1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Treepr
; -- ???For debugging code below
28 with Aspects
; use Aspects
;
29 with Atree
; use Atree
;
30 with Casing
; use Casing
;
31 with Checks
; use Checks
;
32 with Debug
; use Debug
;
33 with Elists
; use Elists
;
34 with Errout
; use Errout
;
35 with Exp_Ch11
; use Exp_Ch11
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
41 with Lib
.Xref
; use Lib
.Xref
;
42 with Namet
.Sp
; use Namet
.Sp
;
43 with Nlists
; use Nlists
;
44 with Nmake
; use Nmake
;
45 with Output
; use Output
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Attr
; use Sem_Attr
;
52 with Sem_Ch6
; use Sem_Ch6
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Disp
; use Sem_Disp
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Prag
; use Sem_Prag
;
57 with Sem_Res
; use Sem_Res
;
58 with Sem_Warn
; use Sem_Warn
;
59 with Sem_Type
; use Sem_Type
;
60 with Sinfo
; use Sinfo
;
61 with Sinput
; use Sinput
;
62 with Stand
; use Stand
;
64 with Stringt
; use Stringt
;
65 with Targparm
; use Targparm
;
66 with Tbuild
; use Tbuild
;
67 with Ttypes
; use Ttypes
;
68 with Uname
; use Uname
;
70 with GNAT
.HTable
; use GNAT
.HTable
;
72 package body Sem_Util
is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 function Build_Component_Subtype
81 T
: Entity_Id
) return Node_Id
;
82 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
83 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
84 -- Loc is the source location, T is the original subtype.
86 function Has_Enabled_Property
88 Property
: Name_Id
) return Boolean;
89 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
90 -- Determine whether an abstract state or a variable denoted by entity
91 -- Item_Id has enabled property Property.
93 function Has_Null_Extension
(T
: Entity_Id
) return Boolean;
94 -- T is a derived tagged type. Check whether the type extension is null.
95 -- If the parent type is fully initialized, T can be treated as such.
97 function Is_Fully_Initialized_Variant
(Typ
: Entity_Id
) return Boolean;
98 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
99 -- with discriminants whose default values are static, examine only the
100 -- components in the selected variant to determine whether all of them
103 function Old_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean;
104 function New_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean;
105 -- ???We retain the old and new algorithms for Requires_Transient_Scope for
106 -- the time being. New_Requires_Transient_Scope is used by default; the
107 -- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
108 -- instead. The intent is to use this temporarily to measure before/after
109 -- efficiency. Note: when this temporary code is removed, the documentation
110 -- of dQ in debug.adb should be removed.
112 procedure Results_Differ
116 -- ???Debugging code. Called when the Old_Val and New_Val differ. This
117 -- routine will be removed eventially when New_Requires_Transient_Scope
118 -- becomes Requires_Transient_Scope and Old_Requires_Transient_Scope is
121 ------------------------------
122 -- Abstract_Interface_List --
123 ------------------------------
125 function Abstract_Interface_List
(Typ
: Entity_Id
) return List_Id
is
129 if Is_Concurrent_Type
(Typ
) then
131 -- If we are dealing with a synchronized subtype, go to the base
132 -- type, whose declaration has the interface list.
134 -- Shouldn't this be Declaration_Node???
136 Nod
:= Parent
(Base_Type
(Typ
));
138 if Nkind
(Nod
) = N_Full_Type_Declaration
then
142 elsif Ekind
(Typ
) = E_Record_Type_With_Private
then
143 if Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
then
144 Nod
:= Type_Definition
(Parent
(Typ
));
146 elsif Nkind
(Parent
(Typ
)) = N_Private_Type_Declaration
then
147 if Present
(Full_View
(Typ
))
149 Nkind
(Parent
(Full_View
(Typ
))) = N_Full_Type_Declaration
151 Nod
:= Type_Definition
(Parent
(Full_View
(Typ
)));
153 -- If the full-view is not available we cannot do anything else
154 -- here (the source has errors).
160 -- Support for generic formals with interfaces is still missing ???
162 elsif Nkind
(Parent
(Typ
)) = N_Formal_Type_Declaration
then
167 (Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
);
171 elsif Ekind
(Typ
) = E_Record_Subtype
then
172 Nod
:= Type_Definition
(Parent
(Etype
(Typ
)));
174 elsif Ekind
(Typ
) = E_Record_Subtype_With_Private
then
176 -- Recurse, because parent may still be a private extension. Also
177 -- note that the full view of the subtype or the full view of its
178 -- base type may (both) be unavailable.
180 return Abstract_Interface_List
(Etype
(Typ
));
182 else pragma Assert
((Ekind
(Typ
)) = E_Record_Type
);
183 if Nkind
(Parent
(Typ
)) = N_Formal_Type_Declaration
then
184 Nod
:= Formal_Type_Definition
(Parent
(Typ
));
186 Nod
:= Type_Definition
(Parent
(Typ
));
190 return Interface_List
(Nod
);
191 end Abstract_Interface_List
;
193 --------------------------------
194 -- Add_Access_Type_To_Process --
195 --------------------------------
197 procedure Add_Access_Type_To_Process
(E
: Entity_Id
; A
: Entity_Id
) is
201 Ensure_Freeze_Node
(E
);
202 L
:= Access_Types_To_Process
(Freeze_Node
(E
));
206 Set_Access_Types_To_Process
(Freeze_Node
(E
), L
);
210 end Add_Access_Type_To_Process
;
212 --------------------------
213 -- Add_Block_Identifier --
214 --------------------------
216 procedure Add_Block_Identifier
(N
: Node_Id
; Id
: out Entity_Id
) is
217 Loc
: constant Source_Ptr
:= Sloc
(N
);
220 pragma Assert
(Nkind
(N
) = N_Block_Statement
);
222 -- The block already has a label, return its entity
224 if Present
(Identifier
(N
)) then
225 Id
:= Entity
(Identifier
(N
));
227 -- Create a new block label and set its attributes
230 Id
:= New_Internal_Entity
(E_Block
, Current_Scope
, Loc
, 'B');
231 Set_Etype
(Id
, Standard_Void_Type
);
234 Set_Identifier
(N
, New_Occurrence_Of
(Id
, Loc
));
235 Set_Block_Node
(Id
, Identifier
(N
));
237 end Add_Block_Identifier
;
239 ----------------------------
240 -- Add_Global_Declaration --
241 ----------------------------
243 procedure Add_Global_Declaration
(N
: Node_Id
) is
244 Aux_Node
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Current_Sem_Unit
));
247 if No
(Declarations
(Aux_Node
)) then
248 Set_Declarations
(Aux_Node
, New_List
);
251 Append_To
(Declarations
(Aux_Node
), N
);
253 end Add_Global_Declaration
;
255 --------------------------------
256 -- Address_Integer_Convert_OK --
257 --------------------------------
259 function Address_Integer_Convert_OK
(T1
, T2
: Entity_Id
) return Boolean is
261 if Allow_Integer_Address
262 and then ((Is_Descendant_Of_Address
(T1
)
263 and then Is_Private_Type
(T1
)
264 and then Is_Integer_Type
(T2
))
266 (Is_Descendant_Of_Address
(T2
)
267 and then Is_Private_Type
(T2
)
268 and then Is_Integer_Type
(T1
)))
274 end Address_Integer_Convert_OK
;
280 function Address_Value
(N
: Node_Id
) return Node_Id
is
285 -- For constant, get constant expression
287 if Is_Entity_Name
(Expr
)
288 and then Ekind
(Entity
(Expr
)) = E_Constant
290 Expr
:= Constant_Value
(Entity
(Expr
));
292 -- For unchecked conversion, get result to convert
294 elsif Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
295 Expr
:= Expression
(Expr
);
297 -- For (common case) of To_Address call, get argument
299 elsif Nkind
(Expr
) = N_Function_Call
300 and then Is_Entity_Name
(Name
(Expr
))
301 and then Is_RTE
(Entity
(Name
(Expr
)), RE_To_Address
)
303 Expr
:= First
(Parameter_Associations
(Expr
));
305 if Nkind
(Expr
) = N_Parameter_Association
then
306 Expr
:= Explicit_Actual_Parameter
(Expr
);
309 -- We finally have the real expression
323 -- For now, just 8/16/32/64
325 function Addressable
(V
: Uint
) return Boolean is
327 return V
= Uint_8
or else
333 function Addressable
(V
: Int
) return Boolean is
341 ---------------------------------
342 -- Aggregate_Constraint_Checks --
343 ---------------------------------
345 procedure Aggregate_Constraint_Checks
347 Check_Typ
: Entity_Id
)
349 Exp_Typ
: constant Entity_Id
:= Etype
(Exp
);
352 if Raises_Constraint_Error
(Exp
) then
356 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
357 -- component's type to force the appropriate accessibility checks.
359 -- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
360 -- force the corresponding run-time check
362 if Is_Access_Type
(Check_Typ
)
363 and then Is_Local_Anonymous_Access
(Check_Typ
)
365 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
366 Analyze_And_Resolve
(Exp
, Check_Typ
);
367 Check_Unset_Reference
(Exp
);
370 -- What follows is really expansion activity, so check that expansion
371 -- is on and is allowed. In GNATprove mode, we also want check flags to
372 -- be added in the tree, so that the formal verification can rely on
373 -- those to be present. In GNATprove mode for formal verification, some
374 -- treatment typically only done during expansion needs to be performed
375 -- on the tree, but it should not be applied inside generics. Otherwise,
376 -- this breaks the name resolution mechanism for generic instances.
378 if not Expander_Active
379 and (Inside_A_Generic
or not Full_Analysis
or not GNATprove_Mode
)
384 if Is_Access_Type
(Check_Typ
)
385 and then Can_Never_Be_Null
(Check_Typ
)
386 and then not Can_Never_Be_Null
(Exp_Typ
)
388 Install_Null_Excluding_Check
(Exp
);
391 -- First check if we have to insert discriminant checks
393 if Has_Discriminants
(Exp_Typ
) then
394 Apply_Discriminant_Check
(Exp
, Check_Typ
);
396 -- Next emit length checks for array aggregates
398 elsif Is_Array_Type
(Exp_Typ
) then
399 Apply_Length_Check
(Exp
, Check_Typ
);
401 -- Finally emit scalar and string checks. If we are dealing with a
402 -- scalar literal we need to check by hand because the Etype of
403 -- literals is not necessarily correct.
405 elsif Is_Scalar_Type
(Exp_Typ
)
406 and then Compile_Time_Known_Value
(Exp
)
408 if Is_Out_Of_Range
(Exp
, Base_Type
(Check_Typ
)) then
409 Apply_Compile_Time_Constraint_Error
410 (Exp
, "value not in range of}??", CE_Range_Check_Failed
,
411 Ent
=> Base_Type
(Check_Typ
),
412 Typ
=> Base_Type
(Check_Typ
));
414 elsif Is_Out_Of_Range
(Exp
, Check_Typ
) then
415 Apply_Compile_Time_Constraint_Error
416 (Exp
, "value not in range of}??", CE_Range_Check_Failed
,
420 elsif not Range_Checks_Suppressed
(Check_Typ
) then
421 Apply_Scalar_Range_Check
(Exp
, Check_Typ
);
424 -- Verify that target type is also scalar, to prevent view anomalies
425 -- in instantiations.
427 elsif (Is_Scalar_Type
(Exp_Typ
)
428 or else Nkind
(Exp
) = N_String_Literal
)
429 and then Is_Scalar_Type
(Check_Typ
)
430 and then Exp_Typ
/= Check_Typ
432 if Is_Entity_Name
(Exp
)
433 and then Ekind
(Entity
(Exp
)) = E_Constant
435 -- If expression is a constant, it is worthwhile checking whether
436 -- it is a bound of the type.
438 if (Is_Entity_Name
(Type_Low_Bound
(Check_Typ
))
439 and then Entity
(Exp
) = Entity
(Type_Low_Bound
(Check_Typ
)))
441 (Is_Entity_Name
(Type_High_Bound
(Check_Typ
))
442 and then Entity
(Exp
) = Entity
(Type_High_Bound
(Check_Typ
)))
447 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
448 Analyze_And_Resolve
(Exp
, Check_Typ
);
449 Check_Unset_Reference
(Exp
);
452 -- Could use a comment on this case ???
455 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
456 Analyze_And_Resolve
(Exp
, Check_Typ
);
457 Check_Unset_Reference
(Exp
);
461 end Aggregate_Constraint_Checks
;
463 -----------------------
464 -- Alignment_In_Bits --
465 -----------------------
467 function Alignment_In_Bits
(E
: Entity_Id
) return Uint
is
469 return Alignment
(E
) * System_Storage_Unit
;
470 end Alignment_In_Bits
;
472 --------------------------------------
473 -- All_Composite_Constraints_Static --
474 --------------------------------------
476 function All_Composite_Constraints_Static
477 (Constr
: Node_Id
) return Boolean
480 if No
(Constr
) or else Error_Posted
(Constr
) then
484 case Nkind
(Constr
) is
486 if Nkind
(Constr
) in N_Has_Entity
487 and then Present
(Entity
(Constr
))
489 if Is_Type
(Entity
(Constr
)) then
491 not Is_Discrete_Type
(Entity
(Constr
))
492 or else Is_OK_Static_Subtype
(Entity
(Constr
));
495 elsif Nkind
(Constr
) = N_Range
then
497 Is_OK_Static_Expression
(Low_Bound
(Constr
))
499 Is_OK_Static_Expression
(High_Bound
(Constr
));
501 elsif Nkind
(Constr
) = N_Attribute_Reference
502 and then Attribute_Name
(Constr
) = Name_Range
505 Is_OK_Static_Expression
506 (Type_Low_Bound
(Etype
(Prefix
(Constr
))))
508 Is_OK_Static_Expression
509 (Type_High_Bound
(Etype
(Prefix
(Constr
))));
513 not Present
(Etype
(Constr
)) -- previous error
514 or else not Is_Discrete_Type
(Etype
(Constr
))
515 or else Is_OK_Static_Expression
(Constr
);
517 when N_Discriminant_Association
=>
518 return All_Composite_Constraints_Static
(Expression
(Constr
));
520 when N_Range_Constraint
=>
522 All_Composite_Constraints_Static
(Range_Expression
(Constr
));
524 when N_Index_Or_Discriminant_Constraint
=>
526 One_Cstr
: Entity_Id
;
528 One_Cstr
:= First
(Constraints
(Constr
));
529 while Present
(One_Cstr
) loop
530 if not All_Composite_Constraints_Static
(One_Cstr
) then
540 when N_Subtype_Indication
=>
542 All_Composite_Constraints_Static
(Subtype_Mark
(Constr
))
544 All_Composite_Constraints_Static
(Constraint
(Constr
));
549 end All_Composite_Constraints_Static
;
551 ---------------------------------
552 -- Append_Inherited_Subprogram --
553 ---------------------------------
555 procedure Append_Inherited_Subprogram
(S
: Entity_Id
) is
556 Par
: constant Entity_Id
:= Alias
(S
);
557 -- The parent subprogram
559 Scop
: constant Entity_Id
:= Scope
(Par
);
560 -- The scope of definition of the parent subprogram
562 Typ
: constant Entity_Id
:= Defining_Entity
(Parent
(S
));
563 -- The derived type of which S is a primitive operation
569 if Ekind
(Current_Scope
) = E_Package
570 and then In_Private_Part
(Current_Scope
)
571 and then Has_Private_Declaration
(Typ
)
572 and then Is_Tagged_Type
(Typ
)
573 and then Scop
= Current_Scope
575 -- The inherited operation is available at the earliest place after
576 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
577 -- relevant for type extensions. If the parent operation appears
578 -- after the type extension, the operation is not visible.
581 (Visible_Declarations
582 (Package_Specification
(Current_Scope
)));
583 while Present
(Decl
) loop
584 if Nkind
(Decl
) = N_Private_Extension_Declaration
585 and then Defining_Entity
(Decl
) = Typ
587 if Sloc
(Decl
) > Sloc
(Par
) then
588 Next_E
:= Next_Entity
(Par
);
589 Set_Next_Entity
(Par
, S
);
590 Set_Next_Entity
(S
, Next_E
);
602 -- If partial view is not a type extension, or it appears before the
603 -- subprogram declaration, insert normally at end of entity list.
605 Append_Entity
(S
, Current_Scope
);
606 end Append_Inherited_Subprogram
;
608 -----------------------------------------
609 -- Apply_Compile_Time_Constraint_Error --
610 -----------------------------------------
612 procedure Apply_Compile_Time_Constraint_Error
615 Reason
: RT_Exception_Code
;
616 Ent
: Entity_Id
:= Empty
;
617 Typ
: Entity_Id
:= Empty
;
618 Loc
: Source_Ptr
:= No_Location
;
619 Rep
: Boolean := True;
620 Warn
: Boolean := False)
622 Stat
: constant Boolean := Is_Static_Expression
(N
);
623 R_Stat
: constant Node_Id
:=
624 Make_Raise_Constraint_Error
(Sloc
(N
), Reason
=> Reason
);
635 (Compile_Time_Constraint_Error
(N
, Msg
, Ent
, Loc
, Warn
=> Warn
));
637 -- In GNATprove mode, do not replace the node with an exception raised.
638 -- In such a case, either the call to Compile_Time_Constraint_Error
639 -- issues an error which stops analysis, or it issues a warning in
640 -- a few cases where a suitable check flag is set for GNATprove to
641 -- generate a check message.
643 if not Rep
or GNATprove_Mode
then
647 -- Now we replace the node by an N_Raise_Constraint_Error node
648 -- This does not need reanalyzing, so set it as analyzed now.
651 Set_Analyzed
(N
, True);
654 Set_Raises_Constraint_Error
(N
);
656 -- Now deal with possible local raise handling
658 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
660 -- If the original expression was marked as static, the result is
661 -- still marked as static, but the Raises_Constraint_Error flag is
662 -- always set so that further static evaluation is not attempted.
665 Set_Is_Static_Expression
(N
);
667 end Apply_Compile_Time_Constraint_Error
;
669 ---------------------------
670 -- Async_Readers_Enabled --
671 ---------------------------
673 function Async_Readers_Enabled
(Id
: Entity_Id
) return Boolean is
675 return Has_Enabled_Property
(Id
, Name_Async_Readers
);
676 end Async_Readers_Enabled
;
678 ---------------------------
679 -- Async_Writers_Enabled --
680 ---------------------------
682 function Async_Writers_Enabled
(Id
: Entity_Id
) return Boolean is
684 return Has_Enabled_Property
(Id
, Name_Async_Writers
);
685 end Async_Writers_Enabled
;
687 --------------------------------------
688 -- Available_Full_View_Of_Component --
689 --------------------------------------
691 function Available_Full_View_Of_Component
(T
: Entity_Id
) return Boolean is
692 ST
: constant Entity_Id
:= Scope
(T
);
693 SCT
: constant Entity_Id
:= Scope
(Component_Type
(T
));
695 return In_Open_Scopes
(ST
)
696 and then In_Open_Scopes
(SCT
)
697 and then Scope_Depth
(ST
) >= Scope_Depth
(SCT
);
698 end Available_Full_View_Of_Component
;
704 procedure Bad_Attribute
707 Warn
: Boolean := False)
710 Error_Msg_Warn
:= Warn
;
711 Error_Msg_N
("unrecognized attribute&<<", N
);
713 -- Check for possible misspelling
715 Error_Msg_Name_1
:= First_Attribute_Name
;
716 while Error_Msg_Name_1
<= Last_Attribute_Name
loop
717 if Is_Bad_Spelling_Of
(Nam
, Error_Msg_Name_1
) then
718 Error_Msg_N
-- CODEFIX
719 ("\possible misspelling of %<<", N
);
723 Error_Msg_Name_1
:= Error_Msg_Name_1
+ 1;
727 --------------------------------
728 -- Bad_Predicated_Subtype_Use --
729 --------------------------------
731 procedure Bad_Predicated_Subtype_Use
735 Suggest_Static
: Boolean := False)
740 -- Avoid cascaded errors
742 if Error_Posted
(N
) then
746 if Inside_A_Generic
then
747 Gen
:= Current_Scope
;
748 while Present
(Gen
) and then Ekind
(Gen
) /= E_Generic_Package
loop
756 if Is_Generic_Formal
(Typ
) and then Is_Discrete_Type
(Typ
) then
757 Set_No_Predicate_On_Actual
(Typ
);
760 elsif Has_Predicates
(Typ
) then
761 if Is_Generic_Actual_Type
(Typ
) then
763 -- The restriction on loop parameters is only that the type
764 -- should have no dynamic predicates.
766 if Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
767 and then not Has_Dynamic_Predicate_Aspect
(Typ
)
768 and then Is_OK_Static_Subtype
(Typ
)
773 Gen
:= Current_Scope
;
774 while not Is_Generic_Instance
(Gen
) loop
778 pragma Assert
(Present
(Gen
));
780 if Ekind
(Gen
) = E_Package
and then In_Package_Body
(Gen
) then
781 Error_Msg_Warn
:= SPARK_Mode
/= On
;
782 Error_Msg_FE
(Msg
& "<<", N
, Typ
);
783 Error_Msg_F
("\Program_Error [<<", N
);
786 Make_Raise_Program_Error
(Sloc
(N
),
787 Reason
=> PE_Bad_Predicated_Generic_Type
));
790 Error_Msg_FE
(Msg
& "<<", N
, Typ
);
794 Error_Msg_FE
(Msg
, N
, Typ
);
797 -- Emit an optional suggestion on how to remedy the error if the
798 -- context warrants it.
800 if Suggest_Static
and then Has_Static_Predicate
(Typ
) then
801 Error_Msg_FE
("\predicate of & should be marked static", N
, Typ
);
804 end Bad_Predicated_Subtype_Use
;
806 -----------------------------------------
807 -- Bad_Unordered_Enumeration_Reference --
808 -----------------------------------------
810 function Bad_Unordered_Enumeration_Reference
812 T
: Entity_Id
) return Boolean
815 return Is_Enumeration_Type
(T
)
816 and then Warn_On_Unordered_Enumeration_Type
817 and then not Is_Generic_Type
(T
)
818 and then Comes_From_Source
(N
)
819 and then not Has_Pragma_Ordered
(T
)
820 and then not In_Same_Extended_Unit
(N
, T
);
821 end Bad_Unordered_Enumeration_Reference
;
823 --------------------------
824 -- Build_Actual_Subtype --
825 --------------------------
827 function Build_Actual_Subtype
829 N
: Node_Or_Entity_Id
) return Node_Id
832 -- Normally Sloc (N), but may point to corresponding body in some cases
834 Constraints
: List_Id
;
840 Disc_Type
: Entity_Id
;
846 if Nkind
(N
) = N_Defining_Identifier
then
847 Obj
:= New_Occurrence_Of
(N
, Loc
);
849 -- If this is a formal parameter of a subprogram declaration, and
850 -- we are compiling the body, we want the declaration for the
851 -- actual subtype to carry the source position of the body, to
852 -- prevent anomalies in gdb when stepping through the code.
854 if Is_Formal
(N
) then
856 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(N
));
858 if Nkind
(Decl
) = N_Subprogram_Declaration
859 and then Present
(Corresponding_Body
(Decl
))
861 Loc
:= Sloc
(Corresponding_Body
(Decl
));
870 if Is_Array_Type
(T
) then
871 Constraints
:= New_List
;
872 for J
in 1 .. Number_Dimensions
(T
) loop
874 -- Build an array subtype declaration with the nominal subtype and
875 -- the bounds of the actual. Add the declaration in front of the
876 -- local declarations for the subprogram, for analysis before any
877 -- reference to the formal in the body.
880 Make_Attribute_Reference
(Loc
,
882 Duplicate_Subexpr_No_Checks
(Obj
, Name_Req
=> True),
883 Attribute_Name
=> Name_First
,
884 Expressions
=> New_List
(
885 Make_Integer_Literal
(Loc
, J
)));
888 Make_Attribute_Reference
(Loc
,
890 Duplicate_Subexpr_No_Checks
(Obj
, Name_Req
=> True),
891 Attribute_Name
=> Name_Last
,
892 Expressions
=> New_List
(
893 Make_Integer_Literal
(Loc
, J
)));
895 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
898 -- If the type has unknown discriminants there is no constrained
899 -- subtype to build. This is never called for a formal or for a
900 -- lhs, so returning the type is ok ???
902 elsif Has_Unknown_Discriminants
(T
) then
906 Constraints
:= New_List
;
908 -- Type T is a generic derived type, inherit the discriminants from
911 if Is_Private_Type
(T
)
912 and then No
(Full_View
(T
))
914 -- T was flagged as an error if it was declared as a formal
915 -- derived type with known discriminants. In this case there
916 -- is no need to look at the parent type since T already carries
917 -- its own discriminants.
919 and then not Error_Posted
(T
)
921 Disc_Type
:= Etype
(Base_Type
(T
));
926 Discr
:= First_Discriminant
(Disc_Type
);
927 while Present
(Discr
) loop
928 Append_To
(Constraints
,
929 Make_Selected_Component
(Loc
,
931 Duplicate_Subexpr_No_Checks
(Obj
),
932 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)));
933 Next_Discriminant
(Discr
);
937 Subt
:= Make_Temporary
(Loc
, 'S', Related_Node
=> N
);
938 Set_Is_Internal
(Subt
);
941 Make_Subtype_Declaration
(Loc
,
942 Defining_Identifier
=> Subt
,
943 Subtype_Indication
=>
944 Make_Subtype_Indication
(Loc
,
945 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
947 Make_Index_Or_Discriminant_Constraint
(Loc
,
948 Constraints
=> Constraints
)));
950 Mark_Rewrite_Insertion
(Decl
);
952 end Build_Actual_Subtype
;
954 ---------------------------------------
955 -- Build_Actual_Subtype_Of_Component --
956 ---------------------------------------
958 function Build_Actual_Subtype_Of_Component
960 N
: Node_Id
) return Node_Id
962 Loc
: constant Source_Ptr
:= Sloc
(N
);
963 P
: constant Node_Id
:= Prefix
(N
);
966 Index_Typ
: Entity_Id
;
968 Desig_Typ
: Entity_Id
;
969 -- This is either a copy of T, or if T is an access type, then it is
970 -- the directly designated type of this access type.
972 function Build_Actual_Array_Constraint
return List_Id
;
973 -- If one or more of the bounds of the component depends on
974 -- discriminants, build actual constraint using the discriminants
977 function Build_Actual_Record_Constraint
return List_Id
;
978 -- Similar to previous one, for discriminated components constrained
979 -- by the discriminant of the enclosing object.
981 -----------------------------------
982 -- Build_Actual_Array_Constraint --
983 -----------------------------------
985 function Build_Actual_Array_Constraint
return List_Id
is
986 Constraints
: constant List_Id
:= New_List
;
994 Indx
:= First_Index
(Desig_Typ
);
995 while Present
(Indx
) loop
996 Old_Lo
:= Type_Low_Bound
(Etype
(Indx
));
997 Old_Hi
:= Type_High_Bound
(Etype
(Indx
));
999 if Denotes_Discriminant
(Old_Lo
) then
1001 Make_Selected_Component
(Loc
,
1002 Prefix
=> New_Copy_Tree
(P
),
1003 Selector_Name
=> New_Occurrence_Of
(Entity
(Old_Lo
), Loc
));
1006 Lo
:= New_Copy_Tree
(Old_Lo
);
1008 -- The new bound will be reanalyzed in the enclosing
1009 -- declaration. For literal bounds that come from a type
1010 -- declaration, the type of the context must be imposed, so
1011 -- insure that analysis will take place. For non-universal
1012 -- types this is not strictly necessary.
1014 Set_Analyzed
(Lo
, False);
1017 if Denotes_Discriminant
(Old_Hi
) then
1019 Make_Selected_Component
(Loc
,
1020 Prefix
=> New_Copy_Tree
(P
),
1021 Selector_Name
=> New_Occurrence_Of
(Entity
(Old_Hi
), Loc
));
1024 Hi
:= New_Copy_Tree
(Old_Hi
);
1025 Set_Analyzed
(Hi
, False);
1028 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
1033 end Build_Actual_Array_Constraint
;
1035 ------------------------------------
1036 -- Build_Actual_Record_Constraint --
1037 ------------------------------------
1039 function Build_Actual_Record_Constraint
return List_Id
is
1040 Constraints
: constant List_Id
:= New_List
;
1045 D
:= First_Elmt
(Discriminant_Constraint
(Desig_Typ
));
1046 while Present
(D
) loop
1047 if Denotes_Discriminant
(Node
(D
)) then
1048 D_Val
:= Make_Selected_Component
(Loc
,
1049 Prefix
=> New_Copy_Tree
(P
),
1050 Selector_Name
=> New_Occurrence_Of
(Entity
(Node
(D
)), Loc
));
1053 D_Val
:= New_Copy_Tree
(Node
(D
));
1056 Append
(D_Val
, Constraints
);
1061 end Build_Actual_Record_Constraint
;
1063 -- Start of processing for Build_Actual_Subtype_Of_Component
1066 -- Why the test for Spec_Expression mode here???
1068 if In_Spec_Expression
then
1071 -- More comments for the rest of this body would be good ???
1073 elsif Nkind
(N
) = N_Explicit_Dereference
then
1074 if Is_Composite_Type
(T
)
1075 and then not Is_Constrained
(T
)
1076 and then not (Is_Class_Wide_Type
(T
)
1077 and then Is_Constrained
(Root_Type
(T
)))
1078 and then not Has_Unknown_Discriminants
(T
)
1080 -- If the type of the dereference is already constrained, it is an
1083 if Is_Array_Type
(Etype
(N
))
1084 and then Is_Constrained
(Etype
(N
))
1088 Remove_Side_Effects
(P
);
1089 return Build_Actual_Subtype
(T
, N
);
1096 if Ekind
(T
) = E_Access_Subtype
then
1097 Desig_Typ
:= Designated_Type
(T
);
1102 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
1103 Id
:= First_Index
(Desig_Typ
);
1104 while Present
(Id
) loop
1105 Index_Typ
:= Underlying_Type
(Etype
(Id
));
1107 if Denotes_Discriminant
(Type_Low_Bound
(Index_Typ
))
1109 Denotes_Discriminant
(Type_High_Bound
(Index_Typ
))
1111 Remove_Side_Effects
(P
);
1113 Build_Component_Subtype
1114 (Build_Actual_Array_Constraint
, Loc
, Base_Type
(T
));
1120 elsif Is_Composite_Type
(Desig_Typ
)
1121 and then Has_Discriminants
(Desig_Typ
)
1122 and then not Has_Unknown_Discriminants
(Desig_Typ
)
1124 if Is_Private_Type
(Desig_Typ
)
1125 and then No
(Discriminant_Constraint
(Desig_Typ
))
1127 Desig_Typ
:= Full_View
(Desig_Typ
);
1130 D
:= First_Elmt
(Discriminant_Constraint
(Desig_Typ
));
1131 while Present
(D
) loop
1132 if Denotes_Discriminant
(Node
(D
)) then
1133 Remove_Side_Effects
(P
);
1135 Build_Component_Subtype
(
1136 Build_Actual_Record_Constraint
, Loc
, Base_Type
(T
));
1143 -- If none of the above, the actual and nominal subtypes are the same
1146 end Build_Actual_Subtype_Of_Component
;
1148 -----------------------------
1149 -- Build_Component_Subtype --
1150 -----------------------------
1152 function Build_Component_Subtype
1155 T
: Entity_Id
) return Node_Id
1161 -- Unchecked_Union components do not require component subtypes
1163 if Is_Unchecked_Union
(T
) then
1167 Subt
:= Make_Temporary
(Loc
, 'S');
1168 Set_Is_Internal
(Subt
);
1171 Make_Subtype_Declaration
(Loc
,
1172 Defining_Identifier
=> Subt
,
1173 Subtype_Indication
=>
1174 Make_Subtype_Indication
(Loc
,
1175 Subtype_Mark
=> New_Occurrence_Of
(Base_Type
(T
), Loc
),
1177 Make_Index_Or_Discriminant_Constraint
(Loc
,
1178 Constraints
=> C
)));
1180 Mark_Rewrite_Insertion
(Decl
);
1182 end Build_Component_Subtype
;
1184 ---------------------------
1185 -- Build_Default_Subtype --
1186 ---------------------------
1188 function Build_Default_Subtype
1190 N
: Node_Id
) return Entity_Id
1192 Loc
: constant Source_Ptr
:= Sloc
(N
);
1196 -- The base type that is to be constrained by the defaults
1199 if not Has_Discriminants
(T
) or else Is_Constrained
(T
) then
1203 Bas
:= Base_Type
(T
);
1205 -- If T is non-private but its base type is private, this is the
1206 -- completion of a subtype declaration whose parent type is private
1207 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1208 -- are to be found in the full view of the base. Check that the private
1209 -- status of T and its base differ.
1211 if Is_Private_Type
(Bas
)
1212 and then not Is_Private_Type
(T
)
1213 and then Present
(Full_View
(Bas
))
1215 Bas
:= Full_View
(Bas
);
1218 Disc
:= First_Discriminant
(T
);
1220 if No
(Discriminant_Default_Value
(Disc
)) then
1225 Act
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1226 Constraints
: constant List_Id
:= New_List
;
1230 while Present
(Disc
) loop
1231 Append_To
(Constraints
,
1232 New_Copy_Tree
(Discriminant_Default_Value
(Disc
)));
1233 Next_Discriminant
(Disc
);
1237 Make_Subtype_Declaration
(Loc
,
1238 Defining_Identifier
=> Act
,
1239 Subtype_Indication
=>
1240 Make_Subtype_Indication
(Loc
,
1241 Subtype_Mark
=> New_Occurrence_Of
(Bas
, Loc
),
1243 Make_Index_Or_Discriminant_Constraint
(Loc
,
1244 Constraints
=> Constraints
)));
1246 Insert_Action
(N
, Decl
);
1248 -- If the context is a component declaration the subtype declaration
1249 -- will be analyzed when the enclosing type is frozen, otherwise do
1252 if Ekind
(Current_Scope
) /= E_Record_Type
then
1258 end Build_Default_Subtype
;
1260 --------------------------------------------
1261 -- Build_Discriminal_Subtype_Of_Component --
1262 --------------------------------------------
1264 function Build_Discriminal_Subtype_Of_Component
1265 (T
: Entity_Id
) return Node_Id
1267 Loc
: constant Source_Ptr
:= Sloc
(T
);
1271 function Build_Discriminal_Array_Constraint
return List_Id
;
1272 -- If one or more of the bounds of the component depends on
1273 -- discriminants, build actual constraint using the discriminants
1276 function Build_Discriminal_Record_Constraint
return List_Id
;
1277 -- Similar to previous one, for discriminated components constrained by
1278 -- the discriminant of the enclosing object.
1280 ----------------------------------------
1281 -- Build_Discriminal_Array_Constraint --
1282 ----------------------------------------
1284 function Build_Discriminal_Array_Constraint
return List_Id
is
1285 Constraints
: constant List_Id
:= New_List
;
1293 Indx
:= First_Index
(T
);
1294 while Present
(Indx
) loop
1295 Old_Lo
:= Type_Low_Bound
(Etype
(Indx
));
1296 Old_Hi
:= Type_High_Bound
(Etype
(Indx
));
1298 if Denotes_Discriminant
(Old_Lo
) then
1299 Lo
:= New_Occurrence_Of
(Discriminal
(Entity
(Old_Lo
)), Loc
);
1302 Lo
:= New_Copy_Tree
(Old_Lo
);
1305 if Denotes_Discriminant
(Old_Hi
) then
1306 Hi
:= New_Occurrence_Of
(Discriminal
(Entity
(Old_Hi
)), Loc
);
1309 Hi
:= New_Copy_Tree
(Old_Hi
);
1312 Append
(Make_Range
(Loc
, Lo
, Hi
), Constraints
);
1317 end Build_Discriminal_Array_Constraint
;
1319 -----------------------------------------
1320 -- Build_Discriminal_Record_Constraint --
1321 -----------------------------------------
1323 function Build_Discriminal_Record_Constraint
return List_Id
is
1324 Constraints
: constant List_Id
:= New_List
;
1329 D
:= First_Elmt
(Discriminant_Constraint
(T
));
1330 while Present
(D
) loop
1331 if Denotes_Discriminant
(Node
(D
)) then
1333 New_Occurrence_Of
(Discriminal
(Entity
(Node
(D
))), Loc
);
1335 D_Val
:= New_Copy_Tree
(Node
(D
));
1338 Append
(D_Val
, Constraints
);
1343 end Build_Discriminal_Record_Constraint
;
1345 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1348 if Ekind
(T
) = E_Array_Subtype
then
1349 Id
:= First_Index
(T
);
1350 while Present
(Id
) loop
1351 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(Id
)))
1353 Denotes_Discriminant
(Type_High_Bound
(Etype
(Id
)))
1355 return Build_Component_Subtype
1356 (Build_Discriminal_Array_Constraint
, Loc
, T
);
1362 elsif Ekind
(T
) = E_Record_Subtype
1363 and then Has_Discriminants
(T
)
1364 and then not Has_Unknown_Discriminants
(T
)
1366 D
:= First_Elmt
(Discriminant_Constraint
(T
));
1367 while Present
(D
) loop
1368 if Denotes_Discriminant
(Node
(D
)) then
1369 return Build_Component_Subtype
1370 (Build_Discriminal_Record_Constraint
, Loc
, T
);
1377 -- If none of the above, the actual and nominal subtypes are the same
1380 end Build_Discriminal_Subtype_Of_Component
;
1382 ------------------------------
1383 -- Build_Elaboration_Entity --
1384 ------------------------------
1386 procedure Build_Elaboration_Entity
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1387 Loc
: constant Source_Ptr
:= Sloc
(N
);
1389 Elab_Ent
: Entity_Id
;
1391 procedure Set_Package_Name
(Ent
: Entity_Id
);
1392 -- Given an entity, sets the fully qualified name of the entity in
1393 -- Name_Buffer, with components separated by double underscores. This
1394 -- is a recursive routine that climbs the scope chain to Standard.
1396 ----------------------
1397 -- Set_Package_Name --
1398 ----------------------
1400 procedure Set_Package_Name
(Ent
: Entity_Id
) is
1402 if Scope
(Ent
) /= Standard_Standard
then
1403 Set_Package_Name
(Scope
(Ent
));
1406 Nam
: constant String := Get_Name_String
(Chars
(Ent
));
1408 Name_Buffer
(Name_Len
+ 1) := '_';
1409 Name_Buffer
(Name_Len
+ 2) := '_';
1410 Name_Buffer
(Name_Len
+ 3 .. Name_Len
+ Nam
'Length + 2) := Nam
;
1411 Name_Len
:= Name_Len
+ Nam
'Length + 2;
1415 Get_Name_String
(Chars
(Ent
));
1417 end Set_Package_Name
;
1419 -- Start of processing for Build_Elaboration_Entity
1422 -- Ignore call if already constructed
1424 if Present
(Elaboration_Entity
(Spec_Id
)) then
1427 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1428 -- no role in analysis.
1430 elsif ASIS_Mode
then
1433 -- See if we need elaboration entity.
1435 -- We always need an elaboration entity when preserving control flow, as
1436 -- we want to remain explicit about the unit's elaboration order.
1438 elsif Opt
.Suppress_Control_Flow_Optimizations
then
1441 -- We always need an elaboration entity for the dynamic elaboration
1442 -- model, since it is needed to properly generate the PE exception for
1443 -- access before elaboration.
1445 elsif Dynamic_Elaboration_Checks
then
1448 -- For the static model, we don't need the elaboration counter if this
1449 -- unit is sure to have no elaboration code, since that means there
1450 -- is no elaboration unit to be called. Note that we can't just decide
1451 -- after the fact by looking to see whether there was elaboration code,
1452 -- because that's too late to make this decision.
1454 elsif Restriction_Active
(No_Elaboration_Code
) then
1457 -- Similarly, for the static model, we can skip the elaboration counter
1458 -- if we have the No_Multiple_Elaboration restriction, since for the
1459 -- static model, that's the only purpose of the counter (to avoid
1460 -- multiple elaboration).
1462 elsif Restriction_Active
(No_Multiple_Elaboration
) then
1466 -- Here we need the elaboration entity
1468 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1469 -- name with dots replaced by double underscore. We have to manually
1470 -- construct this name, since it will be elaborated in the outer scope,
1471 -- and thus will not have the unit name automatically prepended.
1473 Set_Package_Name
(Spec_Id
);
1474 Add_Str_To_Name_Buffer
("_E");
1476 -- Create elaboration counter
1478 Elab_Ent
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_Find
);
1479 Set_Elaboration_Entity
(Spec_Id
, Elab_Ent
);
1482 Make_Object_Declaration
(Loc
,
1483 Defining_Identifier
=> Elab_Ent
,
1484 Object_Definition
=>
1485 New_Occurrence_Of
(Standard_Short_Integer
, Loc
),
1486 Expression
=> Make_Integer_Literal
(Loc
, Uint_0
));
1488 Push_Scope
(Standard_Standard
);
1489 Add_Global_Declaration
(Decl
);
1492 -- Reset True_Constant indication, since we will indeed assign a value
1493 -- to the variable in the binder main. We also kill the Current_Value
1494 -- and Last_Assignment fields for the same reason.
1496 Set_Is_True_Constant
(Elab_Ent
, False);
1497 Set_Current_Value
(Elab_Ent
, Empty
);
1498 Set_Last_Assignment
(Elab_Ent
, Empty
);
1500 -- We do not want any further qualification of the name (if we did not
1501 -- do this, we would pick up the name of the generic package in the case
1502 -- of a library level generic instantiation).
1504 Set_Has_Qualified_Name
(Elab_Ent
);
1505 Set_Has_Fully_Qualified_Name
(Elab_Ent
);
1506 end Build_Elaboration_Entity
;
1508 --------------------------------
1509 -- Build_Explicit_Dereference --
1510 --------------------------------
1512 procedure Build_Explicit_Dereference
1516 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
1521 -- An entity of a type with a reference aspect is overloaded with
1522 -- both interpretations: with and without the dereference. Now that
1523 -- the dereference is made explicit, set the type of the node properly,
1524 -- to prevent anomalies in the backend. Same if the expression is an
1525 -- overloaded function call whose return type has a reference aspect.
1527 if Is_Entity_Name
(Expr
) then
1528 Set_Etype
(Expr
, Etype
(Entity
(Expr
)));
1530 -- The designated entity will not be examined again when resolving
1531 -- the dereference, so generate a reference to it now.
1533 Generate_Reference
(Entity
(Expr
), Expr
);
1535 elsif Nkind
(Expr
) = N_Function_Call
then
1537 -- If the name of the indexing function is overloaded, locate the one
1538 -- whose return type has an implicit dereference on the desired
1539 -- discriminant, and set entity and type of function call.
1541 if Is_Overloaded
(Name
(Expr
)) then
1542 Get_First_Interp
(Name
(Expr
), I
, It
);
1544 while Present
(It
.Nam
) loop
1545 if Ekind
((It
.Typ
)) = E_Record_Type
1546 and then First_Entity
((It
.Typ
)) = Disc
1548 Set_Entity
(Name
(Expr
), It
.Nam
);
1549 Set_Etype
(Name
(Expr
), Etype
(It
.Nam
));
1553 Get_Next_Interp
(I
, It
);
1557 -- Set type of call from resolved function name.
1559 Set_Etype
(Expr
, Etype
(Name
(Expr
)));
1562 Set_Is_Overloaded
(Expr
, False);
1564 -- The expression will often be a generalized indexing that yields a
1565 -- container element that is then dereferenced, in which case the
1566 -- generalized indexing call is also non-overloaded.
1568 if Nkind
(Expr
) = N_Indexed_Component
1569 and then Present
(Generalized_Indexing
(Expr
))
1571 Set_Is_Overloaded
(Generalized_Indexing
(Expr
), False);
1575 Make_Explicit_Dereference
(Loc
,
1577 Make_Selected_Component
(Loc
,
1578 Prefix
=> Relocate_Node
(Expr
),
1579 Selector_Name
=> New_Occurrence_Of
(Disc
, Loc
))));
1580 Set_Etype
(Prefix
(Expr
), Etype
(Disc
));
1581 Set_Etype
(Expr
, Designated_Type
(Etype
(Disc
)));
1582 end Build_Explicit_Dereference
;
1584 -----------------------------------
1585 -- Cannot_Raise_Constraint_Error --
1586 -----------------------------------
1588 function Cannot_Raise_Constraint_Error
(Expr
: Node_Id
) return Boolean is
1590 if Compile_Time_Known_Value
(Expr
) then
1593 elsif Do_Range_Check
(Expr
) then
1596 elsif Raises_Constraint_Error
(Expr
) then
1600 case Nkind
(Expr
) is
1601 when N_Identifier
=>
1604 when N_Expanded_Name
=>
1607 when N_Selected_Component
=>
1608 return not Do_Discriminant_Check
(Expr
);
1610 when N_Attribute_Reference
=>
1611 if Do_Overflow_Check
(Expr
) then
1614 elsif No
(Expressions
(Expr
)) then
1622 N
:= First
(Expressions
(Expr
));
1623 while Present
(N
) loop
1624 if Cannot_Raise_Constraint_Error
(N
) then
1635 when N_Type_Conversion
=>
1636 if Do_Overflow_Check
(Expr
)
1637 or else Do_Length_Check
(Expr
)
1638 or else Do_Tag_Check
(Expr
)
1642 return Cannot_Raise_Constraint_Error
(Expression
(Expr
));
1645 when N_Unchecked_Type_Conversion
=>
1646 return Cannot_Raise_Constraint_Error
(Expression
(Expr
));
1649 if Do_Overflow_Check
(Expr
) then
1652 return Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1659 if Do_Division_Check
(Expr
)
1661 Do_Overflow_Check
(Expr
)
1666 Cannot_Raise_Constraint_Error
(Left_Opnd
(Expr
))
1668 Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1687 | N_Op_Shift_Right_Arithmetic
1691 if Do_Overflow_Check
(Expr
) then
1695 Cannot_Raise_Constraint_Error
(Left_Opnd
(Expr
))
1697 Cannot_Raise_Constraint_Error
(Right_Opnd
(Expr
));
1704 end Cannot_Raise_Constraint_Error
;
1706 -----------------------------
1707 -- Check_Part_Of_Reference --
1708 -----------------------------
1710 procedure Check_Part_Of_Reference
(Var_Id
: Entity_Id
; Ref
: Node_Id
) is
1711 Conc_Typ
: constant Entity_Id
:= Encapsulating_State
(Var_Id
);
1713 OK_Use
: Boolean := False;
1716 Spec_Id
: Entity_Id
;
1719 -- Traverse the parent chain looking for a suitable context for the
1720 -- reference to the concurrent constituent.
1722 Par
:= Parent
(Ref
);
1723 while Present
(Par
) loop
1724 if Nkind
(Par
) = N_Pragma
then
1725 Prag_Nam
:= Pragma_Name
(Par
);
1727 -- A concurrent constituent is allowed to appear in pragmas
1728 -- Initial_Condition and Initializes as this is part of the
1729 -- elaboration checks for the constituent (SPARK RM 9.3).
1731 if Nam_In
(Prag_Nam
, Name_Initial_Condition
, Name_Initializes
) then
1735 -- When the reference appears within pragma Depends or Global,
1736 -- check whether the pragma applies to a single task type. Note
1737 -- that the pragma is not encapsulated by the type definition,
1738 -- but this is still a valid context.
1740 elsif Nam_In
(Prag_Nam
, Name_Depends
, Name_Global
) then
1741 Decl
:= Find_Related_Declaration_Or_Body
(Par
);
1743 if Nkind
(Decl
) = N_Object_Declaration
1744 and then Defining_Entity
(Decl
) = Conc_Typ
1751 -- The reference appears somewhere in the definition of the single
1752 -- protected/task type (SPARK RM 9.3).
1754 elsif Nkind_In
(Par
, N_Single_Protected_Declaration
,
1755 N_Single_Task_Declaration
)
1756 and then Defining_Entity
(Par
) = Conc_Typ
1761 -- The reference appears within the expanded declaration or the body
1762 -- of the single protected/task type (SPARK RM 9.3).
1764 elsif Nkind_In
(Par
, N_Protected_Body
,
1765 N_Protected_Type_Declaration
,
1767 N_Task_Type_Declaration
)
1769 Spec_Id
:= Unique_Defining_Entity
(Par
);
1771 if Present
(Anonymous_Object
(Spec_Id
))
1772 and then Anonymous_Object
(Spec_Id
) = Conc_Typ
1778 -- The reference has been relocated within an internally generated
1779 -- package or subprogram. Assume that the reference is legal as the
1780 -- real check was already performed in the original context of the
1783 elsif Nkind_In
(Par
, N_Package_Body
,
1784 N_Package_Declaration
,
1786 N_Subprogram_Declaration
)
1787 and then not Comes_From_Source
(Par
)
1792 -- The reference has been relocated to an inlined body for GNATprove.
1793 -- Assume that the reference is legal as the real check was already
1794 -- performed in the original context of the reference.
1796 elsif GNATprove_Mode
1797 and then Nkind
(Par
) = N_Subprogram_Body
1798 and then Chars
(Defining_Entity
(Par
)) = Name_uParent
1804 Par
:= Parent
(Par
);
1807 -- The reference is illegal as it appears outside the definition or
1808 -- body of the single protected/task type.
1812 ("reference to variable & cannot appear in this context",
1814 Error_Msg_Name_1
:= Chars
(Var_Id
);
1816 if Ekind
(Conc_Typ
) = E_Protected_Type
then
1818 ("\% is constituent of single protected type &", Ref
, Conc_Typ
);
1821 ("\% is constituent of single task type &", Ref
, Conc_Typ
);
1824 end Check_Part_Of_Reference
;
1826 -----------------------------------------
1827 -- Check_Dynamically_Tagged_Expression --
1828 -----------------------------------------
1830 procedure Check_Dynamically_Tagged_Expression
1833 Related_Nod
: Node_Id
)
1836 pragma Assert
(Is_Tagged_Type
(Typ
));
1838 -- In order to avoid spurious errors when analyzing the expanded code,
1839 -- this check is done only for nodes that come from source and for
1840 -- actuals of generic instantiations.
1842 if (Comes_From_Source
(Related_Nod
)
1843 or else In_Generic_Actual
(Expr
))
1844 and then (Is_Class_Wide_Type
(Etype
(Expr
))
1845 or else Is_Dynamically_Tagged
(Expr
))
1846 and then Is_Tagged_Type
(Typ
)
1847 and then not Is_Class_Wide_Type
(Typ
)
1849 Error_Msg_N
("dynamically tagged expression not allowed!", Expr
);
1851 end Check_Dynamically_Tagged_Expression
;
1853 --------------------------
1854 -- Check_Fully_Declared --
1855 --------------------------
1857 procedure Check_Fully_Declared
(T
: Entity_Id
; N
: Node_Id
) is
1859 if Ekind
(T
) = E_Incomplete_Type
then
1861 -- Ada 2005 (AI-50217): If the type is available through a limited
1862 -- with_clause, verify that its full view has been analyzed.
1864 if From_Limited_With
(T
)
1865 and then Present
(Non_Limited_View
(T
))
1866 and then Ekind
(Non_Limited_View
(T
)) /= E_Incomplete_Type
1868 -- The non-limited view is fully declared
1874 ("premature usage of incomplete}", N
, First_Subtype
(T
));
1877 -- Need comments for these tests ???
1879 elsif Has_Private_Component
(T
)
1880 and then not Is_Generic_Type
(Root_Type
(T
))
1881 and then not In_Spec_Expression
1883 -- Special case: if T is the anonymous type created for a single
1884 -- task or protected object, use the name of the source object.
1886 if Is_Concurrent_Type
(T
)
1887 and then not Comes_From_Source
(T
)
1888 and then Nkind
(N
) = N_Object_Declaration
1891 ("type of& has incomplete component",
1892 N
, Defining_Identifier
(N
));
1895 ("premature usage of incomplete}",
1896 N
, First_Subtype
(T
));
1899 end Check_Fully_Declared
;
1901 -------------------------------------------
1902 -- Check_Function_With_Address_Parameter --
1903 -------------------------------------------
1905 procedure Check_Function_With_Address_Parameter
(Subp_Id
: Entity_Id
) is
1910 F
:= First_Formal
(Subp_Id
);
1911 while Present
(F
) loop
1914 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
1918 if Is_Descendant_Of_Address
(T
) or else Is_Limited_Type
(T
) then
1919 Set_Is_Pure
(Subp_Id
, False);
1925 end Check_Function_With_Address_Parameter
;
1927 -------------------------------------
1928 -- Check_Function_Writable_Actuals --
1929 -------------------------------------
1931 procedure Check_Function_Writable_Actuals
(N
: Node_Id
) is
1932 Writable_Actuals_List
: Elist_Id
:= No_Elist
;
1933 Identifiers_List
: Elist_Id
:= No_Elist
;
1934 Aggr_Error_Node
: Node_Id
:= Empty
;
1935 Error_Node
: Node_Id
:= Empty
;
1937 procedure Collect_Identifiers
(N
: Node_Id
);
1938 -- In a single traversal of subtree N collect in Writable_Actuals_List
1939 -- all the actuals of functions with writable actuals, and in the list
1940 -- Identifiers_List collect all the identifiers that are not actuals of
1941 -- functions with writable actuals. If a writable actual is referenced
1942 -- twice as writable actual then Error_Node is set to reference its
1943 -- second occurrence, the error is reported, and the tree traversal
1946 function Get_Function_Id
(Call
: Node_Id
) return Entity_Id
;
1947 -- Return the entity associated with the function call
1949 procedure Preanalyze_Without_Errors
(N
: Node_Id
);
1950 -- Preanalyze N without reporting errors. Very dubious, you can't just
1951 -- go analyzing things more than once???
1953 -------------------------
1954 -- Collect_Identifiers --
1955 -------------------------
1957 procedure Collect_Identifiers
(N
: Node_Id
) is
1959 function Check_Node
(N
: Node_Id
) return Traverse_Result
;
1960 -- Process a single node during the tree traversal to collect the
1961 -- writable actuals of functions and all the identifiers which are
1962 -- not writable actuals of functions.
1964 function Contains
(List
: Elist_Id
; N
: Node_Id
) return Boolean;
1965 -- Returns True if List has a node whose Entity is Entity (N)
1971 function Check_Node
(N
: Node_Id
) return Traverse_Result
is
1972 Is_Writable_Actual
: Boolean := False;
1976 if Nkind
(N
) = N_Identifier
then
1978 -- No analysis possible if the entity is not decorated
1980 if No
(Entity
(N
)) then
1983 -- Don't collect identifiers of packages, called functions, etc
1985 elsif Ekind_In
(Entity
(N
), E_Package
,
1992 -- For rewritten nodes, continue the traversal in the original
1993 -- subtree. Needed to handle aggregates in original expressions
1994 -- extracted from the tree by Remove_Side_Effects.
1996 elsif Is_Rewrite_Substitution
(N
) then
1997 Collect_Identifiers
(Original_Node
(N
));
2000 -- For now we skip aggregate discriminants, since they require
2001 -- performing the analysis in two phases to identify conflicts:
2002 -- first one analyzing discriminants and second one analyzing
2003 -- the rest of components (since at run time, discriminants are
2004 -- evaluated prior to components): too much computation cost
2005 -- to identify a corner case???
2007 elsif Nkind
(Parent
(N
)) = N_Component_Association
2008 and then Nkind_In
(Parent
(Parent
(N
)),
2010 N_Extension_Aggregate
)
2013 Choice
: constant Node_Id
:= First
(Choices
(Parent
(N
)));
2016 if Ekind
(Entity
(N
)) = E_Discriminant
then
2019 elsif Expression
(Parent
(N
)) = N
2020 and then Nkind
(Choice
) = N_Identifier
2021 and then Ekind
(Entity
(Choice
)) = E_Discriminant
2027 -- Analyze if N is a writable actual of a function
2029 elsif Nkind
(Parent
(N
)) = N_Function_Call
then
2031 Call
: constant Node_Id
:= Parent
(N
);
2036 Id
:= Get_Function_Id
(Call
);
2038 -- In case of previous error, no check is possible
2044 if Ekind_In
(Id
, E_Function
, E_Generic_Function
)
2045 and then Has_Out_Or_In_Out_Parameter
(Id
)
2047 Formal
:= First_Formal
(Id
);
2048 Actual
:= First_Actual
(Call
);
2049 while Present
(Actual
) and then Present
(Formal
) loop
2051 if Ekind_In
(Formal
, E_Out_Parameter
,
2054 Is_Writable_Actual
:= True;
2060 Next_Formal
(Formal
);
2061 Next_Actual
(Actual
);
2067 if Is_Writable_Actual
then
2069 -- Skip checking the error in non-elementary types since
2070 -- RM 6.4.1(6.15/3) is restricted to elementary types, but
2071 -- store this actual in Writable_Actuals_List since it is
2072 -- needed to perform checks on other constructs that have
2073 -- arbitrary order of evaluation (for example, aggregates).
2075 if not Is_Elementary_Type
(Etype
(N
)) then
2076 if not Contains
(Writable_Actuals_List
, N
) then
2077 Append_New_Elmt
(N
, To
=> Writable_Actuals_List
);
2080 -- Second occurrence of an elementary type writable actual
2082 elsif Contains
(Writable_Actuals_List
, N
) then
2084 -- Report the error on the second occurrence of the
2085 -- identifier. We cannot assume that N is the second
2086 -- occurrence (according to their location in the
2087 -- sources), since Traverse_Func walks through Field2
2088 -- last (see comment in the body of Traverse_Func).
2094 Elmt
:= First_Elmt
(Writable_Actuals_List
);
2095 while Present
(Elmt
)
2096 and then Entity
(Node
(Elmt
)) /= Entity
(N
)
2101 if Sloc
(N
) > Sloc
(Node
(Elmt
)) then
2104 Error_Node
:= Node
(Elmt
);
2108 ("value may be affected by call to & "
2109 & "because order of evaluation is arbitrary",
2114 -- First occurrence of a elementary type writable actual
2117 Append_New_Elmt
(N
, To
=> Writable_Actuals_List
);
2121 if Identifiers_List
= No_Elist
then
2122 Identifiers_List
:= New_Elmt_List
;
2125 Append_Unique_Elmt
(N
, Identifiers_List
);
2138 N
: Node_Id
) return Boolean
2140 pragma Assert
(Nkind
(N
) in N_Has_Entity
);
2145 if List
= No_Elist
then
2149 Elmt
:= First_Elmt
(List
);
2150 while Present
(Elmt
) loop
2151 if Entity
(Node
(Elmt
)) = Entity
(N
) then
2165 procedure Do_Traversal
is new Traverse_Proc
(Check_Node
);
2166 -- The traversal procedure
2168 -- Start of processing for Collect_Identifiers
2171 if Present
(Error_Node
) then
2175 if Nkind
(N
) in N_Subexpr
and then Is_OK_Static_Expression
(N
) then
2180 end Collect_Identifiers
;
2182 ---------------------
2183 -- Get_Function_Id --
2184 ---------------------
2186 function Get_Function_Id
(Call
: Node_Id
) return Entity_Id
is
2187 Nam
: constant Node_Id
:= Name
(Call
);
2191 if Nkind
(Nam
) = N_Explicit_Dereference
then
2193 pragma Assert
(Ekind
(Id
) = E_Subprogram_Type
);
2195 elsif Nkind
(Nam
) = N_Selected_Component
then
2196 Id
:= Entity
(Selector_Name
(Nam
));
2198 elsif Nkind
(Nam
) = N_Indexed_Component
then
2199 Id
:= Entity
(Selector_Name
(Prefix
(Nam
)));
2206 end Get_Function_Id
;
2208 -------------------------------
2209 -- Preanalyze_Without_Errors --
2210 -------------------------------
2212 procedure Preanalyze_Without_Errors
(N
: Node_Id
) is
2213 Status
: constant Boolean := Get_Ignore_Errors
;
2215 Set_Ignore_Errors
(True);
2217 Set_Ignore_Errors
(Status
);
2218 end Preanalyze_Without_Errors
;
2220 -- Start of processing for Check_Function_Writable_Actuals
2223 -- The check only applies to Ada 2012 code on which Check_Actuals has
2224 -- been set, and only to constructs that have multiple constituents
2225 -- whose order of evaluation is not specified by the language.
2227 if Ada_Version
< Ada_2012
2228 or else not Check_Actuals
(N
)
2229 or else (not (Nkind
(N
) in N_Op
)
2230 and then not (Nkind
(N
) in N_Membership_Test
)
2231 and then not Nkind_In
(N
, N_Range
,
2233 N_Extension_Aggregate
,
2234 N_Full_Type_Declaration
,
2236 N_Procedure_Call_Statement
,
2237 N_Entry_Call_Statement
))
2238 or else (Nkind
(N
) = N_Full_Type_Declaration
2239 and then not Is_Record_Type
(Defining_Identifier
(N
)))
2241 -- In addition, this check only applies to source code, not to code
2242 -- generated by constraint checks.
2244 or else not Comes_From_Source
(N
)
2249 -- If a construct C has two or more direct constituents that are names
2250 -- or expressions whose evaluation may occur in an arbitrary order, at
2251 -- least one of which contains a function call with an in out or out
2252 -- parameter, then the construct is legal only if: for each name N that
2253 -- is passed as a parameter of mode in out or out to some inner function
2254 -- call C2 (not including the construct C itself), there is no other
2255 -- name anywhere within a direct constituent of the construct C other
2256 -- than the one containing C2, that is known to refer to the same
2257 -- object (RM 6.4.1(6.17/3)).
2261 Collect_Identifiers
(Low_Bound
(N
));
2262 Collect_Identifiers
(High_Bound
(N
));
2264 when N_Membership_Test
2271 Collect_Identifiers
(Left_Opnd
(N
));
2273 if Present
(Right_Opnd
(N
)) then
2274 Collect_Identifiers
(Right_Opnd
(N
));
2277 if Nkind_In
(N
, N_In
, N_Not_In
)
2278 and then Present
(Alternatives
(N
))
2280 Expr
:= First
(Alternatives
(N
));
2281 while Present
(Expr
) loop
2282 Collect_Identifiers
(Expr
);
2289 when N_Full_Type_Declaration
=>
2291 function Get_Record_Part
(N
: Node_Id
) return Node_Id
;
2292 -- Return the record part of this record type definition
2294 function Get_Record_Part
(N
: Node_Id
) return Node_Id
is
2295 Type_Def
: constant Node_Id
:= Type_Definition
(N
);
2297 if Nkind
(Type_Def
) = N_Derived_Type_Definition
then
2298 return Record_Extension_Part
(Type_Def
);
2302 end Get_Record_Part
;
2305 Def_Id
: Entity_Id
:= Defining_Identifier
(N
);
2306 Rec
: Node_Id
:= Get_Record_Part
(N
);
2309 -- No need to perform any analysis if the record has no
2312 if No
(Rec
) or else No
(Component_List
(Rec
)) then
2316 -- Collect the identifiers starting from the deepest
2317 -- derivation. Done to report the error in the deepest
2321 if Present
(Component_List
(Rec
)) then
2322 Comp
:= First
(Component_Items
(Component_List
(Rec
)));
2323 while Present
(Comp
) loop
2324 if Nkind
(Comp
) = N_Component_Declaration
2325 and then Present
(Expression
(Comp
))
2327 Collect_Identifiers
(Expression
(Comp
));
2334 exit when No
(Underlying_Type
(Etype
(Def_Id
)))
2335 or else Base_Type
(Underlying_Type
(Etype
(Def_Id
)))
2338 Def_Id
:= Base_Type
(Underlying_Type
(Etype
(Def_Id
)));
2339 Rec
:= Get_Record_Part
(Parent
(Def_Id
));
2343 when N_Entry_Call_Statement
2347 Id
: constant Entity_Id
:= Get_Function_Id
(N
);
2352 Formal
:= First_Formal
(Id
);
2353 Actual
:= First_Actual
(N
);
2354 while Present
(Actual
) and then Present
(Formal
) loop
2355 if Ekind_In
(Formal
, E_Out_Parameter
,
2358 Collect_Identifiers
(Actual
);
2361 Next_Formal
(Formal
);
2362 Next_Actual
(Actual
);
2367 | N_Extension_Aggregate
2372 Comp_Expr
: Node_Id
;
2375 -- Handle the N_Others_Choice of array aggregates with static
2376 -- bounds. There is no need to perform this analysis in
2377 -- aggregates without static bounds since we cannot evaluate
2378 -- if the N_Others_Choice covers several elements. There is
2379 -- no need to handle the N_Others choice of record aggregates
2380 -- since at this stage it has been already expanded by
2381 -- Resolve_Record_Aggregate.
2383 if Is_Array_Type
(Etype
(N
))
2384 and then Nkind
(N
) = N_Aggregate
2385 and then Present
(Aggregate_Bounds
(N
))
2386 and then Compile_Time_Known_Bounds
(Etype
(N
))
2387 and then Expr_Value
(High_Bound
(Aggregate_Bounds
(N
)))
2389 Expr_Value
(Low_Bound
(Aggregate_Bounds
(N
)))
2392 Count_Components
: Uint
:= Uint_0
;
2393 Num_Components
: Uint
;
2394 Others_Assoc
: Node_Id
;
2395 Others_Choice
: Node_Id
:= Empty
;
2396 Others_Box_Present
: Boolean := False;
2399 -- Count positional associations
2401 if Present
(Expressions
(N
)) then
2402 Comp_Expr
:= First
(Expressions
(N
));
2403 while Present
(Comp_Expr
) loop
2404 Count_Components
:= Count_Components
+ 1;
2409 -- Count the rest of elements and locate the N_Others
2412 Assoc
:= First
(Component_Associations
(N
));
2413 while Present
(Assoc
) loop
2414 Choice
:= First
(Choices
(Assoc
));
2415 while Present
(Choice
) loop
2416 if Nkind
(Choice
) = N_Others_Choice
then
2417 Others_Assoc
:= Assoc
;
2418 Others_Choice
:= Choice
;
2419 Others_Box_Present
:= Box_Present
(Assoc
);
2421 -- Count several components
2423 elsif Nkind_In
(Choice
, N_Range
,
2424 N_Subtype_Indication
)
2425 or else (Is_Entity_Name
(Choice
)
2426 and then Is_Type
(Entity
(Choice
)))
2431 Get_Index_Bounds
(Choice
, L
, H
);
2433 (Compile_Time_Known_Value
(L
)
2434 and then Compile_Time_Known_Value
(H
));
2437 + Expr_Value
(H
) - Expr_Value
(L
) + 1;
2440 -- Count single component. No other case available
2441 -- since we are handling an aggregate with static
2445 pragma Assert
(Is_OK_Static_Expression
(Choice
)
2446 or else Nkind
(Choice
) = N_Identifier
2447 or else Nkind
(Choice
) = N_Integer_Literal
);
2449 Count_Components
:= Count_Components
+ 1;
2459 Expr_Value
(High_Bound
(Aggregate_Bounds
(N
))) -
2460 Expr_Value
(Low_Bound
(Aggregate_Bounds
(N
))) + 1;
2462 pragma Assert
(Count_Components
<= Num_Components
);
2464 -- Handle the N_Others choice if it covers several
2467 if Present
(Others_Choice
)
2468 and then (Num_Components
- Count_Components
) > 1
2470 if not Others_Box_Present
then
2472 -- At this stage, if expansion is active, the
2473 -- expression of the others choice has not been
2474 -- analyzed. Hence we generate a duplicate and
2475 -- we analyze it silently to have available the
2476 -- minimum decoration required to collect the
2479 if not Expander_Active
then
2480 Comp_Expr
:= Expression
(Others_Assoc
);
2483 New_Copy_Tree
(Expression
(Others_Assoc
));
2484 Preanalyze_Without_Errors
(Comp_Expr
);
2487 Collect_Identifiers
(Comp_Expr
);
2489 if Writable_Actuals_List
/= No_Elist
then
2491 -- As suggested by Robert, at current stage we
2492 -- report occurrences of this case as warnings.
2495 ("writable function parameter may affect "
2496 & "value in other component because order "
2497 & "of evaluation is unspecified??",
2498 Node
(First_Elmt
(Writable_Actuals_List
)));
2504 -- For an array aggregate, a discrete_choice_list that has
2505 -- a nonstatic range is considered as two or more separate
2506 -- occurrences of the expression (RM 6.4.1(20/3)).
2508 elsif Is_Array_Type
(Etype
(N
))
2509 and then Nkind
(N
) = N_Aggregate
2510 and then Present
(Aggregate_Bounds
(N
))
2511 and then not Compile_Time_Known_Bounds
(Etype
(N
))
2513 -- Collect identifiers found in the dynamic bounds
2516 Count_Components
: Natural := 0;
2517 Low
, High
: Node_Id
;
2520 Assoc
:= First
(Component_Associations
(N
));
2521 while Present
(Assoc
) loop
2522 Choice
:= First
(Choices
(Assoc
));
2523 while Present
(Choice
) loop
2524 if Nkind_In
(Choice
, N_Range
,
2525 N_Subtype_Indication
)
2526 or else (Is_Entity_Name
(Choice
)
2527 and then Is_Type
(Entity
(Choice
)))
2529 Get_Index_Bounds
(Choice
, Low
, High
);
2531 if not Compile_Time_Known_Value
(Low
) then
2532 Collect_Identifiers
(Low
);
2534 if No
(Aggr_Error_Node
) then
2535 Aggr_Error_Node
:= Low
;
2539 if not Compile_Time_Known_Value
(High
) then
2540 Collect_Identifiers
(High
);
2542 if No
(Aggr_Error_Node
) then
2543 Aggr_Error_Node
:= High
;
2547 -- The RM rule is violated if there is more than
2548 -- a single choice in a component association.
2551 Count_Components
:= Count_Components
+ 1;
2553 if No
(Aggr_Error_Node
)
2554 and then Count_Components
> 1
2556 Aggr_Error_Node
:= Choice
;
2559 if not Compile_Time_Known_Value
(Choice
) then
2560 Collect_Identifiers
(Choice
);
2572 -- Handle ancestor part of extension aggregates
2574 if Nkind
(N
) = N_Extension_Aggregate
then
2575 Collect_Identifiers
(Ancestor_Part
(N
));
2578 -- Handle positional associations
2580 if Present
(Expressions
(N
)) then
2581 Comp_Expr
:= First
(Expressions
(N
));
2582 while Present
(Comp_Expr
) loop
2583 if not Is_OK_Static_Expression
(Comp_Expr
) then
2584 Collect_Identifiers
(Comp_Expr
);
2591 -- Handle discrete associations
2593 if Present
(Component_Associations
(N
)) then
2594 Assoc
:= First
(Component_Associations
(N
));
2595 while Present
(Assoc
) loop
2597 if not Box_Present
(Assoc
) then
2598 Choice
:= First
(Choices
(Assoc
));
2599 while Present
(Choice
) loop
2601 -- For now we skip discriminants since it requires
2602 -- performing the analysis in two phases: first one
2603 -- analyzing discriminants and second one analyzing
2604 -- the rest of components since discriminants are
2605 -- evaluated prior to components: too much extra
2606 -- work to detect a corner case???
2608 if Nkind
(Choice
) in N_Has_Entity
2609 and then Present
(Entity
(Choice
))
2610 and then Ekind
(Entity
(Choice
)) = E_Discriminant
2614 elsif Box_Present
(Assoc
) then
2618 if not Analyzed
(Expression
(Assoc
)) then
2620 New_Copy_Tree
(Expression
(Assoc
));
2621 Set_Parent
(Comp_Expr
, Parent
(N
));
2622 Preanalyze_Without_Errors
(Comp_Expr
);
2624 Comp_Expr
:= Expression
(Assoc
);
2627 Collect_Identifiers
(Comp_Expr
);
2643 -- No further action needed if we already reported an error
2645 if Present
(Error_Node
) then
2649 -- Check violation of RM 6.20/3 in aggregates
2651 if Present
(Aggr_Error_Node
)
2652 and then Writable_Actuals_List
/= No_Elist
2655 ("value may be affected by call in other component because they "
2656 & "are evaluated in unspecified order",
2657 Node
(First_Elmt
(Writable_Actuals_List
)));
2661 -- Check if some writable argument of a function is referenced
2663 if Writable_Actuals_List
/= No_Elist
2664 and then Identifiers_List
/= No_Elist
2671 Elmt_1
:= First_Elmt
(Writable_Actuals_List
);
2672 while Present
(Elmt_1
) loop
2673 Elmt_2
:= First_Elmt
(Identifiers_List
);
2674 while Present
(Elmt_2
) loop
2675 if Entity
(Node
(Elmt_1
)) = Entity
(Node
(Elmt_2
)) then
2676 case Nkind
(Parent
(Node
(Elmt_2
))) is
2678 | N_Component_Association
2679 | N_Component_Declaration
2682 ("value may be affected by call in other "
2683 & "component because they are evaluated "
2684 & "in unspecified order",
2691 ("value may be affected by call in other "
2692 & "alternative because they are evaluated "
2693 & "in unspecified order",
2698 ("value of actual may be affected by call in "
2699 & "other actual because they are evaluated "
2700 & "in unspecified order",
2712 end Check_Function_Writable_Actuals
;
2714 --------------------------------
2715 -- Check_Implicit_Dereference --
2716 --------------------------------
2718 procedure Check_Implicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
2724 if Nkind
(N
) = N_Indexed_Component
2725 and then Present
(Generalized_Indexing
(N
))
2727 Nam
:= Generalized_Indexing
(N
);
2732 if Ada_Version
< Ada_2012
2733 or else not Has_Implicit_Dereference
(Base_Type
(Typ
))
2737 elsif not Comes_From_Source
(N
)
2738 and then Nkind
(N
) /= N_Indexed_Component
2742 elsif Is_Entity_Name
(Nam
) and then Is_Type
(Entity
(Nam
)) then
2746 Disc
:= First_Discriminant
(Typ
);
2747 while Present
(Disc
) loop
2748 if Has_Implicit_Dereference
(Disc
) then
2749 Desig
:= Designated_Type
(Etype
(Disc
));
2750 Add_One_Interp
(Nam
, Disc
, Desig
);
2752 -- If the node is a generalized indexing, add interpretation
2753 -- to that node as well, for subsequent resolution.
2755 if Nkind
(N
) = N_Indexed_Component
then
2756 Add_One_Interp
(N
, Disc
, Desig
);
2759 -- If the operation comes from a generic unit and the context
2760 -- is a selected component, the selector name may be global
2761 -- and set in the instance already. Remove the entity to
2762 -- force resolution of the selected component, and the
2763 -- generation of an explicit dereference if needed.
2766 and then Nkind
(Parent
(Nam
)) = N_Selected_Component
2768 Set_Entity
(Selector_Name
(Parent
(Nam
)), Empty
);
2774 Next_Discriminant
(Disc
);
2777 end Check_Implicit_Dereference
;
2779 ----------------------------------
2780 -- Check_Internal_Protected_Use --
2781 ----------------------------------
2783 procedure Check_Internal_Protected_Use
(N
: Node_Id
; Nam
: Entity_Id
) is
2789 while Present
(S
) loop
2790 if S
= Standard_Standard
then
2793 elsif Ekind
(S
) = E_Function
2794 and then Ekind
(Scope
(S
)) = E_Protected_Type
2803 if Scope
(Nam
) = Prot
and then Ekind
(Nam
) /= E_Function
then
2805 -- An indirect function call (e.g. a callback within a protected
2806 -- function body) is not statically illegal. If the access type is
2807 -- anonymous and is the type of an access parameter, the scope of Nam
2808 -- will be the protected type, but it is not a protected operation.
2810 if Ekind
(Nam
) = E_Subprogram_Type
2812 Nkind
(Associated_Node_For_Itype
(Nam
)) = N_Function_Specification
2816 elsif Nkind
(N
) = N_Subprogram_Renaming_Declaration
then
2818 ("within protected function cannot use protected "
2819 & "procedure in renaming or as generic actual", N
);
2821 elsif Nkind
(N
) = N_Attribute_Reference
then
2823 ("within protected function cannot take access of "
2824 & " protected procedure", N
);
2828 ("within protected function, protected object is constant", N
);
2830 ("\cannot call operation that may modify it", N
);
2833 end Check_Internal_Protected_Use
;
2835 ---------------------------------------
2836 -- Check_Later_Vs_Basic_Declarations --
2837 ---------------------------------------
2839 procedure Check_Later_Vs_Basic_Declarations
2841 During_Parsing
: Boolean)
2843 Body_Sloc
: Source_Ptr
;
2846 function Is_Later_Declarative_Item
(Decl
: Node_Id
) return Boolean;
2847 -- Return whether Decl is considered as a declarative item.
2848 -- When During_Parsing is True, the semantics of Ada 83 is followed.
2849 -- When During_Parsing is False, the semantics of SPARK is followed.
2851 -------------------------------
2852 -- Is_Later_Declarative_Item --
2853 -------------------------------
2855 function Is_Later_Declarative_Item
(Decl
: Node_Id
) return Boolean is
2857 if Nkind
(Decl
) in N_Later_Decl_Item
then
2860 elsif Nkind
(Decl
) = N_Pragma
then
2863 elsif During_Parsing
then
2866 -- In SPARK, a package declaration is not considered as a later
2867 -- declarative item.
2869 elsif Nkind
(Decl
) = N_Package_Declaration
then
2872 -- In SPARK, a renaming is considered as a later declarative item
2874 elsif Nkind
(Decl
) in N_Renaming_Declaration
then
2880 end Is_Later_Declarative_Item
;
2882 -- Start of processing for Check_Later_Vs_Basic_Declarations
2885 Decl
:= First
(Decls
);
2887 -- Loop through sequence of basic declarative items
2889 Outer
: while Present
(Decl
) loop
2890 if not Nkind_In
(Decl
, N_Subprogram_Body
, N_Package_Body
, N_Task_Body
)
2891 and then Nkind
(Decl
) not in N_Body_Stub
2895 -- Once a body is encountered, we only allow later declarative
2896 -- items. The inner loop checks the rest of the list.
2899 Body_Sloc
:= Sloc
(Decl
);
2901 Inner
: while Present
(Decl
) loop
2902 if not Is_Later_Declarative_Item
(Decl
) then
2903 if During_Parsing
then
2904 if Ada_Version
= Ada_83
then
2905 Error_Msg_Sloc
:= Body_Sloc
;
2907 ("(Ada 83) decl cannot appear after body#", Decl
);
2910 Error_Msg_Sloc
:= Body_Sloc
;
2911 Check_SPARK_05_Restriction
2912 ("decl cannot appear after body#", Decl
);
2920 end Check_Later_Vs_Basic_Declarations
;
2922 ---------------------------
2923 -- Check_No_Hidden_State --
2924 ---------------------------
2926 procedure Check_No_Hidden_State
(Id
: Entity_Id
) is
2927 function Has_Null_Abstract_State
(Pkg
: Entity_Id
) return Boolean;
2928 -- Determine whether the entity of a package denoted by Pkg has a null
2931 -----------------------------
2932 -- Has_Null_Abstract_State --
2933 -----------------------------
2935 function Has_Null_Abstract_State
(Pkg
: Entity_Id
) return Boolean is
2936 States
: constant Elist_Id
:= Abstract_States
(Pkg
);
2939 -- Check first available state of related package. A null abstract
2940 -- state always appears as the sole element of the state list.
2944 and then Is_Null_State
(Node
(First_Elmt
(States
)));
2945 end Has_Null_Abstract_State
;
2949 Context
: Entity_Id
:= Empty
;
2950 Not_Visible
: Boolean := False;
2953 -- Start of processing for Check_No_Hidden_State
2956 pragma Assert
(Ekind_In
(Id
, E_Abstract_State
, E_Variable
));
2958 -- Find the proper context where the object or state appears
2961 while Present
(Scop
) loop
2964 -- Keep track of the context's visibility
2966 Not_Visible
:= Not_Visible
or else In_Private_Part
(Context
);
2968 -- Prevent the search from going too far
2970 if Context
= Standard_Standard
then
2973 -- Objects and states that appear immediately within a subprogram or
2974 -- inside a construct nested within a subprogram do not introduce a
2975 -- hidden state. They behave as local variable declarations.
2977 elsif Is_Subprogram
(Context
) then
2980 -- When examining a package body, use the entity of the spec as it
2981 -- carries the abstract state declarations.
2983 elsif Ekind
(Context
) = E_Package_Body
then
2984 Context
:= Spec_Entity
(Context
);
2987 -- Stop the traversal when a package subject to a null abstract state
2990 if Ekind_In
(Context
, E_Generic_Package
, E_Package
)
2991 and then Has_Null_Abstract_State
(Context
)
2996 Scop
:= Scope
(Scop
);
2999 -- At this point we know that there is at least one package with a null
3000 -- abstract state in visibility. Emit an error message unconditionally
3001 -- if the entity being processed is a state because the placement of the
3002 -- related package is irrelevant. This is not the case for objects as
3003 -- the intermediate context matters.
3005 if Present
(Context
)
3006 and then (Ekind
(Id
) = E_Abstract_State
or else Not_Visible
)
3008 Error_Msg_N
("cannot introduce hidden state &", Id
);
3009 Error_Msg_NE
("\package & has null abstract state", Id
, Context
);
3011 end Check_No_Hidden_State
;
3013 ----------------------------------------
3014 -- Check_Nonvolatile_Function_Profile --
3015 ----------------------------------------
3017 procedure Check_Nonvolatile_Function_Profile
(Func_Id
: Entity_Id
) is
3021 -- Inspect all formal parameters
3023 Formal
:= First_Formal
(Func_Id
);
3024 while Present
(Formal
) loop
3025 if Is_Effectively_Volatile
(Etype
(Formal
)) then
3027 ("nonvolatile function & cannot have a volatile parameter",
3031 Next_Formal
(Formal
);
3034 -- Inspect the return type
3036 if Is_Effectively_Volatile
(Etype
(Func_Id
)) then
3038 ("nonvolatile function & cannot have a volatile return type",
3039 Result_Definition
(Parent
(Func_Id
)), Func_Id
);
3041 end Check_Nonvolatile_Function_Profile
;
3043 ------------------------------------------
3044 -- Check_Potentially_Blocking_Operation --
3045 ------------------------------------------
3047 procedure Check_Potentially_Blocking_Operation
(N
: Node_Id
) is
3051 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3052 -- When pragma Detect_Blocking is active, the run time will raise
3053 -- Program_Error. Here we only issue a warning, since we generally
3054 -- support the use of potentially blocking operations in the absence
3057 -- Indirect blocking through a subprogram call cannot be diagnosed
3058 -- statically without interprocedural analysis, so we do not attempt
3061 S
:= Scope
(Current_Scope
);
3062 while Present
(S
) and then S
/= Standard_Standard
loop
3063 if Is_Protected_Type
(S
) then
3065 ("potentially blocking operation in protected operation??", N
);
3071 end Check_Potentially_Blocking_Operation
;
3073 ---------------------------------
3074 -- Check_Result_And_Post_State --
3075 ---------------------------------
3077 procedure Check_Result_And_Post_State
(Subp_Id
: Entity_Id
) is
3078 procedure Check_Result_And_Post_State_In_Pragma
3080 Result_Seen
: in out Boolean);
3081 -- Determine whether pragma Prag mentions attribute 'Result and whether
3082 -- the pragma contains an expression that evaluates differently in pre-
3083 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3084 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3086 function Has_In_Out_Parameter
(Subp_Id
: Entity_Id
) return Boolean;
3087 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3088 -- formal parameter.
3090 -------------------------------------------
3091 -- Check_Result_And_Post_State_In_Pragma --
3092 -------------------------------------------
3094 procedure Check_Result_And_Post_State_In_Pragma
3096 Result_Seen
: in out Boolean)
3098 procedure Check_Expression
(Expr
: Node_Id
);
3099 -- Perform the 'Result and post-state checks on a given expression
3101 function Is_Function_Result
(N
: Node_Id
) return Traverse_Result
;
3102 -- Attempt to find attribute 'Result in a subtree denoted by N
3104 function Is_Trivial_Boolean
(N
: Node_Id
) return Boolean;
3105 -- Determine whether source node N denotes "True" or "False"
3107 function Mentions_Post_State
(N
: Node_Id
) return Boolean;
3108 -- Determine whether a subtree denoted by N mentions any construct
3109 -- that denotes a post-state.
3111 procedure Check_Function_Result
is
3112 new Traverse_Proc
(Is_Function_Result
);
3114 ----------------------
3115 -- Check_Expression --
3116 ----------------------
3118 procedure Check_Expression
(Expr
: Node_Id
) is
3120 if not Is_Trivial_Boolean
(Expr
) then
3121 Check_Function_Result
(Expr
);
3123 if not Mentions_Post_State
(Expr
) then
3124 if Pragma_Name
(Prag
) = Name_Contract_Cases
then
3126 ("contract case does not check the outcome of calling "
3127 & "&?T?", Expr
, Subp_Id
);
3129 elsif Pragma_Name
(Prag
) = Name_Refined_Post
then
3131 ("refined postcondition does not check the outcome of "
3132 & "calling &?T?", Prag
, Subp_Id
);
3136 ("postcondition does not check the outcome of calling "
3137 & "&?T?", Prag
, Subp_Id
);
3141 end Check_Expression
;
3143 ------------------------
3144 -- Is_Function_Result --
3145 ------------------------
3147 function Is_Function_Result
(N
: Node_Id
) return Traverse_Result
is
3149 if Is_Attribute_Result
(N
) then
3150 Result_Seen
:= True;
3153 -- Continue the traversal
3158 end Is_Function_Result
;
3160 ------------------------
3161 -- Is_Trivial_Boolean --
3162 ------------------------
3164 function Is_Trivial_Boolean
(N
: Node_Id
) return Boolean is
3167 Comes_From_Source
(N
)
3168 and then Is_Entity_Name
(N
)
3169 and then (Entity
(N
) = Standard_True
3171 Entity
(N
) = Standard_False
);
3172 end Is_Trivial_Boolean
;
3174 -------------------------
3175 -- Mentions_Post_State --
3176 -------------------------
3178 function Mentions_Post_State
(N
: Node_Id
) return Boolean is
3179 Post_State_Seen
: Boolean := False;
3181 function Is_Post_State
(N
: Node_Id
) return Traverse_Result
;
3182 -- Attempt to find a construct that denotes a post-state. If this
3183 -- is the case, set flag Post_State_Seen.
3189 function Is_Post_State
(N
: Node_Id
) return Traverse_Result
is
3193 if Nkind_In
(N
, N_Explicit_Dereference
, N_Function_Call
) then
3194 Post_State_Seen
:= True;
3197 elsif Nkind_In
(N
, N_Expanded_Name
, N_Identifier
) then
3200 -- The entity may be modifiable through an implicit
3204 or else Ekind
(Ent
) in Assignable_Kind
3205 or else (Is_Access_Type
(Etype
(Ent
))
3206 and then Nkind
(Parent
(N
)) =
3207 N_Selected_Component
)
3209 Post_State_Seen
:= True;
3213 elsif Nkind
(N
) = N_Attribute_Reference
then
3214 if Attribute_Name
(N
) = Name_Old
then
3217 elsif Attribute_Name
(N
) = Name_Result
then
3218 Post_State_Seen
:= True;
3226 procedure Find_Post_State
is new Traverse_Proc
(Is_Post_State
);
3228 -- Start of processing for Mentions_Post_State
3231 Find_Post_State
(N
);
3233 return Post_State_Seen
;
3234 end Mentions_Post_State
;
3238 Expr
: constant Node_Id
:=
3240 (First
(Pragma_Argument_Associations
(Prag
)));
3241 Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
3244 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3247 -- Examine all consequences
3249 if Nam
= Name_Contract_Cases
then
3250 CCase
:= First
(Component_Associations
(Expr
));
3251 while Present
(CCase
) loop
3252 Check_Expression
(Expression
(CCase
));
3257 -- Examine the expression of a postcondition
3259 else pragma Assert
(Nam_In
(Nam
, Name_Postcondition
,
3260 Name_Refined_Post
));
3261 Check_Expression
(Expr
);
3263 end Check_Result_And_Post_State_In_Pragma
;
3265 --------------------------
3266 -- Has_In_Out_Parameter --
3267 --------------------------
3269 function Has_In_Out_Parameter
(Subp_Id
: Entity_Id
) return Boolean is
3273 -- Traverse the formals looking for an IN OUT parameter
3275 Formal
:= First_Formal
(Subp_Id
);
3276 while Present
(Formal
) loop
3277 if Ekind
(Formal
) = E_In_Out_Parameter
then
3281 Next_Formal
(Formal
);
3285 end Has_In_Out_Parameter
;
3289 Items
: constant Node_Id
:= Contract
(Subp_Id
);
3290 Subp_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp_Id
);
3291 Case_Prag
: Node_Id
:= Empty
;
3292 Post_Prag
: Node_Id
:= Empty
;
3294 Seen_In_Case
: Boolean := False;
3295 Seen_In_Post
: Boolean := False;
3296 Spec_Id
: Entity_Id
;
3298 -- Start of processing for Check_Result_And_Post_State
3301 -- The lack of attribute 'Result or a post-state is classified as a
3302 -- suspicious contract. Do not perform the check if the corresponding
3303 -- swich is not set.
3305 if not Warn_On_Suspicious_Contract
then
3308 -- Nothing to do if there is no contract
3310 elsif No
(Items
) then
3314 -- Retrieve the entity of the subprogram spec (if any)
3316 if Nkind
(Subp_Decl
) = N_Subprogram_Body
3317 and then Present
(Corresponding_Spec
(Subp_Decl
))
3319 Spec_Id
:= Corresponding_Spec
(Subp_Decl
);
3321 elsif Nkind
(Subp_Decl
) = N_Subprogram_Body_Stub
3322 and then Present
(Corresponding_Spec_Of_Stub
(Subp_Decl
))
3324 Spec_Id
:= Corresponding_Spec_Of_Stub
(Subp_Decl
);
3330 -- Examine all postconditions for attribute 'Result and a post-state
3332 Prag
:= Pre_Post_Conditions
(Items
);
3333 while Present
(Prag
) loop
3334 if Nam_In
(Pragma_Name_Unmapped
(Prag
),
3335 Name_Postcondition
, Name_Refined_Post
)
3336 and then not Error_Posted
(Prag
)
3339 Check_Result_And_Post_State_In_Pragma
(Prag
, Seen_In_Post
);
3342 Prag
:= Next_Pragma
(Prag
);
3345 -- Examine the contract cases of the subprogram for attribute 'Result
3346 -- and a post-state.
3348 Prag
:= Contract_Test_Cases
(Items
);
3349 while Present
(Prag
) loop
3350 if Pragma_Name
(Prag
) = Name_Contract_Cases
3351 and then not Error_Posted
(Prag
)
3354 Check_Result_And_Post_State_In_Pragma
(Prag
, Seen_In_Case
);
3357 Prag
:= Next_Pragma
(Prag
);
3360 -- Do not emit any errors if the subprogram is not a function
3362 if not Ekind_In
(Spec_Id
, E_Function
, E_Generic_Function
) then
3365 -- Regardless of whether the function has postconditions or contract
3366 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3367 -- parameter is always treated as a result.
3369 elsif Has_In_Out_Parameter
(Spec_Id
) then
3372 -- The function has both a postcondition and contract cases and they do
3373 -- not mention attribute 'Result.
3375 elsif Present
(Case_Prag
)
3376 and then not Seen_In_Case
3377 and then Present
(Post_Prag
)
3378 and then not Seen_In_Post
3381 ("neither postcondition nor contract cases mention function "
3382 & "result?T?", Post_Prag
);
3384 -- The function has contract cases only and they do not mention
3385 -- attribute 'Result.
3387 elsif Present
(Case_Prag
) and then not Seen_In_Case
then
3388 Error_Msg_N
("contract cases do not mention result?T?", Case_Prag
);
3390 -- The function has postconditions only and they do not mention
3391 -- attribute 'Result.
3393 elsif Present
(Post_Prag
) and then not Seen_In_Post
then
3395 ("postcondition does not mention function result?T?", Post_Prag
);
3397 end Check_Result_And_Post_State
;
3399 -----------------------------
3400 -- Check_State_Refinements --
3401 -----------------------------
3403 procedure Check_State_Refinements
3405 Is_Main_Unit
: Boolean := False)
3407 procedure Check_Package
(Pack
: Node_Id
);
3408 -- Verify that all abstract states of a [generic] package denoted by its
3409 -- declarative node Pack have proper refinement. Recursively verify the
3410 -- visible and private declarations of the [generic] package for other
3413 procedure Check_Packages_In
(Decls
: List_Id
);
3414 -- Seek out [generic] package declarations within declarative list Decls
3415 -- and verify the status of their abstract state refinement.
3417 function SPARK_Mode_Is_Off
(N
: Node_Id
) return Boolean;
3418 -- Determine whether construct N is subject to pragma SPARK_Mode Off
3424 procedure Check_Package
(Pack
: Node_Id
) is
3425 Body_Id
: constant Entity_Id
:= Corresponding_Body
(Pack
);
3426 Spec
: constant Node_Id
:= Specification
(Pack
);
3427 States
: constant Elist_Id
:=
3428 Abstract_States
(Defining_Entity
(Pack
));
3430 State_Elmt
: Elmt_Id
;
3431 State_Id
: Entity_Id
;
3434 -- Do not verify proper state refinement when the package is subject
3435 -- to pragma SPARK_Mode Off because this disables the requirement for
3436 -- state refinement.
3438 if SPARK_Mode_Is_Off
(Pack
) then
3441 -- State refinement can only occur in a completing packge body. Do
3442 -- not verify proper state refinement when the body is subject to
3443 -- pragma SPARK_Mode Off because this disables the requirement for
3444 -- state refinement.
3446 elsif Present
(Body_Id
)
3447 and then SPARK_Mode_Is_Off
(Unit_Declaration_Node
(Body_Id
))
3451 -- Do not verify proper state refinement when the package is an
3452 -- instance as this check was already performed in the generic.
3454 elsif Present
(Generic_Parent
(Spec
)) then
3457 -- Otherwise examine the contents of the package
3460 if Present
(States
) then
3461 State_Elmt
:= First_Elmt
(States
);
3462 while Present
(State_Elmt
) loop
3463 State_Id
:= Node
(State_Elmt
);
3465 -- Emit an error when a non-null state lacks any form of
3468 if not Is_Null_State
(State_Id
)
3469 and then not Has_Null_Refinement
(State_Id
)
3470 and then not Has_Non_Null_Refinement
(State_Id
)
3472 Error_Msg_N
("state & requires refinement", State_Id
);
3475 Next_Elmt
(State_Elmt
);
3479 Check_Packages_In
(Visible_Declarations
(Spec
));
3480 Check_Packages_In
(Private_Declarations
(Spec
));
3484 -----------------------
3485 -- Check_Packages_In --
3486 -----------------------
3488 procedure Check_Packages_In
(Decls
: List_Id
) is
3492 if Present
(Decls
) then
3493 Decl
:= First
(Decls
);
3494 while Present
(Decl
) loop
3495 if Nkind_In
(Decl
, N_Generic_Package_Declaration
,
3496 N_Package_Declaration
)
3498 Check_Package
(Decl
);
3504 end Check_Packages_In
;
3506 -----------------------
3507 -- SPARK_Mode_Is_Off --
3508 -----------------------
3510 function SPARK_Mode_Is_Off
(N
: Node_Id
) return Boolean is
3511 Prag
: constant Node_Id
:= SPARK_Pragma
(Defining_Entity
(N
));
3515 Present
(Prag
) and then Get_SPARK_Mode_From_Annotation
(Prag
) = Off
;
3516 end SPARK_Mode_Is_Off
;
3518 -- Start of processing for Check_State_Refinements
3521 -- A block may declare a nested package
3523 if Nkind
(Context
) = N_Block_Statement
then
3524 Check_Packages_In
(Declarations
(Context
));
3526 -- An entry, protected, subprogram, or task body may declare a nested
3529 elsif Nkind_In
(Context
, N_Entry_Body
,
3534 -- Do not verify proper state refinement when the body is subject to
3535 -- pragma SPARK_Mode Off because this disables the requirement for
3536 -- state refinement.
3538 if not SPARK_Mode_Is_Off
(Context
) then
3539 Check_Packages_In
(Declarations
(Context
));
3542 -- A package body may declare a nested package
3544 elsif Nkind
(Context
) = N_Package_Body
then
3545 Check_Package
(Unit_Declaration_Node
(Corresponding_Spec
(Context
)));
3547 -- Do not verify proper state refinement when the body is subject to
3548 -- pragma SPARK_Mode Off because this disables the requirement for
3549 -- state refinement.
3551 if not SPARK_Mode_Is_Off
(Context
) then
3552 Check_Packages_In
(Declarations
(Context
));
3555 -- A library level [generic] package may declare a nested package
3557 elsif Nkind_In
(Context
, N_Generic_Package_Declaration
,
3558 N_Package_Declaration
)
3559 and then Is_Main_Unit
3561 Check_Package
(Context
);
3563 end Check_State_Refinements
;
3565 ------------------------------
3566 -- Check_Unprotected_Access --
3567 ------------------------------
3569 procedure Check_Unprotected_Access
3573 Cont_Encl_Typ
: Entity_Id
;
3574 Pref_Encl_Typ
: Entity_Id
;
3576 function Enclosing_Protected_Type
(Obj
: Node_Id
) return Entity_Id
;
3577 -- Check whether Obj is a private component of a protected object.
3578 -- Return the protected type where the component resides, Empty
3581 function Is_Public_Operation
return Boolean;
3582 -- Verify that the enclosing operation is callable from outside the
3583 -- protected object, to minimize false positives.
3585 ------------------------------
3586 -- Enclosing_Protected_Type --
3587 ------------------------------
3589 function Enclosing_Protected_Type
(Obj
: Node_Id
) return Entity_Id
is
3591 if Is_Entity_Name
(Obj
) then
3593 Ent
: Entity_Id
:= Entity
(Obj
);
3596 -- The object can be a renaming of a private component, use
3597 -- the original record component.
3599 if Is_Prival
(Ent
) then
3600 Ent
:= Prival_Link
(Ent
);
3603 if Is_Protected_Type
(Scope
(Ent
)) then
3609 -- For indexed and selected components, recursively check the prefix
3611 if Nkind_In
(Obj
, N_Indexed_Component
, N_Selected_Component
) then
3612 return Enclosing_Protected_Type
(Prefix
(Obj
));
3614 -- The object does not denote a protected component
3619 end Enclosing_Protected_Type
;
3621 -------------------------
3622 -- Is_Public_Operation --
3623 -------------------------
3625 function Is_Public_Operation
return Boolean is
3631 while Present
(S
) and then S
/= Pref_Encl_Typ
loop
3632 if Scope
(S
) = Pref_Encl_Typ
then
3633 E
:= First_Entity
(Pref_Encl_Typ
);
3635 and then E
/= First_Private_Entity
(Pref_Encl_Typ
)
3649 end Is_Public_Operation
;
3651 -- Start of processing for Check_Unprotected_Access
3654 if Nkind
(Expr
) = N_Attribute_Reference
3655 and then Attribute_Name
(Expr
) = Name_Unchecked_Access
3657 Cont_Encl_Typ
:= Enclosing_Protected_Type
(Context
);
3658 Pref_Encl_Typ
:= Enclosing_Protected_Type
(Prefix
(Expr
));
3660 -- Check whether we are trying to export a protected component to a
3661 -- context with an equal or lower access level.
3663 if Present
(Pref_Encl_Typ
)
3664 and then No
(Cont_Encl_Typ
)
3665 and then Is_Public_Operation
3666 and then Scope_Depth
(Pref_Encl_Typ
) >=
3667 Object_Access_Level
(Context
)
3670 ("??possible unprotected access to protected data", Expr
);
3673 end Check_Unprotected_Access
;
3675 ------------------------------
3676 -- Check_Unused_Body_States --
3677 ------------------------------
3679 procedure Check_Unused_Body_States
(Body_Id
: Entity_Id
) is
3680 procedure Process_Refinement_Clause
3683 -- Inspect all constituents of refinement clause Clause and remove any
3684 -- matches from body state list States.
3686 procedure Report_Unused_Body_States
(States
: Elist_Id
);
3687 -- Emit errors for each abstract state or object found in list States
3689 -------------------------------
3690 -- Process_Refinement_Clause --
3691 -------------------------------
3693 procedure Process_Refinement_Clause
3697 procedure Process_Constituent
(Constit
: Node_Id
);
3698 -- Remove constituent Constit from body state list States
3700 -------------------------
3701 -- Process_Constituent --
3702 -------------------------
3704 procedure Process_Constituent
(Constit
: Node_Id
) is
3705 Constit_Id
: Entity_Id
;
3708 -- Guard against illegal constituents. Only abstract states and
3709 -- objects can appear on the right hand side of a refinement.
3711 if Is_Entity_Name
(Constit
) then
3712 Constit_Id
:= Entity_Of
(Constit
);
3714 if Present
(Constit_Id
)
3715 and then Ekind_In
(Constit_Id
, E_Abstract_State
,
3719 Remove
(States
, Constit_Id
);
3722 end Process_Constituent
;
3728 -- Start of processing for Process_Refinement_Clause
3731 if Nkind
(Clause
) = N_Component_Association
then
3732 Constit
:= Expression
(Clause
);
3734 -- Multiple constituents appear as an aggregate
3736 if Nkind
(Constit
) = N_Aggregate
then
3737 Constit
:= First
(Expressions
(Constit
));
3738 while Present
(Constit
) loop
3739 Process_Constituent
(Constit
);
3743 -- Various forms of a single constituent
3746 Process_Constituent
(Constit
);
3749 end Process_Refinement_Clause
;
3751 -------------------------------
3752 -- Report_Unused_Body_States --
3753 -------------------------------
3755 procedure Report_Unused_Body_States
(States
: Elist_Id
) is
3756 Posted
: Boolean := False;
3757 State_Elmt
: Elmt_Id
;
3758 State_Id
: Entity_Id
;
3761 if Present
(States
) then
3762 State_Elmt
:= First_Elmt
(States
);
3763 while Present
(State_Elmt
) loop
3764 State_Id
:= Node
(State_Elmt
);
3766 -- Constants are part of the hidden state of a package, but the
3767 -- compiler cannot determine whether they have variable input
3768 -- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
3769 -- hidden state. Do not emit an error when a constant does not
3770 -- participate in a state refinement, even though it acts as a
3773 if Ekind
(State_Id
) = E_Constant
then
3776 -- Generate an error message of the form:
3778 -- body of package ... has unused hidden states
3779 -- abstract state ... defined at ...
3780 -- variable ... defined at ...
3786 ("body of package & has unused hidden states", Body_Id
);
3789 Error_Msg_Sloc
:= Sloc
(State_Id
);
3791 if Ekind
(State_Id
) = E_Abstract_State
then
3793 ("\abstract state & defined #", Body_Id
, State_Id
);
3796 SPARK_Msg_NE
("\variable & defined #", Body_Id
, State_Id
);
3800 Next_Elmt
(State_Elmt
);
3803 end Report_Unused_Body_States
;
3807 Prag
: constant Node_Id
:= Get_Pragma
(Body_Id
, Pragma_Refined_State
);
3808 Spec_Id
: constant Entity_Id
:= Spec_Entity
(Body_Id
);
3812 -- Start of processing for Check_Unused_Body_States
3815 -- Inspect the clauses of pragma Refined_State and determine whether all
3816 -- visible states declared within the package body participate in the
3819 if Present
(Prag
) then
3820 Clause
:= Expression
(Get_Argument
(Prag
, Spec_Id
));
3821 States
:= Collect_Body_States
(Body_Id
);
3823 -- Multiple non-null state refinements appear as an aggregate
3825 if Nkind
(Clause
) = N_Aggregate
then
3826 Clause
:= First
(Component_Associations
(Clause
));
3827 while Present
(Clause
) loop
3828 Process_Refinement_Clause
(Clause
, States
);
3832 -- Various forms of a single state refinement
3835 Process_Refinement_Clause
(Clause
, States
);
3838 -- Ensure that all abstract states and objects declared in the
3839 -- package body state space are utilized as constituents.
3841 Report_Unused_Body_States
(States
);
3843 end Check_Unused_Body_States
;
3849 function Choice_List
(N
: Node_Id
) return List_Id
is
3851 if Nkind
(N
) = N_Iterated_Component_Association
then
3852 return Discrete_Choices
(N
);
3858 -------------------------
3859 -- Collect_Body_States --
3860 -------------------------
3862 function Collect_Body_States
(Body_Id
: Entity_Id
) return Elist_Id
is
3863 function Is_Visible_Object
(Obj_Id
: Entity_Id
) return Boolean;
3864 -- Determine whether object Obj_Id is a suitable visible state of a
3867 procedure Collect_Visible_States
3868 (Pack_Id
: Entity_Id
;
3869 States
: in out Elist_Id
);
3870 -- Gather the entities of all abstract states and objects declared in
3871 -- the visible state space of package Pack_Id.
3873 ----------------------------
3874 -- Collect_Visible_States --
3875 ----------------------------
3877 procedure Collect_Visible_States
3878 (Pack_Id
: Entity_Id
;
3879 States
: in out Elist_Id
)
3881 Item_Id
: Entity_Id
;
3884 -- Traverse the entity chain of the package and inspect all visible
3887 Item_Id
:= First_Entity
(Pack_Id
);
3888 while Present
(Item_Id
) and then not In_Private_Part
(Item_Id
) loop
3890 -- Do not consider internally generated items as those cannot be
3891 -- named and participate in refinement.
3893 if not Comes_From_Source
(Item_Id
) then
3896 elsif Ekind
(Item_Id
) = E_Abstract_State
then
3897 Append_New_Elmt
(Item_Id
, States
);
3899 elsif Ekind_In
(Item_Id
, E_Constant
, E_Variable
)
3900 and then Is_Visible_Object
(Item_Id
)
3902 Append_New_Elmt
(Item_Id
, States
);
3904 -- Recursively gather the visible states of a nested package
3906 elsif Ekind
(Item_Id
) = E_Package
then
3907 Collect_Visible_States
(Item_Id
, States
);
3910 Next_Entity
(Item_Id
);
3912 end Collect_Visible_States
;
3914 -----------------------
3915 -- Is_Visible_Object --
3916 -----------------------
3918 function Is_Visible_Object
(Obj_Id
: Entity_Id
) return Boolean is
3920 -- Objects that map generic formals to their actuals are not visible
3921 -- from outside the generic instantiation.
3923 if Present
(Corresponding_Generic_Association
3924 (Declaration_Node
(Obj_Id
)))
3928 -- Constituents of a single protected/task type act as components of
3929 -- the type and are not visible from outside the type.
3931 elsif Ekind
(Obj_Id
) = E_Variable
3932 and then Present
(Encapsulating_State
(Obj_Id
))
3933 and then Is_Single_Concurrent_Object
(Encapsulating_State
(Obj_Id
))
3940 end Is_Visible_Object
;
3944 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Body_Id
);
3946 Item_Id
: Entity_Id
;
3947 States
: Elist_Id
:= No_Elist
;
3949 -- Start of processing for Collect_Body_States
3952 -- Inspect the declarations of the body looking for source objects,
3953 -- packages and package instantiations. Note that even though this
3954 -- processing is very similar to Collect_Visible_States, a package
3955 -- body does not have a First/Next_Entity list.
3957 Decl
:= First
(Declarations
(Body_Decl
));
3958 while Present
(Decl
) loop
3960 -- Capture source objects as internally generated temporaries cannot
3961 -- be named and participate in refinement.
3963 if Nkind
(Decl
) = N_Object_Declaration
then
3964 Item_Id
:= Defining_Entity
(Decl
);
3966 if Comes_From_Source
(Item_Id
)
3967 and then Is_Visible_Object
(Item_Id
)
3969 Append_New_Elmt
(Item_Id
, States
);
3972 -- Capture the visible abstract states and objects of a source
3973 -- package [instantiation].
3975 elsif Nkind
(Decl
) = N_Package_Declaration
then
3976 Item_Id
:= Defining_Entity
(Decl
);
3978 if Comes_From_Source
(Item_Id
) then
3979 Collect_Visible_States
(Item_Id
, States
);
3987 end Collect_Body_States
;
3989 ------------------------
3990 -- Collect_Interfaces --
3991 ------------------------
3993 procedure Collect_Interfaces
3995 Ifaces_List
: out Elist_Id
;
3996 Exclude_Parents
: Boolean := False;
3997 Use_Full_View
: Boolean := True)
3999 procedure Collect
(Typ
: Entity_Id
);
4000 -- Subsidiary subprogram used to traverse the whole list
4001 -- of directly and indirectly implemented interfaces
4007 procedure Collect
(Typ
: Entity_Id
) is
4008 Ancestor
: Entity_Id
;
4016 -- Handle private types and subtypes
4019 and then Is_Private_Type
(Typ
)
4020 and then Present
(Full_View
(Typ
))
4022 Full_T
:= Full_View
(Typ
);
4024 if Ekind
(Full_T
) = E_Record_Subtype
then
4025 Full_T
:= Etype
(Typ
);
4027 if Present
(Full_View
(Full_T
)) then
4028 Full_T
:= Full_View
(Full_T
);
4033 -- Include the ancestor if we are generating the whole list of
4034 -- abstract interfaces.
4036 if Etype
(Full_T
) /= Typ
4038 -- Protect the frontend against wrong sources. For example:
4041 -- type A is tagged null record;
4042 -- type B is new A with private;
4043 -- type C is new A with private;
4045 -- type B is new C with null record;
4046 -- type C is new B with null record;
4049 and then Etype
(Full_T
) /= T
4051 Ancestor
:= Etype
(Full_T
);
4054 if Is_Interface
(Ancestor
) and then not Exclude_Parents
then
4055 Append_Unique_Elmt
(Ancestor
, Ifaces_List
);
4059 -- Traverse the graph of ancestor interfaces
4061 if Is_Non_Empty_List
(Abstract_Interface_List
(Full_T
)) then
4062 Id
:= First
(Abstract_Interface_List
(Full_T
));
4063 while Present
(Id
) loop
4064 Iface
:= Etype
(Id
);
4066 -- Protect against wrong uses. For example:
4067 -- type I is interface;
4068 -- type O is tagged null record;
4069 -- type Wrong is new I and O with null record; -- ERROR
4071 if Is_Interface
(Iface
) then
4073 and then Etype
(T
) /= T
4074 and then Interface_Present_In_Ancestor
(Etype
(T
), Iface
)
4079 Append_Unique_Elmt
(Iface
, Ifaces_List
);
4088 -- Start of processing for Collect_Interfaces
4091 pragma Assert
(Is_Tagged_Type
(T
) or else Is_Concurrent_Type
(T
));
4092 Ifaces_List
:= New_Elmt_List
;
4094 end Collect_Interfaces
;
4096 ----------------------------------
4097 -- Collect_Interface_Components --
4098 ----------------------------------
4100 procedure Collect_Interface_Components
4101 (Tagged_Type
: Entity_Id
;
4102 Components_List
: out Elist_Id
)
4104 procedure Collect
(Typ
: Entity_Id
);
4105 -- Subsidiary subprogram used to climb to the parents
4111 procedure Collect
(Typ
: Entity_Id
) is
4112 Tag_Comp
: Entity_Id
;
4113 Parent_Typ
: Entity_Id
;
4116 -- Handle private types
4118 if Present
(Full_View
(Etype
(Typ
))) then
4119 Parent_Typ
:= Full_View
(Etype
(Typ
));
4121 Parent_Typ
:= Etype
(Typ
);
4124 if Parent_Typ
/= Typ
4126 -- Protect the frontend against wrong sources. For example:
4129 -- type A is tagged null record;
4130 -- type B is new A with private;
4131 -- type C is new A with private;
4133 -- type B is new C with null record;
4134 -- type C is new B with null record;
4137 and then Parent_Typ
/= Tagged_Type
4139 Collect
(Parent_Typ
);
4142 -- Collect the components containing tags of secondary dispatch
4145 Tag_Comp
:= Next_Tag_Component
(First_Tag_Component
(Typ
));
4146 while Present
(Tag_Comp
) loop
4147 pragma Assert
(Present
(Related_Type
(Tag_Comp
)));
4148 Append_Elmt
(Tag_Comp
, Components_List
);
4150 Tag_Comp
:= Next_Tag_Component
(Tag_Comp
);
4154 -- Start of processing for Collect_Interface_Components
4157 pragma Assert
(Ekind
(Tagged_Type
) = E_Record_Type
4158 and then Is_Tagged_Type
(Tagged_Type
));
4160 Components_List
:= New_Elmt_List
;
4161 Collect
(Tagged_Type
);
4162 end Collect_Interface_Components
;
4164 -----------------------------
4165 -- Collect_Interfaces_Info --
4166 -----------------------------
4168 procedure Collect_Interfaces_Info
4170 Ifaces_List
: out Elist_Id
;
4171 Components_List
: out Elist_Id
;
4172 Tags_List
: out Elist_Id
)
4174 Comps_List
: Elist_Id
;
4175 Comp_Elmt
: Elmt_Id
;
4176 Comp_Iface
: Entity_Id
;
4177 Iface_Elmt
: Elmt_Id
;
4180 function Search_Tag
(Iface
: Entity_Id
) return Entity_Id
;
4181 -- Search for the secondary tag associated with the interface type
4182 -- Iface that is implemented by T.
4188 function Search_Tag
(Iface
: Entity_Id
) return Entity_Id
is
4191 if not Is_CPP_Class
(T
) then
4192 ADT
:= Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(T
))));
4194 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(T
)));
4198 and then Is_Tag
(Node
(ADT
))
4199 and then Related_Type
(Node
(ADT
)) /= Iface
4201 -- Skip secondary dispatch table referencing thunks to user
4202 -- defined primitives covered by this interface.
4204 pragma Assert
(Has_Suffix
(Node
(ADT
), 'P'));
4207 -- Skip secondary dispatch tables of Ada types
4209 if not Is_CPP_Class
(T
) then
4211 -- Skip secondary dispatch table referencing thunks to
4212 -- predefined primitives.
4214 pragma Assert
(Has_Suffix
(Node
(ADT
), 'Y'));
4217 -- Skip secondary dispatch table referencing user-defined
4218 -- primitives covered by this interface.
4220 pragma Assert
(Has_Suffix
(Node
(ADT
), 'D'));
4223 -- Skip secondary dispatch table referencing predefined
4226 pragma Assert
(Has_Suffix
(Node
(ADT
), 'Z'));
4231 pragma Assert
(Is_Tag
(Node
(ADT
)));
4235 -- Start of processing for Collect_Interfaces_Info
4238 Collect_Interfaces
(T
, Ifaces_List
);
4239 Collect_Interface_Components
(T
, Comps_List
);
4241 -- Search for the record component and tag associated with each
4242 -- interface type of T.
4244 Components_List
:= New_Elmt_List
;
4245 Tags_List
:= New_Elmt_List
;
4247 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
4248 while Present
(Iface_Elmt
) loop
4249 Iface
:= Node
(Iface_Elmt
);
4251 -- Associate the primary tag component and the primary dispatch table
4252 -- with all the interfaces that are parents of T
4254 if Is_Ancestor
(Iface
, T
, Use_Full_View
=> True) then
4255 Append_Elmt
(First_Tag_Component
(T
), Components_List
);
4256 Append_Elmt
(Node
(First_Elmt
(Access_Disp_Table
(T
))), Tags_List
);
4258 -- Otherwise search for the tag component and secondary dispatch
4262 Comp_Elmt
:= First_Elmt
(Comps_List
);
4263 while Present
(Comp_Elmt
) loop
4264 Comp_Iface
:= Related_Type
(Node
(Comp_Elmt
));
4266 if Comp_Iface
= Iface
4267 or else Is_Ancestor
(Iface
, Comp_Iface
, Use_Full_View
=> True)
4269 Append_Elmt
(Node
(Comp_Elmt
), Components_List
);
4270 Append_Elmt
(Search_Tag
(Comp_Iface
), Tags_List
);
4274 Next_Elmt
(Comp_Elmt
);
4276 pragma Assert
(Present
(Comp_Elmt
));
4279 Next_Elmt
(Iface_Elmt
);
4281 end Collect_Interfaces_Info
;
4283 ---------------------
4284 -- Collect_Parents --
4285 ---------------------
4287 procedure Collect_Parents
4289 List
: out Elist_Id
;
4290 Use_Full_View
: Boolean := True)
4292 Current_Typ
: Entity_Id
:= T
;
4293 Parent_Typ
: Entity_Id
;
4296 List
:= New_Elmt_List
;
4298 -- No action if the if the type has no parents
4300 if T
= Etype
(T
) then
4305 Parent_Typ
:= Etype
(Current_Typ
);
4307 if Is_Private_Type
(Parent_Typ
)
4308 and then Present
(Full_View
(Parent_Typ
))
4309 and then Use_Full_View
4311 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
4314 Append_Elmt
(Parent_Typ
, List
);
4316 exit when Parent_Typ
= Current_Typ
;
4317 Current_Typ
:= Parent_Typ
;
4319 end Collect_Parents
;
4321 ----------------------------------
4322 -- Collect_Primitive_Operations --
4323 ----------------------------------
4325 function Collect_Primitive_Operations
(T
: Entity_Id
) return Elist_Id
is
4326 B_Type
: constant Entity_Id
:= Base_Type
(T
);
4327 B_Decl
: constant Node_Id
:= Original_Node
(Parent
(B_Type
));
4328 B_Scope
: Entity_Id
:= Scope
(B_Type
);
4332 Is_Type_In_Pkg
: Boolean;
4333 Formal_Derived
: Boolean := False;
4336 function Match
(E
: Entity_Id
) return Boolean;
4337 -- True if E's base type is B_Type, or E is of an anonymous access type
4338 -- and the base type of its designated type is B_Type.
4344 function Match
(E
: Entity_Id
) return Boolean is
4345 Etyp
: Entity_Id
:= Etype
(E
);
4348 if Ekind
(Etyp
) = E_Anonymous_Access_Type
then
4349 Etyp
:= Designated_Type
(Etyp
);
4352 -- In Ada 2012 a primitive operation may have a formal of an
4353 -- incomplete view of the parent type.
4355 return Base_Type
(Etyp
) = B_Type
4357 (Ada_Version
>= Ada_2012
4358 and then Ekind
(Etyp
) = E_Incomplete_Type
4359 and then Full_View
(Etyp
) = B_Type
);
4362 -- Start of processing for Collect_Primitive_Operations
4365 -- For tagged types, the primitive operations are collected as they
4366 -- are declared, and held in an explicit list which is simply returned.
4368 if Is_Tagged_Type
(B_Type
) then
4369 return Primitive_Operations
(B_Type
);
4371 -- An untagged generic type that is a derived type inherits the
4372 -- primitive operations of its parent type. Other formal types only
4373 -- have predefined operators, which are not explicitly represented.
4375 elsif Is_Generic_Type
(B_Type
) then
4376 if Nkind
(B_Decl
) = N_Formal_Type_Declaration
4377 and then Nkind
(Formal_Type_Definition
(B_Decl
)) =
4378 N_Formal_Derived_Type_Definition
4380 Formal_Derived
:= True;
4382 return New_Elmt_List
;
4386 Op_List
:= New_Elmt_List
;
4388 if B_Scope
= Standard_Standard
then
4389 if B_Type
= Standard_String
then
4390 Append_Elmt
(Standard_Op_Concat
, Op_List
);
4392 elsif B_Type
= Standard_Wide_String
then
4393 Append_Elmt
(Standard_Op_Concatw
, Op_List
);
4399 -- Locate the primitive subprograms of the type
4402 -- The primitive operations appear after the base type, except
4403 -- if the derivation happens within the private part of B_Scope
4404 -- and the type is a private type, in which case both the type
4405 -- and some primitive operations may appear before the base
4406 -- type, and the list of candidates starts after the type.
4408 if In_Open_Scopes
(B_Scope
)
4409 and then Scope
(T
) = B_Scope
4410 and then In_Private_Part
(B_Scope
)
4412 Id
:= Next_Entity
(T
);
4414 -- In Ada 2012, If the type has an incomplete partial view, there
4415 -- may be primitive operations declared before the full view, so
4416 -- we need to start scanning from the incomplete view, which is
4417 -- earlier on the entity chain.
4419 elsif Nkind
(Parent
(B_Type
)) = N_Full_Type_Declaration
4420 and then Present
(Incomplete_View
(Parent
(B_Type
)))
4422 Id
:= Defining_Entity
(Incomplete_View
(Parent
(B_Type
)));
4424 -- If T is a derived from a type with an incomplete view declared
4425 -- elsewhere, that incomplete view is irrelevant, we want the
4426 -- operations in the scope of T.
4428 if Scope
(Id
) /= Scope
(B_Type
) then
4429 Id
:= Next_Entity
(B_Type
);
4433 Id
:= Next_Entity
(B_Type
);
4436 -- Set flag if this is a type in a package spec
4439 Is_Package_Or_Generic_Package
(B_Scope
)
4441 Nkind
(Parent
(Declaration_Node
(First_Subtype
(T
)))) /=
4444 while Present
(Id
) loop
4446 -- Test whether the result type or any of the parameter types of
4447 -- each subprogram following the type match that type when the
4448 -- type is declared in a package spec, is a derived type, or the
4449 -- subprogram is marked as primitive. (The Is_Primitive test is
4450 -- needed to find primitives of nonderived types in declarative
4451 -- parts that happen to override the predefined "=" operator.)
4453 -- Note that generic formal subprograms are not considered to be
4454 -- primitive operations and thus are never inherited.
4456 if Is_Overloadable
(Id
)
4457 and then (Is_Type_In_Pkg
4458 or else Is_Derived_Type
(B_Type
)
4459 or else Is_Primitive
(Id
))
4460 and then Nkind
(Parent
(Parent
(Id
)))
4461 not in N_Formal_Subprogram_Declaration
4469 Formal
:= First_Formal
(Id
);
4470 while Present
(Formal
) loop
4471 if Match
(Formal
) then
4476 Next_Formal
(Formal
);
4480 -- For a formal derived type, the only primitives are the ones
4481 -- inherited from the parent type. Operations appearing in the
4482 -- package declaration are not primitive for it.
4485 and then (not Formal_Derived
or else Present
(Alias
(Id
)))
4487 -- In the special case of an equality operator aliased to
4488 -- an overriding dispatching equality belonging to the same
4489 -- type, we don't include it in the list of primitives.
4490 -- This avoids inheriting multiple equality operators when
4491 -- deriving from untagged private types whose full type is
4492 -- tagged, which can otherwise cause ambiguities. Note that
4493 -- this should only happen for this kind of untagged parent
4494 -- type, since normally dispatching operations are inherited
4495 -- using the type's Primitive_Operations list.
4497 if Chars
(Id
) = Name_Op_Eq
4498 and then Is_Dispatching_Operation
(Id
)
4499 and then Present
(Alias
(Id
))
4500 and then Present
(Overridden_Operation
(Alias
(Id
)))
4501 and then Base_Type
(Etype
(First_Entity
(Id
))) =
4502 Base_Type
(Etype
(First_Entity
(Alias
(Id
))))
4506 -- Include the subprogram in the list of primitives
4509 Append_Elmt
(Id
, Op_List
);
4516 -- For a type declared in System, some of its operations may
4517 -- appear in the target-specific extension to System.
4520 and then B_Scope
= RTU_Entity
(System
)
4521 and then Present_System_Aux
4523 B_Scope
:= System_Aux_Id
;
4524 Id
:= First_Entity
(System_Aux_Id
);
4530 end Collect_Primitive_Operations
;
4532 -----------------------------------
4533 -- Compile_Time_Constraint_Error --
4534 -----------------------------------
4536 function Compile_Time_Constraint_Error
4539 Ent
: Entity_Id
:= Empty
;
4540 Loc
: Source_Ptr
:= No_Location
;
4541 Warn
: Boolean := False) return Node_Id
4543 Msgc
: String (1 .. Msg
'Length + 3);
4544 -- Copy of message, with room for possible ?? or << and ! at end
4550 -- Start of processing for Compile_Time_Constraint_Error
4553 -- If this is a warning, convert it into an error if we are in code
4554 -- subject to SPARK_Mode being set On, unless Warn is True to force a
4555 -- warning. The rationale is that a compile-time constraint error should
4556 -- lead to an error instead of a warning when SPARK_Mode is On, but in
4557 -- a few cases we prefer to issue a warning and generate both a suitable
4558 -- run-time error in GNAT and a suitable check message in GNATprove.
4559 -- Those cases are those that likely correspond to deactivated SPARK
4560 -- code, so that this kind of code can be compiled and analyzed instead
4561 -- of being rejected.
4563 Error_Msg_Warn
:= Warn
or SPARK_Mode
/= On
;
4565 -- A static constraint error in an instance body is not a fatal error.
4566 -- we choose to inhibit the message altogether, because there is no
4567 -- obvious node (for now) on which to post it. On the other hand the
4568 -- offending node must be replaced with a constraint_error in any case.
4570 -- No messages are generated if we already posted an error on this node
4572 if not Error_Posted
(N
) then
4573 if Loc
/= No_Location
then
4579 -- Copy message to Msgc, converting any ? in the message into
4580 -- < instead, so that we have an error in GNATprove mode.
4584 for J
in 1 .. Msgl
loop
4585 if Msg
(J
) = '?' and then (J
= 1 or else Msg
(J
- 1) /= ''') then
4588 Msgc
(J
) := Msg
(J
);
4592 -- Message is a warning, even in Ada 95 case
4594 if Msg
(Msg
'Last) = '?' or else Msg
(Msg
'Last) = '<' then
4597 -- In Ada 83, all messages are warnings. In the private part and
4598 -- the body of an instance, constraint_checks are only warnings.
4599 -- We also make this a warning if the Warn parameter is set.
4602 or else (Ada_Version
= Ada_83
and then Comes_From_Source
(N
))
4610 elsif In_Instance_Not_Visible
then
4617 -- Otherwise we have a real error message (Ada 95 static case)
4618 -- and we make this an unconditional message. Note that in the
4619 -- warning case we do not make the message unconditional, it seems
4620 -- quite reasonable to delete messages like this (about exceptions
4621 -- that will be raised) in dead code.
4629 -- One more test, skip the warning if the related expression is
4630 -- statically unevaluated, since we don't want to warn about what
4631 -- will happen when something is evaluated if it never will be
4634 if not Is_Statically_Unevaluated
(N
) then
4635 if Present
(Ent
) then
4636 Error_Msg_NEL
(Msgc
(1 .. Msgl
), N
, Ent
, Eloc
);
4638 Error_Msg_NEL
(Msgc
(1 .. Msgl
), N
, Etype
(N
), Eloc
);
4643 -- Check whether the context is an Init_Proc
4645 if Inside_Init_Proc
then
4647 Conc_Typ
: constant Entity_Id
:=
4648 Corresponding_Concurrent_Type
4649 (Entity
(Parameter_Type
(First
4650 (Parameter_Specifications
4651 (Parent
(Current_Scope
))))));
4654 -- Don't complain if the corresponding concurrent type
4655 -- doesn't come from source (i.e. a single task/protected
4658 if Present
(Conc_Typ
)
4659 and then not Comes_From_Source
(Conc_Typ
)
4662 ("\& [<<", N
, Standard_Constraint_Error
, Eloc
);
4665 if GNATprove_Mode
then
4667 ("\& would have been raised for objects of this "
4668 & "type", N
, Standard_Constraint_Error
, Eloc
);
4671 ("\& will be raised for objects of this type??",
4672 N
, Standard_Constraint_Error
, Eloc
);
4678 Error_Msg_NEL
("\& [<<", N
, Standard_Constraint_Error
, Eloc
);
4682 Error_Msg
("\static expression fails Constraint_Check", Eloc
);
4683 Set_Error_Posted
(N
);
4689 end Compile_Time_Constraint_Error
;
4691 -----------------------
4692 -- Conditional_Delay --
4693 -----------------------
4695 procedure Conditional_Delay
(New_Ent
, Old_Ent
: Entity_Id
) is
4697 if Has_Delayed_Freeze
(Old_Ent
) and then not Is_Frozen
(Old_Ent
) then
4698 Set_Has_Delayed_Freeze
(New_Ent
);
4700 end Conditional_Delay
;
4702 ----------------------------
4703 -- Contains_Refined_State --
4704 ----------------------------
4706 function Contains_Refined_State
(Prag
: Node_Id
) return Boolean is
4707 function Has_State_In_Dependency
(List
: Node_Id
) return Boolean;
4708 -- Determine whether a dependency list mentions a state with a visible
4711 function Has_State_In_Global
(List
: Node_Id
) return Boolean;
4712 -- Determine whether a global list mentions a state with a visible
4715 function Is_Refined_State
(Item
: Node_Id
) return Boolean;
4716 -- Determine whether Item is a reference to an abstract state with a
4717 -- visible refinement.
4719 -----------------------------
4720 -- Has_State_In_Dependency --
4721 -----------------------------
4723 function Has_State_In_Dependency
(List
: Node_Id
) return Boolean is
4728 -- A null dependency list does not mention any states
4730 if Nkind
(List
) = N_Null
then
4733 -- Dependency clauses appear as component associations of an
4736 elsif Nkind
(List
) = N_Aggregate
4737 and then Present
(Component_Associations
(List
))
4739 Clause
:= First
(Component_Associations
(List
));
4740 while Present
(Clause
) loop
4742 -- Inspect the outputs of a dependency clause
4744 Output
:= First
(Choices
(Clause
));
4745 while Present
(Output
) loop
4746 if Is_Refined_State
(Output
) then
4753 -- Inspect the outputs of a dependency clause
4755 if Is_Refined_State
(Expression
(Clause
)) then
4762 -- If we get here, then none of the dependency clauses mention a
4763 -- state with visible refinement.
4767 -- An illegal pragma managed to sneak in
4770 raise Program_Error
;
4772 end Has_State_In_Dependency
;
4774 -------------------------
4775 -- Has_State_In_Global --
4776 -------------------------
4778 function Has_State_In_Global
(List
: Node_Id
) return Boolean is
4782 -- A null global list does not mention any states
4784 if Nkind
(List
) = N_Null
then
4787 -- Simple global list or moded global list declaration
4789 elsif Nkind
(List
) = N_Aggregate
then
4791 -- The declaration of a simple global list appear as a collection
4794 if Present
(Expressions
(List
)) then
4795 Item
:= First
(Expressions
(List
));
4796 while Present
(Item
) loop
4797 if Is_Refined_State
(Item
) then
4804 -- The declaration of a moded global list appears as a collection
4805 -- of component associations where individual choices denote
4809 Item
:= First
(Component_Associations
(List
));
4810 while Present
(Item
) loop
4811 if Has_State_In_Global
(Expression
(Item
)) then
4819 -- If we get here, then the simple/moded global list did not
4820 -- mention any states with a visible refinement.
4824 -- Single global item declaration
4826 elsif Is_Entity_Name
(List
) then
4827 return Is_Refined_State
(List
);
4829 -- An illegal pragma managed to sneak in
4832 raise Program_Error
;
4834 end Has_State_In_Global
;
4836 ----------------------
4837 -- Is_Refined_State --
4838 ----------------------
4840 function Is_Refined_State
(Item
: Node_Id
) return Boolean is
4842 Item_Id
: Entity_Id
;
4845 if Nkind
(Item
) = N_Null
then
4848 -- States cannot be subject to attribute 'Result. This case arises
4849 -- in dependency relations.
4851 elsif Nkind
(Item
) = N_Attribute_Reference
4852 and then Attribute_Name
(Item
) = Name_Result
4856 -- Multiple items appear as an aggregate. This case arises in
4857 -- dependency relations.
4859 elsif Nkind
(Item
) = N_Aggregate
4860 and then Present
(Expressions
(Item
))
4862 Elmt
:= First
(Expressions
(Item
));
4863 while Present
(Elmt
) loop
4864 if Is_Refined_State
(Elmt
) then
4871 -- If we get here, then none of the inputs or outputs reference a
4872 -- state with visible refinement.
4879 Item_Id
:= Entity_Of
(Item
);
4883 and then Ekind
(Item_Id
) = E_Abstract_State
4884 and then Has_Visible_Refinement
(Item_Id
);
4886 end Is_Refined_State
;
4890 Arg
: constant Node_Id
:=
4891 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(Prag
)));
4892 Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
4894 -- Start of processing for Contains_Refined_State
4897 if Nam
= Name_Depends
then
4898 return Has_State_In_Dependency
(Arg
);
4900 else pragma Assert
(Nam
= Name_Global
);
4901 return Has_State_In_Global
(Arg
);
4903 end Contains_Refined_State
;
4905 -------------------------
4906 -- Copy_Component_List --
4907 -------------------------
4909 function Copy_Component_List
4911 Loc
: Source_Ptr
) return List_Id
4914 Comps
: constant List_Id
:= New_List
;
4917 Comp
:= First_Component
(Underlying_Type
(R_Typ
));
4918 while Present
(Comp
) loop
4919 if Comes_From_Source
(Comp
) then
4921 Comp_Decl
: constant Node_Id
:= Declaration_Node
(Comp
);
4924 Make_Component_Declaration
(Loc
,
4925 Defining_Identifier
=>
4926 Make_Defining_Identifier
(Loc
, Chars
(Comp
)),
4927 Component_Definition
=>
4929 (Component_Definition
(Comp_Decl
), New_Sloc
=> Loc
)));
4933 Next_Component
(Comp
);
4937 end Copy_Component_List
;
4939 -------------------------
4940 -- Copy_Parameter_List --
4941 -------------------------
4943 function Copy_Parameter_List
(Subp_Id
: Entity_Id
) return List_Id
is
4944 Loc
: constant Source_Ptr
:= Sloc
(Subp_Id
);
4949 if No
(First_Formal
(Subp_Id
)) then
4953 Formal
:= First_Formal
(Subp_Id
);
4954 while Present
(Formal
) loop
4956 Make_Parameter_Specification
(Loc
,
4957 Defining_Identifier
=>
4958 Make_Defining_Identifier
(Sloc
(Formal
), Chars
(Formal
)),
4959 In_Present
=> In_Present
(Parent
(Formal
)),
4960 Out_Present
=> Out_Present
(Parent
(Formal
)),
4962 New_Occurrence_Of
(Etype
(Formal
), Loc
),
4964 New_Copy_Tree
(Expression
(Parent
(Formal
)))));
4966 Next_Formal
(Formal
);
4971 end Copy_Parameter_List
;
4973 ----------------------------
4974 -- Copy_SPARK_Mode_Aspect --
4975 ----------------------------
4977 procedure Copy_SPARK_Mode_Aspect
(From
: Node_Id
; To
: Node_Id
) is
4978 pragma Assert
(not Has_Aspects
(To
));
4982 if Has_Aspects
(From
) then
4983 Asp
:= Find_Aspect
(Defining_Entity
(From
), Aspect_SPARK_Mode
);
4985 if Present
(Asp
) then
4986 Set_Aspect_Specifications
(To
, New_List
(New_Copy_Tree
(Asp
)));
4987 Set_Has_Aspects
(To
, True);
4990 end Copy_SPARK_Mode_Aspect
;
4992 --------------------------
4993 -- Copy_Subprogram_Spec --
4994 --------------------------
4996 function Copy_Subprogram_Spec
(Spec
: Node_Id
) return Node_Id
is
4998 Formal_Spec
: Node_Id
;
5002 -- The structure of the original tree must be replicated without any
5003 -- alterations. Use New_Copy_Tree for this purpose.
5005 Result
:= New_Copy_Tree
(Spec
);
5007 -- Create a new entity for the defining unit name
5009 Def_Id
:= Defining_Unit_Name
(Result
);
5010 Set_Defining_Unit_Name
(Result
,
5011 Make_Defining_Identifier
(Sloc
(Def_Id
), Chars
(Def_Id
)));
5013 -- Create new entities for the formal parameters
5015 if Present
(Parameter_Specifications
(Result
)) then
5016 Formal_Spec
:= First
(Parameter_Specifications
(Result
));
5017 while Present
(Formal_Spec
) loop
5018 Def_Id
:= Defining_Identifier
(Formal_Spec
);
5019 Set_Defining_Identifier
(Formal_Spec
,
5020 Make_Defining_Identifier
(Sloc
(Def_Id
), Chars
(Def_Id
)));
5027 end Copy_Subprogram_Spec
;
5029 --------------------------------
5030 -- Corresponding_Generic_Type --
5031 --------------------------------
5033 function Corresponding_Generic_Type
(T
: Entity_Id
) return Entity_Id
is
5039 if not Is_Generic_Actual_Type
(T
) then
5042 -- If the actual is the actual of an enclosing instance, resolution
5043 -- was correct in the generic.
5045 elsif Nkind
(Parent
(T
)) = N_Subtype_Declaration
5046 and then Is_Entity_Name
(Subtype_Indication
(Parent
(T
)))
5048 Is_Generic_Actual_Type
(Entity
(Subtype_Indication
(Parent
(T
))))
5055 if Is_Wrapper_Package
(Inst
) then
5056 Inst
:= Related_Instance
(Inst
);
5061 (Specification
(Unit_Declaration_Node
(Inst
)));
5063 -- Generic actual has the same name as the corresponding formal
5065 Typ
:= First_Entity
(Gen
);
5066 while Present
(Typ
) loop
5067 if Chars
(Typ
) = Chars
(T
) then
5076 end Corresponding_Generic_Type
;
5078 --------------------
5079 -- Current_Entity --
5080 --------------------
5082 -- The currently visible definition for a given identifier is the
5083 -- one most chained at the start of the visibility chain, i.e. the
5084 -- one that is referenced by the Node_Id value of the name of the
5085 -- given identifier.
5087 function Current_Entity
(N
: Node_Id
) return Entity_Id
is
5089 return Get_Name_Entity_Id
(Chars
(N
));
5092 -----------------------------
5093 -- Current_Entity_In_Scope --
5094 -----------------------------
5096 function Current_Entity_In_Scope
(N
: Node_Id
) return Entity_Id
is
5098 CS
: constant Entity_Id
:= Current_Scope
;
5100 Transient_Case
: constant Boolean := Scope_Is_Transient
;
5103 E
:= Get_Name_Entity_Id
(Chars
(N
));
5105 and then Scope
(E
) /= CS
5106 and then (not Transient_Case
or else Scope
(E
) /= Scope
(CS
))
5112 end Current_Entity_In_Scope
;
5118 function Current_Scope
return Entity_Id
is
5120 if Scope_Stack
.Last
= -1 then
5121 return Standard_Standard
;
5124 C
: constant Entity_Id
:=
5125 Scope_Stack
.Table
(Scope_Stack
.Last
).Entity
;
5130 return Standard_Standard
;
5136 ----------------------------
5137 -- Current_Scope_No_Loops --
5138 ----------------------------
5140 function Current_Scope_No_Loops
return Entity_Id
is
5144 -- Examine the scope stack starting from the current scope and skip any
5145 -- internally generated loops.
5148 while Present
(S
) and then S
/= Standard_Standard
loop
5149 if Ekind
(S
) = E_Loop
and then not Comes_From_Source
(S
) then
5157 end Current_Scope_No_Loops
;
5159 ------------------------
5160 -- Current_Subprogram --
5161 ------------------------
5163 function Current_Subprogram
return Entity_Id
is
5164 Scop
: constant Entity_Id
:= Current_Scope
;
5166 if Is_Subprogram_Or_Generic_Subprogram
(Scop
) then
5169 return Enclosing_Subprogram
(Scop
);
5171 end Current_Subprogram
;
5173 ----------------------------------
5174 -- Deepest_Type_Access_Level --
5175 ----------------------------------
5177 function Deepest_Type_Access_Level
(Typ
: Entity_Id
) return Uint
is
5179 if Ekind
(Typ
) = E_Anonymous_Access_Type
5180 and then not Is_Local_Anonymous_Access
(Typ
)
5181 and then Nkind
(Associated_Node_For_Itype
(Typ
)) = N_Object_Declaration
5183 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
5187 Scope_Depth
(Enclosing_Dynamic_Scope
5188 (Defining_Identifier
5189 (Associated_Node_For_Itype
(Typ
))));
5191 -- For generic formal type, return Int'Last (infinite).
5192 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
5194 elsif Is_Generic_Type
(Root_Type
(Typ
)) then
5195 return UI_From_Int
(Int
'Last);
5198 return Type_Access_Level
(Typ
);
5200 end Deepest_Type_Access_Level
;
5202 ---------------------
5203 -- Defining_Entity --
5204 ---------------------
5206 function Defining_Entity
5208 Empty_On_Errors
: Boolean := False) return Entity_Id
5210 Err
: Entity_Id
:= Empty
;
5214 when N_Abstract_Subprogram_Declaration
5215 | N_Expression_Function
5216 | N_Formal_Subprogram_Declaration
5217 | N_Generic_Package_Declaration
5218 | N_Generic_Subprogram_Declaration
5219 | N_Package_Declaration
5221 | N_Subprogram_Body_Stub
5222 | N_Subprogram_Declaration
5223 | N_Subprogram_Renaming_Declaration
5225 return Defining_Entity
(Specification
(N
));
5227 when N_Component_Declaration
5228 | N_Defining_Program_Unit_Name
5229 | N_Discriminant_Specification
5231 | N_Entry_Declaration
5232 | N_Entry_Index_Specification
5233 | N_Exception_Declaration
5234 | N_Exception_Renaming_Declaration
5235 | N_Formal_Object_Declaration
5236 | N_Formal_Package_Declaration
5237 | N_Formal_Type_Declaration
5238 | N_Full_Type_Declaration
5239 | N_Implicit_Label_Declaration
5240 | N_Incomplete_Type_Declaration
5241 | N_Iterator_Specification
5242 | N_Loop_Parameter_Specification
5243 | N_Number_Declaration
5244 | N_Object_Declaration
5245 | N_Object_Renaming_Declaration
5246 | N_Package_Body_Stub
5247 | N_Parameter_Specification
5248 | N_Private_Extension_Declaration
5249 | N_Private_Type_Declaration
5251 | N_Protected_Body_Stub
5252 | N_Protected_Type_Declaration
5253 | N_Single_Protected_Declaration
5254 | N_Single_Task_Declaration
5255 | N_Subtype_Declaration
5258 | N_Task_Type_Declaration
5260 return Defining_Identifier
(N
);
5263 return Defining_Entity
(Proper_Body
(N
));
5265 when N_Function_Instantiation
5266 | N_Function_Specification
5267 | N_Generic_Function_Renaming_Declaration
5268 | N_Generic_Package_Renaming_Declaration
5269 | N_Generic_Procedure_Renaming_Declaration
5271 | N_Package_Instantiation
5272 | N_Package_Renaming_Declaration
5273 | N_Package_Specification
5274 | N_Procedure_Instantiation
5275 | N_Procedure_Specification
5278 Nam
: constant Node_Id
:= Defining_Unit_Name
(N
);
5281 if Nkind
(Nam
) in N_Entity
then
5284 -- For Error, make up a name and attach to declaration so we
5285 -- can continue semantic analysis.
5287 elsif Nam
= Error
then
5288 if Empty_On_Errors
then
5291 Err
:= Make_Temporary
(Sloc
(N
), 'T');
5292 Set_Defining_Unit_Name
(N
, Err
);
5297 -- If not an entity, get defining identifier
5300 return Defining_Identifier
(Nam
);
5304 when N_Block_Statement
5307 return Entity
(Identifier
(N
));
5310 if Empty_On_Errors
then
5313 raise Program_Error
;
5316 end Defining_Entity
;
5318 --------------------------
5319 -- Denotes_Discriminant --
5320 --------------------------
5322 function Denotes_Discriminant
5324 Check_Concurrent
: Boolean := False) return Boolean
5329 if not Is_Entity_Name
(N
) or else No
(Entity
(N
)) then
5335 -- If we are checking for a protected type, the discriminant may have
5336 -- been rewritten as the corresponding discriminal of the original type
5337 -- or of the corresponding concurrent record, depending on whether we
5338 -- are in the spec or body of the protected type.
5340 return Ekind
(E
) = E_Discriminant
5343 and then Ekind
(E
) = E_In_Parameter
5344 and then Present
(Discriminal_Link
(E
))
5346 (Is_Concurrent_Type
(Scope
(Discriminal_Link
(E
)))
5348 Is_Concurrent_Record_Type
(Scope
(Discriminal_Link
(E
)))));
5349 end Denotes_Discriminant
;
5351 -------------------------
5352 -- Denotes_Same_Object --
5353 -------------------------
5355 function Denotes_Same_Object
(A1
, A2
: Node_Id
) return Boolean is
5356 Obj1
: Node_Id
:= A1
;
5357 Obj2
: Node_Id
:= A2
;
5359 function Has_Prefix
(N
: Node_Id
) return Boolean;
5360 -- Return True if N has attribute Prefix
5362 function Is_Renaming
(N
: Node_Id
) return Boolean;
5363 -- Return true if N names a renaming entity
5365 function Is_Valid_Renaming
(N
: Node_Id
) return Boolean;
5366 -- For renamings, return False if the prefix of any dereference within
5367 -- the renamed object_name is a variable, or any expression within the
5368 -- renamed object_name contains references to variables or calls on
5369 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
5375 function Has_Prefix
(N
: Node_Id
) return Boolean is
5379 N_Attribute_Reference
,
5381 N_Explicit_Dereference
,
5382 N_Indexed_Component
,
5384 N_Selected_Component
,
5392 function Is_Renaming
(N
: Node_Id
) return Boolean is
5394 return Is_Entity_Name
(N
)
5395 and then Present
(Renamed_Entity
(Entity
(N
)));
5398 -----------------------
5399 -- Is_Valid_Renaming --
5400 -----------------------
5402 function Is_Valid_Renaming
(N
: Node_Id
) return Boolean is
5404 function Check_Renaming
(N
: Node_Id
) return Boolean;
5405 -- Recursive function used to traverse all the prefixes of N
5407 function Check_Renaming
(N
: Node_Id
) return Boolean is
5410 and then not Check_Renaming
(Renamed_Entity
(Entity
(N
)))
5415 if Nkind
(N
) = N_Indexed_Component
then
5420 Indx
:= First
(Expressions
(N
));
5421 while Present
(Indx
) loop
5422 if not Is_OK_Static_Expression
(Indx
) then
5431 if Has_Prefix
(N
) then
5433 P
: constant Node_Id
:= Prefix
(N
);
5436 if Nkind
(N
) = N_Explicit_Dereference
5437 and then Is_Variable
(P
)
5441 elsif Is_Entity_Name
(P
)
5442 and then Ekind
(Entity
(P
)) = E_Function
5446 elsif Nkind
(P
) = N_Function_Call
then
5450 -- Recursion to continue traversing the prefix of the
5451 -- renaming expression
5453 return Check_Renaming
(P
);
5460 -- Start of processing for Is_Valid_Renaming
5463 return Check_Renaming
(N
);
5464 end Is_Valid_Renaming
;
5466 -- Start of processing for Denotes_Same_Object
5469 -- Both names statically denote the same stand-alone object or parameter
5470 -- (RM 6.4.1(6.5/3))
5472 if Is_Entity_Name
(Obj1
)
5473 and then Is_Entity_Name
(Obj2
)
5474 and then Entity
(Obj1
) = Entity
(Obj2
)
5479 -- For renamings, the prefix of any dereference within the renamed
5480 -- object_name is not a variable, and any expression within the
5481 -- renamed object_name contains no references to variables nor
5482 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
5484 if Is_Renaming
(Obj1
) then
5485 if Is_Valid_Renaming
(Obj1
) then
5486 Obj1
:= Renamed_Entity
(Entity
(Obj1
));
5492 if Is_Renaming
(Obj2
) then
5493 if Is_Valid_Renaming
(Obj2
) then
5494 Obj2
:= Renamed_Entity
(Entity
(Obj2
));
5500 -- No match if not same node kind (such cases are handled by
5501 -- Denotes_Same_Prefix)
5503 if Nkind
(Obj1
) /= Nkind
(Obj2
) then
5506 -- After handling valid renamings, one of the two names statically
5507 -- denoted a renaming declaration whose renamed object_name is known
5508 -- to denote the same object as the other (RM 6.4.1(6.10/3))
5510 elsif Is_Entity_Name
(Obj1
) then
5511 if Is_Entity_Name
(Obj2
) then
5512 return Entity
(Obj1
) = Entity
(Obj2
);
5517 -- Both names are selected_components, their prefixes are known to
5518 -- denote the same object, and their selector_names denote the same
5519 -- component (RM 6.4.1(6.6/3)).
5521 elsif Nkind
(Obj1
) = N_Selected_Component
then
5522 return Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
))
5524 Entity
(Selector_Name
(Obj1
)) = Entity
(Selector_Name
(Obj2
));
5526 -- Both names are dereferences and the dereferenced names are known to
5527 -- denote the same object (RM 6.4.1(6.7/3))
5529 elsif Nkind
(Obj1
) = N_Explicit_Dereference
then
5530 return Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
));
5532 -- Both names are indexed_components, their prefixes are known to denote
5533 -- the same object, and each of the pairs of corresponding index values
5534 -- are either both static expressions with the same static value or both
5535 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
5537 elsif Nkind
(Obj1
) = N_Indexed_Component
then
5538 if not Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
)) then
5546 Indx1
:= First
(Expressions
(Obj1
));
5547 Indx2
:= First
(Expressions
(Obj2
));
5548 while Present
(Indx1
) loop
5550 -- Indexes must denote the same static value or same object
5552 if Is_OK_Static_Expression
(Indx1
) then
5553 if not Is_OK_Static_Expression
(Indx2
) then
5556 elsif Expr_Value
(Indx1
) /= Expr_Value
(Indx2
) then
5560 elsif not Denotes_Same_Object
(Indx1
, Indx2
) then
5572 -- Both names are slices, their prefixes are known to denote the same
5573 -- object, and the two slices have statically matching index constraints
5574 -- (RM 6.4.1(6.9/3))
5576 elsif Nkind
(Obj1
) = N_Slice
5577 and then Denotes_Same_Object
(Prefix
(Obj1
), Prefix
(Obj2
))
5580 Lo1
, Lo2
, Hi1
, Hi2
: Node_Id
;
5583 Get_Index_Bounds
(Etype
(Obj1
), Lo1
, Hi1
);
5584 Get_Index_Bounds
(Etype
(Obj2
), Lo2
, Hi2
);
5586 -- Check whether bounds are statically identical. There is no
5587 -- attempt to detect partial overlap of slices.
5589 return Denotes_Same_Object
(Lo1
, Lo2
)
5591 Denotes_Same_Object
(Hi1
, Hi2
);
5594 -- In the recursion, literals appear as indexes
5596 elsif Nkind
(Obj1
) = N_Integer_Literal
5598 Nkind
(Obj2
) = N_Integer_Literal
5600 return Intval
(Obj1
) = Intval
(Obj2
);
5605 end Denotes_Same_Object
;
5607 -------------------------
5608 -- Denotes_Same_Prefix --
5609 -------------------------
5611 function Denotes_Same_Prefix
(A1
, A2
: Node_Id
) return Boolean is
5613 if Is_Entity_Name
(A1
) then
5614 if Nkind_In
(A2
, N_Selected_Component
, N_Indexed_Component
)
5615 and then not Is_Access_Type
(Etype
(A1
))
5617 return Denotes_Same_Object
(A1
, Prefix
(A2
))
5618 or else Denotes_Same_Prefix
(A1
, Prefix
(A2
));
5623 elsif Is_Entity_Name
(A2
) then
5624 return Denotes_Same_Prefix
(A1
=> A2
, A2
=> A1
);
5626 elsif Nkind_In
(A1
, N_Selected_Component
, N_Indexed_Component
, N_Slice
)
5628 Nkind_In
(A2
, N_Selected_Component
, N_Indexed_Component
, N_Slice
)
5631 Root1
, Root2
: Node_Id
;
5632 Depth1
, Depth2
: Nat
:= 0;
5635 Root1
:= Prefix
(A1
);
5636 while not Is_Entity_Name
(Root1
) loop
5638 (Root1
, N_Selected_Component
, N_Indexed_Component
)
5642 Root1
:= Prefix
(Root1
);
5645 Depth1
:= Depth1
+ 1;
5648 Root2
:= Prefix
(A2
);
5649 while not Is_Entity_Name
(Root2
) loop
5650 if not Nkind_In
(Root2
, N_Selected_Component
,
5651 N_Indexed_Component
)
5655 Root2
:= Prefix
(Root2
);
5658 Depth2
:= Depth2
+ 1;
5661 -- If both have the same depth and they do not denote the same
5662 -- object, they are disjoint and no warning is needed.
5664 if Depth1
= Depth2
then
5667 elsif Depth1
> Depth2
then
5668 Root1
:= Prefix
(A1
);
5669 for J
in 1 .. Depth1
- Depth2
- 1 loop
5670 Root1
:= Prefix
(Root1
);
5673 return Denotes_Same_Object
(Root1
, A2
);
5676 Root2
:= Prefix
(A2
);
5677 for J
in 1 .. Depth2
- Depth1
- 1 loop
5678 Root2
:= Prefix
(Root2
);
5681 return Denotes_Same_Object
(A1
, Root2
);
5688 end Denotes_Same_Prefix
;
5690 ----------------------
5691 -- Denotes_Variable --
5692 ----------------------
5694 function Denotes_Variable
(N
: Node_Id
) return Boolean is
5696 return Is_Variable
(N
) and then Paren_Count
(N
) = 0;
5697 end Denotes_Variable
;
5699 -----------------------------
5700 -- Depends_On_Discriminant --
5701 -----------------------------
5703 function Depends_On_Discriminant
(N
: Node_Id
) return Boolean is
5708 Get_Index_Bounds
(N
, L
, H
);
5709 return Denotes_Discriminant
(L
) or else Denotes_Discriminant
(H
);
5710 end Depends_On_Discriminant
;
5712 -------------------------
5713 -- Designate_Same_Unit --
5714 -------------------------
5716 function Designate_Same_Unit
5718 Name2
: Node_Id
) return Boolean
5720 K1
: constant Node_Kind
:= Nkind
(Name1
);
5721 K2
: constant Node_Kind
:= Nkind
(Name2
);
5723 function Prefix_Node
(N
: Node_Id
) return Node_Id
;
5724 -- Returns the parent unit name node of a defining program unit name
5725 -- or the prefix if N is a selected component or an expanded name.
5727 function Select_Node
(N
: Node_Id
) return Node_Id
;
5728 -- Returns the defining identifier node of a defining program unit
5729 -- name or the selector node if N is a selected component or an
5736 function Prefix_Node
(N
: Node_Id
) return Node_Id
is
5738 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
5749 function Select_Node
(N
: Node_Id
) return Node_Id
is
5751 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
5752 return Defining_Identifier
(N
);
5754 return Selector_Name
(N
);
5758 -- Start of processing for Designate_Same_Unit
5761 if Nkind_In
(K1
, N_Identifier
, N_Defining_Identifier
)
5763 Nkind_In
(K2
, N_Identifier
, N_Defining_Identifier
)
5765 return Chars
(Name1
) = Chars
(Name2
);
5767 elsif Nkind_In
(K1
, N_Expanded_Name
,
5768 N_Selected_Component
,
5769 N_Defining_Program_Unit_Name
)
5771 Nkind_In
(K2
, N_Expanded_Name
,
5772 N_Selected_Component
,
5773 N_Defining_Program_Unit_Name
)
5776 (Chars
(Select_Node
(Name1
)) = Chars
(Select_Node
(Name2
)))
5778 Designate_Same_Unit
(Prefix_Node
(Name1
), Prefix_Node
(Name2
));
5783 end Designate_Same_Unit
;
5785 ------------------------------------------
5786 -- function Dynamic_Accessibility_Level --
5787 ------------------------------------------
5789 function Dynamic_Accessibility_Level
(Expr
: Node_Id
) return Node_Id
is
5791 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
5793 function Make_Level_Literal
(Level
: Uint
) return Node_Id
;
5794 -- Construct an integer literal representing an accessibility level
5795 -- with its type set to Natural.
5797 ------------------------
5798 -- Make_Level_Literal --
5799 ------------------------
5801 function Make_Level_Literal
(Level
: Uint
) return Node_Id
is
5802 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Level
);
5804 Set_Etype
(Result
, Standard_Natural
);
5806 end Make_Level_Literal
;
5808 -- Start of processing for Dynamic_Accessibility_Level
5811 if Is_Entity_Name
(Expr
) then
5814 if Present
(Renamed_Object
(E
)) then
5815 return Dynamic_Accessibility_Level
(Renamed_Object
(E
));
5818 if Is_Formal
(E
) or else Ekind_In
(E
, E_Variable
, E_Constant
) then
5819 if Present
(Extra_Accessibility
(E
)) then
5820 return New_Occurrence_Of
(Extra_Accessibility
(E
), Loc
);
5825 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
5827 case Nkind
(Expr
) is
5829 -- For access discriminant, the level of the enclosing object
5831 when N_Selected_Component
=>
5832 if Ekind
(Entity
(Selector_Name
(Expr
))) = E_Discriminant
5833 and then Ekind
(Etype
(Entity
(Selector_Name
(Expr
)))) =
5834 E_Anonymous_Access_Type
5836 return Make_Level_Literal
(Object_Access_Level
(Expr
));
5839 when N_Attribute_Reference
=>
5840 case Get_Attribute_Id
(Attribute_Name
(Expr
)) is
5842 -- For X'Access, the level of the prefix X
5844 when Attribute_Access
=>
5845 return Make_Level_Literal
5846 (Object_Access_Level
(Prefix
(Expr
)));
5848 -- Treat the unchecked attributes as library-level
5850 when Attribute_Unchecked_Access
5851 | Attribute_Unrestricted_Access
5853 return Make_Level_Literal
(Scope_Depth
(Standard_Standard
));
5855 -- No other access-valued attributes
5858 raise Program_Error
;
5863 -- Unimplemented: depends on context. As an actual parameter where
5864 -- formal type is anonymous, use
5865 -- Scope_Depth (Current_Scope) + 1.
5866 -- For other cases, see 3.10.2(14/3) and following. ???
5870 when N_Type_Conversion
=>
5871 if not Is_Local_Anonymous_Access
(Etype
(Expr
)) then
5873 -- Handle type conversions introduced for a rename of an
5874 -- Ada 2012 stand-alone object of an anonymous access type.
5876 return Dynamic_Accessibility_Level
(Expression
(Expr
));
5883 return Make_Level_Literal
(Type_Access_Level
(Etype
(Expr
)));
5884 end Dynamic_Accessibility_Level
;
5886 -----------------------------------
5887 -- Effective_Extra_Accessibility --
5888 -----------------------------------
5890 function Effective_Extra_Accessibility
(Id
: Entity_Id
) return Entity_Id
is
5892 if Present
(Renamed_Object
(Id
))
5893 and then Is_Entity_Name
(Renamed_Object
(Id
))
5895 return Effective_Extra_Accessibility
(Entity
(Renamed_Object
(Id
)));
5897 return Extra_Accessibility
(Id
);
5899 end Effective_Extra_Accessibility
;
5901 -----------------------------
5902 -- Effective_Reads_Enabled --
5903 -----------------------------
5905 function Effective_Reads_Enabled
(Id
: Entity_Id
) return Boolean is
5907 return Has_Enabled_Property
(Id
, Name_Effective_Reads
);
5908 end Effective_Reads_Enabled
;
5910 ------------------------------
5911 -- Effective_Writes_Enabled --
5912 ------------------------------
5914 function Effective_Writes_Enabled
(Id
: Entity_Id
) return Boolean is
5916 return Has_Enabled_Property
(Id
, Name_Effective_Writes
);
5917 end Effective_Writes_Enabled
;
5919 ------------------------------
5920 -- Enclosing_Comp_Unit_Node --
5921 ------------------------------
5923 function Enclosing_Comp_Unit_Node
(N
: Node_Id
) return Node_Id
is
5924 Current_Node
: Node_Id
;
5928 while Present
(Current_Node
)
5929 and then Nkind
(Current_Node
) /= N_Compilation_Unit
5931 Current_Node
:= Parent
(Current_Node
);
5934 if Nkind
(Current_Node
) /= N_Compilation_Unit
then
5937 return Current_Node
;
5939 end Enclosing_Comp_Unit_Node
;
5941 --------------------------
5942 -- Enclosing_CPP_Parent --
5943 --------------------------
5945 function Enclosing_CPP_Parent
(Typ
: Entity_Id
) return Entity_Id
is
5946 Parent_Typ
: Entity_Id
:= Typ
;
5949 while not Is_CPP_Class
(Parent_Typ
)
5950 and then Etype
(Parent_Typ
) /= Parent_Typ
5952 Parent_Typ
:= Etype
(Parent_Typ
);
5954 if Is_Private_Type
(Parent_Typ
) then
5955 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
5959 pragma Assert
(Is_CPP_Class
(Parent_Typ
));
5961 end Enclosing_CPP_Parent
;
5963 ---------------------------
5964 -- Enclosing_Declaration --
5965 ---------------------------
5967 function Enclosing_Declaration
(N
: Node_Id
) return Node_Id
is
5968 Decl
: Node_Id
:= N
;
5971 while Present
(Decl
)
5972 and then not (Nkind
(Decl
) in N_Declaration
5974 Nkind
(Decl
) in N_Later_Decl_Item
)
5976 Decl
:= Parent
(Decl
);
5980 end Enclosing_Declaration
;
5982 ----------------------------
5983 -- Enclosing_Generic_Body --
5984 ----------------------------
5986 function Enclosing_Generic_Body
5987 (N
: Node_Id
) return Node_Id
5995 while Present
(P
) loop
5996 if Nkind
(P
) = N_Package_Body
5997 or else Nkind
(P
) = N_Subprogram_Body
5999 Spec
:= Corresponding_Spec
(P
);
6001 if Present
(Spec
) then
6002 Decl
:= Unit_Declaration_Node
(Spec
);
6004 if Nkind
(Decl
) = N_Generic_Package_Declaration
6005 or else Nkind
(Decl
) = N_Generic_Subprogram_Declaration
6016 end Enclosing_Generic_Body
;
6018 ----------------------------
6019 -- Enclosing_Generic_Unit --
6020 ----------------------------
6022 function Enclosing_Generic_Unit
6023 (N
: Node_Id
) return Node_Id
6031 while Present
(P
) loop
6032 if Nkind
(P
) = N_Generic_Package_Declaration
6033 or else Nkind
(P
) = N_Generic_Subprogram_Declaration
6037 elsif Nkind
(P
) = N_Package_Body
6038 or else Nkind
(P
) = N_Subprogram_Body
6040 Spec
:= Corresponding_Spec
(P
);
6042 if Present
(Spec
) then
6043 Decl
:= Unit_Declaration_Node
(Spec
);
6045 if Nkind
(Decl
) = N_Generic_Package_Declaration
6046 or else Nkind
(Decl
) = N_Generic_Subprogram_Declaration
6057 end Enclosing_Generic_Unit
;
6059 -------------------------------
6060 -- Enclosing_Lib_Unit_Entity --
6061 -------------------------------
6063 function Enclosing_Lib_Unit_Entity
6064 (E
: Entity_Id
:= Current_Scope
) return Entity_Id
6066 Unit_Entity
: Entity_Id
;
6069 -- Look for enclosing library unit entity by following scope links.
6070 -- Equivalent to, but faster than indexing through the scope stack.
6073 while (Present
(Scope
(Unit_Entity
))
6074 and then Scope
(Unit_Entity
) /= Standard_Standard
)
6075 and not Is_Child_Unit
(Unit_Entity
)
6077 Unit_Entity
:= Scope
(Unit_Entity
);
6081 end Enclosing_Lib_Unit_Entity
;
6083 -----------------------------
6084 -- Enclosing_Lib_Unit_Node --
6085 -----------------------------
6087 function Enclosing_Lib_Unit_Node
(N
: Node_Id
) return Node_Id
is
6088 Encl_Unit
: Node_Id
;
6091 Encl_Unit
:= Enclosing_Comp_Unit_Node
(N
);
6092 while Present
(Encl_Unit
)
6093 and then Nkind
(Unit
(Encl_Unit
)) = N_Subunit
6095 Encl_Unit
:= Library_Unit
(Encl_Unit
);
6098 pragma Assert
(Nkind
(Encl_Unit
) = N_Compilation_Unit
);
6100 end Enclosing_Lib_Unit_Node
;
6102 -----------------------
6103 -- Enclosing_Package --
6104 -----------------------
6106 function Enclosing_Package
(E
: Entity_Id
) return Entity_Id
is
6107 Dynamic_Scope
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(E
);
6110 if Dynamic_Scope
= Standard_Standard
then
6111 return Standard_Standard
;
6113 elsif Dynamic_Scope
= Empty
then
6116 elsif Ekind_In
(Dynamic_Scope
, E_Package
, E_Package_Body
,
6119 return Dynamic_Scope
;
6122 return Enclosing_Package
(Dynamic_Scope
);
6124 end Enclosing_Package
;
6126 -------------------------------------
6127 -- Enclosing_Package_Or_Subprogram --
6128 -------------------------------------
6130 function Enclosing_Package_Or_Subprogram
(E
: Entity_Id
) return Entity_Id
is
6135 while Present
(S
) loop
6136 if Is_Package_Or_Generic_Package
(S
)
6137 or else Ekind
(S
) = E_Package_Body
6141 elsif Is_Subprogram_Or_Generic_Subprogram
(S
)
6142 or else Ekind
(S
) = E_Subprogram_Body
6152 end Enclosing_Package_Or_Subprogram
;
6154 --------------------------
6155 -- Enclosing_Subprogram --
6156 --------------------------
6158 function Enclosing_Subprogram
(E
: Entity_Id
) return Entity_Id
is
6159 Dynamic_Scope
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(E
);
6162 if Dynamic_Scope
= Standard_Standard
then
6165 elsif Dynamic_Scope
= Empty
then
6168 elsif Ekind
(Dynamic_Scope
) = E_Subprogram_Body
then
6169 return Corresponding_Spec
(Parent
(Parent
(Dynamic_Scope
)));
6171 elsif Ekind
(Dynamic_Scope
) = E_Block
6172 or else Ekind
(Dynamic_Scope
) = E_Return_Statement
6174 return Enclosing_Subprogram
(Dynamic_Scope
);
6176 elsif Ekind
(Dynamic_Scope
) = E_Task_Type
then
6177 return Get_Task_Body_Procedure
(Dynamic_Scope
);
6179 elsif Ekind
(Dynamic_Scope
) = E_Limited_Private_Type
6180 and then Present
(Full_View
(Dynamic_Scope
))
6181 and then Ekind
(Full_View
(Dynamic_Scope
)) = E_Task_Type
6183 return Get_Task_Body_Procedure
(Full_View
(Dynamic_Scope
));
6185 -- No body is generated if the protected operation is eliminated
6187 elsif Convention
(Dynamic_Scope
) = Convention_Protected
6188 and then not Is_Eliminated
(Dynamic_Scope
)
6189 and then Present
(Protected_Body_Subprogram
(Dynamic_Scope
))
6191 return Protected_Body_Subprogram
(Dynamic_Scope
);
6194 return Dynamic_Scope
;
6196 end Enclosing_Subprogram
;
6198 ------------------------
6199 -- Ensure_Freeze_Node --
6200 ------------------------
6202 procedure Ensure_Freeze_Node
(E
: Entity_Id
) is
6205 if No
(Freeze_Node
(E
)) then
6206 FN
:= Make_Freeze_Entity
(Sloc
(E
));
6207 Set_Has_Delayed_Freeze
(E
);
6208 Set_Freeze_Node
(E
, FN
);
6209 Set_Access_Types_To_Process
(FN
, No_Elist
);
6210 Set_TSS_Elist
(FN
, No_Elist
);
6213 end Ensure_Freeze_Node
;
6219 procedure Enter_Name
(Def_Id
: Entity_Id
) is
6220 C
: constant Entity_Id
:= Current_Entity
(Def_Id
);
6221 E
: constant Entity_Id
:= Current_Entity_In_Scope
(Def_Id
);
6222 S
: constant Entity_Id
:= Current_Scope
;
6225 Generate_Definition
(Def_Id
);
6227 -- Add new name to current scope declarations. Check for duplicate
6228 -- declaration, which may or may not be a genuine error.
6232 -- Case of previous entity entered because of a missing declaration
6233 -- or else a bad subtype indication. Best is to use the new entity,
6234 -- and make the previous one invisible.
6236 if Etype
(E
) = Any_Type
then
6237 Set_Is_Immediately_Visible
(E
, False);
6239 -- Case of renaming declaration constructed for package instances.
6240 -- if there is an explicit declaration with the same identifier,
6241 -- the renaming is not immediately visible any longer, but remains
6242 -- visible through selected component notation.
6244 elsif Nkind
(Parent
(E
)) = N_Package_Renaming_Declaration
6245 and then not Comes_From_Source
(E
)
6247 Set_Is_Immediately_Visible
(E
, False);
6249 -- The new entity may be the package renaming, which has the same
6250 -- same name as a generic formal which has been seen already.
6252 elsif Nkind
(Parent
(Def_Id
)) = N_Package_Renaming_Declaration
6253 and then not Comes_From_Source
(Def_Id
)
6255 Set_Is_Immediately_Visible
(E
, False);
6257 -- For a fat pointer corresponding to a remote access to subprogram,
6258 -- we use the same identifier as the RAS type, so that the proper
6259 -- name appears in the stub. This type is only retrieved through
6260 -- the RAS type and never by visibility, and is not added to the
6261 -- visibility list (see below).
6263 elsif Nkind
(Parent
(Def_Id
)) = N_Full_Type_Declaration
6264 and then Ekind
(Def_Id
) = E_Record_Type
6265 and then Present
(Corresponding_Remote_Type
(Def_Id
))
6269 -- Case of an implicit operation or derived literal. The new entity
6270 -- hides the implicit one, which is removed from all visibility,
6271 -- i.e. the entity list of its scope, and homonym chain of its name.
6273 elsif (Is_Overloadable
(E
) and then Is_Inherited_Operation
(E
))
6274 or else Is_Internal
(E
)
6277 Decl
: constant Node_Id
:= Parent
(E
);
6279 Prev_Vis
: Entity_Id
;
6282 -- If E is an implicit declaration, it cannot be the first
6283 -- entity in the scope.
6285 Prev
:= First_Entity
(Current_Scope
);
6286 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
6292 -- If E is not on the entity chain of the current scope,
6293 -- it is an implicit declaration in the generic formal
6294 -- part of a generic subprogram. When analyzing the body,
6295 -- the generic formals are visible but not on the entity
6296 -- chain of the subprogram. The new entity will become
6297 -- the visible one in the body.
6300 (Nkind
(Parent
(Decl
)) = N_Generic_Subprogram_Declaration
);
6304 Set_Next_Entity
(Prev
, Next_Entity
(E
));
6306 if No
(Next_Entity
(Prev
)) then
6307 Set_Last_Entity
(Current_Scope
, Prev
);
6310 if E
= Current_Entity
(E
) then
6314 Prev_Vis
:= Current_Entity
(E
);
6315 while Homonym
(Prev_Vis
) /= E
loop
6316 Prev_Vis
:= Homonym
(Prev_Vis
);
6320 if Present
(Prev_Vis
) then
6322 -- Skip E in the visibility chain
6324 Set_Homonym
(Prev_Vis
, Homonym
(E
));
6327 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
6332 -- This section of code could use a comment ???
6334 elsif Present
(Etype
(E
))
6335 and then Is_Concurrent_Type
(Etype
(E
))
6340 -- If the homograph is a protected component renaming, it should not
6341 -- be hiding the current entity. Such renamings are treated as weak
6344 elsif Is_Prival
(E
) then
6345 Set_Is_Immediately_Visible
(E
, False);
6347 -- In this case the current entity is a protected component renaming.
6348 -- Perform minimal decoration by setting the scope and return since
6349 -- the prival should not be hiding other visible entities.
6351 elsif Is_Prival
(Def_Id
) then
6352 Set_Scope
(Def_Id
, Current_Scope
);
6355 -- Analogous to privals, the discriminal generated for an entry index
6356 -- parameter acts as a weak declaration. Perform minimal decoration
6357 -- to avoid bogus errors.
6359 elsif Is_Discriminal
(Def_Id
)
6360 and then Ekind
(Discriminal_Link
(Def_Id
)) = E_Entry_Index_Parameter
6362 Set_Scope
(Def_Id
, Current_Scope
);
6365 -- In the body or private part of an instance, a type extension may
6366 -- introduce a component with the same name as that of an actual. The
6367 -- legality rule is not enforced, but the semantics of the full type
6368 -- with two components of same name are not clear at this point???
6370 elsif In_Instance_Not_Visible
then
6373 -- When compiling a package body, some child units may have become
6374 -- visible. They cannot conflict with local entities that hide them.
6376 elsif Is_Child_Unit
(E
)
6377 and then In_Open_Scopes
(Scope
(E
))
6378 and then not Is_Immediately_Visible
(E
)
6382 -- Conversely, with front-end inlining we may compile the parent body
6383 -- first, and a child unit subsequently. The context is now the
6384 -- parent spec, and body entities are not visible.
6386 elsif Is_Child_Unit
(Def_Id
)
6387 and then Is_Package_Body_Entity
(E
)
6388 and then not In_Package_Body
(Current_Scope
)
6392 -- Case of genuine duplicate declaration
6395 Error_Msg_Sloc
:= Sloc
(E
);
6397 -- If the previous declaration is an incomplete type declaration
6398 -- this may be an attempt to complete it with a private type. The
6399 -- following avoids confusing cascaded errors.
6401 if Nkind
(Parent
(E
)) = N_Incomplete_Type_Declaration
6402 and then Nkind
(Parent
(Def_Id
)) = N_Private_Type_Declaration
6405 ("incomplete type cannot be completed with a private " &
6406 "declaration", Parent
(Def_Id
));
6407 Set_Is_Immediately_Visible
(E
, False);
6408 Set_Full_View
(E
, Def_Id
);
6410 -- An inherited component of a record conflicts with a new
6411 -- discriminant. The discriminant is inserted first in the scope,
6412 -- but the error should be posted on it, not on the component.
6414 elsif Ekind
(E
) = E_Discriminant
6415 and then Present
(Scope
(Def_Id
))
6416 and then Scope
(Def_Id
) /= Current_Scope
6418 Error_Msg_Sloc
:= Sloc
(Def_Id
);
6419 Error_Msg_N
("& conflicts with declaration#", E
);
6422 -- If the name of the unit appears in its own context clause, a
6423 -- dummy package with the name has already been created, and the
6424 -- error emitted. Try to continue quietly.
6426 elsif Error_Posted
(E
)
6427 and then Sloc
(E
) = No_Location
6428 and then Nkind
(Parent
(E
)) = N_Package_Specification
6429 and then Current_Scope
= Standard_Standard
6431 Set_Scope
(Def_Id
, Current_Scope
);
6435 Error_Msg_N
("& conflicts with declaration#", Def_Id
);
6437 -- Avoid cascaded messages with duplicate components in
6440 if Ekind_In
(E
, E_Component
, E_Discriminant
) then
6445 if Nkind
(Parent
(Parent
(Def_Id
))) =
6446 N_Generic_Subprogram_Declaration
6448 Defining_Entity
(Specification
(Parent
(Parent
(Def_Id
))))
6450 Error_Msg_N
("\generic units cannot be overloaded", Def_Id
);
6453 -- If entity is in standard, then we are in trouble, because it
6454 -- means that we have a library package with a duplicated name.
6455 -- That's hard to recover from, so abort.
6457 if S
= Standard_Standard
then
6458 raise Unrecoverable_Error
;
6460 -- Otherwise we continue with the declaration. Having two
6461 -- identical declarations should not cause us too much trouble.
6469 -- If we fall through, declaration is OK, at least OK enough to continue
6471 -- If Def_Id is a discriminant or a record component we are in the midst
6472 -- of inheriting components in a derived record definition. Preserve
6473 -- their Ekind and Etype.
6475 if Ekind_In
(Def_Id
, E_Discriminant
, E_Component
) then
6478 -- If a type is already set, leave it alone (happens when a type
6479 -- declaration is reanalyzed following a call to the optimizer).
6481 elsif Present
(Etype
(Def_Id
)) then
6484 -- Otherwise, the kind E_Void insures that premature uses of the entity
6485 -- will be detected. Any_Type insures that no cascaded errors will occur
6488 Set_Ekind
(Def_Id
, E_Void
);
6489 Set_Etype
(Def_Id
, Any_Type
);
6492 -- Inherited discriminants and components in derived record types are
6493 -- immediately visible. Itypes are not.
6495 -- Unless the Itype is for a record type with a corresponding remote
6496 -- type (what is that about, it was not commented ???)
6498 if Ekind_In
(Def_Id
, E_Discriminant
, E_Component
)
6500 ((not Is_Record_Type
(Def_Id
)
6501 or else No
(Corresponding_Remote_Type
(Def_Id
)))
6502 and then not Is_Itype
(Def_Id
))
6504 Set_Is_Immediately_Visible
(Def_Id
);
6505 Set_Current_Entity
(Def_Id
);
6508 Set_Homonym
(Def_Id
, C
);
6509 Append_Entity
(Def_Id
, S
);
6510 Set_Public_Status
(Def_Id
);
6512 -- Declaring a homonym is not allowed in SPARK ...
6514 if Present
(C
) and then Restriction_Check_Required
(SPARK_05
) then
6516 Enclosing_Subp
: constant Node_Id
:= Enclosing_Subprogram
(Def_Id
);
6517 Enclosing_Pack
: constant Node_Id
:= Enclosing_Package
(Def_Id
);
6518 Other_Scope
: constant Node_Id
:= Enclosing_Dynamic_Scope
(C
);
6521 -- ... unless the new declaration is in a subprogram, and the
6522 -- visible declaration is a variable declaration or a parameter
6523 -- specification outside that subprogram.
6525 if Present
(Enclosing_Subp
)
6526 and then Nkind_In
(Parent
(C
), N_Object_Declaration
,
6527 N_Parameter_Specification
)
6528 and then not Scope_Within_Or_Same
(Other_Scope
, Enclosing_Subp
)
6532 -- ... or the new declaration is in a package, and the visible
6533 -- declaration occurs outside that package.
6535 elsif Present
(Enclosing_Pack
)
6536 and then not Scope_Within_Or_Same
(Other_Scope
, Enclosing_Pack
)
6540 -- ... or the new declaration is a component declaration in a
6541 -- record type definition.
6543 elsif Nkind
(Parent
(Def_Id
)) = N_Component_Declaration
then
6546 -- Don't issue error for non-source entities
6548 elsif Comes_From_Source
(Def_Id
)
6549 and then Comes_From_Source
(C
)
6551 Error_Msg_Sloc
:= Sloc
(C
);
6552 Check_SPARK_05_Restriction
6553 ("redeclaration of identifier &#", Def_Id
);
6558 -- Warn if new entity hides an old one
6560 if Warn_On_Hiding
and then Present
(C
)
6562 -- Don't warn for record components since they always have a well
6563 -- defined scope which does not confuse other uses. Note that in
6564 -- some cases, Ekind has not been set yet.
6566 and then Ekind
(C
) /= E_Component
6567 and then Ekind
(C
) /= E_Discriminant
6568 and then Nkind
(Parent
(C
)) /= N_Component_Declaration
6569 and then Ekind
(Def_Id
) /= E_Component
6570 and then Ekind
(Def_Id
) /= E_Discriminant
6571 and then Nkind
(Parent
(Def_Id
)) /= N_Component_Declaration
6573 -- Don't warn for one character variables. It is too common to use
6574 -- such variables as locals and will just cause too many false hits.
6576 and then Length_Of_Name
(Chars
(C
)) /= 1
6578 -- Don't warn for non-source entities
6580 and then Comes_From_Source
(C
)
6581 and then Comes_From_Source
(Def_Id
)
6583 -- Don't warn unless entity in question is in extended main source
6585 and then In_Extended_Main_Source_Unit
(Def_Id
)
6587 -- Finally, the hidden entity must be either immediately visible or
6588 -- use visible (i.e. from a used package).
6591 (Is_Immediately_Visible
(C
)
6593 Is_Potentially_Use_Visible
(C
))
6595 Error_Msg_Sloc
:= Sloc
(C
);
6596 Error_Msg_N
("declaration hides &#?h?", Def_Id
);
6604 function Entity_Of
(N
: Node_Id
) return Entity_Id
is
6610 if Is_Entity_Name
(N
) then
6613 -- Follow a possible chain of renamings to reach the root renamed
6617 and then Is_Object
(Id
)
6618 and then Present
(Renamed_Object
(Id
))
6620 if Is_Entity_Name
(Renamed_Object
(Id
)) then
6621 Id
:= Entity
(Renamed_Object
(Id
));
6632 --------------------------
6633 -- Explain_Limited_Type --
6634 --------------------------
6636 procedure Explain_Limited_Type
(T
: Entity_Id
; N
: Node_Id
) is
6640 -- For array, component type must be limited
6642 if Is_Array_Type
(T
) then
6643 Error_Msg_Node_2
:= T
;
6645 ("\component type& of type& is limited", N
, Component_Type
(T
));
6646 Explain_Limited_Type
(Component_Type
(T
), N
);
6648 elsif Is_Record_Type
(T
) then
6650 -- No need for extra messages if explicit limited record
6652 if Is_Limited_Record
(Base_Type
(T
)) then
6656 -- Otherwise find a limited component. Check only components that
6657 -- come from source, or inherited components that appear in the
6658 -- source of the ancestor.
6660 C
:= First_Component
(T
);
6661 while Present
(C
) loop
6662 if Is_Limited_Type
(Etype
(C
))
6664 (Comes_From_Source
(C
)
6666 (Present
(Original_Record_Component
(C
))
6668 Comes_From_Source
(Original_Record_Component
(C
))))
6670 Error_Msg_Node_2
:= T
;
6671 Error_Msg_NE
("\component& of type& has limited type", N
, C
);
6672 Explain_Limited_Type
(Etype
(C
), N
);
6679 -- The type may be declared explicitly limited, even if no component
6680 -- of it is limited, in which case we fall out of the loop.
6683 end Explain_Limited_Type
;
6685 ---------------------------------------
6686 -- Expression_Of_Expression_Function --
6687 ---------------------------------------
6689 function Expression_Of_Expression_Function
6690 (Subp
: Entity_Id
) return Node_Id
6692 Expr_Func
: Node_Id
;
6695 pragma Assert
(Is_Expression_Function_Or_Completion
(Subp
));
6697 if Nkind
(Original_Node
(Subprogram_Spec
(Subp
))) =
6698 N_Expression_Function
6700 Expr_Func
:= Original_Node
(Subprogram_Spec
(Subp
));
6702 elsif Nkind
(Original_Node
(Subprogram_Body
(Subp
))) =
6703 N_Expression_Function
6705 Expr_Func
:= Original_Node
(Subprogram_Body
(Subp
));
6708 pragma Assert
(False);
6712 return Original_Node
(Expression
(Expr_Func
));
6713 end Expression_Of_Expression_Function
;
6715 -------------------------------
6716 -- Extensions_Visible_Status --
6717 -------------------------------
6719 function Extensions_Visible_Status
6720 (Id
: Entity_Id
) return Extensions_Visible_Mode
6729 -- When a formal parameter is subject to Extensions_Visible, the pragma
6730 -- is stored in the contract of related subprogram.
6732 if Is_Formal
(Id
) then
6735 elsif Is_Subprogram_Or_Generic_Subprogram
(Id
) then
6738 -- No other construct carries this pragma
6741 return Extensions_Visible_None
;
6744 Prag
:= Get_Pragma
(Subp
, Pragma_Extensions_Visible
);
6746 -- In certain cases analysis may request the Extensions_Visible status
6747 -- of an expression function before the pragma has been analyzed yet.
6748 -- Inspect the declarative items after the expression function looking
6749 -- for the pragma (if any).
6751 if No
(Prag
) and then Is_Expression_Function
(Subp
) then
6752 Decl
:= Next
(Unit_Declaration_Node
(Subp
));
6753 while Present
(Decl
) loop
6754 if Nkind
(Decl
) = N_Pragma
6755 and then Pragma_Name
(Decl
) = Name_Extensions_Visible
6760 -- A source construct ends the region where Extensions_Visible may
6761 -- appear, stop the traversal. An expanded expression function is
6762 -- no longer a source construct, but it must still be recognized.
6764 elsif Comes_From_Source
(Decl
)
6766 (Nkind_In
(Decl
, N_Subprogram_Body
,
6767 N_Subprogram_Declaration
)
6768 and then Is_Expression_Function
(Defining_Entity
(Decl
)))
6777 -- Extract the value from the Boolean expression (if any)
6779 if Present
(Prag
) then
6780 Arg
:= First
(Pragma_Argument_Associations
(Prag
));
6782 if Present
(Arg
) then
6783 Expr
:= Get_Pragma_Arg
(Arg
);
6785 -- When the associated subprogram is an expression function, the
6786 -- argument of the pragma may not have been analyzed.
6788 if not Analyzed
(Expr
) then
6789 Preanalyze_And_Resolve
(Expr
, Standard_Boolean
);
6792 -- Guard against cascading errors when the argument of pragma
6793 -- Extensions_Visible is not a valid static Boolean expression.
6795 if Error_Posted
(Expr
) then
6796 return Extensions_Visible_None
;
6798 elsif Is_True
(Expr_Value
(Expr
)) then
6799 return Extensions_Visible_True
;
6802 return Extensions_Visible_False
;
6805 -- Otherwise the aspect or pragma defaults to True
6808 return Extensions_Visible_True
;
6811 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
6812 -- directly specified. In SPARK code, its value defaults to "False".
6814 elsif SPARK_Mode
= On
then
6815 return Extensions_Visible_False
;
6817 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
6821 return Extensions_Visible_True
;
6823 end Extensions_Visible_Status
;
6829 procedure Find_Actual
6831 Formal
: out Entity_Id
;
6834 Context
: constant Node_Id
:= Parent
(N
);
6839 if Nkind_In
(Context
, N_Indexed_Component
, N_Selected_Component
)
6840 and then N
= Prefix
(Context
)
6842 Find_Actual
(Context
, Formal
, Call
);
6845 elsif Nkind
(Context
) = N_Parameter_Association
6846 and then N
= Explicit_Actual_Parameter
(Context
)
6848 Call
:= Parent
(Context
);
6850 elsif Nkind_In
(Context
, N_Entry_Call_Statement
,
6852 N_Procedure_Call_Statement
)
6862 -- If we have a call to a subprogram look for the parameter. Note that
6863 -- we exclude overloaded calls, since we don't know enough to be sure
6864 -- of giving the right answer in this case.
6866 if Nkind_In
(Call
, N_Entry_Call_Statement
,
6868 N_Procedure_Call_Statement
)
6870 Call_Nam
:= Name
(Call
);
6872 -- A call to a protected or task entry appears as a selected
6873 -- component rather than an expanded name.
6875 if Nkind
(Call_Nam
) = N_Selected_Component
then
6876 Call_Nam
:= Selector_Name
(Call_Nam
);
6879 if Is_Entity_Name
(Call_Nam
)
6880 and then Present
(Entity
(Call_Nam
))
6881 and then Is_Overloadable
(Entity
(Call_Nam
))
6882 and then not Is_Overloaded
(Call_Nam
)
6884 -- If node is name in call it is not an actual
6886 if N
= Call_Nam
then
6892 -- Fall here if we are definitely a parameter
6894 Actual
:= First_Actual
(Call
);
6895 Formal
:= First_Formal
(Entity
(Call_Nam
));
6896 while Present
(Formal
) and then Present
(Actual
) loop
6900 -- An actual that is the prefix in a prefixed call may have
6901 -- been rewritten in the call, after the deferred reference
6902 -- was collected. Check if sloc and kinds and names match.
6904 elsif Sloc
(Actual
) = Sloc
(N
)
6905 and then Nkind
(Actual
) = N_Identifier
6906 and then Nkind
(Actual
) = Nkind
(N
)
6907 and then Chars
(Actual
) = Chars
(N
)
6912 Actual
:= Next_Actual
(Actual
);
6913 Formal
:= Next_Formal
(Formal
);
6919 -- Fall through here if we did not find matching actual
6925 ---------------------------
6926 -- Find_Body_Discriminal --
6927 ---------------------------
6929 function Find_Body_Discriminal
6930 (Spec_Discriminant
: Entity_Id
) return Entity_Id
6936 -- If expansion is suppressed, then the scope can be the concurrent type
6937 -- itself rather than a corresponding concurrent record type.
6939 if Is_Concurrent_Type
(Scope
(Spec_Discriminant
)) then
6940 Tsk
:= Scope
(Spec_Discriminant
);
6943 pragma Assert
(Is_Concurrent_Record_Type
(Scope
(Spec_Discriminant
)));
6945 Tsk
:= Corresponding_Concurrent_Type
(Scope
(Spec_Discriminant
));
6948 -- Find discriminant of original concurrent type, and use its current
6949 -- discriminal, which is the renaming within the task/protected body.
6951 Disc
:= First_Discriminant
(Tsk
);
6952 while Present
(Disc
) loop
6953 if Chars
(Disc
) = Chars
(Spec_Discriminant
) then
6954 return Discriminal
(Disc
);
6957 Next_Discriminant
(Disc
);
6960 -- That loop should always succeed in finding a matching entry and
6961 -- returning. Fatal error if not.
6963 raise Program_Error
;
6964 end Find_Body_Discriminal
;
6966 -------------------------------------
6967 -- Find_Corresponding_Discriminant --
6968 -------------------------------------
6970 function Find_Corresponding_Discriminant
6972 Typ
: Entity_Id
) return Entity_Id
6974 Par_Disc
: Entity_Id
;
6975 Old_Disc
: Entity_Id
;
6976 New_Disc
: Entity_Id
;
6979 Par_Disc
:= Original_Record_Component
(Original_Discriminant
(Id
));
6981 -- The original type may currently be private, and the discriminant
6982 -- only appear on its full view.
6984 if Is_Private_Type
(Scope
(Par_Disc
))
6985 and then not Has_Discriminants
(Scope
(Par_Disc
))
6986 and then Present
(Full_View
(Scope
(Par_Disc
)))
6988 Old_Disc
:= First_Discriminant
(Full_View
(Scope
(Par_Disc
)));
6990 Old_Disc
:= First_Discriminant
(Scope
(Par_Disc
));
6993 if Is_Class_Wide_Type
(Typ
) then
6994 New_Disc
:= First_Discriminant
(Root_Type
(Typ
));
6996 New_Disc
:= First_Discriminant
(Typ
);
6999 while Present
(Old_Disc
) and then Present
(New_Disc
) loop
7000 if Old_Disc
= Par_Disc
then
7004 Next_Discriminant
(Old_Disc
);
7005 Next_Discriminant
(New_Disc
);
7008 -- Should always find it
7010 raise Program_Error
;
7011 end Find_Corresponding_Discriminant
;
7013 ----------------------------------
7014 -- Find_Enclosing_Iterator_Loop --
7015 ----------------------------------
7017 function Find_Enclosing_Iterator_Loop
(Id
: Entity_Id
) return Entity_Id
is
7022 -- Traverse the scope chain looking for an iterator loop. Such loops are
7023 -- usually transformed into blocks, hence the use of Original_Node.
7026 while Present
(S
) and then S
/= Standard_Standard
loop
7027 if Ekind
(S
) = E_Loop
7028 and then Nkind
(Parent
(S
)) = N_Implicit_Label_Declaration
7030 Constr
:= Original_Node
(Label_Construct
(Parent
(S
)));
7032 if Nkind
(Constr
) = N_Loop_Statement
7033 and then Present
(Iteration_Scheme
(Constr
))
7034 and then Nkind
(Iterator_Specification
7035 (Iteration_Scheme
(Constr
))) =
7036 N_Iterator_Specification
7046 end Find_Enclosing_Iterator_Loop
;
7048 ------------------------------------
7049 -- Find_Loop_In_Conditional_Block --
7050 ------------------------------------
7052 function Find_Loop_In_Conditional_Block
(N
: Node_Id
) return Node_Id
is
7058 if Nkind
(Stmt
) = N_If_Statement
then
7059 Stmt
:= First
(Then_Statements
(Stmt
));
7062 pragma Assert
(Nkind
(Stmt
) = N_Block_Statement
);
7064 -- Inspect the statements of the conditional block. In general the loop
7065 -- should be the first statement in the statement sequence of the block,
7066 -- but the finalization machinery may have introduced extra object
7069 Stmt
:= First
(Statements
(Handled_Statement_Sequence
(Stmt
)));
7070 while Present
(Stmt
) loop
7071 if Nkind
(Stmt
) = N_Loop_Statement
then
7078 -- The expansion of attribute 'Loop_Entry produced a malformed block
7080 raise Program_Error
;
7081 end Find_Loop_In_Conditional_Block
;
7083 --------------------------
7084 -- Find_Overlaid_Entity --
7085 --------------------------
7087 procedure Find_Overlaid_Entity
7089 Ent
: out Entity_Id
;
7095 -- We are looking for one of the two following forms:
7097 -- for X'Address use Y'Address
7101 -- Const : constant Address := expr;
7103 -- for X'Address use Const;
7105 -- In the second case, the expr is either Y'Address, or recursively a
7106 -- constant that eventually references Y'Address.
7111 if Nkind
(N
) = N_Attribute_Definition_Clause
7112 and then Chars
(N
) = Name_Address
7114 Expr
:= Expression
(N
);
7116 -- This loop checks the form of the expression for Y'Address,
7117 -- using recursion to deal with intermediate constants.
7120 -- Check for Y'Address
7122 if Nkind
(Expr
) = N_Attribute_Reference
7123 and then Attribute_Name
(Expr
) = Name_Address
7125 Expr
:= Prefix
(Expr
);
7128 -- Check for Const where Const is a constant entity
7130 elsif Is_Entity_Name
(Expr
)
7131 and then Ekind
(Entity
(Expr
)) = E_Constant
7133 Expr
:= Constant_Value
(Entity
(Expr
));
7135 -- Anything else does not need checking
7142 -- This loop checks the form of the prefix for an entity, using
7143 -- recursion to deal with intermediate components.
7146 -- Check for Y where Y is an entity
7148 if Is_Entity_Name
(Expr
) then
7149 Ent
:= Entity
(Expr
);
7152 -- Check for components
7155 Nkind_In
(Expr
, N_Selected_Component
, N_Indexed_Component
)
7157 Expr
:= Prefix
(Expr
);
7160 -- Anything else does not need checking
7167 end Find_Overlaid_Entity
;
7169 -------------------------
7170 -- Find_Parameter_Type --
7171 -------------------------
7173 function Find_Parameter_Type
(Param
: Node_Id
) return Entity_Id
is
7175 if Nkind
(Param
) /= N_Parameter_Specification
then
7178 -- For an access parameter, obtain the type from the formal entity
7179 -- itself, because access to subprogram nodes do not carry a type.
7180 -- Shouldn't we always use the formal entity ???
7182 elsif Nkind
(Parameter_Type
(Param
)) = N_Access_Definition
then
7183 return Etype
(Defining_Identifier
(Param
));
7186 return Etype
(Parameter_Type
(Param
));
7188 end Find_Parameter_Type
;
7190 -----------------------------------
7191 -- Find_Placement_In_State_Space --
7192 -----------------------------------
7194 procedure Find_Placement_In_State_Space
7195 (Item_Id
: Entity_Id
;
7196 Placement
: out State_Space_Kind
;
7197 Pack_Id
: out Entity_Id
)
7199 Context
: Entity_Id
;
7202 -- Assume that the item does not appear in the state space of a package
7204 Placement
:= Not_In_Package
;
7207 -- Climb the scope stack and examine the enclosing context
7209 Context
:= Scope
(Item_Id
);
7210 while Present
(Context
) and then Context
/= Standard_Standard
loop
7211 if Ekind
(Context
) = E_Package
then
7214 -- A package body is a cut off point for the traversal as the item
7215 -- cannot be visible to the outside from this point on. Note that
7216 -- this test must be done first as a body is also classified as a
7219 if In_Package_Body
(Context
) then
7220 Placement
:= Body_State_Space
;
7223 -- The private part of a package is a cut off point for the
7224 -- traversal as the item cannot be visible to the outside from
7227 elsif In_Private_Part
(Context
) then
7228 Placement
:= Private_State_Space
;
7231 -- When the item appears in the visible state space of a package,
7232 -- continue to climb the scope stack as this may not be the final
7236 Placement
:= Visible_State_Space
;
7238 -- The visible state space of a child unit acts as the proper
7239 -- placement of an item.
7241 if Is_Child_Unit
(Context
) then
7246 -- The item or its enclosing package appear in a construct that has
7250 Placement
:= Not_In_Package
;
7254 Context
:= Scope
(Context
);
7256 end Find_Placement_In_State_Space
;
7258 ------------------------
7259 -- Find_Specific_Type --
7260 ------------------------
7262 function Find_Specific_Type
(CW
: Entity_Id
) return Entity_Id
is
7263 Typ
: Entity_Id
:= Root_Type
(CW
);
7266 if Ekind
(Typ
) = E_Incomplete_Type
then
7267 if From_Limited_With
(Typ
) then
7268 Typ
:= Non_Limited_View
(Typ
);
7270 Typ
:= Full_View
(Typ
);
7274 if Is_Private_Type
(Typ
)
7275 and then not Is_Tagged_Type
(Typ
)
7276 and then Present
(Full_View
(Typ
))
7278 return Full_View
(Typ
);
7282 end Find_Specific_Type
;
7284 -----------------------------
7285 -- Find_Static_Alternative --
7286 -----------------------------
7288 function Find_Static_Alternative
(N
: Node_Id
) return Node_Id
is
7289 Expr
: constant Node_Id
:= Expression
(N
);
7290 Val
: constant Uint
:= Expr_Value
(Expr
);
7295 Alt
:= First
(Alternatives
(N
));
7298 if Nkind
(Alt
) /= N_Pragma
then
7299 Choice
:= First
(Discrete_Choices
(Alt
));
7300 while Present
(Choice
) loop
7302 -- Others choice, always matches
7304 if Nkind
(Choice
) = N_Others_Choice
then
7307 -- Range, check if value is in the range
7309 elsif Nkind
(Choice
) = N_Range
then
7311 Val
>= Expr_Value
(Low_Bound
(Choice
))
7313 Val
<= Expr_Value
(High_Bound
(Choice
));
7315 -- Choice is a subtype name. Note that we know it must
7316 -- be a static subtype, since otherwise it would have
7317 -- been diagnosed as illegal.
7319 elsif Is_Entity_Name
(Choice
)
7320 and then Is_Type
(Entity
(Choice
))
7322 exit Search
when Is_In_Range
(Expr
, Etype
(Choice
),
7323 Assume_Valid
=> False);
7325 -- Choice is a subtype indication
7327 elsif Nkind
(Choice
) = N_Subtype_Indication
then
7329 C
: constant Node_Id
:= Constraint
(Choice
);
7330 R
: constant Node_Id
:= Range_Expression
(C
);
7334 Val
>= Expr_Value
(Low_Bound
(R
))
7336 Val
<= Expr_Value
(High_Bound
(R
));
7339 -- Choice is a simple expression
7342 exit Search
when Val
= Expr_Value
(Choice
);
7350 pragma Assert
(Present
(Alt
));
7353 -- The above loop *must* terminate by finding a match, since we know the
7354 -- case statement is valid, and the value of the expression is known at
7355 -- compile time. When we fall out of the loop, Alt points to the
7356 -- alternative that we know will be selected at run time.
7359 end Find_Static_Alternative
;
7365 function First_Actual
(Node
: Node_Id
) return Node_Id
is
7369 if No
(Parameter_Associations
(Node
)) then
7373 N
:= First
(Parameter_Associations
(Node
));
7375 if Nkind
(N
) = N_Parameter_Association
then
7376 return First_Named_Actual
(Node
);
7386 function Fix_Msg
(Id
: Entity_Id
; Msg
: String) return String is
7387 Is_Task
: constant Boolean :=
7388 Ekind_In
(Id
, E_Task_Body
, E_Task_Type
)
7389 or else Is_Single_Task_Object
(Id
);
7390 Msg_Last
: constant Natural := Msg
'Last;
7391 Msg_Index
: Natural;
7392 Res
: String (Msg
'Range) := (others => ' ');
7393 Res_Index
: Natural;
7396 -- Copy all characters from the input message Msg to result Res with
7397 -- suitable replacements.
7399 Msg_Index
:= Msg
'First;
7400 Res_Index
:= Res
'First;
7401 while Msg_Index
<= Msg_Last
loop
7403 -- Replace "subprogram" with a different word
7405 if Msg_Index
<= Msg_Last
- 10
7406 and then Msg
(Msg_Index
.. Msg_Index
+ 9) = "subprogram"
7408 if Ekind_In
(Id
, E_Entry
, E_Entry_Family
) then
7409 Res
(Res_Index
.. Res_Index
+ 4) := "entry";
7410 Res_Index
:= Res_Index
+ 5;
7413 Res
(Res_Index
.. Res_Index
+ 8) := "task type";
7414 Res_Index
:= Res_Index
+ 9;
7417 Res
(Res_Index
.. Res_Index
+ 9) := "subprogram";
7418 Res_Index
:= Res_Index
+ 10;
7421 Msg_Index
:= Msg_Index
+ 10;
7423 -- Replace "protected" with a different word
7425 elsif Msg_Index
<= Msg_Last
- 9
7426 and then Msg
(Msg_Index
.. Msg_Index
+ 8) = "protected"
7429 Res
(Res_Index
.. Res_Index
+ 3) := "task";
7430 Res_Index
:= Res_Index
+ 4;
7431 Msg_Index
:= Msg_Index
+ 9;
7433 -- Otherwise copy the character
7436 Res
(Res_Index
) := Msg
(Msg_Index
);
7437 Msg_Index
:= Msg_Index
+ 1;
7438 Res_Index
:= Res_Index
+ 1;
7442 return Res
(Res
'First .. Res_Index
- 1);
7445 -----------------------
7446 -- Gather_Components --
7447 -----------------------
7449 procedure Gather_Components
7451 Comp_List
: Node_Id
;
7452 Governed_By
: List_Id
;
7454 Report_Errors
: out Boolean)
7458 Discrete_Choice
: Node_Id
;
7459 Comp_Item
: Node_Id
;
7461 Discrim
: Entity_Id
;
7462 Discrim_Name
: Node_Id
;
7463 Discrim_Value
: Node_Id
;
7466 Report_Errors
:= False;
7468 if No
(Comp_List
) or else Null_Present
(Comp_List
) then
7471 elsif Present
(Component_Items
(Comp_List
)) then
7472 Comp_Item
:= First
(Component_Items
(Comp_List
));
7478 while Present
(Comp_Item
) loop
7480 -- Skip the tag of a tagged record, the interface tags, as well
7481 -- as all items that are not user components (anonymous types,
7482 -- rep clauses, Parent field, controller field).
7484 if Nkind
(Comp_Item
) = N_Component_Declaration
then
7486 Comp
: constant Entity_Id
:= Defining_Identifier
(Comp_Item
);
7488 if not Is_Tag
(Comp
) and then Chars
(Comp
) /= Name_uParent
then
7489 Append_Elmt
(Comp
, Into
);
7497 if No
(Variant_Part
(Comp_List
)) then
7500 Discrim_Name
:= Name
(Variant_Part
(Comp_List
));
7501 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
7504 -- Look for the discriminant that governs this variant part.
7505 -- The discriminant *must* be in the Governed_By List
7507 Assoc
:= First
(Governed_By
);
7508 Find_Constraint
: loop
7509 Discrim
:= First
(Choices
(Assoc
));
7510 exit Find_Constraint
when Chars
(Discrim_Name
) = Chars
(Discrim
)
7511 or else (Present
(Corresponding_Discriminant
(Entity
(Discrim
)))
7513 Chars
(Corresponding_Discriminant
(Entity
(Discrim
))) =
7514 Chars
(Discrim_Name
))
7515 or else Chars
(Original_Record_Component
(Entity
(Discrim
)))
7516 = Chars
(Discrim_Name
);
7518 if No
(Next
(Assoc
)) then
7519 if not Is_Constrained
(Typ
)
7520 and then Is_Derived_Type
(Typ
)
7521 and then Present
(Stored_Constraint
(Typ
))
7523 -- If the type is a tagged type with inherited discriminants,
7524 -- use the stored constraint on the parent in order to find
7525 -- the values of discriminants that are otherwise hidden by an
7526 -- explicit constraint. Renamed discriminants are handled in
7529 -- If several parent discriminants are renamed by a single
7530 -- discriminant of the derived type, the call to obtain the
7531 -- Corresponding_Discriminant field only retrieves the last
7532 -- of them. We recover the constraint on the others from the
7533 -- Stored_Constraint as well.
7540 D
:= First_Discriminant
(Etype
(Typ
));
7541 C
:= First_Elmt
(Stored_Constraint
(Typ
));
7542 while Present
(D
) and then Present
(C
) loop
7543 if Chars
(Discrim_Name
) = Chars
(D
) then
7544 if Is_Entity_Name
(Node
(C
))
7545 and then Entity
(Node
(C
)) = Entity
(Discrim
)
7547 -- D is renamed by Discrim, whose value is given in
7554 Make_Component_Association
(Sloc
(Typ
),
7556 (New_Occurrence_Of
(D
, Sloc
(Typ
))),
7557 Duplicate_Subexpr_No_Checks
(Node
(C
)));
7559 exit Find_Constraint
;
7562 Next_Discriminant
(D
);
7569 if No
(Next
(Assoc
)) then
7570 Error_Msg_NE
(" missing value for discriminant&",
7571 First
(Governed_By
), Discrim_Name
);
7572 Report_Errors
:= True;
7577 end loop Find_Constraint
;
7579 Discrim_Value
:= Expression
(Assoc
);
7581 if not Is_OK_Static_Expression
(Discrim_Value
) then
7583 -- If the variant part is governed by a discriminant of the type
7584 -- this is an error. If the variant part and the discriminant are
7585 -- inherited from an ancestor this is legal (AI05-120) unless the
7586 -- components are being gathered for an aggregate, in which case
7587 -- the caller must check Report_Errors.
7589 if Scope
(Original_Record_Component
7590 ((Entity
(First
(Choices
(Assoc
)))))) = Typ
7593 ("value for discriminant & must be static!",
7594 Discrim_Value
, Discrim
);
7595 Why_Not_Static
(Discrim_Value
);
7598 Report_Errors
:= True;
7602 Search_For_Discriminant_Value
: declare
7608 UI_Discrim_Value
: constant Uint
:= Expr_Value
(Discrim_Value
);
7611 Find_Discrete_Value
: while Present
(Variant
) loop
7612 Discrete_Choice
:= First
(Discrete_Choices
(Variant
));
7613 while Present
(Discrete_Choice
) loop
7614 exit Find_Discrete_Value
when
7615 Nkind
(Discrete_Choice
) = N_Others_Choice
;
7617 Get_Index_Bounds
(Discrete_Choice
, Low
, High
);
7619 UI_Low
:= Expr_Value
(Low
);
7620 UI_High
:= Expr_Value
(High
);
7622 exit Find_Discrete_Value
when
7623 UI_Low
<= UI_Discrim_Value
7625 UI_High
>= UI_Discrim_Value
;
7627 Next
(Discrete_Choice
);
7630 Next_Non_Pragma
(Variant
);
7631 end loop Find_Discrete_Value
;
7632 end Search_For_Discriminant_Value
;
7634 -- The case statement must include a variant that corresponds to the
7635 -- value of the discriminant, unless the discriminant type has a
7636 -- static predicate. In that case the absence of an others_choice that
7637 -- would cover this value becomes a run-time error (3.8,1 (21.1/2)).
7640 and then not Has_Static_Predicate
(Etype
(Discrim_Name
))
7643 ("value of discriminant & is out of range", Discrim_Value
, Discrim
);
7644 Report_Errors
:= True;
7648 -- If we have found the corresponding choice, recursively add its
7649 -- components to the Into list. The nested components are part of
7650 -- the same record type.
7652 if Present
(Variant
) then
7654 (Typ
, Component_List
(Variant
), Governed_By
, Into
, Report_Errors
);
7656 end Gather_Components
;
7658 ------------------------
7659 -- Get_Actual_Subtype --
7660 ------------------------
7662 function Get_Actual_Subtype
(N
: Node_Id
) return Entity_Id
is
7663 Typ
: constant Entity_Id
:= Etype
(N
);
7664 Utyp
: Entity_Id
:= Underlying_Type
(Typ
);
7673 -- If what we have is an identifier that references a subprogram
7674 -- formal, or a variable or constant object, then we get the actual
7675 -- subtype from the referenced entity if one has been built.
7677 if Nkind
(N
) = N_Identifier
7679 (Is_Formal
(Entity
(N
))
7680 or else Ekind
(Entity
(N
)) = E_Constant
7681 or else Ekind
(Entity
(N
)) = E_Variable
)
7682 and then Present
(Actual_Subtype
(Entity
(N
)))
7684 return Actual_Subtype
(Entity
(N
));
7686 -- Actual subtype of unchecked union is always itself. We never need
7687 -- the "real" actual subtype. If we did, we couldn't get it anyway
7688 -- because the discriminant is not available. The restrictions on
7689 -- Unchecked_Union are designed to make sure that this is OK.
7691 elsif Is_Unchecked_Union
(Base_Type
(Utyp
)) then
7694 -- Here for the unconstrained case, we must find actual subtype
7695 -- No actual subtype is available, so we must build it on the fly.
7697 -- Checking the type, not the underlying type, for constrainedness
7698 -- seems to be necessary. Maybe all the tests should be on the type???
7700 elsif (not Is_Constrained
(Typ
))
7701 and then (Is_Array_Type
(Utyp
)
7702 or else (Is_Record_Type
(Utyp
)
7703 and then Has_Discriminants
(Utyp
)))
7704 and then not Has_Unknown_Discriminants
(Utyp
)
7705 and then not (Ekind
(Utyp
) = E_String_Literal_Subtype
)
7707 -- Nothing to do if in spec expression (why not???)
7709 if In_Spec_Expression
then
7712 elsif Is_Private_Type
(Typ
) and then not Has_Discriminants
(Typ
) then
7714 -- If the type has no discriminants, there is no subtype to
7715 -- build, even if the underlying type is discriminated.
7719 -- Else build the actual subtype
7722 Decl
:= Build_Actual_Subtype
(Typ
, N
);
7723 Atyp
:= Defining_Identifier
(Decl
);
7725 -- If Build_Actual_Subtype generated a new declaration then use it
7729 -- The actual subtype is an Itype, so analyze the declaration,
7730 -- but do not attach it to the tree, to get the type defined.
7732 Set_Parent
(Decl
, N
);
7733 Set_Is_Itype
(Atyp
);
7734 Analyze
(Decl
, Suppress
=> All_Checks
);
7735 Set_Associated_Node_For_Itype
(Atyp
, N
);
7736 Set_Has_Delayed_Freeze
(Atyp
, False);
7738 -- We need to freeze the actual subtype immediately. This is
7739 -- needed, because otherwise this Itype will not get frozen
7740 -- at all, and it is always safe to freeze on creation because
7741 -- any associated types must be frozen at this point.
7743 Freeze_Itype
(Atyp
, N
);
7746 -- Otherwise we did not build a declaration, so return original
7753 -- For all remaining cases, the actual subtype is the same as
7754 -- the nominal type.
7759 end Get_Actual_Subtype
;
7761 -------------------------------------
7762 -- Get_Actual_Subtype_If_Available --
7763 -------------------------------------
7765 function Get_Actual_Subtype_If_Available
(N
: Node_Id
) return Entity_Id
is
7766 Typ
: constant Entity_Id
:= Etype
(N
);
7769 -- If what we have is an identifier that references a subprogram
7770 -- formal, or a variable or constant object, then we get the actual
7771 -- subtype from the referenced entity if one has been built.
7773 if Nkind
(N
) = N_Identifier
7775 (Is_Formal
(Entity
(N
))
7776 or else Ekind
(Entity
(N
)) = E_Constant
7777 or else Ekind
(Entity
(N
)) = E_Variable
)
7778 and then Present
(Actual_Subtype
(Entity
(N
)))
7780 return Actual_Subtype
(Entity
(N
));
7782 -- Otherwise the Etype of N is returned unchanged
7787 end Get_Actual_Subtype_If_Available
;
7789 ------------------------
7790 -- Get_Body_From_Stub --
7791 ------------------------
7793 function Get_Body_From_Stub
(N
: Node_Id
) return Node_Id
is
7795 return Proper_Body
(Unit
(Library_Unit
(N
)));
7796 end Get_Body_From_Stub
;
7798 ---------------------
7799 -- Get_Cursor_Type --
7800 ---------------------
7802 function Get_Cursor_Type
7804 Typ
: Entity_Id
) return Entity_Id
7808 First_Op
: Entity_Id
;
7812 -- If error already detected, return
7814 if Error_Posted
(Aspect
) then
7818 -- The cursor type for an Iterable aspect is the return type of a
7819 -- non-overloaded First primitive operation. Locate association for
7822 Assoc
:= First
(Component_Associations
(Expression
(Aspect
)));
7824 while Present
(Assoc
) loop
7825 if Chars
(First
(Choices
(Assoc
))) = Name_First
then
7826 First_Op
:= Expression
(Assoc
);
7833 if First_Op
= Any_Id
then
7834 Error_Msg_N
("aspect Iterable must specify First operation", Aspect
);
7840 -- Locate function with desired name and profile in scope of type
7841 -- In the rare case where the type is an integer type, a base type
7842 -- is created for it, check that the base type of the first formal
7843 -- of First matches the base type of the domain.
7845 Func
:= First_Entity
(Scope
(Typ
));
7846 while Present
(Func
) loop
7847 if Chars
(Func
) = Chars
(First_Op
)
7848 and then Ekind
(Func
) = E_Function
7849 and then Present
(First_Formal
(Func
))
7850 and then Base_Type
(Etype
(First_Formal
(Func
))) = Base_Type
(Typ
)
7851 and then No
(Next_Formal
(First_Formal
(Func
)))
7853 if Cursor
/= Any_Type
then
7855 ("Operation First for iterable type must be unique", Aspect
);
7858 Cursor
:= Etype
(Func
);
7865 -- If not found, no way to resolve remaining primitives.
7867 if Cursor
= Any_Type
then
7869 ("No legal primitive operation First for Iterable type", Aspect
);
7873 end Get_Cursor_Type
;
7875 function Get_Cursor_Type
(Typ
: Entity_Id
) return Entity_Id
is
7877 return Etype
(Get_Iterable_Type_Primitive
(Typ
, Name_First
));
7878 end Get_Cursor_Type
;
7880 -------------------------------
7881 -- Get_Default_External_Name --
7882 -------------------------------
7884 function Get_Default_External_Name
(E
: Node_Or_Entity_Id
) return Node_Id
is
7886 Get_Decoded_Name_String
(Chars
(E
));
7888 if Opt
.External_Name_Imp_Casing
= Uppercase
then
7889 Set_Casing
(All_Upper_Case
);
7891 Set_Casing
(All_Lower_Case
);
7895 Make_String_Literal
(Sloc
(E
),
7896 Strval
=> String_From_Name_Buffer
);
7897 end Get_Default_External_Name
;
7899 --------------------------
7900 -- Get_Enclosing_Object --
7901 --------------------------
7903 function Get_Enclosing_Object
(N
: Node_Id
) return Entity_Id
is
7905 if Is_Entity_Name
(N
) then
7909 when N_Indexed_Component
7910 | N_Selected_Component
7913 -- If not generating code, a dereference may be left implicit.
7914 -- In thoses cases, return Empty.
7916 if Is_Access_Type
(Etype
(Prefix
(N
))) then
7919 return Get_Enclosing_Object
(Prefix
(N
));
7922 when N_Type_Conversion
=>
7923 return Get_Enclosing_Object
(Expression
(N
));
7929 end Get_Enclosing_Object
;
7931 ---------------------------
7932 -- Get_Enum_Lit_From_Pos --
7933 ---------------------------
7935 function Get_Enum_Lit_From_Pos
7938 Loc
: Source_Ptr
) return Node_Id
7940 Btyp
: Entity_Id
:= Base_Type
(T
);
7945 -- In the case where the literal is of type Character, Wide_Character
7946 -- or Wide_Wide_Character or of a type derived from them, there needs
7947 -- to be some special handling since there is no explicit chain of
7948 -- literals to search. Instead, an N_Character_Literal node is created
7949 -- with the appropriate Char_Code and Chars fields.
7951 if Is_Standard_Character_Type
(T
) then
7952 Set_Character_Literal_Name
(UI_To_CC
(Pos
));
7955 Make_Character_Literal
(Loc
,
7957 Char_Literal_Value
=> Pos
);
7959 -- For all other cases, we have a complete table of literals, and
7960 -- we simply iterate through the chain of literal until the one
7961 -- with the desired position value is found.
7964 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
7965 Btyp
:= Full_View
(Btyp
);
7968 Lit
:= First_Literal
(Btyp
);
7969 for J
in 1 .. UI_To_Int
(Pos
) loop
7972 -- If Lit is Empty, Pos is not in range, so raise Constraint_Error
7973 -- inside the loop to avoid calling Next_Literal on Empty.
7976 raise Constraint_Error
;
7980 -- Create a new node from Lit, with source location provided by Loc
7981 -- if not equal to No_Location, or by copying the source location of
7986 if LLoc
= No_Location
then
7990 return New_Occurrence_Of
(Lit
, LLoc
);
7992 end Get_Enum_Lit_From_Pos
;
7994 ------------------------
7995 -- Get_Generic_Entity --
7996 ------------------------
7998 function Get_Generic_Entity
(N
: Node_Id
) return Entity_Id
is
7999 Ent
: constant Entity_Id
:= Entity
(Name
(N
));
8001 if Present
(Renamed_Object
(Ent
)) then
8002 return Renamed_Object
(Ent
);
8006 end Get_Generic_Entity
;
8008 -------------------------------------
8009 -- Get_Incomplete_View_Of_Ancestor --
8010 -------------------------------------
8012 function Get_Incomplete_View_Of_Ancestor
(E
: Entity_Id
) return Entity_Id
is
8013 Cur_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
8014 Par_Scope
: Entity_Id
;
8015 Par_Type
: Entity_Id
;
8018 -- The incomplete view of an ancestor is only relevant for private
8019 -- derived types in child units.
8021 if not Is_Derived_Type
(E
)
8022 or else not Is_Child_Unit
(Cur_Unit
)
8027 Par_Scope
:= Scope
(Cur_Unit
);
8028 if No
(Par_Scope
) then
8032 Par_Type
:= Etype
(Base_Type
(E
));
8034 -- Traverse list of ancestor types until we find one declared in
8035 -- a parent or grandparent unit (two levels seem sufficient).
8037 while Present
(Par_Type
) loop
8038 if Scope
(Par_Type
) = Par_Scope
8039 or else Scope
(Par_Type
) = Scope
(Par_Scope
)
8043 elsif not Is_Derived_Type
(Par_Type
) then
8047 Par_Type
:= Etype
(Base_Type
(Par_Type
));
8051 -- If none found, there is no relevant ancestor type.
8055 end Get_Incomplete_View_Of_Ancestor
;
8057 ----------------------
8058 -- Get_Index_Bounds --
8059 ----------------------
8061 procedure Get_Index_Bounds
8065 Use_Full_View
: Boolean := False)
8067 function Scalar_Range_Of_Type
(Typ
: Entity_Id
) return Node_Id
;
8068 -- Obtain the scalar range of type Typ. If flag Use_Full_View is set and
8069 -- Typ qualifies, the scalar range is obtained from the full view of the
8072 --------------------------
8073 -- Scalar_Range_Of_Type --
8074 --------------------------
8076 function Scalar_Range_Of_Type
(Typ
: Entity_Id
) return Node_Id
is
8077 T
: Entity_Id
:= Typ
;
8080 if Use_Full_View
and then Present
(Full_View
(T
)) then
8084 return Scalar_Range
(T
);
8085 end Scalar_Range_Of_Type
;
8089 Kind
: constant Node_Kind
:= Nkind
(N
);
8092 -- Start of processing for Get_Index_Bounds
8095 if Kind
= N_Range
then
8097 H
:= High_Bound
(N
);
8099 elsif Kind
= N_Subtype_Indication
then
8100 Rng
:= Range_Expression
(Constraint
(N
));
8108 L
:= Low_Bound
(Range_Expression
(Constraint
(N
)));
8109 H
:= High_Bound
(Range_Expression
(Constraint
(N
)));
8112 elsif Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
8113 Rng
:= Scalar_Range_Of_Type
(Entity
(N
));
8115 if Error_Posted
(Rng
) then
8119 elsif Nkind
(Rng
) = N_Subtype_Indication
then
8120 Get_Index_Bounds
(Rng
, L
, H
);
8123 L
:= Low_Bound
(Rng
);
8124 H
:= High_Bound
(Rng
);
8128 -- N is an expression, indicating a range with one value
8133 end Get_Index_Bounds
;
8135 ---------------------------------
8136 -- Get_Iterable_Type_Primitive --
8137 ---------------------------------
8139 function Get_Iterable_Type_Primitive
8141 Nam
: Name_Id
) return Entity_Id
8143 Funcs
: constant Node_Id
:= Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
);
8151 Assoc
:= First
(Component_Associations
(Funcs
));
8152 while Present
(Assoc
) loop
8153 if Chars
(First
(Choices
(Assoc
))) = Nam
then
8154 return Entity
(Expression
(Assoc
));
8157 Assoc
:= Next
(Assoc
);
8162 end Get_Iterable_Type_Primitive
;
8164 ----------------------------------
8165 -- Get_Library_Unit_Name_string --
8166 ----------------------------------
8168 procedure Get_Library_Unit_Name_String
(Decl_Node
: Node_Id
) is
8169 Unit_Name_Id
: constant Unit_Name_Type
:= Get_Unit_Name
(Decl_Node
);
8172 Get_Unit_Name_String
(Unit_Name_Id
);
8174 -- Remove seven last character (" (spec)" or " (body)")
8176 Name_Len
:= Name_Len
- 7;
8177 pragma Assert
(Name_Buffer
(Name_Len
+ 1) = ' ');
8178 end Get_Library_Unit_Name_String
;
8180 --------------------------
8181 -- Get_Max_Queue_Length --
8182 --------------------------
8184 function Get_Max_Queue_Length
(Id
: Entity_Id
) return Uint
is
8185 pragma Assert
(Is_Entry
(Id
));
8186 Prag
: constant Entity_Id
:= Get_Pragma
(Id
, Pragma_Max_Queue_Length
);
8189 -- A value of 0 represents no maximum specified, and entries and entry
8190 -- families with no Max_Queue_Length aspect or pragma default to it.
8192 if not Present
(Prag
) then
8196 return Intval
(Expression
(First
(Pragma_Argument_Associations
(Prag
))));
8197 end Get_Max_Queue_Length
;
8199 ------------------------
8200 -- Get_Name_Entity_Id --
8201 ------------------------
8203 function Get_Name_Entity_Id
(Id
: Name_Id
) return Entity_Id
is
8205 return Entity_Id
(Get_Name_Table_Int
(Id
));
8206 end Get_Name_Entity_Id
;
8208 ------------------------------
8209 -- Get_Name_From_CTC_Pragma --
8210 ------------------------------
8212 function Get_Name_From_CTC_Pragma
(N
: Node_Id
) return String_Id
is
8213 Arg
: constant Node_Id
:=
8214 Get_Pragma_Arg
(First
(Pragma_Argument_Associations
(N
)));
8216 return Strval
(Expr_Value_S
(Arg
));
8217 end Get_Name_From_CTC_Pragma
;
8219 -----------------------
8220 -- Get_Parent_Entity --
8221 -----------------------
8223 function Get_Parent_Entity
(Unit
: Node_Id
) return Entity_Id
is
8225 if Nkind
(Unit
) = N_Package_Body
8226 and then Nkind
(Original_Node
(Unit
)) = N_Package_Instantiation
8228 return Defining_Entity
8229 (Specification
(Instance_Spec
(Original_Node
(Unit
))));
8230 elsif Nkind
(Unit
) = N_Package_Instantiation
then
8231 return Defining_Entity
(Specification
(Instance_Spec
(Unit
)));
8233 return Defining_Entity
(Unit
);
8235 end Get_Parent_Entity
;
8241 function Get_Pragma_Id
(N
: Node_Id
) return Pragma_Id
is
8243 return Get_Pragma_Id
(Pragma_Name_Unmapped
(N
));
8246 ------------------------
8247 -- Get_Qualified_Name --
8248 ------------------------
8250 function Get_Qualified_Name
8252 Suffix
: Entity_Id
:= Empty
) return Name_Id
8254 Suffix_Nam
: Name_Id
:= No_Name
;
8257 if Present
(Suffix
) then
8258 Suffix_Nam
:= Chars
(Suffix
);
8261 return Get_Qualified_Name
(Chars
(Id
), Suffix_Nam
, Scope
(Id
));
8262 end Get_Qualified_Name
;
8264 function Get_Qualified_Name
8266 Suffix
: Name_Id
:= No_Name
;
8267 Scop
: Entity_Id
:= Current_Scope
) return Name_Id
8269 procedure Add_Scope
(S
: Entity_Id
);
8270 -- Add the fully qualified form of scope S to the name buffer. The
8278 procedure Add_Scope
(S
: Entity_Id
) is
8283 elsif S
= Standard_Standard
then
8287 Add_Scope
(Scope
(S
));
8288 Get_Name_String_And_Append
(Chars
(S
));
8289 Add_Str_To_Name_Buffer
("__");
8293 -- Start of processing for Get_Qualified_Name
8299 -- Append the base name after all scopes have been chained
8301 Get_Name_String_And_Append
(Nam
);
8303 -- Append the suffix (if present)
8305 if Suffix
/= No_Name
then
8306 Add_Str_To_Name_Buffer
("__");
8307 Get_Name_String_And_Append
(Suffix
);
8311 end Get_Qualified_Name
;
8313 -----------------------
8314 -- Get_Reason_String --
8315 -----------------------
8317 procedure Get_Reason_String
(N
: Node_Id
) is
8319 if Nkind
(N
) = N_String_Literal
then
8320 Store_String_Chars
(Strval
(N
));
8322 elsif Nkind
(N
) = N_Op_Concat
then
8323 Get_Reason_String
(Left_Opnd
(N
));
8324 Get_Reason_String
(Right_Opnd
(N
));
8326 -- If not of required form, error
8330 ("Reason for pragma Warnings has wrong form", N
);
8332 ("\must be string literal or concatenation of string literals", N
);
8335 end Get_Reason_String
;
8337 --------------------------------
8338 -- Get_Reference_Discriminant --
8339 --------------------------------
8341 function Get_Reference_Discriminant
(Typ
: Entity_Id
) return Entity_Id
is
8345 D
:= First_Discriminant
(Typ
);
8346 while Present
(D
) loop
8347 if Has_Implicit_Dereference
(D
) then
8350 Next_Discriminant
(D
);
8354 end Get_Reference_Discriminant
;
8356 ---------------------------
8357 -- Get_Referenced_Object --
8358 ---------------------------
8360 function Get_Referenced_Object
(N
: Node_Id
) return Node_Id
is
8365 while Is_Entity_Name
(R
)
8366 and then Present
(Renamed_Object
(Entity
(R
)))
8368 R
:= Renamed_Object
(Entity
(R
));
8372 end Get_Referenced_Object
;
8374 ------------------------
8375 -- Get_Renamed_Entity --
8376 ------------------------
8378 function Get_Renamed_Entity
(E
: Entity_Id
) return Entity_Id
is
8383 while Present
(Renamed_Entity
(R
)) loop
8384 R
:= Renamed_Entity
(R
);
8388 end Get_Renamed_Entity
;
8390 -----------------------
8391 -- Get_Return_Object --
8392 -----------------------
8394 function Get_Return_Object
(N
: Node_Id
) return Entity_Id
is
8398 Decl
:= First
(Return_Object_Declarations
(N
));
8399 while Present
(Decl
) loop
8400 exit when Nkind
(Decl
) = N_Object_Declaration
8401 and then Is_Return_Object
(Defining_Identifier
(Decl
));
8405 pragma Assert
(Present
(Decl
));
8406 return Defining_Identifier
(Decl
);
8407 end Get_Return_Object
;
8409 ---------------------------
8410 -- Get_Subprogram_Entity --
8411 ---------------------------
8413 function Get_Subprogram_Entity
(Nod
: Node_Id
) return Entity_Id
is
8415 Subp_Id
: Entity_Id
;
8418 if Nkind
(Nod
) = N_Accept_Statement
then
8419 Subp
:= Entry_Direct_Name
(Nod
);
8421 elsif Nkind
(Nod
) = N_Slice
then
8422 Subp
:= Prefix
(Nod
);
8428 -- Strip the subprogram call
8431 if Nkind_In
(Subp
, N_Explicit_Dereference
,
8432 N_Indexed_Component
,
8433 N_Selected_Component
)
8435 Subp
:= Prefix
(Subp
);
8437 elsif Nkind_In
(Subp
, N_Type_Conversion
,
8438 N_Unchecked_Type_Conversion
)
8440 Subp
:= Expression
(Subp
);
8447 -- Extract the entity of the subprogram call
8449 if Is_Entity_Name
(Subp
) then
8450 Subp_Id
:= Entity
(Subp
);
8452 if Ekind
(Subp_Id
) = E_Access_Subprogram_Type
then
8453 Subp_Id
:= Directly_Designated_Type
(Subp_Id
);
8456 if Is_Subprogram
(Subp_Id
) then
8462 -- The search did not find a construct that denotes a subprogram
8467 end Get_Subprogram_Entity
;
8469 -----------------------------
8470 -- Get_Task_Body_Procedure --
8471 -----------------------------
8473 function Get_Task_Body_Procedure
(E
: Entity_Id
) return Node_Id
is
8475 -- Note: A task type may be the completion of a private type with
8476 -- discriminants. When performing elaboration checks on a task
8477 -- declaration, the current view of the type may be the private one,
8478 -- and the procedure that holds the body of the task is held in its
8481 -- This is an odd function, why not have Task_Body_Procedure do
8482 -- the following digging???
8484 return Task_Body_Procedure
(Underlying_Type
(Root_Type
(E
)));
8485 end Get_Task_Body_Procedure
;
8487 -------------------------
8488 -- Get_User_Defined_Eq --
8489 -------------------------
8491 function Get_User_Defined_Eq
(E
: Entity_Id
) return Entity_Id
is
8496 Prim
:= First_Elmt
(Collect_Primitive_Operations
(E
));
8497 while Present
(Prim
) loop
8500 if Chars
(Op
) = Name_Op_Eq
8501 and then Etype
(Op
) = Standard_Boolean
8502 and then Etype
(First_Formal
(Op
)) = E
8503 and then Etype
(Next_Formal
(First_Formal
(Op
))) = E
8512 end Get_User_Defined_Eq
;
8520 Priv_Typ
: out Entity_Id
;
8521 Full_Typ
: out Entity_Id
;
8522 Full_Base
: out Entity_Id
;
8523 CRec_Typ
: out Entity_Id
)
8525 IP_View
: Entity_Id
;
8528 -- Assume that none of the views can be recovered
8535 -- The input type is the corresponding record type of a protected or a
8538 if Ekind
(Typ
) = E_Record_Type
8539 and then Is_Concurrent_Record_Type
(Typ
)
8542 Full_Typ
:= Corresponding_Concurrent_Type
(CRec_Typ
);
8543 Full_Base
:= Base_Type
(Full_Typ
);
8544 Priv_Typ
:= Incomplete_Or_Partial_View
(Full_Typ
);
8546 -- Otherwise the input type denotes an arbitrary type
8549 IP_View
:= Incomplete_Or_Partial_View
(Typ
);
8551 -- The input type denotes the full view of a private type
8553 if Present
(IP_View
) then
8554 Priv_Typ
:= IP_View
;
8557 -- The input type is a private type
8559 elsif Is_Private_Type
(Typ
) then
8561 Full_Typ
:= Full_View
(Priv_Typ
);
8563 -- Otherwise the input type does not have any views
8569 if Present
(Full_Typ
) then
8570 Full_Base
:= Base_Type
(Full_Typ
);
8572 if Ekind_In
(Full_Typ
, E_Protected_Type
, E_Task_Type
) then
8573 CRec_Typ
:= Corresponding_Record_Type
(Full_Typ
);
8579 -----------------------
8580 -- Has_Access_Values --
8581 -----------------------
8583 function Has_Access_Values
(T
: Entity_Id
) return Boolean is
8584 Typ
: constant Entity_Id
:= Underlying_Type
(T
);
8587 -- Case of a private type which is not completed yet. This can only
8588 -- happen in the case of a generic format type appearing directly, or
8589 -- as a component of the type to which this function is being applied
8590 -- at the top level. Return False in this case, since we certainly do
8591 -- not know that the type contains access types.
8596 elsif Is_Access_Type
(Typ
) then
8599 elsif Is_Array_Type
(Typ
) then
8600 return Has_Access_Values
(Component_Type
(Typ
));
8602 elsif Is_Record_Type
(Typ
) then
8607 -- Loop to Check components
8609 Comp
:= First_Component_Or_Discriminant
(Typ
);
8610 while Present
(Comp
) loop
8612 -- Check for access component, tag field does not count, even
8613 -- though it is implemented internally using an access type.
8615 if Has_Access_Values
(Etype
(Comp
))
8616 and then Chars
(Comp
) /= Name_uTag
8621 Next_Component_Or_Discriminant
(Comp
);
8630 end Has_Access_Values
;
8632 ------------------------------
8633 -- Has_Compatible_Alignment --
8634 ------------------------------
8636 function Has_Compatible_Alignment
8639 Layout_Done
: Boolean) return Alignment_Result
8641 function Has_Compatible_Alignment_Internal
8644 Layout_Done
: Boolean;
8645 Default
: Alignment_Result
) return Alignment_Result
;
8646 -- This is the internal recursive function that actually does the work.
8647 -- There is one additional parameter, which says what the result should
8648 -- be if no alignment information is found, and there is no definite
8649 -- indication of compatible alignments. At the outer level, this is set
8650 -- to Unknown, but for internal recursive calls in the case where types
8651 -- are known to be correct, it is set to Known_Compatible.
8653 ---------------------------------------
8654 -- Has_Compatible_Alignment_Internal --
8655 ---------------------------------------
8657 function Has_Compatible_Alignment_Internal
8660 Layout_Done
: Boolean;
8661 Default
: Alignment_Result
) return Alignment_Result
8663 Result
: Alignment_Result
:= Known_Compatible
;
8664 -- Holds the current status of the result. Note that once a value of
8665 -- Known_Incompatible is set, it is sticky and does not get changed
8666 -- to Unknown (the value in Result only gets worse as we go along,
8669 Offs
: Uint
:= No_Uint
;
8670 -- Set to a factor of the offset from the base object when Expr is a
8671 -- selected or indexed component, based on Component_Bit_Offset and
8672 -- Component_Size respectively. A negative value is used to represent
8673 -- a value which is not known at compile time.
8675 procedure Check_Prefix
;
8676 -- Checks the prefix recursively in the case where the expression
8677 -- is an indexed or selected component.
8679 procedure Set_Result
(R
: Alignment_Result
);
8680 -- If R represents a worse outcome (unknown instead of known
8681 -- compatible, or known incompatible), then set Result to R.
8687 procedure Check_Prefix
is
8689 -- The subtlety here is that in doing a recursive call to check
8690 -- the prefix, we have to decide what to do in the case where we
8691 -- don't find any specific indication of an alignment problem.
8693 -- At the outer level, we normally set Unknown as the result in
8694 -- this case, since we can only set Known_Compatible if we really
8695 -- know that the alignment value is OK, but for the recursive
8696 -- call, in the case where the types match, and we have not
8697 -- specified a peculiar alignment for the object, we are only
8698 -- concerned about suspicious rep clauses, the default case does
8699 -- not affect us, since the compiler will, in the absence of such
8700 -- rep clauses, ensure that the alignment is correct.
8702 if Default
= Known_Compatible
8704 (Etype
(Obj
) = Etype
(Expr
)
8705 and then (Unknown_Alignment
(Obj
)
8707 Alignment
(Obj
) = Alignment
(Etype
(Obj
))))
8710 (Has_Compatible_Alignment_Internal
8711 (Obj
, Prefix
(Expr
), Layout_Done
, Known_Compatible
));
8713 -- In all other cases, we need a full check on the prefix
8717 (Has_Compatible_Alignment_Internal
8718 (Obj
, Prefix
(Expr
), Layout_Done
, Unknown
));
8726 procedure Set_Result
(R
: Alignment_Result
) is
8733 -- Start of processing for Has_Compatible_Alignment_Internal
8736 -- If Expr is a selected component, we must make sure there is no
8737 -- potentially troublesome component clause and that the record is
8738 -- not packed if the layout is not done.
8740 if Nkind
(Expr
) = N_Selected_Component
then
8742 -- Packing generates unknown alignment if layout is not done
8744 if Is_Packed
(Etype
(Prefix
(Expr
))) and then not Layout_Done
then
8745 Set_Result
(Unknown
);
8748 -- Check prefix and component offset
8751 Offs
:= Component_Bit_Offset
(Entity
(Selector_Name
(Expr
)));
8753 -- If Expr is an indexed component, we must make sure there is no
8754 -- potentially troublesome Component_Size clause and that the array
8755 -- is not bit-packed if the layout is not done.
8757 elsif Nkind
(Expr
) = N_Indexed_Component
then
8759 Typ
: constant Entity_Id
:= Etype
(Prefix
(Expr
));
8762 -- Packing generates unknown alignment if layout is not done
8764 if Is_Bit_Packed_Array
(Typ
) and then not Layout_Done
then
8765 Set_Result
(Unknown
);
8768 -- Check prefix and component offset (or at least size)
8771 Offs
:= Indexed_Component_Bit_Offset
(Expr
);
8772 if Offs
= No_Uint
then
8773 Offs
:= Component_Size
(Typ
);
8778 -- If we have a null offset, the result is entirely determined by
8779 -- the base object and has already been computed recursively.
8781 if Offs
= Uint_0
then
8784 -- Case where we know the alignment of the object
8786 elsif Known_Alignment
(Obj
) then
8788 ObjA
: constant Uint
:= Alignment
(Obj
);
8789 ExpA
: Uint
:= No_Uint
;
8790 SizA
: Uint
:= No_Uint
;
8793 -- If alignment of Obj is 1, then we are always OK
8796 Set_Result
(Known_Compatible
);
8798 -- Alignment of Obj is greater than 1, so we need to check
8801 -- If we have an offset, see if it is compatible
8803 if Offs
/= No_Uint
and Offs
> Uint_0
then
8804 if Offs
mod (System_Storage_Unit
* ObjA
) /= 0 then
8805 Set_Result
(Known_Incompatible
);
8808 -- See if Expr is an object with known alignment
8810 elsif Is_Entity_Name
(Expr
)
8811 and then Known_Alignment
(Entity
(Expr
))
8813 ExpA
:= Alignment
(Entity
(Expr
));
8815 -- Otherwise, we can use the alignment of the type of
8816 -- Expr given that we already checked for
8817 -- discombobulating rep clauses for the cases of indexed
8818 -- and selected components above.
8820 elsif Known_Alignment
(Etype
(Expr
)) then
8821 ExpA
:= Alignment
(Etype
(Expr
));
8823 -- Otherwise the alignment is unknown
8826 Set_Result
(Default
);
8829 -- If we got an alignment, see if it is acceptable
8831 if ExpA
/= No_Uint
and then ExpA
< ObjA
then
8832 Set_Result
(Known_Incompatible
);
8835 -- If Expr is not a piece of a larger object, see if size
8836 -- is given. If so, check that it is not too small for the
8837 -- required alignment.
8839 if Offs
/= No_Uint
then
8842 -- See if Expr is an object with known size
8844 elsif Is_Entity_Name
(Expr
)
8845 and then Known_Static_Esize
(Entity
(Expr
))
8847 SizA
:= Esize
(Entity
(Expr
));
8849 -- Otherwise, we check the object size of the Expr type
8851 elsif Known_Static_Esize
(Etype
(Expr
)) then
8852 SizA
:= Esize
(Etype
(Expr
));
8855 -- If we got a size, see if it is a multiple of the Obj
8856 -- alignment, if not, then the alignment cannot be
8857 -- acceptable, since the size is always a multiple of the
8860 if SizA
/= No_Uint
then
8861 if SizA
mod (ObjA
* Ttypes
.System_Storage_Unit
) /= 0 then
8862 Set_Result
(Known_Incompatible
);
8868 -- If we do not know required alignment, any non-zero offset is a
8869 -- potential problem (but certainly may be OK, so result is unknown).
8871 elsif Offs
/= No_Uint
then
8872 Set_Result
(Unknown
);
8874 -- If we can't find the result by direct comparison of alignment
8875 -- values, then there is still one case that we can determine known
8876 -- result, and that is when we can determine that the types are the
8877 -- same, and no alignments are specified. Then we known that the
8878 -- alignments are compatible, even if we don't know the alignment
8879 -- value in the front end.
8881 elsif Etype
(Obj
) = Etype
(Expr
) then
8883 -- Types are the same, but we have to check for possible size
8884 -- and alignments on the Expr object that may make the alignment
8885 -- different, even though the types are the same.
8887 if Is_Entity_Name
(Expr
) then
8889 -- First check alignment of the Expr object. Any alignment less
8890 -- than Maximum_Alignment is worrisome since this is the case
8891 -- where we do not know the alignment of Obj.
8893 if Known_Alignment
(Entity
(Expr
))
8894 and then UI_To_Int
(Alignment
(Entity
(Expr
))) <
8895 Ttypes
.Maximum_Alignment
8897 Set_Result
(Unknown
);
8899 -- Now check size of Expr object. Any size that is not an
8900 -- even multiple of Maximum_Alignment is also worrisome
8901 -- since it may cause the alignment of the object to be less
8902 -- than the alignment of the type.
8904 elsif Known_Static_Esize
(Entity
(Expr
))
8906 (UI_To_Int
(Esize
(Entity
(Expr
))) mod
8907 (Ttypes
.Maximum_Alignment
* Ttypes
.System_Storage_Unit
))
8910 Set_Result
(Unknown
);
8912 -- Otherwise same type is decisive
8915 Set_Result
(Known_Compatible
);
8919 -- Another case to deal with is when there is an explicit size or
8920 -- alignment clause when the types are not the same. If so, then the
8921 -- result is Unknown. We don't need to do this test if the Default is
8922 -- Unknown, since that result will be set in any case.
8924 elsif Default
/= Unknown
8925 and then (Has_Size_Clause
(Etype
(Expr
))
8927 Has_Alignment_Clause
(Etype
(Expr
)))
8929 Set_Result
(Unknown
);
8931 -- If no indication found, set default
8934 Set_Result
(Default
);
8937 -- Return worst result found
8940 end Has_Compatible_Alignment_Internal
;
8942 -- Start of processing for Has_Compatible_Alignment
8945 -- If Obj has no specified alignment, then set alignment from the type
8946 -- alignment. Perhaps we should always do this, but for sure we should
8947 -- do it when there is an address clause since we can do more if the
8948 -- alignment is known.
8950 if Unknown_Alignment
(Obj
) then
8951 Set_Alignment
(Obj
, Alignment
(Etype
(Obj
)));
8954 -- Now do the internal call that does all the work
8957 Has_Compatible_Alignment_Internal
(Obj
, Expr
, Layout_Done
, Unknown
);
8958 end Has_Compatible_Alignment
;
8960 ----------------------
8961 -- Has_Declarations --
8962 ----------------------
8964 function Has_Declarations
(N
: Node_Id
) return Boolean is
8966 return Nkind_In
(Nkind
(N
), N_Accept_Statement
,
8968 N_Compilation_Unit_Aux
,
8974 N_Package_Specification
);
8975 end Has_Declarations
;
8977 ---------------------------------
8978 -- Has_Defaulted_Discriminants --
8979 ---------------------------------
8981 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
8983 return Has_Discriminants
(Typ
)
8984 and then Present
(First_Discriminant
(Typ
))
8985 and then Present
(Discriminant_Default_Value
8986 (First_Discriminant
(Typ
)));
8987 end Has_Defaulted_Discriminants
;
8993 function Has_Denormals
(E
: Entity_Id
) return Boolean is
8995 return Is_Floating_Point_Type
(E
) and then Denorm_On_Target
;
8998 -------------------------------------------
8999 -- Has_Discriminant_Dependent_Constraint --
9000 -------------------------------------------
9002 function Has_Discriminant_Dependent_Constraint
9003 (Comp
: Entity_Id
) return Boolean
9005 Comp_Decl
: constant Node_Id
:= Parent
(Comp
);
9006 Subt_Indic
: Node_Id
;
9011 -- Discriminants can't depend on discriminants
9013 if Ekind
(Comp
) = E_Discriminant
then
9017 Subt_Indic
:= Subtype_Indication
(Component_Definition
(Comp_Decl
));
9019 if Nkind
(Subt_Indic
) = N_Subtype_Indication
then
9020 Constr
:= Constraint
(Subt_Indic
);
9022 if Nkind
(Constr
) = N_Index_Or_Discriminant_Constraint
then
9023 Assn
:= First
(Constraints
(Constr
));
9024 while Present
(Assn
) loop
9025 case Nkind
(Assn
) is
9028 | N_Subtype_Indication
9030 if Depends_On_Discriminant
(Assn
) then
9034 when N_Discriminant_Association
=>
9035 if Depends_On_Discriminant
(Expression
(Assn
)) then
9050 end Has_Discriminant_Dependent_Constraint
;
9052 --------------------------------------
9053 -- Has_Effectively_Volatile_Profile --
9054 --------------------------------------
9056 function Has_Effectively_Volatile_Profile
9057 (Subp_Id
: Entity_Id
) return Boolean
9062 -- Inspect the formal parameters looking for an effectively volatile
9065 Formal
:= First_Formal
(Subp_Id
);
9066 while Present
(Formal
) loop
9067 if Is_Effectively_Volatile
(Etype
(Formal
)) then
9071 Next_Formal
(Formal
);
9074 -- Inspect the return type of functions
9076 if Ekind_In
(Subp_Id
, E_Function
, E_Generic_Function
)
9077 and then Is_Effectively_Volatile
(Etype
(Subp_Id
))
9083 end Has_Effectively_Volatile_Profile
;
9085 --------------------------
9086 -- Has_Enabled_Property --
9087 --------------------------
9089 function Has_Enabled_Property
9090 (Item_Id
: Entity_Id
;
9091 Property
: Name_Id
) return Boolean
9093 function Protected_Object_Has_Enabled_Property
return Boolean;
9094 -- Determine whether a protected object denoted by Item_Id has the
9095 -- property enabled.
9097 function State_Has_Enabled_Property
return Boolean;
9098 -- Determine whether a state denoted by Item_Id has the property enabled
9100 function Variable_Has_Enabled_Property
return Boolean;
9101 -- Determine whether a variable denoted by Item_Id has the property
9104 -------------------------------------------
9105 -- Protected_Object_Has_Enabled_Property --
9106 -------------------------------------------
9108 function Protected_Object_Has_Enabled_Property
return Boolean is
9109 Constits
: constant Elist_Id
:= Part_Of_Constituents
(Item_Id
);
9110 Constit_Elmt
: Elmt_Id
;
9111 Constit_Id
: Entity_Id
;
9114 -- Protected objects always have the properties Async_Readers and
9115 -- Async_Writers (SPARK RM 7.1.2(16)).
9117 if Property
= Name_Async_Readers
9118 or else Property
= Name_Async_Writers
9122 -- Protected objects that have Part_Of components also inherit their
9123 -- properties Effective_Reads and Effective_Writes
9124 -- (SPARK RM 7.1.2(16)).
9126 elsif Present
(Constits
) then
9127 Constit_Elmt
:= First_Elmt
(Constits
);
9128 while Present
(Constit_Elmt
) loop
9129 Constit_Id
:= Node
(Constit_Elmt
);
9131 if Has_Enabled_Property
(Constit_Id
, Property
) then
9135 Next_Elmt
(Constit_Elmt
);
9140 end Protected_Object_Has_Enabled_Property
;
9142 --------------------------------
9143 -- State_Has_Enabled_Property --
9144 --------------------------------
9146 function State_Has_Enabled_Property
return Boolean is
9147 Decl
: constant Node_Id
:= Parent
(Item_Id
);
9155 -- The declaration of an external abstract state appears as an
9156 -- extension aggregate. If this is not the case, properties can never
9159 if Nkind
(Decl
) /= N_Extension_Aggregate
then
9163 -- When External appears as a simple option, it automatically enables
9166 Opt
:= First
(Expressions
(Decl
));
9167 while Present
(Opt
) loop
9168 if Nkind
(Opt
) = N_Identifier
9169 and then Chars
(Opt
) = Name_External
9177 -- When External specifies particular properties, inspect those and
9178 -- find the desired one (if any).
9180 Opt
:= First
(Component_Associations
(Decl
));
9181 while Present
(Opt
) loop
9182 Opt_Nam
:= First
(Choices
(Opt
));
9184 if Nkind
(Opt_Nam
) = N_Identifier
9185 and then Chars
(Opt_Nam
) = Name_External
9187 Props
:= Expression
(Opt
);
9189 -- Multiple properties appear as an aggregate
9191 if Nkind
(Props
) = N_Aggregate
then
9193 -- Simple property form
9195 Prop
:= First
(Expressions
(Props
));
9196 while Present
(Prop
) loop
9197 if Chars
(Prop
) = Property
then
9204 -- Property with expression form
9206 Prop
:= First
(Component_Associations
(Props
));
9207 while Present
(Prop
) loop
9208 Prop_Nam
:= First
(Choices
(Prop
));
9210 -- The property can be represented in two ways:
9211 -- others => <value>
9212 -- <property> => <value>
9214 if Nkind
(Prop_Nam
) = N_Others_Choice
9215 or else (Nkind
(Prop_Nam
) = N_Identifier
9216 and then Chars
(Prop_Nam
) = Property
)
9218 return Is_True
(Expr_Value
(Expression
(Prop
)));
9227 return Chars
(Props
) = Property
;
9235 end State_Has_Enabled_Property
;
9237 -----------------------------------
9238 -- Variable_Has_Enabled_Property --
9239 -----------------------------------
9241 function Variable_Has_Enabled_Property
return Boolean is
9242 function Is_Enabled
(Prag
: Node_Id
) return Boolean;
9243 -- Determine whether property pragma Prag (if present) denotes an
9244 -- enabled property.
9250 function Is_Enabled
(Prag
: Node_Id
) return Boolean is
9254 if Present
(Prag
) then
9255 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
9257 -- The pragma has an optional Boolean expression, the related
9258 -- property is enabled only when the expression evaluates to
9261 if Present
(Arg1
) then
9262 return Is_True
(Expr_Value
(Get_Pragma_Arg
(Arg1
)));
9264 -- Otherwise the lack of expression enables the property by
9271 -- The property was never set in the first place
9280 AR
: constant Node_Id
:=
9281 Get_Pragma
(Item_Id
, Pragma_Async_Readers
);
9282 AW
: constant Node_Id
:=
9283 Get_Pragma
(Item_Id
, Pragma_Async_Writers
);
9284 ER
: constant Node_Id
:=
9285 Get_Pragma
(Item_Id
, Pragma_Effective_Reads
);
9286 EW
: constant Node_Id
:=
9287 Get_Pragma
(Item_Id
, Pragma_Effective_Writes
);
9289 -- Start of processing for Variable_Has_Enabled_Property
9292 -- A non-effectively volatile object can never possess external
9295 if not Is_Effectively_Volatile
(Item_Id
) then
9298 -- External properties related to variables come in two flavors -
9299 -- explicit and implicit. The explicit case is characterized by the
9300 -- presence of a property pragma with an optional Boolean flag. The
9301 -- property is enabled when the flag evaluates to True or the flag is
9302 -- missing altogether.
9304 elsif Property
= Name_Async_Readers
and then Is_Enabled
(AR
) then
9307 elsif Property
= Name_Async_Writers
and then Is_Enabled
(AW
) then
9310 elsif Property
= Name_Effective_Reads
and then Is_Enabled
(ER
) then
9313 elsif Property
= Name_Effective_Writes
and then Is_Enabled
(EW
) then
9316 -- The implicit case lacks all property pragmas
9318 elsif No
(AR
) and then No
(AW
) and then No
(ER
) and then No
(EW
) then
9319 if Is_Protected_Type
(Etype
(Item_Id
)) then
9320 return Protected_Object_Has_Enabled_Property
;
9328 end Variable_Has_Enabled_Property
;
9330 -- Start of processing for Has_Enabled_Property
9333 -- Abstract states and variables have a flexible scheme of specifying
9334 -- external properties.
9336 if Ekind
(Item_Id
) = E_Abstract_State
then
9337 return State_Has_Enabled_Property
;
9339 elsif Ekind
(Item_Id
) = E_Variable
then
9340 return Variable_Has_Enabled_Property
;
9342 -- By default, protected objects only have the properties Async_Readers
9343 -- and Async_Writers. If they have Part_Of components, they also inherit
9344 -- their properties Effective_Reads and Effective_Writes
9345 -- (SPARK RM 7.1.2(16)).
9347 elsif Ekind
(Item_Id
) = E_Protected_Object
then
9348 return Protected_Object_Has_Enabled_Property
;
9350 -- Otherwise a property is enabled when the related item is effectively
9354 return Is_Effectively_Volatile
(Item_Id
);
9356 end Has_Enabled_Property
;
9358 -------------------------------------
9359 -- Has_Full_Default_Initialization --
9360 -------------------------------------
9362 function Has_Full_Default_Initialization
(Typ
: Entity_Id
) return Boolean is
9367 -- A type subject to pragma Default_Initial_Condition is fully default
9368 -- initialized when the pragma appears with a non-null argument. Since
9369 -- any type may act as the full view of a private type, this check must
9370 -- be performed prior to the specialized tests below.
9372 if Has_DIC
(Typ
) then
9373 Prag
:= Get_Pragma
(Typ
, Pragma_Default_Initial_Condition
);
9374 pragma Assert
(Present
(Prag
));
9376 return Is_Verifiable_DIC_Pragma
(Prag
);
9379 -- A scalar type is fully default initialized if it is subject to aspect
9382 if Is_Scalar_Type
(Typ
) then
9383 return Has_Default_Aspect
(Typ
);
9385 -- An array type is fully default initialized if its element type is
9386 -- scalar and the array type carries aspect Default_Component_Value or
9387 -- the element type is fully default initialized.
9389 elsif Is_Array_Type
(Typ
) then
9391 Has_Default_Aspect
(Typ
)
9392 or else Has_Full_Default_Initialization
(Component_Type
(Typ
));
9394 -- A protected type, record type, or type extension is fully default
9395 -- initialized if all its components either carry an initialization
9396 -- expression or have a type that is fully default initialized. The
9397 -- parent type of a type extension must be fully default initialized.
9399 elsif Is_Record_Type
(Typ
) or else Is_Protected_Type
(Typ
) then
9401 -- Inspect all entities defined in the scope of the type, looking for
9402 -- uninitialized components.
9404 Comp
:= First_Entity
(Typ
);
9405 while Present
(Comp
) loop
9406 if Ekind
(Comp
) = E_Component
9407 and then Comes_From_Source
(Comp
)
9408 and then No
(Expression
(Parent
(Comp
)))
9409 and then not Has_Full_Default_Initialization
(Etype
(Comp
))
9417 -- Ensure that the parent type of a type extension is fully default
9420 if Etype
(Typ
) /= Typ
9421 and then not Has_Full_Default_Initialization
(Etype
(Typ
))
9426 -- If we get here, then all components and parent portion are fully
9427 -- default initialized.
9431 -- A task type is fully default initialized by default
9433 elsif Is_Task_Type
(Typ
) then
9436 -- Otherwise the type is not fully default initialized
9441 end Has_Full_Default_Initialization
;
9443 --------------------
9444 -- Has_Infinities --
9445 --------------------
9447 function Has_Infinities
(E
: Entity_Id
) return Boolean is
9450 Is_Floating_Point_Type
(E
)
9451 and then Nkind
(Scalar_Range
(E
)) = N_Range
9452 and then Includes_Infinities
(Scalar_Range
(E
));
9455 --------------------
9456 -- Has_Interfaces --
9457 --------------------
9459 function Has_Interfaces
9461 Use_Full_View
: Boolean := True) return Boolean
9463 Typ
: Entity_Id
:= Base_Type
(T
);
9466 -- Handle concurrent types
9468 if Is_Concurrent_Type
(Typ
) then
9469 Typ
:= Corresponding_Record_Type
(Typ
);
9472 if not Present
(Typ
)
9473 or else not Is_Record_Type
(Typ
)
9474 or else not Is_Tagged_Type
(Typ
)
9479 -- Handle private types
9481 if Use_Full_View
and then Present
(Full_View
(Typ
)) then
9482 Typ
:= Full_View
(Typ
);
9485 -- Handle concurrent record types
9487 if Is_Concurrent_Record_Type
(Typ
)
9488 and then Is_Non_Empty_List
(Abstract_Interface_List
(Typ
))
9494 if Is_Interface
(Typ
)
9496 (Is_Record_Type
(Typ
)
9497 and then Present
(Interfaces
(Typ
))
9498 and then not Is_Empty_Elmt_List
(Interfaces
(Typ
)))
9503 exit when Etype
(Typ
) = Typ
9505 -- Handle private types
9507 or else (Present
(Full_View
(Etype
(Typ
)))
9508 and then Full_View
(Etype
(Typ
)) = Typ
)
9510 -- Protect frontend against wrong sources with cyclic derivations
9512 or else Etype
(Typ
) = T
;
9514 -- Climb to the ancestor type handling private types
9516 if Present
(Full_View
(Etype
(Typ
))) then
9517 Typ
:= Full_View
(Etype
(Typ
));
9526 --------------------------
9527 -- Has_Max_Queue_Length --
9528 --------------------------
9530 function Has_Max_Queue_Length
(Id
: Entity_Id
) return Boolean is
9533 Ekind
(Id
) = E_Entry
9534 and then Present
(Get_Pragma
(Id
, Pragma_Max_Queue_Length
));
9535 end Has_Max_Queue_Length
;
9537 ---------------------------------
9538 -- Has_No_Obvious_Side_Effects --
9539 ---------------------------------
9541 function Has_No_Obvious_Side_Effects
(N
: Node_Id
) return Boolean is
9543 -- For now handle literals, constants, and non-volatile variables and
9544 -- expressions combining these with operators or short circuit forms.
9546 if Nkind
(N
) in N_Numeric_Or_String_Literal
then
9549 elsif Nkind
(N
) = N_Character_Literal
then
9552 elsif Nkind
(N
) in N_Unary_Op
then
9553 return Has_No_Obvious_Side_Effects
(Right_Opnd
(N
));
9555 elsif Nkind
(N
) in N_Binary_Op
or else Nkind
(N
) in N_Short_Circuit
then
9556 return Has_No_Obvious_Side_Effects
(Left_Opnd
(N
))
9558 Has_No_Obvious_Side_Effects
(Right_Opnd
(N
));
9560 elsif Nkind
(N
) = N_Expression_With_Actions
9561 and then Is_Empty_List
(Actions
(N
))
9563 return Has_No_Obvious_Side_Effects
(Expression
(N
));
9565 elsif Nkind
(N
) in N_Has_Entity
then
9566 return Present
(Entity
(N
))
9567 and then Ekind_In
(Entity
(N
), E_Variable
,
9569 E_Enumeration_Literal
,
9573 and then not Is_Volatile
(Entity
(N
));
9578 end Has_No_Obvious_Side_Effects
;
9580 -----------------------------
9581 -- Has_Non_Null_Refinement --
9582 -----------------------------
9584 function Has_Non_Null_Refinement
(Id
: Entity_Id
) return Boolean is
9585 Constits
: Elist_Id
;
9588 pragma Assert
(Ekind
(Id
) = E_Abstract_State
);
9589 Constits
:= Refinement_Constituents
(Id
);
9591 -- For a refinement to be non-null, the first constituent must be
9592 -- anything other than null.
9596 and then Nkind
(Node
(First_Elmt
(Constits
))) /= N_Null
;
9597 end Has_Non_Null_Refinement
;
9603 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean is
9604 Body_Id
: Entity_Id
;
9611 Spec
:= Parent
(Proc_Id
);
9612 Decl
:= Parent
(Spec
);
9614 -- Retrieve the entity of the procedure body (e.g. invariant proc).
9616 if Nkind
(Spec
) = N_Procedure_Specification
9617 and then Nkind
(Decl
) = N_Subprogram_Declaration
9619 Body_Id
:= Corresponding_Body
(Decl
);
9621 -- The body acts as a spec
9627 -- The body will be generated later
9629 if No
(Body_Id
) then
9633 Spec
:= Parent
(Body_Id
);
9634 Decl
:= Parent
(Spec
);
9637 (Nkind
(Spec
) = N_Procedure_Specification
9638 and then Nkind
(Decl
) = N_Subprogram_Body
);
9640 Stmt1
:= First
(Statements
(Handled_Statement_Sequence
(Decl
)));
9642 -- Look for a null statement followed by an optional return
9645 if Nkind
(Stmt1
) = N_Null_Statement
then
9646 Stmt2
:= Next
(Stmt1
);
9648 if Present
(Stmt2
) then
9649 return Nkind
(Stmt2
) = N_Simple_Return_Statement
;
9658 ------------------------
9659 -- Has_Null_Exclusion --
9660 ------------------------
9662 function Has_Null_Exclusion
(N
: Node_Id
) return Boolean is
9665 when N_Access_Definition
9666 | N_Access_Function_Definition
9667 | N_Access_Procedure_Definition
9668 | N_Access_To_Object_Definition
9670 | N_Derived_Type_Definition
9671 | N_Function_Specification
9672 | N_Subtype_Declaration
9674 return Null_Exclusion_Present
(N
);
9676 when N_Component_Definition
9677 | N_Formal_Object_Declaration
9678 | N_Object_Renaming_Declaration
9680 if Present
(Subtype_Mark
(N
)) then
9681 return Null_Exclusion_Present
(N
);
9682 else pragma Assert
(Present
(Access_Definition
(N
)));
9683 return Null_Exclusion_Present
(Access_Definition
(N
));
9686 when N_Discriminant_Specification
=>
9687 if Nkind
(Discriminant_Type
(N
)) = N_Access_Definition
then
9688 return Null_Exclusion_Present
(Discriminant_Type
(N
));
9690 return Null_Exclusion_Present
(N
);
9693 when N_Object_Declaration
=>
9694 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
then
9695 return Null_Exclusion_Present
(Object_Definition
(N
));
9697 return Null_Exclusion_Present
(N
);
9700 when N_Parameter_Specification
=>
9701 if Nkind
(Parameter_Type
(N
)) = N_Access_Definition
then
9702 return Null_Exclusion_Present
(Parameter_Type
(N
));
9704 return Null_Exclusion_Present
(N
);
9710 end Has_Null_Exclusion
;
9712 ------------------------
9713 -- Has_Null_Extension --
9714 ------------------------
9716 function Has_Null_Extension
(T
: Entity_Id
) return Boolean is
9717 B
: constant Entity_Id
:= Base_Type
(T
);
9722 if Nkind
(Parent
(B
)) = N_Full_Type_Declaration
9723 and then Present
(Record_Extension_Part
(Type_Definition
(Parent
(B
))))
9725 Ext
:= Record_Extension_Part
(Type_Definition
(Parent
(B
)));
9727 if Present
(Ext
) then
9728 if Null_Present
(Ext
) then
9731 Comps
:= Component_List
(Ext
);
9733 -- The null component list is rewritten during analysis to
9734 -- include the parent component. Any other component indicates
9735 -- that the extension was not originally null.
9737 return Null_Present
(Comps
)
9738 or else No
(Next
(First
(Component_Items
(Comps
))));
9747 end Has_Null_Extension
;
9749 -------------------------
9750 -- Has_Null_Refinement --
9751 -------------------------
9753 function Has_Null_Refinement
(Id
: Entity_Id
) return Boolean is
9754 Constits
: Elist_Id
;
9757 pragma Assert
(Ekind
(Id
) = E_Abstract_State
);
9758 Constits
:= Refinement_Constituents
(Id
);
9760 -- For a refinement to be null, the state's sole constituent must be a
9765 and then Nkind
(Node
(First_Elmt
(Constits
))) = N_Null
;
9766 end Has_Null_Refinement
;
9768 -------------------------------
9769 -- Has_Overriding_Initialize --
9770 -------------------------------
9772 function Has_Overriding_Initialize
(T
: Entity_Id
) return Boolean is
9773 BT
: constant Entity_Id
:= Base_Type
(T
);
9777 if Is_Controlled
(BT
) then
9778 if Is_RTU
(Scope
(BT
), Ada_Finalization
) then
9781 elsif Present
(Primitive_Operations
(BT
)) then
9782 P
:= First_Elmt
(Primitive_Operations
(BT
));
9783 while Present
(P
) loop
9785 Init
: constant Entity_Id
:= Node
(P
);
9786 Formal
: constant Entity_Id
:= First_Formal
(Init
);
9788 if Ekind
(Init
) = E_Procedure
9789 and then Chars
(Init
) = Name_Initialize
9790 and then Comes_From_Source
(Init
)
9791 and then Present
(Formal
)
9792 and then Etype
(Formal
) = BT
9793 and then No
(Next_Formal
(Formal
))
9794 and then (Ada_Version
< Ada_2012
9795 or else not Null_Present
(Parent
(Init
)))
9805 -- Here if type itself does not have a non-null Initialize operation:
9806 -- check immediate ancestor.
9808 if Is_Derived_Type
(BT
)
9809 and then Has_Overriding_Initialize
(Etype
(BT
))
9816 end Has_Overriding_Initialize
;
9818 --------------------------------------
9819 -- Has_Preelaborable_Initialization --
9820 --------------------------------------
9822 function Has_Preelaborable_Initialization
(E
: Entity_Id
) return Boolean is
9825 procedure Check_Components
(E
: Entity_Id
);
9826 -- Check component/discriminant chain, sets Has_PE False if a component
9827 -- or discriminant does not meet the preelaborable initialization rules.
9829 ----------------------
9830 -- Check_Components --
9831 ----------------------
9833 procedure Check_Components
(E
: Entity_Id
) is
9837 function Is_Preelaborable_Expression
(N
: Node_Id
) return Boolean;
9838 -- Returns True if and only if the expression denoted by N does not
9839 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
9841 ---------------------------------
9842 -- Is_Preelaborable_Expression --
9843 ---------------------------------
9845 function Is_Preelaborable_Expression
(N
: Node_Id
) return Boolean is
9849 Comp_Type
: Entity_Id
;
9850 Is_Array_Aggr
: Boolean;
9853 if Is_OK_Static_Expression
(N
) then
9856 elsif Nkind
(N
) = N_Null
then
9859 -- Attributes are allowed in general, even if their prefix is a
9860 -- formal type. (It seems that certain attributes known not to be
9861 -- static might not be allowed, but there are no rules to prevent
9864 elsif Nkind
(N
) = N_Attribute_Reference
then
9867 -- The name of a discriminant evaluated within its parent type is
9868 -- defined to be preelaborable (10.2.1(8)). Note that we test for
9869 -- names that denote discriminals as well as discriminants to
9870 -- catch references occurring within init procs.
9872 elsif Is_Entity_Name
(N
)
9874 (Ekind
(Entity
(N
)) = E_Discriminant
9875 or else (Ekind_In
(Entity
(N
), E_Constant
, E_In_Parameter
)
9876 and then Present
(Discriminal_Link
(Entity
(N
)))))
9880 elsif Nkind
(N
) = N_Qualified_Expression
then
9881 return Is_Preelaborable_Expression
(Expression
(N
));
9883 -- For aggregates we have to check that each of the associations
9884 -- is preelaborable.
9886 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
9887 Is_Array_Aggr
:= Is_Array_Type
(Etype
(N
));
9889 if Is_Array_Aggr
then
9890 Comp_Type
:= Component_Type
(Etype
(N
));
9893 -- Check the ancestor part of extension aggregates, which must
9894 -- be either the name of a type that has preelaborable init or
9895 -- an expression that is preelaborable.
9897 if Nkind
(N
) = N_Extension_Aggregate
then
9899 Anc_Part
: constant Node_Id
:= Ancestor_Part
(N
);
9902 if Is_Entity_Name
(Anc_Part
)
9903 and then Is_Type
(Entity
(Anc_Part
))
9905 if not Has_Preelaborable_Initialization
9911 elsif not Is_Preelaborable_Expression
(Anc_Part
) then
9917 -- Check positional associations
9919 Exp
:= First
(Expressions
(N
));
9920 while Present
(Exp
) loop
9921 if not Is_Preelaborable_Expression
(Exp
) then
9928 -- Check named associations
9930 Assn
:= First
(Component_Associations
(N
));
9931 while Present
(Assn
) loop
9932 Choice
:= First
(Choices
(Assn
));
9933 while Present
(Choice
) loop
9934 if Is_Array_Aggr
then
9935 if Nkind
(Choice
) = N_Others_Choice
then
9938 elsif Nkind
(Choice
) = N_Range
then
9939 if not Is_OK_Static_Range
(Choice
) then
9943 elsif not Is_OK_Static_Expression
(Choice
) then
9948 Comp_Type
:= Etype
(Choice
);
9954 -- If the association has a <> at this point, then we have
9955 -- to check whether the component's type has preelaborable
9956 -- initialization. Note that this only occurs when the
9957 -- association's corresponding component does not have a
9958 -- default expression, the latter case having already been
9959 -- expanded as an expression for the association.
9961 if Box_Present
(Assn
) then
9962 if not Has_Preelaborable_Initialization
(Comp_Type
) then
9966 -- In the expression case we check whether the expression
9967 -- is preelaborable.
9970 not Is_Preelaborable_Expression
(Expression
(Assn
))
9978 -- If we get here then aggregate as a whole is preelaborable
9982 -- All other cases are not preelaborable
9987 end Is_Preelaborable_Expression
;
9989 -- Start of processing for Check_Components
9992 -- Loop through entities of record or protected type
9995 while Present
(Ent
) loop
9997 -- We are interested only in components and discriminants
10001 case Ekind
(Ent
) is
10002 when E_Component
=>
10004 -- Get default expression if any. If there is no declaration
10005 -- node, it means we have an internal entity. The parent and
10006 -- tag fields are examples of such entities. For such cases,
10007 -- we just test the type of the entity.
10009 if Present
(Declaration_Node
(Ent
)) then
10010 Exp
:= Expression
(Declaration_Node
(Ent
));
10013 when E_Discriminant
=>
10015 -- Note: for a renamed discriminant, the Declaration_Node
10016 -- may point to the one from the ancestor, and have a
10017 -- different expression, so use the proper attribute to
10018 -- retrieve the expression from the derived constraint.
10020 Exp
:= Discriminant_Default_Value
(Ent
);
10023 goto Check_Next_Entity
;
10026 -- A component has PI if it has no default expression and the
10027 -- component type has PI.
10030 if not Has_Preelaborable_Initialization
(Etype
(Ent
)) then
10035 -- Require the default expression to be preelaborable
10037 elsif not Is_Preelaborable_Expression
(Exp
) then
10042 <<Check_Next_Entity
>>
10045 end Check_Components
;
10047 -- Start of processing for Has_Preelaborable_Initialization
10050 -- Immediate return if already marked as known preelaborable init. This
10051 -- covers types for which this function has already been called once
10052 -- and returned True (in which case the result is cached), and also
10053 -- types to which a pragma Preelaborable_Initialization applies.
10055 if Known_To_Have_Preelab_Init
(E
) then
10059 -- If the type is a subtype representing a generic actual type, then
10060 -- test whether its base type has preelaborable initialization since
10061 -- the subtype representing the actual does not inherit this attribute
10062 -- from the actual or formal. (but maybe it should???)
10064 if Is_Generic_Actual_Type
(E
) then
10065 return Has_Preelaborable_Initialization
(Base_Type
(E
));
10068 -- All elementary types have preelaborable initialization
10070 if Is_Elementary_Type
(E
) then
10073 -- Array types have PI if the component type has PI
10075 elsif Is_Array_Type
(E
) then
10076 Has_PE
:= Has_Preelaborable_Initialization
(Component_Type
(E
));
10078 -- A derived type has preelaborable initialization if its parent type
10079 -- has preelaborable initialization and (in the case of a derived record
10080 -- extension) if the non-inherited components all have preelaborable
10081 -- initialization. However, a user-defined controlled type with an
10082 -- overriding Initialize procedure does not have preelaborable
10085 elsif Is_Derived_Type
(E
) then
10087 -- If the derived type is a private extension then it doesn't have
10088 -- preelaborable initialization.
10090 if Ekind
(Base_Type
(E
)) = E_Record_Type_With_Private
then
10094 -- First check whether ancestor type has preelaborable initialization
10096 Has_PE
:= Has_Preelaborable_Initialization
(Etype
(Base_Type
(E
)));
10098 -- If OK, check extension components (if any)
10100 if Has_PE
and then Is_Record_Type
(E
) then
10101 Check_Components
(First_Entity
(E
));
10104 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
10105 -- with a user defined Initialize procedure does not have PI. If
10106 -- the type is untagged, the control primitives come from a component
10107 -- that has already been checked.
10110 and then Is_Controlled
(E
)
10111 and then Is_Tagged_Type
(E
)
10112 and then Has_Overriding_Initialize
(E
)
10117 -- Private types not derived from a type having preelaborable init and
10118 -- that are not marked with pragma Preelaborable_Initialization do not
10119 -- have preelaborable initialization.
10121 elsif Is_Private_Type
(E
) then
10124 -- Record type has PI if it is non private and all components have PI
10126 elsif Is_Record_Type
(E
) then
10128 Check_Components
(First_Entity
(E
));
10130 -- Protected types must not have entries, and components must meet
10131 -- same set of rules as for record components.
10133 elsif Is_Protected_Type
(E
) then
10134 if Has_Entries
(E
) then
10138 Check_Components
(First_Entity
(E
));
10139 Check_Components
(First_Private_Entity
(E
));
10142 -- Type System.Address always has preelaborable initialization
10144 elsif Is_RTE
(E
, RE_Address
) then
10147 -- In all other cases, type does not have preelaborable initialization
10153 -- If type has preelaborable initialization, cache result
10156 Set_Known_To_Have_Preelab_Init
(E
);
10160 end Has_Preelaborable_Initialization
;
10162 ---------------------------
10163 -- Has_Private_Component --
10164 ---------------------------
10166 function Has_Private_Component
(Type_Id
: Entity_Id
) return Boolean is
10167 Btype
: Entity_Id
:= Base_Type
(Type_Id
);
10168 Component
: Entity_Id
;
10171 if Error_Posted
(Type_Id
)
10172 or else Error_Posted
(Btype
)
10177 if Is_Class_Wide_Type
(Btype
) then
10178 Btype
:= Root_Type
(Btype
);
10181 if Is_Private_Type
(Btype
) then
10183 UT
: constant Entity_Id
:= Underlying_Type
(Btype
);
10186 if No
(Full_View
(Btype
)) then
10187 return not Is_Generic_Type
(Btype
)
10189 not Is_Generic_Type
(Root_Type
(Btype
));
10191 return not Is_Generic_Type
(Root_Type
(Full_View
(Btype
)));
10194 return not Is_Frozen
(UT
) and then Has_Private_Component
(UT
);
10198 elsif Is_Array_Type
(Btype
) then
10199 return Has_Private_Component
(Component_Type
(Btype
));
10201 elsif Is_Record_Type
(Btype
) then
10202 Component
:= First_Component
(Btype
);
10203 while Present
(Component
) loop
10204 if Has_Private_Component
(Etype
(Component
)) then
10208 Next_Component
(Component
);
10213 elsif Is_Protected_Type
(Btype
)
10214 and then Present
(Corresponding_Record_Type
(Btype
))
10216 return Has_Private_Component
(Corresponding_Record_Type
(Btype
));
10221 end Has_Private_Component
;
10223 ----------------------
10224 -- Has_Signed_Zeros --
10225 ----------------------
10227 function Has_Signed_Zeros
(E
: Entity_Id
) return Boolean is
10229 return Is_Floating_Point_Type
(E
) and then Signed_Zeros_On_Target
;
10230 end Has_Signed_Zeros
;
10232 ------------------------------
10233 -- Has_Significant_Contract --
10234 ------------------------------
10236 function Has_Significant_Contract
(Subp_Id
: Entity_Id
) return Boolean is
10237 Subp_Nam
: constant Name_Id
:= Chars
(Subp_Id
);
10240 -- _Finalizer procedure
10242 if Subp_Nam
= Name_uFinalizer
then
10245 -- _Postconditions procedure
10247 elsif Subp_Nam
= Name_uPostconditions
then
10250 -- Predicate function
10252 elsif Ekind
(Subp_Id
) = E_Function
10253 and then Is_Predicate_Function
(Subp_Id
)
10259 elsif Get_TSS_Name
(Subp_Id
) /= TSS_Null
then
10265 end Has_Significant_Contract
;
10267 -----------------------------
10268 -- Has_Static_Array_Bounds --
10269 -----------------------------
10271 function Has_Static_Array_Bounds
(Typ
: Node_Id
) return Boolean is
10272 Ndims
: constant Nat
:= Number_Dimensions
(Typ
);
10279 -- Unconstrained types do not have static bounds
10281 if not Is_Constrained
(Typ
) then
10285 -- First treat string literals specially, as the lower bound and length
10286 -- of string literals are not stored like those of arrays.
10288 -- A string literal always has static bounds
10290 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10294 -- Treat all dimensions in turn
10296 Index
:= First_Index
(Typ
);
10297 for Indx
in 1 .. Ndims
loop
10299 -- In case of an illegal index which is not a discrete type, return
10300 -- that the type is not static.
10302 if not Is_Discrete_Type
(Etype
(Index
))
10303 or else Etype
(Index
) = Any_Type
10308 Get_Index_Bounds
(Index
, Low
, High
);
10310 if Error_Posted
(Low
) or else Error_Posted
(High
) then
10314 if Is_OK_Static_Expression
(Low
)
10316 Is_OK_Static_Expression
(High
)
10326 -- If we fall through the loop, all indexes matched
10329 end Has_Static_Array_Bounds
;
10335 function Has_Stream
(T
: Entity_Id
) return Boolean is
10342 elsif Is_RTE
(Root_Type
(T
), RE_Root_Stream_Type
) then
10345 elsif Is_Array_Type
(T
) then
10346 return Has_Stream
(Component_Type
(T
));
10348 elsif Is_Record_Type
(T
) then
10349 E
:= First_Component
(T
);
10350 while Present
(E
) loop
10351 if Has_Stream
(Etype
(E
)) then
10354 Next_Component
(E
);
10360 elsif Is_Private_Type
(T
) then
10361 return Has_Stream
(Underlying_Type
(T
));
10372 function Has_Suffix
(E
: Entity_Id
; Suffix
: Character) return Boolean is
10374 Get_Name_String
(Chars
(E
));
10375 return Name_Buffer
(Name_Len
) = Suffix
;
10382 function Add_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
is
10384 Get_Name_String
(Chars
(E
));
10385 Add_Char_To_Name_Buffer
(Suffix
);
10389 -------------------
10390 -- Remove_Suffix --
10391 -------------------
10393 function Remove_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
is
10395 pragma Assert
(Has_Suffix
(E
, Suffix
));
10396 Get_Name_String
(Chars
(E
));
10397 Name_Len
:= Name_Len
- 1;
10401 ----------------------------------
10402 -- Replace_Null_By_Null_Address --
10403 ----------------------------------
10405 procedure Replace_Null_By_Null_Address
(N
: Node_Id
) is
10406 procedure Replace_Null_Operand
(Op
: Node_Id
; Other_Op
: Node_Id
);
10407 -- Replace operand Op with a reference to Null_Address when the operand
10408 -- denotes a null Address. Other_Op denotes the other operand.
10410 --------------------------
10411 -- Replace_Null_Operand --
10412 --------------------------
10414 procedure Replace_Null_Operand
(Op
: Node_Id
; Other_Op
: Node_Id
) is
10416 -- Check the type of the complementary operand since the N_Null node
10417 -- has not been decorated yet.
10419 if Nkind
(Op
) = N_Null
10420 and then Is_Descendant_Of_Address
(Etype
(Other_Op
))
10422 Rewrite
(Op
, New_Occurrence_Of
(RTE
(RE_Null_Address
), Sloc
(Op
)));
10424 end Replace_Null_Operand
;
10426 -- Start of processing for Replace_Null_By_Null_Address
10429 pragma Assert
(Relaxed_RM_Semantics
);
10430 pragma Assert
(Nkind_In
(N
, N_Null
,
10438 if Nkind
(N
) = N_Null
then
10439 Rewrite
(N
, New_Occurrence_Of
(RTE
(RE_Null_Address
), Sloc
(N
)));
10443 L
: constant Node_Id
:= Left_Opnd
(N
);
10444 R
: constant Node_Id
:= Right_Opnd
(N
);
10447 Replace_Null_Operand
(L
, Other_Op
=> R
);
10448 Replace_Null_Operand
(R
, Other_Op
=> L
);
10451 end Replace_Null_By_Null_Address
;
10453 --------------------------
10454 -- Has_Tagged_Component --
10455 --------------------------
10457 function Has_Tagged_Component
(Typ
: Entity_Id
) return Boolean is
10461 if Is_Private_Type
(Typ
) and then Present
(Underlying_Type
(Typ
)) then
10462 return Has_Tagged_Component
(Underlying_Type
(Typ
));
10464 elsif Is_Array_Type
(Typ
) then
10465 return Has_Tagged_Component
(Component_Type
(Typ
));
10467 elsif Is_Tagged_Type
(Typ
) then
10470 elsif Is_Record_Type
(Typ
) then
10471 Comp
:= First_Component
(Typ
);
10472 while Present
(Comp
) loop
10473 if Has_Tagged_Component
(Etype
(Comp
)) then
10477 Next_Component
(Comp
);
10485 end Has_Tagged_Component
;
10487 -----------------------------
10488 -- Has_Undefined_Reference --
10489 -----------------------------
10491 function Has_Undefined_Reference
(Expr
: Node_Id
) return Boolean is
10492 Has_Undef_Ref
: Boolean := False;
10493 -- Flag set when expression Expr contains at least one undefined
10496 function Is_Undefined_Reference
(N
: Node_Id
) return Traverse_Result
;
10497 -- Determine whether N denotes a reference and if it does, whether it is
10500 ----------------------------
10501 -- Is_Undefined_Reference --
10502 ----------------------------
10504 function Is_Undefined_Reference
(N
: Node_Id
) return Traverse_Result
is
10506 if Is_Entity_Name
(N
)
10507 and then Present
(Entity
(N
))
10508 and then Entity
(N
) = Any_Id
10510 Has_Undef_Ref
:= True;
10515 end Is_Undefined_Reference
;
10517 procedure Find_Undefined_References
is
10518 new Traverse_Proc
(Is_Undefined_Reference
);
10520 -- Start of processing for Has_Undefined_Reference
10523 Find_Undefined_References
(Expr
);
10525 return Has_Undef_Ref
;
10526 end Has_Undefined_Reference
;
10528 ----------------------------
10529 -- Has_Volatile_Component --
10530 ----------------------------
10532 function Has_Volatile_Component
(Typ
: Entity_Id
) return Boolean is
10536 if Has_Volatile_Components
(Typ
) then
10539 elsif Is_Array_Type
(Typ
) then
10540 return Is_Volatile
(Component_Type
(Typ
));
10542 elsif Is_Record_Type
(Typ
) then
10543 Comp
:= First_Component
(Typ
);
10544 while Present
(Comp
) loop
10545 if Is_Volatile_Object
(Comp
) then
10549 Comp
:= Next_Component
(Comp
);
10554 end Has_Volatile_Component
;
10556 -------------------------
10557 -- Implementation_Kind --
10558 -------------------------
10560 function Implementation_Kind
(Subp
: Entity_Id
) return Name_Id
is
10561 Impl_Prag
: constant Node_Id
:= Get_Rep_Pragma
(Subp
, Name_Implemented
);
10564 pragma Assert
(Present
(Impl_Prag
));
10565 Arg
:= Last
(Pragma_Argument_Associations
(Impl_Prag
));
10566 return Chars
(Get_Pragma_Arg
(Arg
));
10567 end Implementation_Kind
;
10569 --------------------------
10570 -- Implements_Interface --
10571 --------------------------
10573 function Implements_Interface
10574 (Typ_Ent
: Entity_Id
;
10575 Iface_Ent
: Entity_Id
;
10576 Exclude_Parents
: Boolean := False) return Boolean
10578 Ifaces_List
: Elist_Id
;
10580 Iface
: Entity_Id
:= Base_Type
(Iface_Ent
);
10581 Typ
: Entity_Id
:= Base_Type
(Typ_Ent
);
10584 if Is_Class_Wide_Type
(Typ
) then
10585 Typ
:= Root_Type
(Typ
);
10588 if not Has_Interfaces
(Typ
) then
10592 if Is_Class_Wide_Type
(Iface
) then
10593 Iface
:= Root_Type
(Iface
);
10596 Collect_Interfaces
(Typ
, Ifaces_List
);
10598 Elmt
:= First_Elmt
(Ifaces_List
);
10599 while Present
(Elmt
) loop
10600 if Is_Ancestor
(Node
(Elmt
), Typ
, Use_Full_View
=> True)
10601 and then Exclude_Parents
10605 elsif Node
(Elmt
) = Iface
then
10613 end Implements_Interface
;
10615 ------------------------------------
10616 -- In_Assertion_Expression_Pragma --
10617 ------------------------------------
10619 function In_Assertion_Expression_Pragma
(N
: Node_Id
) return Boolean is
10621 Prag
: Node_Id
:= Empty
;
10624 -- Climb the parent chain looking for an enclosing pragma
10627 while Present
(Par
) loop
10628 if Nkind
(Par
) = N_Pragma
then
10632 -- Precondition-like pragmas are expanded into if statements, check
10633 -- the original node instead.
10635 elsif Nkind
(Original_Node
(Par
)) = N_Pragma
then
10636 Prag
:= Original_Node
(Par
);
10639 -- The expansion of attribute 'Old generates a constant to capture
10640 -- the result of the prefix. If the parent traversal reaches
10641 -- one of these constants, then the node technically came from a
10642 -- postcondition-like pragma. Note that the Ekind is not tested here
10643 -- because N may be the expression of an object declaration which is
10644 -- currently being analyzed. Such objects carry Ekind of E_Void.
10646 elsif Nkind
(Par
) = N_Object_Declaration
10647 and then Constant_Present
(Par
)
10648 and then Stores_Attribute_Old_Prefix
(Defining_Entity
(Par
))
10652 -- Prevent the search from going too far
10654 elsif Is_Body_Or_Package_Declaration
(Par
) then
10658 Par
:= Parent
(Par
);
10663 and then Assertion_Expression_Pragma
(Get_Pragma_Id
(Prag
));
10664 end In_Assertion_Expression_Pragma
;
10666 ----------------------
10667 -- In_Generic_Scope --
10668 ----------------------
10670 function In_Generic_Scope
(E
: Entity_Id
) return Boolean is
10675 while Present
(S
) and then S
/= Standard_Standard
loop
10676 if Is_Generic_Unit
(S
) then
10684 end In_Generic_Scope
;
10690 function In_Instance
return Boolean is
10691 Curr_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
10695 S
:= Current_Scope
;
10696 while Present
(S
) and then S
/= Standard_Standard
loop
10697 if Ekind_In
(S
, E_Function
, E_Package
, E_Procedure
)
10698 and then Is_Generic_Instance
(S
)
10700 -- A child instance is always compiled in the context of a parent
10701 -- instance. Nevertheless, the actuals are not analyzed in an
10702 -- instance context. We detect this case by examining the current
10703 -- compilation unit, which must be a child instance, and checking
10704 -- that it is not currently on the scope stack.
10706 if Is_Child_Unit
(Curr_Unit
)
10707 and then Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) =
10708 N_Package_Instantiation
10709 and then not In_Open_Scopes
(Curr_Unit
)
10723 ----------------------
10724 -- In_Instance_Body --
10725 ----------------------
10727 function In_Instance_Body
return Boolean is
10731 S
:= Current_Scope
;
10732 while Present
(S
) and then S
/= Standard_Standard
loop
10733 if Ekind_In
(S
, E_Function
, E_Procedure
)
10734 and then Is_Generic_Instance
(S
)
10738 elsif Ekind
(S
) = E_Package
10739 and then In_Package_Body
(S
)
10740 and then Is_Generic_Instance
(S
)
10749 end In_Instance_Body
;
10751 -----------------------------
10752 -- In_Instance_Not_Visible --
10753 -----------------------------
10755 function In_Instance_Not_Visible
return Boolean is
10759 S
:= Current_Scope
;
10760 while Present
(S
) and then S
/= Standard_Standard
loop
10761 if Ekind_In
(S
, E_Function
, E_Procedure
)
10762 and then Is_Generic_Instance
(S
)
10766 elsif Ekind
(S
) = E_Package
10767 and then (In_Package_Body
(S
) or else In_Private_Part
(S
))
10768 and then Is_Generic_Instance
(S
)
10777 end In_Instance_Not_Visible
;
10779 ------------------------------
10780 -- In_Instance_Visible_Part --
10781 ------------------------------
10783 function In_Instance_Visible_Part
return Boolean is
10787 S
:= Current_Scope
;
10788 while Present
(S
) and then S
/= Standard_Standard
loop
10789 if Ekind
(S
) = E_Package
10790 and then Is_Generic_Instance
(S
)
10791 and then not In_Package_Body
(S
)
10792 and then not In_Private_Part
(S
)
10801 end In_Instance_Visible_Part
;
10803 ---------------------
10804 -- In_Package_Body --
10805 ---------------------
10807 function In_Package_Body
return Boolean is
10811 S
:= Current_Scope
;
10812 while Present
(S
) and then S
/= Standard_Standard
loop
10813 if Ekind
(S
) = E_Package
and then In_Package_Body
(S
) then
10821 end In_Package_Body
;
10823 --------------------------------
10824 -- In_Parameter_Specification --
10825 --------------------------------
10827 function In_Parameter_Specification
(N
: Node_Id
) return Boolean is
10832 while Present
(PN
) loop
10833 if Nkind
(PN
) = N_Parameter_Specification
then
10841 end In_Parameter_Specification
;
10843 --------------------------
10844 -- In_Pragma_Expression --
10845 --------------------------
10847 function In_Pragma_Expression
(N
: Node_Id
; Nam
: Name_Id
) return Boolean is
10854 elsif Nkind
(P
) = N_Pragma
and then Pragma_Name
(P
) = Nam
then
10860 end In_Pragma_Expression
;
10862 ---------------------------
10863 -- In_Pre_Post_Condition --
10864 ---------------------------
10866 function In_Pre_Post_Condition
(N
: Node_Id
) return Boolean is
10868 Prag
: Node_Id
:= Empty
;
10869 Prag_Id
: Pragma_Id
;
10872 -- Climb the parent chain looking for an enclosing pragma
10875 while Present
(Par
) loop
10876 if Nkind
(Par
) = N_Pragma
then
10880 -- Prevent the search from going too far
10882 elsif Is_Body_Or_Package_Declaration
(Par
) then
10886 Par
:= Parent
(Par
);
10889 if Present
(Prag
) then
10890 Prag_Id
:= Get_Pragma_Id
(Prag
);
10893 Prag_Id
= Pragma_Post
10894 or else Prag_Id
= Pragma_Post_Class
10895 or else Prag_Id
= Pragma_Postcondition
10896 or else Prag_Id
= Pragma_Pre
10897 or else Prag_Id
= Pragma_Pre_Class
10898 or else Prag_Id
= Pragma_Precondition
;
10900 -- Otherwise the node is not enclosed by a pre/postcondition pragma
10905 end In_Pre_Post_Condition
;
10907 -------------------------------------
10908 -- In_Reverse_Storage_Order_Object --
10909 -------------------------------------
10911 function In_Reverse_Storage_Order_Object
(N
: Node_Id
) return Boolean is
10913 Btyp
: Entity_Id
:= Empty
;
10916 -- Climb up indexed components
10920 case Nkind
(Pref
) is
10921 when N_Selected_Component
=>
10922 Pref
:= Prefix
(Pref
);
10925 when N_Indexed_Component
=>
10926 Pref
:= Prefix
(Pref
);
10934 if Present
(Pref
) then
10935 Btyp
:= Base_Type
(Etype
(Pref
));
10938 return Present
(Btyp
)
10939 and then (Is_Record_Type
(Btyp
) or else Is_Array_Type
(Btyp
))
10940 and then Reverse_Storage_Order
(Btyp
);
10941 end In_Reverse_Storage_Order_Object
;
10943 --------------------------------------
10944 -- In_Subprogram_Or_Concurrent_Unit --
10945 --------------------------------------
10947 function In_Subprogram_Or_Concurrent_Unit
return Boolean is
10952 -- Use scope chain to check successively outer scopes
10954 E
:= Current_Scope
;
10958 if K
in Subprogram_Kind
10959 or else K
in Concurrent_Kind
10960 or else K
in Generic_Subprogram_Kind
10964 elsif E
= Standard_Standard
then
10970 end In_Subprogram_Or_Concurrent_Unit
;
10972 ---------------------
10973 -- In_Visible_Part --
10974 ---------------------
10976 function In_Visible_Part
(Scope_Id
: Entity_Id
) return Boolean is
10978 return Is_Package_Or_Generic_Package
(Scope_Id
)
10979 and then In_Open_Scopes
(Scope_Id
)
10980 and then not In_Package_Body
(Scope_Id
)
10981 and then not In_Private_Part
(Scope_Id
);
10982 end In_Visible_Part
;
10984 --------------------------------
10985 -- Incomplete_Or_Partial_View --
10986 --------------------------------
10988 function Incomplete_Or_Partial_View
(Id
: Entity_Id
) return Entity_Id
is
10989 function Inspect_Decls
10991 Taft
: Boolean := False) return Entity_Id
;
10992 -- Check whether a declarative region contains the incomplete or partial
10995 -------------------
10996 -- Inspect_Decls --
10997 -------------------
10999 function Inspect_Decls
11001 Taft
: Boolean := False) return Entity_Id
11007 Decl
:= First
(Decls
);
11008 while Present
(Decl
) loop
11011 -- The partial view of a Taft-amendment type is an incomplete
11015 if Nkind
(Decl
) = N_Incomplete_Type_Declaration
then
11016 Match
:= Defining_Identifier
(Decl
);
11019 -- Otherwise look for a private type whose full view matches the
11020 -- input type. Note that this checks full_type_declaration nodes
11021 -- to account for derivations from a private type where the type
11022 -- declaration hold the partial view and the full view is an
11025 elsif Nkind_In
(Decl
, N_Full_Type_Declaration
,
11026 N_Private_Extension_Declaration
,
11027 N_Private_Type_Declaration
)
11029 Match
:= Defining_Identifier
(Decl
);
11032 -- Guard against unanalyzed entities
11035 and then Is_Type
(Match
)
11036 and then Present
(Full_View
(Match
))
11037 and then Full_View
(Match
) = Id
11052 -- Start of processing for Incomplete_Or_Partial_View
11055 -- Deferred constant or incomplete type case
11057 Prev
:= Current_Entity_In_Scope
(Id
);
11060 and then (Is_Incomplete_Type
(Prev
) or else Ekind
(Prev
) = E_Constant
)
11061 and then Present
(Full_View
(Prev
))
11062 and then Full_View
(Prev
) = Id
11067 -- Private or Taft amendment type case
11070 Pkg
: constant Entity_Id
:= Scope
(Id
);
11071 Pkg_Decl
: Node_Id
:= Pkg
;
11075 and then Ekind_In
(Pkg
, E_Generic_Package
, E_Package
)
11077 while Nkind
(Pkg_Decl
) /= N_Package_Specification
loop
11078 Pkg_Decl
:= Parent
(Pkg_Decl
);
11081 -- It is knows that Typ has a private view, look for it in the
11082 -- visible declarations of the enclosing scope. A special case
11083 -- of this is when the two views have been exchanged - the full
11084 -- appears earlier than the private.
11086 if Has_Private_Declaration
(Id
) then
11087 Prev
:= Inspect_Decls
(Visible_Declarations
(Pkg_Decl
));
11089 -- Exchanged view case, look in the private declarations
11092 Prev
:= Inspect_Decls
(Private_Declarations
(Pkg_Decl
));
11097 -- Otherwise if this is the package body, then Typ is a potential
11098 -- Taft amendment type. The incomplete view should be located in
11099 -- the private declarations of the enclosing scope.
11101 elsif In_Package_Body
(Pkg
) then
11102 return Inspect_Decls
(Private_Declarations
(Pkg_Decl
), True);
11107 -- The type has no incomplete or private view
11110 end Incomplete_Or_Partial_View
;
11112 ----------------------------------
11113 -- Indexed_Component_Bit_Offset --
11114 ----------------------------------
11116 function Indexed_Component_Bit_Offset
(N
: Node_Id
) return Uint
is
11117 Exp
: constant Node_Id
:= First
(Expressions
(N
));
11118 Typ
: constant Entity_Id
:= Etype
(Prefix
(N
));
11119 Off
: constant Uint
:= Component_Size
(Typ
);
11123 -- Return early if the component size is not known or variable
11125 if Off
= No_Uint
or else Off
< Uint_0
then
11129 -- Deal with the degenerate case of an empty component
11131 if Off
= Uint_0
then
11135 -- Check that both the index value and the low bound are known
11137 if not Compile_Time_Known_Value
(Exp
) then
11141 Ind
:= First_Index
(Typ
);
11146 if Nkind
(Ind
) = N_Subtype_Indication
then
11147 Ind
:= Constraint
(Ind
);
11149 if Nkind
(Ind
) = N_Range_Constraint
then
11150 Ind
:= Range_Expression
(Ind
);
11154 if Nkind
(Ind
) /= N_Range
11155 or else not Compile_Time_Known_Value
(Low_Bound
(Ind
))
11160 -- Return the scaled offset
11162 return Off
* (Expr_Value
(Exp
) - Expr_Value
(Low_Bound
((Ind
))));
11163 end Indexed_Component_Bit_Offset
;
11165 ----------------------------
11166 -- Inherit_Rep_Item_Chain --
11167 ----------------------------
11169 procedure Inherit_Rep_Item_Chain
(Typ
: Entity_Id
; From_Typ
: Entity_Id
) is
11171 Next_Item
: Node_Id
;
11174 -- There are several inheritance scenarios to consider depending on
11175 -- whether both types have rep item chains and whether the destination
11176 -- type already inherits part of the source type's rep item chain.
11178 -- 1) The source type lacks a rep item chain
11179 -- From_Typ ---> Empty
11181 -- Typ --------> Item (or Empty)
11183 -- In this case inheritance cannot take place because there are no items
11186 -- 2) The destination type lacks a rep item chain
11187 -- From_Typ ---> Item ---> ...
11189 -- Typ --------> Empty
11191 -- Inheritance takes place by setting the First_Rep_Item of the
11192 -- destination type to the First_Rep_Item of the source type.
11193 -- From_Typ ---> Item ---> ...
11195 -- Typ -----------+
11197 -- 3.1) Both source and destination types have at least one rep item.
11198 -- The destination type does NOT inherit a rep item from the source
11200 -- From_Typ ---> Item ---> Item
11202 -- Typ --------> Item ---> Item
11204 -- Inheritance takes place by setting the Next_Rep_Item of the last item
11205 -- of the destination type to the First_Rep_Item of the source type.
11206 -- From_Typ -------------------> Item ---> Item
11208 -- Typ --------> Item ---> Item --+
11210 -- 3.2) Both source and destination types have at least one rep item.
11211 -- The destination type DOES inherit part of the rep item chain of the
11213 -- From_Typ ---> Item ---> Item ---> Item
11215 -- Typ --------> Item ------+
11217 -- This rare case arises when the full view of a private extension must
11218 -- inherit the rep item chain from the full view of its parent type and
11219 -- the full view of the parent type contains extra rep items. Currently
11220 -- only invariants may lead to such form of inheritance.
11222 -- type From_Typ is tagged private
11223 -- with Type_Invariant'Class => Item_2;
11225 -- type Typ is new From_Typ with private
11226 -- with Type_Invariant => Item_4;
11228 -- At this point the rep item chains contain the following items
11230 -- From_Typ -----------> Item_2 ---> Item_3
11232 -- Typ --------> Item_4 --+
11234 -- The full views of both types may introduce extra invariants
11236 -- type From_Typ is tagged null record
11237 -- with Type_Invariant => Item_1;
11239 -- type Typ is new From_Typ with null record;
11241 -- The full view of Typ would have to inherit any new rep items added to
11242 -- the full view of From_Typ.
11244 -- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
11246 -- Typ --------> Item_4 --+
11248 -- To achieve this form of inheritance, the destination type must first
11249 -- sever the link between its own rep chain and that of the source type,
11250 -- then inheritance 3.1 takes place.
11252 -- Case 1: The source type lacks a rep item chain
11254 if No
(First_Rep_Item
(From_Typ
)) then
11257 -- Case 2: The destination type lacks a rep item chain
11259 elsif No
(First_Rep_Item
(Typ
)) then
11260 Set_First_Rep_Item
(Typ
, First_Rep_Item
(From_Typ
));
11262 -- Case 3: Both the source and destination types have at least one rep
11263 -- item. Traverse the rep item chain of the destination type to find the
11268 Next_Item
:= First_Rep_Item
(Typ
);
11269 while Present
(Next_Item
) loop
11271 -- Detect a link between the destination type's rep chain and that
11272 -- of the source type. There are two possibilities:
11277 -- From_Typ ---> Item_1 --->
11279 -- Typ -----------+
11286 -- From_Typ ---> Item_1 ---> Item_2 --->
11288 -- Typ --------> Item_3 ------+
11292 if Has_Rep_Item
(From_Typ
, Next_Item
) then
11297 Next_Item
:= Next_Rep_Item
(Next_Item
);
11300 -- Inherit the source type's rep item chain
11302 if Present
(Item
) then
11303 Set_Next_Rep_Item
(Item
, First_Rep_Item
(From_Typ
));
11305 Set_First_Rep_Item
(Typ
, First_Rep_Item
(From_Typ
));
11308 end Inherit_Rep_Item_Chain
;
11310 ---------------------------------
11311 -- Insert_Explicit_Dereference --
11312 ---------------------------------
11314 procedure Insert_Explicit_Dereference
(N
: Node_Id
) is
11315 New_Prefix
: constant Node_Id
:= Relocate_Node
(N
);
11316 Ent
: Entity_Id
:= Empty
;
11323 Save_Interps
(N
, New_Prefix
);
11326 Make_Explicit_Dereference
(Sloc
(Parent
(N
)),
11327 Prefix
=> New_Prefix
));
11329 Set_Etype
(N
, Designated_Type
(Etype
(New_Prefix
)));
11331 if Is_Overloaded
(New_Prefix
) then
11333 -- The dereference is also overloaded, and its interpretations are
11334 -- the designated types of the interpretations of the original node.
11336 Set_Etype
(N
, Any_Type
);
11338 Get_First_Interp
(New_Prefix
, I
, It
);
11339 while Present
(It
.Nam
) loop
11342 if Is_Access_Type
(T
) then
11343 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
11346 Get_Next_Interp
(I
, It
);
11352 -- Prefix is unambiguous: mark the original prefix (which might
11353 -- Come_From_Source) as a reference, since the new (relocated) one
11354 -- won't be taken into account.
11356 if Is_Entity_Name
(New_Prefix
) then
11357 Ent
:= Entity
(New_Prefix
);
11358 Pref
:= New_Prefix
;
11360 -- For a retrieval of a subcomponent of some composite object,
11361 -- retrieve the ultimate entity if there is one.
11363 elsif Nkind_In
(New_Prefix
, N_Selected_Component
,
11364 N_Indexed_Component
)
11366 Pref
:= Prefix
(New_Prefix
);
11367 while Present
(Pref
)
11368 and then Nkind_In
(Pref
, N_Selected_Component
,
11369 N_Indexed_Component
)
11371 Pref
:= Prefix
(Pref
);
11374 if Present
(Pref
) and then Is_Entity_Name
(Pref
) then
11375 Ent
:= Entity
(Pref
);
11379 -- Place the reference on the entity node
11381 if Present
(Ent
) then
11382 Generate_Reference
(Ent
, Pref
);
11385 end Insert_Explicit_Dereference
;
11387 ------------------------------------------
11388 -- Inspect_Deferred_Constant_Completion --
11389 ------------------------------------------
11391 procedure Inspect_Deferred_Constant_Completion
(Decls
: List_Id
) is
11395 Decl
:= First
(Decls
);
11396 while Present
(Decl
) loop
11398 -- Deferred constant signature
11400 if Nkind
(Decl
) = N_Object_Declaration
11401 and then Constant_Present
(Decl
)
11402 and then No
(Expression
(Decl
))
11404 -- No need to check internally generated constants
11406 and then Comes_From_Source
(Decl
)
11408 -- The constant is not completed. A full object declaration or a
11409 -- pragma Import complete a deferred constant.
11411 and then not Has_Completion
(Defining_Identifier
(Decl
))
11414 ("constant declaration requires initialization expression",
11415 Defining_Identifier
(Decl
));
11418 Decl
:= Next
(Decl
);
11420 end Inspect_Deferred_Constant_Completion
;
11422 -----------------------------
11423 -- Install_Generic_Formals --
11424 -----------------------------
11426 procedure Install_Generic_Formals
(Subp_Id
: Entity_Id
) is
11430 pragma Assert
(Is_Generic_Subprogram
(Subp_Id
));
11432 E
:= First_Entity
(Subp_Id
);
11433 while Present
(E
) loop
11434 Install_Entity
(E
);
11437 end Install_Generic_Formals
;
11439 -----------------------------
11440 -- Is_Actual_Out_Parameter --
11441 -----------------------------
11443 function Is_Actual_Out_Parameter
(N
: Node_Id
) return Boolean is
11444 Formal
: Entity_Id
;
11447 Find_Actual
(N
, Formal
, Call
);
11448 return Present
(Formal
) and then Ekind
(Formal
) = E_Out_Parameter
;
11449 end Is_Actual_Out_Parameter
;
11451 -------------------------
11452 -- Is_Actual_Parameter --
11453 -------------------------
11455 function Is_Actual_Parameter
(N
: Node_Id
) return Boolean is
11456 PK
: constant Node_Kind
:= Nkind
(Parent
(N
));
11460 when N_Parameter_Association
=>
11461 return N
= Explicit_Actual_Parameter
(Parent
(N
));
11463 when N_Subprogram_Call
=>
11464 return Is_List_Member
(N
)
11466 List_Containing
(N
) = Parameter_Associations
(Parent
(N
));
11471 end Is_Actual_Parameter
;
11473 --------------------------------
11474 -- Is_Actual_Tagged_Parameter --
11475 --------------------------------
11477 function Is_Actual_Tagged_Parameter
(N
: Node_Id
) return Boolean is
11478 Formal
: Entity_Id
;
11481 Find_Actual
(N
, Formal
, Call
);
11482 return Present
(Formal
) and then Is_Tagged_Type
(Etype
(Formal
));
11483 end Is_Actual_Tagged_Parameter
;
11485 ---------------------
11486 -- Is_Aliased_View --
11487 ---------------------
11489 function Is_Aliased_View
(Obj
: Node_Id
) return Boolean is
11493 if Is_Entity_Name
(Obj
) then
11500 or else (Present
(Renamed_Object
(E
))
11501 and then Is_Aliased_View
(Renamed_Object
(E
)))))
11503 or else ((Is_Formal
(E
)
11504 or else Ekind_In
(E
, E_Generic_In_Out_Parameter
,
11505 E_Generic_In_Parameter
))
11506 and then Is_Tagged_Type
(Etype
(E
)))
11508 or else (Is_Concurrent_Type
(E
) and then In_Open_Scopes
(E
))
11510 -- Current instance of type, either directly or as rewritten
11511 -- reference to the current object.
11513 or else (Is_Entity_Name
(Original_Node
(Obj
))
11514 and then Present
(Entity
(Original_Node
(Obj
)))
11515 and then Is_Type
(Entity
(Original_Node
(Obj
))))
11517 or else (Is_Type
(E
) and then E
= Current_Scope
)
11519 or else (Is_Incomplete_Or_Private_Type
(E
)
11520 and then Full_View
(E
) = Current_Scope
)
11522 -- Ada 2012 AI05-0053: the return object of an extended return
11523 -- statement is aliased if its type is immutably limited.
11525 or else (Is_Return_Object
(E
)
11526 and then Is_Limited_View
(Etype
(E
)));
11528 elsif Nkind
(Obj
) = N_Selected_Component
then
11529 return Is_Aliased
(Entity
(Selector_Name
(Obj
)));
11531 elsif Nkind
(Obj
) = N_Indexed_Component
then
11532 return Has_Aliased_Components
(Etype
(Prefix
(Obj
)))
11534 (Is_Access_Type
(Etype
(Prefix
(Obj
)))
11535 and then Has_Aliased_Components
11536 (Designated_Type
(Etype
(Prefix
(Obj
)))));
11538 elsif Nkind_In
(Obj
, N_Unchecked_Type_Conversion
, N_Type_Conversion
) then
11539 return Is_Tagged_Type
(Etype
(Obj
))
11540 and then Is_Aliased_View
(Expression
(Obj
));
11542 elsif Nkind
(Obj
) = N_Explicit_Dereference
then
11543 return Nkind
(Original_Node
(Obj
)) /= N_Function_Call
;
11548 end Is_Aliased_View
;
11550 -------------------------
11551 -- Is_Ancestor_Package --
11552 -------------------------
11554 function Is_Ancestor_Package
11556 E2
: Entity_Id
) return Boolean
11562 while Present
(Par
) and then Par
/= Standard_Standard
loop
11567 Par
:= Scope
(Par
);
11571 end Is_Ancestor_Package
;
11573 ----------------------
11574 -- Is_Atomic_Object --
11575 ----------------------
11577 function Is_Atomic_Object
(N
: Node_Id
) return Boolean is
11579 function Object_Has_Atomic_Components
(N
: Node_Id
) return Boolean;
11580 -- Determines if given object has atomic components
11582 function Is_Atomic_Prefix
(N
: Node_Id
) return Boolean;
11583 -- If prefix is an implicit dereference, examine designated type
11585 ----------------------
11586 -- Is_Atomic_Prefix --
11587 ----------------------
11589 function Is_Atomic_Prefix
(N
: Node_Id
) return Boolean is
11591 if Is_Access_Type
(Etype
(N
)) then
11593 Has_Atomic_Components
(Designated_Type
(Etype
(N
)));
11595 return Object_Has_Atomic_Components
(N
);
11597 end Is_Atomic_Prefix
;
11599 ----------------------------------
11600 -- Object_Has_Atomic_Components --
11601 ----------------------------------
11603 function Object_Has_Atomic_Components
(N
: Node_Id
) return Boolean is
11605 if Has_Atomic_Components
(Etype
(N
))
11606 or else Is_Atomic
(Etype
(N
))
11610 elsif Is_Entity_Name
(N
)
11611 and then (Has_Atomic_Components
(Entity
(N
))
11612 or else Is_Atomic
(Entity
(N
)))
11616 elsif Nkind
(N
) = N_Selected_Component
11617 and then Is_Atomic
(Entity
(Selector_Name
(N
)))
11621 elsif Nkind
(N
) = N_Indexed_Component
11622 or else Nkind
(N
) = N_Selected_Component
11624 return Is_Atomic_Prefix
(Prefix
(N
));
11629 end Object_Has_Atomic_Components
;
11631 -- Start of processing for Is_Atomic_Object
11634 -- Predicate is not relevant to subprograms
11636 if Is_Entity_Name
(N
) and then Is_Overloadable
(Entity
(N
)) then
11639 elsif Is_Atomic
(Etype
(N
))
11640 or else (Is_Entity_Name
(N
) and then Is_Atomic
(Entity
(N
)))
11644 elsif Nkind
(N
) = N_Selected_Component
11645 and then Is_Atomic
(Entity
(Selector_Name
(N
)))
11649 elsif Nkind
(N
) = N_Indexed_Component
11650 or else Nkind
(N
) = N_Selected_Component
11652 return Is_Atomic_Prefix
(Prefix
(N
));
11657 end Is_Atomic_Object
;
11659 -----------------------------
11660 -- Is_Atomic_Or_VFA_Object --
11661 -----------------------------
11663 function Is_Atomic_Or_VFA_Object
(N
: Node_Id
) return Boolean is
11665 return Is_Atomic_Object
(N
)
11666 or else (Is_Object_Reference
(N
)
11667 and then Is_Entity_Name
(N
)
11668 and then (Is_Volatile_Full_Access
(Entity
(N
))
11670 Is_Volatile_Full_Access
(Etype
(Entity
(N
)))));
11671 end Is_Atomic_Or_VFA_Object
;
11673 -------------------------
11674 -- Is_Attribute_Result --
11675 -------------------------
11677 function Is_Attribute_Result
(N
: Node_Id
) return Boolean is
11679 return Nkind
(N
) = N_Attribute_Reference
11680 and then Attribute_Name
(N
) = Name_Result
;
11681 end Is_Attribute_Result
;
11683 -------------------------
11684 -- Is_Attribute_Update --
11685 -------------------------
11687 function Is_Attribute_Update
(N
: Node_Id
) return Boolean is
11689 return Nkind
(N
) = N_Attribute_Reference
11690 and then Attribute_Name
(N
) = Name_Update
;
11691 end Is_Attribute_Update
;
11693 ------------------------------------
11694 -- Is_Body_Or_Package_Declaration --
11695 ------------------------------------
11697 function Is_Body_Or_Package_Declaration
(N
: Node_Id
) return Boolean is
11699 return Nkind_In
(N
, N_Entry_Body
,
11701 N_Package_Declaration
,
11705 end Is_Body_Or_Package_Declaration
;
11707 -----------------------
11708 -- Is_Bounded_String --
11709 -----------------------
11711 function Is_Bounded_String
(T
: Entity_Id
) return Boolean is
11712 Under
: constant Entity_Id
:= Underlying_Type
(Root_Type
(T
));
11715 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
11716 -- Super_String, or one of the [Wide_]Wide_ versions. This will
11717 -- be True for all the Bounded_String types in instances of the
11718 -- Generic_Bounded_Length generics, and for types derived from those.
11720 return Present
(Under
)
11721 and then (Is_RTE
(Root_Type
(Under
), RO_SU_Super_String
) or else
11722 Is_RTE
(Root_Type
(Under
), RO_WI_Super_String
) or else
11723 Is_RTE
(Root_Type
(Under
), RO_WW_Super_String
));
11724 end Is_Bounded_String
;
11726 -------------------------
11727 -- Is_Child_Or_Sibling --
11728 -------------------------
11730 function Is_Child_Or_Sibling
11731 (Pack_1
: Entity_Id
;
11732 Pack_2
: Entity_Id
) return Boolean
11734 function Distance_From_Standard
(Pack
: Entity_Id
) return Nat
;
11735 -- Given an arbitrary package, return the number of "climbs" necessary
11736 -- to reach scope Standard_Standard.
11738 procedure Equalize_Depths
11739 (Pack
: in out Entity_Id
;
11740 Depth
: in out Nat
;
11741 Depth_To_Reach
: Nat
);
11742 -- Given an arbitrary package, its depth and a target depth to reach,
11743 -- climb the scope chain until the said depth is reached. The pointer
11744 -- to the package and its depth a modified during the climb.
11746 ----------------------------
11747 -- Distance_From_Standard --
11748 ----------------------------
11750 function Distance_From_Standard
(Pack
: Entity_Id
) return Nat
is
11757 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
11759 Scop
:= Scope
(Scop
);
11763 end Distance_From_Standard
;
11765 ---------------------
11766 -- Equalize_Depths --
11767 ---------------------
11769 procedure Equalize_Depths
11770 (Pack
: in out Entity_Id
;
11771 Depth
: in out Nat
;
11772 Depth_To_Reach
: Nat
)
11775 -- The package must be at a greater or equal depth
11777 if Depth
< Depth_To_Reach
then
11778 raise Program_Error
;
11781 -- Climb the scope chain until the desired depth is reached
11783 while Present
(Pack
) and then Depth
/= Depth_To_Reach
loop
11784 Pack
:= Scope
(Pack
);
11785 Depth
:= Depth
- 1;
11787 end Equalize_Depths
;
11791 P_1
: Entity_Id
:= Pack_1
;
11792 P_1_Child
: Boolean := False;
11793 P_1_Depth
: Nat
:= Distance_From_Standard
(P_1
);
11794 P_2
: Entity_Id
:= Pack_2
;
11795 P_2_Child
: Boolean := False;
11796 P_2_Depth
: Nat
:= Distance_From_Standard
(P_2
);
11798 -- Start of processing for Is_Child_Or_Sibling
11802 (Ekind
(Pack_1
) = E_Package
and then Ekind
(Pack_2
) = E_Package
);
11804 -- Both packages denote the same entity, therefore they cannot be
11805 -- children or siblings.
11810 -- One of the packages is at a deeper level than the other. Note that
11811 -- both may still come from differen hierarchies.
11819 elsif P_1_Depth
> P_2_Depth
then
11822 Depth
=> P_1_Depth
,
11823 Depth_To_Reach
=> P_2_Depth
);
11832 elsif P_2_Depth
> P_1_Depth
then
11835 Depth
=> P_2_Depth
,
11836 Depth_To_Reach
=> P_1_Depth
);
11840 -- At this stage the package pointers have been elevated to the same
11841 -- depth. If the related entities are the same, then one package is a
11842 -- potential child of the other:
11846 -- X became P_1 P_2 or vica versa
11852 return Is_Child_Unit
(Pack_1
);
11854 else pragma Assert
(P_2_Child
);
11855 return Is_Child_Unit
(Pack_2
);
11858 -- The packages may come from the same package chain or from entirely
11859 -- different hierarcies. To determine this, climb the scope stack until
11860 -- a common root is found.
11862 -- (root) (root 1) (root 2)
11867 while Present
(P_1
) and then Present
(P_2
) loop
11869 -- The two packages may be siblings
11872 return Is_Child_Unit
(Pack_1
) and then Is_Child_Unit
(Pack_2
);
11875 P_1
:= Scope
(P_1
);
11876 P_2
:= Scope
(P_2
);
11881 end Is_Child_Or_Sibling
;
11883 -----------------------------
11884 -- Is_Concurrent_Interface --
11885 -----------------------------
11887 function Is_Concurrent_Interface
(T
: Entity_Id
) return Boolean is
11889 return Is_Interface
(T
)
11891 (Is_Protected_Interface
(T
)
11892 or else Is_Synchronized_Interface
(T
)
11893 or else Is_Task_Interface
(T
));
11894 end Is_Concurrent_Interface
;
11896 -----------------------
11897 -- Is_Constant_Bound --
11898 -----------------------
11900 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
11902 if Compile_Time_Known_Value
(Exp
) then
11905 elsif Is_Entity_Name
(Exp
) and then Present
(Entity
(Exp
)) then
11906 return Is_Constant_Object
(Entity
(Exp
))
11907 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
11909 elsif Nkind
(Exp
) in N_Binary_Op
then
11910 return Is_Constant_Bound
(Left_Opnd
(Exp
))
11911 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
11912 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
11917 end Is_Constant_Bound
;
11919 ---------------------------
11920 -- Is_Container_Element --
11921 ---------------------------
11923 function Is_Container_Element
(Exp
: Node_Id
) return Boolean is
11924 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
11925 Pref
: constant Node_Id
:= Prefix
(Exp
);
11928 -- Call to an indexing aspect
11930 Cont_Typ
: Entity_Id
;
11931 -- The type of the container being accessed
11933 Elem_Typ
: Entity_Id
;
11934 -- Its element type
11936 Indexing
: Entity_Id
;
11937 Is_Const
: Boolean;
11938 -- Indicates that constant indexing is used, and the element is thus
11941 Ref_Typ
: Entity_Id
;
11942 -- The reference type returned by the indexing operation
11945 -- If C is a container, in a context that imposes the element type of
11946 -- that container, the indexing notation C (X) is rewritten as:
11948 -- Indexing (C, X).Discr.all
11950 -- where Indexing is one of the indexing aspects of the container.
11951 -- If the context does not require a reference, the construct can be
11956 -- First, verify that the construct has the proper form
11958 if not Expander_Active
then
11961 elsif Nkind
(Pref
) /= N_Selected_Component
then
11964 elsif Nkind
(Prefix
(Pref
)) /= N_Function_Call
then
11968 Call
:= Prefix
(Pref
);
11969 Ref_Typ
:= Etype
(Call
);
11972 if not Has_Implicit_Dereference
(Ref_Typ
)
11973 or else No
(First
(Parameter_Associations
(Call
)))
11974 or else not Is_Entity_Name
(Name
(Call
))
11979 -- Retrieve type of container object, and its iterator aspects
11981 Cont_Typ
:= Etype
(First
(Parameter_Associations
(Call
)));
11982 Indexing
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Constant_Indexing
);
11985 if No
(Indexing
) then
11987 -- Container should have at least one indexing operation
11991 elsif Entity
(Name
(Call
)) /= Entity
(Indexing
) then
11993 -- This may be a variable indexing operation
11995 Indexing
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Variable_Indexing
);
11998 or else Entity
(Name
(Call
)) /= Entity
(Indexing
)
12007 Elem_Typ
:= Find_Value_Of_Aspect
(Cont_Typ
, Aspect_Iterator_Element
);
12009 if No
(Elem_Typ
) or else Entity
(Elem_Typ
) /= Etype
(Exp
) then
12013 -- Check that the expression is not the target of an assignment, in
12014 -- which case the rewriting is not possible.
12016 if not Is_Const
then
12022 while Present
(Par
)
12024 if Nkind
(Parent
(Par
)) = N_Assignment_Statement
12025 and then Par
= Name
(Parent
(Par
))
12029 -- A renaming produces a reference, and the transformation
12032 elsif Nkind
(Parent
(Par
)) = N_Object_Renaming_Declaration
then
12036 (Nkind
(Parent
(Par
)), N_Function_Call
,
12037 N_Procedure_Call_Statement
,
12038 N_Entry_Call_Statement
)
12040 -- Check that the element is not part of an actual for an
12041 -- in-out parameter.
12048 F
:= First_Formal
(Entity
(Name
(Parent
(Par
))));
12049 A
:= First
(Parameter_Associations
(Parent
(Par
)));
12050 while Present
(F
) loop
12051 if A
= Par
and then Ekind
(F
) /= E_In_Parameter
then
12060 -- E_In_Parameter in a call: element is not modified.
12065 Par
:= Parent
(Par
);
12070 -- The expression has the proper form and the context requires the
12071 -- element type. Retrieve the Element function of the container and
12072 -- rewrite the construct as a call to it.
12078 Op
:= First_Elmt
(Primitive_Operations
(Cont_Typ
));
12079 while Present
(Op
) loop
12080 exit when Chars
(Node
(Op
)) = Name_Element
;
12089 Make_Function_Call
(Loc
,
12090 Name
=> New_Occurrence_Of
(Node
(Op
), Loc
),
12091 Parameter_Associations
=> Parameter_Associations
(Call
)));
12092 Analyze_And_Resolve
(Exp
, Entity
(Elem_Typ
));
12096 end Is_Container_Element
;
12098 ----------------------------
12099 -- Is_Contract_Annotation --
12100 ----------------------------
12102 function Is_Contract_Annotation
(Item
: Node_Id
) return Boolean is
12104 return Is_Package_Contract_Annotation
(Item
)
12106 Is_Subprogram_Contract_Annotation
(Item
);
12107 end Is_Contract_Annotation
;
12109 --------------------------------------
12110 -- Is_Controlling_Limited_Procedure --
12111 --------------------------------------
12113 function Is_Controlling_Limited_Procedure
12114 (Proc_Nam
: Entity_Id
) return Boolean
12116 Param_Typ
: Entity_Id
:= Empty
;
12119 if Ekind
(Proc_Nam
) = E_Procedure
12120 and then Present
(Parameter_Specifications
(Parent
(Proc_Nam
)))
12122 Param_Typ
:= Etype
(Parameter_Type
(First
(
12123 Parameter_Specifications
(Parent
(Proc_Nam
)))));
12125 -- In this case where an Itype was created, the procedure call has been
12128 elsif Present
(Associated_Node_For_Itype
(Proc_Nam
))
12129 and then Present
(Original_Node
(Associated_Node_For_Itype
(Proc_Nam
)))
12131 Present
(Parameter_Associations
12132 (Associated_Node_For_Itype
(Proc_Nam
)))
12135 Etype
(First
(Parameter_Associations
12136 (Associated_Node_For_Itype
(Proc_Nam
))));
12139 if Present
(Param_Typ
) then
12141 Is_Interface
(Param_Typ
)
12142 and then Is_Limited_Record
(Param_Typ
);
12146 end Is_Controlling_Limited_Procedure
;
12148 -----------------------------
12149 -- Is_CPP_Constructor_Call --
12150 -----------------------------
12152 function Is_CPP_Constructor_Call
(N
: Node_Id
) return Boolean is
12154 return Nkind
(N
) = N_Function_Call
12155 and then Is_CPP_Class
(Etype
(Etype
(N
)))
12156 and then Is_Constructor
(Entity
(Name
(N
)))
12157 and then Is_Imported
(Entity
(Name
(N
)));
12158 end Is_CPP_Constructor_Call
;
12160 -------------------------
12161 -- Is_Current_Instance --
12162 -------------------------
12164 function Is_Current_Instance
(N
: Node_Id
) return Boolean is
12165 Typ
: constant Entity_Id
:= Entity
(N
);
12169 -- Simplest case: entity is a concurrent type and we are currently
12170 -- inside the body. This will eventually be expanded into a
12171 -- call to Self (for tasks) or _object (for protected objects).
12173 if Is_Concurrent_Type
(Typ
) and then In_Open_Scopes
(Typ
) then
12177 -- Check whether the context is a (sub)type declaration for the
12181 while Present
(P
) loop
12182 if Nkind_In
(P
, N_Full_Type_Declaration
,
12183 N_Private_Type_Declaration
,
12184 N_Subtype_Declaration
)
12185 and then Comes_From_Source
(P
)
12186 and then Defining_Entity
(P
) = Typ
12190 -- A subtype name may appear in an aspect specification for a
12191 -- Predicate_Failure aspect, for which we do not construct a
12192 -- wrapper procedure. The subtype will be replaced by the
12193 -- expression being tested when the corresponding predicate
12194 -- check is expanded.
12196 elsif Nkind
(P
) = N_Aspect_Specification
12197 and then Nkind
(Parent
(P
)) = N_Subtype_Declaration
12201 elsif Nkind
(P
) = N_Pragma
12203 Get_Pragma_Id
(P
) = Pragma_Predicate_Failure
12212 -- In any other context this is not a current occurrence
12215 end Is_Current_Instance
;
12217 --------------------
12218 -- Is_Declaration --
12219 --------------------
12221 function Is_Declaration
(N
: Node_Id
) return Boolean is
12224 Is_Declaration_Other_Than_Renaming
(N
)
12225 or else Is_Renaming_Declaration
(N
);
12226 end Is_Declaration
;
12228 ----------------------------------------
12229 -- Is_Declaration_Other_Than_Renaming --
12230 ----------------------------------------
12232 function Is_Declaration_Other_Than_Renaming
(N
: Node_Id
) return Boolean is
12235 when N_Abstract_Subprogram_Declaration
12236 | N_Exception_Declaration
12237 | N_Expression_Function
12238 | N_Full_Type_Declaration
12239 | N_Generic_Package_Declaration
12240 | N_Generic_Subprogram_Declaration
12241 | N_Number_Declaration
12242 | N_Object_Declaration
12243 | N_Package_Declaration
12244 | N_Private_Extension_Declaration
12245 | N_Private_Type_Declaration
12246 | N_Subprogram_Declaration
12247 | N_Subtype_Declaration
12254 end Is_Declaration_Other_Than_Renaming
;
12256 --------------------------------
12257 -- Is_Declared_Within_Variant --
12258 --------------------------------
12260 function Is_Declared_Within_Variant
(Comp
: Entity_Id
) return Boolean is
12261 Comp_Decl
: constant Node_Id
:= Parent
(Comp
);
12262 Comp_List
: constant Node_Id
:= Parent
(Comp_Decl
);
12264 return Nkind
(Parent
(Comp_List
)) = N_Variant
;
12265 end Is_Declared_Within_Variant
;
12267 ----------------------------------------------
12268 -- Is_Dependent_Component_Of_Mutable_Object --
12269 ----------------------------------------------
12271 function Is_Dependent_Component_Of_Mutable_Object
12272 (Object
: Node_Id
) return Boolean
12275 Prefix_Type
: Entity_Id
;
12276 P_Aliased
: Boolean := False;
12279 Deref
: Node_Id
:= Object
;
12280 -- Dereference node, in something like X.all.Y(2)
12282 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
12285 -- Find the dereference node if any
12287 while Nkind_In
(Deref
, N_Indexed_Component
,
12288 N_Selected_Component
,
12291 Deref
:= Prefix
(Deref
);
12294 -- Ada 2005: If we have a component or slice of a dereference,
12295 -- something like X.all.Y (2), and the type of X is access-to-constant,
12296 -- Is_Variable will return False, because it is indeed a constant
12297 -- view. But it might be a view of a variable object, so we want the
12298 -- following condition to be True in that case.
12300 if Is_Variable
(Object
)
12301 or else (Ada_Version
>= Ada_2005
12302 and then Nkind
(Deref
) = N_Explicit_Dereference
)
12304 if Nkind
(Object
) = N_Selected_Component
then
12305 P
:= Prefix
(Object
);
12306 Prefix_Type
:= Etype
(P
);
12308 if Is_Entity_Name
(P
) then
12309 if Ekind
(Entity
(P
)) = E_Generic_In_Out_Parameter
then
12310 Prefix_Type
:= Base_Type
(Prefix_Type
);
12313 if Is_Aliased
(Entity
(P
)) then
12317 -- A discriminant check on a selected component may be expanded
12318 -- into a dereference when removing side-effects. Recover the
12319 -- original node and its type, which may be unconstrained.
12321 elsif Nkind
(P
) = N_Explicit_Dereference
12322 and then not (Comes_From_Source
(P
))
12324 P
:= Original_Node
(P
);
12325 Prefix_Type
:= Etype
(P
);
12328 -- Check for prefix being an aliased component???
12334 -- A heap object is constrained by its initial value
12336 -- Ada 2005 (AI-363): Always assume the object could be mutable in
12337 -- the dereferenced case, since the access value might denote an
12338 -- unconstrained aliased object, whereas in Ada 95 the designated
12339 -- object is guaranteed to be constrained. A worst-case assumption
12340 -- has to apply in Ada 2005 because we can't tell at compile
12341 -- time whether the object is "constrained by its initial value"
12342 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
12343 -- rules (these rules are acknowledged to need fixing).
12345 if Ada_Version
< Ada_2005
then
12346 if Is_Access_Type
(Prefix_Type
)
12347 or else Nkind
(P
) = N_Explicit_Dereference
12352 else pragma Assert
(Ada_Version
>= Ada_2005
);
12353 if Is_Access_Type
(Prefix_Type
) then
12355 -- If the access type is pool-specific, and there is no
12356 -- constrained partial view of the designated type, then the
12357 -- designated object is known to be constrained.
12359 if Ekind
(Prefix_Type
) = E_Access_Type
12360 and then not Object_Type_Has_Constrained_Partial_View
12361 (Typ
=> Designated_Type
(Prefix_Type
),
12362 Scop
=> Current_Scope
)
12366 -- Otherwise (general access type, or there is a constrained
12367 -- partial view of the designated type), we need to check
12368 -- based on the designated type.
12371 Prefix_Type
:= Designated_Type
(Prefix_Type
);
12377 Original_Record_Component
(Entity
(Selector_Name
(Object
)));
12379 -- As per AI-0017, the renaming is illegal in a generic body, even
12380 -- if the subtype is indefinite.
12382 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
12384 if not Is_Constrained
(Prefix_Type
)
12385 and then (Is_Definite_Subtype
(Prefix_Type
)
12387 (Is_Generic_Type
(Prefix_Type
)
12388 and then Ekind
(Current_Scope
) = E_Generic_Package
12389 and then In_Package_Body
(Current_Scope
)))
12391 and then (Is_Declared_Within_Variant
(Comp
)
12392 or else Has_Discriminant_Dependent_Constraint
(Comp
))
12393 and then (not P_Aliased
or else Ada_Version
>= Ada_2005
)
12397 -- If the prefix is of an access type at this point, then we want
12398 -- to return False, rather than calling this function recursively
12399 -- on the access object (which itself might be a discriminant-
12400 -- dependent component of some other object, but that isn't
12401 -- relevant to checking the object passed to us). This avoids
12402 -- issuing wrong errors when compiling with -gnatc, where there
12403 -- can be implicit dereferences that have not been expanded.
12405 elsif Is_Access_Type
(Etype
(Prefix
(Object
))) then
12410 Is_Dependent_Component_Of_Mutable_Object
(Prefix
(Object
));
12413 elsif Nkind
(Object
) = N_Indexed_Component
12414 or else Nkind
(Object
) = N_Slice
12416 return Is_Dependent_Component_Of_Mutable_Object
(Prefix
(Object
));
12418 -- A type conversion that Is_Variable is a view conversion:
12419 -- go back to the denoted object.
12421 elsif Nkind
(Object
) = N_Type_Conversion
then
12423 Is_Dependent_Component_Of_Mutable_Object
(Expression
(Object
));
12428 end Is_Dependent_Component_Of_Mutable_Object
;
12430 ---------------------
12431 -- Is_Dereferenced --
12432 ---------------------
12434 function Is_Dereferenced
(N
: Node_Id
) return Boolean is
12435 P
: constant Node_Id
:= Parent
(N
);
12437 return Nkind_In
(P
, N_Selected_Component
,
12438 N_Explicit_Dereference
,
12439 N_Indexed_Component
,
12441 and then Prefix
(P
) = N
;
12442 end Is_Dereferenced
;
12444 ----------------------
12445 -- Is_Descendant_Of --
12446 ----------------------
12448 function Is_Descendant_Of
(T1
: Entity_Id
; T2
: Entity_Id
) return Boolean is
12453 pragma Assert
(Nkind
(T1
) in N_Entity
);
12454 pragma Assert
(Nkind
(T2
) in N_Entity
);
12456 T
:= Base_Type
(T1
);
12458 -- Immediate return if the types match
12463 -- Comment needed here ???
12465 elsif Ekind
(T
) = E_Class_Wide_Type
then
12466 return Etype
(T
) = T2
;
12474 -- Done if we found the type we are looking for
12479 -- Done if no more derivations to check
12486 -- Following test catches error cases resulting from prev errors
12488 elsif No
(Etyp
) then
12491 elsif Is_Private_Type
(T
) and then Etyp
= Full_View
(T
) then
12494 elsif Is_Private_Type
(Etyp
) and then Full_View
(Etyp
) = T
then
12498 T
:= Base_Type
(Etyp
);
12501 end Is_Descendant_Of
;
12503 ----------------------------------------
12504 -- Is_Descendant_Of_Suspension_Object --
12505 ----------------------------------------
12507 function Is_Descendant_Of_Suspension_Object
12508 (Typ
: Entity_Id
) return Boolean
12510 Cur_Typ
: Entity_Id
;
12511 Par_Typ
: Entity_Id
;
12514 -- Climb the type derivation chain checking each parent type against
12515 -- Suspension_Object.
12517 Cur_Typ
:= Base_Type
(Typ
);
12518 while Present
(Cur_Typ
) loop
12519 Par_Typ
:= Etype
(Cur_Typ
);
12521 -- The current type is a match
12523 if Is_Suspension_Object
(Cur_Typ
) then
12526 -- Stop the traversal once the root of the derivation chain has been
12527 -- reached. In that case the current type is its own base type.
12529 elsif Cur_Typ
= Par_Typ
then
12533 Cur_Typ
:= Base_Type
(Par_Typ
);
12537 end Is_Descendant_Of_Suspension_Object
;
12539 ---------------------------------------------
12540 -- Is_Double_Precision_Floating_Point_Type --
12541 ---------------------------------------------
12543 function Is_Double_Precision_Floating_Point_Type
12544 (E
: Entity_Id
) return Boolean is
12546 return Is_Floating_Point_Type
(E
)
12547 and then Machine_Radix_Value
(E
) = Uint_2
12548 and then Machine_Mantissa_Value
(E
) = UI_From_Int
(53)
12549 and then Machine_Emax_Value
(E
) = Uint_2
** Uint_10
12550 and then Machine_Emin_Value
(E
) = Uint_3
- (Uint_2
** Uint_10
);
12551 end Is_Double_Precision_Floating_Point_Type
;
12553 -----------------------------
12554 -- Is_Effectively_Volatile --
12555 -----------------------------
12557 function Is_Effectively_Volatile
(Id
: Entity_Id
) return Boolean is
12559 if Is_Type
(Id
) then
12561 -- An arbitrary type is effectively volatile when it is subject to
12562 -- pragma Atomic or Volatile.
12564 if Is_Volatile
(Id
) then
12567 -- An array type is effectively volatile when it is subject to pragma
12568 -- Atomic_Components or Volatile_Components or its component type is
12569 -- effectively volatile.
12571 elsif Is_Array_Type
(Id
) then
12573 Has_Volatile_Components
(Id
)
12575 Is_Effectively_Volatile
(Component_Type
(Base_Type
(Id
)));
12577 -- A protected type is always volatile
12579 elsif Is_Protected_Type
(Id
) then
12582 -- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
12583 -- automatically volatile.
12585 elsif Is_Descendant_Of_Suspension_Object
(Id
) then
12588 -- Otherwise the type is not effectively volatile
12594 -- Otherwise Id denotes an object
12599 or else Has_Volatile_Components
(Id
)
12600 or else Is_Effectively_Volatile
(Etype
(Id
));
12602 end Is_Effectively_Volatile
;
12604 ------------------------------------
12605 -- Is_Effectively_Volatile_Object --
12606 ------------------------------------
12608 function Is_Effectively_Volatile_Object
(N
: Node_Id
) return Boolean is
12610 if Is_Entity_Name
(N
) then
12611 return Is_Effectively_Volatile
(Entity
(N
));
12613 elsif Nkind
(N
) = N_Indexed_Component
then
12614 return Is_Effectively_Volatile_Object
(Prefix
(N
));
12616 elsif Nkind
(N
) = N_Selected_Component
then
12618 Is_Effectively_Volatile_Object
(Prefix
(N
))
12620 Is_Effectively_Volatile_Object
(Selector_Name
(N
));
12625 end Is_Effectively_Volatile_Object
;
12627 -------------------
12628 -- Is_Entry_Body --
12629 -------------------
12631 function Is_Entry_Body
(Id
: Entity_Id
) return Boolean is
12634 Ekind_In
(Id
, E_Entry
, E_Entry_Family
)
12635 and then Nkind
(Unit_Declaration_Node
(Id
)) = N_Entry_Body
;
12638 --------------------------
12639 -- Is_Entry_Declaration --
12640 --------------------------
12642 function Is_Entry_Declaration
(Id
: Entity_Id
) return Boolean is
12645 Ekind_In
(Id
, E_Entry
, E_Entry_Family
)
12646 and then Nkind
(Unit_Declaration_Node
(Id
)) = N_Entry_Declaration
;
12647 end Is_Entry_Declaration
;
12649 ------------------------------------
12650 -- Is_Expanded_Priority_Attribute --
12651 ------------------------------------
12653 function Is_Expanded_Priority_Attribute
(E
: Entity_Id
) return Boolean is
12656 Nkind
(E
) = N_Function_Call
12657 and then not Configurable_Run_Time_Mode
12658 and then (Entity
(Name
(E
)) = RTE
(RE_Get_Ceiling
)
12659 or else Entity
(Name
(E
)) = RTE
(RO_PE_Get_Ceiling
));
12660 end Is_Expanded_Priority_Attribute
;
12662 ----------------------------
12663 -- Is_Expression_Function --
12664 ----------------------------
12666 function Is_Expression_Function
(Subp
: Entity_Id
) return Boolean is
12668 if Ekind_In
(Subp
, E_Function
, E_Subprogram_Body
) then
12670 Nkind
(Original_Node
(Unit_Declaration_Node
(Subp
))) =
12671 N_Expression_Function
;
12675 end Is_Expression_Function
;
12677 ------------------------------------------
12678 -- Is_Expression_Function_Or_Completion --
12679 ------------------------------------------
12681 function Is_Expression_Function_Or_Completion
12682 (Subp
: Entity_Id
) return Boolean
12684 Subp_Decl
: Node_Id
;
12687 if Ekind
(Subp
) = E_Function
then
12688 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
12690 -- The function declaration is either an expression function or is
12691 -- completed by an expression function body.
12694 Is_Expression_Function
(Subp
)
12695 or else (Nkind
(Subp_Decl
) = N_Subprogram_Declaration
12696 and then Present
(Corresponding_Body
(Subp_Decl
))
12697 and then Is_Expression_Function
12698 (Corresponding_Body
(Subp_Decl
)));
12700 elsif Ekind
(Subp
) = E_Subprogram_Body
then
12701 return Is_Expression_Function
(Subp
);
12706 end Is_Expression_Function_Or_Completion
;
12708 -----------------------
12709 -- Is_EVF_Expression --
12710 -----------------------
12712 function Is_EVF_Expression
(N
: Node_Id
) return Boolean is
12713 Orig_N
: constant Node_Id
:= Original_Node
(N
);
12719 -- Detect a reference to a formal parameter of a specific tagged type
12720 -- whose related subprogram is subject to pragma Expresions_Visible with
12723 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
12728 and then Is_Specific_Tagged_Type
(Etype
(Id
))
12729 and then Extensions_Visible_Status
(Id
) =
12730 Extensions_Visible_False
;
12732 -- A case expression is an EVF expression when it contains at least one
12733 -- EVF dependent_expression. Note that a case expression may have been
12734 -- expanded, hence the use of Original_Node.
12736 elsif Nkind
(Orig_N
) = N_Case_Expression
then
12737 Alt
:= First
(Alternatives
(Orig_N
));
12738 while Present
(Alt
) loop
12739 if Is_EVF_Expression
(Expression
(Alt
)) then
12746 -- An if expression is an EVF expression when it contains at least one
12747 -- EVF dependent_expression. Note that an if expression may have been
12748 -- expanded, hence the use of Original_Node.
12750 elsif Nkind
(Orig_N
) = N_If_Expression
then
12751 Expr
:= Next
(First
(Expressions
(Orig_N
)));
12752 while Present
(Expr
) loop
12753 if Is_EVF_Expression
(Expr
) then
12760 -- A qualified expression or a type conversion is an EVF expression when
12761 -- its operand is an EVF expression.
12763 elsif Nkind_In
(N
, N_Qualified_Expression
,
12764 N_Unchecked_Type_Conversion
,
12767 return Is_EVF_Expression
(Expression
(N
));
12769 -- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
12770 -- their prefix denotes an EVF expression.
12772 elsif Nkind
(N
) = N_Attribute_Reference
12773 and then Nam_In
(Attribute_Name
(N
), Name_Loop_Entry
,
12777 return Is_EVF_Expression
(Prefix
(N
));
12781 end Is_EVF_Expression
;
12787 function Is_False
(U
: Uint
) return Boolean is
12792 ---------------------------
12793 -- Is_Fixed_Model_Number --
12794 ---------------------------
12796 function Is_Fixed_Model_Number
(U
: Ureal
; T
: Entity_Id
) return Boolean is
12797 S
: constant Ureal
:= Small_Value
(T
);
12798 M
: Urealp
.Save_Mark
;
12802 R
:= (U
= UR_Trunc
(U
/ S
) * S
);
12803 Urealp
.Release
(M
);
12805 end Is_Fixed_Model_Number
;
12807 -------------------------------
12808 -- Is_Fully_Initialized_Type --
12809 -------------------------------
12811 function Is_Fully_Initialized_Type
(Typ
: Entity_Id
) return Boolean is
12815 if Is_Scalar_Type
(Typ
) then
12817 -- A scalar type with an aspect Default_Value is fully initialized
12819 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
12820 -- of a scalar type, but we don't take that into account here, since
12821 -- we don't want these to affect warnings.
12823 return Has_Default_Aspect
(Typ
);
12825 elsif Is_Access_Type
(Typ
) then
12828 elsif Is_Array_Type
(Typ
) then
12829 if Is_Fully_Initialized_Type
(Component_Type
(Typ
))
12830 or else (Ada_Version
>= Ada_2012
and then Has_Default_Aspect
(Typ
))
12835 -- An interesting case, if we have a constrained type one of whose
12836 -- bounds is known to be null, then there are no elements to be
12837 -- initialized, so all the elements are initialized.
12839 if Is_Constrained
(Typ
) then
12842 Indx_Typ
: Entity_Id
;
12843 Lbd
, Hbd
: Node_Id
;
12846 Indx
:= First_Index
(Typ
);
12847 while Present
(Indx
) loop
12848 if Etype
(Indx
) = Any_Type
then
12851 -- If index is a range, use directly
12853 elsif Nkind
(Indx
) = N_Range
then
12854 Lbd
:= Low_Bound
(Indx
);
12855 Hbd
:= High_Bound
(Indx
);
12858 Indx_Typ
:= Etype
(Indx
);
12860 if Is_Private_Type
(Indx_Typ
) then
12861 Indx_Typ
:= Full_View
(Indx_Typ
);
12864 if No
(Indx_Typ
) or else Etype
(Indx_Typ
) = Any_Type
then
12867 Lbd
:= Type_Low_Bound
(Indx_Typ
);
12868 Hbd
:= Type_High_Bound
(Indx_Typ
);
12872 if Compile_Time_Known_Value
(Lbd
)
12874 Compile_Time_Known_Value
(Hbd
)
12876 if Expr_Value
(Hbd
) < Expr_Value
(Lbd
) then
12886 -- If no null indexes, then type is not fully initialized
12892 elsif Is_Record_Type
(Typ
) then
12893 if Has_Discriminants
(Typ
)
12895 Present
(Discriminant_Default_Value
(First_Discriminant
(Typ
)))
12896 and then Is_Fully_Initialized_Variant
(Typ
)
12901 -- We consider bounded string types to be fully initialized, because
12902 -- otherwise we get false alarms when the Data component is not
12903 -- default-initialized.
12905 if Is_Bounded_String
(Typ
) then
12909 -- Controlled records are considered to be fully initialized if
12910 -- there is a user defined Initialize routine. This may not be
12911 -- entirely correct, but as the spec notes, we are guessing here
12912 -- what is best from the point of view of issuing warnings.
12914 if Is_Controlled
(Typ
) then
12916 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
12919 if Present
(Utyp
) then
12921 Init
: constant Entity_Id
:=
12922 (Find_Optional_Prim_Op
12923 (Underlying_Type
(Typ
), Name_Initialize
));
12927 and then Comes_From_Source
(Init
)
12929 Is_Predefined_File_Name
12930 (File_Name
(Get_Source_File_Index
(Sloc
(Init
))))
12934 elsif Has_Null_Extension
(Typ
)
12936 Is_Fully_Initialized_Type
12937 (Etype
(Base_Type
(Typ
)))
12946 -- Otherwise see if all record components are initialized
12952 Ent
:= First_Entity
(Typ
);
12953 while Present
(Ent
) loop
12954 if Ekind
(Ent
) = E_Component
12955 and then (No
(Parent
(Ent
))
12956 or else No
(Expression
(Parent
(Ent
))))
12957 and then not Is_Fully_Initialized_Type
(Etype
(Ent
))
12959 -- Special VM case for tag components, which need to be
12960 -- defined in this case, but are never initialized as VMs
12961 -- are using other dispatching mechanisms. Ignore this
12962 -- uninitialized case. Note that this applies both to the
12963 -- uTag entry and the main vtable pointer (CPP_Class case).
12965 and then (Tagged_Type_Expansion
or else not Is_Tag
(Ent
))
12974 -- No uninitialized components, so type is fully initialized.
12975 -- Note that this catches the case of no components as well.
12979 elsif Is_Concurrent_Type
(Typ
) then
12982 elsif Is_Private_Type
(Typ
) then
12984 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
12990 return Is_Fully_Initialized_Type
(U
);
12997 end Is_Fully_Initialized_Type
;
12999 ----------------------------------
13000 -- Is_Fully_Initialized_Variant --
13001 ----------------------------------
13003 function Is_Fully_Initialized_Variant
(Typ
: Entity_Id
) return Boolean is
13004 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
13005 Constraints
: constant List_Id
:= New_List
;
13006 Components
: constant Elist_Id
:= New_Elmt_List
;
13007 Comp_Elmt
: Elmt_Id
;
13009 Comp_List
: Node_Id
;
13011 Discr_Val
: Node_Id
;
13013 Report_Errors
: Boolean;
13014 pragma Warnings
(Off
, Report_Errors
);
13017 if Serious_Errors_Detected
> 0 then
13021 if Is_Record_Type
(Typ
)
13022 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
13023 and then Nkind
(Type_Definition
(Parent
(Typ
))) = N_Record_Definition
13025 Comp_List
:= Component_List
(Type_Definition
(Parent
(Typ
)));
13027 Discr
:= First_Discriminant
(Typ
);
13028 while Present
(Discr
) loop
13029 if Nkind
(Parent
(Discr
)) = N_Discriminant_Specification
then
13030 Discr_Val
:= Expression
(Parent
(Discr
));
13032 if Present
(Discr_Val
)
13033 and then Is_OK_Static_Expression
(Discr_Val
)
13035 Append_To
(Constraints
,
13036 Make_Component_Association
(Loc
,
13037 Choices
=> New_List
(New_Occurrence_Of
(Discr
, Loc
)),
13038 Expression
=> New_Copy
(Discr_Val
)));
13046 Next_Discriminant
(Discr
);
13051 Comp_List
=> Comp_List
,
13052 Governed_By
=> Constraints
,
13053 Into
=> Components
,
13054 Report_Errors
=> Report_Errors
);
13056 -- Check that each component present is fully initialized
13058 Comp_Elmt
:= First_Elmt
(Components
);
13059 while Present
(Comp_Elmt
) loop
13060 Comp_Id
:= Node
(Comp_Elmt
);
13062 if Ekind
(Comp_Id
) = E_Component
13063 and then (No
(Parent
(Comp_Id
))
13064 or else No
(Expression
(Parent
(Comp_Id
))))
13065 and then not Is_Fully_Initialized_Type
(Etype
(Comp_Id
))
13070 Next_Elmt
(Comp_Elmt
);
13075 elsif Is_Private_Type
(Typ
) then
13077 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
13083 return Is_Fully_Initialized_Variant
(U
);
13090 end Is_Fully_Initialized_Variant
;
13092 ------------------------------------
13093 -- Is_Generic_Declaration_Or_Body --
13094 ------------------------------------
13096 function Is_Generic_Declaration_Or_Body
(Decl
: Node_Id
) return Boolean is
13097 Spec_Decl
: Node_Id
;
13100 -- Package/subprogram body
13102 if Nkind_In
(Decl
, N_Package_Body
, N_Subprogram_Body
)
13103 and then Present
(Corresponding_Spec
(Decl
))
13105 Spec_Decl
:= Unit_Declaration_Node
(Corresponding_Spec
(Decl
));
13107 -- Package/subprogram body stub
13109 elsif Nkind_In
(Decl
, N_Package_Body_Stub
, N_Subprogram_Body_Stub
)
13110 and then Present
(Corresponding_Spec_Of_Stub
(Decl
))
13113 Unit_Declaration_Node
(Corresponding_Spec_Of_Stub
(Decl
));
13121 -- Rather than inspecting the defining entity of the spec declaration,
13122 -- look at its Nkind. This takes care of the case where the analysis of
13123 -- a generic body modifies the Ekind of its spec to allow for recursive
13127 Nkind_In
(Spec_Decl
, N_Generic_Package_Declaration
,
13128 N_Generic_Subprogram_Declaration
);
13129 end Is_Generic_Declaration_Or_Body
;
13131 ----------------------------
13132 -- Is_Inherited_Operation --
13133 ----------------------------
13135 function Is_Inherited_Operation
(E
: Entity_Id
) return Boolean is
13136 pragma Assert
(Is_Overloadable
(E
));
13137 Kind
: constant Node_Kind
:= Nkind
(Parent
(E
));
13139 return Kind
= N_Full_Type_Declaration
13140 or else Kind
= N_Private_Extension_Declaration
13141 or else Kind
= N_Subtype_Declaration
13142 or else (Ekind
(E
) = E_Enumeration_Literal
13143 and then Is_Derived_Type
(Etype
(E
)));
13144 end Is_Inherited_Operation
;
13146 -------------------------------------
13147 -- Is_Inherited_Operation_For_Type --
13148 -------------------------------------
13150 function Is_Inherited_Operation_For_Type
13152 Typ
: Entity_Id
) return Boolean
13155 -- Check that the operation has been created by the type declaration
13157 return Is_Inherited_Operation
(E
)
13158 and then Defining_Identifier
(Parent
(E
)) = Typ
;
13159 end Is_Inherited_Operation_For_Type
;
13161 --------------------------------------
13162 -- Is_Inlinable_Expression_Function --
13163 --------------------------------------
13165 function Is_Inlinable_Expression_Function
13166 (Subp
: Entity_Id
) return Boolean
13168 Return_Expr
: Node_Id
;
13171 if Is_Expression_Function_Or_Completion
(Subp
)
13172 and then Has_Pragma_Inline_Always
(Subp
)
13173 and then Needs_No_Actuals
(Subp
)
13174 and then No
(Contract
(Subp
))
13175 and then not Is_Dispatching_Operation
(Subp
)
13176 and then Needs_Finalization
(Etype
(Subp
))
13177 and then not Is_Class_Wide_Type
(Etype
(Subp
))
13178 and then not (Has_Invariants
(Etype
(Subp
)))
13179 and then Present
(Subprogram_Body
(Subp
))
13180 and then Was_Expression_Function
(Subprogram_Body
(Subp
))
13182 Return_Expr
:= Expression_Of_Expression_Function
(Subp
);
13184 -- The returned object must not have a qualified expression and its
13185 -- nominal subtype must be statically compatible with the result
13186 -- subtype of the expression function.
13189 Nkind
(Return_Expr
) = N_Identifier
13190 and then Etype
(Return_Expr
) = Etype
(Subp
);
13194 end Is_Inlinable_Expression_Function
;
13200 function Is_Iterator
(Typ
: Entity_Id
) return Boolean is
13201 function Denotes_Iterator
(Iter_Typ
: Entity_Id
) return Boolean;
13202 -- Determine whether type Iter_Typ is a predefined forward or reversible
13205 ----------------------
13206 -- Denotes_Iterator --
13207 ----------------------
13209 function Denotes_Iterator
(Iter_Typ
: Entity_Id
) return Boolean is
13211 -- Check that the name matches, and that the ultimate ancestor is in
13212 -- a predefined unit, i.e the one that declares iterator interfaces.
13215 Nam_In
(Chars
(Iter_Typ
), Name_Forward_Iterator
,
13216 Name_Reversible_Iterator
)
13217 and then Is_Predefined_File_Name
13218 (Unit_File_Name
(Get_Source_Unit
(Root_Type
(Iter_Typ
))));
13219 end Denotes_Iterator
;
13223 Iface_Elmt
: Elmt_Id
;
13226 -- Start of processing for Is_Iterator
13229 -- The type may be a subtype of a descendant of the proper instance of
13230 -- the predefined interface type, so we must use the root type of the
13231 -- given type. The same is done for Is_Reversible_Iterator.
13233 if Is_Class_Wide_Type
(Typ
)
13234 and then Denotes_Iterator
(Root_Type
(Typ
))
13238 elsif not Is_Tagged_Type
(Typ
) or else not Is_Derived_Type
(Typ
) then
13241 elsif Present
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)) then
13245 Collect_Interfaces
(Typ
, Ifaces
);
13247 Iface_Elmt
:= First_Elmt
(Ifaces
);
13248 while Present
(Iface_Elmt
) loop
13249 if Denotes_Iterator
(Node
(Iface_Elmt
)) then
13253 Next_Elmt
(Iface_Elmt
);
13260 ----------------------------
13261 -- Is_Iterator_Over_Array --
13262 ----------------------------
13264 function Is_Iterator_Over_Array
(N
: Node_Id
) return Boolean is
13265 Container
: constant Node_Id
:= Name
(N
);
13266 Container_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Container
));
13268 return Is_Array_Type
(Container_Typ
);
13269 end Is_Iterator_Over_Array
;
13275 -- We seem to have a lot of overlapping functions that do similar things
13276 -- (testing for left hand sides or lvalues???).
13278 function Is_LHS
(N
: Node_Id
) return Is_LHS_Result
is
13279 P
: constant Node_Id
:= Parent
(N
);
13282 -- Return True if we are the left hand side of an assignment statement
13284 if Nkind
(P
) = N_Assignment_Statement
then
13285 if Name
(P
) = N
then
13291 -- Case of prefix of indexed or selected component or slice
13293 elsif Nkind_In
(P
, N_Indexed_Component
, N_Selected_Component
, N_Slice
)
13294 and then N
= Prefix
(P
)
13296 -- Here we have the case where the parent P is N.Q or N(Q .. R).
13297 -- If P is an LHS, then N is also effectively an LHS, but there
13298 -- is an important exception. If N is of an access type, then
13299 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
13300 -- case this makes N.all a left hand side but not N itself.
13302 -- If we don't know the type yet, this is the case where we return
13303 -- Unknown, since the answer depends on the type which is unknown.
13305 if No
(Etype
(N
)) then
13308 -- We have an Etype set, so we can check it
13310 elsif Is_Access_Type
(Etype
(N
)) then
13313 -- OK, not access type case, so just test whole expression
13319 -- All other cases are not left hand sides
13326 -----------------------------
13327 -- Is_Library_Level_Entity --
13328 -----------------------------
13330 function Is_Library_Level_Entity
(E
: Entity_Id
) return Boolean is
13332 -- The following is a small optimization, and it also properly handles
13333 -- discriminals, which in task bodies might appear in expressions before
13334 -- the corresponding procedure has been created, and which therefore do
13335 -- not have an assigned scope.
13337 if Is_Formal
(E
) then
13341 -- Normal test is simply that the enclosing dynamic scope is Standard
13343 return Enclosing_Dynamic_Scope
(E
) = Standard_Standard
;
13344 end Is_Library_Level_Entity
;
13346 --------------------------------
13347 -- Is_Limited_Class_Wide_Type --
13348 --------------------------------
13350 function Is_Limited_Class_Wide_Type
(Typ
: Entity_Id
) return Boolean is
13353 Is_Class_Wide_Type
(Typ
)
13354 and then (Is_Limited_Type
(Typ
) or else From_Limited_With
(Typ
));
13355 end Is_Limited_Class_Wide_Type
;
13357 ---------------------------------
13358 -- Is_Local_Variable_Reference --
13359 ---------------------------------
13361 function Is_Local_Variable_Reference
(Expr
: Node_Id
) return Boolean is
13363 if not Is_Entity_Name
(Expr
) then
13368 Ent
: constant Entity_Id
:= Entity
(Expr
);
13369 Sub
: constant Entity_Id
:= Enclosing_Subprogram
(Ent
);
13371 if not Ekind_In
(Ent
, E_Variable
, E_In_Out_Parameter
) then
13374 return Present
(Sub
) and then Sub
= Current_Subprogram
;
13378 end Is_Local_Variable_Reference
;
13380 -----------------------
13381 -- Is_Name_Reference --
13382 -----------------------
13384 function Is_Name_Reference
(N
: Node_Id
) return Boolean is
13386 if Is_Entity_Name
(N
) then
13387 return Present
(Entity
(N
)) and then Is_Object
(Entity
(N
));
13391 when N_Indexed_Component
13395 Is_Name_Reference
(Prefix
(N
))
13396 or else Is_Access_Type
(Etype
(Prefix
(N
)));
13398 -- Attributes 'Input, 'Old and 'Result produce objects
13400 when N_Attribute_Reference
=>
13402 Nam_In
(Attribute_Name
(N
), Name_Input
, Name_Old
, Name_Result
);
13404 when N_Selected_Component
=>
13406 Is_Name_Reference
(Selector_Name
(N
))
13408 (Is_Name_Reference
(Prefix
(N
))
13409 or else Is_Access_Type
(Etype
(Prefix
(N
))));
13411 when N_Explicit_Dereference
=>
13414 -- A view conversion of a tagged name is a name reference
13416 when N_Type_Conversion
=>
13418 Is_Tagged_Type
(Etype
(Subtype_Mark
(N
)))
13419 and then Is_Tagged_Type
(Etype
(Expression
(N
)))
13420 and then Is_Name_Reference
(Expression
(N
));
13422 -- An unchecked type conversion is considered to be a name if the
13423 -- operand is a name (this construction arises only as a result of
13424 -- expansion activities).
13426 when N_Unchecked_Type_Conversion
=>
13427 return Is_Name_Reference
(Expression
(N
));
13432 end Is_Name_Reference
;
13434 ---------------------------------
13435 -- Is_Nontrivial_DIC_Procedure --
13436 ---------------------------------
13438 function Is_Nontrivial_DIC_Procedure
(Id
: Entity_Id
) return Boolean is
13439 Body_Decl
: Node_Id
;
13443 if Ekind
(Id
) = E_Procedure
and then Is_DIC_Procedure
(Id
) then
13445 Unit_Declaration_Node
13446 (Corresponding_Body
(Unit_Declaration_Node
(Id
)));
13448 -- The body of the Default_Initial_Condition procedure must contain
13449 -- at least one statement, otherwise the generation of the subprogram
13452 pragma Assert
(Present
(Handled_Statement_Sequence
(Body_Decl
)));
13454 -- To qualify as nontrivial, the first statement of the procedure
13455 -- must be a check in the form of an if statement. If the original
13456 -- Default_Initial_Condition expression was folded, then the first
13457 -- statement is not a check.
13459 Stmt
:= First
(Statements
(Handled_Statement_Sequence
(Body_Decl
)));
13462 Nkind
(Stmt
) = N_If_Statement
13463 and then Nkind
(Original_Node
(Stmt
)) = N_Pragma
;
13467 end Is_Nontrivial_DIC_Procedure
;
13469 -------------------------
13470 -- Is_Null_Record_Type --
13471 -------------------------
13473 function Is_Null_Record_Type
(T
: Entity_Id
) return Boolean is
13474 Decl
: constant Node_Id
:= Parent
(T
);
13476 return Nkind
(Decl
) = N_Full_Type_Declaration
13477 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
13479 (No
(Component_List
(Type_Definition
(Decl
)))
13480 or else Null_Present
(Component_List
(Type_Definition
(Decl
))));
13481 end Is_Null_Record_Type
;
13483 -------------------------
13484 -- Is_Object_Reference --
13485 -------------------------
13487 function Is_Object_Reference
(N
: Node_Id
) return Boolean is
13488 function Is_Internally_Generated_Renaming
(N
: Node_Id
) return Boolean;
13489 -- Determine whether N is the name of an internally-generated renaming
13491 --------------------------------------
13492 -- Is_Internally_Generated_Renaming --
13493 --------------------------------------
13495 function Is_Internally_Generated_Renaming
(N
: Node_Id
) return Boolean is
13500 while Present
(P
) loop
13501 if Nkind
(P
) = N_Object_Renaming_Declaration
then
13502 return not Comes_From_Source
(P
);
13503 elsif Is_List_Member
(P
) then
13511 end Is_Internally_Generated_Renaming
;
13513 -- Start of processing for Is_Object_Reference
13516 if Is_Entity_Name
(N
) then
13517 return Present
(Entity
(N
)) and then Is_Object
(Entity
(N
));
13521 when N_Indexed_Component
13525 Is_Object_Reference
(Prefix
(N
))
13526 or else Is_Access_Type
(Etype
(Prefix
(N
)));
13528 -- In Ada 95, a function call is a constant object; a procedure
13531 when N_Function_Call
=>
13532 return Etype
(N
) /= Standard_Void_Type
;
13534 -- Attributes 'Input, 'Loop_Entry, 'Old, and 'Result produce
13537 when N_Attribute_Reference
=>
13539 Nam_In
(Attribute_Name
(N
), Name_Input
,
13544 when N_Selected_Component
=>
13546 Is_Object_Reference
(Selector_Name
(N
))
13548 (Is_Object_Reference
(Prefix
(N
))
13549 or else Is_Access_Type
(Etype
(Prefix
(N
))));
13551 when N_Explicit_Dereference
=>
13554 -- A view conversion of a tagged object is an object reference
13556 when N_Type_Conversion
=>
13557 return Is_Tagged_Type
(Etype
(Subtype_Mark
(N
)))
13558 and then Is_Tagged_Type
(Etype
(Expression
(N
)))
13559 and then Is_Object_Reference
(Expression
(N
));
13561 -- An unchecked type conversion is considered to be an object if
13562 -- the operand is an object (this construction arises only as a
13563 -- result of expansion activities).
13565 when N_Unchecked_Type_Conversion
=>
13568 -- Allow string literals to act as objects as long as they appear
13569 -- in internally-generated renamings. The expansion of iterators
13570 -- may generate such renamings when the range involves a string
13573 when N_String_Literal
=>
13574 return Is_Internally_Generated_Renaming
(Parent
(N
));
13576 -- AI05-0003: In Ada 2012 a qualified expression is a name.
13577 -- This allows disambiguation of function calls and the use
13578 -- of aggregates in more contexts.
13580 when N_Qualified_Expression
=>
13581 if Ada_Version
< Ada_2012
then
13584 return Is_Object_Reference
(Expression
(N
))
13585 or else Nkind
(Expression
(N
)) = N_Aggregate
;
13592 end Is_Object_Reference
;
13594 -----------------------------------
13595 -- Is_OK_Variable_For_Out_Formal --
13596 -----------------------------------
13598 function Is_OK_Variable_For_Out_Formal
(AV
: Node_Id
) return Boolean is
13600 Note_Possible_Modification
(AV
, Sure
=> True);
13602 -- We must reject parenthesized variable names. Comes_From_Source is
13603 -- checked because there are currently cases where the compiler violates
13604 -- this rule (e.g. passing a task object to its controlled Initialize
13605 -- routine). This should be properly documented in sinfo???
13607 if Paren_Count
(AV
) > 0 and then Comes_From_Source
(AV
) then
13610 -- A variable is always allowed
13612 elsif Is_Variable
(AV
) then
13615 -- Generalized indexing operations are rewritten as explicit
13616 -- dereferences, and it is only during resolution that we can
13617 -- check whether the context requires an access_to_variable type.
13619 elsif Nkind
(AV
) = N_Explicit_Dereference
13620 and then Ada_Version
>= Ada_2012
13621 and then Nkind
(Original_Node
(AV
)) = N_Indexed_Component
13622 and then Present
(Etype
(Original_Node
(AV
)))
13623 and then Has_Implicit_Dereference
(Etype
(Original_Node
(AV
)))
13625 return not Is_Access_Constant
(Etype
(Prefix
(AV
)));
13627 -- Unchecked conversions are allowed only if they come from the
13628 -- generated code, which sometimes uses unchecked conversions for out
13629 -- parameters in cases where code generation is unaffected. We tell
13630 -- source unchecked conversions by seeing if they are rewrites of
13631 -- an original Unchecked_Conversion function call, or of an explicit
13632 -- conversion of a function call or an aggregate (as may happen in the
13633 -- expansion of a packed array aggregate).
13635 elsif Nkind
(AV
) = N_Unchecked_Type_Conversion
then
13636 if Nkind_In
(Original_Node
(AV
), N_Function_Call
, N_Aggregate
) then
13639 elsif Comes_From_Source
(AV
)
13640 and then Nkind
(Original_Node
(Expression
(AV
))) = N_Function_Call
13644 elsif Nkind
(Original_Node
(AV
)) = N_Type_Conversion
then
13645 return Is_OK_Variable_For_Out_Formal
(Expression
(AV
));
13651 -- Normal type conversions are allowed if argument is a variable
13653 elsif Nkind
(AV
) = N_Type_Conversion
then
13654 if Is_Variable
(Expression
(AV
))
13655 and then Paren_Count
(Expression
(AV
)) = 0
13657 Note_Possible_Modification
(Expression
(AV
), Sure
=> True);
13660 -- We also allow a non-parenthesized expression that raises
13661 -- constraint error if it rewrites what used to be a variable
13663 elsif Raises_Constraint_Error
(Expression
(AV
))
13664 and then Paren_Count
(Expression
(AV
)) = 0
13665 and then Is_Variable
(Original_Node
(Expression
(AV
)))
13669 -- Type conversion of something other than a variable
13675 -- If this node is rewritten, then test the original form, if that is
13676 -- OK, then we consider the rewritten node OK (for example, if the
13677 -- original node is a conversion, then Is_Variable will not be true
13678 -- but we still want to allow the conversion if it converts a variable).
13680 elsif Original_Node
(AV
) /= AV
then
13682 -- In Ada 2012, the explicit dereference may be a rewritten call to a
13683 -- Reference function.
13685 if Ada_Version
>= Ada_2012
13686 and then Nkind
(Original_Node
(AV
)) = N_Function_Call
13688 Has_Implicit_Dereference
(Etype
(Name
(Original_Node
(AV
))))
13691 -- Check that this is not a constant reference.
13693 return not Is_Access_Constant
(Etype
(Prefix
(AV
)));
13695 elsif Has_Implicit_Dereference
(Etype
(Original_Node
(AV
))) then
13697 not Is_Access_Constant
(Etype
13698 (Get_Reference_Discriminant
(Etype
(Original_Node
(AV
)))));
13701 return Is_OK_Variable_For_Out_Formal
(Original_Node
(AV
));
13704 -- All other non-variables are rejected
13709 end Is_OK_Variable_For_Out_Formal
;
13711 ----------------------------
13712 -- Is_OK_Volatile_Context --
13713 ----------------------------
13715 function Is_OK_Volatile_Context
13716 (Context
: Node_Id
;
13717 Obj_Ref
: Node_Id
) return Boolean
13719 function Is_Protected_Operation_Call
(Nod
: Node_Id
) return Boolean;
13720 -- Determine whether an arbitrary node denotes a call to a protected
13721 -- entry, function, or procedure in prefixed form where the prefix is
13724 function Within_Check
(Nod
: Node_Id
) return Boolean;
13725 -- Determine whether an arbitrary node appears in a check node
13727 function Within_Subprogram_Call
(Nod
: Node_Id
) return Boolean;
13728 -- Determine whether an arbitrary node appears in an entry, function, or
13731 function Within_Volatile_Function
(Id
: Entity_Id
) return Boolean;
13732 -- Determine whether an arbitrary entity appears in a volatile function
13734 ---------------------------------
13735 -- Is_Protected_Operation_Call --
13736 ---------------------------------
13738 function Is_Protected_Operation_Call
(Nod
: Node_Id
) return Boolean is
13743 -- A call to a protected operations retains its selected component
13744 -- form as opposed to other prefixed calls that are transformed in
13747 if Nkind
(Nod
) = N_Selected_Component
then
13748 Pref
:= Prefix
(Nod
);
13749 Subp
:= Selector_Name
(Nod
);
13753 and then Present
(Etype
(Pref
))
13754 and then Is_Protected_Type
(Etype
(Pref
))
13755 and then Is_Entity_Name
(Subp
)
13756 and then Present
(Entity
(Subp
))
13757 and then Ekind_In
(Entity
(Subp
), E_Entry
,
13764 end Is_Protected_Operation_Call
;
13770 function Within_Check
(Nod
: Node_Id
) return Boolean is
13774 -- Climb the parent chain looking for a check node
13777 while Present
(Par
) loop
13778 if Nkind
(Par
) in N_Raise_xxx_Error
then
13781 -- Prevent the search from going too far
13783 elsif Is_Body_Or_Package_Declaration
(Par
) then
13787 Par
:= Parent
(Par
);
13793 ----------------------------
13794 -- Within_Subprogram_Call --
13795 ----------------------------
13797 function Within_Subprogram_Call
(Nod
: Node_Id
) return Boolean is
13801 -- Climb the parent chain looking for a function or procedure call
13804 while Present
(Par
) loop
13805 if Nkind_In
(Par
, N_Entry_Call_Statement
,
13807 N_Procedure_Call_Statement
)
13811 -- Prevent the search from going too far
13813 elsif Is_Body_Or_Package_Declaration
(Par
) then
13817 Par
:= Parent
(Par
);
13821 end Within_Subprogram_Call
;
13823 ------------------------------
13824 -- Within_Volatile_Function --
13825 ------------------------------
13827 function Within_Volatile_Function
(Id
: Entity_Id
) return Boolean is
13828 Func_Id
: Entity_Id
;
13831 -- Traverse the scope stack looking for a [generic] function
13834 while Present
(Func_Id
) and then Func_Id
/= Standard_Standard
loop
13835 if Ekind_In
(Func_Id
, E_Function
, E_Generic_Function
) then
13836 return Is_Volatile_Function
(Func_Id
);
13839 Func_Id
:= Scope
(Func_Id
);
13843 end Within_Volatile_Function
;
13847 Obj_Id
: Entity_Id
;
13849 -- Start of processing for Is_OK_Volatile_Context
13852 -- The volatile object appears on either side of an assignment
13854 if Nkind
(Context
) = N_Assignment_Statement
then
13857 -- The volatile object is part of the initialization expression of
13860 elsif Nkind
(Context
) = N_Object_Declaration
13861 and then Present
(Expression
(Context
))
13862 and then Expression
(Context
) = Obj_Ref
13864 Obj_Id
:= Defining_Entity
(Context
);
13866 -- The volatile object acts as the initialization expression of an
13867 -- extended return statement. This is valid context as long as the
13868 -- function is volatile.
13870 if Is_Return_Object
(Obj_Id
) then
13871 return Within_Volatile_Function
(Obj_Id
);
13873 -- Otherwise this is a normal object initialization
13879 -- The volatile object acts as the name of a renaming declaration
13881 elsif Nkind
(Context
) = N_Object_Renaming_Declaration
13882 and then Name
(Context
) = Obj_Ref
13886 -- The volatile object appears as an actual parameter in a call to an
13887 -- instance of Unchecked_Conversion whose result is renamed.
13889 elsif Nkind
(Context
) = N_Function_Call
13890 and then Is_Entity_Name
(Name
(Context
))
13891 and then Is_Unchecked_Conversion_Instance
(Entity
(Name
(Context
)))
13892 and then Nkind
(Parent
(Context
)) = N_Object_Renaming_Declaration
13896 -- The volatile object is actually the prefix in a protected entry,
13897 -- function, or procedure call.
13899 elsif Is_Protected_Operation_Call
(Context
) then
13902 -- The volatile object appears as the expression of a simple return
13903 -- statement that applies to a volatile function.
13905 elsif Nkind
(Context
) = N_Simple_Return_Statement
13906 and then Expression
(Context
) = Obj_Ref
13909 Within_Volatile_Function
(Return_Statement_Entity
(Context
));
13911 -- The volatile object appears as the prefix of a name occurring in a
13912 -- non-interfering context.
13914 elsif Nkind_In
(Context
, N_Attribute_Reference
,
13915 N_Explicit_Dereference
,
13916 N_Indexed_Component
,
13917 N_Selected_Component
,
13919 and then Prefix
(Context
) = Obj_Ref
13920 and then Is_OK_Volatile_Context
13921 (Context
=> Parent
(Context
),
13922 Obj_Ref
=> Context
)
13926 -- The volatile object appears as the prefix of attributes Address,
13927 -- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
13930 elsif Nkind
(Context
) = N_Attribute_Reference
13931 and then Prefix
(Context
) = Obj_Ref
13932 and then Nam_In
(Attribute_Name
(Context
), Name_Address
,
13934 Name_Component_Size
,
13943 -- The volatile object appears as the expression of a type conversion
13944 -- occurring in a non-interfering context.
13946 elsif Nkind_In
(Context
, N_Type_Conversion
,
13947 N_Unchecked_Type_Conversion
)
13948 and then Expression
(Context
) = Obj_Ref
13949 and then Is_OK_Volatile_Context
13950 (Context
=> Parent
(Context
),
13951 Obj_Ref
=> Context
)
13955 -- The volatile object appears as the expression in a delay statement
13957 elsif Nkind
(Context
) in N_Delay_Statement
then
13960 -- Allow references to volatile objects in various checks. This is not a
13961 -- direct SPARK 2014 requirement.
13963 elsif Within_Check
(Context
) then
13966 -- Assume that references to effectively volatile objects that appear
13967 -- as actual parameters in a subprogram call are always legal. A full
13968 -- legality check is done when the actuals are resolved (see routine
13969 -- Resolve_Actuals).
13971 elsif Within_Subprogram_Call
(Context
) then
13974 -- Otherwise the context is not suitable for an effectively volatile
13980 end Is_OK_Volatile_Context
;
13982 ------------------------------------
13983 -- Is_Package_Contract_Annotation --
13984 ------------------------------------
13986 function Is_Package_Contract_Annotation
(Item
: Node_Id
) return Boolean is
13990 if Nkind
(Item
) = N_Aspect_Specification
then
13991 Nam
:= Chars
(Identifier
(Item
));
13993 else pragma Assert
(Nkind
(Item
) = N_Pragma
);
13994 Nam
:= Pragma_Name
(Item
);
13997 return Nam
= Name_Abstract_State
13998 or else Nam
= Name_Initial_Condition
13999 or else Nam
= Name_Initializes
14000 or else Nam
= Name_Refined_State
;
14001 end Is_Package_Contract_Annotation
;
14003 -----------------------------------
14004 -- Is_Partially_Initialized_Type --
14005 -----------------------------------
14007 function Is_Partially_Initialized_Type
14009 Include_Implicit
: Boolean := True) return Boolean
14012 if Is_Scalar_Type
(Typ
) then
14015 elsif Is_Access_Type
(Typ
) then
14016 return Include_Implicit
;
14018 elsif Is_Array_Type
(Typ
) then
14020 -- If component type is partially initialized, so is array type
14022 if Is_Partially_Initialized_Type
14023 (Component_Type
(Typ
), Include_Implicit
)
14027 -- Otherwise we are only partially initialized if we are fully
14028 -- initialized (this is the empty array case, no point in us
14029 -- duplicating that code here).
14032 return Is_Fully_Initialized_Type
(Typ
);
14035 elsif Is_Record_Type
(Typ
) then
14037 -- A discriminated type is always partially initialized if in
14040 if Has_Discriminants
(Typ
) and then Include_Implicit
then
14043 -- A tagged type is always partially initialized
14045 elsif Is_Tagged_Type
(Typ
) then
14048 -- Case of non-discriminated record
14054 Component_Present
: Boolean := False;
14055 -- Set True if at least one component is present. If no
14056 -- components are present, then record type is fully
14057 -- initialized (another odd case, like the null array).
14060 -- Loop through components
14062 Ent
:= First_Entity
(Typ
);
14063 while Present
(Ent
) loop
14064 if Ekind
(Ent
) = E_Component
then
14065 Component_Present
:= True;
14067 -- If a component has an initialization expression then
14068 -- the enclosing record type is partially initialized
14070 if Present
(Parent
(Ent
))
14071 and then Present
(Expression
(Parent
(Ent
)))
14075 -- If a component is of a type which is itself partially
14076 -- initialized, then the enclosing record type is also.
14078 elsif Is_Partially_Initialized_Type
14079 (Etype
(Ent
), Include_Implicit
)
14088 -- No initialized components found. If we found any components
14089 -- they were all uninitialized so the result is false.
14091 if Component_Present
then
14094 -- But if we found no components, then all the components are
14095 -- initialized so we consider the type to be initialized.
14103 -- Concurrent types are always fully initialized
14105 elsif Is_Concurrent_Type
(Typ
) then
14108 -- For a private type, go to underlying type. If there is no underlying
14109 -- type then just assume this partially initialized. Not clear if this
14110 -- can happen in a non-error case, but no harm in testing for this.
14112 elsif Is_Private_Type
(Typ
) then
14114 U
: constant Entity_Id
:= Underlying_Type
(Typ
);
14119 return Is_Partially_Initialized_Type
(U
, Include_Implicit
);
14123 -- For any other type (are there any?) assume partially initialized
14128 end Is_Partially_Initialized_Type
;
14130 ------------------------------------
14131 -- Is_Potentially_Persistent_Type --
14132 ------------------------------------
14134 function Is_Potentially_Persistent_Type
(T
: Entity_Id
) return Boolean is
14139 -- For private type, test corresponding full type
14141 if Is_Private_Type
(T
) then
14142 return Is_Potentially_Persistent_Type
(Full_View
(T
));
14144 -- Scalar types are potentially persistent
14146 elsif Is_Scalar_Type
(T
) then
14149 -- Record type is potentially persistent if not tagged and the types of
14150 -- all it components are potentially persistent, and no component has
14151 -- an initialization expression.
14153 elsif Is_Record_Type
(T
)
14154 and then not Is_Tagged_Type
(T
)
14155 and then not Is_Partially_Initialized_Type
(T
)
14157 Comp
:= First_Component
(T
);
14158 while Present
(Comp
) loop
14159 if not Is_Potentially_Persistent_Type
(Etype
(Comp
)) then
14162 Next_Entity
(Comp
);
14168 -- Array type is potentially persistent if its component type is
14169 -- potentially persistent and if all its constraints are static.
14171 elsif Is_Array_Type
(T
) then
14172 if not Is_Potentially_Persistent_Type
(Component_Type
(T
)) then
14176 Indx
:= First_Index
(T
);
14177 while Present
(Indx
) loop
14178 if not Is_OK_Static_Subtype
(Etype
(Indx
)) then
14187 -- All other types are not potentially persistent
14192 end Is_Potentially_Persistent_Type
;
14194 --------------------------------
14195 -- Is_Potentially_Unevaluated --
14196 --------------------------------
14198 function Is_Potentially_Unevaluated
(N
: Node_Id
) return Boolean is
14206 -- A postcondition whose expression is a short-circuit is broken down
14207 -- into individual aspects for better exception reporting. The original
14208 -- short-circuit expression is rewritten as the second operand, and an
14209 -- occurrence of 'Old in that operand is potentially unevaluated.
14210 -- See Sem_ch13.adb for details of this transformation.
14212 if Nkind
(Original_Node
(Par
)) = N_And_Then
then
14216 while not Nkind_In
(Par
, N_If_Expression
,
14224 Par
:= Parent
(Par
);
14226 -- If the context is not an expression, or if is the result of
14227 -- expansion of an enclosing construct (such as another attribute)
14228 -- the predicate does not apply.
14230 if Nkind
(Par
) not in N_Subexpr
14231 or else not Comes_From_Source
(Par
)
14237 if Nkind
(Par
) = N_If_Expression
then
14238 return Is_Elsif
(Par
) or else Expr
/= First
(Expressions
(Par
));
14240 elsif Nkind
(Par
) = N_Case_Expression
then
14241 return Expr
/= Expression
(Par
);
14243 elsif Nkind_In
(Par
, N_And_Then
, N_Or_Else
) then
14244 return Expr
= Right_Opnd
(Par
);
14246 elsif Nkind_In
(Par
, N_In
, N_Not_In
) then
14247 return Expr
/= Left_Opnd
(Par
);
14252 end Is_Potentially_Unevaluated
;
14254 ---------------------------------
14255 -- Is_Protected_Self_Reference --
14256 ---------------------------------
14258 function Is_Protected_Self_Reference
(N
: Node_Id
) return Boolean is
14260 function In_Access_Definition
(N
: Node_Id
) return Boolean;
14261 -- Returns true if N belongs to an access definition
14263 --------------------------
14264 -- In_Access_Definition --
14265 --------------------------
14267 function In_Access_Definition
(N
: Node_Id
) return Boolean is
14272 while Present
(P
) loop
14273 if Nkind
(P
) = N_Access_Definition
then
14281 end In_Access_Definition
;
14283 -- Start of processing for Is_Protected_Self_Reference
14286 -- Verify that prefix is analyzed and has the proper form. Note that
14287 -- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
14288 -- produce the address of an entity, do not analyze their prefix
14289 -- because they denote entities that are not necessarily visible.
14290 -- Neither of them can apply to a protected type.
14292 return Ada_Version
>= Ada_2005
14293 and then Is_Entity_Name
(N
)
14294 and then Present
(Entity
(N
))
14295 and then Is_Protected_Type
(Entity
(N
))
14296 and then In_Open_Scopes
(Entity
(N
))
14297 and then not In_Access_Definition
(N
);
14298 end Is_Protected_Self_Reference
;
14300 -----------------------------
14301 -- Is_RCI_Pkg_Spec_Or_Body --
14302 -----------------------------
14304 function Is_RCI_Pkg_Spec_Or_Body
(Cunit
: Node_Id
) return Boolean is
14306 function Is_RCI_Pkg_Decl_Cunit
(Cunit
: Node_Id
) return Boolean;
14307 -- Return True if the unit of Cunit is an RCI package declaration
14309 ---------------------------
14310 -- Is_RCI_Pkg_Decl_Cunit --
14311 ---------------------------
14313 function Is_RCI_Pkg_Decl_Cunit
(Cunit
: Node_Id
) return Boolean is
14314 The_Unit
: constant Node_Id
:= Unit
(Cunit
);
14317 if Nkind
(The_Unit
) /= N_Package_Declaration
then
14321 return Is_Remote_Call_Interface
(Defining_Entity
(The_Unit
));
14322 end Is_RCI_Pkg_Decl_Cunit
;
14324 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
14327 return Is_RCI_Pkg_Decl_Cunit
(Cunit
)
14329 (Nkind
(Unit
(Cunit
)) = N_Package_Body
14330 and then Is_RCI_Pkg_Decl_Cunit
(Library_Unit
(Cunit
)));
14331 end Is_RCI_Pkg_Spec_Or_Body
;
14333 -----------------------------------------
14334 -- Is_Remote_Access_To_Class_Wide_Type --
14335 -----------------------------------------
14337 function Is_Remote_Access_To_Class_Wide_Type
14338 (E
: Entity_Id
) return Boolean
14341 -- A remote access to class-wide type is a general access to object type
14342 -- declared in the visible part of a Remote_Types or Remote_Call_
14345 return Ekind
(E
) = E_General_Access_Type
14346 and then (Is_Remote_Call_Interface
(E
) or else Is_Remote_Types
(E
));
14347 end Is_Remote_Access_To_Class_Wide_Type
;
14349 -----------------------------------------
14350 -- Is_Remote_Access_To_Subprogram_Type --
14351 -----------------------------------------
14353 function Is_Remote_Access_To_Subprogram_Type
14354 (E
: Entity_Id
) return Boolean
14357 return (Ekind
(E
) = E_Access_Subprogram_Type
14358 or else (Ekind
(E
) = E_Record_Type
14359 and then Present
(Corresponding_Remote_Type
(E
))))
14360 and then (Is_Remote_Call_Interface
(E
) or else Is_Remote_Types
(E
));
14361 end Is_Remote_Access_To_Subprogram_Type
;
14363 --------------------
14364 -- Is_Remote_Call --
14365 --------------------
14367 function Is_Remote_Call
(N
: Node_Id
) return Boolean is
14369 if Nkind
(N
) not in N_Subprogram_Call
then
14371 -- An entry call cannot be remote
14375 elsif Nkind
(Name
(N
)) in N_Has_Entity
14376 and then Is_Remote_Call_Interface
(Entity
(Name
(N
)))
14378 -- A subprogram declared in the spec of a RCI package is remote
14382 elsif Nkind
(Name
(N
)) = N_Explicit_Dereference
14383 and then Is_Remote_Access_To_Subprogram_Type
14384 (Etype
(Prefix
(Name
(N
))))
14386 -- The dereference of a RAS is a remote call
14390 elsif Present
(Controlling_Argument
(N
))
14391 and then Is_Remote_Access_To_Class_Wide_Type
14392 (Etype
(Controlling_Argument
(N
)))
14394 -- Any primitive operation call with a controlling argument of
14395 -- a RACW type is a remote call.
14400 -- All other calls are local calls
14403 end Is_Remote_Call
;
14405 ----------------------
14406 -- Is_Renamed_Entry --
14407 ----------------------
14409 function Is_Renamed_Entry
(Proc_Nam
: Entity_Id
) return Boolean is
14410 Orig_Node
: Node_Id
:= Empty
;
14411 Subp_Decl
: Node_Id
:= Parent
(Parent
(Proc_Nam
));
14413 function Is_Entry
(Nam
: Node_Id
) return Boolean;
14414 -- Determine whether Nam is an entry. Traverse selectors if there are
14415 -- nested selected components.
14421 function Is_Entry
(Nam
: Node_Id
) return Boolean is
14423 if Nkind
(Nam
) = N_Selected_Component
then
14424 return Is_Entry
(Selector_Name
(Nam
));
14427 return Ekind
(Entity
(Nam
)) = E_Entry
;
14430 -- Start of processing for Is_Renamed_Entry
14433 if Present
(Alias
(Proc_Nam
)) then
14434 Subp_Decl
:= Parent
(Parent
(Alias
(Proc_Nam
)));
14437 -- Look for a rewritten subprogram renaming declaration
14439 if Nkind
(Subp_Decl
) = N_Subprogram_Declaration
14440 and then Present
(Original_Node
(Subp_Decl
))
14442 Orig_Node
:= Original_Node
(Subp_Decl
);
14445 -- The rewritten subprogram is actually an entry
14447 if Present
(Orig_Node
)
14448 and then Nkind
(Orig_Node
) = N_Subprogram_Renaming_Declaration
14449 and then Is_Entry
(Name
(Orig_Node
))
14455 end Is_Renamed_Entry
;
14457 -----------------------------
14458 -- Is_Renaming_Declaration --
14459 -----------------------------
14461 function Is_Renaming_Declaration
(N
: Node_Id
) return Boolean is
14464 when N_Exception_Renaming_Declaration
14465 | N_Generic_Function_Renaming_Declaration
14466 | N_Generic_Package_Renaming_Declaration
14467 | N_Generic_Procedure_Renaming_Declaration
14468 | N_Object_Renaming_Declaration
14469 | N_Package_Renaming_Declaration
14470 | N_Subprogram_Renaming_Declaration
14477 end Is_Renaming_Declaration
;
14479 ----------------------------
14480 -- Is_Reversible_Iterator --
14481 ----------------------------
14483 function Is_Reversible_Iterator
(Typ
: Entity_Id
) return Boolean is
14484 Ifaces_List
: Elist_Id
;
14485 Iface_Elmt
: Elmt_Id
;
14489 if Is_Class_Wide_Type
(Typ
)
14490 and then Chars
(Root_Type
(Typ
)) = Name_Reversible_Iterator
14491 and then Is_Predefined_File_Name
14492 (Unit_File_Name
(Get_Source_Unit
(Root_Type
(Typ
))))
14496 elsif not Is_Tagged_Type
(Typ
) or else not Is_Derived_Type
(Typ
) then
14500 Collect_Interfaces
(Typ
, Ifaces_List
);
14502 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
14503 while Present
(Iface_Elmt
) loop
14504 Iface
:= Node
(Iface_Elmt
);
14505 if Chars
(Iface
) = Name_Reversible_Iterator
14507 Is_Predefined_File_Name
14508 (Unit_File_Name
(Get_Source_Unit
(Iface
)))
14513 Next_Elmt
(Iface_Elmt
);
14518 end Is_Reversible_Iterator
;
14520 ----------------------
14521 -- Is_Selector_Name --
14522 ----------------------
14524 function Is_Selector_Name
(N
: Node_Id
) return Boolean is
14526 if not Is_List_Member
(N
) then
14528 P
: constant Node_Id
:= Parent
(N
);
14530 return Nkind_In
(P
, N_Expanded_Name
,
14531 N_Generic_Association
,
14532 N_Parameter_Association
,
14533 N_Selected_Component
)
14534 and then Selector_Name
(P
) = N
;
14539 L
: constant List_Id
:= List_Containing
(N
);
14540 P
: constant Node_Id
:= Parent
(L
);
14542 return (Nkind
(P
) = N_Discriminant_Association
14543 and then Selector_Names
(P
) = L
)
14545 (Nkind
(P
) = N_Component_Association
14546 and then Choices
(P
) = L
);
14549 end Is_Selector_Name
;
14551 ---------------------------------
14552 -- Is_Single_Concurrent_Object --
14553 ---------------------------------
14555 function Is_Single_Concurrent_Object
(Id
: Entity_Id
) return Boolean is
14558 Is_Single_Protected_Object
(Id
) or else Is_Single_Task_Object
(Id
);
14559 end Is_Single_Concurrent_Object
;
14561 -------------------------------
14562 -- Is_Single_Concurrent_Type --
14563 -------------------------------
14565 function Is_Single_Concurrent_Type
(Id
: Entity_Id
) return Boolean is
14568 Ekind_In
(Id
, E_Protected_Type
, E_Task_Type
)
14569 and then Is_Single_Concurrent_Type_Declaration
14570 (Declaration_Node
(Id
));
14571 end Is_Single_Concurrent_Type
;
14573 -------------------------------------------
14574 -- Is_Single_Concurrent_Type_Declaration --
14575 -------------------------------------------
14577 function Is_Single_Concurrent_Type_Declaration
14578 (N
: Node_Id
) return Boolean
14581 return Nkind_In
(Original_Node
(N
), N_Single_Protected_Declaration
,
14582 N_Single_Task_Declaration
);
14583 end Is_Single_Concurrent_Type_Declaration
;
14585 ---------------------------------------------
14586 -- Is_Single_Precision_Floating_Point_Type --
14587 ---------------------------------------------
14589 function Is_Single_Precision_Floating_Point_Type
14590 (E
: Entity_Id
) return Boolean is
14592 return Is_Floating_Point_Type
(E
)
14593 and then Machine_Radix_Value
(E
) = Uint_2
14594 and then Machine_Mantissa_Value
(E
) = Uint_24
14595 and then Machine_Emax_Value
(E
) = Uint_2
** Uint_7
14596 and then Machine_Emin_Value
(E
) = Uint_3
- (Uint_2
** Uint_7
);
14597 end Is_Single_Precision_Floating_Point_Type
;
14599 --------------------------------
14600 -- Is_Single_Protected_Object --
14601 --------------------------------
14603 function Is_Single_Protected_Object
(Id
: Entity_Id
) return Boolean is
14606 Ekind
(Id
) = E_Variable
14607 and then Ekind
(Etype
(Id
)) = E_Protected_Type
14608 and then Is_Single_Concurrent_Type
(Etype
(Id
));
14609 end Is_Single_Protected_Object
;
14611 ---------------------------
14612 -- Is_Single_Task_Object --
14613 ---------------------------
14615 function Is_Single_Task_Object
(Id
: Entity_Id
) return Boolean is
14618 Ekind
(Id
) = E_Variable
14619 and then Ekind
(Etype
(Id
)) = E_Task_Type
14620 and then Is_Single_Concurrent_Type
(Etype
(Id
));
14621 end Is_Single_Task_Object
;
14623 -------------------------------------
14624 -- Is_SPARK_05_Initialization_Expr --
14625 -------------------------------------
14627 function Is_SPARK_05_Initialization_Expr
(N
: Node_Id
) return Boolean is
14630 Comp_Assn
: Node_Id
;
14631 Orig_N
: constant Node_Id
:= Original_Node
(N
);
14636 if not Comes_From_Source
(Orig_N
) then
14640 pragma Assert
(Nkind
(Orig_N
) in N_Subexpr
);
14642 case Nkind
(Orig_N
) is
14643 when N_Character_Literal
14644 | N_Integer_Literal
14650 when N_Expanded_Name
14653 if Is_Entity_Name
(Orig_N
)
14654 and then Present
(Entity
(Orig_N
)) -- needed in some cases
14656 case Ekind
(Entity
(Orig_N
)) is
14658 | E_Enumeration_Literal
14665 if Is_Type
(Entity
(Orig_N
)) then
14673 when N_Qualified_Expression
14674 | N_Type_Conversion
14676 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Expression
(Orig_N
));
14679 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Right_Opnd
(Orig_N
));
14682 | N_Membership_Test
14685 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Left_Opnd
(Orig_N
))
14687 Is_SPARK_05_Initialization_Expr
(Right_Opnd
(Orig_N
));
14690 | N_Extension_Aggregate
14692 if Nkind
(Orig_N
) = N_Extension_Aggregate
then
14694 Is_SPARK_05_Initialization_Expr
(Ancestor_Part
(Orig_N
));
14697 Expr
:= First
(Expressions
(Orig_N
));
14698 while Present
(Expr
) loop
14699 if not Is_SPARK_05_Initialization_Expr
(Expr
) then
14707 Comp_Assn
:= First
(Component_Associations
(Orig_N
));
14708 while Present
(Comp_Assn
) loop
14709 Expr
:= Expression
(Comp_Assn
);
14711 -- Note: test for Present here needed for box assocation
14714 and then not Is_SPARK_05_Initialization_Expr
(Expr
)
14723 when N_Attribute_Reference
=>
14724 if Nkind
(Prefix
(Orig_N
)) in N_Subexpr
then
14725 Is_Ok
:= Is_SPARK_05_Initialization_Expr
(Prefix
(Orig_N
));
14728 Expr
:= First
(Expressions
(Orig_N
));
14729 while Present
(Expr
) loop
14730 if not Is_SPARK_05_Initialization_Expr
(Expr
) then
14738 -- Selected components might be expanded named not yet resolved, so
14739 -- default on the safe side. (Eg on sparklex.ads)
14741 when N_Selected_Component
=>
14750 end Is_SPARK_05_Initialization_Expr
;
14752 ----------------------------------
14753 -- Is_SPARK_05_Object_Reference --
14754 ----------------------------------
14756 function Is_SPARK_05_Object_Reference
(N
: Node_Id
) return Boolean is
14758 if Is_Entity_Name
(N
) then
14759 return Present
(Entity
(N
))
14761 (Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
14762 or else Ekind
(Entity
(N
)) in Formal_Kind
);
14766 when N_Selected_Component
=>
14767 return Is_SPARK_05_Object_Reference
(Prefix
(N
));
14773 end Is_SPARK_05_Object_Reference
;
14775 -----------------------------
14776 -- Is_Specific_Tagged_Type --
14777 -----------------------------
14779 function Is_Specific_Tagged_Type
(Typ
: Entity_Id
) return Boolean is
14780 Full_Typ
: Entity_Id
;
14783 -- Handle private types
14785 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
14786 Full_Typ
:= Full_View
(Typ
);
14791 -- A specific tagged type is a non-class-wide tagged type
14793 return Is_Tagged_Type
(Full_Typ
) and not Is_Class_Wide_Type
(Full_Typ
);
14794 end Is_Specific_Tagged_Type
;
14800 function Is_Statement
(N
: Node_Id
) return Boolean is
14803 Nkind
(N
) in N_Statement_Other_Than_Procedure_Call
14804 or else Nkind
(N
) = N_Procedure_Call_Statement
;
14807 ---------------------------------------
14808 -- Is_Subprogram_Contract_Annotation --
14809 ---------------------------------------
14811 function Is_Subprogram_Contract_Annotation
14812 (Item
: Node_Id
) return Boolean
14817 if Nkind
(Item
) = N_Aspect_Specification
then
14818 Nam
:= Chars
(Identifier
(Item
));
14820 else pragma Assert
(Nkind
(Item
) = N_Pragma
);
14821 Nam
:= Pragma_Name
(Item
);
14824 return Nam
= Name_Contract_Cases
14825 or else Nam
= Name_Depends
14826 or else Nam
= Name_Extensions_Visible
14827 or else Nam
= Name_Global
14828 or else Nam
= Name_Post
14829 or else Nam
= Name_Post_Class
14830 or else Nam
= Name_Postcondition
14831 or else Nam
= Name_Pre
14832 or else Nam
= Name_Pre_Class
14833 or else Nam
= Name_Precondition
14834 or else Nam
= Name_Refined_Depends
14835 or else Nam
= Name_Refined_Global
14836 or else Nam
= Name_Refined_Post
14837 or else Nam
= Name_Test_Case
;
14838 end Is_Subprogram_Contract_Annotation
;
14840 --------------------------------------------------
14841 -- Is_Subprogram_Stub_Without_Prior_Declaration --
14842 --------------------------------------------------
14844 function Is_Subprogram_Stub_Without_Prior_Declaration
14845 (N
: Node_Id
) return Boolean
14848 -- A subprogram stub without prior declaration serves as declaration for
14849 -- the actual subprogram body. As such, it has an attached defining
14850 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
14852 return Nkind
(N
) = N_Subprogram_Body_Stub
14853 and then Ekind
(Defining_Entity
(N
)) /= E_Subprogram_Body
;
14854 end Is_Subprogram_Stub_Without_Prior_Declaration
;
14856 --------------------------
14857 -- Is_Suspension_Object --
14858 --------------------------
14860 function Is_Suspension_Object
(Id
: Entity_Id
) return Boolean is
14862 -- This approach does an exact name match rather than to rely on
14863 -- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
14864 -- front end at point where all auxiliary tables are locked and any
14865 -- modifications to them are treated as violations. Do not tamper with
14866 -- the tables, instead examine the Chars fields of all the scopes of Id.
14869 Chars
(Id
) = Name_Suspension_Object
14870 and then Present
(Scope
(Id
))
14871 and then Chars
(Scope
(Id
)) = Name_Synchronous_Task_Control
14872 and then Present
(Scope
(Scope
(Id
)))
14873 and then Chars
(Scope
(Scope
(Id
))) = Name_Ada
14874 and then Present
(Scope
(Scope
(Scope
(Id
))))
14875 and then Scope
(Scope
(Scope
(Id
))) = Standard_Standard
;
14876 end Is_Suspension_Object
;
14878 ----------------------------
14879 -- Is_Synchronized_Object --
14880 ----------------------------
14882 function Is_Synchronized_Object
(Id
: Entity_Id
) return Boolean is
14886 if Is_Object
(Id
) then
14888 -- The object is synchronized if it is of a type that yields a
14889 -- synchronized object.
14891 if Yields_Synchronized_Object
(Etype
(Id
)) then
14894 -- The object is synchronized if it is atomic and Async_Writers is
14897 elsif Is_Atomic
(Id
) and then Async_Writers_Enabled
(Id
) then
14900 -- A constant is a synchronized object by default
14902 elsif Ekind
(Id
) = E_Constant
then
14905 -- A variable is a synchronized object if it is subject to pragma
14906 -- Constant_After_Elaboration.
14908 elsif Ekind
(Id
) = E_Variable
then
14909 Prag
:= Get_Pragma
(Id
, Pragma_Constant_After_Elaboration
);
14911 return Present
(Prag
) and then Is_Enabled_Pragma
(Prag
);
14915 -- Otherwise the input is not an object or it does not qualify as a
14916 -- synchronized object.
14919 end Is_Synchronized_Object
;
14921 ---------------------------------
14922 -- Is_Synchronized_Tagged_Type --
14923 ---------------------------------
14925 function Is_Synchronized_Tagged_Type
(E
: Entity_Id
) return Boolean is
14926 Kind
: constant Entity_Kind
:= Ekind
(Base_Type
(E
));
14929 -- A task or protected type derived from an interface is a tagged type.
14930 -- Such a tagged type is called a synchronized tagged type, as are
14931 -- synchronized interfaces and private extensions whose declaration
14932 -- includes the reserved word synchronized.
14934 return (Is_Tagged_Type
(E
)
14935 and then (Kind
= E_Task_Type
14937 Kind
= E_Protected_Type
))
14940 and then Is_Synchronized_Interface
(E
))
14942 (Ekind
(E
) = E_Record_Type_With_Private
14943 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
14944 and then (Synchronized_Present
(Parent
(E
))
14945 or else Is_Synchronized_Interface
(Etype
(E
))));
14946 end Is_Synchronized_Tagged_Type
;
14952 function Is_Transfer
(N
: Node_Id
) return Boolean is
14953 Kind
: constant Node_Kind
:= Nkind
(N
);
14956 if Kind
= N_Simple_Return_Statement
14958 Kind
= N_Extended_Return_Statement
14960 Kind
= N_Goto_Statement
14962 Kind
= N_Raise_Statement
14964 Kind
= N_Requeue_Statement
14968 elsif (Kind
= N_Exit_Statement
or else Kind
in N_Raise_xxx_Error
)
14969 and then No
(Condition
(N
))
14973 elsif Kind
= N_Procedure_Call_Statement
14974 and then Is_Entity_Name
(Name
(N
))
14975 and then Present
(Entity
(Name
(N
)))
14976 and then No_Return
(Entity
(Name
(N
)))
14980 elsif Nkind
(Original_Node
(N
)) = N_Raise_Statement
then
14992 function Is_True
(U
: Uint
) return Boolean is
14997 --------------------------------------
14998 -- Is_Unchecked_Conversion_Instance --
14999 --------------------------------------
15001 function Is_Unchecked_Conversion_Instance
(Id
: Entity_Id
) return Boolean is
15005 -- Look for a function whose generic parent is the predefined intrinsic
15006 -- function Unchecked_Conversion, or for one that renames such an
15009 if Ekind
(Id
) = E_Function
then
15010 Par
:= Parent
(Id
);
15012 if Nkind
(Par
) = N_Function_Specification
then
15013 Par
:= Generic_Parent
(Par
);
15015 if Present
(Par
) then
15017 Chars
(Par
) = Name_Unchecked_Conversion
15018 and then Is_Intrinsic_Subprogram
(Par
)
15019 and then Is_Predefined_File_Name
15020 (Unit_File_Name
(Get_Source_Unit
(Par
)));
15023 Present
(Alias
(Id
))
15024 and then Is_Unchecked_Conversion_Instance
(Alias
(Id
));
15030 end Is_Unchecked_Conversion_Instance
;
15032 -------------------------------
15033 -- Is_Universal_Numeric_Type --
15034 -------------------------------
15036 function Is_Universal_Numeric_Type
(T
: Entity_Id
) return Boolean is
15038 return T
= Universal_Integer
or else T
= Universal_Real
;
15039 end Is_Universal_Numeric_Type
;
15041 ----------------------------
15042 -- Is_Variable_Size_Array --
15043 ----------------------------
15045 function Is_Variable_Size_Array
(E
: Entity_Id
) return Boolean is
15049 pragma Assert
(Is_Array_Type
(E
));
15051 -- Check if some index is initialized with a non-constant value
15053 Idx
:= First_Index
(E
);
15054 while Present
(Idx
) loop
15055 if Nkind
(Idx
) = N_Range
then
15056 if not Is_Constant_Bound
(Low_Bound
(Idx
))
15057 or else not Is_Constant_Bound
(High_Bound
(Idx
))
15063 Idx
:= Next_Index
(Idx
);
15067 end Is_Variable_Size_Array
;
15069 -----------------------------
15070 -- Is_Variable_Size_Record --
15071 -----------------------------
15073 function Is_Variable_Size_Record
(E
: Entity_Id
) return Boolean is
15075 Comp_Typ
: Entity_Id
;
15078 pragma Assert
(Is_Record_Type
(E
));
15080 Comp
:= First_Entity
(E
);
15081 while Present
(Comp
) loop
15082 Comp_Typ
:= Etype
(Comp
);
15084 -- Recursive call if the record type has discriminants
15086 if Is_Record_Type
(Comp_Typ
)
15087 and then Has_Discriminants
(Comp_Typ
)
15088 and then Is_Variable_Size_Record
(Comp_Typ
)
15092 elsif Is_Array_Type
(Comp_Typ
)
15093 and then Is_Variable_Size_Array
(Comp_Typ
)
15098 Next_Entity
(Comp
);
15102 end Is_Variable_Size_Record
;
15108 function Is_Variable
15110 Use_Original_Node
: Boolean := True) return Boolean
15112 Orig_Node
: Node_Id
;
15114 function In_Protected_Function
(E
: Entity_Id
) return Boolean;
15115 -- Within a protected function, the private components of the enclosing
15116 -- protected type are constants. A function nested within a (protected)
15117 -- procedure is not itself protected. Within the body of a protected
15118 -- function the current instance of the protected type is a constant.
15120 function Is_Variable_Prefix
(P
: Node_Id
) return Boolean;
15121 -- Prefixes can involve implicit dereferences, in which case we must
15122 -- test for the case of a reference of a constant access type, which can
15123 -- can never be a variable.
15125 ---------------------------
15126 -- In_Protected_Function --
15127 ---------------------------
15129 function In_Protected_Function
(E
: Entity_Id
) return Boolean is
15134 -- E is the current instance of a type
15136 if Is_Type
(E
) then
15145 if not Is_Protected_Type
(Prot
) then
15149 S
:= Current_Scope
;
15150 while Present
(S
) and then S
/= Prot
loop
15151 if Ekind
(S
) = E_Function
and then Scope
(S
) = Prot
then
15160 end In_Protected_Function
;
15162 ------------------------
15163 -- Is_Variable_Prefix --
15164 ------------------------
15166 function Is_Variable_Prefix
(P
: Node_Id
) return Boolean is
15168 if Is_Access_Type
(Etype
(P
)) then
15169 return not Is_Access_Constant
(Root_Type
(Etype
(P
)));
15171 -- For the case of an indexed component whose prefix has a packed
15172 -- array type, the prefix has been rewritten into a type conversion.
15173 -- Determine variable-ness from the converted expression.
15175 elsif Nkind
(P
) = N_Type_Conversion
15176 and then not Comes_From_Source
(P
)
15177 and then Is_Array_Type
(Etype
(P
))
15178 and then Is_Packed
(Etype
(P
))
15180 return Is_Variable
(Expression
(P
));
15183 return Is_Variable
(P
);
15185 end Is_Variable_Prefix
;
15187 -- Start of processing for Is_Variable
15190 -- Special check, allow x'Deref(expr) as a variable
15192 if Nkind
(N
) = N_Attribute_Reference
15193 and then Attribute_Name
(N
) = Name_Deref
15198 -- Check if we perform the test on the original node since this may be a
15199 -- test of syntactic categories which must not be disturbed by whatever
15200 -- rewriting might have occurred. For example, an aggregate, which is
15201 -- certainly NOT a variable, could be turned into a variable by
15204 if Use_Original_Node
then
15205 Orig_Node
:= Original_Node
(N
);
15210 -- Definitely OK if Assignment_OK is set. Since this is something that
15211 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
15213 if Nkind
(N
) in N_Subexpr
and then Assignment_OK
(N
) then
15216 -- Normally we go to the original node, but there is one exception where
15217 -- we use the rewritten node, namely when it is an explicit dereference.
15218 -- The generated code may rewrite a prefix which is an access type with
15219 -- an explicit dereference. The dereference is a variable, even though
15220 -- the original node may not be (since it could be a constant of the
15223 -- In Ada 2005 we have a further case to consider: the prefix may be a
15224 -- function call given in prefix notation. The original node appears to
15225 -- be a selected component, but we need to examine the call.
15227 elsif Nkind
(N
) = N_Explicit_Dereference
15228 and then Nkind
(Orig_Node
) /= N_Explicit_Dereference
15229 and then Present
(Etype
(Orig_Node
))
15230 and then Is_Access_Type
(Etype
(Orig_Node
))
15232 -- Note that if the prefix is an explicit dereference that does not
15233 -- come from source, we must check for a rewritten function call in
15234 -- prefixed notation before other forms of rewriting, to prevent a
15238 (Nkind
(Orig_Node
) = N_Function_Call
15239 and then not Is_Access_Constant
(Etype
(Prefix
(N
))))
15241 Is_Variable_Prefix
(Original_Node
(Prefix
(N
)));
15243 -- in Ada 2012, the dereference may have been added for a type with
15244 -- a declared implicit dereference aspect. Check that it is not an
15245 -- access to constant.
15247 elsif Nkind
(N
) = N_Explicit_Dereference
15248 and then Present
(Etype
(Orig_Node
))
15249 and then Ada_Version
>= Ada_2012
15250 and then Has_Implicit_Dereference
(Etype
(Orig_Node
))
15252 return not Is_Access_Constant
(Etype
(Prefix
(N
)));
15254 -- A function call is never a variable
15256 elsif Nkind
(N
) = N_Function_Call
then
15259 -- All remaining checks use the original node
15261 elsif Is_Entity_Name
(Orig_Node
)
15262 and then Present
(Entity
(Orig_Node
))
15265 E
: constant Entity_Id
:= Entity
(Orig_Node
);
15266 K
: constant Entity_Kind
:= Ekind
(E
);
15269 return (K
= E_Variable
15270 and then Nkind
(Parent
(E
)) /= N_Exception_Handler
)
15271 or else (K
= E_Component
15272 and then not In_Protected_Function
(E
))
15273 or else K
= E_Out_Parameter
15274 or else K
= E_In_Out_Parameter
15275 or else K
= E_Generic_In_Out_Parameter
15277 -- Current instance of type. If this is a protected type, check
15278 -- we are not within the body of one of its protected functions.
15280 or else (Is_Type
(E
)
15281 and then In_Open_Scopes
(E
)
15282 and then not In_Protected_Function
(E
))
15284 or else (Is_Incomplete_Or_Private_Type
(E
)
15285 and then In_Open_Scopes
(Full_View
(E
)));
15289 case Nkind
(Orig_Node
) is
15290 when N_Indexed_Component
15293 return Is_Variable_Prefix
(Prefix
(Orig_Node
));
15295 when N_Selected_Component
=>
15296 return (Is_Variable
(Selector_Name
(Orig_Node
))
15297 and then Is_Variable_Prefix
(Prefix
(Orig_Node
)))
15299 (Nkind
(N
) = N_Expanded_Name
15300 and then Scope
(Entity
(N
)) = Entity
(Prefix
(N
)));
15302 -- For an explicit dereference, the type of the prefix cannot
15303 -- be an access to constant or an access to subprogram.
15305 when N_Explicit_Dereference
=>
15307 Typ
: constant Entity_Id
:= Etype
(Prefix
(Orig_Node
));
15309 return Is_Access_Type
(Typ
)
15310 and then not Is_Access_Constant
(Root_Type
(Typ
))
15311 and then Ekind
(Typ
) /= E_Access_Subprogram_Type
;
15314 -- The type conversion is the case where we do not deal with the
15315 -- context dependent special case of an actual parameter. Thus
15316 -- the type conversion is only considered a variable for the
15317 -- purposes of this routine if the target type is tagged. However,
15318 -- a type conversion is considered to be a variable if it does not
15319 -- come from source (this deals for example with the conversions
15320 -- of expressions to their actual subtypes).
15322 when N_Type_Conversion
=>
15323 return Is_Variable
(Expression
(Orig_Node
))
15325 (not Comes_From_Source
(Orig_Node
)
15327 (Is_Tagged_Type
(Etype
(Subtype_Mark
(Orig_Node
)))
15329 Is_Tagged_Type
(Etype
(Expression
(Orig_Node
)))));
15331 -- GNAT allows an unchecked type conversion as a variable. This
15332 -- only affects the generation of internal expanded code, since
15333 -- calls to instantiations of Unchecked_Conversion are never
15334 -- considered variables (since they are function calls).
15336 when N_Unchecked_Type_Conversion
=>
15337 return Is_Variable
(Expression
(Orig_Node
));
15345 ------------------------------
15346 -- Is_Verifiable_DIC_Pragma --
15347 ------------------------------
15349 function Is_Verifiable_DIC_Pragma
(Prag
: Node_Id
) return Boolean is
15350 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
15353 -- To qualify as verifiable, a DIC pragma must have a non-null argument
15357 and then Nkind
(Get_Pragma_Arg
(First
(Args
))) /= N_Null
;
15358 end Is_Verifiable_DIC_Pragma
;
15360 ---------------------------
15361 -- Is_Visibly_Controlled --
15362 ---------------------------
15364 function Is_Visibly_Controlled
(T
: Entity_Id
) return Boolean is
15365 Root
: constant Entity_Id
:= Root_Type
(T
);
15367 return Chars
(Scope
(Root
)) = Name_Finalization
15368 and then Chars
(Scope
(Scope
(Root
))) = Name_Ada
15369 and then Scope
(Scope
(Scope
(Root
))) = Standard_Standard
;
15370 end Is_Visibly_Controlled
;
15372 --------------------------
15373 -- Is_Volatile_Function --
15374 --------------------------
15376 function Is_Volatile_Function
(Func_Id
: Entity_Id
) return Boolean is
15378 pragma Assert
(Ekind_In
(Func_Id
, E_Function
, E_Generic_Function
));
15380 -- A function declared within a protected type is volatile
15382 if Is_Protected_Type
(Scope
(Func_Id
)) then
15385 -- An instance of Ada.Unchecked_Conversion is a volatile function if
15386 -- either the source or the target are effectively volatile.
15388 elsif Is_Unchecked_Conversion_Instance
(Func_Id
)
15389 and then Has_Effectively_Volatile_Profile
(Func_Id
)
15393 -- Otherwise the function is treated as volatile if it is subject to
15394 -- enabled pragma Volatile_Function.
15398 Is_Enabled_Pragma
(Get_Pragma
(Func_Id
, Pragma_Volatile_Function
));
15400 end Is_Volatile_Function
;
15402 ------------------------
15403 -- Is_Volatile_Object --
15404 ------------------------
15406 function Is_Volatile_Object
(N
: Node_Id
) return Boolean is
15408 function Is_Volatile_Prefix
(N
: Node_Id
) return Boolean;
15409 -- If prefix is an implicit dereference, examine designated type
15411 function Object_Has_Volatile_Components
(N
: Node_Id
) return Boolean;
15412 -- Determines if given object has volatile components
15414 ------------------------
15415 -- Is_Volatile_Prefix --
15416 ------------------------
15418 function Is_Volatile_Prefix
(N
: Node_Id
) return Boolean is
15419 Typ
: constant Entity_Id
:= Etype
(N
);
15422 if Is_Access_Type
(Typ
) then
15424 Dtyp
: constant Entity_Id
:= Designated_Type
(Typ
);
15427 return Is_Volatile
(Dtyp
)
15428 or else Has_Volatile_Components
(Dtyp
);
15432 return Object_Has_Volatile_Components
(N
);
15434 end Is_Volatile_Prefix
;
15436 ------------------------------------
15437 -- Object_Has_Volatile_Components --
15438 ------------------------------------
15440 function Object_Has_Volatile_Components
(N
: Node_Id
) return Boolean is
15441 Typ
: constant Entity_Id
:= Etype
(N
);
15444 if Is_Volatile
(Typ
)
15445 or else Has_Volatile_Components
(Typ
)
15449 elsif Is_Entity_Name
(N
)
15450 and then (Has_Volatile_Components
(Entity
(N
))
15451 or else Is_Volatile
(Entity
(N
)))
15455 elsif Nkind
(N
) = N_Indexed_Component
15456 or else Nkind
(N
) = N_Selected_Component
15458 return Is_Volatile_Prefix
(Prefix
(N
));
15463 end Object_Has_Volatile_Components
;
15465 -- Start of processing for Is_Volatile_Object
15468 if Nkind
(N
) = N_Defining_Identifier
then
15469 return Is_Volatile
(N
) or else Is_Volatile
(Etype
(N
));
15471 elsif Nkind
(N
) = N_Expanded_Name
then
15472 return Is_Volatile_Object
(Entity
(N
));
15474 elsif Is_Volatile
(Etype
(N
))
15475 or else (Is_Entity_Name
(N
) and then Is_Volatile
(Entity
(N
)))
15479 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
)
15480 and then Is_Volatile_Prefix
(Prefix
(N
))
15484 elsif Nkind
(N
) = N_Selected_Component
15485 and then Is_Volatile
(Entity
(Selector_Name
(N
)))
15492 end Is_Volatile_Object
;
15494 ---------------------------
15495 -- Itype_Has_Declaration --
15496 ---------------------------
15498 function Itype_Has_Declaration
(Id
: Entity_Id
) return Boolean is
15500 pragma Assert
(Is_Itype
(Id
));
15501 return Present
(Parent
(Id
))
15502 and then Nkind_In
(Parent
(Id
), N_Full_Type_Declaration
,
15503 N_Subtype_Declaration
)
15504 and then Defining_Entity
(Parent
(Id
)) = Id
;
15505 end Itype_Has_Declaration
;
15507 -------------------------
15508 -- Kill_Current_Values --
15509 -------------------------
15511 procedure Kill_Current_Values
15513 Last_Assignment_Only
: Boolean := False)
15516 if Is_Assignable
(Ent
) then
15517 Set_Last_Assignment
(Ent
, Empty
);
15520 if Is_Object
(Ent
) then
15521 if not Last_Assignment_Only
then
15523 Set_Current_Value
(Ent
, Empty
);
15525 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
15526 -- for a constant. Once the constant is elaborated, its value is
15527 -- not changed, therefore the associated flags that describe the
15528 -- value should not be modified either.
15530 if Ekind
(Ent
) = E_Constant
then
15533 -- Non-constant entities
15536 if not Can_Never_Be_Null
(Ent
) then
15537 Set_Is_Known_Non_Null
(Ent
, False);
15540 Set_Is_Known_Null
(Ent
, False);
15542 -- Reset the Is_Known_Valid flag unless the type is always
15543 -- valid. This does not apply to a loop parameter because its
15544 -- bounds are defined by the loop header and therefore always
15547 if not Is_Known_Valid
(Etype
(Ent
))
15548 and then Ekind
(Ent
) /= E_Loop_Parameter
15550 Set_Is_Known_Valid
(Ent
, False);
15555 end Kill_Current_Values
;
15557 procedure Kill_Current_Values
(Last_Assignment_Only
: Boolean := False) is
15560 procedure Kill_Current_Values_For_Entity_Chain
(E
: Entity_Id
);
15561 -- Clear current value for entity E and all entities chained to E
15563 ------------------------------------------
15564 -- Kill_Current_Values_For_Entity_Chain --
15565 ------------------------------------------
15567 procedure Kill_Current_Values_For_Entity_Chain
(E
: Entity_Id
) is
15571 while Present
(Ent
) loop
15572 Kill_Current_Values
(Ent
, Last_Assignment_Only
);
15575 end Kill_Current_Values_For_Entity_Chain
;
15577 -- Start of processing for Kill_Current_Values
15580 -- Kill all saved checks, a special case of killing saved values
15582 if not Last_Assignment_Only
then
15586 -- Loop through relevant scopes, which includes the current scope and
15587 -- any parent scopes if the current scope is a block or a package.
15589 S
:= Current_Scope
;
15592 -- Clear current values of all entities in current scope
15594 Kill_Current_Values_For_Entity_Chain
(First_Entity
(S
));
15596 -- If scope is a package, also clear current values of all private
15597 -- entities in the scope.
15599 if Is_Package_Or_Generic_Package
(S
)
15600 or else Is_Concurrent_Type
(S
)
15602 Kill_Current_Values_For_Entity_Chain
(First_Private_Entity
(S
));
15605 -- If this is a not a subprogram, deal with parents
15607 if not Is_Subprogram
(S
) then
15609 exit Scope_Loop
when S
= Standard_Standard
;
15613 end loop Scope_Loop
;
15614 end Kill_Current_Values
;
15616 --------------------------
15617 -- Kill_Size_Check_Code --
15618 --------------------------
15620 procedure Kill_Size_Check_Code
(E
: Entity_Id
) is
15622 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
15623 and then Present
(Size_Check_Code
(E
))
15625 Remove
(Size_Check_Code
(E
));
15626 Set_Size_Check_Code
(E
, Empty
);
15628 end Kill_Size_Check_Code
;
15630 --------------------------
15631 -- Known_To_Be_Assigned --
15632 --------------------------
15634 function Known_To_Be_Assigned
(N
: Node_Id
) return Boolean is
15635 P
: constant Node_Id
:= Parent
(N
);
15640 -- Test left side of assignment
15642 when N_Assignment_Statement
=>
15643 return N
= Name
(P
);
15645 -- Function call arguments are never lvalues
15647 when N_Function_Call
=>
15650 -- Positional parameter for procedure or accept call
15652 when N_Accept_Statement
15653 | N_Procedure_Call_Statement
15661 Proc
:= Get_Subprogram_Entity
(P
);
15667 -- If we are not a list member, something is strange, so
15668 -- be conservative and return False.
15670 if not Is_List_Member
(N
) then
15674 -- We are going to find the right formal by stepping forward
15675 -- through the formals, as we step backwards in the actuals.
15677 Form
:= First_Formal
(Proc
);
15680 -- If no formal, something is weird, so be conservative
15681 -- and return False.
15688 exit when No
(Act
);
15689 Next_Formal
(Form
);
15692 return Ekind
(Form
) /= E_In_Parameter
;
15695 -- Named parameter for procedure or accept call
15697 when N_Parameter_Association
=>
15703 Proc
:= Get_Subprogram_Entity
(Parent
(P
));
15709 -- Loop through formals to find the one that matches
15711 Form
:= First_Formal
(Proc
);
15713 -- If no matching formal, that's peculiar, some kind of
15714 -- previous error, so return False to be conservative.
15715 -- Actually this also happens in legal code in the case
15716 -- where P is a parameter association for an Extra_Formal???
15722 -- Else test for match
15724 if Chars
(Form
) = Chars
(Selector_Name
(P
)) then
15725 return Ekind
(Form
) /= E_In_Parameter
;
15728 Next_Formal
(Form
);
15732 -- Test for appearing in a conversion that itself appears
15733 -- in an lvalue context, since this should be an lvalue.
15735 when N_Type_Conversion
=>
15736 return Known_To_Be_Assigned
(P
);
15738 -- All other references are definitely not known to be modifications
15743 end Known_To_Be_Assigned
;
15745 ---------------------------
15746 -- Last_Source_Statement --
15747 ---------------------------
15749 function Last_Source_Statement
(HSS
: Node_Id
) return Node_Id
is
15753 N
:= Last
(Statements
(HSS
));
15754 while Present
(N
) loop
15755 exit when Comes_From_Source
(N
);
15760 end Last_Source_Statement
;
15762 ----------------------------------
15763 -- Matching_Static_Array_Bounds --
15764 ----------------------------------
15766 function Matching_Static_Array_Bounds
15768 R_Typ
: Node_Id
) return Boolean
15770 L_Ndims
: constant Nat
:= Number_Dimensions
(L_Typ
);
15771 R_Ndims
: constant Nat
:= Number_Dimensions
(R_Typ
);
15783 if L_Ndims
/= R_Ndims
then
15787 -- Unconstrained types do not have static bounds
15789 if not Is_Constrained
(L_Typ
) or else not Is_Constrained
(R_Typ
) then
15793 -- First treat specially the first dimension, as the lower bound and
15794 -- length of string literals are not stored like those of arrays.
15796 if Ekind
(L_Typ
) = E_String_Literal_Subtype
then
15797 L_Low
:= String_Literal_Low_Bound
(L_Typ
);
15798 L_Len
:= String_Literal_Length
(L_Typ
);
15800 L_Index
:= First_Index
(L_Typ
);
15801 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
15803 if Is_OK_Static_Expression
(L_Low
)
15805 Is_OK_Static_Expression
(L_High
)
15807 if Expr_Value
(L_High
) < Expr_Value
(L_Low
) then
15810 L_Len
:= (Expr_Value
(L_High
) - Expr_Value
(L_Low
)) + 1;
15817 if Ekind
(R_Typ
) = E_String_Literal_Subtype
then
15818 R_Low
:= String_Literal_Low_Bound
(R_Typ
);
15819 R_Len
:= String_Literal_Length
(R_Typ
);
15821 R_Index
:= First_Index
(R_Typ
);
15822 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
15824 if Is_OK_Static_Expression
(R_Low
)
15826 Is_OK_Static_Expression
(R_High
)
15828 if Expr_Value
(R_High
) < Expr_Value
(R_Low
) then
15831 R_Len
:= (Expr_Value
(R_High
) - Expr_Value
(R_Low
)) + 1;
15838 if (Is_OK_Static_Expression
(L_Low
)
15840 Is_OK_Static_Expression
(R_Low
))
15841 and then Expr_Value
(L_Low
) = Expr_Value
(R_Low
)
15842 and then L_Len
= R_Len
15849 -- Then treat all other dimensions
15851 for Indx
in 2 .. L_Ndims
loop
15855 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
15856 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
15858 if (Is_OK_Static_Expression
(L_Low
) and then
15859 Is_OK_Static_Expression
(L_High
) and then
15860 Is_OK_Static_Expression
(R_Low
) and then
15861 Is_OK_Static_Expression
(R_High
))
15862 and then (Expr_Value
(L_Low
) = Expr_Value
(R_Low
)
15864 Expr_Value
(L_High
) = Expr_Value
(R_High
))
15872 -- If we fall through the loop, all indexes matched
15875 end Matching_Static_Array_Bounds
;
15877 -------------------
15878 -- May_Be_Lvalue --
15879 -------------------
15881 function May_Be_Lvalue
(N
: Node_Id
) return Boolean is
15882 P
: constant Node_Id
:= Parent
(N
);
15887 -- Test left side of assignment
15889 when N_Assignment_Statement
=>
15890 return N
= Name
(P
);
15892 -- Test prefix of component or attribute. Note that the prefix of an
15893 -- explicit or implicit dereference cannot be an l-value. In the case
15894 -- of a 'Read attribute, the reference can be an actual in the
15895 -- argument list of the attribute.
15897 when N_Attribute_Reference
=>
15898 return (N
= Prefix
(P
)
15899 and then Name_Implies_Lvalue_Prefix
(Attribute_Name
(P
)))
15901 Attribute_Name
(P
) = Name_Read
;
15903 -- For an expanded name, the name is an lvalue if the expanded name
15904 -- is an lvalue, but the prefix is never an lvalue, since it is just
15905 -- the scope where the name is found.
15907 when N_Expanded_Name
=>
15908 if N
= Prefix
(P
) then
15909 return May_Be_Lvalue
(P
);
15914 -- For a selected component A.B, A is certainly an lvalue if A.B is.
15915 -- B is a little interesting, if we have A.B := 3, there is some
15916 -- discussion as to whether B is an lvalue or not, we choose to say
15917 -- it is. Note however that A is not an lvalue if it is of an access
15918 -- type since this is an implicit dereference.
15920 when N_Selected_Component
=>
15922 and then Present
(Etype
(N
))
15923 and then Is_Access_Type
(Etype
(N
))
15927 return May_Be_Lvalue
(P
);
15930 -- For an indexed component or slice, the index or slice bounds is
15931 -- never an lvalue. The prefix is an lvalue if the indexed component
15932 -- or slice is an lvalue, except if it is an access type, where we
15933 -- have an implicit dereference.
15935 when N_Indexed_Component
15939 or else (Present
(Etype
(N
)) and then Is_Access_Type
(Etype
(N
)))
15943 return May_Be_Lvalue
(P
);
15946 -- Prefix of a reference is an lvalue if the reference is an lvalue
15948 when N_Reference
=>
15949 return May_Be_Lvalue
(P
);
15951 -- Prefix of explicit dereference is never an lvalue
15953 when N_Explicit_Dereference
=>
15956 -- Positional parameter for subprogram, entry, or accept call.
15957 -- In older versions of Ada function call arguments are never
15958 -- lvalues. In Ada 2012 functions can have in-out parameters.
15960 when N_Accept_Statement
15961 | N_Entry_Call_Statement
15962 | N_Subprogram_Call
15964 if Nkind
(P
) = N_Function_Call
and then Ada_Version
< Ada_2012
then
15968 -- The following mechanism is clumsy and fragile. A single flag
15969 -- set in Resolve_Actuals would be preferable ???
15977 Proc
:= Get_Subprogram_Entity
(P
);
15983 -- If we are not a list member, something is strange, so be
15984 -- conservative and return True.
15986 if not Is_List_Member
(N
) then
15990 -- We are going to find the right formal by stepping forward
15991 -- through the formals, as we step backwards in the actuals.
15993 Form
:= First_Formal
(Proc
);
15996 -- If no formal, something is weird, so be conservative and
16004 exit when No
(Act
);
16005 Next_Formal
(Form
);
16008 return Ekind
(Form
) /= E_In_Parameter
;
16011 -- Named parameter for procedure or accept call
16013 when N_Parameter_Association
=>
16019 Proc
:= Get_Subprogram_Entity
(Parent
(P
));
16025 -- Loop through formals to find the one that matches
16027 Form
:= First_Formal
(Proc
);
16029 -- If no matching formal, that's peculiar, some kind of
16030 -- previous error, so return True to be conservative.
16031 -- Actually happens with legal code for an unresolved call
16032 -- where we may get the wrong homonym???
16038 -- Else test for match
16040 if Chars
(Form
) = Chars
(Selector_Name
(P
)) then
16041 return Ekind
(Form
) /= E_In_Parameter
;
16044 Next_Formal
(Form
);
16048 -- Test for appearing in a conversion that itself appears in an
16049 -- lvalue context, since this should be an lvalue.
16051 when N_Type_Conversion
=>
16052 return May_Be_Lvalue
(P
);
16054 -- Test for appearance in object renaming declaration
16056 when N_Object_Renaming_Declaration
=>
16059 -- All other references are definitely not lvalues
16066 -----------------------
16067 -- Mark_Coextensions --
16068 -----------------------
16070 procedure Mark_Coextensions
(Context_Nod
: Node_Id
; Root_Nod
: Node_Id
) is
16071 Is_Dynamic
: Boolean;
16072 -- Indicates whether the context causes nested coextensions to be
16073 -- dynamic or static
16075 function Mark_Allocator
(N
: Node_Id
) return Traverse_Result
;
16076 -- Recognize an allocator node and label it as a dynamic coextension
16078 --------------------
16079 -- Mark_Allocator --
16080 --------------------
16082 function Mark_Allocator
(N
: Node_Id
) return Traverse_Result
is
16084 if Nkind
(N
) = N_Allocator
then
16086 Set_Is_Dynamic_Coextension
(N
);
16088 -- If the allocator expression is potentially dynamic, it may
16089 -- be expanded out of order and require dynamic allocation
16090 -- anyway, so we treat the coextension itself as dynamic.
16091 -- Potential optimization ???
16093 elsif Nkind
(Expression
(N
)) = N_Qualified_Expression
16094 and then Nkind
(Expression
(Expression
(N
))) = N_Op_Concat
16096 Set_Is_Dynamic_Coextension
(N
);
16098 Set_Is_Static_Coextension
(N
);
16103 end Mark_Allocator
;
16105 procedure Mark_Allocators
is new Traverse_Proc
(Mark_Allocator
);
16107 -- Start of processing for Mark_Coextensions
16110 -- An allocator that appears on the right-hand side of an assignment is
16111 -- treated as a potentially dynamic coextension when the right-hand side
16112 -- is an allocator or a qualified expression.
16114 -- Obj := new ...'(new Coextension ...);
16116 if Nkind
(Context_Nod
) = N_Assignment_Statement
then
16118 Nkind_In
(Expression
(Context_Nod
), N_Allocator
,
16119 N_Qualified_Expression
);
16121 -- An allocator that appears within the expression of a simple return
16122 -- statement is treated as a potentially dynamic coextension when the
16123 -- expression is either aggregate, allocator, or qualified expression.
16125 -- return (new Coextension ...);
16126 -- return new ...'(new Coextension ...);
16128 elsif Nkind
(Context_Nod
) = N_Simple_Return_Statement
then
16130 Nkind_In
(Expression
(Context_Nod
), N_Aggregate
,
16132 N_Qualified_Expression
);
16134 -- An alloctor that appears within the initialization expression of an
16135 -- object declaration is considered a potentially dynamic coextension
16136 -- when the initialization expression is an allocator or a qualified
16139 -- Obj : ... := new ...'(new Coextension ...);
16141 -- A similar case arises when the object declaration is part of an
16142 -- extended return statement.
16144 -- return Obj : ... := new ...'(new Coextension ...);
16145 -- return Obj : ... := (new Coextension ...);
16147 elsif Nkind
(Context_Nod
) = N_Object_Declaration
then
16149 Nkind_In
(Root_Nod
, N_Allocator
, N_Qualified_Expression
)
16151 Nkind
(Parent
(Context_Nod
)) = N_Extended_Return_Statement
;
16153 -- This routine should not be called with constructs that cannot contain
16157 raise Program_Error
;
16160 Mark_Allocators
(Root_Nod
);
16161 end Mark_Coextensions
;
16163 ----------------------
16164 -- Needs_One_Actual --
16165 ----------------------
16167 function Needs_One_Actual
(E
: Entity_Id
) return Boolean is
16168 Formal
: Entity_Id
;
16171 -- Ada 2005 or later, and formals present
16173 if Ada_Version
>= Ada_2005
16174 and then Present
(First_Formal
(E
))
16175 and then No
(Default_Value
(First_Formal
(E
)))
16177 Formal
:= Next_Formal
(First_Formal
(E
));
16178 while Present
(Formal
) loop
16179 if No
(Default_Value
(Formal
)) then
16183 Next_Formal
(Formal
);
16188 -- Ada 83/95 or no formals
16193 end Needs_One_Actual
;
16195 ------------------------
16196 -- New_Copy_List_Tree --
16197 ------------------------
16199 function New_Copy_List_Tree
(List
: List_Id
) return List_Id
is
16204 if List
= No_List
then
16211 while Present
(E
) loop
16212 Append
(New_Copy_Tree
(E
), NL
);
16218 end New_Copy_List_Tree
;
16220 -------------------
16221 -- New_Copy_Tree --
16222 -------------------
16224 function New_Copy_Tree
16226 Map
: Elist_Id
:= No_Elist
;
16227 New_Sloc
: Source_Ptr
:= No_Location
;
16228 New_Scope
: Entity_Id
:= Empty
) return Node_Id
16230 ------------------------------------
16231 -- Auxiliary Data and Subprograms --
16232 ------------------------------------
16234 use Atree
.Unchecked_Access
;
16235 use Atree_Private_Part
;
16237 -- Our approach here requires a two pass traversal of the tree. The
16238 -- first pass visits all nodes that eventually will be copied looking
16239 -- for defining Itypes. If any defining Itypes are found, then they are
16240 -- copied, and an entry is added to the replacement map. In the second
16241 -- phase, the tree is copied, using the replacement map to replace any
16242 -- Itype references within the copied tree.
16244 -- The following hash tables are used if the Map supplied has more than
16245 -- hash threshold entries to speed up access to the map. If there are
16246 -- fewer entries, then the map is searched sequentially (because setting
16247 -- up a hash table for only a few entries takes more time than it saves.
16249 subtype NCT_Header_Num
is Int
range 0 .. 511;
16250 -- Defines range of headers in hash tables (512 headers)
16252 function New_Copy_Hash
(E
: Entity_Id
) return NCT_Header_Num
;
16253 -- Hash function used for hash operations
16259 -- The hash table NCT_Assoc associates old entities in the table with
16260 -- their corresponding new entities (i.e. the pairs of entries presented
16261 -- in the original Map argument are Key-Element pairs).
16263 package NCT_Assoc
is new Simple_HTable
(
16264 Header_Num
=> NCT_Header_Num
,
16265 Element
=> Entity_Id
,
16266 No_Element
=> Empty
,
16268 Hash
=> New_Copy_Hash
,
16269 Equal
=> Types
."=");
16271 ---------------------
16272 -- NCT_Itype_Assoc --
16273 ---------------------
16275 -- The hash table NCT_Itype_Assoc contains entries only for those old
16276 -- nodes which have a non-empty Associated_Node_For_Itype set. The key
16277 -- is the associated node, and the element is the new node itself (NOT
16278 -- the associated node for the new node).
16280 package NCT_Itype_Assoc
is new Simple_HTable
(
16281 Header_Num
=> NCT_Header_Num
,
16282 Element
=> Entity_Id
,
16283 No_Element
=> Empty
,
16285 Hash
=> New_Copy_Hash
,
16286 Equal
=> Types
."=");
16288 function Assoc
(N
: Node_Or_Entity_Id
) return Node_Id
;
16289 -- Called during second phase to map entities into their corresponding
16290 -- copies using the hash table. If the argument is not an entity, or is
16291 -- not in the hash table, then it is returned unchanged.
16293 procedure Build_NCT_Hash_Tables
;
16294 -- Builds hash tables.
16296 function Copy_Elist_With_Replacement
16297 (Old_Elist
: Elist_Id
) return Elist_Id
;
16298 -- Called during second phase to copy element list doing replacements
16300 procedure Copy_Itype_With_Replacement
(New_Itype
: Entity_Id
);
16301 -- Called during the second phase to process a copied Itype. The actual
16302 -- copy happened during the first phase (so that we could make the entry
16303 -- in the mapping), but we still have to deal with the descendants of
16304 -- the copied Itype and copy them where necessary.
16306 function Copy_List_With_Replacement
(Old_List
: List_Id
) return List_Id
;
16307 -- Called during second phase to copy list doing replacements
16309 function Copy_Node_With_Replacement
(Old_Node
: Node_Id
) return Node_Id
;
16310 -- Called during second phase to copy node doing replacements
16312 procedure Visit_Elist
(E
: Elist_Id
);
16313 -- Called during first phase to visit all elements of an Elist
16315 procedure Visit_Field
(F
: Union_Id
; N
: Node_Id
);
16316 -- Visit a single field, recursing to call Visit_Node or Visit_List if
16317 -- the field is a syntactic descendant of the current node (i.e. its
16318 -- parent is Node N).
16320 procedure Visit_Itype
(Old_Itype
: Entity_Id
);
16321 -- Called during first phase to visit subsidiary fields of a defining
16322 -- Itype, and also create a copy and make an entry in the replacement
16323 -- map for the new copy.
16325 procedure Visit_List
(L
: List_Id
);
16326 -- Called during first phase to visit all elements of a List
16328 procedure Visit_Node
(N
: Node_Or_Entity_Id
);
16329 -- Called during first phase to visit a node and all its subtrees
16335 function Assoc
(N
: Node_Or_Entity_Id
) return Node_Id
is
16339 if Nkind
(N
) not in N_Entity
then
16343 Ent
:= NCT_Assoc
.Get
(Entity_Id
(N
));
16345 if Present
(Ent
) then
16353 ---------------------------
16354 -- Build_NCT_Hash_Tables --
16355 ---------------------------
16357 procedure Build_NCT_Hash_Tables
is
16366 Elmt
:= First_Elmt
(Map
);
16367 while Present
(Elmt
) loop
16368 Ent
:= Node
(Elmt
);
16370 -- Get new entity, and associate old and new
16373 NCT_Assoc
.Set
(Ent
, Node
(Elmt
));
16375 if Is_Type
(Ent
) then
16377 Anode
: constant Entity_Id
:=
16378 Associated_Node_For_Itype
(Ent
);
16381 if Present
(Anode
) then
16383 -- Enter a link between the associated node of the old
16384 -- Itype and the new Itype, for updating later when node
16387 NCT_Itype_Assoc
.Set
(Anode
, Node
(Elmt
));
16394 end Build_NCT_Hash_Tables
;
16396 ---------------------------------
16397 -- Copy_Elist_With_Replacement --
16398 ---------------------------------
16400 function Copy_Elist_With_Replacement
16401 (Old_Elist
: Elist_Id
) return Elist_Id
16404 New_Elist
: Elist_Id
;
16407 if No
(Old_Elist
) then
16411 New_Elist
:= New_Elmt_List
;
16413 M
:= First_Elmt
(Old_Elist
);
16414 while Present
(M
) loop
16415 Append_Elmt
(Copy_Node_With_Replacement
(Node
(M
)), New_Elist
);
16421 end Copy_Elist_With_Replacement
;
16423 ---------------------------------
16424 -- Copy_Itype_With_Replacement --
16425 ---------------------------------
16427 -- This routine exactly parallels its phase one analog Visit_Itype,
16429 procedure Copy_Itype_With_Replacement
(New_Itype
: Entity_Id
) is
16431 -- Translate Next_Entity, Scope, and Etype fields, in case they
16432 -- reference entities that have been mapped into copies.
16434 Set_Next_Entity
(New_Itype
, Assoc
(Next_Entity
(New_Itype
)));
16435 Set_Etype
(New_Itype
, Assoc
(Etype
(New_Itype
)));
16437 if Present
(New_Scope
) then
16438 Set_Scope
(New_Itype
, New_Scope
);
16440 Set_Scope
(New_Itype
, Assoc
(Scope
(New_Itype
)));
16443 -- Copy referenced fields
16445 if Is_Discrete_Type
(New_Itype
) then
16446 Set_Scalar_Range
(New_Itype
,
16447 Copy_Node_With_Replacement
(Scalar_Range
(New_Itype
)));
16449 elsif Has_Discriminants
(Base_Type
(New_Itype
)) then
16450 Set_Discriminant_Constraint
(New_Itype
,
16451 Copy_Elist_With_Replacement
16452 (Discriminant_Constraint
(New_Itype
)));
16454 elsif Is_Array_Type
(New_Itype
) then
16455 if Present
(First_Index
(New_Itype
)) then
16456 Set_First_Index
(New_Itype
,
16457 First
(Copy_List_With_Replacement
16458 (List_Containing
(First_Index
(New_Itype
)))));
16461 if Is_Packed
(New_Itype
) then
16462 Set_Packed_Array_Impl_Type
(New_Itype
,
16463 Copy_Node_With_Replacement
16464 (Packed_Array_Impl_Type
(New_Itype
)));
16467 end Copy_Itype_With_Replacement
;
16469 --------------------------------
16470 -- Copy_List_With_Replacement --
16471 --------------------------------
16473 function Copy_List_With_Replacement
16474 (Old_List
: List_Id
) return List_Id
16476 New_List
: List_Id
;
16480 if Old_List
= No_List
then
16484 New_List
:= Empty_List
;
16486 E
:= First
(Old_List
);
16487 while Present
(E
) loop
16488 Append
(Copy_Node_With_Replacement
(E
), New_List
);
16494 end Copy_List_With_Replacement
;
16496 --------------------------------
16497 -- Copy_Node_With_Replacement --
16498 --------------------------------
16500 function Copy_Node_With_Replacement
16501 (Old_Node
: Node_Id
) return Node_Id
16503 New_Node
: Node_Id
;
16505 procedure Adjust_Named_Associations
16506 (Old_Node
: Node_Id
;
16507 New_Node
: Node_Id
);
16508 -- If a call node has named associations, these are chained through
16509 -- the First_Named_Actual, Next_Named_Actual links. These must be
16510 -- propagated separately to the new parameter list, because these
16511 -- are not syntactic fields.
16513 function Copy_Field_With_Replacement
16514 (Field
: Union_Id
) return Union_Id
;
16515 -- Given Field, which is a field of Old_Node, return a copy of it
16516 -- if it is a syntactic field (i.e. its parent is Node), setting
16517 -- the parent of the copy to poit to New_Node. Otherwise returns
16518 -- the field (possibly mapped if it is an entity).
16520 -------------------------------
16521 -- Adjust_Named_Associations --
16522 -------------------------------
16524 procedure Adjust_Named_Associations
16525 (Old_Node
: Node_Id
;
16526 New_Node
: Node_Id
)
16531 Old_Next
: Node_Id
;
16532 New_Next
: Node_Id
;
16535 Old_E
:= First
(Parameter_Associations
(Old_Node
));
16536 New_E
:= First
(Parameter_Associations
(New_Node
));
16537 while Present
(Old_E
) loop
16538 if Nkind
(Old_E
) = N_Parameter_Association
16539 and then Present
(Next_Named_Actual
(Old_E
))
16541 if First_Named_Actual
(Old_Node
) =
16542 Explicit_Actual_Parameter
(Old_E
)
16544 Set_First_Named_Actual
16545 (New_Node
, Explicit_Actual_Parameter
(New_E
));
16548 -- Now scan parameter list from the beginning, to locate
16549 -- next named actual, which can be out of order.
16551 Old_Next
:= First
(Parameter_Associations
(Old_Node
));
16552 New_Next
:= First
(Parameter_Associations
(New_Node
));
16553 while Nkind
(Old_Next
) /= N_Parameter_Association
16554 or else Explicit_Actual_Parameter
(Old_Next
) /=
16555 Next_Named_Actual
(Old_E
)
16561 Set_Next_Named_Actual
16562 (New_E
, Explicit_Actual_Parameter
(New_Next
));
16568 end Adjust_Named_Associations
;
16570 ---------------------------------
16571 -- Copy_Field_With_Replacement --
16572 ---------------------------------
16574 function Copy_Field_With_Replacement
16575 (Field
: Union_Id
) return Union_Id
16578 if Field
= Union_Id
(Empty
) then
16581 elsif Field
in Node_Range
then
16583 Old_N
: constant Node_Id
:= Node_Id
(Field
);
16587 -- If syntactic field, as indicated by the parent pointer
16588 -- being set, then copy the referenced node recursively.
16590 if Parent
(Old_N
) = Old_Node
then
16591 New_N
:= Copy_Node_With_Replacement
(Old_N
);
16593 if New_N
/= Old_N
then
16594 Set_Parent
(New_N
, New_Node
);
16597 -- For semantic fields, update possible entity reference
16598 -- from the replacement map.
16601 New_N
:= Assoc
(Old_N
);
16604 return Union_Id
(New_N
);
16607 elsif Field
in List_Range
then
16609 Old_L
: constant List_Id
:= List_Id
(Field
);
16613 -- If syntactic field, as indicated by the parent pointer,
16614 -- then recursively copy the entire referenced list.
16616 if Parent
(Old_L
) = Old_Node
then
16617 New_L
:= Copy_List_With_Replacement
(Old_L
);
16618 Set_Parent
(New_L
, New_Node
);
16620 -- For semantic list, just returned unchanged
16626 return Union_Id
(New_L
);
16629 -- Anything other than a list or a node is returned unchanged
16634 end Copy_Field_With_Replacement
;
16636 -- Start of processing for Copy_Node_With_Replacement
16639 if Old_Node
<= Empty_Or_Error
then
16642 elsif Nkind
(Old_Node
) in N_Entity
then
16643 return Assoc
(Old_Node
);
16646 New_Node
:= New_Copy
(Old_Node
);
16648 -- If the node we are copying is the associated node of a
16649 -- previously copied Itype, then adjust the associated node
16650 -- of the copy of that Itype accordingly.
16653 Ent
: constant Entity_Id
:= NCT_Itype_Assoc
.Get
(Old_Node
);
16656 if Present
(Ent
) then
16657 Set_Associated_Node_For_Itype
(Ent
, New_Node
);
16661 -- Recursively copy descendants
16664 (New_Node
, Copy_Field_With_Replacement
(Field1
(New_Node
)));
16666 (New_Node
, Copy_Field_With_Replacement
(Field2
(New_Node
)));
16668 (New_Node
, Copy_Field_With_Replacement
(Field3
(New_Node
)));
16670 (New_Node
, Copy_Field_With_Replacement
(Field4
(New_Node
)));
16672 (New_Node
, Copy_Field_With_Replacement
(Field5
(New_Node
)));
16674 -- Adjust Sloc of new node if necessary
16676 if New_Sloc
/= No_Location
then
16677 Set_Sloc
(New_Node
, New_Sloc
);
16679 -- If we adjust the Sloc, then we are essentially making a
16680 -- completely new node, so the Comes_From_Source flag should
16681 -- be reset to the proper default value.
16683 Set_Comes_From_Source
16684 (New_Node
, Default_Node
.Comes_From_Source
);
16687 -- If the node is a call and has named associations, set the
16688 -- corresponding links in the copy.
16690 if Nkind_In
(Old_Node
, N_Entry_Call_Statement
,
16692 N_Procedure_Call_Statement
)
16693 and then Present
(First_Named_Actual
(Old_Node
))
16695 Adjust_Named_Associations
(Old_Node
, New_Node
);
16698 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
16699 -- The replacement mechanism applies to entities, and is not used
16700 -- here. Eventually we may need a more general graph-copying
16701 -- routine. For now, do a sequential search to find desired node.
16703 if Nkind
(Old_Node
) = N_Handled_Sequence_Of_Statements
16704 and then Present
(First_Real_Statement
(Old_Node
))
16707 Old_F
: constant Node_Id
:= First_Real_Statement
(Old_Node
);
16711 N1
:= First
(Statements
(Old_Node
));
16712 N2
:= First
(Statements
(New_Node
));
16714 while N1
/= Old_F
loop
16719 Set_First_Real_Statement
(New_Node
, N2
);
16724 -- All done, return copied node
16727 end Copy_Node_With_Replacement
;
16729 -------------------
16730 -- New_Copy_Hash --
16731 -------------------
16733 function New_Copy_Hash
(E
: Entity_Id
) return NCT_Header_Num
is
16735 return Nat
(E
) mod (NCT_Header_Num
'Last + 1);
16742 procedure Visit_Elist
(E
: Elist_Id
) is
16745 if Present
(E
) then
16746 Elmt
:= First_Elmt
(E
);
16748 while Elmt
/= No_Elmt
loop
16749 Visit_Node
(Node
(Elmt
));
16759 procedure Visit_Field
(F
: Union_Id
; N
: Node_Id
) is
16761 if F
= Union_Id
(Empty
) then
16764 elsif F
in Node_Range
then
16766 -- Copy node if it is syntactic, i.e. its parent pointer is
16767 -- set to point to the field that referenced it (certain
16768 -- Itypes will also meet this criterion, which is fine, since
16769 -- these are clearly Itypes that do need to be copied, since
16770 -- we are copying their parent.)
16772 if Parent
(Node_Id
(F
)) = N
then
16773 Visit_Node
(Node_Id
(F
));
16776 -- Another case, if we are pointing to an Itype, then we want
16777 -- to copy it if its associated node is somewhere in the tree
16780 -- Note: the exclusion of self-referential copies is just an
16781 -- optimization, since the search of the already copied list
16782 -- would catch it, but it is a common case (Etype pointing to
16783 -- itself for an Itype that is a base type).
16785 elsif Nkind
(Node_Id
(F
)) in N_Entity
16786 and then Is_Itype
(Entity_Id
(F
))
16787 and then Node_Id
(F
) /= N
16793 P
:= Associated_Node_For_Itype
(Node_Id
(F
));
16794 while Present
(P
) loop
16796 Visit_Node
(Node_Id
(F
));
16803 -- An Itype whose parent is not being copied definitely
16804 -- should NOT be copied, since it does not belong in any
16805 -- sense to the copied subtree.
16811 elsif F
in List_Range
and then Parent
(List_Id
(F
)) = N
then
16812 Visit_List
(List_Id
(F
));
16821 procedure Visit_Itype
(Old_Itype
: Entity_Id
) is
16822 New_Itype
: Entity_Id
;
16826 -- Itypes that describe the designated type of access to subprograms
16827 -- have the structure of subprogram declarations, with signatures,
16828 -- etc. Either we duplicate the signatures completely, or choose to
16829 -- share such itypes, which is fine because their elaboration will
16830 -- have no side effects.
16832 if Ekind
(Old_Itype
) = E_Subprogram_Type
then
16836 New_Itype
:= New_Copy
(Old_Itype
);
16838 -- The new Itype has all the attributes of the old one, and we
16839 -- just copy the contents of the entity. However, the back-end
16840 -- needs different names for debugging purposes, so we create a
16841 -- new internal name for it in all cases.
16843 Set_Chars
(New_Itype
, New_Internal_Name
('T'));
16845 -- If our associated node is an entity that has already been copied,
16846 -- then set the associated node of the copy to point to the right
16847 -- copy. If we have copied an Itype that is itself the associated
16848 -- node of some previously copied Itype, then we set the right
16849 -- pointer in the other direction.
16851 Ent
:= NCT_Assoc
.Get
(Associated_Node_For_Itype
(Old_Itype
));
16853 if Present
(Ent
) then
16854 Set_Associated_Node_For_Itype
(New_Itype
, Ent
);
16857 Ent
:= NCT_Itype_Assoc
.Get
(Old_Itype
);
16859 if Present
(Ent
) then
16860 Set_Associated_Node_For_Itype
(Ent
, New_Itype
);
16862 -- If the hash table has no association for this Itype and its
16863 -- associated node, enter one now.
16866 NCT_Itype_Assoc
.Set
16867 (Associated_Node_For_Itype
(Old_Itype
), New_Itype
);
16870 if Present
(Freeze_Node
(New_Itype
)) then
16871 Set_Is_Frozen
(New_Itype
, False);
16872 Set_Freeze_Node
(New_Itype
, Empty
);
16875 -- Add new association to map
16877 NCT_Assoc
.Set
(Old_Itype
, New_Itype
);
16879 -- If a record subtype is simply copied, the entity list will be
16880 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
16882 if Ekind_In
(Old_Itype
, E_Class_Wide_Subtype
, E_Record_Subtype
) then
16883 Set_Cloned_Subtype
(New_Itype
, Old_Itype
);
16886 -- Visit descendants that eventually get copied
16888 Visit_Field
(Union_Id
(Etype
(Old_Itype
)), Old_Itype
);
16890 if Is_Discrete_Type
(Old_Itype
) then
16891 Visit_Field
(Union_Id
(Scalar_Range
(Old_Itype
)), Old_Itype
);
16893 elsif Has_Discriminants
(Base_Type
(Old_Itype
)) then
16894 -- ??? This should involve call to Visit_Field
16895 Visit_Elist
(Discriminant_Constraint
(Old_Itype
));
16897 elsif Is_Array_Type
(Old_Itype
) then
16898 if Present
(First_Index
(Old_Itype
)) then
16900 (Union_Id
(List_Containing
(First_Index
(Old_Itype
))),
16904 if Is_Packed
(Old_Itype
) then
16906 (Union_Id
(Packed_Array_Impl_Type
(Old_Itype
)), Old_Itype
);
16915 procedure Visit_List
(L
: List_Id
) is
16918 if L
/= No_List
then
16921 while Present
(N
) loop
16932 procedure Visit_Node
(N
: Node_Or_Entity_Id
) is
16934 -- Handle case of an Itype, which must be copied
16936 if Nkind
(N
) in N_Entity
and then Is_Itype
(N
) then
16938 -- Nothing to do if already in the list. This can happen with an
16939 -- Itype entity that appears more than once in the tree. Note that
16940 -- we do not want to visit descendants in this case.
16942 if Present
(NCT_Assoc
.Get
(Entity_Id
(N
))) then
16949 -- Visit descendants
16951 Visit_Field
(Field1
(N
), N
);
16952 Visit_Field
(Field2
(N
), N
);
16953 Visit_Field
(Field3
(N
), N
);
16954 Visit_Field
(Field4
(N
), N
);
16955 Visit_Field
(Field5
(N
), N
);
16958 -- Start of processing for New_Copy_Tree
16961 Build_NCT_Hash_Tables
;
16963 -- Hash table set up if required, now start phase one by visiting top
16964 -- node (we will recursively visit the descendants).
16966 Visit_Node
(Source
);
16968 -- Now the second phase of the copy can start. First we process all the
16969 -- mapped entities, copying their descendants.
16972 Old_E
: Entity_Id
:= Empty
;
16976 NCT_Assoc
.Get_First
(Old_E
, New_E
);
16977 while Present
(New_E
) loop
16978 if Is_Itype
(New_E
) then
16979 Copy_Itype_With_Replacement
(New_E
);
16982 NCT_Assoc
.Get_Next
(Old_E
, New_E
);
16986 -- Now we can copy the actual tree
16989 Result
: constant Node_Id
:= Copy_Node_With_Replacement
(Source
);
16993 NCT_Itype_Assoc
.Reset
;
16999 -------------------------
17000 -- New_External_Entity --
17001 -------------------------
17003 function New_External_Entity
17004 (Kind
: Entity_Kind
;
17005 Scope_Id
: Entity_Id
;
17006 Sloc_Value
: Source_Ptr
;
17007 Related_Id
: Entity_Id
;
17008 Suffix
: Character;
17009 Suffix_Index
: Nat
:= 0;
17010 Prefix
: Character := ' ') return Entity_Id
17012 N
: constant Entity_Id
:=
17013 Make_Defining_Identifier
(Sloc_Value
,
17015 (Chars
(Related_Id
), Suffix
, Suffix_Index
, Prefix
));
17018 Set_Ekind
(N
, Kind
);
17019 Set_Is_Internal
(N
, True);
17020 Append_Entity
(N
, Scope_Id
);
17021 Set_Public_Status
(N
);
17023 if Kind
in Type_Kind
then
17024 Init_Size_Align
(N
);
17028 end New_External_Entity
;
17030 -------------------------
17031 -- New_Internal_Entity --
17032 -------------------------
17034 function New_Internal_Entity
17035 (Kind
: Entity_Kind
;
17036 Scope_Id
: Entity_Id
;
17037 Sloc_Value
: Source_Ptr
;
17038 Id_Char
: Character) return Entity_Id
17040 N
: constant Entity_Id
:= Make_Temporary
(Sloc_Value
, Id_Char
);
17043 Set_Ekind
(N
, Kind
);
17044 Set_Is_Internal
(N
, True);
17045 Append_Entity
(N
, Scope_Id
);
17047 if Kind
in Type_Kind
then
17048 Init_Size_Align
(N
);
17052 end New_Internal_Entity
;
17058 function Next_Actual
(Actual_Id
: Node_Id
) return Node_Id
is
17062 -- If we are pointing at a positional parameter, it is a member of a
17063 -- node list (the list of parameters), and the next parameter is the
17064 -- next node on the list, unless we hit a parameter association, then
17065 -- we shift to using the chain whose head is the First_Named_Actual in
17066 -- the parent, and then is threaded using the Next_Named_Actual of the
17067 -- Parameter_Association. All this fiddling is because the original node
17068 -- list is in the textual call order, and what we need is the
17069 -- declaration order.
17071 if Is_List_Member
(Actual_Id
) then
17072 N
:= Next
(Actual_Id
);
17074 if Nkind
(N
) = N_Parameter_Association
then
17075 return First_Named_Actual
(Parent
(Actual_Id
));
17081 return Next_Named_Actual
(Parent
(Actual_Id
));
17085 procedure Next_Actual
(Actual_Id
: in out Node_Id
) is
17087 Actual_Id
:= Next_Actual
(Actual_Id
);
17090 ----------------------------------
17091 -- New_Requires_Transient_Scope --
17092 ----------------------------------
17094 function New_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
17095 function Caller_Known_Size_Record
(Typ
: Entity_Id
) return Boolean;
17096 -- This is called for untagged records and protected types, with
17097 -- nondefaulted discriminants. Returns True if the size of function
17098 -- results is known at the call site, False otherwise. Returns False
17099 -- if there is a variant part that depends on the discriminants of
17100 -- this type, or if there is an array constrained by the discriminants
17101 -- of this type. ???Currently, this is overly conservative (the array
17102 -- could be nested inside some other record that is constrained by
17103 -- nondiscriminants). That is, the recursive calls are too conservative.
17105 function Large_Max_Size_Mutable
(Typ
: Entity_Id
) return Boolean;
17106 -- Returns True if Typ is a nonlimited record with defaulted
17107 -- discriminants whose max size makes it unsuitable for allocating on
17108 -- the primary stack.
17110 ------------------------------
17111 -- Caller_Known_Size_Record --
17112 ------------------------------
17114 function Caller_Known_Size_Record
(Typ
: Entity_Id
) return Boolean is
17115 pragma Assert
(Typ
= Underlying_Type
(Typ
));
17118 if Has_Variant_Part
(Typ
) and then not Is_Definite_Subtype
(Typ
) then
17126 Comp
:= First_Entity
(Typ
);
17127 while Present
(Comp
) loop
17129 -- Only look at E_Component entities. No need to look at
17130 -- E_Discriminant entities, and we must ignore internal
17131 -- subtypes generated for constrained components.
17133 if Ekind
(Comp
) = E_Component
then
17135 Comp_Type
: constant Entity_Id
:=
17136 Underlying_Type
(Etype
(Comp
));
17139 if Is_Record_Type
(Comp_Type
)
17141 Is_Protected_Type
(Comp_Type
)
17143 if not Caller_Known_Size_Record
(Comp_Type
) then
17147 elsif Is_Array_Type
(Comp_Type
) then
17148 if Size_Depends_On_Discriminant
(Comp_Type
) then
17155 Next_Entity
(Comp
);
17160 end Caller_Known_Size_Record
;
17162 ------------------------------
17163 -- Large_Max_Size_Mutable --
17164 ------------------------------
17166 function Large_Max_Size_Mutable
(Typ
: Entity_Id
) return Boolean is
17167 pragma Assert
(Typ
= Underlying_Type
(Typ
));
17169 function Is_Large_Discrete_Type
(T
: Entity_Id
) return Boolean;
17170 -- Returns true if the discrete type T has a large range
17172 ----------------------------
17173 -- Is_Large_Discrete_Type --
17174 ----------------------------
17176 function Is_Large_Discrete_Type
(T
: Entity_Id
) return Boolean is
17177 Threshold
: constant Int
:= 16;
17178 -- Arbitrary threshold above which we consider it "large". We want
17179 -- a fairly large threshold, because these large types really
17180 -- shouldn't have default discriminants in the first place, in
17184 return UI_To_Int
(RM_Size
(T
)) > Threshold
;
17185 end Is_Large_Discrete_Type
;
17187 -- Start of processing for Large_Max_Size_Mutable
17190 if Is_Record_Type
(Typ
)
17191 and then not Is_Limited_View
(Typ
)
17192 and then Has_Defaulted_Discriminants
(Typ
)
17194 -- Loop through the components, looking for an array whose upper
17195 -- bound(s) depends on discriminants, where both the subtype of
17196 -- the discriminant and the index subtype are too large.
17202 Comp
:= First_Entity
(Typ
);
17203 while Present
(Comp
) loop
17204 if Ekind
(Comp
) = E_Component
then
17206 Comp_Type
: constant Entity_Id
:=
17207 Underlying_Type
(Etype
(Comp
));
17214 if Is_Array_Type
(Comp_Type
) then
17215 Indx
:= First_Index
(Comp_Type
);
17217 while Present
(Indx
) loop
17218 Ityp
:= Etype
(Indx
);
17219 Hi
:= Type_High_Bound
(Ityp
);
17221 if Nkind
(Hi
) = N_Identifier
17222 and then Ekind
(Entity
(Hi
)) = E_Discriminant
17223 and then Is_Large_Discrete_Type
(Ityp
)
17224 and then Is_Large_Discrete_Type
17225 (Etype
(Entity
(Hi
)))
17236 Next_Entity
(Comp
);
17242 end Large_Max_Size_Mutable
;
17244 -- Local declarations
17246 Typ
: constant Entity_Id
:= Underlying_Type
(Id
);
17248 -- Start of processing for New_Requires_Transient_Scope
17251 -- This is a private type which is not completed yet. This can only
17252 -- happen in a default expression (of a formal parameter or of a
17253 -- record component). Do not expand transient scope in this case.
17258 -- Do not expand transient scope for non-existent procedure return or
17259 -- string literal types.
17261 elsif Typ
= Standard_Void_Type
17262 or else Ekind
(Typ
) = E_String_Literal_Subtype
17266 -- If Typ is a generic formal incomplete type, then we want to look at
17267 -- the actual type.
17269 elsif Ekind
(Typ
) = E_Record_Subtype
17270 and then Present
(Cloned_Subtype
(Typ
))
17272 return New_Requires_Transient_Scope
(Cloned_Subtype
(Typ
));
17274 -- Functions returning specific tagged types may dispatch on result, so
17275 -- their returned value is allocated on the secondary stack, even in the
17276 -- definite case. We must treat nondispatching functions the same way,
17277 -- because access-to-function types can point at both, so the calling
17278 -- conventions must be compatible. Is_Tagged_Type includes controlled
17279 -- types and class-wide types. Controlled type temporaries need
17282 -- ???It's not clear why we need to return noncontrolled types with
17283 -- controlled components on the secondary stack.
17285 elsif Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
17288 -- Untagged definite subtypes are known size. This includes all
17289 -- elementary [sub]types. Tasks are known size even if they have
17290 -- discriminants. So we return False here, with one exception:
17291 -- For a type like:
17292 -- type T (Last : Natural := 0) is
17293 -- X : String (1 .. Last);
17295 -- we return True. That's because for "P(F(...));", where F returns T,
17296 -- we don't know the size of the result at the call site, so if we
17297 -- allocated it on the primary stack, we would have to allocate the
17298 -- maximum size, which is way too big.
17300 elsif Is_Definite_Subtype
(Typ
) or else Is_Task_Type
(Typ
) then
17301 return Large_Max_Size_Mutable
(Typ
);
17303 -- Indefinite (discriminated) untagged record or protected type
17305 elsif Is_Record_Type
(Typ
) or else Is_Protected_Type
(Typ
) then
17306 return not Caller_Known_Size_Record
(Typ
);
17308 -- Unconstrained array
17311 pragma Assert
(Is_Array_Type
(Typ
) and not Is_Definite_Subtype
(Typ
));
17314 end New_Requires_Transient_Scope
;
17316 -----------------------
17317 -- Normalize_Actuals --
17318 -----------------------
17320 -- Chain actuals according to formals of subprogram. If there are no named
17321 -- associations, the chain is simply the list of Parameter Associations,
17322 -- since the order is the same as the declaration order. If there are named
17323 -- associations, then the First_Named_Actual field in the N_Function_Call
17324 -- or N_Procedure_Call_Statement node points to the Parameter_Association
17325 -- node for the parameter that comes first in declaration order. The
17326 -- remaining named parameters are then chained in declaration order using
17327 -- Next_Named_Actual.
17329 -- This routine also verifies that the number of actuals is compatible with
17330 -- the number and default values of formals, but performs no type checking
17331 -- (type checking is done by the caller).
17333 -- If the matching succeeds, Success is set to True and the caller proceeds
17334 -- with type-checking. If the match is unsuccessful, then Success is set to
17335 -- False, and the caller attempts a different interpretation, if there is
17338 -- If the flag Report is on, the call is not overloaded, and a failure to
17339 -- match can be reported here, rather than in the caller.
17341 procedure Normalize_Actuals
17345 Success
: out Boolean)
17347 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
17348 Actual
: Node_Id
:= Empty
;
17349 Formal
: Entity_Id
;
17350 Last
: Node_Id
:= Empty
;
17351 First_Named
: Node_Id
:= Empty
;
17354 Formals_To_Match
: Integer := 0;
17355 Actuals_To_Match
: Integer := 0;
17357 procedure Chain
(A
: Node_Id
);
17358 -- Add named actual at the proper place in the list, using the
17359 -- Next_Named_Actual link.
17361 function Reporting
return Boolean;
17362 -- Determines if an error is to be reported. To report an error, we
17363 -- need Report to be True, and also we do not report errors caused
17364 -- by calls to init procs that occur within other init procs. Such
17365 -- errors must always be cascaded errors, since if all the types are
17366 -- declared correctly, the compiler will certainly build decent calls.
17372 procedure Chain
(A
: Node_Id
) is
17376 -- Call node points to first actual in list
17378 Set_First_Named_Actual
(N
, Explicit_Actual_Parameter
(A
));
17381 Set_Next_Named_Actual
(Last
, Explicit_Actual_Parameter
(A
));
17385 Set_Next_Named_Actual
(Last
, Empty
);
17392 function Reporting
return Boolean is
17397 elsif not Within_Init_Proc
then
17400 elsif Is_Init_Proc
(Entity
(Name
(N
))) then
17408 -- Start of processing for Normalize_Actuals
17411 if Is_Access_Type
(S
) then
17413 -- The name in the call is a function call that returns an access
17414 -- to subprogram. The designated type has the list of formals.
17416 Formal
:= First_Formal
(Designated_Type
(S
));
17418 Formal
:= First_Formal
(S
);
17421 while Present
(Formal
) loop
17422 Formals_To_Match
:= Formals_To_Match
+ 1;
17423 Next_Formal
(Formal
);
17426 -- Find if there is a named association, and verify that no positional
17427 -- associations appear after named ones.
17429 if Present
(Actuals
) then
17430 Actual
:= First
(Actuals
);
17433 while Present
(Actual
)
17434 and then Nkind
(Actual
) /= N_Parameter_Association
17436 Actuals_To_Match
:= Actuals_To_Match
+ 1;
17440 if No
(Actual
) and Actuals_To_Match
= Formals_To_Match
then
17442 -- Most common case: positional notation, no defaults
17447 elsif Actuals_To_Match
> Formals_To_Match
then
17449 -- Too many actuals: will not work
17452 if Is_Entity_Name
(Name
(N
)) then
17453 Error_Msg_N
("too many arguments in call to&", Name
(N
));
17455 Error_Msg_N
("too many arguments in call", N
);
17463 First_Named
:= Actual
;
17465 while Present
(Actual
) loop
17466 if Nkind
(Actual
) /= N_Parameter_Association
then
17468 ("positional parameters not allowed after named ones", Actual
);
17473 Actuals_To_Match
:= Actuals_To_Match
+ 1;
17479 if Present
(Actuals
) then
17480 Actual
:= First
(Actuals
);
17483 Formal
:= First_Formal
(S
);
17484 while Present
(Formal
) loop
17486 -- Match the formals in order. If the corresponding actual is
17487 -- positional, nothing to do. Else scan the list of named actuals
17488 -- to find the one with the right name.
17490 if Present
(Actual
)
17491 and then Nkind
(Actual
) /= N_Parameter_Association
17494 Actuals_To_Match
:= Actuals_To_Match
- 1;
17495 Formals_To_Match
:= Formals_To_Match
- 1;
17498 -- For named parameters, search the list of actuals to find
17499 -- one that matches the next formal name.
17501 Actual
:= First_Named
;
17503 while Present
(Actual
) loop
17504 if Chars
(Selector_Name
(Actual
)) = Chars
(Formal
) then
17507 Actuals_To_Match
:= Actuals_To_Match
- 1;
17508 Formals_To_Match
:= Formals_To_Match
- 1;
17516 if Ekind
(Formal
) /= E_In_Parameter
17517 or else No
(Default_Value
(Formal
))
17520 if (Comes_From_Source
(S
)
17521 or else Sloc
(S
) = Standard_Location
)
17522 and then Is_Overloadable
(S
)
17526 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
17528 N_Parameter_Association
)
17529 and then Ekind
(S
) /= E_Function
17531 Set_Etype
(N
, Etype
(S
));
17534 Error_Msg_Name_1
:= Chars
(S
);
17535 Error_Msg_Sloc
:= Sloc
(S
);
17537 ("missing argument for parameter & "
17538 & "in call to % declared #", N
, Formal
);
17541 elsif Is_Overloadable
(S
) then
17542 Error_Msg_Name_1
:= Chars
(S
);
17544 -- Point to type derivation that generated the
17547 Error_Msg_Sloc
:= Sloc
(Parent
(S
));
17550 ("missing argument for parameter & "
17551 & "in call to % (inherited) #", N
, Formal
);
17555 ("missing argument for parameter &", N
, Formal
);
17563 Formals_To_Match
:= Formals_To_Match
- 1;
17568 Next_Formal
(Formal
);
17571 if Formals_To_Match
= 0 and then Actuals_To_Match
= 0 then
17578 -- Find some superfluous named actual that did not get
17579 -- attached to the list of associations.
17581 Actual
:= First
(Actuals
);
17582 while Present
(Actual
) loop
17583 if Nkind
(Actual
) = N_Parameter_Association
17584 and then Actual
/= Last
17585 and then No
(Next_Named_Actual
(Actual
))
17587 -- A validity check may introduce a copy of a call that
17588 -- includes an extra actual (for example for an unrelated
17589 -- accessibility check). Check that the extra actual matches
17590 -- some extra formal, which must exist already because
17591 -- subprogram must be frozen at this point.
17593 if Present
(Extra_Formals
(S
))
17594 and then not Comes_From_Source
(Actual
)
17595 and then Nkind
(Actual
) = N_Parameter_Association
17596 and then Chars
(Extra_Formals
(S
)) =
17597 Chars
(Selector_Name
(Actual
))
17602 ("unmatched actual & in call", Selector_Name
(Actual
));
17614 end Normalize_Actuals
;
17616 --------------------------------
17617 -- Note_Possible_Modification --
17618 --------------------------------
17620 procedure Note_Possible_Modification
(N
: Node_Id
; Sure
: Boolean) is
17621 Modification_Comes_From_Source
: constant Boolean :=
17622 Comes_From_Source
(Parent
(N
));
17628 -- Loop to find referenced entity, if there is one
17634 if Is_Entity_Name
(Exp
) then
17635 Ent
:= Entity
(Exp
);
17637 -- If the entity is missing, it is an undeclared identifier,
17638 -- and there is nothing to annotate.
17644 elsif Nkind
(Exp
) = N_Explicit_Dereference
then
17646 P
: constant Node_Id
:= Prefix
(Exp
);
17649 -- In formal verification mode, keep track of all reads and
17650 -- writes through explicit dereferences.
17652 if GNATprove_Mode
then
17653 SPARK_Specific
.Generate_Dereference
(N
, 'm');
17656 if Nkind
(P
) = N_Selected_Component
17657 and then Present
(Entry_Formal
(Entity
(Selector_Name
(P
))))
17659 -- Case of a reference to an entry formal
17661 Ent
:= Entry_Formal
(Entity
(Selector_Name
(P
)));
17663 elsif Nkind
(P
) = N_Identifier
17664 and then Nkind
(Parent
(Entity
(P
))) = N_Object_Declaration
17665 and then Present
(Expression
(Parent
(Entity
(P
))))
17666 and then Nkind
(Expression
(Parent
(Entity
(P
)))) =
17669 -- Case of a reference to a value on which side effects have
17672 Exp
:= Prefix
(Expression
(Parent
(Entity
(P
))));
17680 elsif Nkind_In
(Exp
, N_Type_Conversion
,
17681 N_Unchecked_Type_Conversion
)
17683 Exp
:= Expression
(Exp
);
17686 elsif Nkind_In
(Exp
, N_Slice
,
17687 N_Indexed_Component
,
17688 N_Selected_Component
)
17690 -- Special check, if the prefix is an access type, then return
17691 -- since we are modifying the thing pointed to, not the prefix.
17692 -- When we are expanding, most usually the prefix is replaced
17693 -- by an explicit dereference, and this test is not needed, but
17694 -- in some cases (notably -gnatc mode and generics) when we do
17695 -- not do full expansion, we need this special test.
17697 if Is_Access_Type
(Etype
(Prefix
(Exp
))) then
17700 -- Otherwise go to prefix and keep going
17703 Exp
:= Prefix
(Exp
);
17707 -- All other cases, not a modification
17713 -- Now look for entity being referenced
17715 if Present
(Ent
) then
17716 if Is_Object
(Ent
) then
17717 if Comes_From_Source
(Exp
)
17718 or else Modification_Comes_From_Source
17720 -- Give warning if pragma unmodified is given and we are
17721 -- sure this is a modification.
17723 if Has_Pragma_Unmodified
(Ent
) and then Sure
then
17725 -- Note that the entity may be present only as a result
17726 -- of pragma Unused.
17728 if Has_Pragma_Unused
(Ent
) then
17729 Error_Msg_NE
("??pragma Unused given for &!", N
, Ent
);
17732 ("??pragma Unmodified given for &!", N
, Ent
);
17736 Set_Never_Set_In_Source
(Ent
, False);
17739 Set_Is_True_Constant
(Ent
, False);
17740 Set_Current_Value
(Ent
, Empty
);
17741 Set_Is_Known_Null
(Ent
, False);
17743 if not Can_Never_Be_Null
(Ent
) then
17744 Set_Is_Known_Non_Null
(Ent
, False);
17747 -- Follow renaming chain
17749 if (Ekind
(Ent
) = E_Variable
or else Ekind
(Ent
) = E_Constant
)
17750 and then Present
(Renamed_Object
(Ent
))
17752 Exp
:= Renamed_Object
(Ent
);
17754 -- If the entity is the loop variable in an iteration over
17755 -- a container, retrieve container expression to indicate
17756 -- possible modification.
17758 if Present
(Related_Expression
(Ent
))
17759 and then Nkind
(Parent
(Related_Expression
(Ent
))) =
17760 N_Iterator_Specification
17762 Exp
:= Original_Node
(Related_Expression
(Ent
));
17767 -- The expression may be the renaming of a subcomponent of an
17768 -- array or container. The assignment to the subcomponent is
17769 -- a modification of the container.
17771 elsif Comes_From_Source
(Original_Node
(Exp
))
17772 and then Nkind_In
(Original_Node
(Exp
), N_Selected_Component
,
17773 N_Indexed_Component
)
17775 Exp
:= Prefix
(Original_Node
(Exp
));
17779 -- Generate a reference only if the assignment comes from
17780 -- source. This excludes, for example, calls to a dispatching
17781 -- assignment operation when the left-hand side is tagged. In
17782 -- GNATprove mode, we need those references also on generated
17783 -- code, as these are used to compute the local effects of
17786 if Modification_Comes_From_Source
or GNATprove_Mode
then
17787 Generate_Reference
(Ent
, Exp
, 'm');
17789 -- If the target of the assignment is the bound variable
17790 -- in an iterator, indicate that the corresponding array
17791 -- or container is also modified.
17793 if Ada_Version
>= Ada_2012
17794 and then Nkind
(Parent
(Ent
)) = N_Iterator_Specification
17797 Domain
: constant Node_Id
:= Name
(Parent
(Ent
));
17800 -- TBD : in the full version of the construct, the
17801 -- domain of iteration can be given by an expression.
17803 if Is_Entity_Name
(Domain
) then
17804 Generate_Reference
(Entity
(Domain
), Exp
, 'm');
17805 Set_Is_True_Constant
(Entity
(Domain
), False);
17806 Set_Never_Set_In_Source
(Entity
(Domain
), False);
17815 -- If we are sure this is a modification from source, and we know
17816 -- this modifies a constant, then give an appropriate warning.
17819 and then Modification_Comes_From_Source
17820 and then Overlays_Constant
(Ent
)
17821 and then Address_Clause_Overlay_Warnings
17824 Addr
: constant Node_Id
:= Address_Clause
(Ent
);
17829 Find_Overlaid_Entity
(Addr
, O_Ent
, Off
);
17831 Error_Msg_Sloc
:= Sloc
(Addr
);
17833 ("??constant& may be modified via address clause#",
17844 end Note_Possible_Modification
;
17846 --------------------------------------
17847 -- Null_To_Null_Address_Convert_OK --
17848 --------------------------------------
17850 function Null_To_Null_Address_Convert_OK
17852 Typ
: Entity_Id
:= Empty
) return Boolean
17855 if not Relaxed_RM_Semantics
then
17859 if Nkind
(N
) = N_Null
then
17860 return Present
(Typ
) and then Is_Descendant_Of_Address
(Typ
);
17862 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ge
, N_Op_Gt
, N_Op_Le
, N_Op_Lt
, N_Op_Ne
)
17865 L
: constant Node_Id
:= Left_Opnd
(N
);
17866 R
: constant Node_Id
:= Right_Opnd
(N
);
17869 -- We check the Etype of the complementary operand since the
17870 -- N_Null node is not decorated at this stage.
17873 ((Nkind
(L
) = N_Null
17874 and then Is_Descendant_Of_Address
(Etype
(R
)))
17876 (Nkind
(R
) = N_Null
17877 and then Is_Descendant_Of_Address
(Etype
(L
))));
17882 end Null_To_Null_Address_Convert_OK
;
17884 -------------------------
17885 -- Object_Access_Level --
17886 -------------------------
17888 -- Returns the static accessibility level of the view denoted by Obj. Note
17889 -- that the value returned is the result of a call to Scope_Depth. Only
17890 -- scope depths associated with dynamic scopes can actually be returned.
17891 -- Since only relative levels matter for accessibility checking, the fact
17892 -- that the distance between successive levels of accessibility is not
17893 -- always one is immaterial (invariant: if level(E2) is deeper than
17894 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
17896 function Object_Access_Level
(Obj
: Node_Id
) return Uint
is
17897 function Is_Interface_Conversion
(N
: Node_Id
) return Boolean;
17898 -- Determine whether N is a construct of the form
17899 -- Some_Type (Operand._tag'Address)
17900 -- This construct appears in the context of dispatching calls.
17902 function Reference_To
(Obj
: Node_Id
) return Node_Id
;
17903 -- An explicit dereference is created when removing side-effects from
17904 -- expressions for constraint checking purposes. In this case a local
17905 -- access type is created for it. The correct access level is that of
17906 -- the original source node. We detect this case by noting that the
17907 -- prefix of the dereference is created by an object declaration whose
17908 -- initial expression is a reference.
17910 -----------------------------
17911 -- Is_Interface_Conversion --
17912 -----------------------------
17914 function Is_Interface_Conversion
(N
: Node_Id
) return Boolean is
17916 return Nkind
(N
) = N_Unchecked_Type_Conversion
17917 and then Nkind
(Expression
(N
)) = N_Attribute_Reference
17918 and then Attribute_Name
(Expression
(N
)) = Name_Address
;
17919 end Is_Interface_Conversion
;
17925 function Reference_To
(Obj
: Node_Id
) return Node_Id
is
17926 Pref
: constant Node_Id
:= Prefix
(Obj
);
17928 if Is_Entity_Name
(Pref
)
17929 and then Nkind
(Parent
(Entity
(Pref
))) = N_Object_Declaration
17930 and then Present
(Expression
(Parent
(Entity
(Pref
))))
17931 and then Nkind
(Expression
(Parent
(Entity
(Pref
)))) = N_Reference
17933 return (Prefix
(Expression
(Parent
(Entity
(Pref
)))));
17943 -- Start of processing for Object_Access_Level
17946 if Nkind
(Obj
) = N_Defining_Identifier
17947 or else Is_Entity_Name
(Obj
)
17949 if Nkind
(Obj
) = N_Defining_Identifier
then
17955 if Is_Prival
(E
) then
17956 E
:= Prival_Link
(E
);
17959 -- If E is a type then it denotes a current instance. For this case
17960 -- we add one to the normal accessibility level of the type to ensure
17961 -- that current instances are treated as always being deeper than
17962 -- than the level of any visible named access type (see 3.10.2(21)).
17964 if Is_Type
(E
) then
17965 return Type_Access_Level
(E
) + 1;
17967 elsif Present
(Renamed_Object
(E
)) then
17968 return Object_Access_Level
(Renamed_Object
(E
));
17970 -- Similarly, if E is a component of the current instance of a
17971 -- protected type, any instance of it is assumed to be at a deeper
17972 -- level than the type. For a protected object (whose type is an
17973 -- anonymous protected type) its components are at the same level
17974 -- as the type itself.
17976 elsif not Is_Overloadable
(E
)
17977 and then Ekind
(Scope
(E
)) = E_Protected_Type
17978 and then Comes_From_Source
(Scope
(E
))
17980 return Type_Access_Level
(Scope
(E
)) + 1;
17983 -- Aliased formals of functions take their access level from the
17984 -- point of call, i.e. require a dynamic check. For static check
17985 -- purposes, this is smaller than the level of the subprogram
17986 -- itself. For procedures the aliased makes no difference.
17989 and then Is_Aliased
(E
)
17990 and then Ekind
(Scope
(E
)) = E_Function
17992 return Type_Access_Level
(Etype
(E
));
17995 return Scope_Depth
(Enclosing_Dynamic_Scope
(E
));
17999 elsif Nkind
(Obj
) = N_Selected_Component
then
18000 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
18001 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
18003 return Object_Access_Level
(Prefix
(Obj
));
18006 elsif Nkind
(Obj
) = N_Indexed_Component
then
18007 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
18008 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
18010 return Object_Access_Level
(Prefix
(Obj
));
18013 elsif Nkind
(Obj
) = N_Explicit_Dereference
then
18015 -- If the prefix is a selected access discriminant then we make a
18016 -- recursive call on the prefix, which will in turn check the level
18017 -- of the prefix object of the selected discriminant.
18019 -- In Ada 2012, if the discriminant has implicit dereference and
18020 -- the context is a selected component, treat this as an object of
18021 -- unknown scope (see below). This is necessary in compile-only mode;
18022 -- otherwise expansion will already have transformed the prefix into
18025 if Nkind
(Prefix
(Obj
)) = N_Selected_Component
18026 and then Ekind
(Etype
(Prefix
(Obj
))) = E_Anonymous_Access_Type
18028 Ekind
(Entity
(Selector_Name
(Prefix
(Obj
)))) = E_Discriminant
18030 (not Has_Implicit_Dereference
18031 (Entity
(Selector_Name
(Prefix
(Obj
))))
18032 or else Nkind
(Parent
(Obj
)) /= N_Selected_Component
)
18034 return Object_Access_Level
(Prefix
(Obj
));
18036 -- Detect an interface conversion in the context of a dispatching
18037 -- call. Use the original form of the conversion to find the access
18038 -- level of the operand.
18040 elsif Is_Interface
(Etype
(Obj
))
18041 and then Is_Interface_Conversion
(Prefix
(Obj
))
18042 and then Nkind
(Original_Node
(Obj
)) = N_Type_Conversion
18044 return Object_Access_Level
(Original_Node
(Obj
));
18046 elsif not Comes_From_Source
(Obj
) then
18048 Ref
: constant Node_Id
:= Reference_To
(Obj
);
18050 if Present
(Ref
) then
18051 return Object_Access_Level
(Ref
);
18053 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
18058 return Type_Access_Level
(Etype
(Prefix
(Obj
)));
18061 elsif Nkind_In
(Obj
, N_Type_Conversion
, N_Unchecked_Type_Conversion
) then
18062 return Object_Access_Level
(Expression
(Obj
));
18064 elsif Nkind
(Obj
) = N_Function_Call
then
18066 -- Function results are objects, so we get either the access level of
18067 -- the function or, in the case of an indirect call, the level of the
18068 -- access-to-subprogram type. (This code is used for Ada 95, but it
18069 -- looks wrong, because it seems that we should be checking the level
18070 -- of the call itself, even for Ada 95. However, using the Ada 2005
18071 -- version of the code causes regressions in several tests that are
18072 -- compiled with -gnat95. ???)
18074 if Ada_Version
< Ada_2005
then
18075 if Is_Entity_Name
(Name
(Obj
)) then
18076 return Subprogram_Access_Level
(Entity
(Name
(Obj
)));
18078 return Type_Access_Level
(Etype
(Prefix
(Name
(Obj
))));
18081 -- For Ada 2005, the level of the result object of a function call is
18082 -- defined to be the level of the call's innermost enclosing master.
18083 -- We determine that by querying the depth of the innermost enclosing
18087 Return_Master_Scope_Depth_Of_Call
: declare
18088 function Innermost_Master_Scope_Depth
18089 (N
: Node_Id
) return Uint
;
18090 -- Returns the scope depth of the given node's innermost
18091 -- enclosing dynamic scope (effectively the accessibility
18092 -- level of the innermost enclosing master).
18094 ----------------------------------
18095 -- Innermost_Master_Scope_Depth --
18096 ----------------------------------
18098 function Innermost_Master_Scope_Depth
18099 (N
: Node_Id
) return Uint
18101 Node_Par
: Node_Id
:= Parent
(N
);
18104 -- Locate the nearest enclosing node (by traversing Parents)
18105 -- that Defining_Entity can be applied to, and return the
18106 -- depth of that entity's nearest enclosing dynamic scope.
18108 while Present
(Node_Par
) loop
18109 case Nkind
(Node_Par
) is
18110 when N_Abstract_Subprogram_Declaration
18111 | N_Block_Statement
18113 | N_Component_Declaration
18115 | N_Entry_Declaration
18116 | N_Exception_Declaration
18117 | N_Formal_Object_Declaration
18118 | N_Formal_Package_Declaration
18119 | N_Formal_Subprogram_Declaration
18120 | N_Formal_Type_Declaration
18121 | N_Full_Type_Declaration
18122 | N_Function_Specification
18123 | N_Generic_Declaration
18124 | N_Generic_Instantiation
18125 | N_Implicit_Label_Declaration
18126 | N_Incomplete_Type_Declaration
18127 | N_Loop_Parameter_Specification
18128 | N_Number_Declaration
18129 | N_Object_Declaration
18130 | N_Package_Declaration
18131 | N_Package_Specification
18132 | N_Parameter_Specification
18133 | N_Private_Extension_Declaration
18134 | N_Private_Type_Declaration
18135 | N_Procedure_Specification
18137 | N_Protected_Type_Declaration
18138 | N_Renaming_Declaration
18139 | N_Single_Protected_Declaration
18140 | N_Single_Task_Declaration
18141 | N_Subprogram_Declaration
18142 | N_Subtype_Declaration
18144 | N_Task_Type_Declaration
18147 (Nearest_Dynamic_Scope
18148 (Defining_Entity
(Node_Par
)));
18154 Node_Par
:= Parent
(Node_Par
);
18157 pragma Assert
(False);
18159 -- Should never reach the following return
18161 return Scope_Depth
(Current_Scope
) + 1;
18162 end Innermost_Master_Scope_Depth
;
18164 -- Start of processing for Return_Master_Scope_Depth_Of_Call
18167 return Innermost_Master_Scope_Depth
(Obj
);
18168 end Return_Master_Scope_Depth_Of_Call
;
18171 -- For convenience we handle qualified expressions, even though they
18172 -- aren't technically object names.
18174 elsif Nkind
(Obj
) = N_Qualified_Expression
then
18175 return Object_Access_Level
(Expression
(Obj
));
18177 -- Ditto for aggregates. They have the level of the temporary that
18178 -- will hold their value.
18180 elsif Nkind
(Obj
) = N_Aggregate
then
18181 return Object_Access_Level
(Current_Scope
);
18183 -- Otherwise return the scope level of Standard. (If there are cases
18184 -- that fall through to this point they will be treated as having
18185 -- global accessibility for now. ???)
18188 return Scope_Depth
(Standard_Standard
);
18190 end Object_Access_Level
;
18192 ----------------------------------
18193 -- Old_Requires_Transient_Scope --
18194 ----------------------------------
18196 function Old_Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
18197 Typ
: constant Entity_Id
:= Underlying_Type
(Id
);
18200 -- This is a private type which is not completed yet. This can only
18201 -- happen in a default expression (of a formal parameter or of a
18202 -- record component). Do not expand transient scope in this case.
18207 -- Do not expand transient scope for non-existent procedure return
18209 elsif Typ
= Standard_Void_Type
then
18212 -- Elementary types do not require a transient scope
18214 elsif Is_Elementary_Type
(Typ
) then
18217 -- Generally, indefinite subtypes require a transient scope, since the
18218 -- back end cannot generate temporaries, since this is not a valid type
18219 -- for declaring an object. It might be possible to relax this in the
18220 -- future, e.g. by declaring the maximum possible space for the type.
18222 elsif not Is_Definite_Subtype
(Typ
) then
18225 -- Functions returning tagged types may dispatch on result so their
18226 -- returned value is allocated on the secondary stack. Controlled
18227 -- type temporaries need finalization.
18229 elsif Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
18234 elsif Is_Record_Type
(Typ
) then
18239 Comp
:= First_Entity
(Typ
);
18240 while Present
(Comp
) loop
18241 if Ekind
(Comp
) = E_Component
then
18243 -- ???It's not clear we need a full recursive call to
18244 -- Old_Requires_Transient_Scope here. Note that the
18245 -- following can't happen.
18247 pragma Assert
(Is_Definite_Subtype
(Etype
(Comp
)));
18248 pragma Assert
(not Has_Controlled_Component
(Etype
(Comp
)));
18250 if Old_Requires_Transient_Scope
(Etype
(Comp
)) then
18255 Next_Entity
(Comp
);
18261 -- String literal types never require transient scope
18263 elsif Ekind
(Typ
) = E_String_Literal_Subtype
then
18266 -- Array type. Note that we already know that this is a constrained
18267 -- array, since unconstrained arrays will fail the indefinite test.
18269 elsif Is_Array_Type
(Typ
) then
18271 -- If component type requires a transient scope, the array does too
18273 if Old_Requires_Transient_Scope
(Component_Type
(Typ
)) then
18276 -- Otherwise, we only need a transient scope if the size depends on
18277 -- the value of one or more discriminants.
18280 return Size_Depends_On_Discriminant
(Typ
);
18283 -- All other cases do not require a transient scope
18286 pragma Assert
(Is_Protected_Type
(Typ
) or else Is_Task_Type
(Typ
));
18289 end Old_Requires_Transient_Scope
;
18291 ---------------------------------
18292 -- Original_Aspect_Pragma_Name --
18293 ---------------------------------
18295 function Original_Aspect_Pragma_Name
(N
: Node_Id
) return Name_Id
is
18297 Item_Nam
: Name_Id
;
18300 pragma Assert
(Nkind_In
(N
, N_Aspect_Specification
, N_Pragma
));
18304 -- The pragma was generated to emulate an aspect, use the original
18305 -- aspect specification.
18307 if Nkind
(Item
) = N_Pragma
and then From_Aspect_Specification
(Item
) then
18308 Item
:= Corresponding_Aspect
(Item
);
18311 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
18312 -- Post and Post_Class rewrite their pragma identifier to preserve the
18314 -- ??? this is kludgey
18316 if Nkind
(Item
) = N_Pragma
then
18317 Item_Nam
:= Chars
(Original_Node
(Pragma_Identifier
(Item
)));
18320 pragma Assert
(Nkind
(Item
) = N_Aspect_Specification
);
18321 Item_Nam
:= Chars
(Identifier
(Item
));
18324 -- Deal with 'Class by converting the name to its _XXX form
18326 if Class_Present
(Item
) then
18327 if Item_Nam
= Name_Invariant
then
18328 Item_Nam
:= Name_uInvariant
;
18330 elsif Item_Nam
= Name_Post
then
18331 Item_Nam
:= Name_uPost
;
18333 elsif Item_Nam
= Name_Pre
then
18334 Item_Nam
:= Name_uPre
;
18336 elsif Nam_In
(Item_Nam
, Name_Type_Invariant
,
18337 Name_Type_Invariant_Class
)
18339 Item_Nam
:= Name_uType_Invariant
;
18341 -- Nothing to do for other cases (e.g. a Check that derived from
18342 -- Pre_Class and has the flag set). Also we do nothing if the name
18343 -- is already in special _xxx form.
18349 end Original_Aspect_Pragma_Name
;
18351 --------------------------------------
18352 -- Original_Corresponding_Operation --
18353 --------------------------------------
18355 function Original_Corresponding_Operation
(S
: Entity_Id
) return Entity_Id
18357 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
18360 -- If S is an inherited primitive S2 the original corresponding
18361 -- operation of S is the original corresponding operation of S2
18363 if Present
(Alias
(S
))
18364 and then Find_Dispatching_Type
(Alias
(S
)) /= Typ
18366 return Original_Corresponding_Operation
(Alias
(S
));
18368 -- If S overrides an inherited subprogram S2 the original corresponding
18369 -- operation of S is the original corresponding operation of S2
18371 elsif Present
(Overridden_Operation
(S
)) then
18372 return Original_Corresponding_Operation
(Overridden_Operation
(S
));
18374 -- otherwise it is S itself
18379 end Original_Corresponding_Operation
;
18381 -------------------
18382 -- Output_Entity --
18383 -------------------
18385 procedure Output_Entity
(Id
: Entity_Id
) is
18389 Scop
:= Scope
(Id
);
18391 -- The entity may lack a scope when it is in the process of being
18392 -- analyzed. Use the current scope as an approximation.
18395 Scop
:= Current_Scope
;
18398 Output_Name
(Chars
(Id
), Scop
);
18405 procedure Output_Name
(Nam
: Name_Id
; Scop
: Entity_Id
:= Current_Scope
) is
18409 (Get_Qualified_Name
18416 ----------------------
18417 -- Policy_In_Effect --
18418 ----------------------
18420 function Policy_In_Effect
(Policy
: Name_Id
) return Name_Id
is
18421 function Policy_In_List
(List
: Node_Id
) return Name_Id
;
18422 -- Determine the mode of a policy in a N_Pragma list
18424 --------------------
18425 -- Policy_In_List --
18426 --------------------
18428 function Policy_In_List
(List
: Node_Id
) return Name_Id
is
18435 while Present
(Prag
) loop
18436 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
18437 Arg2
:= Next
(Arg1
);
18439 Arg1
:= Get_Pragma_Arg
(Arg1
);
18440 Arg2
:= Get_Pragma_Arg
(Arg2
);
18442 -- The current Check_Policy pragma matches the requested policy or
18443 -- appears in the single argument form (Assertion, policy_id).
18445 if Nam_In
(Chars
(Arg1
), Name_Assertion
, Policy
) then
18446 return Chars
(Arg2
);
18449 Prag
:= Next_Pragma
(Prag
);
18453 end Policy_In_List
;
18459 -- Start of processing for Policy_In_Effect
18462 if not Is_Valid_Assertion_Kind
(Policy
) then
18463 raise Program_Error
;
18466 -- Inspect all policy pragmas that appear within scopes (if any)
18468 Kind
:= Policy_In_List
(Check_Policy_List
);
18470 -- Inspect all configuration policy pragmas (if any)
18472 if Kind
= No_Name
then
18473 Kind
:= Policy_In_List
(Check_Policy_List_Config
);
18476 -- The context lacks policy pragmas, determine the mode based on whether
18477 -- assertions are enabled at the configuration level. This ensures that
18478 -- the policy is preserved when analyzing generics.
18480 if Kind
= No_Name
then
18481 if Assertions_Enabled_Config
then
18482 Kind
:= Name_Check
;
18484 Kind
:= Name_Ignore
;
18489 end Policy_In_Effect
;
18491 ----------------------------------
18492 -- Predicate_Tests_On_Arguments --
18493 ----------------------------------
18495 function Predicate_Tests_On_Arguments
(Subp
: Entity_Id
) return Boolean is
18497 -- Always test predicates on indirect call
18499 if Ekind
(Subp
) = E_Subprogram_Type
then
18502 -- Do not test predicates on call to generated default Finalize, since
18503 -- we are not interested in whether something we are finalizing (and
18504 -- typically destroying) satisfies its predicates.
18506 elsif Chars
(Subp
) = Name_Finalize
18507 and then not Comes_From_Source
(Subp
)
18511 -- Do not test predicates on any internally generated routines
18513 elsif Is_Internal_Name
(Chars
(Subp
)) then
18516 -- Do not test predicates on call to Init_Proc, since if needed the
18517 -- predicate test will occur at some other point.
18519 elsif Is_Init_Proc
(Subp
) then
18522 -- Do not test predicates on call to predicate function, since this
18523 -- would cause infinite recursion.
18525 elsif Ekind
(Subp
) = E_Function
18526 and then (Is_Predicate_Function
(Subp
)
18528 Is_Predicate_Function_M
(Subp
))
18532 -- For now, no other exceptions
18537 end Predicate_Tests_On_Arguments
;
18539 -----------------------
18540 -- Private_Component --
18541 -----------------------
18543 function Private_Component
(Type_Id
: Entity_Id
) return Entity_Id
is
18544 Ancestor
: constant Entity_Id
:= Base_Type
(Type_Id
);
18546 function Trace_Components
18548 Check
: Boolean) return Entity_Id
;
18549 -- Recursive function that does the work, and checks against circular
18550 -- definition for each subcomponent type.
18552 ----------------------
18553 -- Trace_Components --
18554 ----------------------
18556 function Trace_Components
18558 Check
: Boolean) return Entity_Id
18560 Btype
: constant Entity_Id
:= Base_Type
(T
);
18561 Component
: Entity_Id
;
18563 Candidate
: Entity_Id
:= Empty
;
18566 if Check
and then Btype
= Ancestor
then
18567 Error_Msg_N
("circular type definition", Type_Id
);
18571 if Is_Private_Type
(Btype
) and then not Is_Generic_Type
(Btype
) then
18572 if Present
(Full_View
(Btype
))
18573 and then Is_Record_Type
(Full_View
(Btype
))
18574 and then not Is_Frozen
(Btype
)
18576 -- To indicate that the ancestor depends on a private type, the
18577 -- current Btype is sufficient. However, to check for circular
18578 -- definition we must recurse on the full view.
18580 Candidate
:= Trace_Components
(Full_View
(Btype
), True);
18582 if Candidate
= Any_Type
then
18592 elsif Is_Array_Type
(Btype
) then
18593 return Trace_Components
(Component_Type
(Btype
), True);
18595 elsif Is_Record_Type
(Btype
) then
18596 Component
:= First_Entity
(Btype
);
18597 while Present
(Component
)
18598 and then Comes_From_Source
(Component
)
18600 -- Skip anonymous types generated by constrained components
18602 if not Is_Type
(Component
) then
18603 P
:= Trace_Components
(Etype
(Component
), True);
18605 if Present
(P
) then
18606 if P
= Any_Type
then
18614 Next_Entity
(Component
);
18622 end Trace_Components
;
18624 -- Start of processing for Private_Component
18627 return Trace_Components
(Type_Id
, False);
18628 end Private_Component
;
18630 ---------------------------
18631 -- Primitive_Names_Match --
18632 ---------------------------
18634 function Primitive_Names_Match
(E1
, E2
: Entity_Id
) return Boolean is
18635 function Non_Internal_Name
(E
: Entity_Id
) return Name_Id
;
18636 -- Given an internal name, returns the corresponding non-internal name
18638 ------------------------
18639 -- Non_Internal_Name --
18640 ------------------------
18642 function Non_Internal_Name
(E
: Entity_Id
) return Name_Id
is
18644 Get_Name_String
(Chars
(E
));
18645 Name_Len
:= Name_Len
- 1;
18647 end Non_Internal_Name
;
18649 -- Start of processing for Primitive_Names_Match
18652 pragma Assert
(Present
(E1
) and then Present
(E2
));
18654 return Chars
(E1
) = Chars
(E2
)
18656 (not Is_Internal_Name
(Chars
(E1
))
18657 and then Is_Internal_Name
(Chars
(E2
))
18658 and then Non_Internal_Name
(E2
) = Chars
(E1
))
18660 (not Is_Internal_Name
(Chars
(E2
))
18661 and then Is_Internal_Name
(Chars
(E1
))
18662 and then Non_Internal_Name
(E1
) = Chars
(E2
))
18664 (Is_Predefined_Dispatching_Operation
(E1
)
18665 and then Is_Predefined_Dispatching_Operation
(E2
)
18666 and then Same_TSS
(E1
, E2
))
18668 (Is_Init_Proc
(E1
) and then Is_Init_Proc
(E2
));
18669 end Primitive_Names_Match
;
18671 -----------------------
18672 -- Process_End_Label --
18673 -----------------------
18675 procedure Process_End_Label
18684 Label_Ref
: Boolean;
18685 -- Set True if reference to end label itself is required
18688 -- Gets set to the operator symbol or identifier that references the
18689 -- entity Ent. For the child unit case, this is the identifier from the
18690 -- designator. For other cases, this is simply Endl.
18692 procedure Generate_Parent_Ref
(N
: Node_Id
; E
: Entity_Id
);
18693 -- N is an identifier node that appears as a parent unit reference in
18694 -- the case where Ent is a child unit. This procedure generates an
18695 -- appropriate cross-reference entry. E is the corresponding entity.
18697 -------------------------
18698 -- Generate_Parent_Ref --
18699 -------------------------
18701 procedure Generate_Parent_Ref
(N
: Node_Id
; E
: Entity_Id
) is
18703 -- If names do not match, something weird, skip reference
18705 if Chars
(E
) = Chars
(N
) then
18707 -- Generate the reference. We do NOT consider this as a reference
18708 -- for unreferenced symbol purposes.
18710 Generate_Reference
(E
, N
, 'r', Set_Ref
=> False, Force
=> True);
18712 if Style_Check
then
18713 Style
.Check_Identifier
(N
, E
);
18716 end Generate_Parent_Ref
;
18718 -- Start of processing for Process_End_Label
18721 -- If no node, ignore. This happens in some error situations, and
18722 -- also for some internally generated structures where no end label
18723 -- references are required in any case.
18729 -- Nothing to do if no End_Label, happens for internally generated
18730 -- constructs where we don't want an end label reference anyway. Also
18731 -- nothing to do if Endl is a string literal, which means there was
18732 -- some prior error (bad operator symbol)
18734 Endl
:= End_Label
(N
);
18736 if No
(Endl
) or else Nkind
(Endl
) = N_String_Literal
then
18740 -- Reference node is not in extended main source unit
18742 if not In_Extended_Main_Source_Unit
(N
) then
18744 -- Generally we do not collect references except for the extended
18745 -- main source unit. The one exception is the 'e' entry for a
18746 -- package spec, where it is useful for a client to have the
18747 -- ending information to define scopes.
18753 Label_Ref
:= False;
18755 -- For this case, we can ignore any parent references, but we
18756 -- need the package name itself for the 'e' entry.
18758 if Nkind
(Endl
) = N_Designator
then
18759 Endl
:= Identifier
(Endl
);
18763 -- Reference is in extended main source unit
18768 -- For designator, generate references for the parent entries
18770 if Nkind
(Endl
) = N_Designator
then
18772 -- Generate references for the prefix if the END line comes from
18773 -- source (otherwise we do not need these references) We climb the
18774 -- scope stack to find the expected entities.
18776 if Comes_From_Source
(Endl
) then
18777 Nam
:= Name
(Endl
);
18778 Scop
:= Current_Scope
;
18779 while Nkind
(Nam
) = N_Selected_Component
loop
18780 Scop
:= Scope
(Scop
);
18781 exit when No
(Scop
);
18782 Generate_Parent_Ref
(Selector_Name
(Nam
), Scop
);
18783 Nam
:= Prefix
(Nam
);
18786 if Present
(Scop
) then
18787 Generate_Parent_Ref
(Nam
, Scope
(Scop
));
18791 Endl
:= Identifier
(Endl
);
18795 -- If the end label is not for the given entity, then either we have
18796 -- some previous error, or this is a generic instantiation for which
18797 -- we do not need to make a cross-reference in this case anyway. In
18798 -- either case we simply ignore the call.
18800 if Chars
(Ent
) /= Chars
(Endl
) then
18804 -- If label was really there, then generate a normal reference and then
18805 -- adjust the location in the end label to point past the name (which
18806 -- should almost always be the semicolon).
18808 Loc
:= Sloc
(Endl
);
18810 if Comes_From_Source
(Endl
) then
18812 -- If a label reference is required, then do the style check and
18813 -- generate an l-type cross-reference entry for the label
18816 if Style_Check
then
18817 Style
.Check_Identifier
(Endl
, Ent
);
18820 Generate_Reference
(Ent
, Endl
, 'l', Set_Ref
=> False);
18823 -- Set the location to point past the label (normally this will
18824 -- mean the semicolon immediately following the label). This is
18825 -- done for the sake of the 'e' or 't' entry generated below.
18827 Get_Decoded_Name_String
(Chars
(Endl
));
18828 Set_Sloc
(Endl
, Sloc
(Endl
) + Source_Ptr
(Name_Len
));
18831 -- In SPARK mode, no missing label is allowed for packages and
18832 -- subprogram bodies. Detect those cases by testing whether
18833 -- Process_End_Label was called for a body (Typ = 't') or a package.
18835 if Restriction_Check_Required
(SPARK_05
)
18836 and then (Typ
= 't' or else Ekind
(Ent
) = E_Package
)
18838 Error_Msg_Node_1
:= Endl
;
18839 Check_SPARK_05_Restriction
18840 ("`END &` required", Endl
, Force
=> True);
18844 -- Now generate the e/t reference
18846 Generate_Reference
(Ent
, Endl
, Typ
, Set_Ref
=> False, Force
=> True);
18848 -- Restore Sloc, in case modified above, since we have an identifier
18849 -- and the normal Sloc should be left set in the tree.
18851 Set_Sloc
(Endl
, Loc
);
18852 end Process_End_Label
;
18854 --------------------------------
18855 -- Propagate_Concurrent_Flags --
18856 --------------------------------
18858 procedure Propagate_Concurrent_Flags
18860 Comp_Typ
: Entity_Id
)
18863 if Has_Task
(Comp_Typ
) then
18864 Set_Has_Task
(Typ
);
18867 if Has_Protected
(Comp_Typ
) then
18868 Set_Has_Protected
(Typ
);
18871 if Has_Timing_Event
(Comp_Typ
) then
18872 Set_Has_Timing_Event
(Typ
);
18874 end Propagate_Concurrent_Flags
;
18876 ------------------------------
18877 -- Propagate_DIC_Attributes --
18878 ------------------------------
18880 procedure Propagate_DIC_Attributes
18882 From_Typ
: Entity_Id
)
18884 DIC_Proc
: Entity_Id
;
18887 if Present
(Typ
) and then Present
(From_Typ
) then
18888 pragma Assert
(Is_Type
(Typ
) and then Is_Type
(From_Typ
));
18890 -- Nothing to do if both the source and the destination denote the
18893 if From_Typ
= Typ
then
18897 DIC_Proc
:= DIC_Procedure
(From_Typ
);
18899 -- The setting of the attributes is intentionally conservative. This
18900 -- prevents accidental clobbering of enabled attributes.
18902 if Has_Inherited_DIC
(From_Typ
)
18903 and then not Has_Inherited_DIC
(Typ
)
18905 Set_Has_Inherited_DIC
(Typ
);
18908 if Has_Own_DIC
(From_Typ
) and then not Has_Own_DIC
(Typ
) then
18909 Set_Has_Own_DIC
(Typ
);
18912 if Present
(DIC_Proc
) and then No
(DIC_Procedure
(Typ
)) then
18913 Set_DIC_Procedure
(Typ
, DIC_Proc
);
18916 end Propagate_DIC_Attributes
;
18918 ------------------------------------
18919 -- Propagate_Invariant_Attributes --
18920 ------------------------------------
18922 procedure Propagate_Invariant_Attributes
18924 From_Typ
: Entity_Id
)
18926 Full_IP
: Entity_Id
;
18927 Part_IP
: Entity_Id
;
18930 if Present
(Typ
) and then Present
(From_Typ
) then
18931 pragma Assert
(Is_Type
(Typ
) and then Is_Type
(From_Typ
));
18933 -- Nothing to do if both the source and the destination denote the
18936 if From_Typ
= Typ
then
18940 Full_IP
:= Invariant_Procedure
(From_Typ
);
18941 Part_IP
:= Partial_Invariant_Procedure
(From_Typ
);
18943 -- The setting of the attributes is intentionally conservative. This
18944 -- prevents accidental clobbering of enabled attributes.
18946 if Has_Inheritable_Invariants
(From_Typ
)
18947 and then not Has_Inheritable_Invariants
(Typ
)
18949 Set_Has_Inheritable_Invariants
(Typ
, True);
18952 if Has_Inherited_Invariants
(From_Typ
)
18953 and then not Has_Inherited_Invariants
(Typ
)
18955 Set_Has_Inherited_Invariants
(Typ
, True);
18958 if Has_Own_Invariants
(From_Typ
)
18959 and then not Has_Own_Invariants
(Typ
)
18961 Set_Has_Own_Invariants
(Typ
, True);
18964 if Present
(Full_IP
) and then No
(Invariant_Procedure
(Typ
)) then
18965 Set_Invariant_Procedure
(Typ
, Full_IP
);
18968 if Present
(Part_IP
) and then No
(Partial_Invariant_Procedure
(Typ
))
18970 Set_Partial_Invariant_Procedure
(Typ
, Part_IP
);
18973 end Propagate_Invariant_Attributes
;
18975 ---------------------------------------
18976 -- Record_Possible_Part_Of_Reference --
18977 ---------------------------------------
18979 procedure Record_Possible_Part_Of_Reference
18980 (Var_Id
: Entity_Id
;
18983 Encap
: constant Entity_Id
:= Encapsulating_State
(Var_Id
);
18987 -- The variable is a constituent of a single protected/task type. Such
18988 -- a variable acts as a component of the type and must appear within a
18989 -- specific region (SPARK RM 9.3). Instead of recording the reference,
18990 -- verify its legality now.
18992 if Present
(Encap
) and then Is_Single_Concurrent_Object
(Encap
) then
18993 Check_Part_Of_Reference
(Var_Id
, Ref
);
18995 -- The variable is subject to pragma Part_Of and may eventually become a
18996 -- constituent of a single protected/task type. Record the reference to
18997 -- verify its placement when the contract of the variable is analyzed.
18999 elsif Present
(Get_Pragma
(Var_Id
, Pragma_Part_Of
)) then
19000 Refs
:= Part_Of_References
(Var_Id
);
19003 Refs
:= New_Elmt_List
;
19004 Set_Part_Of_References
(Var_Id
, Refs
);
19007 Append_Elmt
(Ref
, Refs
);
19009 end Record_Possible_Part_Of_Reference
;
19015 function Referenced
(Id
: Entity_Id
; Expr
: Node_Id
) return Boolean is
19016 Seen
: Boolean := False;
19018 function Is_Reference
(N
: Node_Id
) return Traverse_Result
;
19019 -- Determine whether node N denotes a reference to Id. If this is the
19020 -- case, set global flag Seen to True and stop the traversal.
19026 function Is_Reference
(N
: Node_Id
) return Traverse_Result
is
19028 if Is_Entity_Name
(N
)
19029 and then Present
(Entity
(N
))
19030 and then Entity
(N
) = Id
19039 procedure Inspect_Expression
is new Traverse_Proc
(Is_Reference
);
19041 -- Start of processing for Referenced
19044 Inspect_Expression
(Expr
);
19048 ------------------------------------
19049 -- References_Generic_Formal_Type --
19050 ------------------------------------
19052 function References_Generic_Formal_Type
(N
: Node_Id
) return Boolean is
19054 function Process
(N
: Node_Id
) return Traverse_Result
;
19055 -- Process one node in search for generic formal type
19061 function Process
(N
: Node_Id
) return Traverse_Result
is
19063 if Nkind
(N
) in N_Has_Entity
then
19065 E
: constant Entity_Id
:= Entity
(N
);
19067 if Present
(E
) then
19068 if Is_Generic_Type
(E
) then
19070 elsif Present
(Etype
(E
))
19071 and then Is_Generic_Type
(Etype
(E
))
19082 function Traverse
is new Traverse_Func
(Process
);
19083 -- Traverse tree to look for generic type
19086 if Inside_A_Generic
then
19087 return Traverse
(N
) = Abandon
;
19091 end References_Generic_Formal_Type
;
19093 --------------------
19094 -- Remove_Homonym --
19095 --------------------
19097 procedure Remove_Homonym
(E
: Entity_Id
) is
19098 Prev
: Entity_Id
:= Empty
;
19102 if E
= Current_Entity
(E
) then
19103 if Present
(Homonym
(E
)) then
19104 Set_Current_Entity
(Homonym
(E
));
19106 Set_Name_Entity_Id
(Chars
(E
), Empty
);
19110 H
:= Current_Entity
(E
);
19111 while Present
(H
) and then H
/= E
loop
19116 -- If E is not on the homonym chain, nothing to do
19118 if Present
(H
) then
19119 Set_Homonym
(Prev
, Homonym
(E
));
19122 end Remove_Homonym
;
19124 ------------------------------
19125 -- Remove_Overloaded_Entity --
19126 ------------------------------
19128 procedure Remove_Overloaded_Entity
(Id
: Entity_Id
) is
19129 procedure Remove_Primitive_Of
(Typ
: Entity_Id
);
19130 -- Remove primitive subprogram Id from the list of primitives that
19131 -- belong to type Typ.
19133 -------------------------
19134 -- Remove_Primitive_Of --
19135 -------------------------
19137 procedure Remove_Primitive_Of
(Typ
: Entity_Id
) is
19141 if Is_Tagged_Type
(Typ
) then
19142 Prims
:= Direct_Primitive_Operations
(Typ
);
19144 if Present
(Prims
) then
19145 Remove
(Prims
, Id
);
19148 end Remove_Primitive_Of
;
19152 Scop
: constant Entity_Id
:= Scope
(Id
);
19153 Formal
: Entity_Id
;
19154 Prev_Id
: Entity_Id
;
19156 -- Start of processing for Remove_Overloaded_Entity
19159 -- Remove the entity from the homonym chain. When the entity is the
19160 -- head of the chain, associate the entry in the name table with its
19161 -- homonym effectively making it the new head of the chain.
19163 if Current_Entity
(Id
) = Id
then
19164 Set_Name_Entity_Id
(Chars
(Id
), Homonym
(Id
));
19166 -- Otherwise link the previous and next homonyms
19169 Prev_Id
:= Current_Entity
(Id
);
19170 while Present
(Prev_Id
) and then Homonym
(Prev_Id
) /= Id
loop
19171 Prev_Id
:= Homonym
(Prev_Id
);
19174 Set_Homonym
(Prev_Id
, Homonym
(Id
));
19177 -- Remove the entity from the scope entity chain. When the entity is
19178 -- the head of the chain, set the next entity as the new head of the
19181 if First_Entity
(Scop
) = Id
then
19183 Set_First_Entity
(Scop
, Next_Entity
(Id
));
19185 -- Otherwise the entity is either in the middle of the chain or it acts
19186 -- as its tail. Traverse and link the previous and next entities.
19189 Prev_Id
:= First_Entity
(Scop
);
19190 while Present
(Prev_Id
) and then Next_Entity
(Prev_Id
) /= Id
loop
19191 Next_Entity
(Prev_Id
);
19194 Set_Next_Entity
(Prev_Id
, Next_Entity
(Id
));
19197 -- Handle the case where the entity acts as the tail of the scope entity
19200 if Last_Entity
(Scop
) = Id
then
19201 Set_Last_Entity
(Scop
, Prev_Id
);
19204 -- The entity denotes a primitive subprogram. Remove it from the list of
19205 -- primitives of the associated controlling type.
19207 if Ekind_In
(Id
, E_Function
, E_Procedure
) and then Is_Primitive
(Id
) then
19208 Formal
:= First_Formal
(Id
);
19209 while Present
(Formal
) loop
19210 if Is_Controlling_Formal
(Formal
) then
19211 Remove_Primitive_Of
(Etype
(Formal
));
19215 Next_Formal
(Formal
);
19218 if Ekind
(Id
) = E_Function
and then Has_Controlling_Result
(Id
) then
19219 Remove_Primitive_Of
(Etype
(Id
));
19222 end Remove_Overloaded_Entity
;
19224 ---------------------
19225 -- Rep_To_Pos_Flag --
19226 ---------------------
19228 function Rep_To_Pos_Flag
(E
: Entity_Id
; Loc
: Source_Ptr
) return Node_Id
is
19230 return New_Occurrence_Of
19231 (Boolean_Literals
(not Range_Checks_Suppressed
(E
)), Loc
);
19232 end Rep_To_Pos_Flag
;
19234 --------------------
19235 -- Require_Entity --
19236 --------------------
19238 procedure Require_Entity
(N
: Node_Id
) is
19240 if Is_Entity_Name
(N
) and then No
(Entity
(N
)) then
19241 if Total_Errors_Detected
/= 0 then
19242 Set_Entity
(N
, Any_Id
);
19244 raise Program_Error
;
19247 end Require_Entity
;
19249 ------------------------------
19250 -- Requires_Transient_Scope --
19251 ------------------------------
19253 -- A transient scope is required when variable-sized temporaries are
19254 -- allocated on the secondary stack, or when finalization actions must be
19255 -- generated before the next instruction.
19257 function Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean is
19258 Old_Result
: constant Boolean := Old_Requires_Transient_Scope
(Id
);
19261 if Debug_Flag_QQ
then
19266 New_Result
: constant Boolean := New_Requires_Transient_Scope
(Id
);
19269 -- Assert that we're not putting things on the secondary stack if we
19270 -- didn't before; we are trying to AVOID secondary stack when
19273 if not Old_Result
then
19274 pragma Assert
(not New_Result
);
19278 if New_Result
/= Old_Result
then
19279 Results_Differ
(Id
, Old_Result
, New_Result
);
19284 end Requires_Transient_Scope
;
19286 --------------------
19287 -- Results_Differ --
19288 --------------------
19290 procedure Results_Differ
19296 if False then -- False to disable; True for debugging
19297 Treepr
.Print_Tree_Node
(Id
);
19299 if Old_Val
= New_Val
then
19300 raise Program_Error
;
19303 end Results_Differ
;
19305 --------------------------
19306 -- Reset_Analyzed_Flags --
19307 --------------------------
19309 procedure Reset_Analyzed_Flags
(N
: Node_Id
) is
19310 function Clear_Analyzed
(N
: Node_Id
) return Traverse_Result
;
19311 -- Function used to reset Analyzed flags in tree. Note that we do
19312 -- not reset Analyzed flags in entities, since there is no need to
19313 -- reanalyze entities, and indeed, it is wrong to do so, since it
19314 -- can result in generating auxiliary stuff more than once.
19316 --------------------
19317 -- Clear_Analyzed --
19318 --------------------
19320 function Clear_Analyzed
(N
: Node_Id
) return Traverse_Result
is
19322 if Nkind
(N
) not in N_Entity
then
19323 Set_Analyzed
(N
, False);
19327 end Clear_Analyzed
;
19329 procedure Reset_Analyzed
is new Traverse_Proc
(Clear_Analyzed
);
19331 -- Start of processing for Reset_Analyzed_Flags
19334 Reset_Analyzed
(N
);
19335 end Reset_Analyzed_Flags
;
19337 ------------------------
19338 -- Restore_SPARK_Mode --
19339 ------------------------
19341 procedure Restore_SPARK_Mode
(Mode
: SPARK_Mode_Type
) is
19343 SPARK_Mode
:= Mode
;
19344 end Restore_SPARK_Mode
;
19346 --------------------------------
19347 -- Returns_Unconstrained_Type --
19348 --------------------------------
19350 function Returns_Unconstrained_Type
(Subp
: Entity_Id
) return Boolean is
19352 return Ekind
(Subp
) = E_Function
19353 and then not Is_Scalar_Type
(Etype
(Subp
))
19354 and then not Is_Access_Type
(Etype
(Subp
))
19355 and then not Is_Constrained
(Etype
(Subp
));
19356 end Returns_Unconstrained_Type
;
19358 ----------------------------
19359 -- Root_Type_Of_Full_View --
19360 ----------------------------
19362 function Root_Type_Of_Full_View
(T
: Entity_Id
) return Entity_Id
is
19363 Rtyp
: constant Entity_Id
:= Root_Type
(T
);
19366 -- The root type of the full view may itself be a private type. Keep
19367 -- looking for the ultimate derivation parent.
19369 if Is_Private_Type
(Rtyp
) and then Present
(Full_View
(Rtyp
)) then
19370 return Root_Type_Of_Full_View
(Full_View
(Rtyp
));
19374 end Root_Type_Of_Full_View
;
19376 ---------------------------
19377 -- Safe_To_Capture_Value --
19378 ---------------------------
19380 function Safe_To_Capture_Value
19383 Cond
: Boolean := False) return Boolean
19386 -- The only entities for which we track constant values are variables
19387 -- which are not renamings, constants, out parameters, and in out
19388 -- parameters, so check if we have this case.
19390 -- Note: it may seem odd to track constant values for constants, but in
19391 -- fact this routine is used for other purposes than simply capturing
19392 -- the value. In particular, the setting of Known[_Non]_Null.
19394 if (Ekind
(Ent
) = E_Variable
and then No
(Renamed_Object
(Ent
)))
19396 Ekind_In
(Ent
, E_Constant
, E_Out_Parameter
, E_In_Out_Parameter
)
19400 -- For conditionals, we also allow loop parameters and all formals,
19401 -- including in parameters.
19403 elsif Cond
and then Ekind_In
(Ent
, E_Loop_Parameter
, E_In_Parameter
) then
19406 -- For all other cases, not just unsafe, but impossible to capture
19407 -- Current_Value, since the above are the only entities which have
19408 -- Current_Value fields.
19414 -- Skip if volatile or aliased, since funny things might be going on in
19415 -- these cases which we cannot necessarily track. Also skip any variable
19416 -- for which an address clause is given, or whose address is taken. Also
19417 -- never capture value of library level variables (an attempt to do so
19418 -- can occur in the case of package elaboration code).
19420 if Treat_As_Volatile
(Ent
)
19421 or else Is_Aliased
(Ent
)
19422 or else Present
(Address_Clause
(Ent
))
19423 or else Address_Taken
(Ent
)
19424 or else (Is_Library_Level_Entity
(Ent
)
19425 and then Ekind
(Ent
) = E_Variable
)
19430 -- OK, all above conditions are met. We also require that the scope of
19431 -- the reference be the same as the scope of the entity, not counting
19432 -- packages and blocks and loops.
19435 E_Scope
: constant Entity_Id
:= Scope
(Ent
);
19436 R_Scope
: Entity_Id
;
19439 R_Scope
:= Current_Scope
;
19440 while R_Scope
/= Standard_Standard
loop
19441 exit when R_Scope
= E_Scope
;
19443 if not Ekind_In
(R_Scope
, E_Package
, E_Block
, E_Loop
) then
19446 R_Scope
:= Scope
(R_Scope
);
19451 -- We also require that the reference does not appear in a context
19452 -- where it is not sure to be executed (i.e. a conditional context
19453 -- or an exception handler). We skip this if Cond is True, since the
19454 -- capturing of values from conditional tests handles this ok.
19467 -- Seems dubious that case expressions are not handled here ???
19470 while Present
(P
) loop
19471 if Nkind
(P
) = N_If_Statement
19472 or else Nkind
(P
) = N_Case_Statement
19473 or else (Nkind
(P
) in N_Short_Circuit
19474 and then Desc
= Right_Opnd
(P
))
19475 or else (Nkind
(P
) = N_If_Expression
19476 and then Desc
/= First
(Expressions
(P
)))
19477 or else Nkind
(P
) = N_Exception_Handler
19478 or else Nkind
(P
) = N_Selective_Accept
19479 or else Nkind
(P
) = N_Conditional_Entry_Call
19480 or else Nkind
(P
) = N_Timed_Entry_Call
19481 or else Nkind
(P
) = N_Asynchronous_Select
19489 -- A special Ada 2012 case: the original node may be part
19490 -- of the else_actions of a conditional expression, in which
19491 -- case it might not have been expanded yet, and appears in
19492 -- a non-syntactic list of actions. In that case it is clearly
19493 -- not safe to save a value.
19496 and then Is_List_Member
(Desc
)
19497 and then No
(Parent
(List_Containing
(Desc
)))
19505 -- OK, looks safe to set value
19508 end Safe_To_Capture_Value
;
19514 function Same_Name
(N1
, N2
: Node_Id
) return Boolean is
19515 K1
: constant Node_Kind
:= Nkind
(N1
);
19516 K2
: constant Node_Kind
:= Nkind
(N2
);
19519 if (K1
= N_Identifier
or else K1
= N_Defining_Identifier
)
19520 and then (K2
= N_Identifier
or else K2
= N_Defining_Identifier
)
19522 return Chars
(N1
) = Chars
(N2
);
19524 elsif (K1
= N_Selected_Component
or else K1
= N_Expanded_Name
)
19525 and then (K2
= N_Selected_Component
or else K2
= N_Expanded_Name
)
19527 return Same_Name
(Selector_Name
(N1
), Selector_Name
(N2
))
19528 and then Same_Name
(Prefix
(N1
), Prefix
(N2
));
19539 function Same_Object
(Node1
, Node2
: Node_Id
) return Boolean is
19540 N1
: constant Node_Id
:= Original_Node
(Node1
);
19541 N2
: constant Node_Id
:= Original_Node
(Node2
);
19542 -- We do the tests on original nodes, since we are most interested
19543 -- in the original source, not any expansion that got in the way.
19545 K1
: constant Node_Kind
:= Nkind
(N1
);
19546 K2
: constant Node_Kind
:= Nkind
(N2
);
19549 -- First case, both are entities with same entity
19551 if K1
in N_Has_Entity
and then K2
in N_Has_Entity
then
19553 EN1
: constant Entity_Id
:= Entity
(N1
);
19554 EN2
: constant Entity_Id
:= Entity
(N2
);
19556 if Present
(EN1
) and then Present
(EN2
)
19557 and then (Ekind_In
(EN1
, E_Variable
, E_Constant
)
19558 or else Is_Formal
(EN1
))
19566 -- Second case, selected component with same selector, same record
19568 if K1
= N_Selected_Component
19569 and then K2
= N_Selected_Component
19570 and then Chars
(Selector_Name
(N1
)) = Chars
(Selector_Name
(N2
))
19572 return Same_Object
(Prefix
(N1
), Prefix
(N2
));
19574 -- Third case, indexed component with same subscripts, same array
19576 elsif K1
= N_Indexed_Component
19577 and then K2
= N_Indexed_Component
19578 and then Same_Object
(Prefix
(N1
), Prefix
(N2
))
19583 E1
:= First
(Expressions
(N1
));
19584 E2
:= First
(Expressions
(N2
));
19585 while Present
(E1
) loop
19586 if not Same_Value
(E1
, E2
) then
19597 -- Fourth case, slice of same array with same bounds
19600 and then K2
= N_Slice
19601 and then Nkind
(Discrete_Range
(N1
)) = N_Range
19602 and then Nkind
(Discrete_Range
(N2
)) = N_Range
19603 and then Same_Value
(Low_Bound
(Discrete_Range
(N1
)),
19604 Low_Bound
(Discrete_Range
(N2
)))
19605 and then Same_Value
(High_Bound
(Discrete_Range
(N1
)),
19606 High_Bound
(Discrete_Range
(N2
)))
19608 return Same_Name
(Prefix
(N1
), Prefix
(N2
));
19610 -- All other cases, not clearly the same object
19621 function Same_Type
(T1
, T2
: Entity_Id
) return Boolean is
19626 elsif not Is_Constrained
(T1
)
19627 and then not Is_Constrained
(T2
)
19628 and then Base_Type
(T1
) = Base_Type
(T2
)
19632 -- For now don't bother with case of identical constraints, to be
19633 -- fiddled with later on perhaps (this is only used for optimization
19634 -- purposes, so it is not critical to do a best possible job)
19645 function Same_Value
(Node1
, Node2
: Node_Id
) return Boolean is
19647 if Compile_Time_Known_Value
(Node1
)
19648 and then Compile_Time_Known_Value
(Node2
)
19649 and then Expr_Value
(Node1
) = Expr_Value
(Node2
)
19652 elsif Same_Object
(Node1
, Node2
) then
19659 -----------------------------
19660 -- Save_SPARK_Mode_And_Set --
19661 -----------------------------
19663 procedure Save_SPARK_Mode_And_Set
19664 (Context
: Entity_Id
;
19665 Mode
: out SPARK_Mode_Type
)
19668 -- Save the current mode in effect
19670 Mode
:= SPARK_Mode
;
19672 -- Do not consider illegal or partially decorated constructs
19674 if Ekind
(Context
) = E_Void
or else Error_Posted
(Context
) then
19677 elsif Present
(SPARK_Pragma
(Context
)) then
19678 SPARK_Mode
:= Get_SPARK_Mode_From_Annotation
(SPARK_Pragma
(Context
));
19680 end Save_SPARK_Mode_And_Set
;
19682 -------------------------
19683 -- Scalar_Part_Present --
19684 -------------------------
19686 function Scalar_Part_Present
(T
: Entity_Id
) return Boolean is
19690 if Is_Scalar_Type
(T
) then
19693 elsif Is_Array_Type
(T
) then
19694 return Scalar_Part_Present
(Component_Type
(T
));
19696 elsif Is_Record_Type
(T
) or else Has_Discriminants
(T
) then
19697 C
:= First_Component_Or_Discriminant
(T
);
19698 while Present
(C
) loop
19699 if Scalar_Part_Present
(Etype
(C
)) then
19702 Next_Component_Or_Discriminant
(C
);
19708 end Scalar_Part_Present
;
19710 ------------------------
19711 -- Scope_Is_Transient --
19712 ------------------------
19714 function Scope_Is_Transient
return Boolean is
19716 return Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Transient
;
19717 end Scope_Is_Transient
;
19723 function Scope_Within
(Scope1
, Scope2
: Entity_Id
) return Boolean is
19728 while Scop
/= Standard_Standard
loop
19729 Scop
:= Scope
(Scop
);
19731 if Scop
= Scope2
then
19739 --------------------------
19740 -- Scope_Within_Or_Same --
19741 --------------------------
19743 function Scope_Within_Or_Same
(Scope1
, Scope2
: Entity_Id
) return Boolean is
19748 while Scop
/= Standard_Standard
loop
19749 if Scop
= Scope2
then
19752 Scop
:= Scope
(Scop
);
19757 end Scope_Within_Or_Same
;
19759 --------------------
19760 -- Set_Convention --
19761 --------------------
19763 procedure Set_Convention
(E
: Entity_Id
; Val
: Snames
.Convention_Id
) is
19765 Basic_Set_Convention
(E
, Val
);
19768 and then Is_Access_Subprogram_Type
(Base_Type
(E
))
19769 and then Has_Foreign_Convention
(E
)
19772 -- A pragma Convention in an instance may apply to the subtype
19773 -- created for a formal, in which case we have already verified
19774 -- that conventions of actual and formal match and there is nothing
19775 -- to flag on the subtype.
19777 if In_Instance
then
19780 Set_Can_Use_Internal_Rep
(E
, False);
19784 -- If E is an object or component, and the type of E is an anonymous
19785 -- access type with no convention set, then also set the convention of
19786 -- the anonymous access type. We do not do this for anonymous protected
19787 -- types, since protected types always have the default convention.
19789 if Present
(Etype
(E
))
19790 and then (Is_Object
(E
)
19791 or else Ekind
(E
) = E_Component
19793 -- Allow E_Void (happens for pragma Convention appearing
19794 -- in the middle of a record applying to a component)
19796 or else Ekind
(E
) = E_Void
)
19799 Typ
: constant Entity_Id
:= Etype
(E
);
19802 if Ekind_In
(Typ
, E_Anonymous_Access_Type
,
19803 E_Anonymous_Access_Subprogram_Type
)
19804 and then not Has_Convention_Pragma
(Typ
)
19806 Basic_Set_Convention
(Typ
, Val
);
19807 Set_Has_Convention_Pragma
(Typ
);
19809 -- And for the access subprogram type, deal similarly with the
19810 -- designated E_Subprogram_Type if it is also internal (which
19813 if Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
then
19815 Dtype
: constant Entity_Id
:= Designated_Type
(Typ
);
19817 if Ekind
(Dtype
) = E_Subprogram_Type
19818 and then Is_Itype
(Dtype
)
19819 and then not Has_Convention_Pragma
(Dtype
)
19821 Basic_Set_Convention
(Dtype
, Val
);
19822 Set_Has_Convention_Pragma
(Dtype
);
19829 end Set_Convention
;
19831 ------------------------
19832 -- Set_Current_Entity --
19833 ------------------------
19835 -- The given entity is to be set as the currently visible definition of its
19836 -- associated name (i.e. the Node_Id associated with its name). All we have
19837 -- to do is to get the name from the identifier, and then set the
19838 -- associated Node_Id to point to the given entity.
19840 procedure Set_Current_Entity
(E
: Entity_Id
) is
19842 Set_Name_Entity_Id
(Chars
(E
), E
);
19843 end Set_Current_Entity
;
19845 ---------------------------
19846 -- Set_Debug_Info_Needed --
19847 ---------------------------
19849 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
19851 procedure Set_Debug_Info_Needed_If_Not_Set
(E
: Entity_Id
);
19852 pragma Inline
(Set_Debug_Info_Needed_If_Not_Set
);
19853 -- Used to set debug info in a related node if not set already
19855 --------------------------------------
19856 -- Set_Debug_Info_Needed_If_Not_Set --
19857 --------------------------------------
19859 procedure Set_Debug_Info_Needed_If_Not_Set
(E
: Entity_Id
) is
19861 if Present
(E
) and then not Needs_Debug_Info
(E
) then
19862 Set_Debug_Info_Needed
(E
);
19864 -- For a private type, indicate that the full view also needs
19865 -- debug information.
19868 and then Is_Private_Type
(E
)
19869 and then Present
(Full_View
(E
))
19871 Set_Debug_Info_Needed
(Full_View
(E
));
19874 end Set_Debug_Info_Needed_If_Not_Set
;
19876 -- Start of processing for Set_Debug_Info_Needed
19879 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
19880 -- indicates that Debug_Info_Needed is never required for the entity.
19881 -- Nothing to do if entity comes from a predefined file. Library files
19882 -- are compiled without debug information, but inlined bodies of these
19883 -- routines may appear in user code, and debug information on them ends
19884 -- up complicating debugging the user code.
19887 or else Debug_Info_Off
(T
)
19891 elsif In_Inlined_Body
19892 and then Is_Predefined_File_Name
19893 (Unit_File_Name
(Get_Source_Unit
(Sloc
(T
))))
19895 Set_Needs_Debug_Info
(T
, False);
19898 -- Set flag in entity itself. Note that we will go through the following
19899 -- circuitry even if the flag is already set on T. That's intentional,
19900 -- it makes sure that the flag will be set in subsidiary entities.
19902 Set_Needs_Debug_Info
(T
);
19904 -- Set flag on subsidiary entities if not set already
19906 if Is_Object
(T
) then
19907 Set_Debug_Info_Needed_If_Not_Set
(Etype
(T
));
19909 elsif Is_Type
(T
) then
19910 Set_Debug_Info_Needed_If_Not_Set
(Etype
(T
));
19912 if Is_Record_Type
(T
) then
19914 Ent
: Entity_Id
:= First_Entity
(T
);
19916 while Present
(Ent
) loop
19917 Set_Debug_Info_Needed_If_Not_Set
(Ent
);
19922 -- For a class wide subtype, we also need debug information
19923 -- for the equivalent type.
19925 if Ekind
(T
) = E_Class_Wide_Subtype
then
19926 Set_Debug_Info_Needed_If_Not_Set
(Equivalent_Type
(T
));
19929 elsif Is_Array_Type
(T
) then
19930 Set_Debug_Info_Needed_If_Not_Set
(Component_Type
(T
));
19933 Indx
: Node_Id
:= First_Index
(T
);
19935 while Present
(Indx
) loop
19936 Set_Debug_Info_Needed_If_Not_Set
(Etype
(Indx
));
19937 Indx
:= Next_Index
(Indx
);
19941 -- For a packed array type, we also need debug information for
19942 -- the type used to represent the packed array. Conversely, we
19943 -- also need it for the former if we need it for the latter.
19945 if Is_Packed
(T
) then
19946 Set_Debug_Info_Needed_If_Not_Set
(Packed_Array_Impl_Type
(T
));
19949 if Is_Packed_Array_Impl_Type
(T
) then
19950 Set_Debug_Info_Needed_If_Not_Set
(Original_Array_Type
(T
));
19953 elsif Is_Access_Type
(T
) then
19954 Set_Debug_Info_Needed_If_Not_Set
(Directly_Designated_Type
(T
));
19956 elsif Is_Private_Type
(T
) then
19958 FV
: constant Entity_Id
:= Full_View
(T
);
19961 Set_Debug_Info_Needed_If_Not_Set
(FV
);
19963 -- If the full view is itself a derived private type, we need
19964 -- debug information on its underlying type.
19967 and then Is_Private_Type
(FV
)
19968 and then Present
(Underlying_Full_View
(FV
))
19970 Set_Needs_Debug_Info
(Underlying_Full_View
(FV
));
19974 elsif Is_Protected_Type
(T
) then
19975 Set_Debug_Info_Needed_If_Not_Set
(Corresponding_Record_Type
(T
));
19977 elsif Is_Scalar_Type
(T
) then
19979 -- If the subrange bounds are materialized by dedicated constant
19980 -- objects, also include them in the debug info to make sure the
19981 -- debugger can properly use them.
19983 if Present
(Scalar_Range
(T
))
19984 and then Nkind
(Scalar_Range
(T
)) = N_Range
19987 Low_Bnd
: constant Node_Id
:= Type_Low_Bound
(T
);
19988 High_Bnd
: constant Node_Id
:= Type_High_Bound
(T
);
19991 if Is_Entity_Name
(Low_Bnd
) then
19992 Set_Debug_Info_Needed_If_Not_Set
(Entity
(Low_Bnd
));
19995 if Is_Entity_Name
(High_Bnd
) then
19996 Set_Debug_Info_Needed_If_Not_Set
(Entity
(High_Bnd
));
20002 end Set_Debug_Info_Needed
;
20004 ----------------------------
20005 -- Set_Entity_With_Checks --
20006 ----------------------------
20008 procedure Set_Entity_With_Checks
(N
: Node_Id
; Val
: Entity_Id
) is
20009 Val_Actual
: Entity_Id
;
20011 Post_Node
: Node_Id
;
20014 -- Unconditionally set the entity
20016 Set_Entity
(N
, Val
);
20018 -- The node to post on is the selector in the case of an expanded name,
20019 -- and otherwise the node itself.
20021 if Nkind
(N
) = N_Expanded_Name
then
20022 Post_Node
:= Selector_Name
(N
);
20027 -- Check for violation of No_Fixed_IO
20029 if Restriction_Check_Required
(No_Fixed_IO
)
20031 ((RTU_Loaded
(Ada_Text_IO
)
20032 and then (Is_RTE
(Val
, RE_Decimal_IO
)
20034 Is_RTE
(Val
, RE_Fixed_IO
)))
20037 (RTU_Loaded
(Ada_Wide_Text_IO
)
20038 and then (Is_RTE
(Val
, RO_WT_Decimal_IO
)
20040 Is_RTE
(Val
, RO_WT_Fixed_IO
)))
20043 (RTU_Loaded
(Ada_Wide_Wide_Text_IO
)
20044 and then (Is_RTE
(Val
, RO_WW_Decimal_IO
)
20046 Is_RTE
(Val
, RO_WW_Fixed_IO
))))
20048 -- A special extra check, don't complain about a reference from within
20049 -- the Ada.Interrupts package itself!
20051 and then not In_Same_Extended_Unit
(N
, Val
)
20053 Check_Restriction
(No_Fixed_IO
, Post_Node
);
20056 -- Remaining checks are only done on source nodes. Note that we test
20057 -- for violation of No_Fixed_IO even on non-source nodes, because the
20058 -- cases for checking violations of this restriction are instantiations
20059 -- where the reference in the instance has Comes_From_Source False.
20061 if not Comes_From_Source
(N
) then
20065 -- Check for violation of No_Abort_Statements, which is triggered by
20066 -- call to Ada.Task_Identification.Abort_Task.
20068 if Restriction_Check_Required
(No_Abort_Statements
)
20069 and then (Is_RTE
(Val
, RE_Abort_Task
))
20071 -- A special extra check, don't complain about a reference from within
20072 -- the Ada.Task_Identification package itself!
20074 and then not In_Same_Extended_Unit
(N
, Val
)
20076 Check_Restriction
(No_Abort_Statements
, Post_Node
);
20079 if Val
= Standard_Long_Long_Integer
then
20080 Check_Restriction
(No_Long_Long_Integers
, Post_Node
);
20083 -- Check for violation of No_Dynamic_Attachment
20085 if Restriction_Check_Required
(No_Dynamic_Attachment
)
20086 and then RTU_Loaded
(Ada_Interrupts
)
20087 and then (Is_RTE
(Val
, RE_Is_Reserved
) or else
20088 Is_RTE
(Val
, RE_Is_Attached
) or else
20089 Is_RTE
(Val
, RE_Current_Handler
) or else
20090 Is_RTE
(Val
, RE_Attach_Handler
) or else
20091 Is_RTE
(Val
, RE_Exchange_Handler
) or else
20092 Is_RTE
(Val
, RE_Detach_Handler
) or else
20093 Is_RTE
(Val
, RE_Reference
))
20095 -- A special extra check, don't complain about a reference from within
20096 -- the Ada.Interrupts package itself!
20098 and then not In_Same_Extended_Unit
(N
, Val
)
20100 Check_Restriction
(No_Dynamic_Attachment
, Post_Node
);
20103 -- Check for No_Implementation_Identifiers
20105 if Restriction_Check_Required
(No_Implementation_Identifiers
) then
20107 -- We have an implementation defined entity if it is marked as
20108 -- implementation defined, or is defined in a package marked as
20109 -- implementation defined. However, library packages themselves
20110 -- are excluded (we don't want to flag Interfaces itself, just
20111 -- the entities within it).
20113 if (Is_Implementation_Defined
(Val
)
20115 (Present
(Scope
(Val
))
20116 and then Is_Implementation_Defined
(Scope
(Val
))))
20117 and then not (Ekind_In
(Val
, E_Package
, E_Generic_Package
)
20118 and then Is_Library_Level_Entity
(Val
))
20120 Check_Restriction
(No_Implementation_Identifiers
, Post_Node
);
20124 -- Do the style check
20127 and then not Suppress_Style_Checks
(Val
)
20128 and then not In_Instance
20130 if Nkind
(N
) = N_Identifier
then
20132 elsif Nkind
(N
) = N_Expanded_Name
then
20133 Nod
:= Selector_Name
(N
);
20138 -- A special situation arises for derived operations, where we want
20139 -- to do the check against the parent (since the Sloc of the derived
20140 -- operation points to the derived type declaration itself).
20143 while not Comes_From_Source
(Val_Actual
)
20144 and then Nkind
(Val_Actual
) in N_Entity
20145 and then (Ekind
(Val_Actual
) = E_Enumeration_Literal
20146 or else Is_Subprogram_Or_Generic_Subprogram
(Val_Actual
))
20147 and then Present
(Alias
(Val_Actual
))
20149 Val_Actual
:= Alias
(Val_Actual
);
20152 -- Renaming declarations for generic actuals do not come from source,
20153 -- and have a different name from that of the entity they rename, so
20154 -- there is no style check to perform here.
20156 if Chars
(Nod
) = Chars
(Val_Actual
) then
20157 Style
.Check_Identifier
(Nod
, Val_Actual
);
20161 Set_Entity
(N
, Val
);
20162 end Set_Entity_With_Checks
;
20164 ------------------------
20165 -- Set_Name_Entity_Id --
20166 ------------------------
20168 procedure Set_Name_Entity_Id
(Id
: Name_Id
; Val
: Entity_Id
) is
20170 Set_Name_Table_Int
(Id
, Int
(Val
));
20171 end Set_Name_Entity_Id
;
20173 ---------------------
20174 -- Set_Next_Actual --
20175 ---------------------
20177 procedure Set_Next_Actual
(Ass1_Id
: Node_Id
; Ass2_Id
: Node_Id
) is
20179 if Nkind
(Parent
(Ass1_Id
)) = N_Parameter_Association
then
20180 Set_First_Named_Actual
(Parent
(Ass1_Id
), Ass2_Id
);
20182 end Set_Next_Actual
;
20184 ----------------------------------
20185 -- Set_Optimize_Alignment_Flags --
20186 ----------------------------------
20188 procedure Set_Optimize_Alignment_Flags
(E
: Entity_Id
) is
20190 if Optimize_Alignment
= 'S' then
20191 Set_Optimize_Alignment_Space
(E
);
20192 elsif Optimize_Alignment
= 'T' then
20193 Set_Optimize_Alignment_Time
(E
);
20195 end Set_Optimize_Alignment_Flags
;
20197 -----------------------
20198 -- Set_Public_Status --
20199 -----------------------
20201 procedure Set_Public_Status
(Id
: Entity_Id
) is
20202 S
: constant Entity_Id
:= Current_Scope
;
20204 function Within_HSS_Or_If
(E
: Entity_Id
) return Boolean;
20205 -- Determines if E is defined within handled statement sequence or
20206 -- an if statement, returns True if so, False otherwise.
20208 ----------------------
20209 -- Within_HSS_Or_If --
20210 ----------------------
20212 function Within_HSS_Or_If
(E
: Entity_Id
) return Boolean is
20215 N
:= Declaration_Node
(E
);
20222 elsif Nkind_In
(N
, N_Handled_Sequence_Of_Statements
,
20228 end Within_HSS_Or_If
;
20230 -- Start of processing for Set_Public_Status
20233 -- Everything in the scope of Standard is public
20235 if S
= Standard_Standard
then
20236 Set_Is_Public
(Id
);
20238 -- Entity is definitely not public if enclosing scope is not public
20240 elsif not Is_Public
(S
) then
20243 -- An object or function declaration that occurs in a handled sequence
20244 -- of statements or within an if statement is the declaration for a
20245 -- temporary object or local subprogram generated by the expander. It
20246 -- never needs to be made public and furthermore, making it public can
20247 -- cause back end problems.
20249 elsif Nkind_In
(Parent
(Id
), N_Object_Declaration
,
20250 N_Function_Specification
)
20251 and then Within_HSS_Or_If
(Id
)
20255 -- Entities in public packages or records are public
20257 elsif Ekind
(S
) = E_Package
or Is_Record_Type
(S
) then
20258 Set_Is_Public
(Id
);
20260 -- The bounds of an entry family declaration can generate object
20261 -- declarations that are visible to the back-end, e.g. in the
20262 -- the declaration of a composite type that contains tasks.
20264 elsif Is_Concurrent_Type
(S
)
20265 and then not Has_Completion
(S
)
20266 and then Nkind
(Parent
(Id
)) = N_Object_Declaration
20268 Set_Is_Public
(Id
);
20270 end Set_Public_Status
;
20272 -----------------------------
20273 -- Set_Referenced_Modified --
20274 -----------------------------
20276 procedure Set_Referenced_Modified
(N
: Node_Id
; Out_Param
: Boolean) is
20280 -- Deal with indexed or selected component where prefix is modified
20282 if Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
20283 Pref
:= Prefix
(N
);
20285 -- If prefix is access type, then it is the designated object that is
20286 -- being modified, which means we have no entity to set the flag on.
20288 if No
(Etype
(Pref
)) or else Is_Access_Type
(Etype
(Pref
)) then
20291 -- Otherwise chase the prefix
20294 Set_Referenced_Modified
(Pref
, Out_Param
);
20297 -- Otherwise see if we have an entity name (only other case to process)
20299 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
20300 Set_Referenced_As_LHS
(Entity
(N
), not Out_Param
);
20301 Set_Referenced_As_Out_Parameter
(Entity
(N
), Out_Param
);
20303 end Set_Referenced_Modified
;
20305 ----------------------------
20306 -- Set_Scope_Is_Transient --
20307 ----------------------------
20309 procedure Set_Scope_Is_Transient
(V
: Boolean := True) is
20311 Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Transient
:= V
;
20312 end Set_Scope_Is_Transient
;
20314 -------------------
20315 -- Set_Size_Info --
20316 -------------------
20318 procedure Set_Size_Info
(T1
, T2
: Entity_Id
) is
20320 -- We copy Esize, but not RM_Size, since in general RM_Size is
20321 -- subtype specific and does not get inherited by all subtypes.
20323 Set_Esize
(T1
, Esize
(T2
));
20324 Set_Has_Biased_Representation
(T1
, Has_Biased_Representation
(T2
));
20326 if Is_Discrete_Or_Fixed_Point_Type
(T1
)
20328 Is_Discrete_Or_Fixed_Point_Type
(T2
)
20330 Set_Is_Unsigned_Type
(T1
, Is_Unsigned_Type
(T2
));
20333 Set_Alignment
(T1
, Alignment
(T2
));
20336 --------------------
20337 -- Static_Boolean --
20338 --------------------
20340 function Static_Boolean
(N
: Node_Id
) return Uint
is
20342 Analyze_And_Resolve
(N
, Standard_Boolean
);
20345 or else Error_Posted
(N
)
20346 or else Etype
(N
) = Any_Type
20351 if Is_OK_Static_Expression
(N
) then
20352 if not Raises_Constraint_Error
(N
) then
20353 return Expr_Value
(N
);
20358 elsif Etype
(N
) = Any_Type
then
20362 Flag_Non_Static_Expr
20363 ("static boolean expression required here", N
);
20366 end Static_Boolean
;
20368 --------------------
20369 -- Static_Integer --
20370 --------------------
20372 function Static_Integer
(N
: Node_Id
) return Uint
is
20374 Analyze_And_Resolve
(N
, Any_Integer
);
20377 or else Error_Posted
(N
)
20378 or else Etype
(N
) = Any_Type
20383 if Is_OK_Static_Expression
(N
) then
20384 if not Raises_Constraint_Error
(N
) then
20385 return Expr_Value
(N
);
20390 elsif Etype
(N
) = Any_Type
then
20394 Flag_Non_Static_Expr
20395 ("static integer expression required here", N
);
20398 end Static_Integer
;
20400 --------------------------
20401 -- Statically_Different --
20402 --------------------------
20404 function Statically_Different
(E1
, E2
: Node_Id
) return Boolean is
20405 R1
: constant Node_Id
:= Get_Referenced_Object
(E1
);
20406 R2
: constant Node_Id
:= Get_Referenced_Object
(E2
);
20408 return Is_Entity_Name
(R1
)
20409 and then Is_Entity_Name
(R2
)
20410 and then Entity
(R1
) /= Entity
(R2
)
20411 and then not Is_Formal
(Entity
(R1
))
20412 and then not Is_Formal
(Entity
(R2
));
20413 end Statically_Different
;
20415 --------------------------------------
20416 -- Subject_To_Loop_Entry_Attributes --
20417 --------------------------------------
20419 function Subject_To_Loop_Entry_Attributes
(N
: Node_Id
) return Boolean is
20425 -- The expansion mechanism transform a loop subject to at least one
20426 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
20427 -- the conditional part.
20429 if Nkind_In
(Stmt
, N_Block_Statement
, N_If_Statement
)
20430 and then Nkind
(Original_Node
(N
)) = N_Loop_Statement
20432 Stmt
:= Original_Node
(N
);
20436 Nkind
(Stmt
) = N_Loop_Statement
20437 and then Present
(Identifier
(Stmt
))
20438 and then Present
(Entity
(Identifier
(Stmt
)))
20439 and then Has_Loop_Entry_Attributes
(Entity
(Identifier
(Stmt
)));
20440 end Subject_To_Loop_Entry_Attributes
;
20442 -----------------------------
20443 -- Subprogram_Access_Level --
20444 -----------------------------
20446 function Subprogram_Access_Level
(Subp
: Entity_Id
) return Uint
is
20448 if Present
(Alias
(Subp
)) then
20449 return Subprogram_Access_Level
(Alias
(Subp
));
20451 return Scope_Depth
(Enclosing_Dynamic_Scope
(Subp
));
20453 end Subprogram_Access_Level
;
20455 -------------------------------
20456 -- Support_Atomic_Primitives --
20457 -------------------------------
20459 function Support_Atomic_Primitives
(Typ
: Entity_Id
) return Boolean is
20463 -- Verify the alignment of Typ is known
20465 if not Known_Alignment
(Typ
) then
20469 if Known_Static_Esize
(Typ
) then
20470 Size
:= UI_To_Int
(Esize
(Typ
));
20472 -- If the Esize (Object_Size) is unknown at compile time, look at the
20473 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
20475 elsif Known_Static_RM_Size
(Typ
) then
20476 Size
:= UI_To_Int
(RM_Size
(Typ
));
20478 -- Otherwise, the size is considered to be unknown.
20484 -- Check that the size of the component is 8, 16, 32, or 64 bits and
20485 -- that Typ is properly aligned.
20488 when 8 |
16 |
32 |
64 =>
20489 return Size
= UI_To_Int
(Alignment
(Typ
)) * 8;
20494 end Support_Atomic_Primitives
;
20500 procedure Trace_Scope
(N
: Node_Id
; E
: Entity_Id
; Msg
: String) is
20502 if Debug_Flag_W
then
20503 for J
in 0 .. Scope_Stack
.Last
loop
20508 Write_Name
(Chars
(E
));
20509 Write_Str
(" from ");
20510 Write_Location
(Sloc
(N
));
20515 -----------------------
20516 -- Transfer_Entities --
20517 -----------------------
20519 procedure Transfer_Entities
(From
: Entity_Id
; To
: Entity_Id
) is
20520 procedure Set_Public_Status_Of
(Id
: Entity_Id
);
20521 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
20522 -- Set_Public_Status. If successfull and Id denotes a record type, set
20523 -- the Is_Public attribute of its fields.
20525 --------------------------
20526 -- Set_Public_Status_Of --
20527 --------------------------
20529 procedure Set_Public_Status_Of
(Id
: Entity_Id
) is
20533 if not Is_Public
(Id
) then
20534 Set_Public_Status
(Id
);
20536 -- When the input entity is a public record type, ensure that all
20537 -- its internal fields are also exposed to the linker. The fields
20538 -- of a class-wide type are never made public.
20541 and then Is_Record_Type
(Id
)
20542 and then not Is_Class_Wide_Type
(Id
)
20544 Field
:= First_Entity
(Id
);
20545 while Present
(Field
) loop
20546 Set_Is_Public
(Field
);
20547 Next_Entity
(Field
);
20551 end Set_Public_Status_Of
;
20555 Full_Id
: Entity_Id
;
20558 -- Start of processing for Transfer_Entities
20561 Id
:= First_Entity
(From
);
20563 if Present
(Id
) then
20565 -- Merge the entity chain of the source scope with that of the
20566 -- destination scope.
20568 if Present
(Last_Entity
(To
)) then
20569 Set_Next_Entity
(Last_Entity
(To
), Id
);
20571 Set_First_Entity
(To
, Id
);
20574 Set_Last_Entity
(To
, Last_Entity
(From
));
20576 -- Inspect the entities of the source scope and update their Scope
20579 while Present
(Id
) loop
20580 Set_Scope
(Id
, To
);
20581 Set_Public_Status_Of
(Id
);
20583 -- Handle an internally generated full view for a private type
20585 if Is_Private_Type
(Id
)
20586 and then Present
(Full_View
(Id
))
20587 and then Is_Itype
(Full_View
(Id
))
20589 Full_Id
:= Full_View
(Id
);
20591 Set_Scope
(Full_Id
, To
);
20592 Set_Public_Status_Of
(Full_Id
);
20598 Set_First_Entity
(From
, Empty
);
20599 Set_Last_Entity
(From
, Empty
);
20601 end Transfer_Entities
;
20603 -----------------------
20604 -- Type_Access_Level --
20605 -----------------------
20607 function Type_Access_Level
(Typ
: Entity_Id
) return Uint
is
20611 Btyp
:= Base_Type
(Typ
);
20613 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
20614 -- simply use the level where the type is declared. This is true for
20615 -- stand-alone object declarations, and for anonymous access types
20616 -- associated with components the level is the same as that of the
20617 -- enclosing composite type. However, special treatment is needed for
20618 -- the cases of access parameters, return objects of an anonymous access
20619 -- type, and, in Ada 95, access discriminants of limited types.
20621 if Is_Access_Type
(Btyp
) then
20622 if Ekind
(Btyp
) = E_Anonymous_Access_Type
then
20624 -- If the type is a nonlocal anonymous access type (such as for
20625 -- an access parameter) we treat it as being declared at the
20626 -- library level to ensure that names such as X.all'access don't
20627 -- fail static accessibility checks.
20629 if not Is_Local_Anonymous_Access
(Typ
) then
20630 return Scope_Depth
(Standard_Standard
);
20632 -- If this is a return object, the accessibility level is that of
20633 -- the result subtype of the enclosing function. The test here is
20634 -- little complicated, because we have to account for extended
20635 -- return statements that have been rewritten as blocks, in which
20636 -- case we have to find and the Is_Return_Object attribute of the
20637 -- itype's associated object. It would be nice to find a way to
20638 -- simplify this test, but it doesn't seem worthwhile to add a new
20639 -- flag just for purposes of this test. ???
20641 elsif Ekind
(Scope
(Btyp
)) = E_Return_Statement
20644 and then Nkind
(Associated_Node_For_Itype
(Btyp
)) =
20645 N_Object_Declaration
20646 and then Is_Return_Object
20647 (Defining_Identifier
20648 (Associated_Node_For_Itype
(Btyp
))))
20654 Scop
:= Scope
(Scope
(Btyp
));
20655 while Present
(Scop
) loop
20656 exit when Ekind
(Scop
) = E_Function
;
20657 Scop
:= Scope
(Scop
);
20660 -- Treat the return object's type as having the level of the
20661 -- function's result subtype (as per RM05-6.5(5.3/2)).
20663 return Type_Access_Level
(Etype
(Scop
));
20668 Btyp
:= Root_Type
(Btyp
);
20670 -- The accessibility level of anonymous access types associated with
20671 -- discriminants is that of the current instance of the type, and
20672 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
20674 -- AI-402: access discriminants have accessibility based on the
20675 -- object rather than the type in Ada 2005, so the above paragraph
20678 -- ??? Needs completion with rules from AI-416
20680 if Ada_Version
<= Ada_95
20681 and then Ekind
(Typ
) = E_Anonymous_Access_Type
20682 and then Present
(Associated_Node_For_Itype
(Typ
))
20683 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
20684 N_Discriminant_Specification
20686 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
)) + 1;
20690 -- Return library level for a generic formal type. This is done because
20691 -- RM(10.3.2) says that "The statically deeper relationship does not
20692 -- apply to ... a descendant of a generic formal type". Rather than
20693 -- checking at each point where a static accessibility check is
20694 -- performed to see if we are dealing with a formal type, this rule is
20695 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
20696 -- return extreme values for a formal type; Deepest_Type_Access_Level
20697 -- returns Int'Last. By calling the appropriate function from among the
20698 -- two, we ensure that the static accessibility check will pass if we
20699 -- happen to run into a formal type. More specifically, we should call
20700 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
20701 -- call occurs as part of a static accessibility check and the error
20702 -- case is the case where the type's level is too shallow (as opposed
20705 if Is_Generic_Type
(Root_Type
(Btyp
)) then
20706 return Scope_Depth
(Standard_Standard
);
20709 return Scope_Depth
(Enclosing_Dynamic_Scope
(Btyp
));
20710 end Type_Access_Level
;
20712 ------------------------------------
20713 -- Type_Without_Stream_Operation --
20714 ------------------------------------
20716 function Type_Without_Stream_Operation
20718 Op
: TSS_Name_Type
:= TSS_Null
) return Entity_Id
20720 BT
: constant Entity_Id
:= Base_Type
(T
);
20721 Op_Missing
: Boolean;
20724 if not Restriction_Active
(No_Default_Stream_Attributes
) then
20728 if Is_Elementary_Type
(T
) then
20729 if Op
= TSS_Null
then
20731 No
(TSS
(BT
, TSS_Stream_Read
))
20732 or else No
(TSS
(BT
, TSS_Stream_Write
));
20735 Op_Missing
:= No
(TSS
(BT
, Op
));
20744 elsif Is_Array_Type
(T
) then
20745 return Type_Without_Stream_Operation
(Component_Type
(T
), Op
);
20747 elsif Is_Record_Type
(T
) then
20753 Comp
:= First_Component
(T
);
20754 while Present
(Comp
) loop
20755 C_Typ
:= Type_Without_Stream_Operation
(Etype
(Comp
), Op
);
20757 if Present
(C_Typ
) then
20761 Next_Component
(Comp
);
20767 elsif Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
20768 return Type_Without_Stream_Operation
(Full_View
(T
), Op
);
20772 end Type_Without_Stream_Operation
;
20774 ----------------------------
20775 -- Unique_Defining_Entity --
20776 ----------------------------
20778 function Unique_Defining_Entity
(N
: Node_Id
) return Entity_Id
is
20780 return Unique_Entity
(Defining_Entity
(N
));
20781 end Unique_Defining_Entity
;
20783 -------------------
20784 -- Unique_Entity --
20785 -------------------
20787 function Unique_Entity
(E
: Entity_Id
) return Entity_Id
is
20788 U
: Entity_Id
:= E
;
20794 if Present
(Full_View
(E
)) then
20795 U
:= Full_View
(E
);
20799 if Nkind
(Parent
(E
)) = N_Entry_Body
then
20801 Prot_Item
: Entity_Id
;
20802 Prot_Type
: Entity_Id
;
20805 if Ekind
(E
) = E_Entry
then
20806 Prot_Type
:= Scope
(E
);
20808 -- Bodies of entry families are nested within an extra scope
20809 -- that contains an entry index declaration
20812 Prot_Type
:= Scope
(Scope
(E
));
20815 pragma Assert
(Ekind
(Prot_Type
) = E_Protected_Type
);
20817 -- Traverse the entity list of the protected type and locate
20818 -- an entry declaration which matches the entry body.
20820 Prot_Item
:= First_Entity
(Prot_Type
);
20821 while Present
(Prot_Item
) loop
20822 if Ekind
(Prot_Item
) in Entry_Kind
20823 and then Corresponding_Body
(Parent
(Prot_Item
)) = E
20829 Next_Entity
(Prot_Item
);
20834 when Formal_Kind
=>
20835 if Present
(Spec_Entity
(E
)) then
20836 U
:= Spec_Entity
(E
);
20839 when E_Package_Body
=>
20842 if Nkind
(P
) = N_Defining_Program_Unit_Name
then
20846 if Nkind
(P
) = N_Package_Body
20847 and then Present
(Corresponding_Spec
(P
))
20849 U
:= Corresponding_Spec
(P
);
20851 elsif Nkind
(P
) = N_Package_Body_Stub
20852 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20854 U
:= Corresponding_Spec_Of_Stub
(P
);
20857 when E_Protected_Body
=>
20860 if Nkind
(P
) = N_Protected_Body
20861 and then Present
(Corresponding_Spec
(P
))
20863 U
:= Corresponding_Spec
(P
);
20865 elsif Nkind
(P
) = N_Protected_Body_Stub
20866 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20868 U
:= Corresponding_Spec_Of_Stub
(P
);
20870 if Is_Single_Protected_Object
(U
) then
20875 when E_Subprogram_Body
=>
20878 if Nkind
(P
) = N_Defining_Program_Unit_Name
then
20884 if Nkind
(P
) = N_Subprogram_Body
20885 and then Present
(Corresponding_Spec
(P
))
20887 U
:= Corresponding_Spec
(P
);
20889 elsif Nkind
(P
) = N_Subprogram_Body_Stub
20890 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20892 U
:= Corresponding_Spec_Of_Stub
(P
);
20894 elsif Nkind
(P
) = N_Subprogram_Renaming_Declaration
then
20895 U
:= Corresponding_Spec
(P
);
20898 when E_Task_Body
=>
20901 if Nkind
(P
) = N_Task_Body
20902 and then Present
(Corresponding_Spec
(P
))
20904 U
:= Corresponding_Spec
(P
);
20906 elsif Nkind
(P
) = N_Task_Body_Stub
20907 and then Present
(Corresponding_Spec_Of_Stub
(P
))
20909 U
:= Corresponding_Spec_Of_Stub
(P
);
20911 if Is_Single_Task_Object
(U
) then
20917 if Present
(Full_View
(E
)) then
20918 U
:= Full_View
(E
);
20932 function Unique_Name
(E
: Entity_Id
) return String is
20934 -- Names in E_Subprogram_Body or E_Package_Body entities are not
20935 -- reliable, as they may not include the overloading suffix. Instead,
20936 -- when looking for the name of E or one of its enclosing scope, we get
20937 -- the name of the corresponding Unique_Entity.
20939 U
: constant Entity_Id
:= Unique_Entity
(E
);
20941 function This_Name
return String;
20947 function This_Name
return String is
20949 return Get_Name_String
(Chars
(U
));
20952 -- Start of processing for Unique_Name
20955 if E
= Standard_Standard
20956 or else Has_Fully_Qualified_Name
(E
)
20960 elsif Ekind
(E
) = E_Enumeration_Literal
then
20961 return Unique_Name
(Etype
(E
)) & "__" & This_Name
;
20965 S
: constant Entity_Id
:= Scope
(U
);
20966 pragma Assert
(Present
(S
));
20969 -- Prefix names of predefined types with standard__, but leave
20970 -- names of user-defined packages and subprograms without prefix
20971 -- (even if technically they are nested in the Standard package).
20973 if S
= Standard_Standard
then
20974 if Ekind
(U
) = E_Package
or else Is_Subprogram
(U
) then
20977 return Unique_Name
(S
) & "__" & This_Name
;
20980 -- For intances of generic subprograms use the name of the related
20981 -- instace and skip the scope of its wrapper package.
20983 elsif Is_Wrapper_Package
(S
) then
20984 pragma Assert
(Scope
(S
) = Scope
(Related_Instance
(S
)));
20985 -- Wrapper package and the instantiation are in the same scope
20988 Enclosing_Name
: constant String :=
20989 Unique_Name
(Scope
(S
)) & "__" &
20990 Get_Name_String
(Chars
(Related_Instance
(S
)));
20993 if Is_Subprogram
(U
)
20994 and then not Is_Generic_Actual_Subprogram
(U
)
20996 return Enclosing_Name
;
20998 return Enclosing_Name
& "__" & This_Name
;
21003 return Unique_Name
(S
) & "__" & This_Name
;
21009 ---------------------
21010 -- Unit_Is_Visible --
21011 ---------------------
21013 function Unit_Is_Visible
(U
: Entity_Id
) return Boolean is
21014 Curr
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
21015 Curr_Entity
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
21017 function Unit_In_Parent_Context
(Par_Unit
: Node_Id
) return Boolean;
21018 -- For a child unit, check whether unit appears in a with_clause
21021 function Unit_In_Context
(Comp_Unit
: Node_Id
) return Boolean;
21022 -- Scan the context clause of one compilation unit looking for a
21023 -- with_clause for the unit in question.
21025 ----------------------------
21026 -- Unit_In_Parent_Context --
21027 ----------------------------
21029 function Unit_In_Parent_Context
(Par_Unit
: Node_Id
) return Boolean is
21031 if Unit_In_Context
(Par_Unit
) then
21034 elsif Is_Child_Unit
(Defining_Entity
(Unit
(Par_Unit
))) then
21035 return Unit_In_Parent_Context
(Parent_Spec
(Unit
(Par_Unit
)));
21040 end Unit_In_Parent_Context
;
21042 ---------------------
21043 -- Unit_In_Context --
21044 ---------------------
21046 function Unit_In_Context
(Comp_Unit
: Node_Id
) return Boolean is
21050 Clause
:= First
(Context_Items
(Comp_Unit
));
21051 while Present
(Clause
) loop
21052 if Nkind
(Clause
) = N_With_Clause
then
21053 if Library_Unit
(Clause
) = U
then
21056 -- The with_clause may denote a renaming of the unit we are
21057 -- looking for, eg. Text_IO which renames Ada.Text_IO.
21060 Renamed_Entity
(Entity
(Name
(Clause
))) =
21061 Defining_Entity
(Unit
(U
))
21071 end Unit_In_Context
;
21073 -- Start of processing for Unit_Is_Visible
21076 -- The currrent unit is directly visible
21081 elsif Unit_In_Context
(Curr
) then
21084 -- If the current unit is a body, check the context of the spec
21086 elsif Nkind
(Unit
(Curr
)) = N_Package_Body
21088 (Nkind
(Unit
(Curr
)) = N_Subprogram_Body
21089 and then not Acts_As_Spec
(Unit
(Curr
)))
21091 if Unit_In_Context
(Library_Unit
(Curr
)) then
21096 -- If the spec is a child unit, examine the parents
21098 if Is_Child_Unit
(Curr_Entity
) then
21099 if Nkind
(Unit
(Curr
)) in N_Unit_Body
then
21101 Unit_In_Parent_Context
21102 (Parent_Spec
(Unit
(Library_Unit
(Curr
))));
21104 return Unit_In_Parent_Context
(Parent_Spec
(Unit
(Curr
)));
21110 end Unit_Is_Visible
;
21112 ------------------------------
21113 -- Universal_Interpretation --
21114 ------------------------------
21116 function Universal_Interpretation
(Opnd
: Node_Id
) return Entity_Id
is
21117 Index
: Interp_Index
;
21121 -- The argument may be a formal parameter of an operator or subprogram
21122 -- with multiple interpretations, or else an expression for an actual.
21124 if Nkind
(Opnd
) = N_Defining_Identifier
21125 or else not Is_Overloaded
(Opnd
)
21127 if Etype
(Opnd
) = Universal_Integer
21128 or else Etype
(Opnd
) = Universal_Real
21130 return Etype
(Opnd
);
21136 Get_First_Interp
(Opnd
, Index
, It
);
21137 while Present
(It
.Typ
) loop
21138 if It
.Typ
= Universal_Integer
21139 or else It
.Typ
= Universal_Real
21144 Get_Next_Interp
(Index
, It
);
21149 end Universal_Interpretation
;
21155 function Unqualify
(Expr
: Node_Id
) return Node_Id
is
21157 -- Recurse to handle unlikely case of multiple levels of qualification
21159 if Nkind
(Expr
) = N_Qualified_Expression
then
21160 return Unqualify
(Expression
(Expr
));
21162 -- Normal case, not a qualified expression
21169 -----------------------
21170 -- Visible_Ancestors --
21171 -----------------------
21173 function Visible_Ancestors
(Typ
: Entity_Id
) return Elist_Id
is
21179 pragma Assert
(Is_Record_Type
(Typ
) and then Is_Tagged_Type
(Typ
));
21181 -- Collect all the parents and progenitors of Typ. If the full-view of
21182 -- private parents and progenitors is available then it is used to
21183 -- generate the list of visible ancestors; otherwise their partial
21184 -- view is added to the resulting list.
21189 Use_Full_View
=> True);
21193 Ifaces_List
=> List_2
,
21194 Exclude_Parents
=> True,
21195 Use_Full_View
=> True);
21197 -- Join the two lists. Avoid duplications because an interface may
21198 -- simultaneously be parent and progenitor of a type.
21200 Elmt
:= First_Elmt
(List_2
);
21201 while Present
(Elmt
) loop
21202 Append_Unique_Elmt
(Node
(Elmt
), List_1
);
21207 end Visible_Ancestors
;
21209 ----------------------
21210 -- Within_Init_Proc --
21211 ----------------------
21213 function Within_Init_Proc
return Boolean is
21217 S
:= Current_Scope
;
21218 while not Is_Overloadable
(S
) loop
21219 if S
= Standard_Standard
then
21226 return Is_Init_Proc
(S
);
21227 end Within_Init_Proc
;
21233 function Within_Scope
(E
: Entity_Id
; S
: Entity_Id
) return Boolean is
21235 return Scope_Within_Or_Same
(Scope
(E
), S
);
21242 procedure Wrong_Type
(Expr
: Node_Id
; Expected_Type
: Entity_Id
) is
21243 Found_Type
: constant Entity_Id
:= First_Subtype
(Etype
(Expr
));
21244 Expec_Type
: constant Entity_Id
:= First_Subtype
(Expected_Type
);
21246 Matching_Field
: Entity_Id
;
21247 -- Entity to give a more precise suggestion on how to write a one-
21248 -- element positional aggregate.
21250 function Has_One_Matching_Field
return Boolean;
21251 -- Determines if Expec_Type is a record type with a single component or
21252 -- discriminant whose type matches the found type or is one dimensional
21253 -- array whose component type matches the found type. In the case of
21254 -- one discriminant, we ignore the variant parts. That's not accurate,
21255 -- but good enough for the warning.
21257 ----------------------------
21258 -- Has_One_Matching_Field --
21259 ----------------------------
21261 function Has_One_Matching_Field
return Boolean is
21265 Matching_Field
:= Empty
;
21267 if Is_Array_Type
(Expec_Type
)
21268 and then Number_Dimensions
(Expec_Type
) = 1
21269 and then Covers
(Etype
(Component_Type
(Expec_Type
)), Found_Type
)
21271 -- Use type name if available. This excludes multidimensional
21272 -- arrays and anonymous arrays.
21274 if Comes_From_Source
(Expec_Type
) then
21275 Matching_Field
:= Expec_Type
;
21277 -- For an assignment, use name of target
21279 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
21280 and then Is_Entity_Name
(Name
(Parent
(Expr
)))
21282 Matching_Field
:= Entity
(Name
(Parent
(Expr
)));
21287 elsif not Is_Record_Type
(Expec_Type
) then
21291 E
:= First_Entity
(Expec_Type
);
21296 elsif not Ekind_In
(E
, E_Discriminant
, E_Component
)
21297 or else Nam_In
(Chars
(E
), Name_uTag
, Name_uParent
)
21306 if not Covers
(Etype
(E
), Found_Type
) then
21309 elsif Present
(Next_Entity
(E
))
21310 and then (Ekind
(E
) = E_Component
21311 or else Ekind
(Next_Entity
(E
)) = E_Discriminant
)
21316 Matching_Field
:= E
;
21320 end Has_One_Matching_Field
;
21322 -- Start of processing for Wrong_Type
21325 -- Don't output message if either type is Any_Type, or if a message
21326 -- has already been posted for this node. We need to do the latter
21327 -- check explicitly (it is ordinarily done in Errout), because we
21328 -- are using ! to force the output of the error messages.
21330 if Expec_Type
= Any_Type
21331 or else Found_Type
= Any_Type
21332 or else Error_Posted
(Expr
)
21336 -- If one of the types is a Taft-Amendment type and the other it its
21337 -- completion, it must be an illegal use of a TAT in the spec, for
21338 -- which an error was already emitted. Avoid cascaded errors.
21340 elsif Is_Incomplete_Type
(Expec_Type
)
21341 and then Has_Completion_In_Body
(Expec_Type
)
21342 and then Full_View
(Expec_Type
) = Etype
(Expr
)
21346 elsif Is_Incomplete_Type
(Etype
(Expr
))
21347 and then Has_Completion_In_Body
(Etype
(Expr
))
21348 and then Full_View
(Etype
(Expr
)) = Expec_Type
21352 -- In an instance, there is an ongoing problem with completion of
21353 -- type derived from private types. Their structure is what Gigi
21354 -- expects, but the Etype is the parent type rather than the
21355 -- derived private type itself. Do not flag error in this case. The
21356 -- private completion is an entity without a parent, like an Itype.
21357 -- Similarly, full and partial views may be incorrect in the instance.
21358 -- There is no simple way to insure that it is consistent ???
21360 -- A similar view discrepancy can happen in an inlined body, for the
21361 -- same reason: inserted body may be outside of the original package
21362 -- and only partial views are visible at the point of insertion.
21364 elsif In_Instance
or else In_Inlined_Body
then
21365 if Etype
(Etype
(Expr
)) = Etype
(Expected_Type
)
21367 (Has_Private_Declaration
(Expected_Type
)
21368 or else Has_Private_Declaration
(Etype
(Expr
)))
21369 and then No
(Parent
(Expected_Type
))
21373 elsif Nkind
(Parent
(Expr
)) = N_Qualified_Expression
21374 and then Entity
(Subtype_Mark
(Parent
(Expr
))) = Expected_Type
21378 elsif Is_Private_Type
(Expected_Type
)
21379 and then Present
(Full_View
(Expected_Type
))
21380 and then Covers
(Full_View
(Expected_Type
), Etype
(Expr
))
21384 -- Conversely, type of expression may be the private one
21386 elsif Is_Private_Type
(Base_Type
(Etype
(Expr
)))
21387 and then Full_View
(Base_Type
(Etype
(Expr
))) = Expected_Type
21393 -- An interesting special check. If the expression is parenthesized
21394 -- and its type corresponds to the type of the sole component of the
21395 -- expected record type, or to the component type of the expected one
21396 -- dimensional array type, then assume we have a bad aggregate attempt.
21398 if Nkind
(Expr
) in N_Subexpr
21399 and then Paren_Count
(Expr
) /= 0
21400 and then Has_One_Matching_Field
21402 Error_Msg_N
("positional aggregate cannot have one component", Expr
);
21404 if Present
(Matching_Field
) then
21405 if Is_Array_Type
(Expec_Type
) then
21407 ("\write instead `&''First ='> ...`", Expr
, Matching_Field
);
21410 ("\write instead `& ='> ...`", Expr
, Matching_Field
);
21414 -- Another special check, if we are looking for a pool-specific access
21415 -- type and we found an E_Access_Attribute_Type, then we have the case
21416 -- of an Access attribute being used in a context which needs a pool-
21417 -- specific type, which is never allowed. The one extra check we make
21418 -- is that the expected designated type covers the Found_Type.
21420 elsif Is_Access_Type
(Expec_Type
)
21421 and then Ekind
(Found_Type
) = E_Access_Attribute_Type
21422 and then Ekind
(Base_Type
(Expec_Type
)) /= E_General_Access_Type
21423 and then Ekind
(Base_Type
(Expec_Type
)) /= E_Anonymous_Access_Type
21425 (Designated_Type
(Expec_Type
), Designated_Type
(Found_Type
))
21427 Error_Msg_N
-- CODEFIX
21428 ("result must be general access type!", Expr
);
21429 Error_Msg_NE
-- CODEFIX
21430 ("add ALL to }!", Expr
, Expec_Type
);
21432 -- Another special check, if the expected type is an integer type,
21433 -- but the expression is of type System.Address, and the parent is
21434 -- an addition or subtraction operation whose left operand is the
21435 -- expression in question and whose right operand is of an integral
21436 -- type, then this is an attempt at address arithmetic, so give
21437 -- appropriate message.
21439 elsif Is_Integer_Type
(Expec_Type
)
21440 and then Is_RTE
(Found_Type
, RE_Address
)
21441 and then Nkind_In
(Parent
(Expr
), N_Op_Add
, N_Op_Subtract
)
21442 and then Expr
= Left_Opnd
(Parent
(Expr
))
21443 and then Is_Integer_Type
(Etype
(Right_Opnd
(Parent
(Expr
))))
21446 ("address arithmetic not predefined in package System",
21449 ("\possible missing with/use of System.Storage_Elements",
21453 -- If the expected type is an anonymous access type, as for access
21454 -- parameters and discriminants, the error is on the designated types.
21456 elsif Ekind
(Expec_Type
) = E_Anonymous_Access_Type
then
21457 if Comes_From_Source
(Expec_Type
) then
21458 Error_Msg_NE
("expected}!", Expr
, Expec_Type
);
21461 ("expected an access type with designated}",
21462 Expr
, Designated_Type
(Expec_Type
));
21465 if Is_Access_Type
(Found_Type
)
21466 and then not Comes_From_Source
(Found_Type
)
21469 ("\\found an access type with designated}!",
21470 Expr
, Designated_Type
(Found_Type
));
21472 if From_Limited_With
(Found_Type
) then
21473 Error_Msg_NE
("\\found incomplete}!", Expr
, Found_Type
);
21474 Error_Msg_Qual_Level
:= 99;
21475 Error_Msg_NE
-- CODEFIX
21476 ("\\missing `WITH &;", Expr
, Scope
(Found_Type
));
21477 Error_Msg_Qual_Level
:= 0;
21479 Error_Msg_NE
("found}!", Expr
, Found_Type
);
21483 -- Normal case of one type found, some other type expected
21486 -- If the names of the two types are the same, see if some number
21487 -- of levels of qualification will help. Don't try more than three
21488 -- levels, and if we get to standard, it's no use (and probably
21489 -- represents an error in the compiler) Also do not bother with
21490 -- internal scope names.
21493 Expec_Scope
: Entity_Id
;
21494 Found_Scope
: Entity_Id
;
21497 Expec_Scope
:= Expec_Type
;
21498 Found_Scope
:= Found_Type
;
21500 for Levels
in Nat
range 0 .. 3 loop
21501 if Chars
(Expec_Scope
) /= Chars
(Found_Scope
) then
21502 Error_Msg_Qual_Level
:= Levels
;
21506 Expec_Scope
:= Scope
(Expec_Scope
);
21507 Found_Scope
:= Scope
(Found_Scope
);
21509 exit when Expec_Scope
= Standard_Standard
21510 or else Found_Scope
= Standard_Standard
21511 or else not Comes_From_Source
(Expec_Scope
)
21512 or else not Comes_From_Source
(Found_Scope
);
21516 if Is_Record_Type
(Expec_Type
)
21517 and then Present
(Corresponding_Remote_Type
(Expec_Type
))
21519 Error_Msg_NE
("expected}!", Expr
,
21520 Corresponding_Remote_Type
(Expec_Type
));
21522 Error_Msg_NE
("expected}!", Expr
, Expec_Type
);
21525 if Is_Entity_Name
(Expr
)
21526 and then Is_Package_Or_Generic_Package
(Entity
(Expr
))
21528 Error_Msg_N
("\\found package name!", Expr
);
21530 elsif Is_Entity_Name
(Expr
)
21531 and then Ekind_In
(Entity
(Expr
), E_Procedure
, E_Generic_Procedure
)
21533 if Ekind
(Expec_Type
) = E_Access_Subprogram_Type
then
21535 ("found procedure name, possibly missing Access attribute!",
21539 ("\\found procedure name instead of function!", Expr
);
21542 elsif Nkind
(Expr
) = N_Function_Call
21543 and then Ekind
(Expec_Type
) = E_Access_Subprogram_Type
21544 and then Etype
(Designated_Type
(Expec_Type
)) = Etype
(Expr
)
21545 and then No
(Parameter_Associations
(Expr
))
21548 ("found function name, possibly missing Access attribute!",
21551 -- Catch common error: a prefix or infix operator which is not
21552 -- directly visible because the type isn't.
21554 elsif Nkind
(Expr
) in N_Op
21555 and then Is_Overloaded
(Expr
)
21556 and then not Is_Immediately_Visible
(Expec_Type
)
21557 and then not Is_Potentially_Use_Visible
(Expec_Type
)
21558 and then not In_Use
(Expec_Type
)
21559 and then Has_Compatible_Type
(Right_Opnd
(Expr
), Expec_Type
)
21562 ("operator of the type is not directly visible!", Expr
);
21564 elsif Ekind
(Found_Type
) = E_Void
21565 and then Present
(Parent
(Found_Type
))
21566 and then Nkind
(Parent
(Found_Type
)) = N_Full_Type_Declaration
21568 Error_Msg_NE
("\\found premature usage of}!", Expr
, Found_Type
);
21571 Error_Msg_NE
("\\found}!", Expr
, Found_Type
);
21574 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
21575 -- of the same modular type, and (M1 and M2) = 0 was intended.
21577 if Expec_Type
= Standard_Boolean
21578 and then Is_Modular_Integer_Type
(Found_Type
)
21579 and then Nkind_In
(Parent
(Expr
), N_Op_And
, N_Op_Or
, N_Op_Xor
)
21580 and then Nkind
(Right_Opnd
(Parent
(Expr
))) in N_Op_Compare
21583 Op
: constant Node_Id
:= Right_Opnd
(Parent
(Expr
));
21584 L
: constant Node_Id
:= Left_Opnd
(Op
);
21585 R
: constant Node_Id
:= Right_Opnd
(Op
);
21588 -- The case for the message is when the left operand of the
21589 -- comparison is the same modular type, or when it is an
21590 -- integer literal (or other universal integer expression),
21591 -- which would have been typed as the modular type if the
21592 -- parens had been there.
21594 if (Etype
(L
) = Found_Type
21596 Etype
(L
) = Universal_Integer
)
21597 and then Is_Integer_Type
(Etype
(R
))
21600 ("\\possible missing parens for modular operation", Expr
);
21605 -- Reset error message qualification indication
21607 Error_Msg_Qual_Level
:= 0;
21611 --------------------------------
21612 -- Yields_Synchronized_Object --
21613 --------------------------------
21615 function Yields_Synchronized_Object
(Typ
: Entity_Id
) return Boolean is
21616 Has_Sync_Comp
: Boolean := False;
21620 -- An array type yields a synchronized object if its component type
21621 -- yields a synchronized object.
21623 if Is_Array_Type
(Typ
) then
21624 return Yields_Synchronized_Object
(Component_Type
(Typ
));
21626 -- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
21627 -- yields a synchronized object by default.
21629 elsif Is_Descendant_Of_Suspension_Object
(Typ
) then
21632 -- A protected type yields a synchronized object by default
21634 elsif Is_Protected_Type
(Typ
) then
21637 -- A record type or type extension yields a synchronized object when its
21638 -- discriminants (if any) lack default values and all components are of
21639 -- a type that yelds a synchronized object.
21641 elsif Is_Record_Type
(Typ
) then
21643 -- Inspect all entities defined in the scope of the type, looking for
21644 -- components of a type that does not yeld a synchronized object or
21645 -- for discriminants with default values.
21647 Id
:= First_Entity
(Typ
);
21648 while Present
(Id
) loop
21649 if Comes_From_Source
(Id
) then
21650 if Ekind
(Id
) = E_Component
then
21651 if Yields_Synchronized_Object
(Etype
(Id
)) then
21652 Has_Sync_Comp
:= True;
21654 -- The component does not yield a synchronized object
21660 elsif Ekind
(Id
) = E_Discriminant
21661 and then Present
(Expression
(Parent
(Id
)))
21670 -- Ensure that the parent type of a type extension yields a
21671 -- synchronized object.
21673 if Etype
(Typ
) /= Typ
21674 and then not Yields_Synchronized_Object
(Etype
(Typ
))
21679 -- If we get here, then all discriminants lack default values and all
21680 -- components are of a type that yields a synchronized object.
21682 return Has_Sync_Comp
;
21684 -- A synchronized interface type yields a synchronized object by default
21686 elsif Is_Synchronized_Interface
(Typ
) then
21689 -- A task type yelds a synchronized object by default
21691 elsif Is_Task_Type
(Typ
) then
21694 -- Otherwise the type does not yield a synchronized object
21699 end Yields_Synchronized_Object
;
21701 ---------------------------
21702 -- Yields_Universal_Type --
21703 ---------------------------
21705 function Yields_Universal_Type
(N
: Node_Id
) return Boolean is
21707 -- Integer and real literals are of a universal type
21709 if Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
) then
21712 -- The values of certain attributes are of a universal type
21714 elsif Nkind
(N
) = N_Attribute_Reference
then
21716 Universal_Type_Attribute
(Get_Attribute_Id
(Attribute_Name
(N
)));
21718 -- ??? There are possibly other cases to consider
21723 end Yields_Universal_Type
;