1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
38 #include "coretypes.h"
44 #include "tree-pass.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
56 #include "tree-ssa-address.h"
57 #include "tree-affine.h"
61 /* Information about a strength reduction candidate. Each statement
62 in the candidate table represents an expression of one of the
63 following forms (the special case of CAND_REF will be described
66 (CAND_MULT) S1: X = (B + i) * S
67 (CAND_ADD) S1: X = B + (i * S)
69 Here X and B are SSA names, i is an integer constant, and S is
70 either an SSA name or a constant. We call B the "base," i the
71 "index", and S the "stride."
73 Any statement S0 that dominates S1 and is of the form:
75 (CAND_MULT) S0: Y = (B + i') * S
76 (CAND_ADD) S0: Y = B + (i' * S)
78 is called a "basis" for S1. In both cases, S1 may be replaced by
80 S1': X = Y + (i - i') * S,
82 where (i - i') * S is folded to the extent possible.
84 All gimple statements are visited in dominator order, and each
85 statement that may contribute to one of the forms of S1 above is
86 given at least one entry in the candidate table. Such statements
87 include addition, pointer addition, subtraction, multiplication,
88 negation, copies, and nontrivial type casts. If a statement may
89 represent more than one expression of the forms of S1 above,
90 multiple "interpretations" are stored in the table and chained
93 * An add of two SSA names may treat either operand as the base.
94 * A multiply of two SSA names, likewise.
95 * A copy or cast may be thought of as either a CAND_MULT with
96 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
98 Candidate records are allocated from an obstack. They are addressed
99 both from a hash table keyed on S1, and from a vector of candidate
100 pointers arranged in predominator order.
104 Currently we don't recognize:
109 as a strength reduction opportunity, even though this S1 would
110 also be replaceable by the S1' above. This can be added if it
111 comes up in practice.
113 Strength reduction in addressing
114 --------------------------------
115 There is another kind of candidate known as CAND_REF. A CAND_REF
116 describes a statement containing a memory reference having
117 complex addressing that might benefit from strength reduction.
118 Specifically, we are interested in references for which
119 get_inner_reference returns a base address, offset, and bitpos as
122 base: MEM_REF (T1, C1)
123 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
124 bitpos: C4 * BITS_PER_UNIT
126 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
127 arbitrary integer constants. Note that C2 may be zero, in which
128 case the offset will be MULT_EXPR (T2, C3).
130 When this pattern is recognized, the original memory reference
131 can be replaced with:
133 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
136 which distributes the multiply to allow constant folding. When
137 two or more addressing expressions can be represented by MEM_REFs
138 of this form, differing only in the constants C1, C2, and C4,
139 making this substitution produces more efficient addressing during
140 the RTL phases. When there are not at least two expressions with
141 the same values of T1, T2, and C3, there is nothing to be gained
144 Strength reduction of CAND_REFs uses the same infrastructure as
145 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
146 field, MULT_EXPR (T2, C3) in the stride (S) field, and
147 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
148 is thus another CAND_REF with the same B and S values. When at
149 least two CAND_REFs are chained together using the basis relation,
150 each of them is replaced as above, resulting in improved code
151 generation for addressing.
153 Conditional candidates
154 ======================
156 Conditional candidates are best illustrated with an example.
157 Consider the code sequence:
160 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
162 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
163 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
164 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
165 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
167 Here strength reduction is complicated by the uncertain value of x_2.
168 A legitimate transformation is:
177 (4) [x_2 = PHI <x_0, x_1>;]
178 (4a) t_2 = PHI <a_0, t_1>;
182 where the bracketed instructions may go dead.
184 To recognize this opportunity, we have to observe that statement (6)
185 has a "hidden basis" (2). The hidden basis is unlike a normal basis
186 in that the statement and the hidden basis have different base SSA
187 names (x_2 and x_0, respectively). The relationship is established
188 when a statement's base name (x_2) is defined by a phi statement (4),
189 each argument of which (x_0, x_1) has an identical "derived base name."
190 If the argument is defined by a candidate (as x_1 is by (3)) that is a
191 CAND_ADD having a stride of 1, the derived base name of the argument is
192 the base name of the candidate (x_0). Otherwise, the argument itself
193 is its derived base name (as is the case with argument x_0).
195 The hidden basis for statement (6) is the nearest dominating candidate
196 whose base name is the derived base name (x_0) of the feeding phi (4),
197 and whose stride is identical to that of the statement. We can then
198 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
199 allowing the final replacement of (6) by the strength-reduced (6r).
201 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
202 A CAND_PHI is not a candidate for replacement, but is maintained in the
203 candidate table to ease discovery of hidden bases. Any phi statement
204 whose arguments share a common derived base name is entered into the
205 table with the derived base name, an (arbitrary) index of zero, and a
206 stride of 1. A statement with a hidden basis can then be detected by
207 simply looking up its feeding phi definition in the candidate table,
208 extracting the derived base name, and searching for a basis in the
209 usual manner after substituting the derived base name.
211 Note that the transformation is only valid when the original phi and
212 the statements that define the phi's arguments are all at the same
213 position in the loop hierarchy. */
216 /* Index into the candidate vector, offset by 1. VECs are zero-based,
217 while cand_idx's are one-based, with zero indicating null. */
218 typedef unsigned cand_idx
;
220 /* The kind of candidate. */
231 /* The candidate statement S1. */
234 /* The base expression B: often an SSA name, but not always. */
240 /* The index constant i. */
243 /* The type of the candidate. This is normally the type of base_expr,
244 but casts may have occurred when combining feeding instructions.
245 A candidate can only be a basis for candidates of the same final type.
246 (For CAND_REFs, this is the type to be used for operand 1 of the
247 replacement MEM_REF.) */
250 /* The type to be used to interpret the stride field when the stride
251 is not a constant. Normally the same as the type of the recorded
252 stride, but when the stride has been cast we need to maintain that
253 knowledge in order to make legal substitutions without losing
254 precision. When the stride is a constant, this will be sizetype. */
257 /* The kind of candidate (CAND_MULT, etc.). */
260 /* Index of this candidate in the candidate vector. */
263 /* Index of the next candidate record for the same statement.
264 A statement may be useful in more than one way (e.g., due to
265 commutativity). So we can have multiple "interpretations"
267 cand_idx next_interp
;
269 /* Index of the first candidate record in a chain for the same
271 cand_idx first_interp
;
273 /* Index of the basis statement S0, if any, in the candidate vector. */
276 /* First candidate for which this candidate is a basis, if one exists. */
279 /* Next candidate having the same basis as this one. */
282 /* If this is a conditional candidate, the CAND_PHI candidate
283 that defines the base SSA name B. */
286 /* Savings that can be expected from eliminating dead code if this
287 candidate is replaced. */
290 /* For PHI candidates, use a visited flag to keep from processing the
291 same PHI twice from multiple paths. */
294 /* We sometimes have to cache a phi basis with a phi candidate to
295 avoid processing it twice. Valid only if visited==1. */
299 typedef struct slsr_cand_d slsr_cand
, *slsr_cand_t
;
300 typedef const struct slsr_cand_d
*const_slsr_cand_t
;
302 /* Pointers to candidates are chained together as part of a mapping
303 from base expressions to the candidates that use them. */
307 /* Base expression for the chain of candidates: often, but not
308 always, an SSA name. */
311 /* Pointer to a candidate. */
315 struct cand_chain_d
*next
;
319 typedef struct cand_chain_d cand_chain
, *cand_chain_t
;
320 typedef const struct cand_chain_d
*const_cand_chain_t
;
322 /* Information about a unique "increment" associated with candidates
323 having an SSA name for a stride. An increment is the difference
324 between the index of the candidate and the index of its basis,
325 i.e., (i - i') as discussed in the module commentary.
327 When we are not going to generate address arithmetic we treat
328 increments that differ only in sign as the same, allowing sharing
329 of the cost of initializers. The absolute value of the increment
330 is stored in the incr_info. */
334 /* The increment that relates a candidate to its basis. */
337 /* How many times the increment occurs in the candidate tree. */
340 /* Cost of replacing candidates using this increment. Negative and
341 zero costs indicate replacement should be performed. */
344 /* If this increment is profitable but is not -1, 0, or 1, it requires
345 an initializer T_0 = stride * incr to be found or introduced in the
346 nearest common dominator of all candidates. This field holds T_0
347 for subsequent use. */
350 /* If the initializer was found to already exist, this is the block
351 where it was found. */
355 typedef struct incr_info_d incr_info
, *incr_info_t
;
357 /* Candidates are maintained in a vector. If candidate X dominates
358 candidate Y, then X appears before Y in the vector; but the
359 converse does not necessarily hold. */
360 static vec
<slsr_cand_t
> cand_vec
;
374 enum phi_adjust_status
380 enum count_phis_status
386 /* Constrain how many PHI nodes we will visit for a conditional
387 candidate (depth and breadth). */
388 const int MAX_SPREAD
= 16;
390 /* Pointer map embodying a mapping from statements to candidates. */
391 static hash_map
<gimple
*, slsr_cand_t
> *stmt_cand_map
;
393 /* Obstack for candidates. */
394 static struct obstack cand_obstack
;
396 /* Obstack for candidate chains. */
397 static struct obstack chain_obstack
;
399 /* An array INCR_VEC of incr_infos is used during analysis of related
400 candidates having an SSA name for a stride. INCR_VEC_LEN describes
401 its current length. MAX_INCR_VEC_LEN is used to avoid costly
402 pathological cases. */
403 static incr_info_t incr_vec
;
404 static unsigned incr_vec_len
;
405 const int MAX_INCR_VEC_LEN
= 16;
407 /* For a chain of candidates with unknown stride, indicates whether or not
408 we must generate pointer arithmetic when replacing statements. */
409 static bool address_arithmetic_p
;
411 /* Forward function declarations. */
412 static slsr_cand_t
base_cand_from_table (tree
);
413 static tree
introduce_cast_before_cand (slsr_cand_t
, tree
, tree
);
414 static bool legal_cast_p_1 (tree
, tree
);
416 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
419 lookup_cand (cand_idx idx
)
421 return cand_vec
[idx
- 1];
424 /* Helper for hashing a candidate chain header. */
426 struct cand_chain_hasher
: nofree_ptr_hash
<cand_chain
>
428 static inline hashval_t
hash (const cand_chain
*);
429 static inline bool equal (const cand_chain
*, const cand_chain
*);
433 cand_chain_hasher::hash (const cand_chain
*p
)
435 tree base_expr
= p
->base_expr
;
436 return iterative_hash_expr (base_expr
, 0);
440 cand_chain_hasher::equal (const cand_chain
*chain1
, const cand_chain
*chain2
)
442 return operand_equal_p (chain1
->base_expr
, chain2
->base_expr
, 0);
445 /* Hash table embodying a mapping from base exprs to chains of candidates. */
446 static hash_table
<cand_chain_hasher
> *base_cand_map
;
448 /* Pointer map used by tree_to_aff_combination_expand. */
449 static hash_map
<tree
, name_expansion
*> *name_expansions
;
450 /* Pointer map embodying a mapping from bases to alternative bases. */
451 static hash_map
<tree
, tree
> *alt_base_map
;
453 /* Given BASE, use the tree affine combiniation facilities to
454 find the underlying tree expression for BASE, with any
455 immediate offset excluded.
457 N.B. we should eliminate this backtracking with better forward
458 analysis in a future release. */
461 get_alternative_base (tree base
)
463 tree
*result
= alt_base_map
->get (base
);
470 tree_to_aff_combination_expand (base
, TREE_TYPE (base
),
471 &aff
, &name_expansions
);
473 expr
= aff_combination_to_tree (&aff
);
475 gcc_assert (!alt_base_map
->put (base
, base
== expr
? NULL
: expr
));
477 return expr
== base
? NULL
: expr
;
483 /* Look in the candidate table for a CAND_PHI that defines BASE and
484 return it if found; otherwise return NULL. */
487 find_phi_def (tree base
)
491 if (TREE_CODE (base
) != SSA_NAME
)
494 c
= base_cand_from_table (base
);
496 if (!c
|| c
->kind
!= CAND_PHI
497 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c
->cand_stmt
)))
503 /* Determine whether all uses of NAME are directly or indirectly
504 used by STMT. That is, we want to know whether if STMT goes
505 dead, the definition of NAME also goes dead. */
507 uses_consumed_by_stmt (tree name
, gimple
*stmt
, unsigned recurse
= 0)
510 imm_use_iterator iter
;
513 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, name
)
515 if (use_stmt
== stmt
|| is_gimple_debug (use_stmt
))
518 if (!is_gimple_assign (use_stmt
)
519 || !gimple_get_lhs (use_stmt
)
520 || !is_gimple_reg (gimple_get_lhs (use_stmt
))
522 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt
), stmt
,
526 BREAK_FROM_IMM_USE_STMT (iter
);
533 /* Helper routine for find_basis_for_candidate. May be called twice:
534 once for the candidate's base expr, and optionally again either for
535 the candidate's phi definition or for a CAND_REF's alternative base
539 find_basis_for_base_expr (slsr_cand_t c
, tree base_expr
)
541 cand_chain mapping_key
;
543 slsr_cand_t basis
= NULL
;
545 // Limit potential of N^2 behavior for long candidate chains.
547 int max_iters
= PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN
);
549 mapping_key
.base_expr
= base_expr
;
550 chain
= base_cand_map
->find (&mapping_key
);
552 for (; chain
&& iters
< max_iters
; chain
= chain
->next
, ++iters
)
554 slsr_cand_t one_basis
= chain
->cand
;
556 if (one_basis
->kind
!= c
->kind
557 || one_basis
->cand_stmt
== c
->cand_stmt
558 || !operand_equal_p (one_basis
->stride
, c
->stride
, 0)
559 || !types_compatible_p (one_basis
->cand_type
, c
->cand_type
)
560 || !types_compatible_p (one_basis
->stride_type
, c
->stride_type
)
561 || !dominated_by_p (CDI_DOMINATORS
,
562 gimple_bb (c
->cand_stmt
),
563 gimple_bb (one_basis
->cand_stmt
)))
566 tree lhs
= gimple_assign_lhs (one_basis
->cand_stmt
);
567 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
568 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
571 if (!basis
|| basis
->cand_num
< one_basis
->cand_num
)
578 /* Use the base expr from candidate C to look for possible candidates
579 that can serve as a basis for C. Each potential basis must also
580 appear in a block that dominates the candidate statement and have
581 the same stride and type. If more than one possible basis exists,
582 the one with highest index in the vector is chosen; this will be
583 the most immediately dominating basis. */
586 find_basis_for_candidate (slsr_cand_t c
)
588 slsr_cand_t basis
= find_basis_for_base_expr (c
, c
->base_expr
);
590 /* If a candidate doesn't have a basis using its base expression,
591 it may have a basis hidden by one or more intervening phis. */
592 if (!basis
&& c
->def_phi
)
594 basic_block basis_bb
, phi_bb
;
595 slsr_cand_t phi_cand
= lookup_cand (c
->def_phi
);
596 basis
= find_basis_for_base_expr (c
, phi_cand
->base_expr
);
600 /* A hidden basis must dominate the phi-definition of the
601 candidate's base name. */
602 phi_bb
= gimple_bb (phi_cand
->cand_stmt
);
603 basis_bb
= gimple_bb (basis
->cand_stmt
);
605 if (phi_bb
== basis_bb
606 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
612 /* If we found a hidden basis, estimate additional dead-code
613 savings if the phi and its feeding statements can be removed. */
614 tree feeding_var
= gimple_phi_result (phi_cand
->cand_stmt
);
615 if (basis
&& uses_consumed_by_stmt (feeding_var
, c
->cand_stmt
))
616 c
->dead_savings
+= phi_cand
->dead_savings
;
620 if (flag_expensive_optimizations
&& !basis
&& c
->kind
== CAND_REF
)
622 tree alt_base_expr
= get_alternative_base (c
->base_expr
);
624 basis
= find_basis_for_base_expr (c
, alt_base_expr
);
629 c
->sibling
= basis
->dependent
;
630 basis
->dependent
= c
->cand_num
;
631 return basis
->cand_num
;
637 /* Record a mapping from BASE to C, indicating that C may potentially serve
638 as a basis using that base expression. BASE may be the same as
639 C->BASE_EXPR; alternatively BASE can be a different tree that share the
640 underlining expression of C->BASE_EXPR. */
643 record_potential_basis (slsr_cand_t c
, tree base
)
650 node
= (cand_chain_t
) obstack_alloc (&chain_obstack
, sizeof (cand_chain
));
651 node
->base_expr
= base
;
654 slot
= base_cand_map
->find_slot (node
, INSERT
);
658 cand_chain_t head
= (cand_chain_t
) (*slot
);
659 node
->next
= head
->next
;
666 /* Allocate storage for a new candidate and initialize its fields.
667 Attempt to find a basis for the candidate.
669 For CAND_REF, an alternative base may also be recorded and used
670 to find a basis. This helps cases where the expression hidden
671 behind BASE (which is usually an SSA_NAME) has immediate offset,
675 a2[i + 20][j] = 2; */
678 alloc_cand_and_find_basis (enum cand_kind kind
, gimple
*gs
, tree base
,
679 const widest_int
&index
, tree stride
, tree ctype
,
680 tree stype
, unsigned savings
)
682 slsr_cand_t c
= (slsr_cand_t
) obstack_alloc (&cand_obstack
,
688 c
->cand_type
= ctype
;
689 c
->stride_type
= stype
;
691 c
->cand_num
= cand_vec
.length () + 1;
693 c
->first_interp
= c
->cand_num
;
696 c
->def_phi
= kind
== CAND_MULT
? find_phi_def (base
) : 0;
697 c
->dead_savings
= savings
;
699 c
->cached_basis
= NULL_TREE
;
701 cand_vec
.safe_push (c
);
703 if (kind
== CAND_PHI
)
706 c
->basis
= find_basis_for_candidate (c
);
708 record_potential_basis (c
, base
);
709 if (flag_expensive_optimizations
&& kind
== CAND_REF
)
711 tree alt_base
= get_alternative_base (base
);
713 record_potential_basis (c
, alt_base
);
719 /* Determine the target cost of statement GS when compiling according
723 stmt_cost (gimple
*gs
, bool speed
)
725 tree lhs
, rhs1
, rhs2
;
726 machine_mode lhs_mode
;
728 gcc_assert (is_gimple_assign (gs
));
729 lhs
= gimple_assign_lhs (gs
);
730 rhs1
= gimple_assign_rhs1 (gs
);
731 lhs_mode
= TYPE_MODE (TREE_TYPE (lhs
));
733 switch (gimple_assign_rhs_code (gs
))
736 rhs2
= gimple_assign_rhs2 (gs
);
738 if (tree_fits_shwi_p (rhs2
))
739 return mult_by_coeff_cost (tree_to_shwi (rhs2
), lhs_mode
, speed
);
741 gcc_assert (TREE_CODE (rhs1
) != INTEGER_CST
);
742 return mul_cost (speed
, lhs_mode
);
745 case POINTER_PLUS_EXPR
:
747 return add_cost (speed
, lhs_mode
);
750 return neg_cost (speed
, lhs_mode
);
753 return convert_cost (lhs_mode
, TYPE_MODE (TREE_TYPE (rhs1
)), speed
);
755 /* Note that we don't assign costs to copies that in most cases
768 /* Look up the defining statement for BASE_IN and return a pointer
769 to its candidate in the candidate table, if any; otherwise NULL.
770 Only CAND_ADD and CAND_MULT candidates are returned. */
773 base_cand_from_table (tree base_in
)
777 gimple
*def
= SSA_NAME_DEF_STMT (base_in
);
779 return (slsr_cand_t
) NULL
;
781 result
= stmt_cand_map
->get (def
);
783 if (result
&& (*result
)->kind
!= CAND_REF
)
786 return (slsr_cand_t
) NULL
;
789 /* Add an entry to the statement-to-candidate mapping. */
792 add_cand_for_stmt (gimple
*gs
, slsr_cand_t c
)
794 gcc_assert (!stmt_cand_map
->put (gs
, c
));
797 /* Given PHI which contains a phi statement, determine whether it
798 satisfies all the requirements of a phi candidate. If so, create
799 a candidate. Note that a CAND_PHI never has a basis itself, but
800 is used to help find a basis for subsequent candidates. */
803 slsr_process_phi (gphi
*phi
, bool speed
)
806 tree arg0_base
= NULL_TREE
, base_type
;
808 struct loop
*cand_loop
= gimple_bb (phi
)->loop_father
;
809 unsigned savings
= 0;
811 /* A CAND_PHI requires each of its arguments to have the same
812 derived base name. (See the module header commentary for a
813 definition of derived base names.) Furthermore, all feeding
814 definitions must be in the same position in the loop hierarchy
817 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
819 slsr_cand_t arg_cand
;
820 tree arg
= gimple_phi_arg_def (phi
, i
);
821 tree derived_base_name
= NULL_TREE
;
822 gimple
*arg_stmt
= NULL
;
823 basic_block arg_bb
= NULL
;
825 if (TREE_CODE (arg
) != SSA_NAME
)
828 arg_cand
= base_cand_from_table (arg
);
832 while (arg_cand
->kind
!= CAND_ADD
&& arg_cand
->kind
!= CAND_PHI
)
834 if (!arg_cand
->next_interp
)
837 arg_cand
= lookup_cand (arg_cand
->next_interp
);
840 if (!integer_onep (arg_cand
->stride
))
843 derived_base_name
= arg_cand
->base_expr
;
844 arg_stmt
= arg_cand
->cand_stmt
;
845 arg_bb
= gimple_bb (arg_stmt
);
847 /* Gather potential dead code savings if the phi statement
848 can be removed later on. */
849 if (uses_consumed_by_stmt (arg
, phi
))
851 if (gimple_code (arg_stmt
) == GIMPLE_PHI
)
852 savings
+= arg_cand
->dead_savings
;
854 savings
+= stmt_cost (arg_stmt
, speed
);
857 else if (SSA_NAME_IS_DEFAULT_DEF (arg
))
859 derived_base_name
= arg
;
860 arg_bb
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
863 if (!arg_bb
|| arg_bb
->loop_father
!= cand_loop
)
867 arg0_base
= derived_base_name
;
868 else if (!operand_equal_p (derived_base_name
, arg0_base
, 0))
872 /* Create the candidate. "alloc_cand_and_find_basis" is named
873 misleadingly for this case, as no basis will be sought for a
875 base_type
= TREE_TYPE (arg0_base
);
877 c
= alloc_cand_and_find_basis (CAND_PHI
, phi
, arg0_base
,
878 0, integer_one_node
, base_type
,
881 /* Add the candidate to the statement-candidate mapping. */
882 add_cand_for_stmt (phi
, c
);
885 /* Given PBASE which is a pointer to tree, look up the defining
886 statement for it and check whether the candidate is in the
889 X = B + (1 * S), S is integer constant
890 X = B + (i * S), S is integer one
892 If so, set PBASE to the candidate's base_expr and return double
894 Otherwise, just return double int zero. */
897 backtrace_base_for_ref (tree
*pbase
)
899 tree base_in
= *pbase
;
900 slsr_cand_t base_cand
;
902 STRIP_NOPS (base_in
);
904 /* Strip off widening conversion(s) to handle cases where
905 e.g. 'B' is widened from an 'int' in order to calculate
907 if (CONVERT_EXPR_P (base_in
)
908 && legal_cast_p_1 (TREE_TYPE (base_in
),
909 TREE_TYPE (TREE_OPERAND (base_in
, 0))))
910 base_in
= get_unwidened (base_in
, NULL_TREE
);
912 if (TREE_CODE (base_in
) != SSA_NAME
)
915 base_cand
= base_cand_from_table (base_in
);
917 while (base_cand
&& base_cand
->kind
!= CAND_PHI
)
919 if (base_cand
->kind
== CAND_ADD
920 && base_cand
->index
== 1
921 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
923 /* X = B + (1 * S), S is integer constant. */
924 *pbase
= base_cand
->base_expr
;
925 return wi::to_widest (base_cand
->stride
);
927 else if (base_cand
->kind
== CAND_ADD
928 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
929 && integer_onep (base_cand
->stride
))
931 /* X = B + (i * S), S is integer one. */
932 *pbase
= base_cand
->base_expr
;
933 return base_cand
->index
;
936 if (base_cand
->next_interp
)
937 base_cand
= lookup_cand (base_cand
->next_interp
);
945 /* Look for the following pattern:
947 *PBASE: MEM_REF (T1, C1)
949 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
951 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
953 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
955 *PINDEX: C4 * BITS_PER_UNIT
957 If not present, leave the input values unchanged and return FALSE.
958 Otherwise, modify the input values as follows and return TRUE:
961 *POFFSET: MULT_EXPR (T2, C3)
962 *PINDEX: C1 + (C2 * C3) + C4
964 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
965 will be further restructured to:
968 *POFFSET: MULT_EXPR (T2', C3)
969 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
972 restructure_reference (tree
*pbase
, tree
*poffset
, widest_int
*pindex
,
975 tree base
= *pbase
, offset
= *poffset
;
976 widest_int index
= *pindex
;
977 tree mult_op0
, t1
, t2
, type
;
978 widest_int c1
, c2
, c3
, c4
, c5
;
979 offset_int mem_offset
;
983 || TREE_CODE (base
) != MEM_REF
984 || !mem_ref_offset (base
).is_constant (&mem_offset
)
985 || TREE_CODE (offset
) != MULT_EXPR
986 || TREE_CODE (TREE_OPERAND (offset
, 1)) != INTEGER_CST
987 || wi::umod_floor (index
, BITS_PER_UNIT
) != 0)
990 t1
= TREE_OPERAND (base
, 0);
991 c1
= widest_int::from (mem_offset
, SIGNED
);
992 type
= TREE_TYPE (TREE_OPERAND (base
, 1));
994 mult_op0
= TREE_OPERAND (offset
, 0);
995 c3
= wi::to_widest (TREE_OPERAND (offset
, 1));
997 if (TREE_CODE (mult_op0
) == PLUS_EXPR
)
999 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
1001 t2
= TREE_OPERAND (mult_op0
, 0);
1002 c2
= wi::to_widest (TREE_OPERAND (mult_op0
, 1));
1007 else if (TREE_CODE (mult_op0
) == MINUS_EXPR
)
1009 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
1011 t2
= TREE_OPERAND (mult_op0
, 0);
1012 c2
= -wi::to_widest (TREE_OPERAND (mult_op0
, 1));
1023 c4
= index
>> LOG2_BITS_PER_UNIT
;
1024 c5
= backtrace_base_for_ref (&t2
);
1027 *poffset
= fold_build2 (MULT_EXPR
, sizetype
, fold_convert (sizetype
, t2
),
1028 wide_int_to_tree (sizetype
, c3
));
1029 *pindex
= c1
+ c2
* c3
+ c4
+ c5
* c3
;
1035 /* Given GS which contains a data reference, create a CAND_REF entry in
1036 the candidate table and attempt to find a basis. */
1039 slsr_process_ref (gimple
*gs
)
1041 tree ref_expr
, base
, offset
, type
;
1042 poly_int64 bitsize
, bitpos
;
1044 int unsignedp
, reversep
, volatilep
;
1047 if (gimple_vdef (gs
))
1048 ref_expr
= gimple_assign_lhs (gs
);
1050 ref_expr
= gimple_assign_rhs1 (gs
);
1052 if (!handled_component_p (ref_expr
)
1053 || TREE_CODE (ref_expr
) == BIT_FIELD_REF
1054 || (TREE_CODE (ref_expr
) == COMPONENT_REF
1055 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr
, 1))))
1058 base
= get_inner_reference (ref_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
1059 &unsignedp
, &reversep
, &volatilep
);
1060 HOST_WIDE_INT cbitpos
;
1061 if (reversep
|| !bitpos
.is_constant (&cbitpos
))
1063 widest_int index
= cbitpos
;
1065 if (!restructure_reference (&base
, &offset
, &index
, &type
))
1068 c
= alloc_cand_and_find_basis (CAND_REF
, gs
, base
, index
, offset
,
1071 /* Add the candidate to the statement-candidate mapping. */
1072 add_cand_for_stmt (gs
, c
);
1075 /* Create a candidate entry for a statement GS, where GS multiplies
1076 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1077 about the two SSA names into the new candidate. Return the new
1081 create_mul_ssa_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1083 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1084 tree stype
= NULL_TREE
;
1086 unsigned savings
= 0;
1088 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1090 /* Look at all interpretations of the base candidate, if necessary,
1091 to find information to propagate into this candidate. */
1092 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1095 if (base_cand
->kind
== CAND_MULT
&& integer_onep (base_cand
->stride
))
1101 base
= base_cand
->base_expr
;
1102 index
= base_cand
->index
;
1104 ctype
= base_cand
->cand_type
;
1105 stype
= TREE_TYPE (stride_in
);
1106 if (has_single_use (base_in
))
1107 savings
= (base_cand
->dead_savings
1108 + stmt_cost (base_cand
->cand_stmt
, speed
));
1110 else if (base_cand
->kind
== CAND_ADD
1111 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1113 /* Y = B + (i' * S), S constant
1115 ============================
1116 X = B + ((i' * S) * Z) */
1117 base
= base_cand
->base_expr
;
1118 index
= base_cand
->index
* wi::to_widest (base_cand
->stride
);
1120 ctype
= base_cand
->cand_type
;
1121 stype
= TREE_TYPE (stride_in
);
1122 if (has_single_use (base_in
))
1123 savings
= (base_cand
->dead_savings
1124 + stmt_cost (base_cand
->cand_stmt
, speed
));
1127 if (base_cand
->next_interp
)
1128 base_cand
= lookup_cand (base_cand
->next_interp
);
1135 /* No interpretations had anything useful to propagate, so
1136 produce X = (Y + 0) * Z. */
1140 ctype
= TREE_TYPE (base_in
);
1141 stype
= TREE_TYPE (stride_in
);
1144 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1145 ctype
, stype
, savings
);
1149 /* Create a candidate entry for a statement GS, where GS multiplies
1150 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1151 information about BASE_IN into the new candidate. Return the new
1155 create_mul_imm_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1157 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1158 widest_int index
, temp
;
1159 unsigned savings
= 0;
1161 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1163 /* Look at all interpretations of the base candidate, if necessary,
1164 to find information to propagate into this candidate. */
1165 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1167 if (base_cand
->kind
== CAND_MULT
1168 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1170 /* Y = (B + i') * S, S constant
1172 ============================
1173 X = (B + i') * (S * c) */
1174 temp
= wi::to_widest (base_cand
->stride
) * wi::to_widest (stride_in
);
1175 if (wi::fits_to_tree_p (temp
, TREE_TYPE (stride_in
)))
1177 base
= base_cand
->base_expr
;
1178 index
= base_cand
->index
;
1179 stride
= wide_int_to_tree (TREE_TYPE (stride_in
), temp
);
1180 ctype
= base_cand
->cand_type
;
1181 if (has_single_use (base_in
))
1182 savings
= (base_cand
->dead_savings
1183 + stmt_cost (base_cand
->cand_stmt
, speed
));
1186 else if (base_cand
->kind
== CAND_ADD
&& integer_onep (base_cand
->stride
))
1190 ===========================
1192 base
= base_cand
->base_expr
;
1193 index
= base_cand
->index
;
1195 ctype
= base_cand
->cand_type
;
1196 if (has_single_use (base_in
))
1197 savings
= (base_cand
->dead_savings
1198 + stmt_cost (base_cand
->cand_stmt
, speed
));
1200 else if (base_cand
->kind
== CAND_ADD
1201 && base_cand
->index
== 1
1202 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1204 /* Y = B + (1 * S), S constant
1206 ===========================
1208 base
= base_cand
->base_expr
;
1209 index
= wi::to_widest (base_cand
->stride
);
1211 ctype
= base_cand
->cand_type
;
1212 if (has_single_use (base_in
))
1213 savings
= (base_cand
->dead_savings
1214 + stmt_cost (base_cand
->cand_stmt
, speed
));
1217 if (base_cand
->next_interp
)
1218 base_cand
= lookup_cand (base_cand
->next_interp
);
1225 /* No interpretations had anything useful to propagate, so
1226 produce X = (Y + 0) * c. */
1230 ctype
= TREE_TYPE (base_in
);
1233 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1234 ctype
, sizetype
, savings
);
1238 /* Given GS which is a multiply of scalar integers, make an appropriate
1239 entry in the candidate table. If this is a multiply of two SSA names,
1240 create two CAND_MULT interpretations and attempt to find a basis for
1241 each of them. Otherwise, create a single CAND_MULT and attempt to
1245 slsr_process_mul (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1249 /* If this is a multiply of an SSA name with itself, it is highly
1250 unlikely that we will get a strength reduction opportunity, so
1251 don't record it as a candidate. This simplifies the logic for
1252 finding a basis, so if this is removed that must be considered. */
1256 if (TREE_CODE (rhs2
) == SSA_NAME
)
1258 /* Record an interpretation of this statement in the candidate table
1259 assuming RHS1 is the base expression and RHS2 is the stride. */
1260 c
= create_mul_ssa_cand (gs
, rhs1
, rhs2
, speed
);
1262 /* Add the first interpretation to the statement-candidate mapping. */
1263 add_cand_for_stmt (gs
, c
);
1265 /* Record another interpretation of this statement assuming RHS1
1266 is the stride and RHS2 is the base expression. */
1267 c2
= create_mul_ssa_cand (gs
, rhs2
, rhs1
, speed
);
1268 c
->next_interp
= c2
->cand_num
;
1269 c2
->first_interp
= c
->cand_num
;
1271 else if (TREE_CODE (rhs2
) == INTEGER_CST
)
1273 /* Record an interpretation for the multiply-immediate. */
1274 c
= create_mul_imm_cand (gs
, rhs1
, rhs2
, speed
);
1276 /* Add the interpretation to the statement-candidate mapping. */
1277 add_cand_for_stmt (gs
, c
);
1281 /* Create a candidate entry for a statement GS, where GS adds two
1282 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1283 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1284 information about the two SSA names into the new candidate.
1285 Return the new candidate. */
1288 create_add_ssa_cand (gimple
*gs
, tree base_in
, tree addend_in
,
1289 bool subtract_p
, bool speed
)
1291 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1292 tree stype
= NULL_TREE
;
1294 unsigned savings
= 0;
1296 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1297 slsr_cand_t addend_cand
= base_cand_from_table (addend_in
);
1299 /* The most useful transformation is a multiply-immediate feeding
1300 an add or subtract. Look for that first. */
1301 while (addend_cand
&& !base
&& addend_cand
->kind
!= CAND_PHI
)
1303 if (addend_cand
->kind
== CAND_MULT
1304 && addend_cand
->index
== 0
1305 && TREE_CODE (addend_cand
->stride
) == INTEGER_CST
)
1307 /* Z = (B + 0) * S, S constant
1309 ===========================
1310 X = Y + ((+/-1 * S) * B) */
1312 index
= wi::to_widest (addend_cand
->stride
);
1315 stride
= addend_cand
->base_expr
;
1316 ctype
= TREE_TYPE (base_in
);
1317 stype
= addend_cand
->cand_type
;
1318 if (has_single_use (addend_in
))
1319 savings
= (addend_cand
->dead_savings
1320 + stmt_cost (addend_cand
->cand_stmt
, speed
));
1323 if (addend_cand
->next_interp
)
1324 addend_cand
= lookup_cand (addend_cand
->next_interp
);
1329 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1331 if (base_cand
->kind
== CAND_ADD
1332 && (base_cand
->index
== 0
1333 || operand_equal_p (base_cand
->stride
,
1334 integer_zero_node
, 0)))
1336 /* Y = B + (i' * S), i' * S = 0
1338 ============================
1339 X = B + (+/-1 * Z) */
1340 base
= base_cand
->base_expr
;
1341 index
= subtract_p
? -1 : 1;
1343 ctype
= base_cand
->cand_type
;
1344 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1345 : TREE_TYPE (addend_in
));
1346 if (has_single_use (base_in
))
1347 savings
= (base_cand
->dead_savings
1348 + stmt_cost (base_cand
->cand_stmt
, speed
));
1350 else if (subtract_p
)
1352 slsr_cand_t subtrahend_cand
= base_cand_from_table (addend_in
);
1354 while (subtrahend_cand
&& !base
&& subtrahend_cand
->kind
!= CAND_PHI
)
1356 if (subtrahend_cand
->kind
== CAND_MULT
1357 && subtrahend_cand
->index
== 0
1358 && TREE_CODE (subtrahend_cand
->stride
) == INTEGER_CST
)
1360 /* Z = (B + 0) * S, S constant
1362 ===========================
1363 Value: X = Y + ((-1 * S) * B) */
1365 index
= wi::to_widest (subtrahend_cand
->stride
);
1367 stride
= subtrahend_cand
->base_expr
;
1368 ctype
= TREE_TYPE (base_in
);
1369 stype
= subtrahend_cand
->cand_type
;
1370 if (has_single_use (addend_in
))
1371 savings
= (subtrahend_cand
->dead_savings
1372 + stmt_cost (subtrahend_cand
->cand_stmt
, speed
));
1375 if (subtrahend_cand
->next_interp
)
1376 subtrahend_cand
= lookup_cand (subtrahend_cand
->next_interp
);
1378 subtrahend_cand
= NULL
;
1382 if (base_cand
->next_interp
)
1383 base_cand
= lookup_cand (base_cand
->next_interp
);
1390 /* No interpretations had anything useful to propagate, so
1391 produce X = Y + (1 * Z). */
1393 index
= subtract_p
? -1 : 1;
1395 ctype
= TREE_TYPE (base_in
);
1396 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1397 : TREE_TYPE (addend_in
));
1400 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, base
, index
, stride
,
1401 ctype
, stype
, savings
);
1405 /* Create a candidate entry for a statement GS, where GS adds SSA
1406 name BASE_IN to constant INDEX_IN. Propagate any known information
1407 about BASE_IN into the new candidate. Return the new candidate. */
1410 create_add_imm_cand (gimple
*gs
, tree base_in
, const widest_int
&index_in
,
1413 enum cand_kind kind
= CAND_ADD
;
1414 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1415 tree stype
= NULL_TREE
;
1416 widest_int index
, multiple
;
1417 unsigned savings
= 0;
1419 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1421 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1423 signop sign
= TYPE_SIGN (TREE_TYPE (base_cand
->stride
));
1425 if (TREE_CODE (base_cand
->stride
) == INTEGER_CST
1426 && wi::multiple_of_p (index_in
, wi::to_widest (base_cand
->stride
),
1429 /* Y = (B + i') * S, S constant, c = kS for some integer k
1431 ============================
1432 X = (B + (i'+ k)) * S
1434 Y = B + (i' * S), S constant, c = kS for some integer k
1436 ============================
1437 X = (B + (i'+ k)) * S */
1438 kind
= base_cand
->kind
;
1439 base
= base_cand
->base_expr
;
1440 index
= base_cand
->index
+ multiple
;
1441 stride
= base_cand
->stride
;
1442 ctype
= base_cand
->cand_type
;
1443 stype
= base_cand
->stride_type
;
1444 if (has_single_use (base_in
))
1445 savings
= (base_cand
->dead_savings
1446 + stmt_cost (base_cand
->cand_stmt
, speed
));
1449 if (base_cand
->next_interp
)
1450 base_cand
= lookup_cand (base_cand
->next_interp
);
1457 /* No interpretations had anything useful to propagate, so
1458 produce X = Y + (c * 1). */
1462 stride
= integer_one_node
;
1463 ctype
= TREE_TYPE (base_in
);
1467 c
= alloc_cand_and_find_basis (kind
, gs
, base
, index
, stride
,
1468 ctype
, stype
, savings
);
1472 /* Given GS which is an add or subtract of scalar integers or pointers,
1473 make at least one appropriate entry in the candidate table. */
1476 slsr_process_add (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1478 bool subtract_p
= gimple_assign_rhs_code (gs
) == MINUS_EXPR
;
1479 slsr_cand_t c
= NULL
, c2
;
1481 if (TREE_CODE (rhs2
) == SSA_NAME
)
1483 /* First record an interpretation assuming RHS1 is the base expression
1484 and RHS2 is the stride. But it doesn't make sense for the
1485 stride to be a pointer, so don't record a candidate in that case. */
1486 if (!POINTER_TYPE_P (TREE_TYPE (rhs2
)))
1488 c
= create_add_ssa_cand (gs
, rhs1
, rhs2
, subtract_p
, speed
);
1490 /* Add the first interpretation to the statement-candidate
1492 add_cand_for_stmt (gs
, c
);
1495 /* If the two RHS operands are identical, or this is a subtract,
1497 if (operand_equal_p (rhs1
, rhs2
, 0) || subtract_p
)
1500 /* Otherwise, record another interpretation assuming RHS2 is the
1501 base expression and RHS1 is the stride, again provided that the
1502 stride is not a pointer. */
1503 if (!POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1505 c2
= create_add_ssa_cand (gs
, rhs2
, rhs1
, false, speed
);
1508 c
->next_interp
= c2
->cand_num
;
1509 c2
->first_interp
= c
->cand_num
;
1512 add_cand_for_stmt (gs
, c2
);
1515 else if (TREE_CODE (rhs2
) == INTEGER_CST
)
1517 /* Record an interpretation for the add-immediate. */
1518 widest_int index
= wi::to_widest (rhs2
);
1522 c
= create_add_imm_cand (gs
, rhs1
, index
, speed
);
1524 /* Add the interpretation to the statement-candidate mapping. */
1525 add_cand_for_stmt (gs
, c
);
1529 /* Given GS which is a negate of a scalar integer, make an appropriate
1530 entry in the candidate table. A negate is equivalent to a multiply
1534 slsr_process_neg (gimple
*gs
, tree rhs1
, bool speed
)
1536 /* Record a CAND_MULT interpretation for the multiply by -1. */
1537 slsr_cand_t c
= create_mul_imm_cand (gs
, rhs1
, integer_minus_one_node
, speed
);
1539 /* Add the interpretation to the statement-candidate mapping. */
1540 add_cand_for_stmt (gs
, c
);
1543 /* Help function for legal_cast_p, operating on two trees. Checks
1544 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1545 for more details. */
1548 legal_cast_p_1 (tree lhs_type
, tree rhs_type
)
1550 unsigned lhs_size
, rhs_size
;
1551 bool lhs_wraps
, rhs_wraps
;
1553 lhs_size
= TYPE_PRECISION (lhs_type
);
1554 rhs_size
= TYPE_PRECISION (rhs_type
);
1555 lhs_wraps
= ANY_INTEGRAL_TYPE_P (lhs_type
) && TYPE_OVERFLOW_WRAPS (lhs_type
);
1556 rhs_wraps
= ANY_INTEGRAL_TYPE_P (rhs_type
) && TYPE_OVERFLOW_WRAPS (rhs_type
);
1558 if (lhs_size
< rhs_size
1559 || (rhs_wraps
&& !lhs_wraps
)
1560 || (rhs_wraps
&& lhs_wraps
&& rhs_size
!= lhs_size
))
1566 /* Return TRUE if GS is a statement that defines an SSA name from
1567 a conversion and is legal for us to combine with an add and multiply
1568 in the candidate table. For example, suppose we have:
1574 Without the type-cast, we would create a CAND_MULT for D with base B,
1575 index i, and stride S. We want to record this candidate only if it
1576 is equivalent to apply the type cast following the multiply:
1582 We will record the type with the candidate for D. This allows us
1583 to use a similar previous candidate as a basis. If we have earlier seen
1589 we can replace D with
1591 D = D' + (i - i') * S;
1593 But if moving the type-cast would change semantics, we mustn't do this.
1595 This is legitimate for casts from a non-wrapping integral type to
1596 any integral type of the same or larger size. It is not legitimate
1597 to convert a wrapping type to a non-wrapping type, or to a wrapping
1598 type of a different size. I.e., with a wrapping type, we must
1599 assume that the addition B + i could wrap, in which case performing
1600 the multiply before or after one of the "illegal" type casts will
1601 have different semantics. */
1604 legal_cast_p (gimple
*gs
, tree rhs
)
1606 if (!is_gimple_assign (gs
)
1607 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
)))
1610 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs
)), TREE_TYPE (rhs
));
1613 /* Given GS which is a cast to a scalar integer type, determine whether
1614 the cast is legal for strength reduction. If so, make at least one
1615 appropriate entry in the candidate table. */
1618 slsr_process_cast (gimple
*gs
, tree rhs1
, bool speed
)
1621 slsr_cand_t base_cand
, c
= NULL
, c2
;
1622 unsigned savings
= 0;
1624 if (!legal_cast_p (gs
, rhs1
))
1627 lhs
= gimple_assign_lhs (gs
);
1628 base_cand
= base_cand_from_table (rhs1
);
1629 ctype
= TREE_TYPE (lhs
);
1631 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1633 slsr_cand_t first_cand
= NULL
;
1637 /* Propagate all data from the base candidate except the type,
1638 which comes from the cast, and the base candidate's cast,
1639 which is no longer applicable. */
1640 if (has_single_use (rhs1
))
1641 savings
= (base_cand
->dead_savings
1642 + stmt_cost (base_cand
->cand_stmt
, speed
));
1644 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1645 base_cand
->base_expr
,
1646 base_cand
->index
, base_cand
->stride
,
1647 ctype
, base_cand
->stride_type
,
1652 if (first_cand
!= c
)
1653 c
->first_interp
= first_cand
->cand_num
;
1655 if (base_cand
->next_interp
)
1656 base_cand
= lookup_cand (base_cand
->next_interp
);
1663 /* If nothing is known about the RHS, create fresh CAND_ADD and
1664 CAND_MULT interpretations:
1669 The first of these is somewhat arbitrary, but the choice of
1670 1 for the stride simplifies the logic for propagating casts
1672 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1673 integer_one_node
, ctype
, sizetype
, 0);
1674 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1675 integer_one_node
, ctype
, sizetype
, 0);
1676 c
->next_interp
= c2
->cand_num
;
1677 c2
->first_interp
= c
->cand_num
;
1680 /* Add the first (or only) interpretation to the statement-candidate
1682 add_cand_for_stmt (gs
, c
);
1685 /* Given GS which is a copy of a scalar integer type, make at least one
1686 appropriate entry in the candidate table.
1688 This interface is included for completeness, but is unnecessary
1689 if this pass immediately follows a pass that performs copy
1690 propagation, such as DOM. */
1693 slsr_process_copy (gimple
*gs
, tree rhs1
, bool speed
)
1695 slsr_cand_t base_cand
, c
= NULL
, c2
;
1696 unsigned savings
= 0;
1698 base_cand
= base_cand_from_table (rhs1
);
1700 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1702 slsr_cand_t first_cand
= NULL
;
1706 /* Propagate all data from the base candidate. */
1707 if (has_single_use (rhs1
))
1708 savings
= (base_cand
->dead_savings
1709 + stmt_cost (base_cand
->cand_stmt
, speed
));
1711 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1712 base_cand
->base_expr
,
1713 base_cand
->index
, base_cand
->stride
,
1714 base_cand
->cand_type
,
1715 base_cand
->stride_type
, savings
);
1719 if (first_cand
!= c
)
1720 c
->first_interp
= first_cand
->cand_num
;
1722 if (base_cand
->next_interp
)
1723 base_cand
= lookup_cand (base_cand
->next_interp
);
1730 /* If nothing is known about the RHS, create fresh CAND_ADD and
1731 CAND_MULT interpretations:
1736 The first of these is somewhat arbitrary, but the choice of
1737 1 for the stride simplifies the logic for propagating casts
1739 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1740 integer_one_node
, TREE_TYPE (rhs1
),
1742 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1743 integer_one_node
, TREE_TYPE (rhs1
),
1745 c
->next_interp
= c2
->cand_num
;
1746 c2
->first_interp
= c
->cand_num
;
1749 /* Add the first (or only) interpretation to the statement-candidate
1751 add_cand_for_stmt (gs
, c
);
1754 class find_candidates_dom_walker
: public dom_walker
1757 find_candidates_dom_walker (cdi_direction direction
)
1758 : dom_walker (direction
) {}
1759 virtual edge
before_dom_children (basic_block
);
1762 /* Find strength-reduction candidates in block BB. */
1765 find_candidates_dom_walker::before_dom_children (basic_block bb
)
1767 bool speed
= optimize_bb_for_speed_p (bb
);
1769 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1771 slsr_process_phi (gsi
.phi (), speed
);
1773 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
1776 gimple
*gs
= gsi_stmt (gsi
);
1778 if (stmt_could_throw_p (gs
))
1781 if (gimple_vuse (gs
) && gimple_assign_single_p (gs
))
1782 slsr_process_ref (gs
);
1784 else if (is_gimple_assign (gs
)
1785 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs
)))
1786 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs
)))))
1788 tree rhs1
= NULL_TREE
, rhs2
= NULL_TREE
;
1790 switch (gimple_assign_rhs_code (gs
))
1794 rhs1
= gimple_assign_rhs1 (gs
);
1795 rhs2
= gimple_assign_rhs2 (gs
);
1796 /* Should never happen, but currently some buggy situations
1797 in earlier phases put constants in rhs1. */
1798 if (TREE_CODE (rhs1
) != SSA_NAME
)
1802 /* Possible future opportunity: rhs1 of a ptr+ can be
1804 case POINTER_PLUS_EXPR
:
1806 rhs2
= gimple_assign_rhs2 (gs
);
1812 rhs1
= gimple_assign_rhs1 (gs
);
1813 if (TREE_CODE (rhs1
) != SSA_NAME
)
1821 switch (gimple_assign_rhs_code (gs
))
1824 slsr_process_mul (gs
, rhs1
, rhs2
, speed
);
1828 case POINTER_PLUS_EXPR
:
1830 slsr_process_add (gs
, rhs1
, rhs2
, speed
);
1834 slsr_process_neg (gs
, rhs1
, speed
);
1838 slsr_process_cast (gs
, rhs1
, speed
);
1842 slsr_process_copy (gs
, rhs1
, speed
);
1853 /* Dump a candidate for debug. */
1856 dump_candidate (slsr_cand_t c
)
1858 fprintf (dump_file
, "%3d [%d] ", c
->cand_num
,
1859 gimple_bb (c
->cand_stmt
)->index
);
1860 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
1864 fputs (" MULT : (", dump_file
);
1865 print_generic_expr (dump_file
, c
->base_expr
);
1866 fputs (" + ", dump_file
);
1867 print_decs (c
->index
, dump_file
);
1868 fputs (") * ", dump_file
);
1869 if (TREE_CODE (c
->stride
) != INTEGER_CST
1870 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1872 fputs ("(", dump_file
);
1873 print_generic_expr (dump_file
, c
->stride_type
);
1874 fputs (")", dump_file
);
1876 print_generic_expr (dump_file
, c
->stride
);
1877 fputs (" : ", dump_file
);
1880 fputs (" ADD : ", dump_file
);
1881 print_generic_expr (dump_file
, c
->base_expr
);
1882 fputs (" + (", dump_file
);
1883 print_decs (c
->index
, dump_file
);
1884 fputs (" * ", dump_file
);
1885 if (TREE_CODE (c
->stride
) != INTEGER_CST
1886 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1888 fputs ("(", dump_file
);
1889 print_generic_expr (dump_file
, c
->stride_type
);
1890 fputs (")", dump_file
);
1892 print_generic_expr (dump_file
, c
->stride
);
1893 fputs (") : ", dump_file
);
1896 fputs (" REF : ", dump_file
);
1897 print_generic_expr (dump_file
, c
->base_expr
);
1898 fputs (" + (", dump_file
);
1899 print_generic_expr (dump_file
, c
->stride
);
1900 fputs (") + ", dump_file
);
1901 print_decs (c
->index
, dump_file
);
1902 fputs (" : ", dump_file
);
1905 fputs (" PHI : ", dump_file
);
1906 print_generic_expr (dump_file
, c
->base_expr
);
1907 fputs (" + (unknown * ", dump_file
);
1908 print_generic_expr (dump_file
, c
->stride
);
1909 fputs (") : ", dump_file
);
1914 print_generic_expr (dump_file
, c
->cand_type
);
1915 fprintf (dump_file
, "\n basis: %d dependent: %d sibling: %d\n",
1916 c
->basis
, c
->dependent
, c
->sibling
);
1918 " next-interp: %d first-interp: %d dead-savings: %d\n",
1919 c
->next_interp
, c
->first_interp
, c
->dead_savings
);
1921 fprintf (dump_file
, " phi: %d\n", c
->def_phi
);
1922 fputs ("\n", dump_file
);
1925 /* Dump the candidate vector for debug. */
1928 dump_cand_vec (void)
1933 fprintf (dump_file
, "\nStrength reduction candidate vector:\n\n");
1935 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
1939 /* Callback used to dump the candidate chains hash table. */
1942 ssa_base_cand_dump_callback (cand_chain
**slot
, void *ignored ATTRIBUTE_UNUSED
)
1944 const_cand_chain_t chain
= *slot
;
1947 print_generic_expr (dump_file
, chain
->base_expr
);
1948 fprintf (dump_file
, " -> %d", chain
->cand
->cand_num
);
1950 for (p
= chain
->next
; p
; p
= p
->next
)
1951 fprintf (dump_file
, " -> %d", p
->cand
->cand_num
);
1953 fputs ("\n", dump_file
);
1957 /* Dump the candidate chains. */
1960 dump_cand_chains (void)
1962 fprintf (dump_file
, "\nStrength reduction candidate chains:\n\n");
1963 base_cand_map
->traverse_noresize
<void *, ssa_base_cand_dump_callback
>
1965 fputs ("\n", dump_file
);
1968 /* Dump the increment vector for debug. */
1971 dump_incr_vec (void)
1973 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1977 fprintf (dump_file
, "\nIncrement vector:\n\n");
1979 for (i
= 0; i
< incr_vec_len
; i
++)
1981 fprintf (dump_file
, "%3d increment: ", i
);
1982 print_decs (incr_vec
[i
].incr
, dump_file
);
1983 fprintf (dump_file
, "\n count: %d", incr_vec
[i
].count
);
1984 fprintf (dump_file
, "\n cost: %d", incr_vec
[i
].cost
);
1985 fputs ("\n initializer: ", dump_file
);
1986 print_generic_expr (dump_file
, incr_vec
[i
].initializer
);
1987 fputs ("\n\n", dump_file
);
1992 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1996 replace_ref (tree
*expr
, slsr_cand_t c
)
1998 tree add_expr
, mem_ref
, acc_type
= TREE_TYPE (*expr
);
1999 unsigned HOST_WIDE_INT misalign
;
2002 /* Ensure the memory reference carries the minimum alignment
2003 requirement for the data type. See PR58041. */
2004 get_object_alignment_1 (*expr
, &align
, &misalign
);
2006 align
= least_bit_hwi (misalign
);
2007 if (align
< TYPE_ALIGN (acc_type
))
2008 acc_type
= build_aligned_type (acc_type
, align
);
2010 add_expr
= fold_build2 (POINTER_PLUS_EXPR
, c
->cand_type
,
2011 c
->base_expr
, c
->stride
);
2012 mem_ref
= fold_build2 (MEM_REF
, acc_type
, add_expr
,
2013 wide_int_to_tree (c
->cand_type
, c
->index
));
2015 /* Gimplify the base addressing expression for the new MEM_REF tree. */
2016 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2017 TREE_OPERAND (mem_ref
, 0)
2018 = force_gimple_operand_gsi (&gsi
, TREE_OPERAND (mem_ref
, 0),
2019 /*simple_p=*/true, NULL
,
2020 /*before=*/true, GSI_SAME_STMT
);
2021 copy_ref_info (mem_ref
, *expr
);
2023 update_stmt (c
->cand_stmt
);
2026 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
2027 dependent of candidate C with an equivalent strength-reduced data
2031 replace_refs (slsr_cand_t c
)
2033 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2035 fputs ("Replacing reference: ", dump_file
);
2036 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2039 if (gimple_vdef (c
->cand_stmt
))
2041 tree
*lhs
= gimple_assign_lhs_ptr (c
->cand_stmt
);
2042 replace_ref (lhs
, c
);
2046 tree
*rhs
= gimple_assign_rhs1_ptr (c
->cand_stmt
);
2047 replace_ref (rhs
, c
);
2050 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2052 fputs ("With: ", dump_file
);
2053 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2054 fputs ("\n", dump_file
);
2058 replace_refs (lookup_cand (c
->sibling
));
2061 replace_refs (lookup_cand (c
->dependent
));
2064 /* Return TRUE if candidate C is dependent upon a PHI. */
2067 phi_dependent_cand_p (slsr_cand_t c
)
2069 /* A candidate is not necessarily dependent upon a PHI just because
2070 it has a phi definition for its base name. It may have a basis
2071 that relies upon the same phi definition, in which case the PHI
2072 is irrelevant to this candidate. */
2075 && lookup_cand (c
->basis
)->def_phi
!= c
->def_phi
);
2078 /* Calculate the increment required for candidate C relative to
2082 cand_increment (slsr_cand_t c
)
2086 /* If the candidate doesn't have a basis, just return its own
2087 index. This is useful in record_increments to help us find
2088 an existing initializer. Also, if the candidate's basis is
2089 hidden by a phi, then its own index will be the increment
2090 from the newly introduced phi basis. */
2091 if (!c
->basis
|| phi_dependent_cand_p (c
))
2094 basis
= lookup_cand (c
->basis
);
2095 gcc_assert (operand_equal_p (c
->base_expr
, basis
->base_expr
, 0));
2096 return c
->index
- basis
->index
;
2099 /* Calculate the increment required for candidate C relative to
2100 its basis. If we aren't going to generate pointer arithmetic
2101 for this candidate, return the absolute value of that increment
2104 static inline widest_int
2105 cand_abs_increment (slsr_cand_t c
)
2107 widest_int increment
= cand_increment (c
);
2109 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2110 increment
= -increment
;
2115 /* Return TRUE iff candidate C has already been replaced under
2116 another interpretation. */
2119 cand_already_replaced (slsr_cand_t c
)
2121 return (gimple_bb (c
->cand_stmt
) == 0);
2124 /* Common logic used by replace_unconditional_candidate and
2125 replace_conditional_candidate. */
2128 replace_mult_candidate (slsr_cand_t c
, tree basis_name
, widest_int bump
)
2130 tree target_type
= TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
));
2131 enum tree_code cand_code
= gimple_assign_rhs_code (c
->cand_stmt
);
2133 /* It is not useful to replace casts, copies, negates, or adds of
2134 an SSA name and a constant. */
2135 if (cand_code
== SSA_NAME
2136 || CONVERT_EXPR_CODE_P (cand_code
)
2137 || cand_code
== PLUS_EXPR
2138 || cand_code
== POINTER_PLUS_EXPR
2139 || cand_code
== MINUS_EXPR
2140 || cand_code
== NEGATE_EXPR
)
2143 enum tree_code code
= PLUS_EXPR
;
2145 gimple
*stmt_to_print
= NULL
;
2147 if (wi::neg_p (bump
))
2153 /* It is possible that the resulting bump doesn't fit in target_type.
2154 Abandon the replacement in this case. This does not affect
2155 siblings or dependents of C. */
2156 if (bump
!= wi::ext (bump
, TYPE_PRECISION (target_type
),
2157 TYPE_SIGN (target_type
)))
2160 bump_tree
= wide_int_to_tree (target_type
, bump
);
2162 /* If the basis name and the candidate's LHS have incompatible types,
2163 introduce a cast. */
2164 if (!useless_type_conversion_p (target_type
, TREE_TYPE (basis_name
)))
2165 basis_name
= introduce_cast_before_cand (c
, target_type
, basis_name
);
2167 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2169 fputs ("Replacing: ", dump_file
);
2170 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2175 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
2176 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
2177 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2178 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
2179 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
2180 gsi_replace (&gsi
, copy_stmt
, false);
2183 cc
->cand_stmt
= copy_stmt
;
2184 cc
= cc
->next_interp
? lookup_cand (cc
->next_interp
) : NULL
;
2186 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2187 stmt_to_print
= copy_stmt
;
2192 if (cand_code
!= NEGATE_EXPR
) {
2193 rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2194 rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2196 if (cand_code
!= NEGATE_EXPR
2197 && ((operand_equal_p (rhs1
, basis_name
, 0)
2198 && operand_equal_p (rhs2
, bump_tree
, 0))
2199 || (operand_equal_p (rhs1
, bump_tree
, 0)
2200 && operand_equal_p (rhs2
, basis_name
, 0))))
2202 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2204 fputs ("(duplicate, not actually replacing)", dump_file
);
2205 stmt_to_print
= c
->cand_stmt
;
2210 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2211 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
2212 gimple_assign_set_rhs_with_ops (&gsi
, code
, basis_name
, bump_tree
);
2213 update_stmt (gsi_stmt (gsi
));
2216 cc
->cand_stmt
= gsi_stmt (gsi
);
2217 cc
= cc
->next_interp
? lookup_cand (cc
->next_interp
) : NULL
;
2219 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2220 stmt_to_print
= gsi_stmt (gsi
);
2224 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2226 fputs ("With: ", dump_file
);
2227 print_gimple_stmt (dump_file
, stmt_to_print
, 0);
2228 fputs ("\n", dump_file
);
2232 /* Replace candidate C with an add or subtract. Note that we only
2233 operate on CAND_MULTs with known strides, so we will never generate
2234 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2235 X = Y + ((i - i') * S), as described in the module commentary. The
2236 folded value ((i - i') * S) is referred to here as the "bump." */
2239 replace_unconditional_candidate (slsr_cand_t c
)
2243 if (cand_already_replaced (c
))
2246 basis
= lookup_cand (c
->basis
);
2247 widest_int bump
= cand_increment (c
) * wi::to_widest (c
->stride
);
2249 replace_mult_candidate (c
, gimple_assign_lhs (basis
->cand_stmt
), bump
);
2252 /* Return the index in the increment vector of the given INCREMENT,
2253 or -1 if not found. The latter can occur if more than
2254 MAX_INCR_VEC_LEN increments have been found. */
2257 incr_vec_index (const widest_int
&increment
)
2261 for (i
= 0; i
< incr_vec_len
&& increment
!= incr_vec
[i
].incr
; i
++)
2264 if (i
< incr_vec_len
)
2270 /* Create a new statement along edge E to add BASIS_NAME to the product
2271 of INCREMENT and the stride of candidate C. Create and return a new
2272 SSA name from *VAR to be used as the LHS of the new statement.
2273 KNOWN_STRIDE is true iff C's stride is a constant. */
2276 create_add_on_incoming_edge (slsr_cand_t c
, tree basis_name
,
2277 widest_int increment
, edge e
, location_t loc
,
2280 tree lhs
, basis_type
;
2281 gassign
*new_stmt
, *cast_stmt
= NULL
;
2283 /* If the add candidate along this incoming edge has the same
2284 index as C's hidden basis, the hidden basis represents this
2289 basis_type
= TREE_TYPE (basis_name
);
2290 lhs
= make_temp_ssa_name (basis_type
, NULL
, "slsr");
2292 /* Occasionally people convert integers to pointers without a
2293 cast, leading us into trouble if we aren't careful. */
2294 enum tree_code plus_code
2295 = POINTER_TYPE_P (basis_type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
;
2300 enum tree_code code
= plus_code
;
2301 widest_int bump
= increment
* wi::to_widest (c
->stride
);
2302 if (wi::neg_p (bump
) && !POINTER_TYPE_P (basis_type
))
2308 tree stride_type
= POINTER_TYPE_P (basis_type
) ? sizetype
: basis_type
;
2309 bump_tree
= wide_int_to_tree (stride_type
, bump
);
2310 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
, bump_tree
);
2315 bool negate_incr
= !POINTER_TYPE_P (basis_type
) && wi::neg_p (increment
);
2316 i
= incr_vec_index (negate_incr
? -increment
: increment
);
2317 gcc_assert (i
>= 0);
2319 if (incr_vec
[i
].initializer
)
2321 enum tree_code code
= negate_incr
? MINUS_EXPR
: plus_code
;
2322 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
,
2323 incr_vec
[i
].initializer
);
2328 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
2330 tree cast_stride
= make_temp_ssa_name (c
->stride_type
, NULL
,
2332 cast_stmt
= gimple_build_assign (cast_stride
, NOP_EXPR
,
2334 stride
= cast_stride
;
2340 new_stmt
= gimple_build_assign (lhs
, plus_code
, basis_name
, stride
);
2341 else if (increment
== -1)
2342 new_stmt
= gimple_build_assign (lhs
, MINUS_EXPR
, basis_name
, stride
);
2350 gimple_set_location (cast_stmt
, loc
);
2351 gsi_insert_on_edge (e
, cast_stmt
);
2354 gimple_set_location (new_stmt
, loc
);
2355 gsi_insert_on_edge (e
, new_stmt
);
2357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2361 fprintf (dump_file
, "Inserting cast on edge %d->%d: ",
2362 e
->src
->index
, e
->dest
->index
);
2363 print_gimple_stmt (dump_file
, cast_stmt
, 0);
2365 fprintf (dump_file
, "Inserting on edge %d->%d: ", e
->src
->index
,
2367 print_gimple_stmt (dump_file
, new_stmt
, 0);
2373 /* Clear the visited field for a tree of PHI candidates. */
2376 clear_visited (gphi
*phi
)
2379 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2381 if (phi_cand
->visited
)
2383 phi_cand
->visited
= 0;
2385 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2387 tree arg
= gimple_phi_arg_def (phi
, i
);
2388 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2389 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2390 clear_visited (as_a
<gphi
*> (arg_def
));
2395 /* Recursive helper function for create_phi_basis. */
2398 create_phi_basis_1 (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2399 location_t loc
, bool known_stride
)
2404 slsr_cand_t basis
= lookup_cand (c
->basis
);
2405 int nargs
= gimple_phi_num_args (from_phi
);
2406 basic_block phi_bb
= gimple_bb (from_phi
);
2407 slsr_cand_t phi_cand
= *stmt_cand_map
->get (from_phi
);
2408 auto_vec
<tree
> phi_args (nargs
);
2410 if (phi_cand
->visited
)
2411 return phi_cand
->cached_basis
;
2412 phi_cand
->visited
= 1;
2414 /* Process each argument of the existing phi that represents
2415 conditionally-executed add candidates. */
2416 for (i
= 0; i
< nargs
; i
++)
2418 edge e
= (*phi_bb
->preds
)[i
];
2419 tree arg
= gimple_phi_arg_def (from_phi
, i
);
2422 /* If the phi argument is the base name of the CAND_PHI, then
2423 this incoming arc should use the hidden basis. */
2424 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2425 if (basis
->index
== 0)
2426 feeding_def
= gimple_assign_lhs (basis
->cand_stmt
);
2429 widest_int incr
= -basis
->index
;
2430 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, incr
,
2431 e
, loc
, known_stride
);
2435 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2437 /* If there is another phi along this incoming edge, we must
2438 process it in the same fashion to ensure that all basis
2439 adjustments are made along its incoming edges. */
2440 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2441 feeding_def
= create_phi_basis_1 (c
, arg_def
, basis_name
,
2445 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2446 widest_int diff
= arg_cand
->index
- basis
->index
;
2447 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, diff
,
2448 e
, loc
, known_stride
);
2452 /* Because of recursion, we need to save the arguments in a vector
2453 so we can create the PHI statement all at once. Otherwise the
2454 storage for the half-created PHI can be reclaimed. */
2455 phi_args
.safe_push (feeding_def
);
2458 /* Create the new phi basis. */
2459 name
= make_temp_ssa_name (TREE_TYPE (basis_name
), NULL
, "slsr");
2460 phi
= create_phi_node (name
, phi_bb
);
2461 SSA_NAME_DEF_STMT (name
) = phi
;
2463 FOR_EACH_VEC_ELT (phi_args
, i
, phi_arg
)
2465 edge e
= (*phi_bb
->preds
)[i
];
2466 add_phi_arg (phi
, phi_arg
, e
, loc
);
2471 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2473 fputs ("Introducing new phi basis: ", dump_file
);
2474 print_gimple_stmt (dump_file
, phi
, 0);
2477 phi_cand
->cached_basis
= name
;
2481 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2482 is hidden by the phi node FROM_PHI, create a new phi node in the same
2483 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2484 with its phi arguments representing conditional adjustments to the
2485 hidden basis along conditional incoming paths. Those adjustments are
2486 made by creating add statements (and sometimes recursively creating
2487 phis) along those incoming paths. LOC is the location to attach to
2488 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2492 create_phi_basis (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2493 location_t loc
, bool known_stride
)
2495 tree retval
= create_phi_basis_1 (c
, from_phi
, basis_name
, loc
,
2497 gcc_assert (retval
);
2498 clear_visited (as_a
<gphi
*> (from_phi
));
2502 /* Given a candidate C whose basis is hidden by at least one intervening
2503 phi, introduce a matching number of new phis to represent its basis
2504 adjusted by conditional increments along possible incoming paths. Then
2505 replace C as though it were an unconditional candidate, using the new
2509 replace_conditional_candidate (slsr_cand_t c
)
2511 tree basis_name
, name
;
2515 /* Look up the LHS SSA name from C's basis. This will be the
2516 RHS1 of the adds we will introduce to create new phi arguments. */
2517 basis
= lookup_cand (c
->basis
);
2518 basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
2520 /* Create a new phi statement which will represent C's true basis
2521 after the transformation is complete. */
2522 loc
= gimple_location (c
->cand_stmt
);
2523 name
= create_phi_basis (c
, lookup_cand (c
->def_phi
)->cand_stmt
,
2524 basis_name
, loc
, KNOWN_STRIDE
);
2526 /* Replace C with an add of the new basis phi and a constant. */
2527 widest_int bump
= c
->index
* wi::to_widest (c
->stride
);
2529 replace_mult_candidate (c
, name
, bump
);
2532 /* Recursive helper function for phi_add_costs. SPREAD is a measure of
2533 how many PHI nodes we have visited at this point in the tree walk. */
2536 phi_add_costs_1 (gimple
*phi
, slsr_cand_t c
, int one_add_cost
, int *spread
)
2540 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2542 if (phi_cand
->visited
)
2545 phi_cand
->visited
= 1;
2548 /* If we work our way back to a phi that isn't dominated by the hidden
2549 basis, this isn't a candidate for replacement. Indicate this by
2550 returning an unreasonably high cost. It's not easy to detect
2551 these situations when determining the basis, so we defer the
2552 decision until now. */
2553 basic_block phi_bb
= gimple_bb (phi
);
2554 slsr_cand_t basis
= lookup_cand (c
->basis
);
2555 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
2557 if (phi_bb
== basis_bb
|| !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
2558 return COST_INFINITE
;
2560 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2562 tree arg
= gimple_phi_arg_def (phi
, i
);
2564 if (arg
!= phi_cand
->base_expr
)
2566 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2568 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2570 cost
+= phi_add_costs_1 (arg_def
, c
, one_add_cost
, spread
);
2572 if (cost
>= COST_INFINITE
|| *spread
> MAX_SPREAD
)
2573 return COST_INFINITE
;
2577 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2579 if (arg_cand
->index
!= c
->index
)
2580 cost
+= one_add_cost
;
2588 /* Compute the expected costs of inserting basis adjustments for
2589 candidate C with phi-definition PHI. The cost of inserting
2590 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2591 which are themselves phi results, recursively calculate costs
2592 for those phis as well. */
2595 phi_add_costs (gimple
*phi
, slsr_cand_t c
, int one_add_cost
)
2598 int retval
= phi_add_costs_1 (phi
, c
, one_add_cost
, &spread
);
2599 clear_visited (as_a
<gphi
*> (phi
));
2602 /* For candidate C, each sibling of candidate C, and each dependent of
2603 candidate C, determine whether the candidate is dependent upon a
2604 phi that hides its basis. If not, replace the candidate unconditionally.
2605 Otherwise, determine whether the cost of introducing compensation code
2606 for the candidate is offset by the gains from strength reduction. If
2607 so, replace the candidate and introduce the compensation code. */
2610 replace_uncond_cands_and_profitable_phis (slsr_cand_t c
)
2612 if (phi_dependent_cand_p (c
))
2614 /* A multiply candidate with a stride of 1 is just an artifice
2615 of a copy or cast; there is no value in replacing it. */
2616 if (c
->kind
== CAND_MULT
&& wi::to_widest (c
->stride
) != 1)
2618 /* A candidate dependent upon a phi will replace a multiply by
2619 a constant with an add, and will insert at most one add for
2620 each phi argument. Add these costs with the potential dead-code
2621 savings to determine profitability. */
2622 bool speed
= optimize_bb_for_speed_p (gimple_bb (c
->cand_stmt
));
2623 int mult_savings
= stmt_cost (c
->cand_stmt
, speed
);
2624 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2625 tree phi_result
= gimple_phi_result (phi
);
2626 int one_add_cost
= add_cost (speed
,
2627 TYPE_MODE (TREE_TYPE (phi_result
)));
2628 int add_costs
= one_add_cost
+ phi_add_costs (phi
, c
, one_add_cost
);
2629 int cost
= add_costs
- mult_savings
- c
->dead_savings
;
2631 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2633 fprintf (dump_file
, " Conditional candidate %d:\n", c
->cand_num
);
2634 fprintf (dump_file
, " add_costs = %d\n", add_costs
);
2635 fprintf (dump_file
, " mult_savings = %d\n", mult_savings
);
2636 fprintf (dump_file
, " dead_savings = %d\n", c
->dead_savings
);
2637 fprintf (dump_file
, " cost = %d\n", cost
);
2638 if (cost
<= COST_NEUTRAL
)
2639 fputs (" Replacing...\n", dump_file
);
2641 fputs (" Not replaced.\n", dump_file
);
2644 if (cost
<= COST_NEUTRAL
)
2645 replace_conditional_candidate (c
);
2649 replace_unconditional_candidate (c
);
2652 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->sibling
));
2655 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->dependent
));
2658 /* Count the number of candidates in the tree rooted at C that have
2659 not already been replaced under other interpretations. */
2662 count_candidates (slsr_cand_t c
)
2664 unsigned count
= cand_already_replaced (c
) ? 0 : 1;
2667 count
+= count_candidates (lookup_cand (c
->sibling
));
2670 count
+= count_candidates (lookup_cand (c
->dependent
));
2675 /* Increase the count of INCREMENT by one in the increment vector.
2676 INCREMENT is associated with candidate C. If INCREMENT is to be
2677 conditionally executed as part of a conditional candidate replacement,
2678 IS_PHI_ADJUST is true, otherwise false. If an initializer
2679 T_0 = stride * I is provided by a candidate that dominates all
2680 candidates with the same increment, also record T_0 for subsequent use. */
2683 record_increment (slsr_cand_t c
, widest_int increment
, bool is_phi_adjust
)
2688 /* Treat increments that differ only in sign as identical so as to
2689 share initializers, unless we are generating pointer arithmetic. */
2690 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2691 increment
= -increment
;
2693 for (i
= 0; i
< incr_vec_len
; i
++)
2695 if (incr_vec
[i
].incr
== increment
)
2697 incr_vec
[i
].count
++;
2700 /* If we previously recorded an initializer that doesn't
2701 dominate this candidate, it's not going to be useful to
2703 if (incr_vec
[i
].initializer
2704 && !dominated_by_p (CDI_DOMINATORS
,
2705 gimple_bb (c
->cand_stmt
),
2706 incr_vec
[i
].init_bb
))
2708 incr_vec
[i
].initializer
= NULL_TREE
;
2709 incr_vec
[i
].init_bb
= NULL
;
2716 if (!found
&& incr_vec_len
< MAX_INCR_VEC_LEN
- 1)
2718 /* The first time we see an increment, create the entry for it.
2719 If this is the root candidate which doesn't have a basis, set
2720 the count to zero. We're only processing it so it can possibly
2721 provide an initializer for other candidates. */
2722 incr_vec
[incr_vec_len
].incr
= increment
;
2723 incr_vec
[incr_vec_len
].count
= c
->basis
|| is_phi_adjust
? 1 : 0;
2724 incr_vec
[incr_vec_len
].cost
= COST_INFINITE
;
2726 /* Optimistically record the first occurrence of this increment
2727 as providing an initializer (if it does); we will revise this
2728 opinion later if it doesn't dominate all other occurrences.
2729 Exception: increments of 0, 1 never need initializers;
2730 and phi adjustments don't ever provide initializers. */
2731 if (c
->kind
== CAND_ADD
2733 && c
->index
== increment
2734 && (increment
> 1 || increment
< 0)
2735 && (gimple_assign_rhs_code (c
->cand_stmt
) == PLUS_EXPR
2736 || gimple_assign_rhs_code (c
->cand_stmt
) == POINTER_PLUS_EXPR
))
2738 tree t0
= NULL_TREE
;
2739 tree rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2740 tree rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2741 if (operand_equal_p (rhs1
, c
->base_expr
, 0))
2743 else if (operand_equal_p (rhs2
, c
->base_expr
, 0))
2746 && SSA_NAME_DEF_STMT (t0
)
2747 && gimple_bb (SSA_NAME_DEF_STMT (t0
)))
2749 incr_vec
[incr_vec_len
].initializer
= t0
;
2750 incr_vec
[incr_vec_len
++].init_bb
2751 = gimple_bb (SSA_NAME_DEF_STMT (t0
));
2755 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2756 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2761 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2762 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2767 /* Recursive helper function for record_phi_increments. */
2770 record_phi_increments_1 (slsr_cand_t basis
, gimple
*phi
)
2773 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2775 if (phi_cand
->visited
)
2777 phi_cand
->visited
= 1;
2779 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2781 tree arg
= gimple_phi_arg_def (phi
, i
);
2783 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2785 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2787 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2788 record_phi_increments_1 (basis
, arg_def
);
2791 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2792 widest_int diff
= arg_cand
->index
- basis
->index
;
2793 record_increment (arg_cand
, diff
, PHI_ADJUST
);
2799 /* Given phi statement PHI that hides a candidate from its BASIS, find
2800 the increments along each incoming arc (recursively handling additional
2801 phis that may be present) and record them. These increments are the
2802 difference in index between the index-adjusting statements and the
2803 index of the basis. */
2806 record_phi_increments (slsr_cand_t basis
, gimple
*phi
)
2808 record_phi_increments_1 (basis
, phi
);
2809 clear_visited (as_a
<gphi
*> (phi
));
2812 /* Determine how many times each unique increment occurs in the set
2813 of candidates rooted at C's parent, recording the data in the
2814 increment vector. For each unique increment I, if an initializer
2815 T_0 = stride * I is provided by a candidate that dominates all
2816 candidates with the same increment, also record T_0 for subsequent
2820 record_increments (slsr_cand_t c
)
2822 if (!cand_already_replaced (c
))
2824 if (!phi_dependent_cand_p (c
))
2825 record_increment (c
, cand_increment (c
), NOT_PHI_ADJUST
);
2828 /* A candidate with a basis hidden by a phi will have one
2829 increment for its relationship to the index represented by
2830 the phi, and potentially additional increments along each
2831 incoming edge. For the root of the dependency tree (which
2832 has no basis), process just the initial index in case it has
2833 an initializer that can be used by subsequent candidates. */
2834 record_increment (c
, c
->index
, NOT_PHI_ADJUST
);
2837 record_phi_increments (lookup_cand (c
->basis
),
2838 lookup_cand (c
->def_phi
)->cand_stmt
);
2843 record_increments (lookup_cand (c
->sibling
));
2846 record_increments (lookup_cand (c
->dependent
));
2849 /* Recursive helper function for phi_incr_cost. */
2852 phi_incr_cost_1 (slsr_cand_t c
, const widest_int
&incr
, gimple
*phi
,
2857 slsr_cand_t basis
= lookup_cand (c
->basis
);
2858 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2860 if (phi_cand
->visited
)
2862 phi_cand
->visited
= 1;
2864 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2866 tree arg
= gimple_phi_arg_def (phi
, i
);
2868 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2870 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2872 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2874 int feeding_savings
= 0;
2875 tree feeding_var
= gimple_phi_result (arg_def
);
2876 cost
+= phi_incr_cost_1 (c
, incr
, arg_def
, &feeding_savings
);
2877 if (uses_consumed_by_stmt (feeding_var
, phi
))
2878 *savings
+= feeding_savings
;
2882 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2883 widest_int diff
= arg_cand
->index
- basis
->index
;
2887 tree basis_lhs
= gimple_assign_lhs (basis
->cand_stmt
);
2888 tree lhs
= gimple_assign_lhs (arg_cand
->cand_stmt
);
2889 cost
+= add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs
)));
2890 if (uses_consumed_by_stmt (lhs
, phi
))
2891 *savings
+= stmt_cost (arg_cand
->cand_stmt
, true);
2900 /* Add up and return the costs of introducing add statements that
2901 require the increment INCR on behalf of candidate C and phi
2902 statement PHI. Accumulate into *SAVINGS the potential savings
2903 from removing existing statements that feed PHI and have no other
2907 phi_incr_cost (slsr_cand_t c
, const widest_int
&incr
, gimple
*phi
,
2910 int retval
= phi_incr_cost_1 (c
, incr
, phi
, savings
);
2911 clear_visited (as_a
<gphi
*> (phi
));
2915 /* Return the first candidate in the tree rooted at C that has not
2916 already been replaced, favoring siblings over dependents. */
2919 unreplaced_cand_in_tree (slsr_cand_t c
)
2921 if (!cand_already_replaced (c
))
2926 slsr_cand_t sib
= unreplaced_cand_in_tree (lookup_cand (c
->sibling
));
2933 slsr_cand_t dep
= unreplaced_cand_in_tree (lookup_cand (c
->dependent
));
2941 /* Return TRUE if the candidates in the tree rooted at C should be
2942 optimized for speed, else FALSE. We estimate this based on the block
2943 containing the most dominant candidate in the tree that has not yet
2947 optimize_cands_for_speed_p (slsr_cand_t c
)
2949 slsr_cand_t c2
= unreplaced_cand_in_tree (c
);
2951 return optimize_bb_for_speed_p (gimple_bb (c2
->cand_stmt
));
2954 /* Add COST_IN to the lowest cost of any dependent path starting at
2955 candidate C or any of its siblings, counting only candidates along
2956 such paths with increment INCR. Assume that replacing a candidate
2957 reduces cost by REPL_SAVINGS. Also account for savings from any
2958 statements that would go dead. If COUNT_PHIS is true, include
2959 costs of introducing feeding statements for conditional candidates. */
2962 lowest_cost_path (int cost_in
, int repl_savings
, slsr_cand_t c
,
2963 const widest_int
&incr
, bool count_phis
)
2965 int local_cost
, sib_cost
, savings
= 0;
2966 widest_int cand_incr
= cand_abs_increment (c
);
2968 if (cand_already_replaced (c
))
2969 local_cost
= cost_in
;
2970 else if (incr
== cand_incr
)
2971 local_cost
= cost_in
- repl_savings
- c
->dead_savings
;
2973 local_cost
= cost_in
- c
->dead_savings
;
2976 && phi_dependent_cand_p (c
)
2977 && !cand_already_replaced (c
))
2979 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2980 local_cost
+= phi_incr_cost (c
, incr
, phi
, &savings
);
2982 if (uses_consumed_by_stmt (gimple_phi_result (phi
), c
->cand_stmt
))
2983 local_cost
-= savings
;
2987 local_cost
= lowest_cost_path (local_cost
, repl_savings
,
2988 lookup_cand (c
->dependent
), incr
,
2993 sib_cost
= lowest_cost_path (cost_in
, repl_savings
,
2994 lookup_cand (c
->sibling
), incr
,
2996 local_cost
= MIN (local_cost
, sib_cost
);
3002 /* Compute the total savings that would accrue from all replacements
3003 in the candidate tree rooted at C, counting only candidates with
3004 increment INCR. Assume that replacing a candidate reduces cost
3005 by REPL_SAVINGS. Also account for savings from statements that
3009 total_savings (int repl_savings
, slsr_cand_t c
, const widest_int
&incr
,
3013 widest_int cand_incr
= cand_abs_increment (c
);
3015 if (incr
== cand_incr
&& !cand_already_replaced (c
))
3016 savings
+= repl_savings
+ c
->dead_savings
;
3019 && phi_dependent_cand_p (c
)
3020 && !cand_already_replaced (c
))
3022 int phi_savings
= 0;
3023 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
3024 savings
-= phi_incr_cost (c
, incr
, phi
, &phi_savings
);
3026 if (uses_consumed_by_stmt (gimple_phi_result (phi
), c
->cand_stmt
))
3027 savings
+= phi_savings
;
3031 savings
+= total_savings (repl_savings
, lookup_cand (c
->dependent
), incr
,
3035 savings
+= total_savings (repl_savings
, lookup_cand (c
->sibling
), incr
,
3041 /* Use target-specific costs to determine and record which increments
3042 in the current candidate tree are profitable to replace, assuming
3043 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3046 One slight limitation here is that we don't account for the possible
3047 introduction of casts in some cases. See replace_one_candidate for
3048 the cases where these are introduced. This should probably be cleaned
3052 analyze_increments (slsr_cand_t first_dep
, machine_mode mode
, bool speed
)
3056 for (i
= 0; i
< incr_vec_len
; i
++)
3058 HOST_WIDE_INT incr
= incr_vec
[i
].incr
.to_shwi ();
3060 /* If somehow this increment is bigger than a HWI, we won't
3061 be optimizing candidates that use it. And if the increment
3062 has a count of zero, nothing will be done with it. */
3063 if (!wi::fits_shwi_p (incr_vec
[i
].incr
) || !incr_vec
[i
].count
)
3064 incr_vec
[i
].cost
= COST_INFINITE
;
3066 /* Increments of 0, 1, and -1 are always profitable to replace,
3067 because they always replace a multiply or add with an add or
3068 copy, and may cause one or more existing instructions to go
3069 dead. Exception: -1 can't be assumed to be profitable for
3070 pointer addition. */
3074 && !POINTER_TYPE_P (first_dep
->cand_type
)))
3075 incr_vec
[i
].cost
= COST_NEUTRAL
;
3077 /* If we need to add an initializer, give up if a cast from the
3078 candidate's type to its stride's type can lose precision.
3079 Note that this already takes into account that the stride may
3080 have been cast to a wider type, in which case this test won't
3086 _4 = x + _3; ADD: x + (10 * (int)_1) : int
3088 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3090 Although the stride was a short int initially, the stride
3091 used in the analysis has been widened to an int, and such
3092 widening will be done in the initializer as well. */
3093 else if (!incr_vec
[i
].initializer
3094 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
3095 && !legal_cast_p_1 (first_dep
->stride_type
,
3096 TREE_TYPE (gimple_assign_lhs
3097 (first_dep
->cand_stmt
))))
3098 incr_vec
[i
].cost
= COST_INFINITE
;
3100 /* If we need to add an initializer, make sure we don't introduce
3101 a multiply by a pointer type, which can happen in certain cast
3103 else if (!incr_vec
[i
].initializer
3104 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
3105 && POINTER_TYPE_P (first_dep
->stride_type
))
3106 incr_vec
[i
].cost
= COST_INFINITE
;
3108 /* For any other increment, if this is a multiply candidate, we
3109 must introduce a temporary T and initialize it with
3110 T_0 = stride * increment. When optimizing for speed, walk the
3111 candidate tree to calculate the best cost reduction along any
3112 path; if it offsets the fixed cost of inserting the initializer,
3113 replacing the increment is profitable. When optimizing for
3114 size, instead calculate the total cost reduction from replacing
3115 all candidates with this increment. */
3116 else if (first_dep
->kind
== CAND_MULT
)
3118 int cost
= mult_by_coeff_cost (incr
, mode
, speed
);
3121 if (tree_fits_shwi_p (first_dep
->stride
))
3123 HOST_WIDE_INT hwi_stride
= tree_to_shwi (first_dep
->stride
);
3124 repl_savings
= mult_by_coeff_cost (hwi_stride
, mode
, speed
);
3127 repl_savings
= mul_cost (speed
, mode
);
3128 repl_savings
-= add_cost (speed
, mode
);
3131 cost
= lowest_cost_path (cost
, repl_savings
, first_dep
,
3132 incr_vec
[i
].incr
, COUNT_PHIS
);
3134 cost
-= total_savings (repl_savings
, first_dep
, incr_vec
[i
].incr
,
3137 incr_vec
[i
].cost
= cost
;
3140 /* If this is an add candidate, the initializer may already
3141 exist, so only calculate the cost of the initializer if it
3142 doesn't. We are replacing one add with another here, so the
3143 known replacement savings is zero. We will account for removal
3144 of dead instructions in lowest_cost_path or total_savings. */
3148 if (!incr_vec
[i
].initializer
)
3149 cost
= mult_by_coeff_cost (incr
, mode
, speed
);
3152 cost
= lowest_cost_path (cost
, 0, first_dep
, incr_vec
[i
].incr
,
3155 cost
-= total_savings (0, first_dep
, incr_vec
[i
].incr
,
3158 incr_vec
[i
].cost
= cost
;
3163 /* Return the nearest common dominator of BB1 and BB2. If the blocks
3164 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3165 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3166 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3167 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3170 ncd_for_two_cands (basic_block bb1
, basic_block bb2
,
3171 slsr_cand_t c1
, slsr_cand_t c2
, slsr_cand_t
*where
)
3187 ncd
= nearest_common_dominator (CDI_DOMINATORS
, bb1
, bb2
);
3189 /* If both candidates are in the same block, the earlier
3191 if (bb1
== ncd
&& bb2
== ncd
)
3193 if (!c1
|| (c2
&& c2
->cand_num
< c1
->cand_num
))
3199 /* Otherwise, if one of them produced a candidate in the
3200 dominator, that one wins. */
3201 else if (bb1
== ncd
)
3204 else if (bb2
== ncd
)
3207 /* If neither matches the dominator, neither wins. */
3214 /* Consider all candidates that feed PHI. Find the nearest common
3215 dominator of those candidates requiring the given increment INCR.
3216 Further find and return the nearest common dominator of this result
3217 with block NCD. If the returned block contains one or more of the
3218 candidates, return the earliest candidate in the block in *WHERE. */
3221 ncd_with_phi (slsr_cand_t c
, const widest_int
&incr
, gphi
*phi
,
3222 basic_block ncd
, slsr_cand_t
*where
)
3225 slsr_cand_t basis
= lookup_cand (c
->basis
);
3226 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3228 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3230 tree arg
= gimple_phi_arg_def (phi
, i
);
3232 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3234 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3236 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3237 ncd
= ncd_with_phi (c
, incr
, as_a
<gphi
*> (arg_def
), ncd
,
3241 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3242 widest_int diff
= arg_cand
->index
- basis
->index
;
3243 basic_block pred
= gimple_phi_arg_edge (phi
, i
)->src
;
3245 if ((incr
== diff
) || (!address_arithmetic_p
&& incr
== -diff
))
3246 ncd
= ncd_for_two_cands (ncd
, pred
, *where
, NULL
, where
);
3254 /* Consider the candidate C together with any candidates that feed
3255 C's phi dependence (if any). Find and return the nearest common
3256 dominator of those candidates requiring the given increment INCR.
3257 If the returned block contains one or more of the candidates,
3258 return the earliest candidate in the block in *WHERE. */
3261 ncd_of_cand_and_phis (slsr_cand_t c
, const widest_int
&incr
, slsr_cand_t
*where
)
3263 basic_block ncd
= NULL
;
3265 if (cand_abs_increment (c
) == incr
)
3267 ncd
= gimple_bb (c
->cand_stmt
);
3271 if (phi_dependent_cand_p (c
))
3272 ncd
= ncd_with_phi (c
, incr
,
3273 as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
),
3279 /* Consider all candidates in the tree rooted at C for which INCR
3280 represents the required increment of C relative to its basis.
3281 Find and return the basic block that most nearly dominates all
3282 such candidates. If the returned block contains one or more of
3283 the candidates, return the earliest candidate in the block in
3287 nearest_common_dominator_for_cands (slsr_cand_t c
, const widest_int
&incr
,
3290 basic_block sib_ncd
= NULL
, dep_ncd
= NULL
, this_ncd
= NULL
, ncd
;
3291 slsr_cand_t sib_where
= NULL
, dep_where
= NULL
, this_where
= NULL
, new_where
;
3293 /* First find the NCD of all siblings and dependents. */
3295 sib_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->sibling
),
3298 dep_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->dependent
),
3300 if (!sib_ncd
&& !dep_ncd
)
3305 else if (sib_ncd
&& !dep_ncd
)
3307 new_where
= sib_where
;
3310 else if (dep_ncd
&& !sib_ncd
)
3312 new_where
= dep_where
;
3316 ncd
= ncd_for_two_cands (sib_ncd
, dep_ncd
, sib_where
,
3317 dep_where
, &new_where
);
3319 /* If the candidate's increment doesn't match the one we're interested
3320 in (and nor do any increments for feeding defs of a phi-dependence),
3321 then the result depends only on siblings and dependents. */
3322 this_ncd
= ncd_of_cand_and_phis (c
, incr
, &this_where
);
3324 if (!this_ncd
|| cand_already_replaced (c
))
3330 /* Otherwise, compare this candidate with the result from all siblings
3332 ncd
= ncd_for_two_cands (ncd
, this_ncd
, new_where
, this_where
, where
);
3337 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3340 profitable_increment_p (unsigned index
)
3342 return (incr_vec
[index
].cost
<= COST_NEUTRAL
);
3345 /* For each profitable increment in the increment vector not equal to
3346 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3347 dominator of all statements in the candidate chain rooted at C
3348 that require that increment, and insert an initializer
3349 T_0 = stride * increment at that location. Record T_0 with the
3350 increment record. */
3353 insert_initializers (slsr_cand_t c
)
3357 for (i
= 0; i
< incr_vec_len
; i
++)
3360 slsr_cand_t where
= NULL
;
3362 gassign
*cast_stmt
= NULL
;
3363 tree new_name
, incr_tree
, init_stride
;
3364 widest_int incr
= incr_vec
[i
].incr
;
3366 if (!profitable_increment_p (i
)
3369 && (!POINTER_TYPE_P (lookup_cand (c
->basis
)->cand_type
)))
3373 /* We may have already identified an existing initializer that
3375 if (incr_vec
[i
].initializer
)
3377 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3379 fputs ("Using existing initializer: ", dump_file
);
3380 print_gimple_stmt (dump_file
,
3381 SSA_NAME_DEF_STMT (incr_vec
[i
].initializer
),
3387 /* Find the block that most closely dominates all candidates
3388 with this increment. If there is at least one candidate in
3389 that block, the earliest one will be returned in WHERE. */
3390 bb
= nearest_common_dominator_for_cands (c
, incr
, &where
);
3392 /* If the NCD is not dominated by the block containing the
3393 definition of the stride, we can't legally insert a
3394 single initializer. Mark the increment as unprofitable
3395 so we don't make any replacements. FIXME: Multiple
3396 initializers could be placed with more analysis. */
3397 gimple
*stride_def
= SSA_NAME_DEF_STMT (c
->stride
);
3398 basic_block stride_bb
= gimple_bb (stride_def
);
3400 if (stride_bb
&& !dominated_by_p (CDI_DOMINATORS
, bb
, stride_bb
))
3402 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3404 "Initializer #%d cannot be legally placed\n", i
);
3405 incr_vec
[i
].cost
= COST_INFINITE
;
3409 /* If the nominal stride has a different type than the recorded
3410 stride type, build a cast from the nominal stride to that type. */
3411 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
3413 init_stride
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3414 cast_stmt
= gimple_build_assign (init_stride
, NOP_EXPR
, c
->stride
);
3417 init_stride
= c
->stride
;
3419 /* Create a new SSA name to hold the initializer's value. */
3420 new_name
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3421 incr_vec
[i
].initializer
= new_name
;
3423 /* Create the initializer and insert it in the latest possible
3424 dominating position. */
3425 incr_tree
= wide_int_to_tree (c
->stride_type
, incr
);
3426 init_stmt
= gimple_build_assign (new_name
, MULT_EXPR
,
3427 init_stride
, incr_tree
);
3430 gimple_stmt_iterator gsi
= gsi_for_stmt (where
->cand_stmt
);
3431 location_t loc
= gimple_location (where
->cand_stmt
);
3435 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3436 gimple_set_location (cast_stmt
, loc
);
3439 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3440 gimple_set_location (init_stmt
, loc
);
3444 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3445 gimple
*basis_stmt
= lookup_cand (c
->basis
)->cand_stmt
;
3446 location_t loc
= gimple_location (basis_stmt
);
3448 if (!gsi_end_p (gsi
) && stmt_ends_bb_p (gsi_stmt (gsi
)))
3452 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3453 gimple_set_location (cast_stmt
, loc
);
3455 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3461 gsi_insert_after (&gsi
, cast_stmt
, GSI_NEW_STMT
);
3462 gimple_set_location (cast_stmt
, loc
);
3464 gsi_insert_after (&gsi
, init_stmt
, GSI_NEW_STMT
);
3467 gimple_set_location (init_stmt
, gimple_location (basis_stmt
));
3470 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3474 fputs ("Inserting stride cast: ", dump_file
);
3475 print_gimple_stmt (dump_file
, cast_stmt
, 0);
3477 fputs ("Inserting initializer: ", dump_file
);
3478 print_gimple_stmt (dump_file
, init_stmt
, 0);
3483 /* Recursive helper function for all_phi_incrs_profitable. */
3486 all_phi_incrs_profitable_1 (slsr_cand_t c
, gphi
*phi
, int *spread
)
3489 slsr_cand_t basis
= lookup_cand (c
->basis
);
3490 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3492 if (phi_cand
->visited
)
3495 phi_cand
->visited
= 1;
3498 /* If the basis doesn't dominate the PHI (including when the PHI is
3499 in the same block as the basis), we won't be able to create a PHI
3500 using the basis here. */
3501 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
3502 basic_block phi_bb
= gimple_bb (phi
);
3504 if (phi_bb
== basis_bb
3505 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
3508 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3510 /* If the PHI arg resides in a block not dominated by the basis,
3511 we won't be able to create a PHI using the basis here. */
3512 basic_block pred_bb
= gimple_phi_arg_edge (phi
, i
)->src
;
3514 if (!dominated_by_p (CDI_DOMINATORS
, pred_bb
, basis_bb
))
3517 tree arg
= gimple_phi_arg_def (phi
, i
);
3519 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3521 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3523 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3525 if (!all_phi_incrs_profitable_1 (c
, as_a
<gphi
*> (arg_def
),
3527 || *spread
> MAX_SPREAD
)
3533 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3534 widest_int increment
= arg_cand
->index
- basis
->index
;
3536 if (!address_arithmetic_p
&& wi::neg_p (increment
))
3537 increment
= -increment
;
3539 j
= incr_vec_index (increment
);
3541 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3543 fprintf (dump_file
, " Conditional candidate %d, phi: ",
3545 print_gimple_stmt (dump_file
, phi
, 0);
3546 fputs (" increment: ", dump_file
);
3547 print_decs (increment
, dump_file
);
3550 "\n Not replaced; incr_vec overflow.\n");
3552 fprintf (dump_file
, "\n cost: %d\n", incr_vec
[j
].cost
);
3553 if (profitable_increment_p (j
))
3554 fputs (" Replacing...\n", dump_file
);
3556 fputs (" Not replaced.\n", dump_file
);
3560 if (j
< 0 || !profitable_increment_p (j
))
3569 /* Return TRUE iff all required increments for candidates feeding PHI
3570 are profitable (and legal!) to replace on behalf of candidate C. */
3573 all_phi_incrs_profitable (slsr_cand_t c
, gphi
*phi
)
3576 bool retval
= all_phi_incrs_profitable_1 (c
, phi
, &spread
);
3577 clear_visited (phi
);
3581 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3582 type TO_TYPE, and insert it in front of the statement represented
3583 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3584 the new SSA name. */
3587 introduce_cast_before_cand (slsr_cand_t c
, tree to_type
, tree from_expr
)
3591 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3593 cast_lhs
= make_temp_ssa_name (to_type
, NULL
, "slsr");
3594 cast_stmt
= gimple_build_assign (cast_lhs
, NOP_EXPR
, from_expr
);
3595 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3596 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3598 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3600 fputs (" Inserting: ", dump_file
);
3601 print_gimple_stmt (dump_file
, cast_stmt
, 0);
3607 /* Replace the RHS of the statement represented by candidate C with
3608 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3609 leave C unchanged or just interchange its operands. The original
3610 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3611 If the replacement was made and we are doing a details dump,
3612 return the revised statement, else NULL. */
3615 replace_rhs_if_not_dup (enum tree_code new_code
, tree new_rhs1
, tree new_rhs2
,
3616 enum tree_code old_code
, tree old_rhs1
, tree old_rhs2
,
3619 if (new_code
!= old_code
3620 || ((!operand_equal_p (new_rhs1
, old_rhs1
, 0)
3621 || !operand_equal_p (new_rhs2
, old_rhs2
, 0))
3622 && (!operand_equal_p (new_rhs1
, old_rhs2
, 0)
3623 || !operand_equal_p (new_rhs2
, old_rhs1
, 0))))
3625 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3626 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3627 gimple_assign_set_rhs_with_ops (&gsi
, new_code
, new_rhs1
, new_rhs2
);
3628 update_stmt (gsi_stmt (gsi
));
3631 cc
->cand_stmt
= gsi_stmt (gsi
);
3632 cc
= cc
->next_interp
? lookup_cand (cc
->next_interp
) : NULL
;
3635 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3636 return gsi_stmt (gsi
);
3639 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3640 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3645 /* Strength-reduce the statement represented by candidate C by replacing
3646 it with an equivalent addition or subtraction. I is the index into
3647 the increment vector identifying C's increment. NEW_VAR is used to
3648 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3649 is the rhs1 to use in creating the add/subtract. */
3652 replace_one_candidate (slsr_cand_t c
, unsigned i
, tree basis_name
)
3654 gimple
*stmt_to_print
= NULL
;
3655 tree orig_rhs1
, orig_rhs2
;
3657 enum tree_code orig_code
, repl_code
;
3658 widest_int cand_incr
;
3660 orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3661 orig_rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
3662 orig_rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
3663 cand_incr
= cand_increment (c
);
3665 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3666 a copy statement under another interpretation. */
3670 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3672 fputs ("Replacing: ", dump_file
);
3673 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
3674 stmt_to_print
= c
->cand_stmt
;
3677 if (address_arithmetic_p
)
3678 repl_code
= POINTER_PLUS_EXPR
;
3680 repl_code
= PLUS_EXPR
;
3682 /* If the increment has an initializer T_0, replace the candidate
3683 statement with an add of the basis name and the initializer. */
3684 if (incr_vec
[i
].initializer
)
3686 tree init_type
= TREE_TYPE (incr_vec
[i
].initializer
);
3687 tree orig_type
= TREE_TYPE (orig_rhs2
);
3689 if (types_compatible_p (orig_type
, init_type
))
3690 rhs2
= incr_vec
[i
].initializer
;
3692 rhs2
= introduce_cast_before_cand (c
, orig_type
,
3693 incr_vec
[i
].initializer
);
3695 if (incr_vec
[i
].incr
!= cand_incr
)
3697 gcc_assert (repl_code
== PLUS_EXPR
);
3698 repl_code
= MINUS_EXPR
;
3701 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3702 orig_code
, orig_rhs1
, orig_rhs2
,
3706 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3707 with a subtract of the stride from the basis name, a copy
3708 from the basis name, or an add of the stride to the basis
3709 name, respectively. It may be necessary to introduce a
3710 cast (or reuse an existing cast). */
3711 else if (cand_incr
== 1)
3713 tree stride_type
= TREE_TYPE (c
->stride
);
3714 tree orig_type
= TREE_TYPE (orig_rhs2
);
3716 if (types_compatible_p (orig_type
, stride_type
))
3719 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3721 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3722 orig_code
, orig_rhs1
, orig_rhs2
,
3726 else if (cand_incr
== -1)
3728 tree stride_type
= TREE_TYPE (c
->stride
);
3729 tree orig_type
= TREE_TYPE (orig_rhs2
);
3730 gcc_assert (repl_code
!= POINTER_PLUS_EXPR
);
3732 if (types_compatible_p (orig_type
, stride_type
))
3735 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3737 if (orig_code
!= MINUS_EXPR
3738 || !operand_equal_p (basis_name
, orig_rhs1
, 0)
3739 || !operand_equal_p (rhs2
, orig_rhs2
, 0))
3741 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3742 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3743 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, basis_name
, rhs2
);
3744 update_stmt (gsi_stmt (gsi
));
3747 cc
->cand_stmt
= gsi_stmt (gsi
);
3748 cc
= cc
->next_interp
? lookup_cand (cc
->next_interp
) : NULL
;
3751 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3752 stmt_to_print
= gsi_stmt (gsi
);
3754 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3755 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3758 else if (cand_incr
== 0)
3760 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
3761 tree lhs_type
= TREE_TYPE (lhs
);
3762 tree basis_type
= TREE_TYPE (basis_name
);
3764 if (types_compatible_p (lhs_type
, basis_type
))
3766 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
3767 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3768 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3769 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
3770 gsi_replace (&gsi
, copy_stmt
, false);
3773 cc
->cand_stmt
= copy_stmt
;
3774 cc
= cc
->next_interp
? lookup_cand (cc
->next_interp
) : NULL
;
3777 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3778 stmt_to_print
= copy_stmt
;
3782 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3783 gassign
*cast_stmt
= gimple_build_assign (lhs
, NOP_EXPR
, basis_name
);
3784 slsr_cand_t cc
= lookup_cand (c
->first_interp
);
3785 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3786 gsi_replace (&gsi
, cast_stmt
, false);
3789 cc
->cand_stmt
= cast_stmt
;
3790 cc
= cc
->next_interp
? lookup_cand (cc
->next_interp
) : NULL
;
3793 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3794 stmt_to_print
= cast_stmt
;
3800 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && stmt_to_print
)
3802 fputs ("With: ", dump_file
);
3803 print_gimple_stmt (dump_file
, stmt_to_print
, 0);
3804 fputs ("\n", dump_file
);
3808 /* For each candidate in the tree rooted at C, replace it with
3809 an increment if such has been shown to be profitable. */
3812 replace_profitable_candidates (slsr_cand_t c
)
3814 if (!cand_already_replaced (c
))
3816 widest_int increment
= cand_abs_increment (c
);
3817 enum tree_code orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3820 i
= incr_vec_index (increment
);
3822 /* Only process profitable increments. Nothing useful can be done
3823 to a cast or copy. */
3825 && profitable_increment_p (i
)
3826 && orig_code
!= SSA_NAME
3827 && !CONVERT_EXPR_CODE_P (orig_code
))
3829 if (phi_dependent_cand_p (c
))
3831 gphi
*phi
= as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
);
3833 if (all_phi_incrs_profitable (c
, phi
))
3835 /* Look up the LHS SSA name from C's basis. This will be
3836 the RHS1 of the adds we will introduce to create new
3838 slsr_cand_t basis
= lookup_cand (c
->basis
);
3839 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3841 /* Create a new phi statement that will represent C's true
3842 basis after the transformation is complete. */
3843 location_t loc
= gimple_location (c
->cand_stmt
);
3844 tree name
= create_phi_basis (c
, phi
, basis_name
,
3845 loc
, UNKNOWN_STRIDE
);
3847 /* Replace C with an add of the new basis phi and the
3849 replace_one_candidate (c
, i
, name
);
3854 slsr_cand_t basis
= lookup_cand (c
->basis
);
3855 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3856 replace_one_candidate (c
, i
, basis_name
);
3862 replace_profitable_candidates (lookup_cand (c
->sibling
));
3865 replace_profitable_candidates (lookup_cand (c
->dependent
));
3868 /* Analyze costs of related candidates in the candidate vector,
3869 and make beneficial replacements. */
3872 analyze_candidates_and_replace (void)
3877 /* Each candidate that has a null basis and a non-null
3878 dependent is the root of a tree of related statements.
3879 Analyze each tree to determine a subset of those
3880 statements that can be replaced with maximum benefit. */
3881 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
3883 slsr_cand_t first_dep
;
3885 if (c
->basis
!= 0 || c
->dependent
== 0)
3888 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3889 fprintf (dump_file
, "\nProcessing dependency tree rooted at %d.\n",
3892 first_dep
= lookup_cand (c
->dependent
);
3894 /* If this is a chain of CAND_REFs, unconditionally replace
3895 each of them with a strength-reduced data reference. */
3896 if (c
->kind
== CAND_REF
)
3899 /* If the common stride of all related candidates is a known
3900 constant, each candidate without a phi-dependence can be
3901 profitably replaced. Each replaces a multiply by a single
3902 add, with the possibility that a feeding add also goes dead.
3903 A candidate with a phi-dependence is replaced only if the
3904 compensation code it requires is offset by the strength
3905 reduction savings. */
3906 else if (TREE_CODE (c
->stride
) == INTEGER_CST
)
3907 replace_uncond_cands_and_profitable_phis (first_dep
);
3909 /* When the stride is an SSA name, it may still be profitable
3910 to replace some or all of the dependent candidates, depending
3911 on whether the introduced increments can be reused, or are
3912 less expensive to calculate than the replaced statements. */
3918 /* Determine whether we'll be generating pointer arithmetic
3919 when replacing candidates. */
3920 address_arithmetic_p
= (c
->kind
== CAND_ADD
3921 && POINTER_TYPE_P (c
->cand_type
));
3923 /* If all candidates have already been replaced under other
3924 interpretations, nothing remains to be done. */
3925 if (!count_candidates (c
))
3928 /* Construct an array of increments for this candidate chain. */
3929 incr_vec
= XNEWVEC (incr_info
, MAX_INCR_VEC_LEN
);
3931 record_increments (c
);
3933 /* Determine which increments are profitable to replace. */
3934 mode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
)));
3935 speed
= optimize_cands_for_speed_p (c
);
3936 analyze_increments (first_dep
, mode
, speed
);
3938 /* Insert initializers of the form T_0 = stride * increment
3939 for use in profitable replacements. */
3940 insert_initializers (first_dep
);
3943 /* Perform the replacements. */
3944 replace_profitable_candidates (first_dep
);
3949 /* For conditional candidates, we may have uncommitted insertions
3950 on edges to clean up. */
3951 gsi_commit_edge_inserts ();
3956 const pass_data pass_data_strength_reduction
=
3958 GIMPLE_PASS
, /* type */
3960 OPTGROUP_NONE
, /* optinfo_flags */
3961 TV_GIMPLE_SLSR
, /* tv_id */
3962 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3963 0, /* properties_provided */
3964 0, /* properties_destroyed */
3965 0, /* todo_flags_start */
3966 0, /* todo_flags_finish */
3969 class pass_strength_reduction
: public gimple_opt_pass
3972 pass_strength_reduction (gcc::context
*ctxt
)
3973 : gimple_opt_pass (pass_data_strength_reduction
, ctxt
)
3976 /* opt_pass methods: */
3977 virtual bool gate (function
*) { return flag_tree_slsr
; }
3978 virtual unsigned int execute (function
*);
3980 }; // class pass_strength_reduction
3983 pass_strength_reduction::execute (function
*fun
)
3985 /* Create the obstack where candidates will reside. */
3986 gcc_obstack_init (&cand_obstack
);
3988 /* Allocate the candidate vector. */
3989 cand_vec
.create (128);
3991 /* Allocate the mapping from statements to candidate indices. */
3992 stmt_cand_map
= new hash_map
<gimple
*, slsr_cand_t
>;
3994 /* Create the obstack where candidate chains will reside. */
3995 gcc_obstack_init (&chain_obstack
);
3997 /* Allocate the mapping from base expressions to candidate chains. */
3998 base_cand_map
= new hash_table
<cand_chain_hasher
> (500);
4000 /* Allocate the mapping from bases to alternative bases. */
4001 alt_base_map
= new hash_map
<tree
, tree
>;
4003 /* Initialize the loop optimizer. We need to detect flow across
4004 back edges, and this gives us dominator information as well. */
4005 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4007 /* Walk the CFG in predominator order looking for strength reduction
4009 find_candidates_dom_walker (CDI_DOMINATORS
)
4010 .walk (fun
->cfg
->x_entry_block_ptr
);
4012 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4015 dump_cand_chains ();
4018 delete alt_base_map
;
4019 free_affine_expand_cache (&name_expansions
);
4021 /* Analyze costs and make appropriate replacements. */
4022 analyze_candidates_and_replace ();
4024 loop_optimizer_finalize ();
4025 delete base_cand_map
;
4026 base_cand_map
= NULL
;
4027 obstack_free (&chain_obstack
, NULL
);
4028 delete stmt_cand_map
;
4029 cand_vec
.release ();
4030 obstack_free (&cand_obstack
, NULL
);
4038 make_pass_strength_reduction (gcc::context
*ctxt
)
4040 return new pass_strength_reduction (ctxt
);