1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- ADA.CONTAINERS.HASH_TABLES.GENERIC_OPERATIONS --
9 -- Copyright (C) 2004-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada
.Containers
.Prime_Numbers
;
31 with Ada
.Unchecked_Deallocation
;
33 with System
; use type System
.Address
;
35 package body Ada
.Containers
.Hash_Tables
.Generic_Operations
is
37 pragma Warnings
(Off
, "variable ""Busy*"" is not referenced");
38 pragma Warnings
(Off
, "variable ""Lock*"" is not referenced");
39 -- See comment in Ada.Containers.Helpers
41 type Buckets_Allocation
is access all Buckets_Type
;
42 -- Used for allocation and deallocation (see New_Buckets and Free_Buckets).
43 -- This is necessary because Buckets_Access has an empty storage pool.
49 procedure Adjust
(HT
: in out Hash_Table_Type
) is
50 Src_Buckets
: constant Buckets_Access
:= HT
.Buckets
;
51 N
: constant Count_Type
:= HT
.Length
;
52 Src_Node
: Node_Access
;
53 Dst_Prev
: Node_Access
;
56 -- If the counts are nonzero, execution is technically erroneous, but
57 -- it seems friendly to allow things like concurrent "=" on shared
69 -- Technically it isn't necessary to allocate the exact same length
70 -- buckets array, because our only requirement is that following
71 -- assignment the source and target containers compare equal (that is,
72 -- operator "=" returns True). We can satisfy this requirement with any
73 -- hash table length, but we decide here to match the length of the
74 -- source table. This has the benefit that when iterating, elements of
75 -- the target are delivered in the exact same order as for the source.
77 HT
.Buckets
:= New_Buckets
(Length
=> Src_Buckets
'Length);
79 for Src_Index
in Src_Buckets
'Range loop
80 Src_Node
:= Src_Buckets
(Src_Index
);
82 if Src_Node
/= null then
84 Dst_Node
: constant Node_Access
:= Copy_Node
(Src_Node
);
88 pragma Assert
(Checked_Index
(HT
, Dst_Node
) = Src_Index
);
91 HT
.Buckets
(Src_Index
) := Dst_Node
;
92 HT
.Length
:= HT
.Length
+ 1;
97 Src_Node
:= Next
(Src_Node
);
98 while Src_Node
/= null loop
100 Dst_Node
: constant Node_Access
:= Copy_Node
(Src_Node
);
104 pragma Assert
(Checked_Index
(HT
, Dst_Node
) = Src_Index
);
107 Set_Next
(Node
=> Dst_Prev
, Next
=> Dst_Node
);
108 HT
.Length
:= HT
.Length
+ 1;
110 Dst_Prev
:= Dst_Node
;
113 Src_Node
:= Next
(Src_Node
);
118 pragma Assert
(HT
.Length
= N
);
125 function Capacity
(HT
: Hash_Table_Type
) return Count_Type
is
127 if HT
.Buckets
= null then
131 return HT
.Buckets
'Length;
138 function Checked_Index
139 (Hash_Table
: aliased in out Hash_Table_Type
;
140 Buckets
: Buckets_Type
;
141 Node
: Node_Access
) return Hash_Type
143 Lock
: With_Lock
(Hash_Table
.TC
'Unrestricted_Access);
145 return Index
(Buckets
, Node
);
148 function Checked_Index
149 (Hash_Table
: aliased in out Hash_Table_Type
;
150 Node
: Node_Access
) return Hash_Type
153 return Checked_Index
(Hash_Table
, Hash_Table
.Buckets
.all, Node
);
160 procedure Clear
(HT
: in out Hash_Table_Type
) is
161 Index
: Hash_Type
:= 0;
167 while HT
.Length
> 0 loop
168 while HT
.Buckets
(Index
) = null loop
173 Bucket
: Node_Access
renames HT
.Buckets
(Index
);
177 Bucket
:= Next
(Bucket
);
178 HT
.Length
:= HT
.Length
- 1;
180 exit when Bucket
= null;
186 --------------------------
187 -- Delete_Node_At_Index --
188 --------------------------
190 procedure Delete_Node_At_Index
191 (HT
: in out Hash_Table_Type
;
193 X
: in out Node_Access
)
199 Prev
:= HT
.Buckets
(Indx
);
202 HT
.Buckets
(Indx
) := Next
(Prev
);
203 HT
.Length
:= HT
.Length
- 1;
208 if Checks
and then HT
.Length
= 1 then
209 raise Program_Error
with
210 "attempt to delete node not in its proper hash bucket";
216 if Checks
and then Curr
= null then
217 raise Program_Error
with
218 "attempt to delete node not in its proper hash bucket";
222 Set_Next
(Node
=> Prev
, Next
=> Next
(Curr
));
223 HT
.Length
:= HT
.Length
- 1;
230 end Delete_Node_At_Index
;
232 ---------------------------
233 -- Delete_Node_Sans_Free --
234 ---------------------------
236 procedure Delete_Node_Sans_Free
237 (HT
: in out Hash_Table_Type
;
240 pragma Assert
(X
/= null);
247 if Checks
and then HT
.Length
= 0 then
248 raise Program_Error
with
249 "attempt to delete node from empty hashed container";
252 Indx
:= Checked_Index
(HT
, X
);
253 Prev
:= HT
.Buckets
(Indx
);
255 if Checks
and then Prev
= null then
256 raise Program_Error
with
257 "attempt to delete node from empty hash bucket";
261 HT
.Buckets
(Indx
) := Next
(Prev
);
262 HT
.Length
:= HT
.Length
- 1;
266 if Checks
and then HT
.Length
= 1 then
267 raise Program_Error
with
268 "attempt to delete node not in its proper hash bucket";
274 if Checks
and then Curr
= null then
275 raise Program_Error
with
276 "attempt to delete node not in its proper hash bucket";
280 Set_Next
(Node
=> Prev
, Next
=> Next
(Curr
));
281 HT
.Length
:= HT
.Length
- 1;
287 end Delete_Node_Sans_Free
;
293 procedure Finalize
(HT
: in out Hash_Table_Type
) is
296 Free_Buckets
(HT
.Buckets
);
303 function First
(HT
: Hash_Table_Type
) return Node_Access
is
307 if HT
.Length
= 0 then
311 Indx
:= HT
.Buckets
'First;
313 if HT
.Buckets
(Indx
) /= null then
314 return HT
.Buckets
(Indx
);
325 procedure Free_Buckets
(Buckets
: in out Buckets_Access
) is
327 new Ada
.Unchecked_Deallocation
(Buckets_Type
, Buckets_Allocation
);
330 -- Buckets must have been created by New_Buckets. Here, we convert back
331 -- to the Buckets_Allocation type, and do the free on that.
333 Free
(Buckets_Allocation
(Buckets
));
336 ---------------------
337 -- Free_Hash_Table --
338 ---------------------
340 procedure Free_Hash_Table
(Buckets
: in out Buckets_Access
) is
344 if Buckets
= null then
348 for J
in Buckets
'Range loop
349 while Buckets
(J
) /= null loop
351 Buckets
(J
) := Next
(Node
);
356 Free_Buckets
(Buckets
);
363 function Generic_Equal
364 (L
, R
: Hash_Table_Type
) return Boolean
367 if L
.Length
/= R
.Length
then
376 -- Per AI05-0022, the container implementation is required to detect
377 -- element tampering by a generic actual subprogram.
379 Lock_L
: With_Lock
(L
.TC
'Unrestricted_Access);
380 Lock_R
: With_Lock
(R
.TC
'Unrestricted_Access);
383 L_Node
: Node_Access
;
387 -- Find the first node of hash table L
391 L_Node
:= L
.Buckets
(L_Index
);
392 exit when L_Node
/= null;
393 L_Index
:= L_Index
+ 1;
396 -- For each node of hash table L, search for an equivalent node in
401 if not Find
(HT
=> R
, Key
=> L_Node
) then
407 L_Node
:= Next
(L_Node
);
409 if L_Node
= null then
410 -- We have exhausted the nodes in this bucket
416 -- Find the next bucket
419 L_Index
:= L_Index
+ 1;
420 L_Node
:= L
.Buckets
(L_Index
);
421 exit when L_Node
/= null;
428 -----------------------
429 -- Generic_Iteration --
430 -----------------------
432 procedure Generic_Iteration
(HT
: Hash_Table_Type
) is
436 if HT
.Length
= 0 then
440 for Indx
in HT
.Buckets
'Range loop
441 Node
:= HT
.Buckets
(Indx
);
442 while Node
/= null loop
447 end Generic_Iteration
;
453 procedure Generic_Read
454 (Stream
: not null access Root_Stream_Type
'Class;
455 HT
: out Hash_Table_Type
)
463 Count_Type
'Base'Read (Stream, N);
465 if Checks and then N < 0 then
466 raise Program_Error with "stream appears to be corrupt";
473 -- The RM does not specify whether or how the capacity changes when a
474 -- hash table is streamed in. Therefore we decide here to allocate a new
475 -- buckets array only when it's necessary to preserve representation
479 or else HT.Buckets'Length < N
481 Free_Buckets (HT.Buckets);
482 NN := Prime_Numbers.To_Prime (N);
483 HT.Buckets := New_Buckets (Length => NN);
488 Node : constant Node_Access := New_Node (Stream);
489 Indx : constant Hash_Type := Checked_Index (HT, Node);
490 B : Node_Access renames HT.Buckets (Indx);
492 Set_Next (Node => Node, Next => B);
496 HT.Length := HT.Length + 1;
504 procedure Generic_Write
505 (Stream : not null access Root_Stream_Type'Class;
506 HT : Hash_Table_Type)
508 procedure Write (Node : Node_Access);
509 pragma Inline (Write);
511 procedure Write is new Generic_Iteration (Write);
517 procedure Write (Node : Node_Access) is
519 Write (Stream, Node);
523 -- See Generic_Read for an explanation of why we do not stream out the
524 -- buckets array length too.
526 Count_Type'Base'Write
(Stream
, HT
.Length
);
535 (Buckets
: Buckets_Type
;
536 Node
: Node_Access
) return Hash_Type
is
538 return Hash_Node
(Node
) mod Buckets
'Length;
542 (Hash_Table
: Hash_Table_Type
;
543 Node
: Node_Access
) return Hash_Type
is
545 return Index
(Hash_Table
.Buckets
.all, Node
);
552 procedure Move
(Target
, Source
: in out Hash_Table_Type
) is
554 if Target
'Address = Source
'Address then
558 TC_Check
(Source
.TC
);
563 Buckets
: constant Buckets_Access
:= Target
.Buckets
;
565 Target
.Buckets
:= Source
.Buckets
;
566 Source
.Buckets
:= Buckets
;
569 Target
.Length
:= Source
.Length
;
577 function New_Buckets
(Length
: Hash_Type
) return Buckets_Access
is
578 subtype Rng
is Hash_Type
range 0 .. Length
- 1;
581 -- Allocate in Buckets_Allocation'Storage_Pool, then convert to
584 return Buckets_Access
(Buckets_Allocation
'(new Buckets_Type (Rng)));
592 (HT : aliased in out Hash_Table_Type;
593 Node : Node_Access) return Node_Access
595 Result : Node_Access;
599 Result := Next (Node);
601 if Result /= null then
605 First := Checked_Index (HT, Node) + 1;
606 for Indx in First .. HT.Buckets'Last loop
607 Result := HT.Buckets (Indx);
609 if Result /= null then
617 ----------------------
618 -- Reserve_Capacity --
619 ----------------------
621 procedure Reserve_Capacity
622 (HT : in out Hash_Table_Type;
628 if HT.Buckets = null then
630 NN := Prime_Numbers.To_Prime (N);
631 HT.Buckets := New_Buckets (Length => NN);
637 if HT.Length = 0 then
639 -- This is the easy case. There are no nodes, so no rehashing is
640 -- necessary. All we need to do is allocate a new buckets array
641 -- having a length implied by the specified capacity. (We say
642 -- "implied by" because bucket arrays are always allocated with a
643 -- length that corresponds to a prime number.)
646 Free_Buckets (HT.Buckets);
650 if N = HT.Buckets'Length then
654 NN := Prime_Numbers.To_Prime (N);
656 if NN = HT.Buckets'Length then
661 X : Buckets_Access := HT.Buckets;
662 pragma Warnings (Off, X);
664 HT.Buckets := New_Buckets (Length => NN);
671 if N = HT.Buckets'Length then
675 if N < HT.Buckets'Length then
677 -- This is a request to contract the buckets array. The amount of
678 -- contraction is bounded in order to preserve the invariant that the
679 -- buckets array length is never smaller than the number of elements
680 -- (the load factor is 1).
682 if HT.Length >= HT.Buckets'Length then
686 NN := Prime_Numbers.To_Prime (HT.Length);
688 if NN >= HT.Buckets'Length then
693 NN := Prime_Numbers.To_Prime (Count_Type'Max (N, HT.Length));
695 if NN = HT.Buckets'Length then -- can't expand any more
703 Dst_Buckets : Buckets_Access := New_Buckets (Length => NN);
704 Src_Buckets : Buckets_Access := HT.Buckets;
705 pragma Warnings (Off, Src_Buckets);
707 L : Count_Type renames HT.Length;
708 LL : constant Count_Type := L;
710 Src_Index : Hash_Type := Src_Buckets'First;
715 Src_Bucket : Node_Access renames Src_Buckets (Src_Index);
718 while Src_Bucket /= null loop
720 Src_Node : constant Node_Access := Src_Bucket;
722 Dst_Index : constant Hash_Type :=
723 Checked_Index (HT, Dst_Buckets.all, Src_Node);
725 Dst_Bucket : Node_Access renames Dst_Buckets (Dst_Index);
728 Src_Bucket := Next (Src_Node);
730 Set_Next (Src_Node, Dst_Bucket);
732 Dst_Bucket := Src_Node;
735 pragma Assert (L > 0);
742 -- If there's an error computing a hash value during a
743 -- rehash, then AI-302 says the nodes "become lost." The
744 -- issue is whether to actually deallocate these lost nodes,
745 -- since they might be designated by extant cursors. Here
746 -- we decide to deallocate the nodes, since it's better to
747 -- solve real problems (storage consumption) rather than
748 -- imaginary ones (the user might, or might not, dereference
749 -- a cursor designating a node that has been deallocated),
750 -- and because we have a way to vet a dangling cursor
751 -- reference anyway, and hence can actually detect the
754 for Dst_Index in Dst_Buckets'Range loop
756 B : Node_Access renames Dst_Buckets (Dst_Index);
767 Free_Buckets (Dst_Buckets);
768 raise Program_Error with
769 "hash function raised exception during rehash";
772 Src_Index := Src_Index + 1;
775 HT.Buckets := Dst_Buckets;
778 Free_Buckets (Src_Buckets);
780 end Reserve_Capacity;
782 end Ada.Containers.Hash_Tables.Generic_Operations;