* lang.opt (-freduced-reflection): New option.
[official-gcc.git] / gcc / convert.c
blobba5f6fd7e73b9172eeeeef6ba173a25bba1ea45d
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
45 return build_int_cst (type, 0);
47 switch (TREE_CODE (TREE_TYPE (expr)))
49 case POINTER_TYPE:
50 case REFERENCE_TYPE:
51 return build1 (NOP_EXPR, type, expr);
53 case INTEGER_TYPE:
54 case ENUMERAL_TYPE:
55 case BOOLEAN_TYPE:
56 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
57 expr = fold_build1 (NOP_EXPR,
58 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
59 expr);
60 return fold_build1 (CONVERT_EXPR, type, expr);
63 default:
64 error ("cannot convert to a pointer type");
65 return convert_to_pointer (type, integer_zero_node);
69 /* Avoid any floating point extensions from EXP. */
70 tree
71 strip_float_extensions (tree exp)
73 tree sub, expt, subt;
75 /* For floating point constant look up the narrowest type that can hold
76 it properly and handle it like (type)(narrowest_type)constant.
77 This way we can optimize for instance a=a*2.0 where "a" is float
78 but 2.0 is double constant. */
79 if (TREE_CODE (exp) == REAL_CST)
81 REAL_VALUE_TYPE orig;
82 tree type = NULL;
84 orig = TREE_REAL_CST (exp);
85 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
86 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
87 type = float_type_node;
88 else if (TYPE_PRECISION (TREE_TYPE (exp))
89 > TYPE_PRECISION (double_type_node)
90 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
91 type = double_type_node;
92 if (type)
93 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
96 if (TREE_CODE (exp) != NOP_EXPR
97 && TREE_CODE (exp) != CONVERT_EXPR)
98 return exp;
100 sub = TREE_OPERAND (exp, 0);
101 subt = TREE_TYPE (sub);
102 expt = TREE_TYPE (exp);
104 if (!FLOAT_TYPE_P (subt))
105 return exp;
107 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
108 return exp;
110 return strip_float_extensions (sub);
114 /* Convert EXPR to some floating-point type TYPE.
116 EXPR must be float, integer, or enumeral;
117 in other cases error is called. */
119 tree
120 convert_to_real (tree type, tree expr)
122 enum built_in_function fcode = builtin_mathfn_code (expr);
123 tree itype = TREE_TYPE (expr);
125 /* Disable until we figure out how to decide whether the functions are
126 present in runtime. */
127 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
128 if (optimize
129 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
130 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
132 switch (fcode)
134 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
135 CASE_MATHFN (ACOS)
136 CASE_MATHFN (ACOSH)
137 CASE_MATHFN (ASIN)
138 CASE_MATHFN (ASINH)
139 CASE_MATHFN (ATAN)
140 CASE_MATHFN (ATANH)
141 CASE_MATHFN (CBRT)
142 CASE_MATHFN (COS)
143 CASE_MATHFN (COSH)
144 CASE_MATHFN (ERF)
145 CASE_MATHFN (ERFC)
146 CASE_MATHFN (EXP)
147 CASE_MATHFN (EXP10)
148 CASE_MATHFN (EXP2)
149 CASE_MATHFN (EXPM1)
150 CASE_MATHFN (FABS)
151 CASE_MATHFN (GAMMA)
152 CASE_MATHFN (J0)
153 CASE_MATHFN (J1)
154 CASE_MATHFN (LGAMMA)
155 CASE_MATHFN (LOG)
156 CASE_MATHFN (LOG10)
157 CASE_MATHFN (LOG1P)
158 CASE_MATHFN (LOG2)
159 CASE_MATHFN (LOGB)
160 CASE_MATHFN (POW10)
161 CASE_MATHFN (SIN)
162 CASE_MATHFN (SINH)
163 CASE_MATHFN (SQRT)
164 CASE_MATHFN (TAN)
165 CASE_MATHFN (TANH)
166 CASE_MATHFN (TGAMMA)
167 CASE_MATHFN (Y0)
168 CASE_MATHFN (Y1)
169 #undef CASE_MATHFN
171 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
172 tree newtype = type;
174 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
175 the both as the safe type for operation. */
176 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
177 newtype = TREE_TYPE (arg0);
179 /* Be careful about integer to fp conversions.
180 These may overflow still. */
181 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
182 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
183 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
184 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
186 tree arglist;
187 tree fn = mathfn_built_in (newtype, fcode);
189 if (fn)
191 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
192 expr = build_function_call_expr (fn, arglist);
193 if (newtype == type)
194 return expr;
198 default:
199 break;
202 if (optimize
203 && (((fcode == BUILT_IN_FLOORL
204 || fcode == BUILT_IN_CEILL
205 || fcode == BUILT_IN_ROUNDL
206 || fcode == BUILT_IN_RINTL
207 || fcode == BUILT_IN_TRUNCL
208 || fcode == BUILT_IN_NEARBYINTL)
209 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
210 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
211 || ((fcode == BUILT_IN_FLOOR
212 || fcode == BUILT_IN_CEIL
213 || fcode == BUILT_IN_ROUND
214 || fcode == BUILT_IN_RINT
215 || fcode == BUILT_IN_TRUNC
216 || fcode == BUILT_IN_NEARBYINT)
217 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
219 tree fn = mathfn_built_in (type, fcode);
221 if (fn)
223 tree arg
224 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
226 /* Make sure (type)arg0 is an extension, otherwise we could end up
227 changing (float)floor(double d) into floorf((float)d), which is
228 incorrect because (float)d uses round-to-nearest and can round
229 up to the next integer. */
230 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
231 return
232 build_function_call_expr (fn,
233 build_tree_list (NULL_TREE,
234 fold (convert_to_real (type, arg))));
238 /* Propagate the cast into the operation. */
239 if (itype != type && FLOAT_TYPE_P (type))
240 switch (TREE_CODE (expr))
242 /* Convert (float)-x into -(float)x. This is always safe. */
243 case ABS_EXPR:
244 case NEGATE_EXPR:
245 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
246 return build1 (TREE_CODE (expr), type,
247 fold (convert_to_real (type,
248 TREE_OPERAND (expr, 0))));
249 break;
250 /* Convert (outertype)((innertype0)a+(innertype1)b)
251 into ((newtype)a+(newtype)b) where newtype
252 is the widest mode from all of these. */
253 case PLUS_EXPR:
254 case MINUS_EXPR:
255 case MULT_EXPR:
256 case RDIV_EXPR:
258 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
259 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
261 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
262 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
264 tree newtype = type;
266 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
267 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
268 newtype = dfloat32_type_node;
269 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
270 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
271 newtype = dfloat64_type_node;
272 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
273 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
274 newtype = dfloat128_type_node;
275 if (newtype == dfloat32_type_node
276 || newtype == dfloat64_type_node
277 || newtype == dfloat128_type_node)
279 expr = build2 (TREE_CODE (expr), newtype,
280 fold (convert_to_real (newtype, arg0)),
281 fold (convert_to_real (newtype, arg1)));
282 if (newtype == type)
283 return expr;
284 break;
287 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
288 newtype = TREE_TYPE (arg0);
289 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
290 newtype = TREE_TYPE (arg1);
291 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
293 expr = build2 (TREE_CODE (expr), newtype,
294 fold (convert_to_real (newtype, arg0)),
295 fold (convert_to_real (newtype, arg1)));
296 if (newtype == type)
297 return expr;
301 break;
302 default:
303 break;
306 switch (TREE_CODE (TREE_TYPE (expr)))
308 case REAL_TYPE:
309 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
310 type, expr);
312 case INTEGER_TYPE:
313 case ENUMERAL_TYPE:
314 case BOOLEAN_TYPE:
315 return build1 (FLOAT_EXPR, type, expr);
317 case COMPLEX_TYPE:
318 return convert (type,
319 fold_build1 (REALPART_EXPR,
320 TREE_TYPE (TREE_TYPE (expr)), expr));
322 case POINTER_TYPE:
323 case REFERENCE_TYPE:
324 error ("pointer value used where a floating point value was expected");
325 return convert_to_real (type, integer_zero_node);
327 default:
328 error ("aggregate value used where a float was expected");
329 return convert_to_real (type, integer_zero_node);
333 /* Convert EXPR to some integer (or enum) type TYPE.
335 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
336 vector; in other cases error is called.
338 The result of this is always supposed to be a newly created tree node
339 not in use in any existing structure. */
341 tree
342 convert_to_integer (tree type, tree expr)
344 enum tree_code ex_form = TREE_CODE (expr);
345 tree intype = TREE_TYPE (expr);
346 unsigned int inprec = TYPE_PRECISION (intype);
347 unsigned int outprec = TYPE_PRECISION (type);
349 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
350 be. Consider `enum E = { a, b = (enum E) 3 };'. */
351 if (!COMPLETE_TYPE_P (type))
353 error ("conversion to incomplete type");
354 return error_mark_node;
357 /* Convert e.g. (long)round(d) -> lround(d). */
358 /* If we're converting to char, we may encounter differing behavior
359 between converting from double->char vs double->long->char.
360 We're in "undefined" territory but we prefer to be conservative,
361 so only proceed in "unsafe" math mode. */
362 if (optimize
363 && (flag_unsafe_math_optimizations
364 || (long_integer_type_node
365 && outprec >= TYPE_PRECISION (long_integer_type_node))))
367 tree s_expr = strip_float_extensions (expr);
368 tree s_intype = TREE_TYPE (s_expr);
369 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
370 tree fn = 0;
372 switch (fcode)
374 CASE_FLT_FN (BUILT_IN_CEIL):
375 /* Only convert in ISO C99 mode. */
376 if (!TARGET_C99_FUNCTIONS)
377 break;
378 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
379 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
380 else
381 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
382 break;
384 CASE_FLT_FN (BUILT_IN_FLOOR):
385 /* Only convert in ISO C99 mode. */
386 if (!TARGET_C99_FUNCTIONS)
387 break;
388 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
389 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
390 else
391 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
392 break;
394 CASE_FLT_FN (BUILT_IN_ROUND):
395 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
396 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
397 else
398 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
399 break;
401 CASE_FLT_FN (BUILT_IN_RINT):
402 /* Only convert rint* if we can ignore math exceptions. */
403 if (flag_trapping_math)
404 break;
405 /* ... Fall through ... */
406 CASE_FLT_FN (BUILT_IN_NEARBYINT):
407 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
408 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
409 else
410 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
411 break;
413 CASE_FLT_FN (BUILT_IN_TRUNC):
415 tree arglist = TREE_OPERAND (s_expr, 1);
416 return convert_to_integer (type, TREE_VALUE (arglist));
419 default:
420 break;
423 if (fn)
425 tree arglist = TREE_OPERAND (s_expr, 1);
426 tree newexpr = build_function_call_expr (fn, arglist);
427 return convert_to_integer (type, newexpr);
431 switch (TREE_CODE (intype))
433 case POINTER_TYPE:
434 case REFERENCE_TYPE:
435 if (integer_zerop (expr))
436 return build_int_cst (type, 0);
438 /* Convert to an unsigned integer of the correct width first,
439 and from there widen/truncate to the required type. */
440 expr = fold_build1 (CONVERT_EXPR,
441 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
442 expr);
443 return fold_convert (type, expr);
445 case INTEGER_TYPE:
446 case ENUMERAL_TYPE:
447 case BOOLEAN_TYPE:
448 /* If this is a logical operation, which just returns 0 or 1, we can
449 change the type of the expression. */
451 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
453 expr = copy_node (expr);
454 TREE_TYPE (expr) = type;
455 return expr;
458 /* If we are widening the type, put in an explicit conversion.
459 Similarly if we are not changing the width. After this, we know
460 we are truncating EXPR. */
462 else if (outprec >= inprec)
464 enum tree_code code;
466 /* If the precision of the EXPR's type is K bits and the
467 destination mode has more bits, and the sign is changing,
468 it is not safe to use a NOP_EXPR. For example, suppose
469 that EXPR's type is a 3-bit unsigned integer type, the
470 TYPE is a 3-bit signed integer type, and the machine mode
471 for the types is 8-bit QImode. In that case, the
472 conversion necessitates an explicit sign-extension. In
473 the signed-to-unsigned case the high-order bits have to
474 be cleared. */
475 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
476 && (TYPE_PRECISION (TREE_TYPE (expr))
477 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
478 code = CONVERT_EXPR;
479 else
480 code = NOP_EXPR;
482 return fold_build1 (code, type, expr);
485 /* If TYPE is an enumeral type or a type with a precision less
486 than the number of bits in its mode, do the conversion to the
487 type corresponding to its mode, then do a nop conversion
488 to TYPE. */
489 else if (TREE_CODE (type) == ENUMERAL_TYPE
490 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
491 return build1 (NOP_EXPR, type,
492 convert (lang_hooks.types.type_for_mode
493 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
494 expr));
496 /* Here detect when we can distribute the truncation down past some
497 arithmetic. For example, if adding two longs and converting to an
498 int, we can equally well convert both to ints and then add.
499 For the operations handled here, such truncation distribution
500 is always safe.
501 It is desirable in these cases:
502 1) when truncating down to full-word from a larger size
503 2) when truncating takes no work.
504 3) when at least one operand of the arithmetic has been extended
505 (as by C's default conversions). In this case we need two conversions
506 if we do the arithmetic as already requested, so we might as well
507 truncate both and then combine. Perhaps that way we need only one.
509 Note that in general we cannot do the arithmetic in a type
510 shorter than the desired result of conversion, even if the operands
511 are both extended from a shorter type, because they might overflow
512 if combined in that type. The exceptions to this--the times when
513 two narrow values can be combined in their narrow type even to
514 make a wider result--are handled by "shorten" in build_binary_op. */
516 switch (ex_form)
518 case RSHIFT_EXPR:
519 /* We can pass truncation down through right shifting
520 when the shift count is a nonpositive constant. */
521 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
522 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
523 goto trunc1;
524 break;
526 case LSHIFT_EXPR:
527 /* We can pass truncation down through left shifting
528 when the shift count is a nonnegative constant and
529 the target type is unsigned. */
530 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
531 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
532 && TYPE_UNSIGNED (type)
533 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
535 /* If shift count is less than the width of the truncated type,
536 really shift. */
537 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
538 /* In this case, shifting is like multiplication. */
539 goto trunc1;
540 else
542 /* If it is >= that width, result is zero.
543 Handling this with trunc1 would give the wrong result:
544 (int) ((long long) a << 32) is well defined (as 0)
545 but (int) a << 32 is undefined and would get a
546 warning. */
548 tree t = build_int_cst (type, 0);
550 /* If the original expression had side-effects, we must
551 preserve it. */
552 if (TREE_SIDE_EFFECTS (expr))
553 return build2 (COMPOUND_EXPR, type, expr, t);
554 else
555 return t;
558 break;
560 case MAX_EXPR:
561 case MIN_EXPR:
562 case MULT_EXPR:
564 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
565 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
567 /* Don't distribute unless the output precision is at least as big
568 as the actual inputs. Otherwise, the comparison of the
569 truncated values will be wrong. */
570 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
571 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
572 /* If signedness of arg0 and arg1 don't match,
573 we can't necessarily find a type to compare them in. */
574 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
575 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
576 goto trunc1;
577 break;
580 case PLUS_EXPR:
581 case MINUS_EXPR:
582 case BIT_AND_EXPR:
583 case BIT_IOR_EXPR:
584 case BIT_XOR_EXPR:
585 trunc1:
587 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
588 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
590 if (outprec >= BITS_PER_WORD
591 || TRULY_NOOP_TRUNCATION (outprec, inprec)
592 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
593 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
595 /* Do the arithmetic in type TYPEX,
596 then convert result to TYPE. */
597 tree typex = type;
599 /* Can't do arithmetic in enumeral types
600 so use an integer type that will hold the values. */
601 if (TREE_CODE (typex) == ENUMERAL_TYPE)
602 typex = lang_hooks.types.type_for_size
603 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
605 /* But now perhaps TYPEX is as wide as INPREC.
606 In that case, do nothing special here.
607 (Otherwise would recurse infinitely in convert. */
608 if (TYPE_PRECISION (typex) != inprec)
610 /* Don't do unsigned arithmetic where signed was wanted,
611 or vice versa.
612 Exception: if both of the original operands were
613 unsigned then we can safely do the work as unsigned.
614 Exception: shift operations take their type solely
615 from the first argument.
616 Exception: the LSHIFT_EXPR case above requires that
617 we perform this operation unsigned lest we produce
618 signed-overflow undefinedness.
619 And we may need to do it as unsigned
620 if we truncate to the original size. */
621 if (TYPE_UNSIGNED (TREE_TYPE (expr))
622 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
623 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
624 || ex_form == LSHIFT_EXPR
625 || ex_form == RSHIFT_EXPR
626 || ex_form == LROTATE_EXPR
627 || ex_form == RROTATE_EXPR))
628 || ex_form == LSHIFT_EXPR
629 /* If we have !flag_wrapv, and either ARG0 or
630 ARG1 is of a signed type, we have to do
631 PLUS_EXPR or MINUS_EXPR in an unsigned
632 type. Otherwise, we would introduce
633 signed-overflow undefinedness. */
634 || (!flag_wrapv
635 && (ex_form == PLUS_EXPR
636 || ex_form == MINUS_EXPR)
637 && (!TYPE_UNSIGNED (TREE_TYPE (arg0))
638 || !TYPE_UNSIGNED (TREE_TYPE (arg1)))))
639 typex = lang_hooks.types.unsigned_type (typex);
640 else
641 typex = lang_hooks.types.signed_type (typex);
642 return convert (type,
643 fold_build2 (ex_form, typex,
644 convert (typex, arg0),
645 convert (typex, arg1)));
649 break;
651 case NEGATE_EXPR:
652 case BIT_NOT_EXPR:
653 /* This is not correct for ABS_EXPR,
654 since we must test the sign before truncation. */
656 tree typex;
658 /* Don't do unsigned arithmetic where signed was wanted,
659 or vice versa. */
660 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
661 typex = lang_hooks.types.unsigned_type (type);
662 else
663 typex = lang_hooks.types.signed_type (type);
664 return convert (type,
665 fold_build1 (ex_form, typex,
666 convert (typex,
667 TREE_OPERAND (expr, 0))));
670 case NOP_EXPR:
671 /* Don't introduce a
672 "can't convert between vector values of different size" error. */
673 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
674 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
675 != GET_MODE_SIZE (TYPE_MODE (type))))
676 break;
677 /* If truncating after truncating, might as well do all at once.
678 If truncating after extending, we may get rid of wasted work. */
679 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
681 case COND_EXPR:
682 /* It is sometimes worthwhile to push the narrowing down through
683 the conditional and never loses. */
684 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
685 convert (type, TREE_OPERAND (expr, 1)),
686 convert (type, TREE_OPERAND (expr, 2)));
688 default:
689 break;
692 return build1 (CONVERT_EXPR, type, expr);
694 case REAL_TYPE:
695 return build1 (FIX_TRUNC_EXPR, type, expr);
697 case COMPLEX_TYPE:
698 return convert (type,
699 fold_build1 (REALPART_EXPR,
700 TREE_TYPE (TREE_TYPE (expr)), expr));
702 case VECTOR_TYPE:
703 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
705 error ("can't convert between vector values of different size");
706 return error_mark_node;
708 return build1 (VIEW_CONVERT_EXPR, type, expr);
710 default:
711 error ("aggregate value used where an integer was expected");
712 return convert (type, integer_zero_node);
716 /* Convert EXPR to the complex type TYPE in the usual ways. */
718 tree
719 convert_to_complex (tree type, tree expr)
721 tree subtype = TREE_TYPE (type);
723 switch (TREE_CODE (TREE_TYPE (expr)))
725 case REAL_TYPE:
726 case INTEGER_TYPE:
727 case ENUMERAL_TYPE:
728 case BOOLEAN_TYPE:
729 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
730 convert (subtype, integer_zero_node));
732 case COMPLEX_TYPE:
734 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
736 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
737 return expr;
738 else if (TREE_CODE (expr) == COMPLEX_EXPR)
739 return fold_build2 (COMPLEX_EXPR, type,
740 convert (subtype, TREE_OPERAND (expr, 0)),
741 convert (subtype, TREE_OPERAND (expr, 1)));
742 else
744 expr = save_expr (expr);
745 return
746 fold_build2 (COMPLEX_EXPR, type,
747 convert (subtype,
748 fold_build1 (REALPART_EXPR,
749 TREE_TYPE (TREE_TYPE (expr)),
750 expr)),
751 convert (subtype,
752 fold_build1 (IMAGPART_EXPR,
753 TREE_TYPE (TREE_TYPE (expr)),
754 expr)));
758 case POINTER_TYPE:
759 case REFERENCE_TYPE:
760 error ("pointer value used where a complex was expected");
761 return convert_to_complex (type, integer_zero_node);
763 default:
764 error ("aggregate value used where a complex was expected");
765 return convert_to_complex (type, integer_zero_node);
769 /* Convert EXPR to the vector type TYPE in the usual ways. */
771 tree
772 convert_to_vector (tree type, tree expr)
774 switch (TREE_CODE (TREE_TYPE (expr)))
776 case INTEGER_TYPE:
777 case VECTOR_TYPE:
778 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
780 error ("can't convert between vector values of different size");
781 return error_mark_node;
783 return build1 (VIEW_CONVERT_EXPR, type, expr);
785 default:
786 error ("can't convert value to a vector");
787 return error_mark_node;