1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Elists
; use Elists
;
29 with Einfo
; use Einfo
;
30 with Exp_Disp
; use Exp_Disp
;
31 with Exp_Util
; use Exp_Util
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Errout
; use Errout
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Nlists
; use Nlists
;
38 with Nmake
; use Nmake
;
40 with Output
; use Output
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch3
; use Sem_Ch3
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Eval
; use Sem_Eval
;
49 with Sem_Type
; use Sem_Type
;
50 with Sem_Util
; use Sem_Util
;
51 with Snames
; use Snames
;
52 with Sinfo
; use Sinfo
;
53 with Tbuild
; use Tbuild
;
54 with Uintp
; use Uintp
;
56 package body Sem_Disp
is
58 -----------------------
59 -- Local Subprograms --
60 -----------------------
62 procedure Add_Dispatching_Operation
63 (Tagged_Type
: Entity_Id
;
65 -- Add New_Op in the list of primitive operations of Tagged_Type
67 function Check_Controlling_Type
69 Subp
: Entity_Id
) return Entity_Id
;
70 -- T is the tagged type of a formal parameter or the result of Subp.
71 -- If the subprogram has a controlling parameter or result that matches
72 -- the type, then returns the tagged type of that parameter or result
73 -- (returning the designated tagged type in the case of an access
74 -- parameter); otherwise returns empty.
76 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
;
77 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
78 -- type of S that has the same name of S, a type-conformant profile, an
79 -- original corresponding operation O that is a primitive of a visible
80 -- ancestor of the dispatching type of S and O is visible at the point of
81 -- of declaration of S. If the entity is found the Alias of S is set to the
82 -- original corresponding operation S and its Overridden_Operation is set
83 -- to the found entity; otherwise return Empty.
85 -- This routine does not search for non-hidden primitives since they are
86 -- covered by the normal Ada 2005 rules.
88 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean;
89 -- Check whether a primitive operation is inherited from an operation
90 -- declared in the visible part of its package.
92 -------------------------------
93 -- Add_Dispatching_Operation --
94 -------------------------------
96 procedure Add_Dispatching_Operation
97 (Tagged_Type
: Entity_Id
;
100 List
: constant Elist_Id
:= Primitive_Operations
(Tagged_Type
);
103 -- The dispatching operation may already be on the list, if it is the
104 -- wrapper for an inherited function of a null extension (see Exp_Ch3
105 -- for the construction of function wrappers). The list of primitive
106 -- operations must not contain duplicates.
108 Append_Unique_Elmt
(New_Op
, List
);
109 end Add_Dispatching_Operation
;
111 ---------------------------
112 -- Covers_Some_Interface --
113 ---------------------------
115 function Covers_Some_Interface
(Prim
: Entity_Id
) return Boolean is
116 Tagged_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
121 pragma Assert
(Is_Dispatching_Operation
(Prim
));
123 -- Although this is a dispatching primitive we must check if its
124 -- dispatching type is available because it may be the primitive
125 -- of a private type not defined as tagged in its partial view.
127 if Present
(Tagged_Type
) and then Has_Interfaces
(Tagged_Type
) then
129 -- If the tagged type is frozen then the internal entities associated
130 -- with interfaces are available in the list of primitives of the
131 -- tagged type and can be used to speed up this search.
133 if Is_Frozen
(Tagged_Type
) then
134 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
135 while Present
(Elmt
) loop
138 if Present
(Interface_Alias
(E
))
139 and then Alias
(E
) = Prim
147 -- Otherwise we must collect all the interface primitives and check
148 -- if the Prim will override some interface primitive.
152 Ifaces_List
: Elist_Id
;
153 Iface_Elmt
: Elmt_Id
;
155 Iface_Prim
: Entity_Id
;
158 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
159 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
160 while Present
(Iface_Elmt
) loop
161 Iface
:= Node
(Iface_Elmt
);
163 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
164 while Present
(Elmt
) loop
165 Iface_Prim
:= Node
(Elmt
);
167 if Chars
(Iface
) = Chars
(Prim
)
168 and then Is_Interface_Conformant
169 (Tagged_Type
, Iface_Prim
, Prim
)
177 Next_Elmt
(Iface_Elmt
);
184 end Covers_Some_Interface
;
186 -------------------------------
187 -- Check_Controlling_Formals --
188 -------------------------------
190 procedure Check_Controlling_Formals
195 Ctrl_Type
: Entity_Id
;
198 Formal
:= First_Formal
(Subp
);
199 while Present
(Formal
) loop
200 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
202 if Present
(Ctrl_Type
) then
204 -- When controlling type is concurrent and declared within a
205 -- generic or inside an instance use corresponding record type.
207 if Is_Concurrent_Type
(Ctrl_Type
)
208 and then Present
(Corresponding_Record_Type
(Ctrl_Type
))
210 Ctrl_Type
:= Corresponding_Record_Type
(Ctrl_Type
);
213 if Ctrl_Type
= Typ
then
214 Set_Is_Controlling_Formal
(Formal
);
216 -- Ada 2005 (AI-231): Anonymous access types that are used in
217 -- controlling parameters exclude null because it is necessary
218 -- to read the tag to dispatch, and null has no tag.
220 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
221 Set_Can_Never_Be_Null
(Etype
(Formal
));
222 Set_Is_Known_Non_Null
(Etype
(Formal
));
225 -- Check that the parameter's nominal subtype statically
226 -- matches the first subtype.
228 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
229 if not Subtypes_Statically_Match
230 (Typ
, Designated_Type
(Etype
(Formal
)))
233 ("parameter subtype does not match controlling type",
237 -- Within a predicate function, the formal may be a subtype
238 -- of a tagged type, given that the predicate is expressed
239 -- in terms of the subtype.
241 elsif not Subtypes_Statically_Match
(Typ
, Etype
(Formal
))
242 and then not Is_Predicate_Function
(Subp
)
245 ("parameter subtype does not match controlling type",
249 if Present
(Default_Value
(Formal
)) then
251 -- In Ada 2005, access parameters can have defaults
253 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
254 and then Ada_Version
< Ada_2005
257 ("default not allowed for controlling access parameter",
258 Default_Value
(Formal
));
260 elsif not Is_Tag_Indeterminate
(Default_Value
(Formal
)) then
262 ("default expression must be a tag indeterminate" &
263 " function call", Default_Value
(Formal
));
267 elsif Comes_From_Source
(Subp
) then
269 ("operation can be dispatching in only one type", Subp
);
273 Next_Formal
(Formal
);
276 if Ekind_In
(Subp
, E_Function
, E_Generic_Function
) then
277 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Subp
), Subp
);
279 if Present
(Ctrl_Type
) then
280 if Ctrl_Type
= Typ
then
281 Set_Has_Controlling_Result
(Subp
);
283 -- Check that result subtype statically matches first subtype
284 -- (Ada 2005): Subp may have a controlling access result.
286 if Subtypes_Statically_Match
(Typ
, Etype
(Subp
))
287 or else (Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
289 Subtypes_Statically_Match
290 (Typ
, Designated_Type
(Etype
(Subp
))))
296 ("result subtype does not match controlling type", Subp
);
299 elsif Comes_From_Source
(Subp
) then
301 ("operation can be dispatching in only one type", Subp
);
305 end Check_Controlling_Formals
;
307 ----------------------------
308 -- Check_Controlling_Type --
309 ----------------------------
311 function Check_Controlling_Type
313 Subp
: Entity_Id
) return Entity_Id
315 Tagged_Type
: Entity_Id
:= Empty
;
318 if Is_Tagged_Type
(T
) then
319 if Is_First_Subtype
(T
) then
322 Tagged_Type
:= Base_Type
(T
);
325 -- If the type is incomplete, it may have been declared without a
326 -- Tagged indication, but the full view may be tagged, in which case
327 -- that is the controlling type of the subprogram. This is one of the
328 -- approx. 579 places in the language where a lookahead would help.
330 elsif Ekind
(T
) = E_Incomplete_Type
331 and then Present
(Full_View
(T
))
332 and then Is_Tagged_Type
(Full_View
(T
))
334 Set_Is_Tagged_Type
(T
);
335 Tagged_Type
:= Full_View
(T
);
337 elsif Ekind
(T
) = E_Anonymous_Access_Type
338 and then Is_Tagged_Type
(Designated_Type
(T
))
340 if Ekind
(Designated_Type
(T
)) /= E_Incomplete_Type
then
341 if Is_First_Subtype
(Designated_Type
(T
)) then
342 Tagged_Type
:= Designated_Type
(T
);
344 Tagged_Type
:= Base_Type
(Designated_Type
(T
));
347 -- Ada 2005: an incomplete type can be tagged. An operation with an
348 -- access parameter of the type is dispatching.
350 elsif Scope
(Designated_Type
(T
)) = Current_Scope
then
351 Tagged_Type
:= Designated_Type
(T
);
353 -- Ada 2005 (AI-50217)
355 elsif From_Limited_With
(Designated_Type
(T
))
356 and then Has_Non_Limited_View
(Designated_Type
(T
))
357 and then Scope
(Designated_Type
(T
)) = Scope
(Subp
)
359 if Is_First_Subtype
(Non_Limited_View
(Designated_Type
(T
))) then
360 Tagged_Type
:= Non_Limited_View
(Designated_Type
(T
));
362 Tagged_Type
:= Base_Type
(Non_Limited_View
363 (Designated_Type
(T
)));
368 if No
(Tagged_Type
) or else Is_Class_Wide_Type
(Tagged_Type
) then
371 -- The dispatching type and the primitive operation must be defined in
372 -- the same scope, except in the case of internal operations and formal
373 -- abstract subprograms.
375 elsif ((Scope
(Subp
) = Scope
(Tagged_Type
) or else Is_Internal
(Subp
))
376 and then (not Is_Generic_Type
(Tagged_Type
)
377 or else not Comes_From_Source
(Subp
)))
379 (Is_Formal_Subprogram
(Subp
) and then Is_Abstract_Subprogram
(Subp
))
381 (Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Renaming_Declaration
383 Present
(Corresponding_Formal_Spec
(Parent
(Parent
(Subp
))))
385 Is_Abstract_Subprogram
(Subp
))
392 end Check_Controlling_Type
;
394 ----------------------------
395 -- Check_Dispatching_Call --
396 ----------------------------
398 procedure Check_Dispatching_Call
(N
: Node_Id
) is
399 Loc
: constant Source_Ptr
:= Sloc
(N
);
402 Control
: Node_Id
:= Empty
;
404 Subp_Entity
: Entity_Id
;
405 Indeterm_Ancestor_Call
: Boolean := False;
406 Indeterm_Ctrl_Type
: Entity_Id
;
408 Static_Tag
: Node_Id
:= Empty
;
409 -- If a controlling formal has a statically tagged actual, the tag of
410 -- this actual is to be used for any tag-indeterminate actual.
412 procedure Check_Direct_Call
;
413 -- In the case when the controlling actual is a class-wide type whose
414 -- root type's completion is a task or protected type, the call is in
415 -- fact direct. This routine detects the above case and modifies the
418 procedure Check_Dispatching_Context
(Call
: Node_Id
);
419 -- If the call is tag-indeterminate and the entity being called is
420 -- abstract, verify that the context is a call that will eventually
421 -- provide a tag for dispatching, or has provided one already.
423 -----------------------
424 -- Check_Direct_Call --
425 -----------------------
427 procedure Check_Direct_Call
is
428 Typ
: Entity_Id
:= Etype
(Control
);
430 function Is_User_Defined_Equality
(Id
: Entity_Id
) return Boolean;
431 -- Determine whether an entity denotes a user-defined equality
433 ------------------------------
434 -- Is_User_Defined_Equality --
435 ------------------------------
437 function Is_User_Defined_Equality
(Id
: Entity_Id
) return Boolean is
440 Ekind
(Id
) = E_Function
441 and then Chars
(Id
) = Name_Op_Eq
442 and then Comes_From_Source
(Id
)
444 -- Internally generated equalities have a full type declaration
447 and then Nkind
(Parent
(Id
)) = N_Function_Specification
;
448 end Is_User_Defined_Equality
;
450 -- Start of processing for Check_Direct_Call
453 -- Predefined primitives do not receive wrappers since they are built
454 -- from scratch for the corresponding record of synchronized types.
455 -- Equality is in general predefined, but is excluded from the check
456 -- when it is user-defined.
458 if Is_Predefined_Dispatching_Operation
(Subp_Entity
)
459 and then not Is_User_Defined_Equality
(Subp_Entity
)
464 if Is_Class_Wide_Type
(Typ
) then
465 Typ
:= Root_Type
(Typ
);
468 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
469 Typ
:= Full_View
(Typ
);
472 if Is_Concurrent_Type
(Typ
)
474 Present
(Corresponding_Record_Type
(Typ
))
476 Typ
:= Corresponding_Record_Type
(Typ
);
478 -- The concurrent record's list of primitives should contain a
479 -- wrapper for the entity of the call, retrieve it.
484 Wrapper_Found
: Boolean := False;
487 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
488 while Present
(Prim_Elmt
) loop
489 Prim
:= Node
(Prim_Elmt
);
491 if Is_Primitive_Wrapper
(Prim
)
492 and then Wrapped_Entity
(Prim
) = Subp_Entity
494 Wrapper_Found
:= True;
498 Next_Elmt
(Prim_Elmt
);
501 -- A primitive declared between two views should have a
502 -- corresponding wrapper.
504 pragma Assert
(Wrapper_Found
);
506 -- Modify the call by setting the proper entity
508 Set_Entity
(Name
(N
), Prim
);
511 end Check_Direct_Call
;
513 -------------------------------
514 -- Check_Dispatching_Context --
515 -------------------------------
517 procedure Check_Dispatching_Context
(Call
: Node_Id
) is
518 Subp
: constant Entity_Id
:= Entity
(Name
(Call
));
520 procedure Abstract_Context_Error
;
521 -- Error for abstract call dispatching on result is not dispatching
523 ----------------------------
524 -- Abstract_Context_Error --
525 ----------------------------
527 procedure Abstract_Context_Error
is
529 if Ekind
(Subp
) = E_Function
then
531 ("call to abstract function must be dispatching", N
);
533 -- This error can occur for a procedure in the case of a call to
534 -- an abstract formal procedure with a statically tagged operand.
538 ("call to abstract procedure must be dispatching", N
);
540 end Abstract_Context_Error
;
544 Scop
: constant Entity_Id
:= Current_Scope_No_Loops
;
545 Typ
: constant Entity_Id
:= Etype
(Subp
);
548 -- Start of processing for Check_Dispatching_Context
551 if Is_Abstract_Subprogram
(Subp
)
552 and then No
(Controlling_Argument
(Call
))
554 if Present
(Alias
(Subp
))
555 and then not Is_Abstract_Subprogram
(Alias
(Subp
))
556 and then No
(DTC_Entity
(Subp
))
558 -- Private overriding of inherited abstract operation, call is
561 Set_Entity
(Name
(N
), Alias
(Subp
));
564 -- An obscure special case: a null procedure may have a class-
565 -- wide pre/postcondition that includes a call to an abstract
566 -- subp. Calls within the expression may not have been rewritten
567 -- as dispatching calls yet, because the null body appears in
568 -- the current declarative part. The expression will be properly
569 -- rewritten/reanalyzed when the postcondition procedure is built.
571 -- Similarly, if this is a pre/postcondition for an abstract
572 -- subprogram, it may call another abstract function which is
573 -- a primitive of an abstract type. The call is non-dispatching
574 -- but will be legal in overridings of the operation.
576 elsif In_Spec_Expression
578 (Is_Subprogram
(Scop
)
579 or else Chars
(Scop
) = Name_Postcondition
)
581 (Is_Abstract_Subprogram
(Scop
)
583 (Nkind
(Parent
(Scop
)) = N_Procedure_Specification
584 and then Null_Present
(Parent
(Scop
))))
588 elsif Ekind
(Current_Scope
) = E_Function
589 and then Nkind
(Unit_Declaration_Node
(Scop
)) =
590 N_Generic_Subprogram_Declaration
595 -- We need to determine whether the context of the call
596 -- provides a tag to make the call dispatching. This requires
597 -- the call to be the actual in an enclosing call, and that
598 -- actual must be controlling. If the call is an operand of
599 -- equality, the other operand must not ve abstract.
601 if not Is_Tagged_Type
(Typ
)
603 (Ekind
(Typ
) = E_Anonymous_Access_Type
604 and then Is_Tagged_Type
(Designated_Type
(Typ
)))
606 Abstract_Context_Error
;
610 Par
:= Parent
(Call
);
612 if Nkind
(Par
) = N_Parameter_Association
then
616 if Nkind
(Par
) = N_Qualified_Expression
617 or else Nkind
(Par
) = N_Unchecked_Type_Conversion
622 if Nkind_In
(Par
, N_Function_Call
, N_Procedure_Call_Statement
)
623 and then Is_Entity_Name
(Name
(Par
))
626 Enc_Subp
: constant Entity_Id
:= Entity
(Name
(Par
));
630 Ret_Type
: Entity_Id
;
633 -- Find controlling formal that can provide tag for the
634 -- tag-indeterminate actual. The corresponding actual
635 -- must be the corresponding class-wide type.
637 F
:= First_Formal
(Enc_Subp
);
638 A
:= First_Actual
(Par
);
640 -- Find controlling type of call. Dereference if function
641 -- returns an access type.
643 Ret_Type
:= Etype
(Call
);
644 if Is_Access_Type
(Etype
(Call
)) then
645 Ret_Type
:= Designated_Type
(Ret_Type
);
648 while Present
(F
) loop
649 Control
:= Etype
(A
);
651 if Is_Access_Type
(Control
) then
652 Control
:= Designated_Type
(Control
);
655 if Is_Controlling_Formal
(F
)
656 and then not (Call
= A
or else Parent
(Call
) = A
)
657 and then Control
= Class_Wide_Type
(Ret_Type
)
666 if Nkind
(Par
) = N_Function_Call
667 and then Is_Tag_Indeterminate
(Par
)
669 -- The parent may be an actual of an enclosing call
671 Check_Dispatching_Context
(Par
);
676 ("call to abstract function must be dispatching",
682 -- For equality operators, one of the operands must be
683 -- statically or dynamically tagged.
685 elsif Nkind_In
(Par
, N_Op_Eq
, N_Op_Ne
) then
686 if N
= Right_Opnd
(Par
)
687 and then Is_Tag_Indeterminate
(Left_Opnd
(Par
))
689 Abstract_Context_Error
;
691 elsif N
= Left_Opnd
(Par
)
692 and then Is_Tag_Indeterminate
(Right_Opnd
(Par
))
694 Abstract_Context_Error
;
699 -- The left-hand side of an assignment provides the tag
701 elsif Nkind
(Par
) = N_Assignment_Statement
then
705 Abstract_Context_Error
;
709 end Check_Dispatching_Context
;
711 -- Start of processing for Check_Dispatching_Call
714 -- Find a controlling argument, if any
716 if Present
(Parameter_Associations
(N
)) then
717 Subp_Entity
:= Entity
(Name
(N
));
719 Actual
:= First_Actual
(N
);
720 Formal
:= First_Formal
(Subp_Entity
);
721 while Present
(Actual
) loop
722 Control
:= Find_Controlling_Arg
(Actual
);
723 exit when Present
(Control
);
725 -- Check for the case where the actual is a tag-indeterminate call
726 -- whose result type is different than the tagged type associated
727 -- with the containing call, but is an ancestor of the type.
729 if Is_Controlling_Formal
(Formal
)
730 and then Is_Tag_Indeterminate
(Actual
)
731 and then Base_Type
(Etype
(Actual
)) /= Base_Type
(Etype
(Formal
))
732 and then Is_Ancestor
(Etype
(Actual
), Etype
(Formal
))
734 Indeterm_Ancestor_Call
:= True;
735 Indeterm_Ctrl_Type
:= Etype
(Formal
);
737 -- If the formal is controlling but the actual is not, the type
738 -- of the actual is statically known, and may be used as the
739 -- controlling tag for some other tag-indeterminate actual.
741 elsif Is_Controlling_Formal
(Formal
)
742 and then Is_Entity_Name
(Actual
)
743 and then Is_Tagged_Type
(Etype
(Actual
))
745 Static_Tag
:= Actual
;
748 Next_Actual
(Actual
);
749 Next_Formal
(Formal
);
752 -- If the call doesn't have a controlling actual but does have an
753 -- indeterminate actual that requires dispatching treatment, then an
754 -- object is needed that will serve as the controlling argument for
755 -- a dispatching call on the indeterminate actual. This can occur
756 -- in the unusual situation of a default actual given by a tag-
757 -- indeterminate call and where the type of the call is an ancestor
758 -- of the type associated with a containing call to an inherited
759 -- operation (see AI-239).
761 -- Rather than create an object of the tagged type, which would
762 -- be problematic for various reasons (default initialization,
763 -- discriminants), the tag of the containing call's associated
764 -- tagged type is directly used to control the dispatching.
767 and then Indeterm_Ancestor_Call
768 and then No
(Static_Tag
)
771 Make_Attribute_Reference
(Loc
,
772 Prefix
=> New_Occurrence_Of
(Indeterm_Ctrl_Type
, Loc
),
773 Attribute_Name
=> Name_Tag
);
778 if Present
(Control
) then
780 -- Verify that no controlling arguments are statically tagged
783 Write_Str
("Found Dispatching call");
788 Actual
:= First_Actual
(N
);
789 while Present
(Actual
) loop
790 if Actual
/= Control
then
792 if not Is_Controlling_Actual
(Actual
) then
793 null; -- Can be anything
795 elsif Is_Dynamically_Tagged
(Actual
) then
796 null; -- Valid parameter
798 elsif Is_Tag_Indeterminate
(Actual
) then
800 -- The tag is inherited from the enclosing call (the node
801 -- we are currently analyzing). Explicitly expand the
802 -- actual, since the previous call to Expand (from
803 -- Resolve_Call) had no way of knowing about the
804 -- required dispatching.
806 Propagate_Tag
(Control
, Actual
);
810 ("controlling argument is not dynamically tagged",
816 Next_Actual
(Actual
);
819 -- Mark call as a dispatching call
821 Set_Controlling_Argument
(N
, Control
);
822 Check_Restriction
(No_Dispatching_Calls
, N
);
824 -- The dispatching call may need to be converted into a direct
825 -- call in certain cases.
829 -- If there is a statically tagged actual and a tag-indeterminate
830 -- call to a function of the ancestor (such as that provided by a
831 -- default), then treat this as a dispatching call and propagate
832 -- the tag to the tag-indeterminate call(s).
834 elsif Present
(Static_Tag
) and then Indeterm_Ancestor_Call
then
836 Make_Attribute_Reference
(Loc
,
838 New_Occurrence_Of
(Etype
(Static_Tag
), Loc
),
839 Attribute_Name
=> Name_Tag
);
843 Actual
:= First_Actual
(N
);
844 Formal
:= First_Formal
(Subp_Entity
);
845 while Present
(Actual
) loop
846 if Is_Tag_Indeterminate
(Actual
)
847 and then Is_Controlling_Formal
(Formal
)
849 Propagate_Tag
(Control
, Actual
);
852 Next_Actual
(Actual
);
853 Next_Formal
(Formal
);
856 Check_Dispatching_Context
(N
);
858 elsif Nkind
(N
) /= N_Function_Call
then
860 -- The call is not dispatching, so check that there aren't any
861 -- tag-indeterminate abstract calls left among its actuals.
863 Actual
:= First_Actual
(N
);
864 while Present
(Actual
) loop
865 if Is_Tag_Indeterminate
(Actual
) then
867 -- Function call case
869 if Nkind
(Original_Node
(Actual
)) = N_Function_Call
then
870 Func
:= Entity
(Name
(Original_Node
(Actual
)));
872 -- If the actual is an attribute then it can't be abstract
873 -- (the only current case of a tag-indeterminate attribute
874 -- is the stream Input attribute).
876 elsif Nkind
(Original_Node
(Actual
)) = N_Attribute_Reference
880 -- Ditto if it is an explicit dereference
882 elsif Nkind
(Original_Node
(Actual
)) = N_Explicit_Dereference
886 -- Only other possibility is a qualified expression whose
887 -- constituent expression is itself a call.
891 Entity
(Name
(Original_Node
892 (Expression
(Original_Node
(Actual
)))));
895 if Present
(Func
) and then Is_Abstract_Subprogram
(Func
) then
897 ("call to abstract function must be dispatching",
902 Next_Actual
(Actual
);
905 Check_Dispatching_Context
(N
);
908 elsif Nkind
(Parent
(N
)) in N_Subexpr
then
909 Check_Dispatching_Context
(N
);
911 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
912 and then Is_Class_Wide_Type
(Etype
(Name
(Parent
(N
))))
916 elsif Is_Abstract_Subprogram
(Subp_Entity
) then
917 Check_Dispatching_Context
(N
);
922 -- If dispatching on result, the enclosing call, if any, will
923 -- determine the controlling argument. Otherwise this is the
924 -- primitive operation of the root type.
926 Check_Dispatching_Context
(N
);
928 end Check_Dispatching_Call
;
930 ---------------------------------
931 -- Check_Dispatching_Operation --
932 ---------------------------------
934 procedure Check_Dispatching_Operation
(Subp
, Old_Subp
: Entity_Id
) is
935 Body_Is_Last_Primitive
: Boolean := False;
936 Has_Dispatching_Parent
: Boolean := False;
937 Ovr_Subp
: Entity_Id
:= Empty
;
938 Tagged_Type
: Entity_Id
;
941 if not Ekind_In
(Subp
, E_Function
, E_Procedure
) then
944 -- The Default_Initial_Condition procedure is not a primitive subprogram
945 -- even if it relates to a tagged type. This routine is not meant to be
946 -- inherited or overridden.
948 elsif Is_DIC_Procedure
(Subp
) then
951 -- The "partial" and "full" type invariant procedures are not primitive
952 -- subprograms even if they relate to a tagged type. These routines are
953 -- not meant to be inherited or overridden.
955 elsif Is_Invariant_Procedure
(Subp
)
956 or else Is_Partial_Invariant_Procedure
(Subp
)
961 Set_Is_Dispatching_Operation
(Subp
, False);
962 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
964 -- Ada 2005 (AI-345): Use the corresponding record (if available).
965 -- Required because primitives of concurrent types are attached
966 -- to the corresponding record (not to the concurrent type).
968 if Ada_Version
>= Ada_2005
969 and then Present
(Tagged_Type
)
970 and then Is_Concurrent_Type
(Tagged_Type
)
971 and then Present
(Corresponding_Record_Type
(Tagged_Type
))
973 Tagged_Type
:= Corresponding_Record_Type
(Tagged_Type
);
976 -- (AI-345): The task body procedure is not a primitive of the tagged
979 if Present
(Tagged_Type
)
980 and then Is_Concurrent_Record_Type
(Tagged_Type
)
981 and then Present
(Corresponding_Concurrent_Type
(Tagged_Type
))
982 and then Is_Task_Type
(Corresponding_Concurrent_Type
(Tagged_Type
))
983 and then Subp
= Get_Task_Body_Procedure
984 (Corresponding_Concurrent_Type
(Tagged_Type
))
989 -- If Subp is derived from a dispatching operation then it should
990 -- always be treated as dispatching. In this case various checks
991 -- below will be bypassed. Makes sure that late declarations for
992 -- inherited private subprograms are treated as dispatching, even
993 -- if the associated tagged type is already frozen.
995 Has_Dispatching_Parent
:=
996 Present
(Alias
(Subp
))
997 and then Is_Dispatching_Operation
(Alias
(Subp
));
999 if No
(Tagged_Type
) then
1001 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
1002 -- with an abstract interface type unless the interface acts as a
1003 -- parent type in a derivation. If the interface type is a formal
1004 -- type then the operation is not primitive and therefore legal.
1011 E
:= First_Entity
(Subp
);
1012 while Present
(E
) loop
1014 -- For an access parameter, check designated type
1016 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
then
1017 Typ
:= Designated_Type
(Etype
(E
));
1022 if Comes_From_Source
(Subp
)
1023 and then Is_Interface
(Typ
)
1024 and then not Is_Class_Wide_Type
(Typ
)
1025 and then not Is_Derived_Type
(Typ
)
1026 and then not Is_Generic_Type
(Typ
)
1027 and then not In_Instance
1029 Error_Msg_N
("??declaration of& is too late!", Subp
);
1030 Error_Msg_NE
-- CODEFIX??
1031 ("\??spec should appear immediately after declaration "
1032 & "of & !", Subp
, Typ
);
1039 -- In case of functions check also the result type
1041 if Ekind
(Subp
) = E_Function
then
1042 if Is_Access_Type
(Etype
(Subp
)) then
1043 Typ
:= Designated_Type
(Etype
(Subp
));
1045 Typ
:= Etype
(Subp
);
1048 -- The following should be better commented, especially since
1049 -- we just added several new conditions here ???
1051 if Comes_From_Source
(Subp
)
1052 and then Is_Interface
(Typ
)
1053 and then not Is_Class_Wide_Type
(Typ
)
1054 and then not Is_Derived_Type
(Typ
)
1055 and then not Is_Generic_Type
(Typ
)
1056 and then not In_Instance
1058 Error_Msg_N
("??declaration of& is too late!", Subp
);
1060 ("\??spec should appear immediately after declaration "
1061 & "of & !", Subp
, Typ
);
1068 -- The subprograms build internally after the freezing point (such as
1069 -- init procs, interface thunks, type support subprograms, and Offset
1070 -- to top functions for accessing interface components in variable
1071 -- size tagged types) are not primitives.
1073 elsif Is_Frozen
(Tagged_Type
)
1074 and then not Comes_From_Source
(Subp
)
1075 and then not Has_Dispatching_Parent
1077 -- Complete decoration of internally built subprograms that override
1078 -- a dispatching primitive. These entities correspond with the
1081 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
1082 -- to override functions of nonabstract null extensions. These
1083 -- primitives were added to the list of primitives of the tagged
1084 -- type by Make_Controlling_Function_Wrappers. However, attribute
1085 -- Is_Dispatching_Operation must be set to true.
1087 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
1090 -- 3. Subprograms associated with stream attributes (built by
1091 -- New_Stream_Subprogram)
1093 if Present
(Old_Subp
)
1094 and then Present
(Overridden_Operation
(Subp
))
1095 and then Is_Dispatching_Operation
(Old_Subp
)
1098 ((Ekind
(Subp
) = E_Function
1099 and then Is_Dispatching_Operation
(Old_Subp
)
1100 and then Is_Null_Extension
(Base_Type
(Etype
(Subp
))))
1102 (Ekind
(Subp
) = E_Procedure
1103 and then Is_Dispatching_Operation
(Old_Subp
)
1104 and then Present
(Alias
(Old_Subp
))
1105 and then Is_Null_Interface_Primitive
1106 (Ultimate_Alias
(Old_Subp
)))
1107 or else Get_TSS_Name
(Subp
) = TSS_Stream_Read
1108 or else Get_TSS_Name
(Subp
) = TSS_Stream_Write
);
1110 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1111 Override_Dispatching_Operation
(Tagged_Type
, Old_Subp
, Subp
);
1112 Set_Is_Dispatching_Operation
(Subp
);
1117 -- The operation may be a child unit, whose scope is the defining
1118 -- package, but which is not a primitive operation of the type.
1120 elsif Is_Child_Unit
(Subp
) then
1123 -- If the subprogram is not defined in a package spec, the only case
1124 -- where it can be a dispatching op is when it overrides an operation
1125 -- before the freezing point of the type.
1127 elsif ((not Is_Package_Or_Generic_Package
(Scope
(Subp
)))
1128 or else In_Package_Body
(Scope
(Subp
)))
1129 and then not Has_Dispatching_Parent
1131 if not Comes_From_Source
(Subp
)
1132 or else (Present
(Old_Subp
) and then not Is_Frozen
(Tagged_Type
))
1136 -- If the type is already frozen, the overriding is not allowed
1137 -- except when Old_Subp is not a dispatching operation (which can
1138 -- occur when Old_Subp was inherited by an untagged type). However,
1139 -- a body with no previous spec freezes the type *after* its
1140 -- declaration, and therefore is a legal overriding (unless the type
1141 -- has already been frozen). Only the first such body is legal.
1143 elsif Present
(Old_Subp
)
1144 and then Is_Dispatching_Operation
(Old_Subp
)
1146 if Comes_From_Source
(Subp
)
1148 (Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Body
1149 or else Nkind
(Unit_Declaration_Node
(Subp
)) in N_Body_Stub
)
1152 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1153 Decl_Item
: Node_Id
;
1156 -- ??? The checks here for whether the type has been frozen
1157 -- prior to the new body are not complete. It's not simple
1158 -- to check frozenness at this point since the body has
1159 -- already caused the type to be prematurely frozen in
1160 -- Analyze_Declarations, but we're forced to recheck this
1161 -- here because of the odd rule interpretation that allows
1162 -- the overriding if the type wasn't frozen prior to the
1163 -- body. The freezing action should probably be delayed
1164 -- until after the spec is seen, but that's a tricky
1165 -- change to the delicate freezing code.
1167 -- Look at each declaration following the type up until the
1168 -- new subprogram body. If any of the declarations is a body
1169 -- then the type has been frozen already so the overriding
1170 -- primitive is illegal.
1172 Decl_Item
:= Next
(Parent
(Tagged_Type
));
1173 while Present
(Decl_Item
)
1174 and then (Decl_Item
/= Subp_Body
)
1176 if Comes_From_Source
(Decl_Item
)
1177 and then (Nkind
(Decl_Item
) in N_Proper_Body
1178 or else Nkind
(Decl_Item
) in N_Body_Stub
)
1180 Error_Msg_N
("overriding of& is too late!", Subp
);
1182 ("\spec should appear immediately after the type!",
1190 -- If the subprogram doesn't follow in the list of
1191 -- declarations including the type then the type has
1192 -- definitely been frozen already and the body is illegal.
1194 if No
(Decl_Item
) then
1195 Error_Msg_N
("overriding of& is too late!", Subp
);
1197 ("\spec should appear immediately after the type!",
1200 elsif Is_Frozen
(Subp
) then
1202 -- The subprogram body declares a primitive operation.
1203 -- If the subprogram is already frozen, we must update
1204 -- its dispatching information explicitly here. The
1205 -- information is taken from the overridden subprogram.
1206 -- We must also generate a cross-reference entry because
1207 -- references to other primitives were already created
1208 -- when type was frozen.
1210 Body_Is_Last_Primitive
:= True;
1212 if Present
(DTC_Entity
(Old_Subp
)) then
1213 Set_DTC_Entity
(Subp
, DTC_Entity
(Old_Subp
));
1214 Set_DT_Position_Value
(Subp
, DT_Position
(Old_Subp
));
1216 if not Restriction_Active
(No_Dispatching_Calls
) then
1217 if Building_Static_DT
(Tagged_Type
) then
1219 -- If the static dispatch table has not been
1220 -- built then there is nothing else to do now;
1221 -- otherwise we notify that we cannot build the
1222 -- static dispatch table.
1224 if Has_Dispatch_Table
(Tagged_Type
) then
1226 ("overriding of& is too late for building "
1227 & " static dispatch tables!", Subp
);
1229 ("\spec should appear immediately after "
1230 & "the type!", Subp
);
1233 -- No code required to register primitives in VM
1236 elsif not Tagged_Type_Expansion
then
1240 Insert_Actions_After
(Subp_Body
,
1241 Register_Primitive
(Sloc
(Subp_Body
),
1245 -- Indicate that this is an overriding operation,
1246 -- and replace the overridden entry in the list of
1247 -- primitive operations, which is used for xref
1248 -- generation subsequently.
1250 Generate_Reference
(Tagged_Type
, Subp
, 'P', False);
1251 Override_Dispatching_Operation
1252 (Tagged_Type
, Old_Subp
, Subp
);
1259 Error_Msg_N
("overriding of& is too late!", Subp
);
1261 ("\subprogram spec should appear immediately after the type!",
1265 -- If the type is not frozen yet and we are not in the overriding
1266 -- case it looks suspiciously like an attempt to define a primitive
1267 -- operation, which requires the declaration to be in a package spec
1268 -- (3.2.3(6)). Only report cases where the type and subprogram are
1269 -- in the same declaration list (by checking the enclosing parent
1270 -- declarations), to avoid spurious warnings on subprograms in
1271 -- instance bodies when the type is declared in the instance spec
1272 -- but hasn't been frozen by the instance body.
1274 elsif not Is_Frozen
(Tagged_Type
)
1275 and then In_Same_List
(Parent
(Tagged_Type
), Parent
(Parent
(Subp
)))
1278 ("??not dispatching (must be defined in a package spec)", Subp
);
1281 -- When the type is frozen, it is legitimate to define a new
1282 -- non-primitive operation.
1288 -- Now, we are sure that the scope is a package spec. If the subprogram
1289 -- is declared after the freezing point of the type that's an error
1291 elsif Is_Frozen
(Tagged_Type
) and then not Has_Dispatching_Parent
then
1292 Error_Msg_N
("this primitive operation is declared too late", Subp
);
1294 ("??no primitive operations for& after this line",
1295 Freeze_Node
(Tagged_Type
),
1300 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1302 Ovr_Subp
:= Old_Subp
;
1304 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1305 -- overridden by Subp. This only applies to source subprograms, and
1306 -- their declaration must carry an explicit overriding indicator.
1309 and then Ada_Version
>= Ada_2012
1310 and then Comes_From_Source
(Subp
)
1312 Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
1314 Ovr_Subp
:= Find_Hidden_Overridden_Primitive
(Subp
);
1316 -- Verify that the proper overriding indicator has been supplied.
1318 if Present
(Ovr_Subp
)
1320 not Must_Override
(Specification
(Unit_Declaration_Node
(Subp
)))
1322 Error_Msg_NE
("missing overriding indicator for&", Subp
, Subp
);
1326 -- Now it should be a correct primitive operation, put it in the list
1328 if Present
(Ovr_Subp
) then
1330 -- If the type has interfaces we complete this check after we set
1331 -- attribute Is_Dispatching_Operation.
1333 Check_Subtype_Conformant
(Subp
, Ovr_Subp
);
1335 -- A primitive operation with the name of a primitive controlled
1336 -- operation does not override a non-visible overriding controlled
1337 -- operation, i.e. one declared in a private part when the full
1338 -- view of a type is controlled. Conversely, it will override a
1339 -- visible operation that may be declared in a partial view when
1340 -- the full view is controlled.
1342 if Nam_In
(Chars
(Subp
), Name_Initialize
, Name_Adjust
, Name_Finalize
)
1343 and then Is_Controlled
(Tagged_Type
)
1344 and then not Is_Visibly_Controlled
(Tagged_Type
)
1345 and then not Is_Inherited_Public_Operation
(Ovr_Subp
)
1347 Set_Overridden_Operation
(Subp
, Empty
);
1349 -- If the subprogram specification carries an overriding
1350 -- indicator, no need for the warning: it is either redundant,
1351 -- or else an error will be reported.
1353 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
1355 (Must_Override
(Parent
(Subp
))
1356 or else Must_Not_Override
(Parent
(Subp
)))
1360 -- Here we need the warning
1364 ("operation does not override inherited&??", Subp
, Subp
);
1368 Override_Dispatching_Operation
(Tagged_Type
, Ovr_Subp
, Subp
);
1370 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1371 -- that covers abstract interface subprograms we must register it
1372 -- in all the secondary dispatch tables associated with abstract
1373 -- interfaces. We do this now only if not building static tables,
1374 -- nor when the expander is inactive (we avoid trying to register
1375 -- primitives in semantics-only mode, since the type may not have
1376 -- an associated dispatch table). Otherwise the patch code is
1377 -- emitted after those tables are built, to prevent access before
1378 -- elaboration in gigi.
1380 if Body_Is_Last_Primitive
and then Expander_Active
then
1382 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1387 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1388 while Present
(Elmt
) loop
1389 Prim
:= Node
(Elmt
);
1391 -- No code required to register primitives in VM targets
1393 if Present
(Alias
(Prim
))
1394 and then Present
(Interface_Alias
(Prim
))
1395 and then Alias
(Prim
) = Subp
1396 and then not Building_Static_DT
(Tagged_Type
)
1397 and then Tagged_Type_Expansion
1399 Insert_Actions_After
(Subp_Body
,
1400 Register_Primitive
(Sloc
(Subp_Body
), Prim
=> Prim
));
1406 -- Redisplay the contents of the updated dispatch table
1408 if Debug_Flag_ZZ
then
1409 Write_Str
("Late overriding: ");
1410 Write_DT
(Tagged_Type
);
1416 -- If the tagged type is a concurrent type then we must be compiling
1417 -- with no code generation (we are either compiling a generic unit or
1418 -- compiling under -gnatc mode) because we have previously tested that
1419 -- no serious errors has been reported. In this case we do not add the
1420 -- primitive to the list of primitives of Tagged_Type but we leave the
1421 -- primitive decorated as a dispatching operation to be able to analyze
1422 -- and report errors associated with the Object.Operation notation.
1424 elsif Is_Concurrent_Type
(Tagged_Type
) then
1425 pragma Assert
(not Expander_Active
);
1427 -- Attach operation to list of primitives of the synchronized type
1428 -- itself, for ASIS use.
1430 Append_Elmt
(Subp
, Direct_Primitive_Operations
(Tagged_Type
));
1432 -- If no old subprogram, then we add this as a dispatching operation,
1433 -- but we avoid doing this if an error was posted, to prevent annoying
1436 elsif not Error_Posted
(Subp
) then
1437 Add_Dispatching_Operation
(Tagged_Type
, Subp
);
1440 Set_Is_Dispatching_Operation
(Subp
, True);
1442 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1443 -- subtype conformance against all the interfaces covered by this
1446 if Present
(Ovr_Subp
)
1447 and then Has_Interfaces
(Tagged_Type
)
1450 Ifaces_List
: Elist_Id
;
1451 Iface_Elmt
: Elmt_Id
;
1452 Iface_Prim_Elmt
: Elmt_Id
;
1453 Iface_Prim
: Entity_Id
;
1454 Ret_Typ
: Entity_Id
;
1457 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1459 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1460 while Present
(Iface_Elmt
) loop
1461 if not Is_Ancestor
(Node
(Iface_Elmt
), Tagged_Type
) then
1463 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
1464 while Present
(Iface_Prim_Elmt
) loop
1465 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
1467 if Is_Interface_Conformant
1468 (Tagged_Type
, Iface_Prim
, Subp
)
1470 -- Handle procedures, functions whose return type
1471 -- matches, or functions not returning interfaces
1473 if Ekind
(Subp
) = E_Procedure
1474 or else Etype
(Iface_Prim
) = Etype
(Subp
)
1475 or else not Is_Interface
(Etype
(Iface_Prim
))
1477 Check_Subtype_Conformant
1479 Old_Id
=> Iface_Prim
,
1481 Skip_Controlling_Formals
=> True);
1483 -- Handle functions returning interfaces
1485 elsif Implements_Interface
1486 (Etype
(Subp
), Etype
(Iface_Prim
))
1488 -- Temporarily force both entities to return the
1489 -- same type. Required because Subtype_Conformant
1490 -- does not handle this case.
1492 Ret_Typ
:= Etype
(Iface_Prim
);
1493 Set_Etype
(Iface_Prim
, Etype
(Subp
));
1495 Check_Subtype_Conformant
1497 Old_Id
=> Iface_Prim
,
1499 Skip_Controlling_Formals
=> True);
1501 Set_Etype
(Iface_Prim
, Ret_Typ
);
1505 Next_Elmt
(Iface_Prim_Elmt
);
1509 Next_Elmt
(Iface_Elmt
);
1514 if not Body_Is_Last_Primitive
then
1515 Set_DT_Position_Value
(Subp
, No_Uint
);
1517 elsif Has_Controlled_Component
(Tagged_Type
)
1518 and then Nam_In
(Chars
(Subp
), Name_Initialize
,
1521 Name_Finalize_Address
)
1524 F_Node
: constant Node_Id
:= Freeze_Node
(Tagged_Type
);
1528 Old_Spec
: Entity_Id
;
1530 C_Names
: constant array (1 .. 4) of Name_Id
:=
1534 Name_Finalize_Address
);
1536 D_Names
: constant array (1 .. 4) of TSS_Name_Type
:=
1537 (TSS_Deep_Initialize
,
1540 TSS_Finalize_Address
);
1543 -- Remove previous controlled function which was constructed and
1544 -- analyzed when the type was frozen. This requires removing the
1545 -- body of the redefined primitive, as well as its specification
1546 -- if needed (there is no spec created for Deep_Initialize, see
1547 -- exp_ch3.adb). We must also dismantle the exception information
1548 -- that may have been generated for it when front end zero-cost
1549 -- tables are enabled.
1551 for J
in D_Names
'Range loop
1552 Old_P
:= TSS
(Tagged_Type
, D_Names
(J
));
1555 and then Chars
(Subp
) = C_Names
(J
)
1557 Old_Bod
:= Unit_Declaration_Node
(Old_P
);
1559 Set_Is_Eliminated
(Old_P
);
1560 Set_Scope
(Old_P
, Scope
(Current_Scope
));
1562 if Nkind
(Old_Bod
) = N_Subprogram_Body
1563 and then Present
(Corresponding_Spec
(Old_Bod
))
1565 Old_Spec
:= Corresponding_Spec
(Old_Bod
);
1566 Set_Has_Completion
(Old_Spec
, False);
1571 Build_Late_Proc
(Tagged_Type
, Chars
(Subp
));
1573 -- The new operation is added to the actions of the freeze node
1574 -- for the type, but this node has already been analyzed, so we
1575 -- must retrieve and analyze explicitly the new body.
1578 and then Present
(Actions
(F_Node
))
1580 Decl
:= Last
(Actions
(F_Node
));
1585 end Check_Dispatching_Operation
;
1587 ------------------------------------------
1588 -- Check_Operation_From_Incomplete_Type --
1589 ------------------------------------------
1591 procedure Check_Operation_From_Incomplete_Type
1595 Full
: constant Entity_Id
:= Full_View
(Typ
);
1596 Parent_Typ
: constant Entity_Id
:= Etype
(Full
);
1597 Old_Prim
: constant Elist_Id
:= Primitive_Operations
(Parent_Typ
);
1598 New_Prim
: constant Elist_Id
:= Primitive_Operations
(Full
);
1600 Prev
: Elmt_Id
:= No_Elmt
;
1602 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean;
1603 -- Check that Subp has profile of an operation derived from Parent_Subp.
1604 -- Subp must have a parameter or result type that is Typ or an access
1605 -- parameter or access result type that designates Typ.
1611 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean is
1615 if Chars
(Parent_Subp
) /= Chars
(Subp
) then
1619 -- Check that the type of controlling formals is derived from the
1620 -- parent subprogram's controlling formal type (or designated type
1621 -- if the formal type is an anonymous access type).
1623 F1
:= First_Formal
(Parent_Subp
);
1624 F2
:= First_Formal
(Subp
);
1625 while Present
(F1
) and then Present
(F2
) loop
1626 if Ekind
(Etype
(F1
)) = E_Anonymous_Access_Type
then
1627 if Ekind
(Etype
(F2
)) /= E_Anonymous_Access_Type
then
1629 elsif Designated_Type
(Etype
(F1
)) = Parent_Typ
1630 and then Designated_Type
(Etype
(F2
)) /= Full
1635 elsif Ekind
(Etype
(F2
)) = E_Anonymous_Access_Type
then
1638 elsif Etype
(F1
) = Parent_Typ
and then Etype
(F2
) /= Full
then
1646 -- Check that a controlling result type is derived from the parent
1647 -- subprogram's result type (or designated type if the result type
1648 -- is an anonymous access type).
1650 if Ekind
(Parent_Subp
) = E_Function
then
1651 if Ekind
(Subp
) /= E_Function
then
1654 elsif Ekind
(Etype
(Parent_Subp
)) = E_Anonymous_Access_Type
then
1655 if Ekind
(Etype
(Subp
)) /= E_Anonymous_Access_Type
then
1658 elsif Designated_Type
(Etype
(Parent_Subp
)) = Parent_Typ
1659 and then Designated_Type
(Etype
(Subp
)) /= Full
1664 elsif Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
then
1667 elsif Etype
(Parent_Subp
) = Parent_Typ
1668 and then Etype
(Subp
) /= Full
1673 elsif Ekind
(Subp
) = E_Function
then
1677 return No
(F1
) and then No
(F2
);
1680 -- Start of processing for Check_Operation_From_Incomplete_Type
1683 -- The operation may override an inherited one, or may be a new one
1684 -- altogether. The inherited operation will have been hidden by the
1685 -- current one at the point of the type derivation, so it does not
1686 -- appear in the list of primitive operations of the type. We have to
1687 -- find the proper place of insertion in the list of primitive opera-
1688 -- tions by iterating over the list for the parent type.
1690 Op1
:= First_Elmt
(Old_Prim
);
1691 Op2
:= First_Elmt
(New_Prim
);
1692 while Present
(Op1
) and then Present
(Op2
) loop
1693 if Derives_From
(Node
(Op1
)) then
1696 -- Avoid adding it to the list of primitives if already there
1698 if Node
(Op2
) /= Subp
then
1699 Prepend_Elmt
(Subp
, New_Prim
);
1703 Insert_Elmt_After
(Subp
, Prev
);
1714 -- Operation is a new primitive
1716 Append_Elmt
(Subp
, New_Prim
);
1717 end Check_Operation_From_Incomplete_Type
;
1719 ---------------------------------------
1720 -- Check_Operation_From_Private_View --
1721 ---------------------------------------
1723 procedure Check_Operation_From_Private_View
(Subp
, Old_Subp
: Entity_Id
) is
1724 Tagged_Type
: Entity_Id
;
1727 if Is_Dispatching_Operation
(Alias
(Subp
)) then
1728 Set_Scope
(Subp
, Current_Scope
);
1729 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1731 -- Add Old_Subp to primitive operations if not already present
1733 if Present
(Tagged_Type
) and then Is_Tagged_Type
(Tagged_Type
) then
1734 Append_Unique_Elmt
(Old_Subp
, Primitive_Operations
(Tagged_Type
));
1736 -- If Old_Subp isn't already marked as dispatching then this is
1737 -- the case of an operation of an untagged private type fulfilled
1738 -- by a tagged type that overrides an inherited dispatching
1739 -- operation, so we set the necessary dispatching attributes here.
1741 if not Is_Dispatching_Operation
(Old_Subp
) then
1743 -- If the untagged type has no discriminants, and the full
1744 -- view is constrained, there will be a spurious mismatch of
1745 -- subtypes on the controlling arguments, because the tagged
1746 -- type is the internal base type introduced in the derivation.
1747 -- Use the original type to verify conformance, rather than the
1750 if not Comes_From_Source
(Tagged_Type
)
1751 and then Has_Discriminants
(Tagged_Type
)
1757 Formal
:= First_Formal
(Old_Subp
);
1758 while Present
(Formal
) loop
1759 if Tagged_Type
= Base_Type
(Etype
(Formal
)) then
1760 Tagged_Type
:= Etype
(Formal
);
1763 Next_Formal
(Formal
);
1767 if Tagged_Type
= Base_Type
(Etype
(Old_Subp
)) then
1768 Tagged_Type
:= Etype
(Old_Subp
);
1772 Check_Controlling_Formals
(Tagged_Type
, Old_Subp
);
1773 Set_Is_Dispatching_Operation
(Old_Subp
, True);
1774 Set_DT_Position_Value
(Old_Subp
, No_Uint
);
1777 -- If the old subprogram is an explicit renaming of some other
1778 -- entity, it is not overridden by the inherited subprogram.
1779 -- Otherwise, update its alias and other attributes.
1781 if Present
(Alias
(Old_Subp
))
1782 and then Nkind
(Unit_Declaration_Node
(Old_Subp
)) /=
1783 N_Subprogram_Renaming_Declaration
1785 Set_Alias
(Old_Subp
, Alias
(Subp
));
1787 -- The derived subprogram should inherit the abstractness of
1788 -- the parent subprogram (except in the case of a function
1789 -- returning the type). This sets the abstractness properly
1790 -- for cases where a private extension may have inherited an
1791 -- abstract operation, but the full type is derived from a
1792 -- descendant type and inherits a nonabstract version.
1794 if Etype
(Subp
) /= Tagged_Type
then
1795 Set_Is_Abstract_Subprogram
1796 (Old_Subp
, Is_Abstract_Subprogram
(Alias
(Subp
)));
1801 end Check_Operation_From_Private_View
;
1803 --------------------------
1804 -- Find_Controlling_Arg --
1805 --------------------------
1807 function Find_Controlling_Arg
(N
: Node_Id
) return Node_Id
is
1808 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
1812 if Nkind
(Orig_Node
) = N_Qualified_Expression
then
1813 return Find_Controlling_Arg
(Expression
(Orig_Node
));
1816 -- Dispatching on result case. If expansion is disabled, the node still
1817 -- has the structure of a function call. However, if the function name
1818 -- is an operator and the call was given in infix form, the original
1819 -- node has no controlling result and we must examine the current node.
1821 if Nkind
(N
) = N_Function_Call
1822 and then Present
(Controlling_Argument
(N
))
1823 and then Has_Controlling_Result
(Entity
(Name
(N
)))
1825 return Controlling_Argument
(N
);
1827 -- If expansion is enabled, the call may have been transformed into
1828 -- an indirect call, and we need to recover the original node.
1830 elsif Nkind
(Orig_Node
) = N_Function_Call
1831 and then Present
(Controlling_Argument
(Orig_Node
))
1832 and then Has_Controlling_Result
(Entity
(Name
(Orig_Node
)))
1834 return Controlling_Argument
(Orig_Node
);
1836 -- Type conversions are dynamically tagged if the target type, or its
1837 -- designated type, are classwide. An interface conversion expands into
1838 -- a dereference, so test must be performed on the original node.
1840 elsif Nkind
(Orig_Node
) = N_Type_Conversion
1841 and then Nkind
(N
) = N_Explicit_Dereference
1842 and then Is_Controlling_Actual
(N
)
1845 Target_Type
: constant Entity_Id
:=
1846 Entity
(Subtype_Mark
(Orig_Node
));
1849 if Is_Class_Wide_Type
(Target_Type
) then
1852 elsif Is_Access_Type
(Target_Type
)
1853 and then Is_Class_Wide_Type
(Designated_Type
(Target_Type
))
1864 elsif Is_Controlling_Actual
(N
)
1866 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1867 and then Is_Controlling_Actual
(Parent
(N
)))
1871 if Is_Access_Type
(Typ
) then
1873 -- In the case of an Access attribute, use the type of the prefix,
1874 -- since in the case of an actual for an access parameter, the
1875 -- attribute's type may be of a specific designated type, even
1876 -- though the prefix type is class-wide.
1878 if Nkind
(N
) = N_Attribute_Reference
then
1879 Typ
:= Etype
(Prefix
(N
));
1881 -- An allocator is dispatching if the type of qualified expression
1882 -- is class_wide, in which case this is the controlling type.
1884 elsif Nkind
(Orig_Node
) = N_Allocator
1885 and then Nkind
(Expression
(Orig_Node
)) = N_Qualified_Expression
1887 Typ
:= Etype
(Expression
(Orig_Node
));
1889 Typ
:= Designated_Type
(Typ
);
1893 if Is_Class_Wide_Type
(Typ
)
1895 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1896 and then Is_Access_Type
(Etype
(N
))
1897 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(N
))))
1904 end Find_Controlling_Arg
;
1906 ---------------------------
1907 -- Find_Dispatching_Type --
1908 ---------------------------
1910 function Find_Dispatching_Type
(Subp
: Entity_Id
) return Entity_Id
is
1911 A_Formal
: Entity_Id
;
1913 Ctrl_Type
: Entity_Id
;
1916 if Ekind_In
(Subp
, E_Function
, E_Procedure
)
1917 and then Present
(DTC_Entity
(Subp
))
1919 return Scope
(DTC_Entity
(Subp
));
1921 -- For subprograms internally generated by derivations of tagged types
1922 -- use the alias subprogram as a reference to locate the dispatching
1925 elsif not Comes_From_Source
(Subp
)
1926 and then Present
(Alias
(Subp
))
1927 and then Is_Dispatching_Operation
(Alias
(Subp
))
1929 if Ekind
(Alias
(Subp
)) = E_Function
1930 and then Has_Controlling_Result
(Alias
(Subp
))
1932 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1935 Formal
:= First_Formal
(Subp
);
1936 A_Formal
:= First_Formal
(Alias
(Subp
));
1937 while Present
(A_Formal
) loop
1938 if Is_Controlling_Formal
(A_Formal
) then
1939 return Check_Controlling_Type
(Etype
(Formal
), Subp
);
1942 Next_Formal
(Formal
);
1943 Next_Formal
(A_Formal
);
1946 pragma Assert
(False);
1953 Formal
:= First_Formal
(Subp
);
1954 while Present
(Formal
) loop
1955 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
1957 if Present
(Ctrl_Type
) then
1961 Next_Formal
(Formal
);
1964 -- The subprogram may also be dispatching on result
1966 if Present
(Etype
(Subp
)) then
1967 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1971 pragma Assert
(not Is_Dispatching_Operation
(Subp
));
1973 end Find_Dispatching_Type
;
1975 --------------------------------------
1976 -- Find_Hidden_Overridden_Primitive --
1977 --------------------------------------
1979 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
1981 Tag_Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
1983 Orig_Prim
: Entity_Id
;
1985 Vis_List
: Elist_Id
;
1988 -- This Ada 2012 rule applies only for type extensions or private
1989 -- extensions, where the parent type is not in a parent unit, and
1990 -- where an operation is never declared but still inherited.
1993 or else not Is_Record_Type
(Tag_Typ
)
1994 or else Etype
(Tag_Typ
) = Tag_Typ
1995 or else In_Open_Scopes
(Scope
(Etype
(Tag_Typ
)))
2000 -- Collect the list of visible ancestor of the tagged type
2002 Vis_List
:= Visible_Ancestors
(Tag_Typ
);
2004 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2005 while Present
(Elmt
) loop
2006 Prim
:= Node
(Elmt
);
2008 -- Find an inherited hidden dispatching primitive with the name of S
2009 -- and a type-conformant profile.
2011 if Present
(Alias
(Prim
))
2012 and then Is_Hidden
(Alias
(Prim
))
2013 and then Find_Dispatching_Type
(Alias
(Prim
)) /= Tag_Typ
2014 and then Primitive_Names_Match
(S
, Prim
)
2015 and then Type_Conformant
(S
, Prim
)
2018 Vis_Ancestor
: Elmt_Id
;
2022 -- The original corresponding operation of Prim must be an
2023 -- operation of a visible ancestor of the dispatching type S,
2024 -- and the original corresponding operation of S2 must be
2027 Orig_Prim
:= Original_Corresponding_Operation
(Prim
);
2029 if Orig_Prim
/= Prim
2030 and then Is_Immediately_Visible
(Orig_Prim
)
2032 Vis_Ancestor
:= First_Elmt
(Vis_List
);
2033 while Present
(Vis_Ancestor
) loop
2035 First_Elmt
(Primitive_Operations
(Node
(Vis_Ancestor
)));
2036 while Present
(Elmt
) loop
2037 if Node
(Elmt
) = Orig_Prim
then
2038 Set_Overridden_Operation
(S
, Prim
);
2039 Set_Alias
(Prim
, Orig_Prim
);
2046 Next_Elmt
(Vis_Ancestor
);
2056 end Find_Hidden_Overridden_Primitive
;
2058 ---------------------------------------
2059 -- Find_Primitive_Covering_Interface --
2060 ---------------------------------------
2062 function Find_Primitive_Covering_Interface
2063 (Tagged_Type
: Entity_Id
;
2064 Iface_Prim
: Entity_Id
) return Entity_Id
2070 pragma Assert
(Is_Interface
(Find_Dispatching_Type
(Iface_Prim
))
2071 or else (Present
(Alias
(Iface_Prim
))
2074 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
2076 -- Search in the homonym chain. Done to speed up locating visible
2077 -- entities and required to catch primitives associated with the partial
2078 -- view of private types when processing the corresponding full view.
2080 E
:= Current_Entity
(Iface_Prim
);
2081 while Present
(E
) loop
2082 if Is_Subprogram
(E
)
2083 and then Is_Dispatching_Operation
(E
)
2084 and then Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
)
2092 -- Search in the list of primitives of the type. Required to locate
2093 -- the covering primitive if the covering primitive is not visible
2094 -- (for example, non-visible inherited primitive of private type).
2096 El
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2097 while Present
(El
) loop
2100 -- Keep separate the management of internal entities that link
2101 -- primitives with interface primitives from tagged type primitives.
2103 if No
(Interface_Alias
(E
)) then
2104 if Present
(Alias
(E
)) then
2106 -- This interface primitive has not been covered yet
2108 if Alias
(E
) = Iface_Prim
then
2111 -- The covering primitive was inherited
2113 elsif Overridden_Operation
(Ultimate_Alias
(E
))
2120 -- Check if E covers the interface primitive (includes case in
2121 -- which E is an inherited private primitive).
2123 if Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
) then
2127 -- Use the internal entity that links the interface primitive with
2128 -- the covering primitive to locate the entity.
2130 elsif Interface_Alias
(E
) = Iface_Prim
then
2140 end Find_Primitive_Covering_Interface
;
2142 ---------------------------
2143 -- Inherited_Subprograms --
2144 ---------------------------
2146 function Inherited_Subprograms
2148 No_Interfaces
: Boolean := False;
2149 Interfaces_Only
: Boolean := False;
2150 One_Only
: Boolean := False) return Subprogram_List
2152 Result
: Subprogram_List
(1 .. 6000);
2153 -- 6000 here is intended to be infinity. We could use an expandable
2154 -- table, but it would be awfully heavy, and there is no way that we
2155 -- could reasonably exceed this value.
2158 -- Number of entries in Result
2160 Parent_Op
: Entity_Id
;
2161 -- Traverses the Overridden_Operation chain
2163 procedure Store_IS
(E
: Entity_Id
);
2164 -- Stores E in Result if not already stored
2170 procedure Store_IS
(E
: Entity_Id
) is
2172 for J
in 1 .. N
loop
2173 if E
= Result
(J
) then
2182 -- Start of processing for Inherited_Subprograms
2185 pragma Assert
(not (No_Interfaces
and Interfaces_Only
));
2187 if Present
(S
) and then Is_Dispatching_Operation
(S
) then
2189 -- Deal with direct inheritance
2191 if not Interfaces_Only
then
2194 Parent_Op
:= Overridden_Operation
(Parent_Op
);
2195 exit when No
(Parent_Op
)
2199 Is_Interface
(Find_Dispatching_Type
(Parent_Op
)));
2201 if Is_Subprogram_Or_Generic_Subprogram
(Parent_Op
) then
2202 Store_IS
(Parent_Op
);
2211 -- Now deal with interfaces
2213 if not No_Interfaces
then
2215 Tag_Typ
: Entity_Id
;
2220 Tag_Typ
:= Find_Dispatching_Type
(S
);
2222 -- In the presence of limited views there may be no visible
2223 -- dispatching type. Primitives will be inherited when non-
2224 -- limited view is frozen.
2226 if No
(Tag_Typ
) then
2227 return Result
(1 .. 0);
2230 if Is_Concurrent_Type
(Tag_Typ
) then
2231 Tag_Typ
:= Corresponding_Record_Type
(Tag_Typ
);
2234 -- Search primitive operations of dispatching type
2236 if Present
(Tag_Typ
)
2237 and then Present
(Primitive_Operations
(Tag_Typ
))
2239 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2240 while Present
(Elmt
) loop
2241 Prim
:= Node
(Elmt
);
2243 -- The following test eliminates some odd cases in which
2244 -- Ekind (Prim) is Void, to be investigated further ???
2246 if not Is_Subprogram_Or_Generic_Subprogram
(Prim
) then
2249 -- For [generic] subprogram, look at interface alias
2251 elsif Present
(Interface_Alias
(Prim
))
2252 and then Alias
(Prim
) = S
2254 -- We have found a primitive covered by S
2256 Store_IS
(Interface_Alias
(Prim
));
2272 return Result
(1 .. N
);
2273 end Inherited_Subprograms
;
2275 ---------------------------
2276 -- Is_Dynamically_Tagged --
2277 ---------------------------
2279 function Is_Dynamically_Tagged
(N
: Node_Id
) return Boolean is
2281 if Nkind
(N
) = N_Error
then
2284 elsif Present
(Find_Controlling_Arg
(N
)) then
2287 -- Special cases: entities, and calls that dispatch on result
2289 elsif Is_Entity_Name
(N
) then
2290 return Is_Class_Wide_Type
(Etype
(N
));
2292 elsif Nkind
(N
) = N_Function_Call
2293 and then Is_Class_Wide_Type
(Etype
(N
))
2297 -- Otherwise check whether call has controlling argument
2302 end Is_Dynamically_Tagged
;
2304 ---------------------------------
2305 -- Is_Null_Interface_Primitive --
2306 ---------------------------------
2308 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean is
2310 return Comes_From_Source
(E
)
2311 and then Is_Dispatching_Operation
(E
)
2312 and then Ekind
(E
) = E_Procedure
2313 and then Null_Present
(Parent
(E
))
2314 and then Is_Interface
(Find_Dispatching_Type
(E
));
2315 end Is_Null_Interface_Primitive
;
2317 -----------------------------------
2318 -- Is_Inherited_Public_Operation --
2319 -----------------------------------
2321 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean is
2322 Prim
: constant Entity_Id
:= Alias
(Op
);
2323 Scop
: constant Entity_Id
:= Scope
(Prim
);
2324 Pack_Decl
: Node_Id
;
2327 if Comes_From_Source
(Prim
) and then Ekind
(Scop
) = E_Package
then
2328 Pack_Decl
:= Unit_Declaration_Node
(Scop
);
2329 return Nkind
(Pack_Decl
) = N_Package_Declaration
2330 and then List_Containing
(Unit_Declaration_Node
(Prim
)) =
2331 Visible_Declarations
(Specification
(Pack_Decl
));
2336 end Is_Inherited_Public_Operation
;
2338 ------------------------------
2339 -- Is_Overriding_Subprogram --
2340 ------------------------------
2342 function Is_Overriding_Subprogram
(E
: Entity_Id
) return Boolean is
2343 Inherited
: constant Subprogram_List
:=
2344 Inherited_Subprograms
(E
, One_Only
=> True);
2346 return Inherited
'Length > 0;
2347 end Is_Overriding_Subprogram
;
2349 --------------------------
2350 -- Is_Tag_Indeterminate --
2351 --------------------------
2353 function Is_Tag_Indeterminate
(N
: Node_Id
) return Boolean is
2356 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
2359 if Nkind
(Orig_Node
) = N_Function_Call
2360 and then Is_Entity_Name
(Name
(Orig_Node
))
2362 Nam
:= Entity
(Name
(Orig_Node
));
2364 if not Has_Controlling_Result
(Nam
) then
2367 -- The function may have a controlling result, but if the return type
2368 -- is not visibly tagged, then this is not tag-indeterminate.
2370 elsif Is_Access_Type
(Etype
(Nam
))
2371 and then not Is_Tagged_Type
(Designated_Type
(Etype
(Nam
)))
2375 -- An explicit dereference means that the call has already been
2376 -- expanded and there is no tag to propagate.
2378 elsif Nkind
(N
) = N_Explicit_Dereference
then
2381 -- If there are no actuals, the call is tag-indeterminate
2383 elsif No
(Parameter_Associations
(Orig_Node
)) then
2387 Actual
:= First_Actual
(Orig_Node
);
2388 while Present
(Actual
) loop
2389 if Is_Controlling_Actual
(Actual
)
2390 and then not Is_Tag_Indeterminate
(Actual
)
2392 -- One operand is dispatching
2397 Next_Actual
(Actual
);
2403 elsif Nkind
(Orig_Node
) = N_Qualified_Expression
then
2404 return Is_Tag_Indeterminate
(Expression
(Orig_Node
));
2406 -- Case of a call to the Input attribute (possibly rewritten), which is
2407 -- always tag-indeterminate except when its prefix is a Class attribute.
2409 elsif Nkind
(Orig_Node
) = N_Attribute_Reference
2411 Get_Attribute_Id
(Attribute_Name
(Orig_Node
)) = Attribute_Input
2412 and then Nkind
(Prefix
(Orig_Node
)) /= N_Attribute_Reference
2416 -- In Ada 2005, a function that returns an anonymous access type can be
2417 -- dispatching, and the dereference of a call to such a function can
2418 -- also be tag-indeterminate if the call itself is.
2420 elsif Nkind
(Orig_Node
) = N_Explicit_Dereference
2421 and then Ada_Version
>= Ada_2005
2423 return Is_Tag_Indeterminate
(Prefix
(Orig_Node
));
2428 end Is_Tag_Indeterminate
;
2430 ------------------------------------
2431 -- Override_Dispatching_Operation --
2432 ------------------------------------
2434 procedure Override_Dispatching_Operation
2435 (Tagged_Type
: Entity_Id
;
2436 Prev_Op
: Entity_Id
;
2438 Is_Wrapper
: Boolean := False)
2444 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2445 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2447 if No_Return
(Prev_Op
) and then not No_Return
(New_Op
) then
2448 Error_Msg_N
("procedure & must have No_Return pragma", New_Op
);
2449 Error_Msg_N
("\since overridden procedure has No_Return", New_Op
);
2452 -- If there is no previous operation to override, the type declaration
2453 -- was malformed, and an error must have been emitted already.
2455 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2456 while Present
(Elmt
) and then Node
(Elmt
) /= Prev_Op
loop
2464 -- The location of entities that come from source in the list of
2465 -- primitives of the tagged type must follow their order of occurrence
2466 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2467 -- primitive of an interface that is not implemented by the parents of
2468 -- this tagged type (that is, it is an alias of an interface primitive
2469 -- generated by Derive_Interface_Progenitors), then we must append the
2470 -- new entity at the end of the list of primitives.
2472 if Present
(Alias
(Prev_Op
))
2473 and then Etype
(Tagged_Type
) /= Tagged_Type
2474 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Prev_Op
)))
2475 and then not Is_Ancestor
(Find_Dispatching_Type
(Alias
(Prev_Op
)),
2476 Tagged_Type
, Use_Full_View
=> True)
2477 and then not Implements_Interface
2478 (Etype
(Tagged_Type
),
2479 Find_Dispatching_Type
(Alias
(Prev_Op
)))
2481 Remove_Elmt
(Primitive_Operations
(Tagged_Type
), Elmt
);
2482 Append_Elmt
(New_Op
, Primitive_Operations
(Tagged_Type
));
2484 -- The new primitive replaces the overridden entity. Required to ensure
2485 -- that overriding primitive is assigned the same dispatch table slot.
2488 Replace_Elmt
(Elmt
, New_Op
);
2491 if Ada_Version
>= Ada_2005
and then Has_Interfaces
(Tagged_Type
) then
2493 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2494 -- entities of the overridden primitive to reference New_Op, and
2495 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2496 -- that the new operation is subtype conformant with the interface
2497 -- operations that it implements (for operations inherited from the
2498 -- parent itself, this check is made when building the derived type).
2500 -- Note: This code is executed with internally generated wrappers of
2501 -- functions with controlling result and late overridings.
2503 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2504 while Present
(Elmt
) loop
2505 Prim
:= Node
(Elmt
);
2507 if Prim
= New_Op
then
2510 -- Note: The check on Is_Subprogram protects the frontend against
2511 -- reading attributes in entities that are not yet fully decorated
2513 elsif Is_Subprogram
(Prim
)
2514 and then Present
(Interface_Alias
(Prim
))
2515 and then Alias
(Prim
) = Prev_Op
2517 Set_Alias
(Prim
, New_Op
);
2519 -- No further decoration needed yet for internally generated
2520 -- wrappers of controlling functions since (at this stage)
2521 -- they are not yet decorated.
2523 if not Is_Wrapper
then
2524 Check_Subtype_Conformant
(New_Op
, Prim
);
2526 Set_Is_Abstract_Subprogram
(Prim
,
2527 Is_Abstract_Subprogram
(New_Op
));
2529 -- Ensure that this entity will be expanded to fill the
2530 -- corresponding entry in its dispatch table.
2532 if not Is_Abstract_Subprogram
(Prim
) then
2533 Set_Has_Delayed_Freeze
(Prim
);
2542 if (not Is_Package_Or_Generic_Package
(Current_Scope
))
2543 or else not In_Private_Part
(Current_Scope
)
2545 -- Not a private primitive
2549 else pragma Assert
(Is_Inherited_Operation
(Prev_Op
));
2551 -- Make the overriding operation into an alias of the implicit one.
2552 -- In this fashion a call from outside ends up calling the new body
2553 -- even if non-dispatching, and a call from inside calls the over-
2554 -- riding operation because it hides the implicit one. To indicate
2555 -- that the body of Prev_Op is never called, set its dispatch table
2556 -- entity to Empty. If the overridden operation has a dispatching
2557 -- result, so does the overriding one.
2559 Set_Alias
(Prev_Op
, New_Op
);
2560 Set_DTC_Entity
(Prev_Op
, Empty
);
2561 Set_Has_Controlling_Result
(New_Op
, Has_Controlling_Result
(Prev_Op
));
2564 end Override_Dispatching_Operation
;
2570 procedure Propagate_Tag
(Control
: Node_Id
; Actual
: Node_Id
) is
2571 Call_Node
: Node_Id
;
2575 if Nkind
(Actual
) = N_Function_Call
then
2576 Call_Node
:= Actual
;
2578 elsif Nkind
(Actual
) = N_Identifier
2579 and then Nkind
(Original_Node
(Actual
)) = N_Function_Call
2581 -- Call rewritten as object declaration when stack-checking is
2582 -- enabled. Propagate tag to expression in declaration, which is
2585 Call_Node
:= Expression
(Parent
(Entity
(Actual
)));
2587 -- Ada 2005: If this is a dereference of a call to a function with a
2588 -- dispatching access-result, the tag is propagated when the dereference
2589 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2591 elsif Nkind
(Actual
) = N_Explicit_Dereference
2592 and then Nkind
(Original_Node
(Prefix
(Actual
))) = N_Function_Call
2596 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2597 -- and in that case we can simply return.
2599 elsif Nkind
(Actual
) = N_Attribute_Reference
then
2600 pragma Assert
(Attribute_Name
(Actual
) = Name_Input
);
2604 -- Only other possibilities are parenthesized or qualified expression,
2605 -- or an expander-generated unchecked conversion of a function call to
2606 -- a stream Input attribute.
2609 Call_Node
:= Expression
(Actual
);
2612 -- No action needed if the call has been already expanded
2614 if Is_Expanded_Dispatching_Call
(Call_Node
) then
2618 -- Do not set the Controlling_Argument if already set. This happens in
2619 -- the special case of _Input (see Exp_Attr, case Input).
2621 if No
(Controlling_Argument
(Call_Node
)) then
2622 Set_Controlling_Argument
(Call_Node
, Control
);
2625 Arg
:= First_Actual
(Call_Node
);
2626 while Present
(Arg
) loop
2627 if Is_Tag_Indeterminate
(Arg
) then
2628 Propagate_Tag
(Control
, Arg
);
2634 -- Expansion of dispatching calls is suppressed on VM targets, because
2635 -- the VM back-ends directly handle the generation of dispatching calls
2636 -- and would have to undo any expansion to an indirect call.
2638 if Tagged_Type_Expansion
then
2640 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
2643 Expand_Dispatching_Call
(Call_Node
);
2645 -- If the controlling argument is an interface type and the type
2646 -- of Call_Node differs then we must add an implicit conversion to
2647 -- force displacement of the pointer to the object to reference
2648 -- the secondary dispatch table of the interface.
2650 if Is_Interface
(Etype
(Control
))
2651 and then Etype
(Control
) /= Call_Typ
2653 -- Cannot use Convert_To because the previous call to
2654 -- Expand_Dispatching_Call leaves decorated the Call_Node
2655 -- with the type of Control.
2658 Make_Type_Conversion
(Sloc
(Call_Node
),
2660 New_Occurrence_Of
(Etype
(Control
), Sloc
(Call_Node
)),
2661 Expression
=> Relocate_Node
(Call_Node
)));
2662 Set_Etype
(Call_Node
, Etype
(Control
));
2663 Set_Analyzed
(Call_Node
);
2665 Expand_Interface_Conversion
(Call_Node
);
2669 -- Expansion of a dispatching call results in an indirect call, which in
2670 -- turn causes current values to be killed (see Resolve_Call), so on VM
2671 -- targets we do the call here to ensure consistent warnings between VM
2672 -- and non-VM targets.
2675 Kill_Current_Values
;