* lang.opt (-freduced-reflection): New option.
[official-gcc.git] / gcc / tree-vrp.c
blob278347d4d9fb79906c2cd7132c12c53fc8cb9c51
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
290 return vr;
294 /* Update the value range and equivalence set for variable VAR to
295 NEW_VR. Return true if NEW_VR is different from VAR's previous
296 value.
298 NOTE: This function assumes that NEW_VR is a temporary value range
299 object created for the sole purpose of updating VAR's range. The
300 storage used by the equivalence set from NEW_VR will be freed by
301 this function. Do not call update_value_range when NEW_VR
302 is the range object associated with another SSA name. */
304 static inline bool
305 update_value_range (tree var, value_range_t *new_vr)
307 value_range_t *old_vr;
308 bool is_new;
310 /* Update the value range, if necessary. */
311 old_vr = get_value_range (var);
312 is_new = old_vr->type != new_vr->type
313 || old_vr->min != new_vr->min
314 || old_vr->max != new_vr->max
315 || (old_vr->equiv == NULL && new_vr->equiv)
316 || (old_vr->equiv && new_vr->equiv == NULL)
317 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
319 if (is_new)
320 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
321 new_vr->equiv);
323 BITMAP_FREE (new_vr->equiv);
324 new_vr->equiv = NULL;
326 return is_new;
330 /* Add VAR and VAR's equivalence set to EQUIV. */
332 static void
333 add_equivalence (bitmap equiv, tree var)
335 unsigned ver = SSA_NAME_VERSION (var);
336 value_range_t *vr = vr_value[ver];
338 bitmap_set_bit (equiv, ver);
339 if (vr && vr->equiv)
340 bitmap_ior_into (equiv, vr->equiv);
344 /* Return true if VR is ~[0, 0]. */
346 static inline bool
347 range_is_nonnull (value_range_t *vr)
349 return vr->type == VR_ANTI_RANGE
350 && integer_zerop (vr->min)
351 && integer_zerop (vr->max);
355 /* Return true if VR is [0, 0]. */
357 static inline bool
358 range_is_null (value_range_t *vr)
360 return vr->type == VR_RANGE
361 && integer_zerop (vr->min)
362 && integer_zerop (vr->max);
366 /* Return true if value range VR involves at least one symbol. */
368 static inline bool
369 symbolic_range_p (value_range_t *vr)
371 return (!is_gimple_min_invariant (vr->min)
372 || !is_gimple_min_invariant (vr->max));
375 /* Like tree_expr_nonnegative_p, but this function uses value ranges
376 obtained so far. */
378 static bool
379 vrp_expr_computes_nonnegative (tree expr)
381 return tree_expr_nonnegative_p (expr);
384 /* Like tree_expr_nonzero_p, but this function uses value ranges
385 obtained so far. */
387 static bool
388 vrp_expr_computes_nonzero (tree expr)
390 if (tree_expr_nonzero_p (expr))
391 return true;
393 /* If we have an expression of the form &X->a, then the expression
394 is nonnull if X is nonnull. */
395 if (TREE_CODE (expr) == ADDR_EXPR)
397 tree base = get_base_address (TREE_OPERAND (expr, 0));
399 if (base != NULL_TREE
400 && TREE_CODE (base) == INDIRECT_REF
401 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
403 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
404 if (range_is_nonnull (vr))
405 return true;
409 return false;
413 /* Compare two values VAL1 and VAL2. Return
415 -2 if VAL1 and VAL2 cannot be compared at compile-time,
416 -1 if VAL1 < VAL2,
417 0 if VAL1 == VAL2,
418 +1 if VAL1 > VAL2, and
419 +2 if VAL1 != VAL2
421 This is similar to tree_int_cst_compare but supports pointer values
422 and values that cannot be compared at compile time. */
424 static int
425 compare_values (tree val1, tree val2)
427 if (val1 == val2)
428 return 0;
430 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
431 both integers. */
432 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
433 == POINTER_TYPE_P (TREE_TYPE (val2)));
435 /* Do some limited symbolic comparisons. */
436 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
438 /* We can determine some comparisons against +INF and -INF even
439 if the other value is an expression. */
440 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
441 && TREE_CODE (val2) == MINUS_EXPR)
443 /* +INF > NAME - CST. */
444 return 1;
446 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
447 && TREE_CODE (val2) == PLUS_EXPR)
449 /* -INF < NAME + CST. */
450 return -1;
452 else if (TREE_CODE (val1) == MINUS_EXPR
453 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
455 /* NAME - CST < +INF. */
456 return -1;
458 else if (TREE_CODE (val1) == PLUS_EXPR
459 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
461 /* NAME + CST > -INF. */
462 return 1;
466 if ((TREE_CODE (val1) == SSA_NAME
467 || TREE_CODE (val1) == PLUS_EXPR
468 || TREE_CODE (val1) == MINUS_EXPR)
469 && (TREE_CODE (val2) == SSA_NAME
470 || TREE_CODE (val2) == PLUS_EXPR
471 || TREE_CODE (val2) == MINUS_EXPR))
473 tree n1, c1, n2, c2;
475 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
476 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
477 same name, return -2. */
478 if (TREE_CODE (val1) == SSA_NAME)
480 n1 = val1;
481 c1 = NULL_TREE;
483 else
485 n1 = TREE_OPERAND (val1, 0);
486 c1 = TREE_OPERAND (val1, 1);
489 if (TREE_CODE (val2) == SSA_NAME)
491 n2 = val2;
492 c2 = NULL_TREE;
494 else
496 n2 = TREE_OPERAND (val2, 0);
497 c2 = TREE_OPERAND (val2, 1);
500 /* Both values must use the same name. */
501 if (n1 != n2)
502 return -2;
504 if (TREE_CODE (val1) == SSA_NAME)
506 if (TREE_CODE (val2) == SSA_NAME)
507 /* NAME == NAME */
508 return 0;
509 else if (TREE_CODE (val2) == PLUS_EXPR)
510 /* NAME < NAME + CST */
511 return -1;
512 else if (TREE_CODE (val2) == MINUS_EXPR)
513 /* NAME > NAME - CST */
514 return 1;
516 else if (TREE_CODE (val1) == PLUS_EXPR)
518 if (TREE_CODE (val2) == SSA_NAME)
519 /* NAME + CST > NAME */
520 return 1;
521 else if (TREE_CODE (val2) == PLUS_EXPR)
522 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
523 return compare_values (c1, c2);
524 else if (TREE_CODE (val2) == MINUS_EXPR)
525 /* NAME + CST1 > NAME - CST2 */
526 return 1;
528 else if (TREE_CODE (val1) == MINUS_EXPR)
530 if (TREE_CODE (val2) == SSA_NAME)
531 /* NAME - CST < NAME */
532 return -1;
533 else if (TREE_CODE (val2) == PLUS_EXPR)
534 /* NAME - CST1 < NAME + CST2 */
535 return -1;
536 else if (TREE_CODE (val2) == MINUS_EXPR)
537 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
538 C1 and C2 are swapped in the call to compare_values. */
539 return compare_values (c2, c1);
542 gcc_unreachable ();
545 /* We cannot compare non-constants. */
546 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
547 return -2;
549 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
551 /* We cannot compare overflowed values. */
552 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
553 return -2;
555 return tree_int_cst_compare (val1, val2);
557 else
559 tree t;
561 /* First see if VAL1 and VAL2 are not the same. */
562 if (val1 == val2 || operand_equal_p (val1, val2, 0))
563 return 0;
565 /* If VAL1 is a lower address than VAL2, return -1. */
566 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
567 if (t == boolean_true_node)
568 return -1;
570 /* If VAL1 is a higher address than VAL2, return +1. */
571 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
572 if (t == boolean_true_node)
573 return 1;
575 /* If VAL1 is different than VAL2, return +2. */
576 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
577 if (t == boolean_true_node)
578 return 2;
580 return -2;
585 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
586 0 if VAL is not inside VR,
587 -2 if we cannot tell either way.
589 FIXME, the current semantics of this functions are a bit quirky
590 when taken in the context of VRP. In here we do not care
591 about VR's type. If VR is the anti-range ~[3, 5] the call
592 value_inside_range (4, VR) will return 1.
594 This is counter-intuitive in a strict sense, but the callers
595 currently expect this. They are calling the function
596 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
597 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
598 themselves.
600 This also applies to value_ranges_intersect_p and
601 range_includes_zero_p. The semantics of VR_RANGE and
602 VR_ANTI_RANGE should be encoded here, but that also means
603 adapting the users of these functions to the new semantics. */
605 static inline int
606 value_inside_range (tree val, value_range_t *vr)
608 int cmp1, cmp2;
610 cmp1 = compare_values (val, vr->min);
611 if (cmp1 == -2 || cmp1 == 2)
612 return -2;
614 cmp2 = compare_values (val, vr->max);
615 if (cmp2 == -2 || cmp2 == 2)
616 return -2;
618 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
622 /* Return true if value ranges VR0 and VR1 have a non-empty
623 intersection. */
625 static inline bool
626 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
628 return (value_inside_range (vr1->min, vr0) == 1
629 || value_inside_range (vr1->max, vr0) == 1
630 || value_inside_range (vr0->min, vr1) == 1
631 || value_inside_range (vr0->max, vr1) == 1);
635 /* Return true if VR includes the value zero, false otherwise. FIXME,
636 currently this will return false for an anti-range like ~[-4, 3].
637 This will be wrong when the semantics of value_inside_range are
638 modified (currently the users of this function expect these
639 semantics). */
641 static inline bool
642 range_includes_zero_p (value_range_t *vr)
644 tree zero;
646 gcc_assert (vr->type != VR_UNDEFINED
647 && vr->type != VR_VARYING
648 && !symbolic_range_p (vr));
650 zero = build_int_cst (TREE_TYPE (vr->min), 0);
651 return (value_inside_range (zero, vr) == 1);
654 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
655 false otherwise or if no value range information is available. */
657 bool
658 ssa_name_nonnegative_p (tree t)
660 value_range_t *vr = get_value_range (t);
662 if (!vr)
663 return false;
665 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
666 which would return a useful value should be encoded as a VR_RANGE. */
667 if (vr->type == VR_RANGE)
669 int result = compare_values (vr->min, integer_zero_node);
671 return (result == 0 || result == 1);
673 return false;
676 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
677 false otherwise or if no value range information is available. */
679 bool
680 ssa_name_nonzero_p (tree t)
682 value_range_t *vr = get_value_range (t);
684 if (!vr)
685 return false;
687 /* A VR_RANGE which does not include zero is a nonzero value. */
688 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
689 return ! range_includes_zero_p (vr);
691 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
692 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
693 return range_includes_zero_p (vr);
695 return false;
699 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
700 initially consider X_i and Y_j equivalent, so the equivalence set
701 of Y_j is added to the equivalence set of X_i. However, it is
702 possible to have a chain of ASSERT_EXPRs whose predicates are
703 actually incompatible. This is usually the result of nesting of
704 contradictory if-then-else statements. For instance, in PR 24670:
706 count_4 has range [-INF, 63]
708 if (count_4 != 0)
710 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
711 if (count_19 > 63)
713 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
714 if (count_18 <= 63)
719 Notice that 'if (count_19 > 63)' is trivially false and will be
720 folded out at the end. However, during propagation, the flowgraph
721 is not cleaned up and so, VRP will evaluate predicates more
722 predicates than necessary, so it must support these
723 inconsistencies. The problem here is that because of the chaining
724 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
725 Since count_4 has an incompatible range, we ICE when evaluating the
726 ranges in the equivalency set. So, we need to remove count_4 from
727 it. */
729 static void
730 fix_equivalence_set (value_range_t *vr_p)
732 bitmap_iterator bi;
733 unsigned i;
734 bitmap e = vr_p->equiv;
735 bitmap to_remove = BITMAP_ALLOC (NULL);
737 /* Only detect inconsistencies on numeric ranges. */
738 if (vr_p->type == VR_VARYING
739 || vr_p->type == VR_UNDEFINED
740 || symbolic_range_p (vr_p))
741 return;
743 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
745 value_range_t *equiv_vr = vr_value[i];
747 if (equiv_vr->type == VR_VARYING
748 || equiv_vr->type == VR_UNDEFINED
749 || symbolic_range_p (equiv_vr))
750 continue;
752 if (equiv_vr->type == VR_RANGE
753 && vr_p->type == VR_RANGE
754 && !value_ranges_intersect_p (vr_p, equiv_vr))
755 bitmap_set_bit (to_remove, i);
756 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
757 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
759 /* A range and an anti-range have an empty intersection if
760 their end points are the same. FIXME,
761 value_ranges_intersect_p should handle this
762 automatically. */
763 if (compare_values (equiv_vr->min, vr_p->min) == 0
764 && compare_values (equiv_vr->max, vr_p->max) == 0)
765 bitmap_set_bit (to_remove, i);
769 bitmap_and_compl_into (vr_p->equiv, to_remove);
770 BITMAP_FREE (to_remove);
774 /* Extract value range information from an ASSERT_EXPR EXPR and store
775 it in *VR_P. */
777 static void
778 extract_range_from_assert (value_range_t *vr_p, tree expr)
780 tree var, cond, limit, min, max, type;
781 value_range_t *var_vr, *limit_vr;
782 enum tree_code cond_code;
784 var = ASSERT_EXPR_VAR (expr);
785 cond = ASSERT_EXPR_COND (expr);
787 gcc_assert (COMPARISON_CLASS_P (cond));
789 /* Find VAR in the ASSERT_EXPR conditional. */
790 if (var == TREE_OPERAND (cond, 0))
792 /* If the predicate is of the form VAR COMP LIMIT, then we just
793 take LIMIT from the RHS and use the same comparison code. */
794 limit = TREE_OPERAND (cond, 1);
795 cond_code = TREE_CODE (cond);
797 else
799 /* If the predicate is of the form LIMIT COMP VAR, then we need
800 to flip around the comparison code to create the proper range
801 for VAR. */
802 limit = TREE_OPERAND (cond, 0);
803 cond_code = swap_tree_comparison (TREE_CODE (cond));
806 type = TREE_TYPE (limit);
807 gcc_assert (limit != var);
809 /* For pointer arithmetic, we only keep track of pointer equality
810 and inequality. */
811 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
813 set_value_range_to_varying (vr_p);
814 return;
817 /* If LIMIT is another SSA name and LIMIT has a range of its own,
818 try to use LIMIT's range to avoid creating symbolic ranges
819 unnecessarily. */
820 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
822 /* LIMIT's range is only interesting if it has any useful information. */
823 if (limit_vr
824 && (limit_vr->type == VR_UNDEFINED
825 || limit_vr->type == VR_VARYING
826 || symbolic_range_p (limit_vr)))
827 limit_vr = NULL;
829 /* Initially, the new range has the same set of equivalences of
830 VAR's range. This will be revised before returning the final
831 value. Since assertions may be chained via mutually exclusive
832 predicates, we will need to trim the set of equivalences before
833 we are done. */
834 gcc_assert (vr_p->equiv == NULL);
835 vr_p->equiv = BITMAP_ALLOC (NULL);
836 add_equivalence (vr_p->equiv, var);
838 /* Extract a new range based on the asserted comparison for VAR and
839 LIMIT's value range. Notice that if LIMIT has an anti-range, we
840 will only use it for equality comparisons (EQ_EXPR). For any
841 other kind of assertion, we cannot derive a range from LIMIT's
842 anti-range that can be used to describe the new range. For
843 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
844 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
845 no single range for x_2 that could describe LE_EXPR, so we might
846 as well build the range [b_4, +INF] for it. */
847 if (cond_code == EQ_EXPR)
849 enum value_range_type range_type;
851 if (limit_vr)
853 range_type = limit_vr->type;
854 min = limit_vr->min;
855 max = limit_vr->max;
857 else
859 range_type = VR_RANGE;
860 min = limit;
861 max = limit;
864 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
866 /* When asserting the equality VAR == LIMIT and LIMIT is another
867 SSA name, the new range will also inherit the equivalence set
868 from LIMIT. */
869 if (TREE_CODE (limit) == SSA_NAME)
870 add_equivalence (vr_p->equiv, limit);
872 else if (cond_code == NE_EXPR)
874 /* As described above, when LIMIT's range is an anti-range and
875 this assertion is an inequality (NE_EXPR), then we cannot
876 derive anything from the anti-range. For instance, if
877 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
878 not imply that VAR's range is [0, 0]. So, in the case of
879 anti-ranges, we just assert the inequality using LIMIT and
880 not its anti-range.
882 If LIMIT_VR is a range, we can only use it to build a new
883 anti-range if LIMIT_VR is a single-valued range. For
884 instance, if LIMIT_VR is [0, 1], the predicate
885 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
886 Rather, it means that for value 0 VAR should be ~[0, 0]
887 and for value 1, VAR should be ~[1, 1]. We cannot
888 represent these ranges.
890 The only situation in which we can build a valid
891 anti-range is when LIMIT_VR is a single-valued range
892 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
893 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
894 if (limit_vr
895 && limit_vr->type == VR_RANGE
896 && compare_values (limit_vr->min, limit_vr->max) == 0)
898 min = limit_vr->min;
899 max = limit_vr->max;
901 else
903 /* In any other case, we cannot use LIMIT's range to build a
904 valid anti-range. */
905 min = max = limit;
908 /* If MIN and MAX cover the whole range for their type, then
909 just use the original LIMIT. */
910 if (INTEGRAL_TYPE_P (type)
911 && min == TYPE_MIN_VALUE (type)
912 && max == TYPE_MAX_VALUE (type))
913 min = max = limit;
915 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
917 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
919 min = TYPE_MIN_VALUE (type);
921 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
922 max = limit;
923 else
925 /* If LIMIT_VR is of the form [N1, N2], we need to build the
926 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
927 LT_EXPR. */
928 max = limit_vr->max;
931 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
932 if (cond_code == LT_EXPR)
934 tree one = build_int_cst (type, 1);
935 max = fold_build2 (MINUS_EXPR, type, max, one);
938 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
940 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
942 max = TYPE_MAX_VALUE (type);
944 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
945 min = limit;
946 else
948 /* If LIMIT_VR is of the form [N1, N2], we need to build the
949 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
950 GT_EXPR. */
951 min = limit_vr->min;
954 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
955 if (cond_code == GT_EXPR)
957 tree one = build_int_cst (type, 1);
958 min = fold_build2 (PLUS_EXPR, type, min, one);
961 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
963 else
964 gcc_unreachable ();
966 /* If VAR already had a known range, it may happen that the new
967 range we have computed and VAR's range are not compatible. For
968 instance,
970 if (p_5 == NULL)
971 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
972 x_7 = p_6->fld;
973 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
975 While the above comes from a faulty program, it will cause an ICE
976 later because p_8 and p_6 will have incompatible ranges and at
977 the same time will be considered equivalent. A similar situation
978 would arise from
980 if (i_5 > 10)
981 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
982 if (i_5 < 5)
983 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
985 Again i_6 and i_7 will have incompatible ranges. It would be
986 pointless to try and do anything with i_7's range because
987 anything dominated by 'if (i_5 < 5)' will be optimized away.
988 Note, due to the wa in which simulation proceeds, the statement
989 i_7 = ASSERT_EXPR <...> we would never be visited because the
990 conditional 'if (i_5 < 5)' always evaluates to false. However,
991 this extra check does not hurt and may protect against future
992 changes to VRP that may get into a situation similar to the
993 NULL pointer dereference example.
995 Note that these compatibility tests are only needed when dealing
996 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
997 are both anti-ranges, they will always be compatible, because two
998 anti-ranges will always have a non-empty intersection. */
1000 var_vr = get_value_range (var);
1002 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1003 ranges or anti-ranges. */
1004 if (vr_p->type == VR_VARYING
1005 || vr_p->type == VR_UNDEFINED
1006 || var_vr->type == VR_VARYING
1007 || var_vr->type == VR_UNDEFINED
1008 || symbolic_range_p (vr_p)
1009 || symbolic_range_p (var_vr))
1010 goto done;
1012 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1014 /* If the two ranges have a non-empty intersection, we can
1015 refine the resulting range. Since the assert expression
1016 creates an equivalency and at the same time it asserts a
1017 predicate, we can take the intersection of the two ranges to
1018 get better precision. */
1019 if (value_ranges_intersect_p (var_vr, vr_p))
1021 /* Use the larger of the two minimums. */
1022 if (compare_values (vr_p->min, var_vr->min) == -1)
1023 min = var_vr->min;
1024 else
1025 min = vr_p->min;
1027 /* Use the smaller of the two maximums. */
1028 if (compare_values (vr_p->max, var_vr->max) == 1)
1029 max = var_vr->max;
1030 else
1031 max = vr_p->max;
1033 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1035 else
1037 /* The two ranges do not intersect, set the new range to
1038 VARYING, because we will not be able to do anything
1039 meaningful with it. */
1040 set_value_range_to_varying (vr_p);
1043 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1044 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1046 /* A range and an anti-range will cancel each other only if
1047 their ends are the same. For instance, in the example above,
1048 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1049 so VR_P should be set to VR_VARYING. */
1050 if (compare_values (var_vr->min, vr_p->min) == 0
1051 && compare_values (var_vr->max, vr_p->max) == 0)
1052 set_value_range_to_varying (vr_p);
1053 else
1055 tree min, max, anti_min, anti_max, real_min, real_max;
1057 /* We want to compute the logical AND of the two ranges;
1058 there are three cases to consider.
1061 1. The VR_ANTI_RANGE range is completely within the
1062 VR_RANGE and the endpoints of the ranges are
1063 different. In that case the resulting range
1064 should be whichever range is more precise.
1065 Typically that will be the VR_RANGE.
1067 2. The VR_ANTI_RANGE is completely disjoint from
1068 the VR_RANGE. In this case the resulting range
1069 should be the VR_RANGE.
1071 3. There is some overlap between the VR_ANTI_RANGE
1072 and the VR_RANGE.
1074 3a. If the high limit of the VR_ANTI_RANGE resides
1075 within the VR_RANGE, then the result is a new
1076 VR_RANGE starting at the high limit of the
1077 the VR_ANTI_RANGE + 1 and extending to the
1078 high limit of the original VR_RANGE.
1080 3b. If the low limit of the VR_ANTI_RANGE resides
1081 within the VR_RANGE, then the result is a new
1082 VR_RANGE starting at the low limit of the original
1083 VR_RANGE and extending to the low limit of the
1084 VR_ANTI_RANGE - 1. */
1085 if (vr_p->type == VR_ANTI_RANGE)
1087 anti_min = vr_p->min;
1088 anti_max = vr_p->max;
1089 real_min = var_vr->min;
1090 real_max = var_vr->max;
1092 else
1094 anti_min = var_vr->min;
1095 anti_max = var_vr->max;
1096 real_min = vr_p->min;
1097 real_max = vr_p->max;
1101 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1102 not including any endpoints. */
1103 if (compare_values (anti_max, real_max) == -1
1104 && compare_values (anti_min, real_min) == 1)
1106 set_value_range (vr_p, VR_RANGE, real_min,
1107 real_max, vr_p->equiv);
1109 /* Case 2, VR_ANTI_RANGE completely disjoint from
1110 VR_RANGE. */
1111 else if (compare_values (anti_min, real_max) == 1
1112 || compare_values (anti_max, real_min) == -1)
1114 set_value_range (vr_p, VR_RANGE, real_min,
1115 real_max, vr_p->equiv);
1117 /* Case 3a, the anti-range extends into the low
1118 part of the real range. Thus creating a new
1119 low for the real reange. */
1120 else if ((compare_values (anti_max, real_min) == 1
1121 || compare_values (anti_max, real_min) == 0)
1122 && compare_values (anti_max, real_max) == -1)
1124 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1125 anti_max,
1126 build_int_cst (TREE_TYPE (var_vr->min), 1));
1127 max = real_max;
1128 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1130 /* Case 3b, the anti-range extends into the high
1131 part of the real range. Thus creating a new
1132 higher for the real reange. */
1133 else if (compare_values (anti_min, real_min) == 1
1134 && (compare_values (anti_min, real_max) == -1
1135 || compare_values (anti_min, real_max) == 0))
1137 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1138 anti_min,
1139 build_int_cst (TREE_TYPE (var_vr->min), 1));
1140 min = real_min;
1141 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1146 /* Remove names from the equivalence set that have ranges
1147 incompatible with VR_P. */
1148 done:
1149 fix_equivalence_set (vr_p);
1153 /* Extract range information from SSA name VAR and store it in VR. If
1154 VAR has an interesting range, use it. Otherwise, create the
1155 range [VAR, VAR] and return it. This is useful in situations where
1156 we may have conditionals testing values of VARYING names. For
1157 instance,
1159 x_3 = y_5;
1160 if (x_3 > y_5)
1163 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1164 always false. */
1166 static void
1167 extract_range_from_ssa_name (value_range_t *vr, tree var)
1169 value_range_t *var_vr = get_value_range (var);
1171 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1172 copy_value_range (vr, var_vr);
1173 else
1174 set_value_range (vr, VR_RANGE, var, var, NULL);
1176 add_equivalence (vr->equiv, var);
1180 /* Wrapper around int_const_binop. If the operation overflows and we
1181 are not using wrapping arithmetic, then adjust the result to be
1182 -INF or +INF depending on CODE, VAL1 and VAL2. */
1184 static inline tree
1185 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1187 tree res;
1189 if (flag_wrapv)
1190 return int_const_binop (code, val1, val2, 0);
1192 /* If we are not using wrapping arithmetic, operate symbolically
1193 on -INF and +INF. */
1194 res = int_const_binop (code, val1, val2, 0);
1196 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1198 int checkz = compare_values (res, val1);
1200 /* Ensure that res = val1 [+*] val2 >= val1
1201 or that res = val1 - val2 <= val1. */
1202 if (((code == PLUS_EXPR || code == MULT_EXPR)
1203 && !(checkz == 1 || checkz == 0))
1204 || (code == MINUS_EXPR
1205 && !(checkz == 0 || checkz == -1)))
1207 res = copy_node (res);
1208 TREE_OVERFLOW (res) = 1;
1211 else if (TREE_OVERFLOW (res)
1212 && !TREE_OVERFLOW (val1)
1213 && !TREE_OVERFLOW (val2))
1215 /* If the operation overflowed but neither VAL1 nor VAL2 are
1216 overflown, return -INF or +INF depending on the operation
1217 and the combination of signs of the operands. */
1218 int sgn1 = tree_int_cst_sgn (val1);
1219 int sgn2 = tree_int_cst_sgn (val2);
1221 /* Notice that we only need to handle the restricted set of
1222 operations handled by extract_range_from_binary_expr.
1223 Among them, only multiplication, addition and subtraction
1224 can yield overflow without overflown operands because we
1225 are working with integral types only... except in the
1226 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1227 for division too. */
1229 /* For multiplication, the sign of the overflow is given
1230 by the comparison of the signs of the operands. */
1231 if ((code == MULT_EXPR && sgn1 == sgn2)
1232 /* For addition, the operands must be of the same sign
1233 to yield an overflow. Its sign is therefore that
1234 of one of the operands, for example the first. */
1235 || (code == PLUS_EXPR && sgn1 > 0)
1236 /* For subtraction, the operands must be of different
1237 signs to yield an overflow. Its sign is therefore
1238 that of the first operand or the opposite of that
1239 of the second operand. A first operand of 0 counts
1240 as positive here, for the corner case 0 - (-INF),
1241 which overflows, but must yield +INF. */
1242 || (code == MINUS_EXPR && sgn1 >= 0)
1243 /* For division, the only case is -INF / -1 = +INF. */
1244 || code == TRUNC_DIV_EXPR
1245 || code == FLOOR_DIV_EXPR
1246 || code == CEIL_DIV_EXPR
1247 || code == EXACT_DIV_EXPR
1248 || code == ROUND_DIV_EXPR)
1249 return TYPE_MAX_VALUE (TREE_TYPE (res));
1250 else
1251 return TYPE_MIN_VALUE (TREE_TYPE (res));
1254 return res;
1258 /* Extract range information from a binary expression EXPR based on
1259 the ranges of each of its operands and the expression code. */
1261 static void
1262 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1264 enum tree_code code = TREE_CODE (expr);
1265 enum value_range_type type;
1266 tree op0, op1, min, max;
1267 int cmp;
1268 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1269 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1271 /* Not all binary expressions can be applied to ranges in a
1272 meaningful way. Handle only arithmetic operations. */
1273 if (code != PLUS_EXPR
1274 && code != MINUS_EXPR
1275 && code != MULT_EXPR
1276 && code != TRUNC_DIV_EXPR
1277 && code != FLOOR_DIV_EXPR
1278 && code != CEIL_DIV_EXPR
1279 && code != EXACT_DIV_EXPR
1280 && code != ROUND_DIV_EXPR
1281 && code != MIN_EXPR
1282 && code != MAX_EXPR
1283 && code != BIT_AND_EXPR
1284 && code != TRUTH_ANDIF_EXPR
1285 && code != TRUTH_ORIF_EXPR
1286 && code != TRUTH_AND_EXPR
1287 && code != TRUTH_OR_EXPR)
1289 set_value_range_to_varying (vr);
1290 return;
1293 /* Get value ranges for each operand. For constant operands, create
1294 a new value range with the operand to simplify processing. */
1295 op0 = TREE_OPERAND (expr, 0);
1296 if (TREE_CODE (op0) == SSA_NAME)
1297 vr0 = *(get_value_range (op0));
1298 else if (is_gimple_min_invariant (op0))
1299 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1300 else
1301 set_value_range_to_varying (&vr0);
1303 op1 = TREE_OPERAND (expr, 1);
1304 if (TREE_CODE (op1) == SSA_NAME)
1305 vr1 = *(get_value_range (op1));
1306 else if (is_gimple_min_invariant (op1))
1307 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1308 else
1309 set_value_range_to_varying (&vr1);
1311 /* If either range is UNDEFINED, so is the result. */
1312 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1314 set_value_range_to_undefined (vr);
1315 return;
1318 /* The type of the resulting value range defaults to VR0.TYPE. */
1319 type = vr0.type;
1321 /* Refuse to operate on VARYING ranges, ranges of different kinds
1322 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1323 because we may be able to derive a useful range even if one of
1324 the operands is VR_VARYING or symbolic range. TODO, we may be
1325 able to derive anti-ranges in some cases. */
1326 if (code != BIT_AND_EXPR
1327 && code != TRUTH_AND_EXPR
1328 && code != TRUTH_OR_EXPR
1329 && (vr0.type == VR_VARYING
1330 || vr1.type == VR_VARYING
1331 || vr0.type != vr1.type
1332 || symbolic_range_p (&vr0)
1333 || symbolic_range_p (&vr1)))
1335 set_value_range_to_varying (vr);
1336 return;
1339 /* Now evaluate the expression to determine the new range. */
1340 if (POINTER_TYPE_P (TREE_TYPE (expr))
1341 || POINTER_TYPE_P (TREE_TYPE (op0))
1342 || POINTER_TYPE_P (TREE_TYPE (op1)))
1344 /* For pointer types, we are really only interested in asserting
1345 whether the expression evaluates to non-NULL. FIXME, we used
1346 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1347 ivopts is generating expressions with pointer multiplication
1348 in them. */
1349 if (code == PLUS_EXPR)
1351 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1352 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1353 else if (range_is_null (&vr0) && range_is_null (&vr1))
1354 set_value_range_to_null (vr, TREE_TYPE (expr));
1355 else
1356 set_value_range_to_varying (vr);
1358 else
1360 /* Subtracting from a pointer, may yield 0, so just drop the
1361 resulting range to varying. */
1362 set_value_range_to_varying (vr);
1365 return;
1368 /* For integer ranges, apply the operation to each end of the
1369 range and see what we end up with. */
1370 if (code == TRUTH_ANDIF_EXPR
1371 || code == TRUTH_ORIF_EXPR
1372 || code == TRUTH_AND_EXPR
1373 || code == TRUTH_OR_EXPR)
1375 /* If one of the operands is zero, we know that the whole
1376 expression evaluates zero. */
1377 if (code == TRUTH_AND_EXPR
1378 && ((vr0.type == VR_RANGE
1379 && integer_zerop (vr0.min)
1380 && integer_zerop (vr0.max))
1381 || (vr1.type == VR_RANGE
1382 && integer_zerop (vr1.min)
1383 && integer_zerop (vr1.max))))
1385 type = VR_RANGE;
1386 min = max = build_int_cst (TREE_TYPE (expr), 0);
1388 /* If one of the operands is one, we know that the whole
1389 expression evaluates one. */
1390 else if (code == TRUTH_OR_EXPR
1391 && ((vr0.type == VR_RANGE
1392 && integer_onep (vr0.min)
1393 && integer_onep (vr0.max))
1394 || (vr1.type == VR_RANGE
1395 && integer_onep (vr1.min)
1396 && integer_onep (vr1.max))))
1398 type = VR_RANGE;
1399 min = max = build_int_cst (TREE_TYPE (expr), 1);
1401 else if (vr0.type != VR_VARYING
1402 && vr1.type != VR_VARYING
1403 && vr0.type == vr1.type
1404 && !symbolic_range_p (&vr0)
1405 && !symbolic_range_p (&vr1))
1407 /* Boolean expressions cannot be folded with int_const_binop. */
1408 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1409 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1411 else
1413 set_value_range_to_varying (vr);
1414 return;
1417 else if (code == PLUS_EXPR
1418 || code == MIN_EXPR
1419 || code == MAX_EXPR)
1421 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1422 VR_VARYING. It would take more effort to compute a precise
1423 range for such a case. For example, if we have op0 == 1 and
1424 op1 == -1 with their ranges both being ~[0,0], we would have
1425 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1426 Note that we are guaranteed to have vr0.type == vr1.type at
1427 this point. */
1428 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1430 set_value_range_to_varying (vr);
1431 return;
1434 /* For operations that make the resulting range directly
1435 proportional to the original ranges, apply the operation to
1436 the same end of each range. */
1437 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1438 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1440 else if (code == MULT_EXPR
1441 || code == TRUNC_DIV_EXPR
1442 || code == FLOOR_DIV_EXPR
1443 || code == CEIL_DIV_EXPR
1444 || code == EXACT_DIV_EXPR
1445 || code == ROUND_DIV_EXPR)
1447 tree val[4];
1448 size_t i;
1450 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1451 drop to VR_VARYING. It would take more effort to compute a
1452 precise range for such a case. For example, if we have
1453 op0 == 65536 and op1 == 65536 with their ranges both being
1454 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1455 we cannot claim that the product is in ~[0,0]. Note that we
1456 are guaranteed to have vr0.type == vr1.type at this
1457 point. */
1458 if (code == MULT_EXPR
1459 && vr0.type == VR_ANTI_RANGE
1460 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1462 set_value_range_to_varying (vr);
1463 return;
1466 /* Multiplications and divisions are a bit tricky to handle,
1467 depending on the mix of signs we have in the two ranges, we
1468 need to operate on different values to get the minimum and
1469 maximum values for the new range. One approach is to figure
1470 out all the variations of range combinations and do the
1471 operations.
1473 However, this involves several calls to compare_values and it
1474 is pretty convoluted. It's simpler to do the 4 operations
1475 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1476 MAX1) and then figure the smallest and largest values to form
1477 the new range. */
1479 /* Divisions by zero result in a VARYING value. */
1480 if (code != MULT_EXPR
1481 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1483 set_value_range_to_varying (vr);
1484 return;
1487 /* Compute the 4 cross operations. */
1488 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1490 val[1] = (vr1.max != vr1.min)
1491 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1492 : NULL_TREE;
1494 val[2] = (vr0.max != vr0.min)
1495 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1496 : NULL_TREE;
1498 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1499 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1500 : NULL_TREE;
1502 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1503 of VAL[i]. */
1504 min = val[0];
1505 max = val[0];
1506 for (i = 1; i < 4; i++)
1508 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1509 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1510 break;
1512 if (val[i])
1514 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1516 /* If we found an overflowed value, set MIN and MAX
1517 to it so that we set the resulting range to
1518 VARYING. */
1519 min = max = val[i];
1520 break;
1523 if (compare_values (val[i], min) == -1)
1524 min = val[i];
1526 if (compare_values (val[i], max) == 1)
1527 max = val[i];
1531 else if (code == MINUS_EXPR)
1533 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1534 VR_VARYING. It would take more effort to compute a precise
1535 range for such a case. For example, if we have op0 == 1 and
1536 op1 == 1 with their ranges both being ~[0,0], we would have
1537 op0 - op1 == 0, so we cannot claim that the difference is in
1538 ~[0,0]. Note that we are guaranteed to have
1539 vr0.type == vr1.type at this point. */
1540 if (vr0.type == VR_ANTI_RANGE)
1542 set_value_range_to_varying (vr);
1543 return;
1546 /* For MINUS_EXPR, apply the operation to the opposite ends of
1547 each range. */
1548 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1549 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1551 else if (code == BIT_AND_EXPR)
1553 if (vr0.type == VR_RANGE
1554 && vr0.min == vr0.max
1555 && tree_expr_nonnegative_p (vr0.max)
1556 && TREE_CODE (vr0.max) == INTEGER_CST)
1558 min = build_int_cst (TREE_TYPE (expr), 0);
1559 max = vr0.max;
1561 else if (vr1.type == VR_RANGE
1562 && vr1.min == vr1.max
1563 && tree_expr_nonnegative_p (vr1.max)
1564 && TREE_CODE (vr1.max) == INTEGER_CST)
1566 type = VR_RANGE;
1567 min = build_int_cst (TREE_TYPE (expr), 0);
1568 max = vr1.max;
1570 else
1572 set_value_range_to_varying (vr);
1573 return;
1576 else
1577 gcc_unreachable ();
1579 /* If either MIN or MAX overflowed, then set the resulting range to
1580 VARYING. */
1581 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1582 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1584 set_value_range_to_varying (vr);
1585 return;
1588 cmp = compare_values (min, max);
1589 if (cmp == -2 || cmp == 1)
1591 /* If the new range has its limits swapped around (MIN > MAX),
1592 then the operation caused one of them to wrap around, mark
1593 the new range VARYING. */
1594 set_value_range_to_varying (vr);
1596 else
1597 set_value_range (vr, type, min, max, NULL);
1601 /* Extract range information from a unary expression EXPR based on
1602 the range of its operand and the expression code. */
1604 static void
1605 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1607 enum tree_code code = TREE_CODE (expr);
1608 tree min, max, op0;
1609 int cmp;
1610 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1612 /* Refuse to operate on certain unary expressions for which we
1613 cannot easily determine a resulting range. */
1614 if (code == FIX_TRUNC_EXPR
1615 || code == FIX_CEIL_EXPR
1616 || code == FIX_FLOOR_EXPR
1617 || code == FIX_ROUND_EXPR
1618 || code == FLOAT_EXPR
1619 || code == BIT_NOT_EXPR
1620 || code == NON_LVALUE_EXPR
1621 || code == CONJ_EXPR)
1623 set_value_range_to_varying (vr);
1624 return;
1627 /* Get value ranges for the operand. For constant operands, create
1628 a new value range with the operand to simplify processing. */
1629 op0 = TREE_OPERAND (expr, 0);
1630 if (TREE_CODE (op0) == SSA_NAME)
1631 vr0 = *(get_value_range (op0));
1632 else if (is_gimple_min_invariant (op0))
1633 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1634 else
1635 set_value_range_to_varying (&vr0);
1637 /* If VR0 is UNDEFINED, so is the result. */
1638 if (vr0.type == VR_UNDEFINED)
1640 set_value_range_to_undefined (vr);
1641 return;
1644 /* Refuse to operate on varying and symbolic ranges. Also, if the
1645 operand is neither a pointer nor an integral type, set the
1646 resulting range to VARYING. TODO, in some cases we may be able
1647 to derive anti-ranges (like nonzero values). */
1648 if (vr0.type == VR_VARYING
1649 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1650 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1651 || symbolic_range_p (&vr0))
1653 set_value_range_to_varying (vr);
1654 return;
1657 /* If the expression involves pointers, we are only interested in
1658 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1659 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1661 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1662 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1663 else if (range_is_null (&vr0))
1664 set_value_range_to_null (vr, TREE_TYPE (expr));
1665 else
1666 set_value_range_to_varying (vr);
1668 return;
1671 /* Handle unary expressions on integer ranges. */
1672 if (code == NOP_EXPR || code == CONVERT_EXPR)
1674 tree inner_type = TREE_TYPE (op0);
1675 tree outer_type = TREE_TYPE (expr);
1677 /* If VR0 represents a simple range, then try to convert
1678 the min and max values for the range to the same type
1679 as OUTER_TYPE. If the results compare equal to VR0's
1680 min and max values and the new min is still less than
1681 or equal to the new max, then we can safely use the newly
1682 computed range for EXPR. This allows us to compute
1683 accurate ranges through many casts. */
1684 if (vr0.type == VR_RANGE)
1686 tree new_min, new_max;
1688 /* Convert VR0's min/max to OUTER_TYPE. */
1689 new_min = fold_convert (outer_type, vr0.min);
1690 new_max = fold_convert (outer_type, vr0.max);
1692 /* Verify the new min/max values are gimple values and
1693 that they compare equal to VR0's min/max values. */
1694 if (is_gimple_val (new_min)
1695 && is_gimple_val (new_max)
1696 && tree_int_cst_equal (new_min, vr0.min)
1697 && tree_int_cst_equal (new_max, vr0.max)
1698 && compare_values (new_min, new_max) <= 0
1699 && compare_values (new_min, new_max) >= -1)
1701 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1702 return;
1706 /* When converting types of different sizes, set the result to
1707 VARYING. Things like sign extensions and precision loss may
1708 change the range. For instance, if x_3 is of type 'long long
1709 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1710 is impossible to know at compile time whether y_5 will be
1711 ~[0, 0]. */
1712 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1713 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1715 set_value_range_to_varying (vr);
1716 return;
1720 /* Apply the operation to each end of the range and see what we end
1721 up with. */
1722 if (code == NEGATE_EXPR
1723 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1725 /* NEGATE_EXPR flips the range around. */
1726 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1727 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1728 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1730 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1731 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1732 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1735 else if (code == NEGATE_EXPR
1736 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1738 if (!range_includes_zero_p (&vr0))
1740 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1741 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1743 else
1745 if (range_is_null (&vr0))
1746 set_value_range_to_null (vr, TREE_TYPE (expr));
1747 else
1748 set_value_range_to_varying (vr);
1749 return;
1752 else if (code == ABS_EXPR
1753 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1755 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1756 useful range. */
1757 if (flag_wrapv
1758 && ((vr0.type == VR_RANGE
1759 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1760 || (vr0.type == VR_ANTI_RANGE
1761 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1762 && !range_includes_zero_p (&vr0))))
1764 set_value_range_to_varying (vr);
1765 return;
1768 /* ABS_EXPR may flip the range around, if the original range
1769 included negative values. */
1770 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1771 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1772 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1774 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1776 cmp = compare_values (min, max);
1778 /* If a VR_ANTI_RANGEs contains zero, then we have
1779 ~[-INF, min(MIN, MAX)]. */
1780 if (vr0.type == VR_ANTI_RANGE)
1782 if (range_includes_zero_p (&vr0))
1784 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1786 /* Take the lower of the two values. */
1787 if (cmp != 1)
1788 max = min;
1790 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1791 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1792 flag_wrapv is set and the original anti-range doesn't include
1793 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1794 min = (flag_wrapv && vr0.min != type_min_value
1795 ? int_const_binop (PLUS_EXPR,
1796 type_min_value,
1797 integer_one_node, 0)
1798 : type_min_value);
1800 else
1802 /* All else has failed, so create the range [0, INF], even for
1803 flag_wrapv since TYPE_MIN_VALUE is in the original
1804 anti-range. */
1805 vr0.type = VR_RANGE;
1806 min = build_int_cst (TREE_TYPE (expr), 0);
1807 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1811 /* If the range contains zero then we know that the minimum value in the
1812 range will be zero. */
1813 else if (range_includes_zero_p (&vr0))
1815 if (cmp == 1)
1816 max = min;
1817 min = build_int_cst (TREE_TYPE (expr), 0);
1819 else
1821 /* If the range was reversed, swap MIN and MAX. */
1822 if (cmp == 1)
1824 tree t = min;
1825 min = max;
1826 max = t;
1830 else
1832 /* Otherwise, operate on each end of the range. */
1833 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1834 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1837 cmp = compare_values (min, max);
1838 if (cmp == -2 || cmp == 1)
1840 /* If the new range has its limits swapped around (MIN > MAX),
1841 then the operation caused one of them to wrap around, mark
1842 the new range VARYING. */
1843 set_value_range_to_varying (vr);
1845 else
1846 set_value_range (vr, vr0.type, min, max, NULL);
1850 /* Extract range information from a comparison expression EXPR based
1851 on the range of its operand and the expression code. */
1853 static void
1854 extract_range_from_comparison (value_range_t *vr, tree expr)
1856 tree val = vrp_evaluate_conditional (expr, false);
1857 if (val)
1859 /* Since this expression was found on the RHS of an assignment,
1860 its type may be different from _Bool. Convert VAL to EXPR's
1861 type. */
1862 val = fold_convert (TREE_TYPE (expr), val);
1863 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1865 else
1866 set_value_range_to_varying (vr);
1870 /* Try to compute a useful range out of expression EXPR and store it
1871 in *VR. */
1873 static void
1874 extract_range_from_expr (value_range_t *vr, tree expr)
1876 enum tree_code code = TREE_CODE (expr);
1878 if (code == ASSERT_EXPR)
1879 extract_range_from_assert (vr, expr);
1880 else if (code == SSA_NAME)
1881 extract_range_from_ssa_name (vr, expr);
1882 else if (TREE_CODE_CLASS (code) == tcc_binary
1883 || code == TRUTH_ANDIF_EXPR
1884 || code == TRUTH_ORIF_EXPR
1885 || code == TRUTH_AND_EXPR
1886 || code == TRUTH_OR_EXPR
1887 || code == TRUTH_XOR_EXPR)
1888 extract_range_from_binary_expr (vr, expr);
1889 else if (TREE_CODE_CLASS (code) == tcc_unary)
1890 extract_range_from_unary_expr (vr, expr);
1891 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1892 extract_range_from_comparison (vr, expr);
1893 else if (is_gimple_min_invariant (expr))
1894 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1895 else
1896 set_value_range_to_varying (vr);
1898 /* If we got a varying range from the tests above, try a final
1899 time to derive a nonnegative or nonzero range. This time
1900 relying primarily on generic routines in fold in conjunction
1901 with range data. */
1902 if (vr->type == VR_VARYING)
1904 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1905 && vrp_expr_computes_nonnegative (expr))
1906 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1907 else if (vrp_expr_computes_nonzero (expr))
1908 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1912 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1913 would be profitable to adjust VR using scalar evolution information
1914 for VAR. If so, update VR with the new limits. */
1916 static void
1917 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1918 tree var)
1920 tree init, step, chrec;
1921 bool init_is_max, unknown_max;
1923 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1924 better opportunities than a regular range, but I'm not sure. */
1925 if (vr->type == VR_ANTI_RANGE)
1926 return;
1928 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1929 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1930 return;
1932 init = initial_condition_in_loop_num (chrec, loop->num);
1933 step = evolution_part_in_loop_num (chrec, loop->num);
1935 /* If STEP is symbolic, we can't know whether INIT will be the
1936 minimum or maximum value in the range. */
1937 if (step == NULL_TREE
1938 || !is_gimple_min_invariant (step))
1939 return;
1941 /* Do not adjust ranges when chrec may wrap. */
1942 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1943 current_loops->parray[CHREC_VARIABLE (chrec)],
1944 &init_is_max, &unknown_max)
1945 || unknown_max)
1946 return;
1948 if (!POINTER_TYPE_P (TREE_TYPE (init))
1949 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1951 /* For VARYING or UNDEFINED ranges, just about anything we get
1952 from scalar evolutions should be better. */
1953 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
1954 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
1956 if (init_is_max)
1957 max = init;
1958 else
1959 min = init;
1961 /* If we would create an invalid range, then just assume we
1962 know absolutely nothing. This may be over-conservative,
1963 but it's clearly safe. */
1964 if (compare_values (min, max) == 1)
1965 return;
1967 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1969 else if (vr->type == VR_RANGE)
1971 tree min = vr->min;
1972 tree max = vr->max;
1974 if (init_is_max)
1976 /* INIT is the maximum value. If INIT is lower than VR->MAX
1977 but no smaller than VR->MIN, set VR->MAX to INIT. */
1978 if (compare_values (init, max) == -1)
1980 max = init;
1982 /* If we just created an invalid range with the minimum
1983 greater than the maximum, take the minimum all the
1984 way to -INF. */
1985 if (compare_values (min, max) == 1)
1986 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1989 else
1991 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1992 if (compare_values (init, min) == 1)
1994 min = init;
1996 /* If we just created an invalid range with the minimum
1997 greater than the maximum, take the maximum all the
1998 way to +INF. */
1999 if (compare_values (min, max) == 1)
2000 max = TYPE_MAX_VALUE (TREE_TYPE (max));
2004 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2009 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2011 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2012 all the values in the ranges.
2014 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2016 - Return NULL_TREE if it is not always possible to determine the
2017 value of the comparison. */
2020 static tree
2021 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2023 /* VARYING or UNDEFINED ranges cannot be compared. */
2024 if (vr0->type == VR_VARYING
2025 || vr0->type == VR_UNDEFINED
2026 || vr1->type == VR_VARYING
2027 || vr1->type == VR_UNDEFINED)
2028 return NULL_TREE;
2030 /* Anti-ranges need to be handled separately. */
2031 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2033 /* If both are anti-ranges, then we cannot compute any
2034 comparison. */
2035 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2036 return NULL_TREE;
2038 /* These comparisons are never statically computable. */
2039 if (comp == GT_EXPR
2040 || comp == GE_EXPR
2041 || comp == LT_EXPR
2042 || comp == LE_EXPR)
2043 return NULL_TREE;
2045 /* Equality can be computed only between a range and an
2046 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2047 if (vr0->type == VR_RANGE)
2049 /* To simplify processing, make VR0 the anti-range. */
2050 value_range_t *tmp = vr0;
2051 vr0 = vr1;
2052 vr1 = tmp;
2055 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2057 if (compare_values (vr0->min, vr1->min) == 0
2058 && compare_values (vr0->max, vr1->max) == 0)
2059 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2061 return NULL_TREE;
2064 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2065 operands around and change the comparison code. */
2066 if (comp == GT_EXPR || comp == GE_EXPR)
2068 value_range_t *tmp;
2069 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2070 tmp = vr0;
2071 vr0 = vr1;
2072 vr1 = tmp;
2075 if (comp == EQ_EXPR)
2077 /* Equality may only be computed if both ranges represent
2078 exactly one value. */
2079 if (compare_values (vr0->min, vr0->max) == 0
2080 && compare_values (vr1->min, vr1->max) == 0)
2082 int cmp_min = compare_values (vr0->min, vr1->min);
2083 int cmp_max = compare_values (vr0->max, vr1->max);
2084 if (cmp_min == 0 && cmp_max == 0)
2085 return boolean_true_node;
2086 else if (cmp_min != -2 && cmp_max != -2)
2087 return boolean_false_node;
2089 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2090 else if (compare_values (vr0->min, vr1->max) == 1
2091 || compare_values (vr1->min, vr0->max) == 1)
2092 return boolean_false_node;
2094 return NULL_TREE;
2096 else if (comp == NE_EXPR)
2098 int cmp1, cmp2;
2100 /* If VR0 is completely to the left or completely to the right
2101 of VR1, they are always different. Notice that we need to
2102 make sure that both comparisons yield similar results to
2103 avoid comparing values that cannot be compared at
2104 compile-time. */
2105 cmp1 = compare_values (vr0->max, vr1->min);
2106 cmp2 = compare_values (vr0->min, vr1->max);
2107 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2108 return boolean_true_node;
2110 /* If VR0 and VR1 represent a single value and are identical,
2111 return false. */
2112 else if (compare_values (vr0->min, vr0->max) == 0
2113 && compare_values (vr1->min, vr1->max) == 0
2114 && compare_values (vr0->min, vr1->min) == 0
2115 && compare_values (vr0->max, vr1->max) == 0)
2116 return boolean_false_node;
2118 /* Otherwise, they may or may not be different. */
2119 else
2120 return NULL_TREE;
2122 else if (comp == LT_EXPR || comp == LE_EXPR)
2124 int tst;
2126 /* If VR0 is to the left of VR1, return true. */
2127 tst = compare_values (vr0->max, vr1->min);
2128 if ((comp == LT_EXPR && tst == -1)
2129 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2130 return boolean_true_node;
2132 /* If VR0 is to the right of VR1, return false. */
2133 tst = compare_values (vr0->min, vr1->max);
2134 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2135 || (comp == LE_EXPR && tst == 1))
2136 return boolean_false_node;
2138 /* Otherwise, we don't know. */
2139 return NULL_TREE;
2142 gcc_unreachable ();
2146 /* Given a value range VR, a value VAL and a comparison code COMP, return
2147 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2148 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2149 always returns false. Return NULL_TREE if it is not always
2150 possible to determine the value of the comparison. */
2152 static tree
2153 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2155 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2156 return NULL_TREE;
2158 /* Anti-ranges need to be handled separately. */
2159 if (vr->type == VR_ANTI_RANGE)
2161 /* For anti-ranges, the only predicates that we can compute at
2162 compile time are equality and inequality. */
2163 if (comp == GT_EXPR
2164 || comp == GE_EXPR
2165 || comp == LT_EXPR
2166 || comp == LE_EXPR)
2167 return NULL_TREE;
2169 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2170 if (value_inside_range (val, vr) == 1)
2171 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2173 return NULL_TREE;
2176 if (comp == EQ_EXPR)
2178 /* EQ_EXPR may only be computed if VR represents exactly
2179 one value. */
2180 if (compare_values (vr->min, vr->max) == 0)
2182 int cmp = compare_values (vr->min, val);
2183 if (cmp == 0)
2184 return boolean_true_node;
2185 else if (cmp == -1 || cmp == 1 || cmp == 2)
2186 return boolean_false_node;
2188 else if (compare_values (val, vr->min) == -1
2189 || compare_values (vr->max, val) == -1)
2190 return boolean_false_node;
2192 return NULL_TREE;
2194 else if (comp == NE_EXPR)
2196 /* If VAL is not inside VR, then they are always different. */
2197 if (compare_values (vr->max, val) == -1
2198 || compare_values (vr->min, val) == 1)
2199 return boolean_true_node;
2201 /* If VR represents exactly one value equal to VAL, then return
2202 false. */
2203 if (compare_values (vr->min, vr->max) == 0
2204 && compare_values (vr->min, val) == 0)
2205 return boolean_false_node;
2207 /* Otherwise, they may or may not be different. */
2208 return NULL_TREE;
2210 else if (comp == LT_EXPR || comp == LE_EXPR)
2212 int tst;
2214 /* If VR is to the left of VAL, return true. */
2215 tst = compare_values (vr->max, val);
2216 if ((comp == LT_EXPR && tst == -1)
2217 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2218 return boolean_true_node;
2220 /* If VR is to the right of VAL, return false. */
2221 tst = compare_values (vr->min, val);
2222 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2223 || (comp == LE_EXPR && tst == 1))
2224 return boolean_false_node;
2226 /* Otherwise, we don't know. */
2227 return NULL_TREE;
2229 else if (comp == GT_EXPR || comp == GE_EXPR)
2231 int tst;
2233 /* If VR is to the right of VAL, return true. */
2234 tst = compare_values (vr->min, val);
2235 if ((comp == GT_EXPR && tst == 1)
2236 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2237 return boolean_true_node;
2239 /* If VR is to the left of VAL, return false. */
2240 tst = compare_values (vr->max, val);
2241 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2242 || (comp == GE_EXPR && tst == -1))
2243 return boolean_false_node;
2245 /* Otherwise, we don't know. */
2246 return NULL_TREE;
2249 gcc_unreachable ();
2253 /* Debugging dumps. */
2255 void dump_value_range (FILE *, value_range_t *);
2256 void debug_value_range (value_range_t *);
2257 void dump_all_value_ranges (FILE *);
2258 void debug_all_value_ranges (void);
2259 void dump_vr_equiv (FILE *, bitmap);
2260 void debug_vr_equiv (bitmap);
2263 /* Dump value range VR to FILE. */
2265 void
2266 dump_value_range (FILE *file, value_range_t *vr)
2268 if (vr == NULL)
2269 fprintf (file, "[]");
2270 else if (vr->type == VR_UNDEFINED)
2271 fprintf (file, "UNDEFINED");
2272 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2274 tree type = TREE_TYPE (vr->min);
2276 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2278 if (INTEGRAL_TYPE_P (type)
2279 && !TYPE_UNSIGNED (type)
2280 && vr->min == TYPE_MIN_VALUE (type))
2281 fprintf (file, "-INF");
2282 else
2283 print_generic_expr (file, vr->min, 0);
2285 fprintf (file, ", ");
2287 if (INTEGRAL_TYPE_P (type)
2288 && vr->max == TYPE_MAX_VALUE (type))
2289 fprintf (file, "+INF");
2290 else
2291 print_generic_expr (file, vr->max, 0);
2293 fprintf (file, "]");
2295 if (vr->equiv)
2297 bitmap_iterator bi;
2298 unsigned i, c = 0;
2300 fprintf (file, " EQUIVALENCES: { ");
2302 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2304 print_generic_expr (file, ssa_name (i), 0);
2305 fprintf (file, " ");
2306 c++;
2309 fprintf (file, "} (%u elements)", c);
2312 else if (vr->type == VR_VARYING)
2313 fprintf (file, "VARYING");
2314 else
2315 fprintf (file, "INVALID RANGE");
2319 /* Dump value range VR to stderr. */
2321 void
2322 debug_value_range (value_range_t *vr)
2324 dump_value_range (stderr, vr);
2328 /* Dump value ranges of all SSA_NAMEs to FILE. */
2330 void
2331 dump_all_value_ranges (FILE *file)
2333 size_t i;
2335 for (i = 0; i < num_ssa_names; i++)
2337 if (vr_value[i])
2339 print_generic_expr (file, ssa_name (i), 0);
2340 fprintf (file, ": ");
2341 dump_value_range (file, vr_value[i]);
2342 fprintf (file, "\n");
2346 fprintf (file, "\n");
2350 /* Dump all value ranges to stderr. */
2352 void
2353 debug_all_value_ranges (void)
2355 dump_all_value_ranges (stderr);
2359 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2360 create a new SSA name N and return the assertion assignment
2361 'V = ASSERT_EXPR <V, V OP W>'. */
2363 static tree
2364 build_assert_expr_for (tree cond, tree v)
2366 tree n, assertion;
2368 gcc_assert (TREE_CODE (v) == SSA_NAME);
2369 n = duplicate_ssa_name (v, NULL_TREE);
2371 if (COMPARISON_CLASS_P (cond))
2373 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2374 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2376 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2378 /* Given !V, build the assignment N = false. */
2379 tree op0 = TREE_OPERAND (cond, 0);
2380 gcc_assert (op0 == v);
2381 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2383 else if (TREE_CODE (cond) == SSA_NAME)
2385 /* Given V, build the assignment N = true. */
2386 gcc_assert (v == cond);
2387 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2389 else
2390 gcc_unreachable ();
2392 SSA_NAME_DEF_STMT (n) = assertion;
2394 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2395 operand of the ASSERT_EXPR. Register the new name and the old one
2396 in the replacement table so that we can fix the SSA web after
2397 adding all the ASSERT_EXPRs. */
2398 register_new_name_mapping (n, v);
2400 return assertion;
2404 /* Return false if EXPR is a predicate expression involving floating
2405 point values. */
2407 static inline bool
2408 fp_predicate (tree expr)
2410 return (COMPARISON_CLASS_P (expr)
2411 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2415 /* If the range of values taken by OP can be inferred after STMT executes,
2416 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2417 describes the inferred range. Return true if a range could be
2418 inferred. */
2420 static bool
2421 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2423 *val_p = NULL_TREE;
2424 *comp_code_p = ERROR_MARK;
2426 /* Do not attempt to infer anything in names that flow through
2427 abnormal edges. */
2428 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2429 return false;
2431 /* Similarly, don't infer anything from statements that may throw
2432 exceptions. */
2433 if (tree_could_throw_p (stmt))
2434 return false;
2436 /* If STMT is the last statement of a basic block with no
2437 successors, there is no point inferring anything about any of its
2438 operands. We would not be able to find a proper insertion point
2439 for the assertion, anyway. */
2440 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2441 return false;
2443 /* We can only assume that a pointer dereference will yield
2444 non-NULL if -fdelete-null-pointer-checks is enabled. */
2445 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2447 bool is_store;
2448 unsigned num_uses, num_derefs;
2450 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2451 if (num_derefs > 0)
2453 *val_p = build_int_cst (TREE_TYPE (op), 0);
2454 *comp_code_p = NE_EXPR;
2455 return true;
2459 return false;
2463 void dump_asserts_for (FILE *, tree);
2464 void debug_asserts_for (tree);
2465 void dump_all_asserts (FILE *);
2466 void debug_all_asserts (void);
2468 /* Dump all the registered assertions for NAME to FILE. */
2470 void
2471 dump_asserts_for (FILE *file, tree name)
2473 assert_locus_t loc;
2475 fprintf (file, "Assertions to be inserted for ");
2476 print_generic_expr (file, name, 0);
2477 fprintf (file, "\n");
2479 loc = asserts_for[SSA_NAME_VERSION (name)];
2480 while (loc)
2482 fprintf (file, "\t");
2483 print_generic_expr (file, bsi_stmt (loc->si), 0);
2484 fprintf (file, "\n\tBB #%d", loc->bb->index);
2485 if (loc->e)
2487 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2488 loc->e->dest->index);
2489 dump_edge_info (file, loc->e, 0);
2491 fprintf (file, "\n\tPREDICATE: ");
2492 print_generic_expr (file, name, 0);
2493 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2494 print_generic_expr (file, loc->val, 0);
2495 fprintf (file, "\n\n");
2496 loc = loc->next;
2499 fprintf (file, "\n");
2503 /* Dump all the registered assertions for NAME to stderr. */
2505 void
2506 debug_asserts_for (tree name)
2508 dump_asserts_for (stderr, name);
2512 /* Dump all the registered assertions for all the names to FILE. */
2514 void
2515 dump_all_asserts (FILE *file)
2517 unsigned i;
2518 bitmap_iterator bi;
2520 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2521 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2522 dump_asserts_for (file, ssa_name (i));
2523 fprintf (file, "\n");
2527 /* Dump all the registered assertions for all the names to stderr. */
2529 void
2530 debug_all_asserts (void)
2532 dump_all_asserts (stderr);
2536 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2537 'NAME COMP_CODE VAL' at a location that dominates block BB or
2538 E->DEST, then register this location as a possible insertion point
2539 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2541 BB, E and SI provide the exact insertion point for the new
2542 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2543 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2544 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2545 must not be NULL. */
2547 static void
2548 register_new_assert_for (tree name,
2549 enum tree_code comp_code,
2550 tree val,
2551 basic_block bb,
2552 edge e,
2553 block_stmt_iterator si)
2555 assert_locus_t n, loc, last_loc;
2556 bool found;
2557 basic_block dest_bb;
2559 #if defined ENABLE_CHECKING
2560 gcc_assert (bb == NULL || e == NULL);
2562 if (e == NULL)
2563 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2564 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2565 #endif
2567 /* The new assertion A will be inserted at BB or E. We need to
2568 determine if the new location is dominated by a previously
2569 registered location for A. If we are doing an edge insertion,
2570 assume that A will be inserted at E->DEST. Note that this is not
2571 necessarily true.
2573 If E is a critical edge, it will be split. But even if E is
2574 split, the new block will dominate the same set of blocks that
2575 E->DEST dominates.
2577 The reverse, however, is not true, blocks dominated by E->DEST
2578 will not be dominated by the new block created to split E. So,
2579 if the insertion location is on a critical edge, we will not use
2580 the new location to move another assertion previously registered
2581 at a block dominated by E->DEST. */
2582 dest_bb = (bb) ? bb : e->dest;
2584 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2585 VAL at a block dominating DEST_BB, then we don't need to insert a new
2586 one. Similarly, if the same assertion already exists at a block
2587 dominated by DEST_BB and the new location is not on a critical
2588 edge, then update the existing location for the assertion (i.e.,
2589 move the assertion up in the dominance tree).
2591 Note, this is implemented as a simple linked list because there
2592 should not be more than a handful of assertions registered per
2593 name. If this becomes a performance problem, a table hashed by
2594 COMP_CODE and VAL could be implemented. */
2595 loc = asserts_for[SSA_NAME_VERSION (name)];
2596 last_loc = loc;
2597 found = false;
2598 while (loc)
2600 if (loc->comp_code == comp_code
2601 && (loc->val == val
2602 || operand_equal_p (loc->val, val, 0)))
2604 /* If the assertion NAME COMP_CODE VAL has already been
2605 registered at a basic block that dominates DEST_BB, then
2606 we don't need to insert the same assertion again. Note
2607 that we don't check strict dominance here to avoid
2608 replicating the same assertion inside the same basic
2609 block more than once (e.g., when a pointer is
2610 dereferenced several times inside a block).
2612 An exception to this rule are edge insertions. If the
2613 new assertion is to be inserted on edge E, then it will
2614 dominate all the other insertions that we may want to
2615 insert in DEST_BB. So, if we are doing an edge
2616 insertion, don't do this dominance check. */
2617 if (e == NULL
2618 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2619 return;
2621 /* Otherwise, if E is not a critical edge and DEST_BB
2622 dominates the existing location for the assertion, move
2623 the assertion up in the dominance tree by updating its
2624 location information. */
2625 if ((e == NULL || !EDGE_CRITICAL_P (e))
2626 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2628 loc->bb = dest_bb;
2629 loc->e = e;
2630 loc->si = si;
2631 return;
2635 /* Update the last node of the list and move to the next one. */
2636 last_loc = loc;
2637 loc = loc->next;
2640 /* If we didn't find an assertion already registered for
2641 NAME COMP_CODE VAL, add a new one at the end of the list of
2642 assertions associated with NAME. */
2643 n = XNEW (struct assert_locus_d);
2644 n->bb = dest_bb;
2645 n->e = e;
2646 n->si = si;
2647 n->comp_code = comp_code;
2648 n->val = val;
2649 n->next = NULL;
2651 if (last_loc)
2652 last_loc->next = n;
2653 else
2654 asserts_for[SSA_NAME_VERSION (name)] = n;
2656 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2660 /* Try to register an edge assertion for SSA name NAME on edge E for
2661 the conditional jump pointed to by SI. Return true if an assertion
2662 for NAME could be registered. */
2664 static bool
2665 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2667 tree val, stmt;
2668 enum tree_code comp_code;
2670 stmt = bsi_stmt (si);
2672 /* Do not attempt to infer anything in names that flow through
2673 abnormal edges. */
2674 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2675 return false;
2677 /* If NAME was not found in the sub-graph reachable from E, then
2678 there's nothing to do. */
2679 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2680 return false;
2682 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2683 Register an assertion for NAME according to the value that NAME
2684 takes on edge E. */
2685 if (TREE_CODE (stmt) == COND_EXPR)
2687 /* If BB ends in a COND_EXPR then NAME then we should insert
2688 the original predicate on EDGE_TRUE_VALUE and the
2689 opposite predicate on EDGE_FALSE_VALUE. */
2690 tree cond = COND_EXPR_COND (stmt);
2691 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2693 /* Predicates may be a single SSA name or NAME OP VAL. */
2694 if (cond == name)
2696 /* If the predicate is a name, it must be NAME, in which
2697 case we create the predicate NAME == true or
2698 NAME == false accordingly. */
2699 comp_code = EQ_EXPR;
2700 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2702 else
2704 /* Otherwise, we have a comparison of the form NAME COMP VAL
2705 or VAL COMP NAME. */
2706 if (name == TREE_OPERAND (cond, 1))
2708 /* If the predicate is of the form VAL COMP NAME, flip
2709 COMP around because we need to register NAME as the
2710 first operand in the predicate. */
2711 comp_code = swap_tree_comparison (TREE_CODE (cond));
2712 val = TREE_OPERAND (cond, 0);
2714 else
2716 /* The comparison is of the form NAME COMP VAL, so the
2717 comparison code remains unchanged. */
2718 comp_code = TREE_CODE (cond);
2719 val = TREE_OPERAND (cond, 1);
2722 /* If we are inserting the assertion on the ELSE edge, we
2723 need to invert the sign comparison. */
2724 if (is_else_edge)
2725 comp_code = invert_tree_comparison (comp_code, 0);
2727 /* Do not register always-false predicates. FIXME, this
2728 works around a limitation in fold() when dealing with
2729 enumerations. Given 'enum { N1, N2 } x;', fold will not
2730 fold 'if (x > N2)' to 'if (0)'. */
2731 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2732 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2733 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2735 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2736 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2738 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2739 return false;
2741 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2742 return false;
2746 else
2748 /* FIXME. Handle SWITCH_EXPR. */
2749 gcc_unreachable ();
2752 register_new_assert_for (name, comp_code, val, NULL, e, si);
2753 return true;
2757 static bool find_assert_locations (basic_block bb);
2759 /* Determine whether the outgoing edges of BB should receive an
2760 ASSERT_EXPR for each of the operands of BB's last statement. The
2761 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2763 If any of the sub-graphs rooted at BB have an interesting use of
2764 the predicate operands, an assert location node is added to the
2765 list of assertions for the corresponding operands. */
2767 static bool
2768 find_conditional_asserts (basic_block bb)
2770 bool need_assert;
2771 block_stmt_iterator last_si;
2772 tree op, last;
2773 edge_iterator ei;
2774 edge e;
2775 ssa_op_iter iter;
2777 need_assert = false;
2778 last_si = bsi_last (bb);
2779 last = bsi_stmt (last_si);
2781 /* Look for uses of the operands in each of the sub-graphs
2782 rooted at BB. We need to check each of the outgoing edges
2783 separately, so that we know what kind of ASSERT_EXPR to
2784 insert. */
2785 FOR_EACH_EDGE (e, ei, bb->succs)
2787 if (e->dest == bb)
2788 continue;
2790 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2791 Otherwise, when we finish traversing each of the sub-graphs, we
2792 won't know whether the variables were found in the sub-graphs or
2793 if they had been found in a block upstream from BB.
2795 This is actually a bad idea is some cases, particularly jump
2796 threading. Consider a CFG like the following:
2806 Assume that one or more operands in the conditional at the
2807 end of block 0 are used in a conditional in block 2, but not
2808 anywhere in block 1. In this case we will not insert any
2809 assert statements in block 1, which may cause us to miss
2810 opportunities to optimize, particularly for jump threading. */
2811 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2812 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2814 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2815 to determine if any of the operands in the conditional
2816 predicate are used. */
2817 if (e->dest != bb)
2818 need_assert |= find_assert_locations (e->dest);
2820 /* Register the necessary assertions for each operand in the
2821 conditional predicate. */
2822 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2823 need_assert |= register_edge_assert_for (op, e, last_si);
2826 /* Finally, indicate that we have found the operands in the
2827 conditional. */
2828 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2829 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2831 return need_assert;
2835 /* Traverse all the statements in block BB looking for statements that
2836 may generate useful assertions for the SSA names in their operand.
2837 If a statement produces a useful assertion A for name N_i, then the
2838 list of assertions already generated for N_i is scanned to
2839 determine if A is actually needed.
2841 If N_i already had the assertion A at a location dominating the
2842 current location, then nothing needs to be done. Otherwise, the
2843 new location for A is recorded instead.
2845 1- For every statement S in BB, all the variables used by S are
2846 added to bitmap FOUND_IN_SUBGRAPH.
2848 2- If statement S uses an operand N in a way that exposes a known
2849 value range for N, then if N was not already generated by an
2850 ASSERT_EXPR, create a new assert location for N. For instance,
2851 if N is a pointer and the statement dereferences it, we can
2852 assume that N is not NULL.
2854 3- COND_EXPRs are a special case of #2. We can derive range
2855 information from the predicate but need to insert different
2856 ASSERT_EXPRs for each of the sub-graphs rooted at the
2857 conditional block. If the last statement of BB is a conditional
2858 expression of the form 'X op Y', then
2860 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2862 b) If the conditional is the only entry point to the sub-graph
2863 corresponding to the THEN_CLAUSE, recurse into it. On
2864 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2865 an ASSERT_EXPR is added for the corresponding variable.
2867 c) Repeat step (b) on the ELSE_CLAUSE.
2869 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2871 For instance,
2873 if (a == 9)
2874 b = a;
2875 else
2876 b = c + 1;
2878 In this case, an assertion on the THEN clause is useful to
2879 determine that 'a' is always 9 on that edge. However, an assertion
2880 on the ELSE clause would be unnecessary.
2882 4- If BB does not end in a conditional expression, then we recurse
2883 into BB's dominator children.
2885 At the end of the recursive traversal, every SSA name will have a
2886 list of locations where ASSERT_EXPRs should be added. When a new
2887 location for name N is found, it is registered by calling
2888 register_new_assert_for. That function keeps track of all the
2889 registered assertions to prevent adding unnecessary assertions.
2890 For instance, if a pointer P_4 is dereferenced more than once in a
2891 dominator tree, only the location dominating all the dereference of
2892 P_4 will receive an ASSERT_EXPR.
2894 If this function returns true, then it means that there are names
2895 for which we need to generate ASSERT_EXPRs. Those assertions are
2896 inserted by process_assert_insertions.
2898 TODO. Handle SWITCH_EXPR. */
2900 static bool
2901 find_assert_locations (basic_block bb)
2903 block_stmt_iterator si;
2904 tree last, phi;
2905 bool need_assert;
2906 basic_block son;
2908 if (TEST_BIT (blocks_visited, bb->index))
2909 return false;
2911 SET_BIT (blocks_visited, bb->index);
2913 need_assert = false;
2915 /* Traverse all PHI nodes in BB marking used operands. */
2916 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2918 use_operand_p arg_p;
2919 ssa_op_iter i;
2921 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2923 tree arg = USE_FROM_PTR (arg_p);
2924 if (TREE_CODE (arg) == SSA_NAME)
2926 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2927 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2932 /* Traverse all the statements in BB marking used names and looking
2933 for statements that may infer assertions for their used operands. */
2934 last = NULL_TREE;
2935 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2937 tree stmt, op;
2938 ssa_op_iter i;
2940 stmt = bsi_stmt (si);
2942 /* See if we can derive an assertion for any of STMT's operands. */
2943 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2945 tree value;
2946 enum tree_code comp_code;
2948 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2949 the sub-graph of a conditional block, when we return from
2950 this recursive walk, our parent will use the
2951 FOUND_IN_SUBGRAPH bitset to determine if one of the
2952 operands it was looking for was present in the sub-graph. */
2953 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2955 /* If OP is used in such a way that we can infer a value
2956 range for it, and we don't find a previous assertion for
2957 it, create a new assertion location node for OP. */
2958 if (infer_value_range (stmt, op, &comp_code, &value))
2960 /* If we are able to infer a non-zero value range for OP,
2961 then walk backwards through the use-def chain to see if OP
2962 was set via a typecast.
2964 If so, then we can also infer a nonzero value range
2965 for the operand of the NOP_EXPR. */
2966 if (comp_code == NE_EXPR && integer_zerop (value))
2968 tree t = op;
2969 tree def_stmt = SSA_NAME_DEF_STMT (t);
2971 while (TREE_CODE (def_stmt) == MODIFY_EXPR
2972 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
2973 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
2974 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
2976 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
2977 def_stmt = SSA_NAME_DEF_STMT (t);
2979 /* Note we want to register the assert for the
2980 operand of the NOP_EXPR after SI, not after the
2981 conversion. */
2982 if (! has_single_use (t))
2984 register_new_assert_for (t, comp_code, value,
2985 bb, NULL, si);
2986 need_assert = true;
2991 /* If OP is used only once, namely in this STMT, don't
2992 bother creating an ASSERT_EXPR for it. Such an
2993 ASSERT_EXPR would do nothing but increase compile time. */
2994 if (!has_single_use (op))
2996 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2997 need_assert = true;
3002 /* Remember the last statement of the block. */
3003 last = stmt;
3006 /* If BB's last statement is a conditional expression
3007 involving integer operands, recurse into each of the sub-graphs
3008 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3009 if (last
3010 && TREE_CODE (last) == COND_EXPR
3011 && !fp_predicate (COND_EXPR_COND (last))
3012 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3013 need_assert |= find_conditional_asserts (bb);
3015 /* Recurse into the dominator children of BB. */
3016 for (son = first_dom_son (CDI_DOMINATORS, bb);
3017 son;
3018 son = next_dom_son (CDI_DOMINATORS, son))
3019 need_assert |= find_assert_locations (son);
3021 return need_assert;
3025 /* Create an ASSERT_EXPR for NAME and insert it in the location
3026 indicated by LOC. Return true if we made any edge insertions. */
3028 static bool
3029 process_assert_insertions_for (tree name, assert_locus_t loc)
3031 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3032 tree stmt, cond, assert_expr;
3033 edge_iterator ei;
3034 edge e;
3036 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3037 assert_expr = build_assert_expr_for (cond, name);
3039 if (loc->e)
3041 /* We have been asked to insert the assertion on an edge. This
3042 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3043 #if defined ENABLE_CHECKING
3044 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3045 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3046 #endif
3048 bsi_insert_on_edge (loc->e, assert_expr);
3049 return true;
3052 /* Otherwise, we can insert right after LOC->SI iff the
3053 statement must not be the last statement in the block. */
3054 stmt = bsi_stmt (loc->si);
3055 if (!stmt_ends_bb_p (stmt))
3057 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3058 return false;
3061 /* If STMT must be the last statement in BB, we can only insert new
3062 assertions on the non-abnormal edge out of BB. Note that since
3063 STMT is not control flow, there may only be one non-abnormal edge
3064 out of BB. */
3065 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3066 if (!(e->flags & EDGE_ABNORMAL))
3068 bsi_insert_on_edge (e, assert_expr);
3069 return true;
3072 gcc_unreachable ();
3076 /* Process all the insertions registered for every name N_i registered
3077 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3078 found in ASSERTS_FOR[i]. */
3080 static void
3081 process_assert_insertions (void)
3083 unsigned i;
3084 bitmap_iterator bi;
3085 bool update_edges_p = false;
3086 int num_asserts = 0;
3088 if (dump_file && (dump_flags & TDF_DETAILS))
3089 dump_all_asserts (dump_file);
3091 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3093 assert_locus_t loc = asserts_for[i];
3094 gcc_assert (loc);
3096 while (loc)
3098 assert_locus_t next = loc->next;
3099 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3100 free (loc);
3101 loc = next;
3102 num_asserts++;
3106 if (update_edges_p)
3107 bsi_commit_edge_inserts ();
3109 if (dump_file && (dump_flags & TDF_STATS))
3110 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3111 num_asserts);
3115 /* Traverse the flowgraph looking for conditional jumps to insert range
3116 expressions. These range expressions are meant to provide information
3117 to optimizations that need to reason in terms of value ranges. They
3118 will not be expanded into RTL. For instance, given:
3120 x = ...
3121 y = ...
3122 if (x < y)
3123 y = x - 2;
3124 else
3125 x = y + 3;
3127 this pass will transform the code into:
3129 x = ...
3130 y = ...
3131 if (x < y)
3133 x = ASSERT_EXPR <x, x < y>
3134 y = x - 2
3136 else
3138 y = ASSERT_EXPR <y, x <= y>
3139 x = y + 3
3142 The idea is that once copy and constant propagation have run, other
3143 optimizations will be able to determine what ranges of values can 'x'
3144 take in different paths of the code, simply by checking the reaching
3145 definition of 'x'. */
3147 static void
3148 insert_range_assertions (void)
3150 edge e;
3151 edge_iterator ei;
3152 bool update_ssa_p;
3154 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3155 sbitmap_zero (found_in_subgraph);
3157 blocks_visited = sbitmap_alloc (last_basic_block);
3158 sbitmap_zero (blocks_visited);
3160 need_assert_for = BITMAP_ALLOC (NULL);
3161 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3162 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3164 calculate_dominance_info (CDI_DOMINATORS);
3166 update_ssa_p = false;
3167 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3168 if (find_assert_locations (e->dest))
3169 update_ssa_p = true;
3171 if (update_ssa_p)
3173 process_assert_insertions ();
3174 update_ssa (TODO_update_ssa_no_phi);
3177 if (dump_file && (dump_flags & TDF_DETAILS))
3179 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3180 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3183 sbitmap_free (found_in_subgraph);
3184 free (asserts_for);
3185 BITMAP_FREE (need_assert_for);
3189 /* Convert range assertion expressions into the implied copies and
3190 copy propagate away the copies. Doing the trivial copy propagation
3191 here avoids the need to run the full copy propagation pass after
3192 VRP.
3194 FIXME, this will eventually lead to copy propagation removing the
3195 names that had useful range information attached to them. For
3196 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3197 then N_i will have the range [3, +INF].
3199 However, by converting the assertion into the implied copy
3200 operation N_i = N_j, we will then copy-propagate N_j into the uses
3201 of N_i and lose the range information. We may want to hold on to
3202 ASSERT_EXPRs a little while longer as the ranges could be used in
3203 things like jump threading.
3205 The problem with keeping ASSERT_EXPRs around is that passes after
3206 VRP need to handle them appropriately.
3208 Another approach would be to make the range information a first
3209 class property of the SSA_NAME so that it can be queried from
3210 any pass. This is made somewhat more complex by the need for
3211 multiple ranges to be associated with one SSA_NAME. */
3213 static void
3214 remove_range_assertions (void)
3216 basic_block bb;
3217 block_stmt_iterator si;
3219 /* Note that the BSI iterator bump happens at the bottom of the
3220 loop and no bump is necessary if we're removing the statement
3221 referenced by the current BSI. */
3222 FOR_EACH_BB (bb)
3223 for (si = bsi_start (bb); !bsi_end_p (si);)
3225 tree stmt = bsi_stmt (si);
3227 if (TREE_CODE (stmt) == MODIFY_EXPR
3228 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3230 tree rhs = TREE_OPERAND (stmt, 1), var;
3231 tree cond = fold (ASSERT_EXPR_COND (rhs));
3232 use_operand_p use_p;
3233 imm_use_iterator iter;
3235 gcc_assert (cond != boolean_false_node);
3237 /* Propagate the RHS into every use of the LHS. */
3238 var = ASSERT_EXPR_VAR (rhs);
3239 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
3241 SET_USE (use_p, var);
3242 gcc_assert (TREE_CODE (var) == SSA_NAME);
3245 /* And finally, remove the copy, it is not needed. */
3246 bsi_remove (&si, true);
3248 else
3249 bsi_next (&si);
3252 sbitmap_free (blocks_visited);
3256 /* Return true if STMT is interesting for VRP. */
3258 static bool
3259 stmt_interesting_for_vrp (tree stmt)
3261 if (TREE_CODE (stmt) == PHI_NODE
3262 && is_gimple_reg (PHI_RESULT (stmt))
3263 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3264 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3265 return true;
3266 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3268 tree lhs = TREE_OPERAND (stmt, 0);
3269 tree rhs = TREE_OPERAND (stmt, 1);
3271 /* In general, assignments with virtual operands are not useful
3272 for deriving ranges, with the obvious exception of calls to
3273 builtin functions. */
3274 if (TREE_CODE (lhs) == SSA_NAME
3275 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3276 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3277 && ((TREE_CODE (rhs) == CALL_EXPR
3278 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3279 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3280 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3281 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3282 return true;
3284 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3285 return true;
3287 return false;
3291 /* Initialize local data structures for VRP. */
3293 static void
3294 vrp_initialize (void)
3296 basic_block bb;
3298 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3299 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3301 FOR_EACH_BB (bb)
3303 block_stmt_iterator si;
3304 tree phi;
3306 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3308 if (!stmt_interesting_for_vrp (phi))
3310 tree lhs = PHI_RESULT (phi);
3311 set_value_range_to_varying (get_value_range (lhs));
3312 DONT_SIMULATE_AGAIN (phi) = true;
3314 else
3315 DONT_SIMULATE_AGAIN (phi) = false;
3318 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3320 tree stmt = bsi_stmt (si);
3322 if (!stmt_interesting_for_vrp (stmt))
3324 ssa_op_iter i;
3325 tree def;
3326 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3327 set_value_range_to_varying (get_value_range (def));
3328 DONT_SIMULATE_AGAIN (stmt) = true;
3330 else
3332 DONT_SIMULATE_AGAIN (stmt) = false;
3339 /* Visit assignment STMT. If it produces an interesting range, record
3340 the SSA name in *OUTPUT_P. */
3342 static enum ssa_prop_result
3343 vrp_visit_assignment (tree stmt, tree *output_p)
3345 tree lhs, rhs, def;
3346 ssa_op_iter iter;
3348 lhs = TREE_OPERAND (stmt, 0);
3349 rhs = TREE_OPERAND (stmt, 1);
3351 /* We only keep track of ranges in integral and pointer types. */
3352 if (TREE_CODE (lhs) == SSA_NAME
3353 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3354 /* It is valid to have NULL MIN/MAX values on a type. See
3355 build_range_type. */
3356 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3357 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3358 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3360 struct loop *l;
3361 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3363 extract_range_from_expr (&new_vr, rhs);
3365 /* If STMT is inside a loop, we may be able to know something
3366 else about the range of LHS by examining scalar evolution
3367 information. */
3368 if (current_loops && (l = loop_containing_stmt (stmt)))
3369 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3371 if (update_value_range (lhs, &new_vr))
3373 *output_p = lhs;
3375 if (dump_file && (dump_flags & TDF_DETAILS))
3377 fprintf (dump_file, "Found new range for ");
3378 print_generic_expr (dump_file, lhs, 0);
3379 fprintf (dump_file, ": ");
3380 dump_value_range (dump_file, &new_vr);
3381 fprintf (dump_file, "\n\n");
3384 if (new_vr.type == VR_VARYING)
3385 return SSA_PROP_VARYING;
3387 return SSA_PROP_INTERESTING;
3390 return SSA_PROP_NOT_INTERESTING;
3393 /* Every other statement produces no useful ranges. */
3394 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3395 set_value_range_to_varying (get_value_range (def));
3397 return SSA_PROP_VARYING;
3401 /* Compare all the value ranges for names equivalent to VAR with VAL
3402 using comparison code COMP. Return the same value returned by
3403 compare_range_with_value. */
3405 static tree
3406 compare_name_with_value (enum tree_code comp, tree var, tree val)
3408 bitmap_iterator bi;
3409 unsigned i;
3410 bitmap e;
3411 tree retval, t;
3413 t = retval = NULL_TREE;
3415 /* Get the set of equivalences for VAR. */
3416 e = get_value_range (var)->equiv;
3418 /* Add VAR to its own set of equivalences so that VAR's value range
3419 is processed by this loop (otherwise, we would have to replicate
3420 the body of the loop just to check VAR's value range). */
3421 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3423 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3425 value_range_t equiv_vr = *(vr_value[i]);
3427 /* If name N_i does not have a valid range, use N_i as its own
3428 range. This allows us to compare against names that may
3429 have N_i in their ranges. */
3430 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3432 equiv_vr.type = VR_RANGE;
3433 equiv_vr.min = ssa_name (i);
3434 equiv_vr.max = ssa_name (i);
3437 t = compare_range_with_value (comp, &equiv_vr, val);
3438 if (t)
3440 /* All the ranges should compare the same against VAL. */
3441 gcc_assert (retval == NULL || t == retval);
3442 retval = t;
3446 /* Remove VAR from its own equivalence set. */
3447 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3449 if (retval)
3450 return retval;
3452 /* We couldn't find a non-NULL value for the predicate. */
3453 return NULL_TREE;
3457 /* Given a comparison code COMP and names N1 and N2, compare all the
3458 ranges equivalent to N1 against all the ranges equivalent to N2
3459 to determine the value of N1 COMP N2. Return the same value
3460 returned by compare_ranges. */
3462 static tree
3463 compare_names (enum tree_code comp, tree n1, tree n2)
3465 tree t, retval;
3466 bitmap e1, e2;
3467 bitmap_iterator bi1, bi2;
3468 unsigned i1, i2;
3470 /* Compare the ranges of every name equivalent to N1 against the
3471 ranges of every name equivalent to N2. */
3472 e1 = get_value_range (n1)->equiv;
3473 e2 = get_value_range (n2)->equiv;
3475 /* Add N1 and N2 to their own set of equivalences to avoid
3476 duplicating the body of the loop just to check N1 and N2
3477 ranges. */
3478 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3479 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3481 /* If the equivalence sets have a common intersection, then the two
3482 names can be compared without checking their ranges. */
3483 if (bitmap_intersect_p (e1, e2))
3485 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3486 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3488 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3489 ? boolean_true_node
3490 : boolean_false_node;
3493 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3494 N2 to their own set of equivalences to avoid duplicating the body
3495 of the loop just to check N1 and N2 ranges. */
3496 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3498 value_range_t vr1 = *(vr_value[i1]);
3500 /* If the range is VARYING or UNDEFINED, use the name itself. */
3501 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3503 vr1.type = VR_RANGE;
3504 vr1.min = ssa_name (i1);
3505 vr1.max = ssa_name (i1);
3508 t = retval = NULL_TREE;
3509 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3511 value_range_t vr2 = *(vr_value[i2]);
3513 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3515 vr2.type = VR_RANGE;
3516 vr2.min = ssa_name (i2);
3517 vr2.max = ssa_name (i2);
3520 t = compare_ranges (comp, &vr1, &vr2);
3521 if (t)
3523 /* All the ranges in the equivalent sets should compare
3524 the same. */
3525 gcc_assert (retval == NULL || t == retval);
3526 retval = t;
3530 if (retval)
3532 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3533 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3534 return retval;
3538 /* None of the equivalent ranges are useful in computing this
3539 comparison. */
3540 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3541 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3542 return NULL_TREE;
3546 /* Given a conditional predicate COND, try to determine if COND yields
3547 true or false based on the value ranges of its operands. Return
3548 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3549 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3550 NULL if the conditional cannot be evaluated at compile time.
3552 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3553 the operands in COND are used when trying to compute its value.
3554 This is only used during final substitution. During propagation,
3555 we only check the range of each variable and not its equivalents. */
3557 tree
3558 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3560 gcc_assert (TREE_CODE (cond) == SSA_NAME
3561 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3563 if (TREE_CODE (cond) == SSA_NAME)
3565 value_range_t *vr;
3566 tree retval;
3568 if (use_equiv_p)
3569 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3570 else
3572 value_range_t *vr = get_value_range (cond);
3573 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3576 /* If COND has a known boolean range, return it. */
3577 if (retval)
3578 return retval;
3580 /* Otherwise, if COND has a symbolic range of exactly one value,
3581 return it. */
3582 vr = get_value_range (cond);
3583 if (vr->type == VR_RANGE && vr->min == vr->max)
3584 return vr->min;
3586 else
3588 tree op0 = TREE_OPERAND (cond, 0);
3589 tree op1 = TREE_OPERAND (cond, 1);
3591 /* We only deal with integral and pointer types. */
3592 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3593 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3594 return NULL_TREE;
3596 if (use_equiv_p)
3598 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3599 return compare_names (TREE_CODE (cond), op0, op1);
3600 else if (TREE_CODE (op0) == SSA_NAME)
3601 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3602 else if (TREE_CODE (op1) == SSA_NAME)
3603 return compare_name_with_value (
3604 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3606 else
3608 value_range_t *vr0, *vr1;
3610 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3611 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3613 if (vr0 && vr1)
3614 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3615 else if (vr0 && vr1 == NULL)
3616 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3617 else if (vr0 == NULL && vr1)
3618 return compare_range_with_value (
3619 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3623 /* Anything else cannot be computed statically. */
3624 return NULL_TREE;
3628 /* Visit conditional statement STMT. If we can determine which edge
3629 will be taken out of STMT's basic block, record it in
3630 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3631 SSA_PROP_VARYING. */
3633 static enum ssa_prop_result
3634 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3636 tree cond, val;
3638 *taken_edge_p = NULL;
3640 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3641 add ASSERT_EXPRs for them. */
3642 if (TREE_CODE (stmt) == SWITCH_EXPR)
3643 return SSA_PROP_VARYING;
3645 cond = COND_EXPR_COND (stmt);
3647 if (dump_file && (dump_flags & TDF_DETAILS))
3649 tree use;
3650 ssa_op_iter i;
3652 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3653 print_generic_expr (dump_file, cond, 0);
3654 fprintf (dump_file, "\nWith known ranges\n");
3656 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3658 fprintf (dump_file, "\t");
3659 print_generic_expr (dump_file, use, 0);
3660 fprintf (dump_file, ": ");
3661 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3664 fprintf (dump_file, "\n");
3667 /* Compute the value of the predicate COND by checking the known
3668 ranges of each of its operands.
3670 Note that we cannot evaluate all the equivalent ranges here
3671 because those ranges may not yet be final and with the current
3672 propagation strategy, we cannot determine when the value ranges
3673 of the names in the equivalence set have changed.
3675 For instance, given the following code fragment
3677 i_5 = PHI <8, i_13>
3679 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3680 if (i_14 == 1)
3683 Assume that on the first visit to i_14, i_5 has the temporary
3684 range [8, 8] because the second argument to the PHI function is
3685 not yet executable. We derive the range ~[0, 0] for i_14 and the
3686 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3687 the first time, since i_14 is equivalent to the range [8, 8], we
3688 determine that the predicate is always false.
3690 On the next round of propagation, i_13 is determined to be
3691 VARYING, which causes i_5 to drop down to VARYING. So, another
3692 visit to i_14 is scheduled. In this second visit, we compute the
3693 exact same range and equivalence set for i_14, namely ~[0, 0] and
3694 { i_5 }. But we did not have the previous range for i_5
3695 registered, so vrp_visit_assignment thinks that the range for
3696 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3697 is not visited again, which stops propagation from visiting
3698 statements in the THEN clause of that if().
3700 To properly fix this we would need to keep the previous range
3701 value for the names in the equivalence set. This way we would've
3702 discovered that from one visit to the other i_5 changed from
3703 range [8, 8] to VR_VARYING.
3705 However, fixing this apparent limitation may not be worth the
3706 additional checking. Testing on several code bases (GCC, DLV,
3707 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3708 4 more predicates folded in SPEC. */
3709 val = vrp_evaluate_conditional (cond, false);
3710 if (val)
3711 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3713 if (dump_file && (dump_flags & TDF_DETAILS))
3715 fprintf (dump_file, "\nPredicate evaluates to: ");
3716 if (val == NULL_TREE)
3717 fprintf (dump_file, "DON'T KNOW\n");
3718 else
3719 print_generic_stmt (dump_file, val, 0);
3722 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3726 /* Evaluate statement STMT. If the statement produces a useful range,
3727 return SSA_PROP_INTERESTING and record the SSA name with the
3728 interesting range into *OUTPUT_P.
3730 If STMT is a conditional branch and we can determine its truth
3731 value, the taken edge is recorded in *TAKEN_EDGE_P.
3733 If STMT produces a varying value, return SSA_PROP_VARYING. */
3735 static enum ssa_prop_result
3736 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3738 tree def;
3739 ssa_op_iter iter;
3740 stmt_ann_t ann;
3742 if (dump_file && (dump_flags & TDF_DETAILS))
3744 fprintf (dump_file, "\nVisiting statement:\n");
3745 print_generic_stmt (dump_file, stmt, dump_flags);
3746 fprintf (dump_file, "\n");
3749 ann = stmt_ann (stmt);
3750 if (TREE_CODE (stmt) == MODIFY_EXPR)
3752 tree rhs = TREE_OPERAND (stmt, 1);
3754 /* In general, assignments with virtual operands are not useful
3755 for deriving ranges, with the obvious exception of calls to
3756 builtin functions. */
3757 if ((TREE_CODE (rhs) == CALL_EXPR
3758 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3759 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3760 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3761 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3762 return vrp_visit_assignment (stmt, output_p);
3764 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3765 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3767 /* All other statements produce nothing of interest for VRP, so mark
3768 their outputs varying and prevent further simulation. */
3769 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3770 set_value_range_to_varying (get_value_range (def));
3772 return SSA_PROP_VARYING;
3776 /* Meet operation for value ranges. Given two value ranges VR0 and
3777 VR1, store in VR0 the result of meeting VR0 and VR1.
3779 The meeting rules are as follows:
3781 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3783 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3784 union of VR0 and VR1. */
3786 static void
3787 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3789 if (vr0->type == VR_UNDEFINED)
3791 copy_value_range (vr0, vr1);
3792 return;
3795 if (vr1->type == VR_UNDEFINED)
3797 /* Nothing to do. VR0 already has the resulting range. */
3798 return;
3801 if (vr0->type == VR_VARYING)
3803 /* Nothing to do. VR0 already has the resulting range. */
3804 return;
3807 if (vr1->type == VR_VARYING)
3809 set_value_range_to_varying (vr0);
3810 return;
3813 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3815 /* If VR0 and VR1 have a non-empty intersection, compute the
3816 union of both ranges. */
3817 if (value_ranges_intersect_p (vr0, vr1))
3819 int cmp;
3820 tree min, max;
3822 /* The lower limit of the new range is the minimum of the
3823 two ranges. If they cannot be compared, the result is
3824 VARYING. */
3825 cmp = compare_values (vr0->min, vr1->min);
3826 if (cmp == 0 || cmp == 1)
3827 min = vr1->min;
3828 else if (cmp == -1)
3829 min = vr0->min;
3830 else
3832 set_value_range_to_varying (vr0);
3833 return;
3836 /* Similarly, the upper limit of the new range is the
3837 maximum of the two ranges. If they cannot be compared,
3838 the result is VARYING. */
3839 cmp = compare_values (vr0->max, vr1->max);
3840 if (cmp == 0 || cmp == -1)
3841 max = vr1->max;
3842 else if (cmp == 1)
3843 max = vr0->max;
3844 else
3846 set_value_range_to_varying (vr0);
3847 return;
3850 /* The resulting set of equivalences is the intersection of
3851 the two sets. */
3852 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3853 bitmap_and_into (vr0->equiv, vr1->equiv);
3854 else if (vr0->equiv && !vr1->equiv)
3855 bitmap_clear (vr0->equiv);
3857 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3859 else
3860 goto no_meet;
3862 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3864 /* Two anti-ranges meet only if they are both identical. */
3865 if (compare_values (vr0->min, vr1->min) == 0
3866 && compare_values (vr0->max, vr1->max) == 0
3867 && compare_values (vr0->min, vr0->max) == 0)
3869 /* The resulting set of equivalences is the intersection of
3870 the two sets. */
3871 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3872 bitmap_and_into (vr0->equiv, vr1->equiv);
3873 else if (vr0->equiv && !vr1->equiv)
3874 bitmap_clear (vr0->equiv);
3876 else
3877 goto no_meet;
3879 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3881 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3882 meet only if the ranges have an empty intersection. The
3883 result of the meet operation is the anti-range. */
3884 if (!symbolic_range_p (vr0)
3885 && !symbolic_range_p (vr1)
3886 && !value_ranges_intersect_p (vr0, vr1))
3888 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3889 set. We need to compute the intersection of the two
3890 equivalence sets. */
3891 if (vr1->type == VR_ANTI_RANGE)
3892 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3894 /* The resulting set of equivalences is the intersection of
3895 the two sets. */
3896 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3897 bitmap_and_into (vr0->equiv, vr1->equiv);
3898 else if (vr0->equiv && !vr1->equiv)
3899 bitmap_clear (vr0->equiv);
3901 else
3902 goto no_meet;
3904 else
3905 gcc_unreachable ();
3907 return;
3909 no_meet:
3910 /* The two range VR0 and VR1 do not meet. Before giving up and
3911 setting the result to VARYING, see if we can at least derive a
3912 useful anti-range. FIXME, all this nonsense about distinguishing
3913 anti-ranges from ranges is necessary because of the odd
3914 semantics of range_includes_zero_p and friends. */
3915 if (!symbolic_range_p (vr0)
3916 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3917 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3918 && !symbolic_range_p (vr1)
3919 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3920 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3922 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3924 /* Since this meet operation did not result from the meeting of
3925 two equivalent names, VR0 cannot have any equivalences. */
3926 if (vr0->equiv)
3927 bitmap_clear (vr0->equiv);
3929 else
3930 set_value_range_to_varying (vr0);
3934 /* Visit all arguments for PHI node PHI that flow through executable
3935 edges. If a valid value range can be derived from all the incoming
3936 value ranges, set a new range for the LHS of PHI. */
3938 static enum ssa_prop_result
3939 vrp_visit_phi_node (tree phi)
3941 int i;
3942 tree lhs = PHI_RESULT (phi);
3943 value_range_t *lhs_vr = get_value_range (lhs);
3944 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3946 copy_value_range (&vr_result, lhs_vr);
3948 if (dump_file && (dump_flags & TDF_DETAILS))
3950 fprintf (dump_file, "\nVisiting PHI node: ");
3951 print_generic_expr (dump_file, phi, dump_flags);
3954 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3956 edge e = PHI_ARG_EDGE (phi, i);
3958 if (dump_file && (dump_flags & TDF_DETAILS))
3960 fprintf (dump_file,
3961 "\n Argument #%d (%d -> %d %sexecutable)\n",
3962 i, e->src->index, e->dest->index,
3963 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3966 if (e->flags & EDGE_EXECUTABLE)
3968 tree arg = PHI_ARG_DEF (phi, i);
3969 value_range_t vr_arg;
3971 if (TREE_CODE (arg) == SSA_NAME)
3972 vr_arg = *(get_value_range (arg));
3973 else
3975 vr_arg.type = VR_RANGE;
3976 vr_arg.min = arg;
3977 vr_arg.max = arg;
3978 vr_arg.equiv = NULL;
3981 if (dump_file && (dump_flags & TDF_DETAILS))
3983 fprintf (dump_file, "\t");
3984 print_generic_expr (dump_file, arg, dump_flags);
3985 fprintf (dump_file, "\n\tValue: ");
3986 dump_value_range (dump_file, &vr_arg);
3987 fprintf (dump_file, "\n");
3990 vrp_meet (&vr_result, &vr_arg);
3992 if (vr_result.type == VR_VARYING)
3993 break;
3997 if (vr_result.type == VR_VARYING)
3998 goto varying;
4000 /* To prevent infinite iterations in the algorithm, derive ranges
4001 when the new value is slightly bigger or smaller than the
4002 previous one. */
4003 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4005 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4007 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4008 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4010 /* If the new minimum is smaller or larger than the previous
4011 one, go all the way to -INF. In the first case, to avoid
4012 iterating millions of times to reach -INF, and in the
4013 other case to avoid infinite bouncing between different
4014 minimums. */
4015 if (cmp_min > 0 || cmp_min < 0)
4016 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4018 /* Similarly, if the new maximum is smaller or larger than
4019 the previous one, go all the way to +INF. */
4020 if (cmp_max < 0 || cmp_max > 0)
4021 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4023 /* If we ended up with a (-INF, +INF) range, set it to
4024 VARYING. */
4025 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4026 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4027 goto varying;
4031 /* If the new range is different than the previous value, keep
4032 iterating. */
4033 if (update_value_range (lhs, &vr_result))
4034 return SSA_PROP_INTERESTING;
4036 /* Nothing changed, don't add outgoing edges. */
4037 return SSA_PROP_NOT_INTERESTING;
4039 /* No match found. Set the LHS to VARYING. */
4040 varying:
4041 set_value_range_to_varying (lhs_vr);
4042 return SSA_PROP_VARYING;
4045 /* Simplify a division or modulo operator to a right shift or
4046 bitwise and if the first operand is unsigned or is greater
4047 than zero and the second operand is an exact power of two. */
4049 static void
4050 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4052 tree val = NULL;
4053 tree op = TREE_OPERAND (rhs, 0);
4054 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4056 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4058 val = integer_one_node;
4060 else
4062 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4065 if (val && integer_onep (val))
4067 tree t;
4068 tree op0 = TREE_OPERAND (rhs, 0);
4069 tree op1 = TREE_OPERAND (rhs, 1);
4071 if (rhs_code == TRUNC_DIV_EXPR)
4073 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4074 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4076 else
4078 t = build_int_cst (TREE_TYPE (op1), 1);
4079 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4080 t = fold_convert (TREE_TYPE (op0), t);
4081 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4084 TREE_OPERAND (stmt, 1) = t;
4085 update_stmt (stmt);
4089 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4090 ABS_EXPR. If the operand is <= 0, then simplify the
4091 ABS_EXPR into a NEGATE_EXPR. */
4093 static void
4094 simplify_abs_using_ranges (tree stmt, tree rhs)
4096 tree val = NULL;
4097 tree op = TREE_OPERAND (rhs, 0);
4098 tree type = TREE_TYPE (op);
4099 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4101 if (TYPE_UNSIGNED (type))
4103 val = integer_zero_node;
4105 else if (vr)
4107 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4108 if (!val)
4110 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4112 if (val)
4114 if (integer_zerop (val))
4115 val = integer_one_node;
4116 else if (integer_onep (val))
4117 val = integer_zero_node;
4121 if (val
4122 && (integer_onep (val) || integer_zerop (val)))
4124 tree t;
4126 if (integer_onep (val))
4127 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4128 else
4129 t = op;
4131 TREE_OPERAND (stmt, 1) = t;
4132 update_stmt (stmt);
4137 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4138 a known value range VR.
4140 If there is one and only one value which will satisfy the
4141 conditional, then return that value. Else return NULL. */
4143 static tree
4144 test_for_singularity (enum tree_code cond_code, tree op0,
4145 tree op1, value_range_t *vr)
4147 tree min = NULL;
4148 tree max = NULL;
4150 /* Extract minimum/maximum values which satisfy the
4151 the conditional as it was written. */
4152 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4154 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4156 max = op1;
4157 if (cond_code == LT_EXPR)
4159 tree one = build_int_cst (TREE_TYPE (op0), 1);
4160 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4163 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4165 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4167 min = op1;
4168 if (cond_code == GT_EXPR)
4170 tree one = build_int_cst (TREE_TYPE (op0), 1);
4171 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4175 /* Now refine the minimum and maximum values using any
4176 value range information we have for op0. */
4177 if (min && max)
4179 if (compare_values (vr->min, min) == -1)
4180 min = min;
4181 else
4182 min = vr->min;
4183 if (compare_values (vr->max, max) == 1)
4184 max = max;
4185 else
4186 max = vr->max;
4188 /* If the new min/max values have converged to a single value,
4189 then there is only one value which can satisfy the condition,
4190 return that value. */
4191 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4192 return min;
4194 return NULL;
4197 /* Simplify a conditional using a relational operator to an equality
4198 test if the range information indicates only one value can satisfy
4199 the original conditional. */
4201 static void
4202 simplify_cond_using_ranges (tree stmt)
4204 tree cond = COND_EXPR_COND (stmt);
4205 tree op0 = TREE_OPERAND (cond, 0);
4206 tree op1 = TREE_OPERAND (cond, 1);
4207 enum tree_code cond_code = TREE_CODE (cond);
4209 if (cond_code != NE_EXPR
4210 && cond_code != EQ_EXPR
4211 && TREE_CODE (op0) == SSA_NAME
4212 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4213 && is_gimple_min_invariant (op1))
4215 value_range_t *vr = get_value_range (op0);
4217 /* If we have range information for OP0, then we might be
4218 able to simplify this conditional. */
4219 if (vr->type == VR_RANGE)
4221 tree new = test_for_singularity (cond_code, op0, op1, vr);
4223 if (new)
4225 if (dump_file)
4227 fprintf (dump_file, "Simplified relational ");
4228 print_generic_expr (dump_file, cond, 0);
4229 fprintf (dump_file, " into ");
4232 COND_EXPR_COND (stmt)
4233 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4234 update_stmt (stmt);
4236 if (dump_file)
4238 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4239 fprintf (dump_file, "\n");
4241 return;
4245 /* Try again after inverting the condition. We only deal
4246 with integral types here, so no need to worry about
4247 issues with inverting FP comparisons. */
4248 cond_code = invert_tree_comparison (cond_code, false);
4249 new = test_for_singularity (cond_code, op0, op1, vr);
4251 if (new)
4253 if (dump_file)
4255 fprintf (dump_file, "Simplified relational ");
4256 print_generic_expr (dump_file, cond, 0);
4257 fprintf (dump_file, " into ");
4260 COND_EXPR_COND (stmt)
4261 = build2 (NE_EXPR, boolean_type_node, op0, new);
4262 update_stmt (stmt);
4264 if (dump_file)
4266 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4267 fprintf (dump_file, "\n");
4269 return;
4276 /* Simplify STMT using ranges if possible. */
4278 void
4279 simplify_stmt_using_ranges (tree stmt)
4281 if (TREE_CODE (stmt) == MODIFY_EXPR)
4283 tree rhs = TREE_OPERAND (stmt, 1);
4284 enum tree_code rhs_code = TREE_CODE (rhs);
4286 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4287 and BIT_AND_EXPR respectively if the first operand is greater
4288 than zero and the second operand is an exact power of two. */
4289 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4290 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4291 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4292 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4294 /* Transform ABS (X) into X or -X as appropriate. */
4295 if (rhs_code == ABS_EXPR
4296 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4297 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4298 simplify_abs_using_ranges (stmt, rhs);
4300 else if (TREE_CODE (stmt) == COND_EXPR
4301 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4303 simplify_cond_using_ranges (stmt);
4307 /* Stack of dest,src equivalency pairs that need to be restored after
4308 each attempt to thread a block's incoming edge to an outgoing edge.
4310 A NULL entry is used to mark the end of pairs which need to be
4311 restored. */
4312 static VEC(tree,heap) *stack;
4314 /* A trivial wrapper so that we can present the generic jump
4315 threading code with a simple API for simplifying statements. */
4316 static tree
4317 simplify_stmt_for_jump_threading (tree stmt)
4319 /* We only use VRP information to simplify conditionals. This is
4320 overly conservative, but it's unclear if doing more would be
4321 worth the compile time cost. */
4322 if (TREE_CODE (stmt) != COND_EXPR)
4323 return NULL;
4325 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4328 /* Blocks which have more than one predecessor and more than
4329 one successor present jump threading opportunities. ie,
4330 when the block is reached from a specific predecessor, we
4331 may be able to determine which of the outgoing edges will
4332 be traversed. When this optimization applies, we are able
4333 to avoid conditionals at runtime and we may expose secondary
4334 optimization opportunities.
4336 This routine is effectively a driver for the generic jump
4337 threading code. It basically just presents the generic code
4338 with edges that may be suitable for jump threading.
4340 Unlike DOM, we do not iterate VRP if jump threading was successful.
4341 While iterating may expose new opportunities for VRP, it is expected
4342 those opportunities would be very limited and the compile time cost
4343 to expose those opportunities would be significant.
4345 As jump threading opportunities are discovered, they are registered
4346 for later realization. */
4348 static void
4349 identify_jump_threads (void)
4351 basic_block bb;
4352 tree dummy;
4354 /* Ugh. When substituting values earlier in this pass we can
4355 wipe the dominance information. So rebuild the dominator
4356 information as we need it within the jump threading code. */
4357 calculate_dominance_info (CDI_DOMINATORS);
4359 /* We do not allow VRP information to be used for jump threading
4360 across a back edge in the CFG. Otherwise it becomes too
4361 difficult to avoid eliminating loop exit tests. Of course
4362 EDGE_DFS_BACK is not accurate at this time so we have to
4363 recompute it. */
4364 mark_dfs_back_edges ();
4366 /* Allocate our unwinder stack to unwind any temporary equivalences
4367 that might be recorded. */
4368 stack = VEC_alloc (tree, heap, 20);
4370 /* To avoid lots of silly node creation, we create a single
4371 conditional and just modify it in-place when attempting to
4372 thread jumps. */
4373 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4374 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4376 /* Walk through all the blocks finding those which present a
4377 potential jump threading opportunity. We could set this up
4378 as a dominator walker and record data during the walk, but
4379 I doubt it's worth the effort for the classes of jump
4380 threading opportunities we are trying to identify at this
4381 point in compilation. */
4382 FOR_EACH_BB (bb)
4384 tree last, cond;
4386 /* If the generic jump threading code does not find this block
4387 interesting, then there is nothing to do. */
4388 if (! potentially_threadable_block (bb))
4389 continue;
4391 /* We only care about blocks ending in a COND_EXPR. While there
4392 may be some value in handling SWITCH_EXPR here, I doubt it's
4393 terribly important. */
4394 last = bsi_stmt (bsi_last (bb));
4395 if (TREE_CODE (last) != COND_EXPR)
4396 continue;
4398 /* We're basically looking for any kind of conditional with
4399 integral type arguments. */
4400 cond = COND_EXPR_COND (last);
4401 if ((TREE_CODE (cond) == SSA_NAME
4402 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4403 || (COMPARISON_CLASS_P (cond)
4404 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4405 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4406 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4407 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4408 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4410 edge_iterator ei;
4411 edge e;
4413 /* We've got a block with multiple predecessors and multiple
4414 successors which also ends in a suitable conditional. For
4415 each predecessor, see if we can thread it to a specific
4416 successor. */
4417 FOR_EACH_EDGE (e, ei, bb->preds)
4419 /* Do not thread across back edges or abnormal edges
4420 in the CFG. */
4421 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4422 continue;
4424 thread_across_edge (dummy, e, true,
4425 &stack,
4426 simplify_stmt_for_jump_threading);
4431 /* We do not actually update the CFG or SSA graphs at this point as
4432 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4433 handle ASSERT_EXPRs gracefully. */
4436 /* We identified all the jump threading opportunities earlier, but could
4437 not transform the CFG at that time. This routine transforms the
4438 CFG and arranges for the dominator tree to be rebuilt if necessary.
4440 Note the SSA graph update will occur during the normal TODO
4441 processing by the pass manager. */
4442 static void
4443 finalize_jump_threads (void)
4445 bool cfg_altered = false;
4446 cfg_altered = thread_through_all_blocks ();
4448 /* If we threaded jumps, then we need to recompute the dominance
4449 information, to safely do that we must clean up the CFG first. */
4450 if (cfg_altered)
4452 free_dominance_info (CDI_DOMINATORS);
4453 cleanup_tree_cfg ();
4454 calculate_dominance_info (CDI_DOMINATORS);
4456 VEC_free (tree, heap, stack);
4460 /* Traverse all the blocks folding conditionals with known ranges. */
4462 static void
4463 vrp_finalize (void)
4465 size_t i;
4466 prop_value_t *single_val_range;
4467 bool do_value_subst_p;
4469 if (dump_file)
4471 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4472 dump_all_value_ranges (dump_file);
4473 fprintf (dump_file, "\n");
4476 /* We may have ended with ranges that have exactly one value. Those
4477 values can be substituted as any other copy/const propagated
4478 value using substitute_and_fold. */
4479 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4480 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4482 do_value_subst_p = false;
4483 for (i = 0; i < num_ssa_names; i++)
4484 if (vr_value[i]
4485 && vr_value[i]->type == VR_RANGE
4486 && vr_value[i]->min == vr_value[i]->max)
4488 single_val_range[i].value = vr_value[i]->min;
4489 do_value_subst_p = true;
4492 if (!do_value_subst_p)
4494 /* We found no single-valued ranges, don't waste time trying to
4495 do single value substitution in substitute_and_fold. */
4496 free (single_val_range);
4497 single_val_range = NULL;
4500 substitute_and_fold (single_val_range, true);
4502 /* We must identify jump threading opportunities before we release
4503 the datastructures built by VRP. */
4504 identify_jump_threads ();
4506 /* Free allocated memory. */
4507 for (i = 0; i < num_ssa_names; i++)
4508 if (vr_value[i])
4510 BITMAP_FREE (vr_value[i]->equiv);
4511 free (vr_value[i]);
4514 free (single_val_range);
4515 free (vr_value);
4517 /* So that we can distinguish between VRP data being available
4518 and not available. */
4519 vr_value = NULL;
4523 /* Main entry point to VRP (Value Range Propagation). This pass is
4524 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4525 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4526 Programming Language Design and Implementation, pp. 67-78, 1995.
4527 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4529 This is essentially an SSA-CCP pass modified to deal with ranges
4530 instead of constants.
4532 While propagating ranges, we may find that two or more SSA name
4533 have equivalent, though distinct ranges. For instance,
4535 1 x_9 = p_3->a;
4536 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4537 3 if (p_4 == q_2)
4538 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4539 5 endif
4540 6 if (q_2)
4542 In the code above, pointer p_5 has range [q_2, q_2], but from the
4543 code we can also determine that p_5 cannot be NULL and, if q_2 had
4544 a non-varying range, p_5's range should also be compatible with it.
4546 These equivalences are created by two expressions: ASSERT_EXPR and
4547 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4548 result of another assertion, then we can use the fact that p_5 and
4549 p_4 are equivalent when evaluating p_5's range.
4551 Together with value ranges, we also propagate these equivalences
4552 between names so that we can take advantage of information from
4553 multiple ranges when doing final replacement. Note that this
4554 equivalency relation is transitive but not symmetric.
4556 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4557 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4558 in contexts where that assertion does not hold (e.g., in line 6).
4560 TODO, the main difference between this pass and Patterson's is that
4561 we do not propagate edge probabilities. We only compute whether
4562 edges can be taken or not. That is, instead of having a spectrum
4563 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4564 DON'T KNOW. In the future, it may be worthwhile to propagate
4565 probabilities to aid branch prediction. */
4567 static unsigned int
4568 execute_vrp (void)
4570 insert_range_assertions ();
4572 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4573 if (current_loops)
4574 scev_initialize (current_loops);
4576 vrp_initialize ();
4577 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4578 vrp_finalize ();
4580 if (current_loops)
4582 scev_finalize ();
4583 loop_optimizer_finalize (current_loops);
4584 current_loops = NULL;
4587 /* ASSERT_EXPRs must be removed before finalizing jump threads
4588 as finalizing jump threads calls the CFG cleanup code which
4589 does not properly handle ASSERT_EXPRs. */
4590 remove_range_assertions ();
4592 /* If we exposed any new variables, go ahead and put them into
4593 SSA form now, before we handle jump threading. This simplifies
4594 interactions between rewriting of _DECL nodes into SSA form
4595 and rewriting SSA_NAME nodes into SSA form after block
4596 duplication and CFG manipulation. */
4597 update_ssa (TODO_update_ssa);
4599 finalize_jump_threads ();
4600 return 0;
4603 static bool
4604 gate_vrp (void)
4606 return flag_tree_vrp != 0;
4609 struct tree_opt_pass pass_vrp =
4611 "vrp", /* name */
4612 gate_vrp, /* gate */
4613 execute_vrp, /* execute */
4614 NULL, /* sub */
4615 NULL, /* next */
4616 0, /* static_pass_number */
4617 TV_TREE_VRP, /* tv_id */
4618 PROP_ssa | PROP_alias, /* properties_required */
4619 0, /* properties_provided */
4620 PROP_smt_usage, /* properties_destroyed */
4621 0, /* todo_flags_start */
4622 TODO_cleanup_cfg
4623 | TODO_ggc_collect
4624 | TODO_verify_ssa
4625 | TODO_dump_func
4626 | TODO_update_ssa
4627 | TODO_update_smt_usage, /* todo_flags_finish */
4628 0 /* letter */