obstack;
404 /* An obstack for bitmap not related to specific dataflow problems.
405 This obstack should e.g. be used for bitmaps with a short life time
406 such as temporary bitmaps. */
408 bitmap_obstack df_bitmap_obstack;
411 /*----------------------------------------------------------------------------
412 Functions to create, destroy and manipulate an instance of df.
413 ----------------------------------------------------------------------------*/
415 struct df_d *df;
417 /* Add PROBLEM (and any dependent problems) to the DF instance. */
419 void
420 df_add_problem (struct df_problem *problem)
422 struct dataflow *dflow;
423 int i;
425 /* First try to add the dependent problem. */
426 if (problem->dependent_problem)
427 df_add_problem (problem->dependent_problem);
429 /* Check to see if this problem has already been defined. If it
430 has, just return that instance, if not, add it to the end of the
431 vector. */
432 dflow = df->problems_by_index[problem->id];
433 if (dflow)
434 return;
436 /* Make a new one and add it to the end. */
437 dflow = XCNEW (struct dataflow);
438 dflow->problem = problem;
439 dflow->computed = false;
440 dflow->solutions_dirty = true;
441 df->problems_by_index[dflow->problem->id] = dflow;
443 /* Keep the defined problems ordered by index. This solves the
444 problem that RI will use the information from UREC if UREC has
445 been defined, or from LIVE if LIVE is defined and otherwise LR.
446 However for this to work, the computation of RI must be pushed
447 after which ever of those problems is defined, but we do not
448 require any of those except for LR to have actually been
449 defined. */
450 df->num_problems_defined++;
451 for (i = df->num_problems_defined - 2; i >= 0; i--)
453 if (problem->id < df->problems_in_order[i]->problem->id)
454 df->problems_in_order[i+1] = df->problems_in_order[i];
455 else
457 df->problems_in_order[i+1] = dflow;
458 return;
461 df->problems_in_order[0] = dflow;
465 /* Set the MASK flags in the DFLOW problem. The old flags are
466 returned. If a flag is not allowed to be changed this will fail if
467 checking is enabled. */
469 df_set_flags (int changeable_flags)
471 int old_flags = df->changeable_flags;
472 df->changeable_flags |= changeable_flags;
473 return old_flags;
477 /* Clear the MASK flags in the DFLOW problem. The old flags are
478 returned. If a flag is not allowed to be changed this will fail if
479 checking is enabled. */
481 df_clear_flags (int changeable_flags)
483 int old_flags = df->changeable_flags;
484 df->changeable_flags &= ~changeable_flags;
485 return old_flags;
489 /* Set the blocks that are to be considered for analysis. If this is
490 not called or is called with null, the entire function in
491 analyzed. */
493 void
494 df_set_blocks (bitmap blocks)
496 if (blocks)
498 if (dump_file)
499 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
500 if (df->blocks_to_analyze)
502 /* This block is called to change the focus from one subset
503 to another. */
504 int p;
505 bitmap_head diff;
506 bitmap_initialize (&diff, &df_bitmap_obstack);
507 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
508 for (p = 0; p < df->num_problems_defined; p++)
510 struct dataflow *dflow = df->problems_in_order[p];
511 if (dflow->optional_p && dflow->problem->reset_fun)
512 dflow->problem->reset_fun (df->blocks_to_analyze);
513 else if (dflow->problem->free_blocks_on_set_blocks)
515 bitmap_iterator bi;
516 unsigned int bb_index;
518 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
520 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
521 if (bb)
523 void *bb_info = df_get_bb_info (dflow, bb_index);
524 dflow->problem->free_bb_fun (bb, bb_info);
525 df_clear_bb_info (dflow, bb_index);
531 bitmap_clear (&diff);
533 else
535 /* This block of code is executed to change the focus from
536 the entire function to a subset. */
537 bitmap_head blocks_to_reset;
538 bool initialized = false;
539 int p;
540 for (p = 0; p < df->num_problems_defined; p++)
542 struct dataflow *dflow = df->problems_in_order[p];
543 if (dflow->optional_p && dflow->problem->reset_fun)
545 if (!initialized)
547 basic_block bb;
548 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
549 FOR_ALL_BB_FN (bb, cfun)
551 bitmap_set_bit (&blocks_to_reset, bb->index);
554 dflow->problem->reset_fun (&blocks_to_reset);
557 if (initialized)
558 bitmap_clear (&blocks_to_reset);
560 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
562 bitmap_copy (df->blocks_to_analyze, blocks);
563 df->analyze_subset = true;
565 else
567 /* This block is executed to reset the focus to the entire
568 function. */
569 if (dump_file)
570 fprintf (dump_file, "clearing blocks_to_analyze\n");
571 if (df->blocks_to_analyze)
573 BITMAP_FREE (df->blocks_to_analyze);
574 df->blocks_to_analyze = NULL;
576 df->analyze_subset = false;
579 /* Setting the blocks causes the refs to be unorganized since only
580 the refs in the blocks are seen. */
581 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
582 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
583 df_mark_solutions_dirty ();
587 /* Delete a DFLOW problem (and any problems that depend on this
588 problem). */
590 void
591 df_remove_problem (struct dataflow *dflow)
593 struct df_problem *problem;
594 int i;
596 if (!dflow)
597 return;
599 problem = dflow->problem;
600 gcc_assert (problem->remove_problem_fun);
602 /* Delete any problems that depended on this problem first. */
603 for (i = 0; i < df->num_problems_defined; i++)
604 if (df->problems_in_order[i]->problem->dependent_problem == problem)
605 df_remove_problem (df->problems_in_order[i]);
607 /* Now remove this problem. */
608 for (i = 0; i < df->num_problems_defined; i++)
609 if (df->problems_in_order[i] == dflow)
611 int j;
612 for (j = i + 1; j < df->num_problems_defined; j++)
613 df->problems_in_order[j-1] = df->problems_in_order[j];
614 df->problems_in_order[j-1] = NULL;
615 df->num_problems_defined--;
616 break;
619 (problem->remove_problem_fun) ();
620 df->problems_by_index[problem->id] = NULL;
624 /* Remove all of the problems that are not permanent. Scanning, LR
625 and (at -O2 or higher) LIVE are permanent, the rest are removable.
626 Also clear all of the changeable_flags. */
628 void
629 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
631 int i;
633 #ifdef ENABLE_DF_CHECKING
634 int saved_flags;
635 #endif
637 if (!df)
638 return;
640 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
641 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
643 #ifdef ENABLE_DF_CHECKING
644 saved_flags = df->changeable_flags;
645 #endif
647 /* We iterate over problems by index as each problem removed will
648 lead to problems_in_order to be reordered. */
649 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
651 struct dataflow *dflow = df->problems_by_index[i];
653 if (dflow && dflow->optional_p)
654 df_remove_problem (dflow);
657 /* Clear all of the flags. */
658 df->changeable_flags = 0;
659 df_process_deferred_rescans ();
661 /* Set the focus back to the whole function. */
662 if (df->blocks_to_analyze)
664 BITMAP_FREE (df->blocks_to_analyze);
665 df->blocks_to_analyze = NULL;
666 df_mark_solutions_dirty ();
667 df->analyze_subset = false;
670 #ifdef ENABLE_DF_CHECKING
671 /* Verification will fail in DF_NO_INSN_RESCAN. */
672 if (!(saved_flags & DF_NO_INSN_RESCAN))
674 df_lr_verify_transfer_functions ();
675 if (df_live)
676 df_live_verify_transfer_functions ();
679 #ifdef DF_DEBUG_CFG
680 df_set_clean_cfg ();
681 #endif
682 #endif
684 if (flag_checking && verify)
685 df->changeable_flags |= DF_VERIFY_SCHEDULED;
689 /* Set up the dataflow instance for the entire back end. */
691 static unsigned int
692 rest_of_handle_df_initialize (void)
694 gcc_assert (!df);
695 df = XCNEW (struct df_d);
696 df->changeable_flags = 0;
698 bitmap_obstack_initialize (&df_bitmap_obstack);
700 /* Set this to a conservative value. Stack_ptr_mod will compute it
701 correctly later. */
702 crtl->sp_is_unchanging = 0;
704 df_scan_add_problem ();
705 df_scan_alloc (NULL);
707 /* These three problems are permanent. */
708 df_lr_add_problem ();
709 if (optimize > 1)
710 df_live_add_problem ();
712 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
713 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
714 df->n_blocks = post_order_compute (df->postorder, true, true);
715 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
716 gcc_assert (df->n_blocks == df->n_blocks_inverted);
718 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
720 df_hard_reg_init ();
721 /* After reload, some ports add certain bits to regs_ever_live so
722 this cannot be reset. */
723 df_compute_regs_ever_live (true);
724 df_scan_blocks ();
725 df_compute_regs_ever_live (false);
726 return 0;
730 namespace {
732 const pass_data pass_data_df_initialize_opt =
734 RTL_PASS, /* type */
735 "dfinit", /* name */
736 OPTGROUP_NONE, /* optinfo_flags */
737 TV_DF_SCAN, /* tv_id */
738 0, /* properties_required */
739 0, /* properties_provided */
740 0, /* properties_destroyed */
741 0, /* todo_flags_start */
742 0, /* todo_flags_finish */
745 class pass_df_initialize_opt : public rtl_opt_pass
747 public:
748 pass_df_initialize_opt (gcc::context *ctxt)
749 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
752 /* opt_pass methods: */
753 virtual bool gate (function *) { return optimize > 0; }
754 virtual unsigned int execute (function *)
756 return rest_of_handle_df_initialize ();
759 }; // class pass_df_initialize_opt
761 } // anon namespace
763 rtl_opt_pass *
764 make_pass_df_initialize_opt (gcc::context *ctxt)
766 return new pass_df_initialize_opt (ctxt);
770 namespace {
772 const pass_data pass_data_df_initialize_no_opt =
774 RTL_PASS, /* type */
775 "no-opt dfinit", /* name */
776 OPTGROUP_NONE, /* optinfo_flags */
777 TV_DF_SCAN, /* tv_id */
778 0, /* properties_required */
779 0, /* properties_provided */
780 0, /* properties_destroyed */
781 0, /* todo_flags_start */
782 0, /* todo_flags_finish */
785 class pass_df_initialize_no_opt : public rtl_opt_pass
787 public:
788 pass_df_initialize_no_opt (gcc::context *ctxt)
789 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
792 /* opt_pass methods: */
793 virtual bool gate (function *) { return optimize == 0; }
794 virtual unsigned int execute (function *)
796 return rest_of_handle_df_initialize ();
799 }; // class pass_df_initialize_no_opt
801 } // anon namespace
803 rtl_opt_pass *
804 make_pass_df_initialize_no_opt (gcc::context *ctxt)
806 return new pass_df_initialize_no_opt (ctxt);
810 /* Free all the dataflow info and the DF structure. This should be
811 called from the df_finish macro which also NULLs the parm. */
813 static unsigned int
814 rest_of_handle_df_finish (void)
816 int i;
818 gcc_assert (df);
820 for (i = 0; i < df->num_problems_defined; i++)
822 struct dataflow *dflow = df->problems_in_order[i];
823 dflow->problem->free_fun ();
826 free (df->postorder);
827 free (df->postorder_inverted);
828 free (df->hard_regs_live_count);
829 free (df);
830 df = NULL;
832 bitmap_obstack_release (&df_bitmap_obstack);
833 return 0;
837 namespace {
839 const pass_data pass_data_df_finish =
841 RTL_PASS, /* type */
842 "dfinish", /* name */
843 OPTGROUP_NONE, /* optinfo_flags */
844 TV_NONE, /* tv_id */
845 0, /* properties_required */
846 0, /* properties_provided */
847 0, /* properties_destroyed */
848 0, /* todo_flags_start */
849 0, /* todo_flags_finish */
852 class pass_df_finish : public rtl_opt_pass
854 public:
855 pass_df_finish (gcc::context *ctxt)
856 : rtl_opt_pass (pass_data_df_finish, ctxt)
859 /* opt_pass methods: */
860 virtual unsigned int execute (function *)
862 return rest_of_handle_df_finish ();
865 }; // class pass_df_finish
867 } // anon namespace
869 rtl_opt_pass *
870 make_pass_df_finish (gcc::context *ctxt)
872 return new pass_df_finish (ctxt);
879 /*----------------------------------------------------------------------------
880 The general data flow analysis engine.
881 ----------------------------------------------------------------------------*/
883 /* Return time BB when it was visited for last time. */
884 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
886 /* Helper function for df_worklist_dataflow.
887 Propagate the dataflow forward.
888 Given a BB_INDEX, do the dataflow propagation
889 and set bits on for successors in PENDING
890 if the out set of the dataflow has changed.
892 AGE specify time when BB was visited last time.
893 AGE of 0 means we are visiting for first time and need to
894 compute transfer function to initialize datastructures.
895 Otherwise we re-do transfer function only if something change
896 while computing confluence functions.
897 We need to compute confluence only of basic block that are younger
898 then last visit of the BB.
900 Return true if BB info has changed. This is always the case
901 in the first visit. */
903 static bool
904 df_worklist_propagate_forward (struct dataflow *dataflow,
905 unsigned bb_index,
906 unsigned *bbindex_to_postorder,
907 bitmap pending,
908 sbitmap considered,
909 ptrdiff_t age)
911 edge e;
912 edge_iterator ei;
913 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
914 bool changed = !age;
916 /* Calculate <conf_op> of incoming edges. */
917 if (EDGE_COUNT (bb->preds) > 0)
918 FOR_EACH_EDGE (e, ei, bb->preds)
920 if (age <= BB_LAST_CHANGE_AGE (e->src)
921 && bitmap_bit_p (considered, e->src->index))
922 changed |= dataflow->problem->con_fun_n (e);
924 else if (dataflow->problem->con_fun_0)
925 dataflow->problem->con_fun_0 (bb);
927 if (changed
928 && dataflow->problem->trans_fun (bb_index))
930 /* The out set of this block has changed.
931 Propagate to the outgoing blocks. */
932 FOR_EACH_EDGE (e, ei, bb->succs)
934 unsigned ob_index = e->dest->index;
936 if (bitmap_bit_p (considered, ob_index))
937 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
939 return true;
941 return false;
945 /* Helper function for df_worklist_dataflow.
946 Propagate the dataflow backward. */
948 static bool
949 df_worklist_propagate_backward (struct dataflow *dataflow,
950 unsigned bb_index,
951 unsigned *bbindex_to_postorder,
952 bitmap pending,
953 sbitmap considered,
954 ptrdiff_t age)
956 edge e;
957 edge_iterator ei;
958 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
959 bool changed = !age;
961 /* Calculate <conf_op> of incoming edges. */
962 if (EDGE_COUNT (bb->succs) > 0)
963 FOR_EACH_EDGE (e, ei, bb->succs)
965 if (age <= BB_LAST_CHANGE_AGE (e->dest)
966 && bitmap_bit_p (considered, e->dest->index))
967 changed |= dataflow->problem->con_fun_n (e);
969 else if (dataflow->problem->con_fun_0)
970 dataflow->problem->con_fun_0 (bb);
972 if (changed
973 && dataflow->problem->trans_fun (bb_index))
975 /* The out set of this block has changed.
976 Propagate to the outgoing blocks. */
977 FOR_EACH_EDGE (e, ei, bb->preds)
979 unsigned ob_index = e->src->index;
981 if (bitmap_bit_p (considered, ob_index))
982 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
984 return true;
986 return false;
989 /* Main dataflow solver loop.
991 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
992 need to visit.
993 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
994 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
995 PENDING will be freed.
997 The worklists are bitmaps indexed by postorder positions.
999 The function implements standard algorithm for dataflow solving with two
1000 worklists (we are processing WORKLIST and storing new BBs to visit in
1001 PENDING).
1003 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1004 and when it was last visited (stored in last_visit_age). This avoids need
1005 to re-do confluence function for edges to basic blocks whose source
1006 did not change since destination was visited last time. */
1008 static void
1009 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1010 bitmap pending,
1011 sbitmap considered,
1012 int *blocks_in_postorder,
1013 unsigned *bbindex_to_postorder,
1014 int n_blocks)
1016 enum df_flow_dir dir = dataflow->problem->dir;
1017 int dcount = 0;
1018 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1019 int age = 0;
1020 bool changed;
1021 vec<int> last_visit_age = vNULL;
1022 int prev_age;
1023 basic_block bb;
1024 int i;
1026 last_visit_age.safe_grow_cleared (n_blocks);
1028 /* Double-queueing. Worklist is for the current iteration,
1029 and pending is for the next. */
1030 while (!bitmap_empty_p (pending))
1032 bitmap_iterator bi;
1033 unsigned int index;
1035 std::swap (pending, worklist);
1037 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1039 unsigned bb_index;
1040 dcount++;
1042 bitmap_clear_bit (pending, index);
1043 bb_index = blocks_in_postorder[index];
1044 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1045 prev_age = last_visit_age[index];
1046 if (dir == DF_FORWARD)
1047 changed = df_worklist_propagate_forward (dataflow, bb_index,
1048 bbindex_to_postorder,
1049 pending, considered,
1050 prev_age);
1051 else
1052 changed = df_worklist_propagate_backward (dataflow, bb_index,
1053 bbindex_to_postorder,
1054 pending, considered,
1055 prev_age);
1056 last_visit_age[index] = ++age;
1057 if (changed)
1058 bb->aux = (void *)(ptrdiff_t)age;
1060 bitmap_clear (worklist);
1062 for (i = 0; i < n_blocks; i++)
1063 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
1065 BITMAP_FREE (worklist);
1066 BITMAP_FREE (pending);
1067 last_visit_age.release ();
1069 /* Dump statistics. */
1070 if (dump_file)
1071 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1072 "n_basic_blocks %d n_edges %d"
1073 " count %d (%5.2g)\n",
1074 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1075 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1078 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1079 with "n"-th bit representing the n-th block in the reverse-postorder order.
1080 The solver is a double-queue algorithm similar to the "double stack" solver
1081 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1082 The only significant difference is that the worklist in this implementation
1083 is always sorted in RPO of the CFG visiting direction. */
1085 void
1086 df_worklist_dataflow (struct dataflow *dataflow,
1087 bitmap blocks_to_consider,
1088 int *blocks_in_postorder,
1089 int n_blocks)
1091 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1092 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
1093 bitmap_iterator bi;
1094 unsigned int *bbindex_to_postorder;
1095 int i;
1096 unsigned int index;
1097 enum df_flow_dir dir = dataflow->problem->dir;
1099 gcc_assert (dir != DF_NONE);
1101 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1102 bbindex_to_postorder = XNEWVEC (unsigned int,
1103 last_basic_block_for_fn (cfun));
1105 /* Initialize the array to an out-of-bound value. */
1106 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1107 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1109 /* Initialize the considered map. */
1110 bitmap_clear (considered);
1111 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1113 bitmap_set_bit (considered, index);
1116 /* Initialize the mapping of block index to postorder. */
1117 for (i = 0; i < n_blocks; i++)
1119 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1120 /* Add all blocks to the worklist. */
1121 bitmap_set_bit (pending, i);
1124 /* Initialize the problem. */
1125 if (dataflow->problem->init_fun)
1126 dataflow->problem->init_fun (blocks_to_consider);
1128 /* Solve it. */
1129 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1130 blocks_in_postorder,
1131 bbindex_to_postorder,
1132 n_blocks);
1133 sbitmap_free (considered);
1134 free (bbindex_to_postorder);
1138 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1139 the order of the remaining entries. Returns the length of the resulting
1140 list. */
1142 static unsigned
1143 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1145 unsigned act, last;
1147 for (act = 0, last = 0; act < len; act++)
1148 if (bitmap_bit_p (blocks, list[act]))
1149 list[last++] = list[act];
1151 return last;
1155 /* Execute dataflow analysis on a single dataflow problem.
1157 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1158 examined or will be computed. For calls from DF_ANALYZE, this is
1159 the set of blocks that has been passed to DF_SET_BLOCKS.
1162 void
1163 df_analyze_problem (struct dataflow *dflow,
1164 bitmap blocks_to_consider,
1165 int *postorder, int n_blocks)
1167 timevar_push (dflow->problem->tv_id);
1169 /* (Re)Allocate the datastructures necessary to solve the problem. */
1170 if (dflow->problem->alloc_fun)
1171 dflow->problem->alloc_fun (blocks_to_consider);
1173 #ifdef ENABLE_DF_CHECKING
1174 if (dflow->problem->verify_start_fun)
1175 dflow->problem->verify_start_fun ();
1176 #endif
1178 /* Set up the problem and compute the local information. */
1179 if (dflow->problem->local_compute_fun)
1180 dflow->problem->local_compute_fun (blocks_to_consider);
1182 /* Solve the equations. */
1183 if (dflow->problem->dataflow_fun)
1184 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1185 postorder, n_blocks);
1187 /* Massage the solution. */
1188 if (dflow->problem->finalize_fun)
1189 dflow->problem->finalize_fun (blocks_to_consider);
1191 #ifdef ENABLE_DF_CHECKING
1192 if (dflow->problem->verify_end_fun)
1193 dflow->problem->verify_end_fun ();
1194 #endif
1196 timevar_pop (dflow->problem->tv_id);
1198 dflow->computed = true;
1202 /* Analyze dataflow info. */
1204 static void
1205 df_analyze_1 (void)
1207 int i;
1209 /* These should be the same. */
1210 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1212 /* We need to do this before the df_verify_all because this is
1213 not kept incrementally up to date. */
1214 df_compute_regs_ever_live (false);
1215 df_process_deferred_rescans ();
1217 if (dump_file)
1218 fprintf (dump_file, "df_analyze called\n");
1220 #ifndef ENABLE_DF_CHECKING
1221 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1222 #endif
1223 df_verify ();
1225 /* Skip over the DF_SCAN problem. */
1226 for (i = 1; i < df->num_problems_defined; i++)
1228 struct dataflow *dflow = df->problems_in_order[i];
1229 if (dflow->solutions_dirty)
1231 if (dflow->problem->dir == DF_FORWARD)
1232 df_analyze_problem (dflow,
1233 df->blocks_to_analyze,
1234 df->postorder_inverted,
1235 df->n_blocks_inverted);
1236 else
1237 df_analyze_problem (dflow,
1238 df->blocks_to_analyze,
1239 df->postorder,
1240 df->n_blocks);
1244 if (!df->analyze_subset)
1246 BITMAP_FREE (df->blocks_to_analyze);
1247 df->blocks_to_analyze = NULL;
1250 #ifdef DF_DEBUG_CFG
1251 df_set_clean_cfg ();
1252 #endif
1255 /* Analyze dataflow info. */
1257 void
1258 df_analyze (void)
1260 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1261 int i;
1263 free (df->postorder);
1264 free (df->postorder_inverted);
1265 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1266 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1267 df->n_blocks = post_order_compute (df->postorder, true, true);
1268 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1270 for (i = 0; i < df->n_blocks; i++)
1271 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1273 if (flag_checking)
1275 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1276 the ENTRY block. */
1277 for (i = 0; i < df->n_blocks_inverted; i++)
1278 gcc_assert (bitmap_bit_p (current_all_blocks,
1279 df->postorder_inverted[i]));
1282 /* Make sure that we have pruned any unreachable blocks from these
1283 sets. */
1284 if (df->analyze_subset)
1286 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1287 df->n_blocks = df_prune_to_subcfg (df->postorder,
1288 df->n_blocks, df->blocks_to_analyze);
1289 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1290 df->n_blocks_inverted,
1291 df->blocks_to_analyze);
1292 BITMAP_FREE (current_all_blocks);
1294 else
1296 df->blocks_to_analyze = current_all_blocks;
1297 current_all_blocks = NULL;
1300 df_analyze_1 ();
1303 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1304 Returns the number of blocks which is always loop->num_nodes. */
1306 static int
1307 loop_post_order_compute (int *post_order, struct loop *loop)
1309 edge_iterator *stack;
1310 int sp;
1311 int post_order_num = 0;
1312 bitmap visited;
1314 /* Allocate stack for back-tracking up CFG. */
1315 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1316 sp = 0;
1318 /* Allocate bitmap to track nodes that have been visited. */
1319 visited = BITMAP_ALLOC (NULL);
1321 /* Push the first edge on to the stack. */
1322 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1324 while (sp)
1326 edge_iterator ei;
1327 basic_block src;
1328 basic_block dest;
1330 /* Look at the edge on the top of the stack. */
1331 ei = stack[sp - 1];
1332 src = ei_edge (ei)->src;
1333 dest = ei_edge (ei)->dest;
1335 /* Check if the edge destination has been visited yet and mark it
1336 if not so. */
1337 if (flow_bb_inside_loop_p (loop, dest)
1338 && bitmap_set_bit (visited, dest->index))
1340 if (EDGE_COUNT (dest->succs) > 0)
1341 /* Since the DEST node has been visited for the first
1342 time, check its successors. */
1343 stack[sp++] = ei_start (dest->succs);
1344 else
1345 post_order[post_order_num++] = dest->index;
1347 else
1349 if (ei_one_before_end_p (ei)
1350 && src != loop_preheader_edge (loop)->src)
1351 post_order[post_order_num++] = src->index;
1353 if (!ei_one_before_end_p (ei))
1354 ei_next (&stack[sp - 1]);
1355 else
1356 sp--;
1360 free (stack);
1361 BITMAP_FREE (visited);
1363 return post_order_num;
1366 /* Compute the reverse top sort order of the inverted sub-CFG specified
1367 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1369 static int
1370 loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1372 basic_block bb;
1373 edge_iterator *stack;
1374 int sp;
1375 int post_order_num = 0;
1376 bitmap visited;
1378 /* Allocate stack for back-tracking up CFG. */
1379 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1380 sp = 0;
1382 /* Allocate bitmap to track nodes that have been visited. */
1383 visited = BITMAP_ALLOC (NULL);
1385 /* Put all latches into the initial work list. In theory we'd want
1386 to start from loop exits but then we'd have the special case of
1387 endless loops. It doesn't really matter for DF iteration order and
1388 handling latches last is probably even better. */
1389 stack[sp++] = ei_start (loop->header->preds);
1390 bitmap_set_bit (visited, loop->header->index);
1392 /* The inverted traversal loop. */
1393 while (sp)
1395 edge_iterator ei;
1396 basic_block pred;
1398 /* Look at the edge on the top of the stack. */
1399 ei = stack[sp - 1];
1400 bb = ei_edge (ei)->dest;
1401 pred = ei_edge (ei)->src;
1403 /* Check if the predecessor has been visited yet and mark it
1404 if not so. */
1405 if (flow_bb_inside_loop_p (loop, pred)
1406 && bitmap_set_bit (visited, pred->index))
1408 if (EDGE_COUNT (pred->preds) > 0)
1409 /* Since the predecessor node has been visited for the first
1410 time, check its predecessors. */
1411 stack[sp++] = ei_start (pred->preds);
1412 else
1413 post_order[post_order_num++] = pred->index;
1415 else
1417 if (flow_bb_inside_loop_p (loop, bb)
1418 && ei_one_before_end_p (ei))
1419 post_order[post_order_num++] = bb->index;
1421 if (!ei_one_before_end_p (ei))
1422 ei_next (&stack[sp - 1]);
1423 else
1424 sp--;
1428 free (stack);
1429 BITMAP_FREE (visited);
1430 return post_order_num;
1434 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1436 void
1437 df_analyze_loop (struct loop *loop)
1439 free (df->postorder);
1440 free (df->postorder_inverted);
1442 df->postorder = XNEWVEC (int, loop->num_nodes);
1443 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1444 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1445 df->n_blocks_inverted
1446 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1447 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1448 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1450 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1451 for (int i = 0; i < df->n_blocks; ++i)
1452 bitmap_set_bit (blocks, df->postorder[i]);
1453 df_set_blocks (blocks);
1454 BITMAP_FREE (blocks);
1456 df_analyze_1 ();
1460 /* Return the number of basic blocks from the last call to df_analyze. */
1463 df_get_n_blocks (enum df_flow_dir dir)
1465 gcc_assert (dir != DF_NONE);
1467 if (dir == DF_FORWARD)
1469 gcc_assert (df->postorder_inverted);
1470 return df->n_blocks_inverted;
1473 gcc_assert (df->postorder);
1474 return df->n_blocks;
1478 /* Return a pointer to the array of basic blocks in the reverse postorder.
1479 Depending on the direction of the dataflow problem,
1480 it returns either the usual reverse postorder array
1481 or the reverse postorder of inverted traversal. */
1482 int *
1483 df_get_postorder (enum df_flow_dir dir)
1485 gcc_assert (dir != DF_NONE);
1487 if (dir == DF_FORWARD)
1489 gcc_assert (df->postorder_inverted);
1490 return df->postorder_inverted;
1492 gcc_assert (df->postorder);
1493 return df->postorder;
1496 static struct df_problem user_problem;
1497 static struct dataflow user_dflow;
1499 /* Interface for calling iterative dataflow with user defined
1500 confluence and transfer functions. All that is necessary is to
1501 supply DIR, a direction, CONF_FUN_0, a confluence function for
1502 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1503 confluence function, TRANS_FUN, the basic block transfer function,
1504 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1505 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1507 void
1508 df_simple_dataflow (enum df_flow_dir dir,
1509 df_init_function init_fun,
1510 df_confluence_function_0 con_fun_0,
1511 df_confluence_function_n con_fun_n,
1512 df_transfer_function trans_fun,
1513 bitmap blocks, int * postorder, int n_blocks)
1515 memset (&user_problem, 0, sizeof (struct df_problem));
1516 user_problem.dir = dir;
1517 user_problem.init_fun = init_fun;
1518 user_problem.con_fun_0 = con_fun_0;
1519 user_problem.con_fun_n = con_fun_n;
1520 user_problem.trans_fun = trans_fun;
1521 user_dflow.problem = &user_problem;
1522 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1527 /*----------------------------------------------------------------------------
1528 Functions to support limited incremental change.
1529 ----------------------------------------------------------------------------*/
1532 /* Get basic block info. */
1534 static void *
1535 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1537 if (dflow->block_info == NULL)
1538 return NULL;
1539 if (index >= dflow->block_info_size)
1540 return NULL;
1541 return (void *)((char *)dflow->block_info
1542 + index * dflow->problem->block_info_elt_size);
1546 /* Set basic block info. */
1548 static void
1549 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1550 void *bb_info)
1552 gcc_assert (dflow->block_info);
1553 memcpy ((char *)dflow->block_info
1554 + index * dflow->problem->block_info_elt_size,
1555 bb_info, dflow->problem->block_info_elt_size);
1559 /* Clear basic block info. */
1561 static void
1562 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1564 gcc_assert (dflow->block_info);
1565 gcc_assert (dflow->block_info_size > index);
1566 memset ((char *)dflow->block_info
1567 + index * dflow->problem->block_info_elt_size,
1568 0, dflow->problem->block_info_elt_size);
1572 /* Mark the solutions as being out of date. */
1574 void
1575 df_mark_solutions_dirty (void)
1577 if (df)
1579 int p;
1580 for (p = 1; p < df->num_problems_defined; p++)
1581 df->problems_in_order[p]->solutions_dirty = true;
1586 /* Return true if BB needs it's transfer functions recomputed. */
1588 bool
1589 df_get_bb_dirty (basic_block bb)
1591 return bitmap_bit_p ((df_live
1592 ? df_live : df_lr)->out_of_date_transfer_functions,
1593 bb->index);
1597 /* Mark BB as needing it's transfer functions as being out of
1598 date. */
1600 void
1601 df_set_bb_dirty (basic_block bb)
1603 bb->flags |= BB_MODIFIED;
1604 if (df)
1606 int p;
1607 for (p = 1; p < df->num_problems_defined; p++)
1609 struct dataflow *dflow = df->problems_in_order[p];
1610 if (dflow->out_of_date_transfer_functions)
1611 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1613 df_mark_solutions_dirty ();
1618 /* Grow the bb_info array. */
1620 void
1621 df_grow_bb_info (struct dataflow *dflow)
1623 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1624 if (dflow->block_info_size < new_size)
1626 new_size += new_size / 4;
1627 dflow->block_info
1628 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1629 new_size
1630 * dflow->problem->block_info_elt_size);
1631 memset ((char *)dflow->block_info
1632 + dflow->block_info_size
1633 * dflow->problem->block_info_elt_size,
1635 (new_size - dflow->block_info_size)
1636 * dflow->problem->block_info_elt_size);
1637 dflow->block_info_size = new_size;
1642 /* Clear the dirty bits. This is called from places that delete
1643 blocks. */
1644 static void
1645 df_clear_bb_dirty (basic_block bb)
1647 int p;
1648 for (p = 1; p < df->num_problems_defined; p++)
1650 struct dataflow *dflow = df->problems_in_order[p];
1651 if (dflow->out_of_date_transfer_functions)
1652 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1656 /* Called from the rtl_compact_blocks to reorganize the problems basic
1657 block info. */
1659 void
1660 df_compact_blocks (void)
1662 int i, p;
1663 basic_block bb;
1664 void *problem_temps;
1665 bitmap_head tmp;
1667 bitmap_initialize (&tmp, &df_bitmap_obstack);
1668 for (p = 0; p < df->num_problems_defined; p++)
1670 struct dataflow *dflow = df->problems_in_order[p];
1672 /* Need to reorganize the out_of_date_transfer_functions for the
1673 dflow problem. */
1674 if (dflow->out_of_date_transfer_functions)
1676 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1677 bitmap_clear (dflow->out_of_date_transfer_functions);
1678 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1679 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1680 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1681 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1683 i = NUM_FIXED_BLOCKS;
1684 FOR_EACH_BB_FN (bb, cfun)
1686 if (bitmap_bit_p (&tmp, bb->index))
1687 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1688 i++;
1692 /* Now shuffle the block info for the problem. */
1693 if (dflow->problem->free_bb_fun)
1695 int size = (last_basic_block_for_fn (cfun)
1696 * dflow->problem->block_info_elt_size);
1697 problem_temps = XNEWVAR (char, size);
1698 df_grow_bb_info (dflow);
1699 memcpy (problem_temps, dflow->block_info, size);
1701 /* Copy the bb info from the problem tmps to the proper
1702 place in the block_info vector. Null out the copied
1703 item. The entry and exit blocks never move. */
1704 i = NUM_FIXED_BLOCKS;
1705 FOR_EACH_BB_FN (bb, cfun)
1707 df_set_bb_info (dflow, i,
1708 (char *)problem_temps
1709 + bb->index * dflow->problem->block_info_elt_size);
1710 i++;
1712 memset ((char *)dflow->block_info
1713 + i * dflow->problem->block_info_elt_size, 0,
1714 (last_basic_block_for_fn (cfun) - i)
1715 * dflow->problem->block_info_elt_size);
1716 free (problem_temps);
1720 /* Shuffle the bits in the basic_block indexed arrays. */
1722 if (df->blocks_to_analyze)
1724 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1725 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1726 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1727 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1728 bitmap_copy (&tmp, df->blocks_to_analyze);
1729 bitmap_clear (df->blocks_to_analyze);
1730 i = NUM_FIXED_BLOCKS;
1731 FOR_EACH_BB_FN (bb, cfun)
1733 if (bitmap_bit_p (&tmp, bb->index))
1734 bitmap_set_bit (df->blocks_to_analyze, i);
1735 i++;
1739 bitmap_clear (&tmp);
1741 i = NUM_FIXED_BLOCKS;
1742 FOR_EACH_BB_FN (bb, cfun)
1744 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1745 bb->index = i;
1746 i++;
1749 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1751 for (; i < last_basic_block_for_fn (cfun); i++)
1752 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1754 #ifdef DF_DEBUG_CFG
1755 if (!df_lr->solutions_dirty)
1756 df_set_clean_cfg ();
1757 #endif
1761 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1762 block. There is no excuse for people to do this kind of thing. */
1764 void
1765 df_bb_replace (int old_index, basic_block new_block)
1767 int new_block_index = new_block->index;
1768 int p;
1770 if (dump_file)
1771 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1773 gcc_assert (df);
1774 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1776 for (p = 0; p < df->num_problems_defined; p++)
1778 struct dataflow *dflow = df->problems_in_order[p];
1779 if (dflow->block_info)
1781 df_grow_bb_info (dflow);
1782 df_set_bb_info (dflow, old_index,
1783 df_get_bb_info (dflow, new_block_index));
1787 df_clear_bb_dirty (new_block);
1788 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1789 new_block->index = old_index;
1790 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1791 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1795 /* Free all of the per basic block dataflow from all of the problems.
1796 This is typically called before a basic block is deleted and the
1797 problem will be reanalyzed. */
1799 void
1800 df_bb_delete (int bb_index)
1802 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1803 int i;
1805 if (!df)
1806 return;
1808 for (i = 0; i < df->num_problems_defined; i++)
1810 struct dataflow *dflow = df->problems_in_order[i];
1811 if (dflow->problem->free_bb_fun)
1813 void *bb_info = df_get_bb_info (dflow, bb_index);
1814 if (bb_info)
1816 dflow->problem->free_bb_fun (bb, bb_info);
1817 df_clear_bb_info (dflow, bb_index);
1821 df_clear_bb_dirty (bb);
1822 df_mark_solutions_dirty ();
1826 /* Verify that there is a place for everything and everything is in
1827 its place. This is too expensive to run after every pass in the
1828 mainline. However this is an excellent debugging tool if the
1829 dataflow information is not being updated properly. You can just
1830 sprinkle calls in until you find the place that is changing an
1831 underlying structure without calling the proper updating
1832 routine. */
1834 void
1835 df_verify (void)
1837 df_scan_verify ();
1838 #ifdef ENABLE_DF_CHECKING
1839 df_lr_verify_transfer_functions ();
1840 if (df_live)
1841 df_live_verify_transfer_functions ();
1842 #endif
1845 #ifdef DF_DEBUG_CFG
1847 /* Compute an array of ints that describes the cfg. This can be used
1848 to discover places where the cfg is modified by the appropriate
1849 calls have not been made to the keep df informed. The internals of
1850 this are unexciting, the key is that two instances of this can be
1851 compared to see if any changes have been made to the cfg. */
1853 static int *
1854 df_compute_cfg_image (void)
1856 basic_block bb;
1857 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1858 int i;
1859 int * map;
1861 FOR_ALL_BB_FN (bb, cfun)
1863 size += EDGE_COUNT (bb->succs);
1866 map = XNEWVEC (int, size);
1867 map[0] = size;
1868 i = 1;
1869 FOR_ALL_BB_FN (bb, cfun)
1871 edge_iterator ei;
1872 edge e;
1874 map[i++] = bb->index;
1875 FOR_EACH_EDGE (e, ei, bb->succs)
1876 map[i++] = e->dest->index;
1877 map[i++] = -1;
1879 map[i] = -1;
1880 return map;
1883 static int *saved_cfg = NULL;
1886 /* This function compares the saved version of the cfg with the
1887 current cfg and aborts if the two are identical. The function
1888 silently returns if the cfg has been marked as dirty or the two are
1889 the same. */
1891 void
1892 df_check_cfg_clean (void)
1894 int *new_map;
1896 if (!df)
1897 return;
1899 if (df_lr->solutions_dirty)
1900 return;
1902 if (saved_cfg == NULL)
1903 return;
1905 new_map = df_compute_cfg_image ();
1906 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1907 free (new_map);
1911 /* This function builds a cfg fingerprint and squirrels it away in
1912 saved_cfg. */
1914 static void
1915 df_set_clean_cfg (void)
1917 free (saved_cfg);
1918 saved_cfg = df_compute_cfg_image ();
1921 #endif /* DF_DEBUG_CFG */
1922 /*----------------------------------------------------------------------------
1923 PUBLIC INTERFACES TO QUERY INFORMATION.
1924 ----------------------------------------------------------------------------*/
1927 /* Return first def of REGNO within BB. */
1929 df_ref
1930 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1932 rtx_insn *insn;
1933 df_ref def;
1935 FOR_BB_INSNS (bb, insn)
1937 if (!INSN_P (insn))
1938 continue;
1940 FOR_EACH_INSN_DEF (def, insn)
1941 if (DF_REF_REGNO (def) == regno)
1942 return def;
1944 return NULL;
1948 /* Return last def of REGNO within BB. */
1950 df_ref
1951 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1953 rtx_insn *insn;
1954 df_ref def;
1956 FOR_BB_INSNS_REVERSE (bb, insn)
1958 if (!INSN_P (insn))
1959 continue;
1961 FOR_EACH_INSN_DEF (def, insn)
1962 if (DF_REF_REGNO (def) == regno)
1963 return def;
1966 return NULL;
1969 /* Finds the reference corresponding to the definition of REG in INSN.
1970 DF is the dataflow object. */
1972 df_ref
1973 df_find_def (rtx_insn *insn, rtx reg)
1975 df_ref def;
1977 if (GET_CODE (reg) == SUBREG)
1978 reg = SUBREG_REG (reg);
1979 gcc_assert (REG_P (reg));
1981 FOR_EACH_INSN_DEF (def, insn)
1982 if (DF_REF_REGNO (def) == REGNO (reg))
1983 return def;
1985 return NULL;
1989 /* Return true if REG is defined in INSN, zero otherwise. */
1991 bool
1992 df_reg_defined (rtx_insn *insn, rtx reg)
1994 return df_find_def (insn, reg) != NULL;
1998 /* Finds the reference corresponding to the use of REG in INSN.
1999 DF is the dataflow object. */
2001 df_ref
2002 df_find_use (rtx_insn *insn, rtx reg)
2004 df_ref use;
2006 if (GET_CODE (reg) == SUBREG)
2007 reg = SUBREG_REG (reg);
2008 gcc_assert (REG_P (reg));
2010 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2011 FOR_EACH_INSN_INFO_USE (use, insn_info)
2012 if (DF_REF_REGNO (use) == REGNO (reg))
2013 return use;
2014 if (df->changeable_flags & DF_EQ_NOTES)
2015 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2016 if (DF_REF_REGNO (use) == REGNO (reg))
2017 return use;
2018 return NULL;
2022 /* Return true if REG is referenced in INSN, zero otherwise. */
2024 bool
2025 df_reg_used (rtx_insn *insn, rtx reg)
2027 return df_find_use (insn, reg) != NULL;
2031 /*----------------------------------------------------------------------------
2032 Debugging and printing functions.
2033 ----------------------------------------------------------------------------*/
2035 /* Write information about registers and basic blocks into FILE.
2036 This is part of making a debugging dump. */
2038 void
2039 dump_regset (regset r, FILE *outf)
2041 unsigned i;
2042 reg_set_iterator rsi;
2044 if (r == NULL)
2046 fputs (" (nil)", outf);
2047 return;
2050 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2052 fprintf (outf, " %d", i);
2053 if (i < FIRST_PSEUDO_REGISTER)
2054 fprintf (outf, " [%s]",
2055 reg_names[i]);
2059 /* Print a human-readable representation of R on the standard error
2060 stream. This function is designed to be used from within the
2061 debugger. */
2062 extern void debug_regset (regset);
2063 DEBUG_FUNCTION void
2064 debug_regset (regset r)
2066 dump_regset (r, stderr);
2067 putc ('\n', stderr);
2070 /* Write information about registers and basic blocks into FILE.
2071 This is part of making a debugging dump. */
2073 void
2074 df_print_regset (FILE *file, bitmap r)
2076 unsigned int i;
2077 bitmap_iterator bi;
2079 if (r == NULL)
2080 fputs (" (nil)", file);
2081 else
2083 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2085 fprintf (file, " %d", i);
2086 if (i < FIRST_PSEUDO_REGISTER)
2087 fprintf (file, " [%s]", reg_names[i]);
2090 fprintf (file, "\n");
2094 /* Write information about registers and basic blocks into FILE. The
2095 bitmap is in the form used by df_byte_lr. This is part of making a
2096 debugging dump. */
2098 void
2099 df_print_word_regset (FILE *file, bitmap r)
2101 unsigned int max_reg = max_reg_num ();
2103 if (r == NULL)
2104 fputs (" (nil)", file);
2105 else
2107 unsigned int i;
2108 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2110 bool found = (bitmap_bit_p (r, 2 * i)
2111 || bitmap_bit_p (r, 2 * i + 1));
2112 if (found)
2114 int word;
2115 const char * sep = "";
2116 fprintf (file, " %d", i);
2117 fprintf (file, "(");
2118 for (word = 0; word < 2; word++)
2119 if (bitmap_bit_p (r, 2 * i + word))
2121 fprintf (file, "%s%d", sep, word);
2122 sep = ", ";
2124 fprintf (file, ")");
2128 fprintf (file, "\n");
2132 /* Dump dataflow info. */
2134 void
2135 df_dump (FILE *file)
2137 basic_block bb;
2138 df_dump_start (file);
2140 FOR_ALL_BB_FN (bb, cfun)
2142 df_print_bb_index (bb, file);
2143 df_dump_top (bb, file);
2144 df_dump_bottom (bb, file);
2147 fprintf (file, "\n");
2151 /* Dump dataflow info for df->blocks_to_analyze. */
2153 void
2154 df_dump_region (FILE *file)
2156 if (df->blocks_to_analyze)
2158 bitmap_iterator bi;
2159 unsigned int bb_index;
2161 fprintf (file, "\n\nstarting region dump\n");
2162 df_dump_start (file);
2164 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2166 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2167 dump_bb (file, bb, 0, TDF_DETAILS);
2169 fprintf (file, "\n");
2171 else
2172 df_dump (file);
2176 /* Dump the introductory information for each problem defined. */
2178 void
2179 df_dump_start (FILE *file)
2181 int i;
2183 if (!df || !file)
2184 return;
2186 fprintf (file, "\n\n%s\n", current_function_name ());
2187 fprintf (file, "\nDataflow summary:\n");
2188 if (df->blocks_to_analyze)
2189 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2190 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2192 for (i = 0; i < df->num_problems_defined; i++)
2194 struct dataflow *dflow = df->problems_in_order[i];
2195 if (dflow->computed)
2197 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2198 if (fun)
2199 fun (file);
2205 /* Dump the top or bottom of the block information for BB. */
2206 static void
2207 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2209 int i;
2211 if (!df || !file)
2212 return;
2214 for (i = 0; i < df->num_problems_defined; i++)
2216 struct dataflow *dflow = df->problems_in_order[i];
2217 if (dflow->computed)
2219 df_dump_bb_problem_function bbfun;
2221 if (top)
2222 bbfun = dflow->problem->dump_top_fun;
2223 else
2224 bbfun = dflow->problem->dump_bottom_fun;
2226 if (bbfun)
2227 bbfun (bb, file);
2232 /* Dump the top of the block information for BB. */
2234 void
2235 df_dump_top (basic_block bb, FILE *file)
2237 df_dump_bb_problem_data (bb, file, /*top=*/true);
2240 /* Dump the bottom of the block information for BB. */
2242 void
2243 df_dump_bottom (basic_block bb, FILE *file)
2245 df_dump_bb_problem_data (bb, file, /*top=*/false);
2249 /* Dump information about INSN just before or after dumping INSN itself. */
2250 static void
2251 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2253 int i;
2255 if (!df || !file)
2256 return;
2258 for (i = 0; i < df->num_problems_defined; i++)
2260 struct dataflow *dflow = df->problems_in_order[i];
2261 if (dflow->computed)
2263 df_dump_insn_problem_function insnfun;
2265 if (top)
2266 insnfun = dflow->problem->dump_insn_top_fun;
2267 else
2268 insnfun = dflow->problem->dump_insn_bottom_fun;
2270 if (insnfun)
2271 insnfun (insn, file);
2276 /* Dump information about INSN before dumping INSN itself. */
2278 void
2279 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2281 df_dump_insn_problem_data (insn, file, /*top=*/true);
2284 /* Dump information about INSN after dumping INSN itself. */
2286 void
2287 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2289 df_dump_insn_problem_data (insn, file, /*top=*/false);
2293 static void
2294 df_ref_dump (df_ref ref, FILE *file)
2296 fprintf (file, "%c%d(%d)",
2297 DF_REF_REG_DEF_P (ref)
2298 ? 'd'
2299 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2300 DF_REF_ID (ref),
2301 DF_REF_REGNO (ref));
2304 void
2305 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2307 fprintf (file, "{ ");
2308 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2310 df_ref_dump (ref, file);
2311 if (follow_chain)
2312 df_chain_dump (DF_REF_CHAIN (ref), file);
2314 fprintf (file, "}");
2318 /* Dump either a ref-def or reg-use chain. */
2320 void
2321 df_regs_chain_dump (df_ref ref, FILE *file)
2323 fprintf (file, "{ ");
2324 while (ref)
2326 df_ref_dump (ref, file);
2327 ref = DF_REF_NEXT_REG (ref);
2329 fprintf (file, "}");
2333 static void
2334 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2336 for (; mws; mws = DF_MWS_NEXT (mws))
2337 fprintf (file, "mw %c r[%d..%d]\n",
2338 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2339 mws->start_regno, mws->end_regno);
2343 static void
2344 df_insn_uid_debug (unsigned int uid,
2345 bool follow_chain, FILE *file)
2347 fprintf (file, "insn %d luid %d",
2348 uid, DF_INSN_UID_LUID (uid));
2350 if (DF_INSN_UID_DEFS (uid))
2352 fprintf (file, " defs ");
2353 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2356 if (DF_INSN_UID_USES (uid))
2358 fprintf (file, " uses ");
2359 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2362 if (DF_INSN_UID_EQ_USES (uid))
2364 fprintf (file, " eq uses ");
2365 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2368 if (DF_INSN_UID_MWS (uid))
2370 fprintf (file, " mws ");
2371 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2373 fprintf (file, "\n");
2377 DEBUG_FUNCTION void
2378 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2380 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2383 DEBUG_FUNCTION void
2384 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2386 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2388 fprintf (file, "insn %d bb %d luid %d defs ",
2389 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2390 DF_INSN_INFO_LUID (insn_info));
2391 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2393 fprintf (file, " uses ");
2394 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2396 fprintf (file, " eq_uses ");
2397 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2398 fprintf (file, "\n");
2401 DEBUG_FUNCTION void
2402 df_regno_debug (unsigned int regno, FILE *file)
2404 fprintf (file, "reg %d defs ", regno);
2405 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2406 fprintf (file, " uses ");
2407 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2408 fprintf (file, " eq_uses ");
2409 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2410 fprintf (file, "\n");
2414 DEBUG_FUNCTION void
2415 df_ref_debug (df_ref ref, FILE *file)
2417 fprintf (file, "%c%d ",
2418 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2419 DF_REF_ID (ref));
2420 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2421 DF_REF_REGNO (ref),
2422 DF_REF_BBNO (ref),
2423 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2424 DF_REF_FLAGS (ref),
2425 DF_REF_TYPE (ref));
2426 if (DF_REF_LOC (ref))
2428 if (flag_dump_noaddr)
2429 fprintf (file, "loc #(#) chain ");
2430 else
2431 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2432 (void *)*DF_REF_LOC (ref));
2434 else
2435 fprintf (file, "chain ");
2436 df_chain_dump (DF_REF_CHAIN (ref), file);
2437 fprintf (file, "\n");
2440 /* Functions for debugging from GDB. */
2442 DEBUG_FUNCTION void
2443 debug_df_insn (rtx_insn *insn)
2445 df_insn_debug (insn, true, stderr);
2446 debug_rtx (insn);
2450 DEBUG_FUNCTION void
2451 debug_df_reg (rtx reg)
2453 df_regno_debug (REGNO (reg), stderr);
2457 DEBUG_FUNCTION void
2458 debug_df_regno (unsigned int regno)
2460 df_regno_debug (regno, stderr);
2464 DEBUG_FUNCTION void
2465 debug_df_ref (df_ref ref)
2467 df_ref_debug (ref, stderr);
2471 DEBUG_FUNCTION void
2472 debug_df_defno (unsigned int defno)
2474 df_ref_debug (DF_DEFS_GET (defno), stderr);
2478 DEBUG_FUNCTION void
2479 debug_df_useno (unsigned int defno)
2481 df_ref_debug (DF_USES_GET (defno), stderr);
2485 DEBUG_FUNCTION void
2486 debug_df_chain (struct df_link *link)
2488 df_chain_dump (link, stderr);
2489 fputc ('\n', stderr);