1 /* Predictive commoning.
2 Copyright (C) 2005-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
169 It can be replaced with:
173 for (i = 0; i < n; i++)
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
209 #include "coretypes.h"
215 #include "tree-pass.h"
217 #include "gimple-pretty-print.h"
219 #include "fold-const.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
234 #include "tree-affine.h"
235 #include "builtins.h"
238 /* The maximum number of iterations between the considered memory
241 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
243 /* Data references (or phi nodes that carry data reference values across
249 /* The reference itself. */
250 struct data_reference
*ref
;
252 /* The statement in that the reference appears. */
255 /* In case that STMT is a phi node, this field is set to the SSA name
256 defined by it in replace_phis_by_defined_names (in order to avoid
257 pointing to phi node that got reallocated in the meantime). */
258 tree name_defined_by_phi
;
260 /* Distance of the reference from the root of the chain (in number of
261 iterations of the loop). */
264 /* Number of iterations offset from the first reference in the component. */
267 /* Number of the reference in a component, in dominance ordering. */
270 /* True if the memory reference is always accessed when the loop is
272 unsigned always_accessed
: 1;
276 /* Type of the chain of the references. */
280 /* The addresses of the references in the chain are constant. */
283 /* There are only loads in the chain. */
286 /* Root of the chain is store, the rest are loads. */
289 /* There are only stores in the chain. */
292 /* A combination of two chains. */
296 /* Chains of data references. */
300 chain (chain_type t
) : type (t
), op (ERROR_MARK
), rslt_type (NULL_TREE
),
301 ch1 (NULL
), ch2 (NULL
), length (0), init_seq (NULL
), fini_seq (NULL
),
302 has_max_use_after (false), all_always_accessed (false), combined (false),
303 inv_store_elimination (false) {}
305 /* Type of the chain. */
306 enum chain_type type
;
308 /* For combination chains, the operator and the two chains that are
309 combined, and the type of the result. */
312 struct chain
*ch1
, *ch2
;
314 /* The references in the chain. */
317 /* The maximum distance of the reference in the chain from the root. */
320 /* The variables used to copy the value throughout iterations. */
323 /* Initializers for the variables. */
324 auto_vec
<tree
> inits
;
326 /* Finalizers for the eliminated stores. */
327 auto_vec
<tree
> finis
;
329 /* gimple stmts intializing the initial variables of the chain. */
332 /* gimple stmts finalizing the eliminated stores of the chain. */
335 /* True if there is a use of a variable with the maximal distance
336 that comes after the root in the loop. */
337 unsigned has_max_use_after
: 1;
339 /* True if all the memory references in the chain are always accessed. */
340 unsigned all_always_accessed
: 1;
342 /* True if this chain was combined together with some other chain. */
343 unsigned combined
: 1;
345 /* True if this is store elimination chain and eliminated stores store
346 loop invariant value into memory. */
347 unsigned inv_store_elimination
: 1;
351 /* Describes the knowledge about the step of the memory references in
356 /* The step is zero. */
359 /* The step is nonzero. */
362 /* The step may or may not be nonzero. */
366 /* Components of the data dependence graph. */
370 component (bool es
) : comp_step (RS_ANY
), eliminate_store_p (es
),
373 /* The references in the component. */
376 /* What we know about the step of the references in the component. */
377 enum ref_step_type comp_step
;
379 /* True if all references in component are stores and we try to do
380 intra/inter loop iteration dead store elimination. */
381 bool eliminate_store_p
;
383 /* Next component in the list. */
384 struct component
*next
;
387 /* A class to encapsulate the global states used for predictive
388 commoning work on top of one given LOOP. */
393 pcom_worker (loop_p l
) : m_loop (l
), m_cache (NULL
) {}
397 free_data_refs (m_datarefs
);
398 free_dependence_relations (m_dependences
);
399 free_affine_expand_cache (&m_cache
);
403 pcom_worker (const pcom_worker
&) = delete;
404 pcom_worker
&operator= (const pcom_worker
&) = delete;
406 /* Performs predictive commoning. */
407 unsigned tree_predictive_commoning_loop (bool allow_unroll_p
);
409 /* Perform the predictive commoning optimization for chains, make this
410 public for being called in callback execute_pred_commoning_cbck. */
411 void execute_pred_commoning (bitmap tmp_vars
);
414 /* The pointer to the given loop. */
417 /* All data references. */
418 auto_vec
<data_reference_p
, 10> m_datarefs
;
420 /* All data dependences. */
421 auto_vec
<ddr_p
, 10> m_dependences
;
424 auto_vec
<chain_p
> m_chains
;
426 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
427 auto_bitmap m_looparound_phis
;
429 typedef hash_map
<tree
, name_expansion
*> tree_expand_map_t
;
430 /* Cache used by tree_to_aff_combination_expand. */
431 tree_expand_map_t
*m_cache
;
433 /* Splits dependence graph to components. */
434 struct component
*split_data_refs_to_components ();
436 /* Check the conditions on references inside each of components COMPS,
437 and remove the unsuitable components from the list. */
438 struct component
*filter_suitable_components (struct component
*comps
);
440 /* Find roots of the values and determine distances in components COMPS,
441 and separates the references to chains. */
442 void determine_roots (struct component
*comps
);
444 /* Prepare initializers for chains, and free chains that cannot
445 be used because the initializers might trap. */
446 void prepare_initializers ();
448 /* Generates finalizer memory reference for chains. Returns true if
449 finalizer code generation for chains breaks loop closed ssa form. */
450 bool prepare_finalizers ();
452 /* Try to combine the chains. */
453 void try_combine_chains ();
456 void release_chains ();
458 /* Frees a chain CHAIN. */
459 void release_chain (chain_p chain
);
461 /* Prepare initializers for CHAIN. Returns false if this is impossible
462 because one of these initializers may trap, true otherwise. */
463 bool prepare_initializers_chain (chain_p chain
);
465 /* Generates finalizer memory references for CHAIN. Returns true
466 if finalizer code for CHAIN can be generated, otherwise false. */
467 bool prepare_finalizers_chain (chain_p chain
);
469 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
470 void aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
);
472 /* Determines number of iterations of the innermost enclosing loop before
473 B refers to exactly the same location as A and stores it to OFF. */
474 bool determine_offset (struct data_reference
*a
, struct data_reference
*b
,
475 poly_widest_int
*off
);
477 /* Returns true if the component COMP satisfies the conditions
478 described in 2) at the beginning of this file. */
479 bool suitable_component_p (struct component
*comp
);
481 /* Returns true if REF is a valid initializer for ROOT with given
482 DISTANCE (in iterations of the innermost enclosing loop). */
483 bool valid_initializer_p (struct data_reference
*ref
, unsigned distance
,
484 struct data_reference
*root
);
486 /* Finds looparound phi node of loop that copies the value of REF. */
487 gphi
*find_looparound_phi (dref ref
, dref root
);
489 /* Find roots of the values and determine distances in the component
490 COMP. The references are redistributed into chains. */
491 void determine_roots_comp (struct component
*comp
);
493 /* For references in CHAIN that are copied around the loop, add the
494 results of such copies to the chain. */
495 void add_looparound_copies (chain_p chain
);
497 /* Returns the single statement in that NAME is used, excepting
498 the looparound phi nodes contained in one of the chains. */
499 gimple
*single_nonlooparound_use (tree name
);
501 /* Remove statement STMT, as well as the chain of assignments in that
503 void remove_stmt (gimple
*stmt
);
505 /* Perform the predictive commoning optimization for a chain CHAIN. */
506 void execute_pred_commoning_chain (chain_p chain
, bitmap tmp_vars
);
508 /* Returns the modify statement that uses NAME. */
509 gimple
*find_use_stmt (tree
*name
);
511 /* If the operation used in STMT is associative and commutative, go
512 through the tree of the same operations and returns its root. */
513 gimple
*find_associative_operation_root (gimple
*stmt
, unsigned *distance
);
515 /* Returns the common statement in that NAME1 and NAME2 have a use. */
516 gimple
*find_common_use_stmt (tree
*name1
, tree
*name2
);
518 /* Checks whether R1 and R2 are combined together using CODE, with the
519 result in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order
520 R2 CODE R1 if it is true. */
521 bool combinable_refs_p (dref r1
, dref r2
, enum tree_code
*code
, bool *swap
,
524 /* Reassociates the expression in that NAME1 and NAME2 are used so that
525 they are combined in a single statement, and returns this statement. */
526 gimple
*reassociate_to_the_same_stmt (tree name1
, tree name2
);
528 /* Returns the statement that combines references R1 and R2. */
529 gimple
*stmt_combining_refs (dref r1
, dref r2
);
531 /* Tries to combine chains CH1 and CH2 together. */
532 chain_p
combine_chains (chain_p ch1
, chain_p ch2
);
535 /* Dumps data reference REF to FILE. */
537 extern void dump_dref (FILE *, dref
);
539 dump_dref (FILE *file
, dref ref
)
544 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
545 fprintf (file
, " (id %u%s)\n", ref
->pos
,
546 DR_IS_READ (ref
->ref
) ? "" : ", write");
548 fprintf (file
, " offset ");
549 print_decs (ref
->offset
, file
);
550 fprintf (file
, "\n");
552 fprintf (file
, " distance %u\n", ref
->distance
);
556 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
557 fprintf (file
, " looparound ref\n");
559 fprintf (file
, " combination ref\n");
560 fprintf (file
, " in statement ");
561 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
562 fprintf (file
, "\n");
563 fprintf (file
, " distance %u\n", ref
->distance
);
568 /* Dumps CHAIN to FILE. */
570 extern void dump_chain (FILE *, chain_p
);
572 dump_chain (FILE *file
, chain_p chain
)
575 const char *chain_type
;
582 chain_type
= "Load motion";
586 chain_type
= "Loads-only";
590 chain_type
= "Store-loads";
594 chain_type
= "Store-stores";
598 chain_type
= "Combination";
605 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
606 chain
->combined
? " (combined)" : "");
607 if (chain
->type
!= CT_INVARIANT
)
608 fprintf (file
, " max distance %u%s\n", chain
->length
,
609 chain
->has_max_use_after
? "" : ", may reuse first");
611 if (chain
->type
== CT_COMBINATION
)
613 fprintf (file
, " equal to %p %s %p in type ",
614 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
615 (void *) chain
->ch2
);
616 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
617 fprintf (file
, "\n");
620 if (chain
->vars
.exists ())
622 fprintf (file
, " vars");
623 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
626 print_generic_expr (file
, var
, TDF_SLIM
);
628 fprintf (file
, "\n");
631 if (chain
->inits
.exists ())
633 fprintf (file
, " inits");
634 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
637 print_generic_expr (file
, var
, TDF_SLIM
);
639 fprintf (file
, "\n");
642 fprintf (file
, " references:\n");
643 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
646 fprintf (file
, "\n");
649 /* Dumps CHAINS to FILE. */
652 dump_chains (FILE *file
, const vec
<chain_p
> &chains
)
657 FOR_EACH_VEC_ELT (chains
, i
, chain
)
658 dump_chain (file
, chain
);
661 /* Dumps COMP to FILE. */
663 extern void dump_component (FILE *, struct component
*);
665 dump_component (FILE *file
, struct component
*comp
)
670 fprintf (file
, "Component%s:\n",
671 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
672 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
674 fprintf (file
, "\n");
677 /* Dumps COMPS to FILE. */
679 extern void dump_components (FILE *, struct component
*);
681 dump_components (FILE *file
, struct component
*comps
)
683 struct component
*comp
;
685 for (comp
= comps
; comp
; comp
= comp
->next
)
686 dump_component (file
, comp
);
689 /* Frees a chain CHAIN. */
692 pcom_worker::release_chain (chain_p chain
)
700 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
704 gimple_seq_discard (chain
->init_seq
);
707 gimple_seq_discard (chain
->fini_seq
);
715 pcom_worker::release_chains ()
720 FOR_EACH_VEC_ELT (m_chains
, i
, chain
)
721 release_chain (chain
);
724 /* Frees list of components COMPS. */
727 release_components (struct component
*comps
)
729 struct component
*act
, *next
;
731 for (act
= comps
; act
; act
= next
)
738 /* Finds a root of tree given by FATHERS containing A, and performs path
742 component_of (vec
<unsigned> &fathers
, unsigned a
)
746 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
749 for (; a
!= root
; a
= n
)
758 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
759 components, A and B are components to merge. */
762 merge_comps (vec
<unsigned> &fathers
, vec
<unsigned> &sizes
,
763 unsigned a
, unsigned b
)
765 unsigned ca
= component_of (fathers
, a
);
766 unsigned cb
= component_of (fathers
, b
);
771 if (sizes
[ca
] < sizes
[cb
])
773 sizes
[cb
] += sizes
[ca
];
778 sizes
[ca
] += sizes
[cb
];
783 /* Returns true if A is a reference that is suitable for predictive commoning
784 in the innermost loop that contains it. REF_STEP is set according to the
785 step of the reference A. */
788 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
790 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
793 || TREE_THIS_VOLATILE (ref
)
794 || !is_gimple_reg_type (TREE_TYPE (ref
))
795 || tree_could_throw_p (ref
))
798 if (integer_zerop (step
))
799 *ref_step
= RS_INVARIANT
;
800 else if (integer_nonzerop (step
))
801 *ref_step
= RS_NONZERO
;
808 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
811 pcom_worker::aff_combination_dr_offset (struct data_reference
*dr
,
814 tree type
= TREE_TYPE (DR_OFFSET (dr
));
817 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
, &m_cache
);
818 aff_combination_const (&delta
, type
, wi::to_poly_widest (DR_INIT (dr
)));
819 aff_combination_add (offset
, &delta
);
822 /* Determines number of iterations of the innermost enclosing loop before B
823 refers to exactly the same location as A and stores it to OFF. If A and
824 B do not have the same step, they never meet, or anything else fails,
825 returns false, otherwise returns true. Both A and B are assumed to
826 satisfy suitable_reference_p. */
829 pcom_worker::determine_offset (struct data_reference
*a
,
830 struct data_reference
*b
, poly_widest_int
*off
)
832 aff_tree diff
, baseb
, step
;
835 /* Check that both the references access the location in the same type. */
836 typea
= TREE_TYPE (DR_REF (a
));
837 typeb
= TREE_TYPE (DR_REF (b
));
838 if (!useless_type_conversion_p (typeb
, typea
))
841 /* Check whether the base address and the step of both references is the
843 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
844 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
847 if (integer_zerop (DR_STEP (a
)))
849 /* If the references have loop invariant address, check that they access
850 exactly the same location. */
852 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
853 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
856 /* Compare the offsets of the addresses, and check whether the difference
857 is a multiple of step. */
858 aff_combination_dr_offset (a
, &diff
);
859 aff_combination_dr_offset (b
, &baseb
);
860 aff_combination_scale (&baseb
, -1);
861 aff_combination_add (&diff
, &baseb
);
863 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
865 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
868 /* Returns the last basic block in LOOP for that we are sure that
869 it is executed whenever the loop is entered. */
872 last_always_executed_block (class loop
*loop
)
875 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
);
877 basic_block last
= loop
->latch
;
879 FOR_EACH_VEC_ELT (exits
, i
, ex
)
880 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
885 /* Splits dependence graph on DATAREFS described by DEPENDENCES to
889 pcom_worker::split_data_refs_to_components ()
891 unsigned i
, n
= m_datarefs
.length ();
892 unsigned ca
, ia
, ib
, bad
;
893 struct data_reference
*dr
, *dra
, *drb
;
894 struct data_dependence_relation
*ddr
;
895 struct component
*comp_list
= NULL
, *comp
;
897 /* Don't do store elimination if loop has multiple exit edges. */
898 bool eliminate_store_p
= single_exit (m_loop
) != NULL
;
899 basic_block last_always_executed
= last_always_executed_block (m_loop
);
900 auto_bitmap no_store_store_comps
;
901 auto_vec
<unsigned> comp_father (n
+ 1);
902 auto_vec
<unsigned> comp_size (n
+ 1);
903 comp_father
.quick_grow (n
+ 1);
904 comp_size
.quick_grow (n
+ 1);
906 FOR_EACH_VEC_ELT (m_datarefs
, i
, dr
)
909 /* A fake reference for call or asm_expr that may clobber memory;
912 /* predcom pass isn't prepared to handle calls with data references. */
913 if (is_gimple_call (DR_STMT (dr
)))
915 dr
->aux
= (void *) (size_t) i
;
920 /* A component reserved for the "bad" data references. */
924 FOR_EACH_VEC_ELT (m_datarefs
, i
, dr
)
926 enum ref_step_type dummy
;
928 if (!suitable_reference_p (dr
, &dummy
))
930 ia
= (unsigned) (size_t) dr
->aux
;
931 merge_comps (comp_father
, comp_size
, n
, ia
);
935 FOR_EACH_VEC_ELT (m_dependences
, i
, ddr
)
937 poly_widest_int dummy_off
;
939 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
945 /* Don't do store elimination if there is any unknown dependence for
946 any store data reference. */
947 if ((DR_IS_WRITE (dra
) || DR_IS_WRITE (drb
))
948 && (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
949 || DDR_NUM_DIST_VECTS (ddr
) == 0))
950 eliminate_store_p
= false;
952 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
953 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
957 bad
= component_of (comp_father
, n
);
959 /* If both A and B are reads, we may ignore unsuitable dependences. */
960 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
962 if (ia
== bad
|| ib
== bad
963 || !determine_offset (dra
, drb
, &dummy_off
))
966 /* If A is read and B write or vice versa and there is unsuitable
967 dependence, instead of merging both components into a component
968 that will certainly not pass suitable_component_p, just put the
969 read into bad component, perhaps at least the write together with
970 all the other data refs in it's component will be optimizable. */
971 else if (DR_IS_READ (dra
) && ib
!= bad
)
975 bitmap_set_bit (no_store_store_comps
, ib
);
978 else if (!determine_offset (dra
, drb
, &dummy_off
))
980 bitmap_set_bit (no_store_store_comps
, ib
);
981 merge_comps (comp_father
, comp_size
, bad
, ia
);
985 else if (DR_IS_READ (drb
) && ia
!= bad
)
989 bitmap_set_bit (no_store_store_comps
, ia
);
992 else if (!determine_offset (dra
, drb
, &dummy_off
))
994 bitmap_set_bit (no_store_store_comps
, ia
);
995 merge_comps (comp_father
, comp_size
, bad
, ib
);
999 else if (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
)
1000 && ia
!= bad
&& ib
!= bad
1001 && !determine_offset (dra
, drb
, &dummy_off
))
1003 merge_comps (comp_father
, comp_size
, bad
, ia
);
1004 merge_comps (comp_father
, comp_size
, bad
, ib
);
1008 merge_comps (comp_father
, comp_size
, ia
, ib
);
1011 if (eliminate_store_p
)
1013 tree niters
= number_of_latch_executions (m_loop
);
1015 /* Don't do store elimination if niters info is unknown because stores
1016 in the last iteration can't be eliminated and we need to recover it
1018 eliminate_store_p
= (niters
!= NULL_TREE
&& niters
!= chrec_dont_know
);
1021 auto_vec
<struct component
*> comps
;
1022 comps
.safe_grow_cleared (n
, true);
1023 bad
= component_of (comp_father
, n
);
1024 FOR_EACH_VEC_ELT (m_datarefs
, i
, dr
)
1026 ia
= (unsigned) (size_t) dr
->aux
;
1027 ca
= component_of (comp_father
, ia
);
1034 comp
= new component (eliminate_store_p
);
1035 comp
->refs
.reserve_exact (comp_size
[ca
]);
1039 dataref
= XCNEW (class dref_d
);
1041 dataref
->stmt
= DR_STMT (dr
);
1042 dataref
->offset
= 0;
1043 dataref
->distance
= 0;
1045 dataref
->always_accessed
1046 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
1047 gimple_bb (dataref
->stmt
));
1048 dataref
->pos
= comp
->refs
.length ();
1049 comp
->refs
.quick_push (dataref
);
1052 if (eliminate_store_p
)
1055 EXECUTE_IF_SET_IN_BITMAP (no_store_store_comps
, 0, ia
, bi
)
1057 ca
= component_of (comp_father
, ia
);
1059 comps
[ca
]->eliminate_store_p
= false;
1063 for (i
= 0; i
< n
; i
++)
1068 comp
->next
= comp_list
;
1075 /* Returns true if the component COMP satisfies the conditions
1076 described in 2) at the beginning of this file. */
1079 pcom_worker::suitable_component_p (struct component
*comp
)
1083 basic_block ba
, bp
= m_loop
->header
;
1084 bool ok
, has_write
= false;
1086 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1088 ba
= gimple_bb (a
->stmt
);
1090 if (!just_once_each_iteration_p (m_loop
, ba
))
1093 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
1096 if (DR_IS_WRITE (a
->ref
))
1100 first
= comp
->refs
[0];
1101 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
1105 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1107 if (has_write
&& comp
->comp_step
== RS_NONZERO
)
1109 /* Punt for non-invariant references where step isn't a multiple
1110 of reference size. If step is smaller than reference size,
1111 it overlaps the access in next iteration, if step is larger,
1112 but not multiple of the access size, there could be overlap
1113 in some later iteration. There might be more latent issues
1114 about this in predcom or data reference analysis. If the
1115 reference is a COMPONENT_REF, also check if step isn't a
1116 multiple of the containg aggregate size. See PR111683. */
1117 tree ref
= DR_REF (a
->ref
);
1118 tree step
= DR_STEP (a
->ref
);
1119 if (TREE_CODE (ref
) == COMPONENT_REF
1120 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
1121 ref
= TREE_OPERAND (ref
, 0);
1124 tree sz
= TYPE_SIZE_UNIT (TREE_TYPE (ref
));
1125 if (TREE_CODE (sz
) != INTEGER_CST
)
1127 if (wi::multiple_of_p (wi::to_offset (step
),
1128 wi::to_offset (sz
), SIGNED
))
1130 if (TREE_CODE (ref
) != COMPONENT_REF
)
1132 ref
= TREE_OPERAND (ref
, 0);
1138 /* Polynomial offsets are no use, since we need to know the
1139 gap between iteration numbers at compile time. */
1140 poly_widest_int offset
;
1141 if (!determine_offset (first
->ref
, a
->ref
, &offset
)
1142 || !offset
.is_constant (&a
->offset
))
1145 enum ref_step_type a_step
;
1146 gcc_checking_assert (suitable_reference_p (a
->ref
, &a_step
)
1147 && a_step
== comp
->comp_step
);
1150 /* If there is a write inside the component, we must know whether the
1151 step is nonzero or not -- we would not otherwise be able to recognize
1152 whether the value accessed by reads comes from the OFFSET-th iteration
1153 or the previous one. */
1154 if (has_write
&& comp
->comp_step
== RS_ANY
)
1160 /* Check the conditions on references inside each of components COMPS,
1161 and remove the unsuitable components from the list. The new list
1162 of components is returned. The conditions are described in 2) at
1163 the beginning of this file. */
1166 pcom_worker::filter_suitable_components (struct component
*comps
)
1168 struct component
**comp
, *act
;
1170 for (comp
= &comps
; *comp
; )
1173 if (suitable_component_p (act
))
1181 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
1190 /* Compares two drefs A and B by their offset and position. Callback for
1194 order_drefs (const void *a
, const void *b
)
1196 const dref
*const da
= (const dref
*) a
;
1197 const dref
*const db
= (const dref
*) b
;
1198 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
1203 return (*da
)->pos
- (*db
)->pos
;
1206 /* Compares two drefs A and B by their position. Callback for qsort. */
1209 order_drefs_by_pos (const void *a
, const void *b
)
1211 const dref
*const da
= (const dref
*) a
;
1212 const dref
*const db
= (const dref
*) b
;
1214 return (*da
)->pos
- (*db
)->pos
;
1217 /* Returns root of the CHAIN. */
1220 get_chain_root (chain_p chain
)
1222 return chain
->refs
[0];
1225 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1229 get_chain_last_write_at (chain_p chain
, unsigned distance
)
1231 for (unsigned i
= chain
->refs
.length (); i
> 0; i
--)
1232 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1233 && distance
== chain
->refs
[i
- 1]->distance
)
1234 return chain
->refs
[i
- 1];
1239 /* Given CHAIN, returns the last write ref with the same distance before load
1240 at index LOAD_IDX, or NULL if it doesn't exist. */
1243 get_chain_last_write_before_load (chain_p chain
, unsigned load_idx
)
1245 gcc_assert (load_idx
< chain
->refs
.length ());
1247 unsigned distance
= chain
->refs
[load_idx
]->distance
;
1249 for (unsigned i
= load_idx
; i
> 0; i
--)
1250 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1251 && distance
== chain
->refs
[i
- 1]->distance
)
1252 return chain
->refs
[i
- 1];
1257 /* Adds REF to the chain CHAIN. */
1260 add_ref_to_chain (chain_p chain
, dref ref
)
1262 dref root
= get_chain_root (chain
);
1264 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
1265 widest_int dist
= ref
->offset
- root
->offset
;
1266 gcc_assert (wi::fits_uhwi_p (dist
));
1268 chain
->refs
.safe_push (ref
);
1270 ref
->distance
= dist
.to_uhwi ();
1272 if (ref
->distance
>= chain
->length
)
1274 chain
->length
= ref
->distance
;
1275 chain
->has_max_use_after
= false;
1278 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1279 if (DR_IS_WRITE (ref
->ref
))
1280 chain
->type
= CT_STORE_STORE
;
1282 /* Don't set the flag for store-store chain since there is no use. */
1283 if (chain
->type
!= CT_STORE_STORE
1284 && ref
->distance
== chain
->length
1285 && ref
->pos
> root
->pos
)
1286 chain
->has_max_use_after
= true;
1288 chain
->all_always_accessed
&= ref
->always_accessed
;
1291 /* Returns the chain for invariant component COMP. */
1294 make_invariant_chain (struct component
*comp
)
1296 chain_p chain
= new struct chain (CT_INVARIANT
);
1300 chain
->all_always_accessed
= true;
1302 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1304 chain
->refs
.safe_push (ref
);
1305 chain
->all_always_accessed
&= ref
->always_accessed
;
1308 chain
->inits
= vNULL
;
1309 chain
->finis
= vNULL
;
1314 /* Make a new chain of type TYPE rooted at REF. */
1317 make_rooted_chain (dref ref
, enum chain_type type
)
1319 chain_p chain
= new struct chain (type
);
1321 chain
->refs
.safe_push (ref
);
1322 chain
->all_always_accessed
= ref
->always_accessed
;
1325 chain
->inits
= vNULL
;
1326 chain
->finis
= vNULL
;
1331 /* Returns true if CHAIN is not trivial. */
1334 nontrivial_chain_p (chain_p chain
)
1336 return chain
!= NULL
&& chain
->refs
.length () > 1;
1339 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1343 name_for_ref (dref ref
)
1347 if (is_gimple_assign (ref
->stmt
))
1349 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1350 name
= gimple_assign_lhs (ref
->stmt
);
1352 name
= gimple_assign_rhs1 (ref
->stmt
);
1355 name
= PHI_RESULT (ref
->stmt
);
1357 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1360 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1361 iterations of the innermost enclosing loop). */
1364 pcom_worker::valid_initializer_p (struct data_reference
*ref
, unsigned distance
,
1365 struct data_reference
*root
)
1367 aff_tree diff
, base
, step
;
1368 poly_widest_int off
;
1370 /* Both REF and ROOT must be accessing the same object. */
1371 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1374 /* The initializer is defined outside of loop, hence its address must be
1375 invariant inside the loop. */
1376 gcc_assert (integer_zerop (DR_STEP (ref
)));
1378 /* If the address of the reference is invariant, initializer must access
1379 exactly the same location. */
1380 if (integer_zerop (DR_STEP (root
)))
1381 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1382 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1384 /* Verify that this index of REF is equal to the root's index at
1385 -DISTANCE-th iteration. */
1386 aff_combination_dr_offset (root
, &diff
);
1387 aff_combination_dr_offset (ref
, &base
);
1388 aff_combination_scale (&base
, -1);
1389 aff_combination_add (&diff
, &base
);
1391 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1393 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1396 if (maybe_ne (off
, distance
))
1402 /* Finds looparound phi node of loop that copies the value of REF, and if its
1403 initial value is correct (equal to initial value of REF shifted by one
1404 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1405 is the root of the current chain. */
1408 pcom_worker::find_looparound_phi (dref ref
, dref root
)
1410 tree name
, init
, init_ref
;
1412 edge latch
= loop_latch_edge (m_loop
);
1413 struct data_reference init_dr
;
1416 if (is_gimple_assign (ref
->stmt
))
1418 if (DR_IS_READ (ref
->ref
))
1419 name
= gimple_assign_lhs (ref
->stmt
);
1421 name
= gimple_assign_rhs1 (ref
->stmt
);
1424 name
= PHI_RESULT (ref
->stmt
);
1428 tree entry_vuse
= NULL_TREE
;
1430 for (psi
= gsi_start_phis (m_loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1432 gphi
*p
= psi
.phi ();
1433 if (PHI_ARG_DEF_FROM_EDGE (p
, latch
) == name
)
1435 else if (virtual_operand_p (gimple_phi_result (p
)))
1436 entry_vuse
= PHI_ARG_DEF_FROM_EDGE (p
, loop_preheader_edge (m_loop
));
1437 if (phi
&& entry_vuse
)
1440 if (!phi
|| !entry_vuse
)
1443 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (m_loop
));
1444 if (TREE_CODE (init
) != SSA_NAME
)
1446 init_stmt
= SSA_NAME_DEF_STMT (init
);
1447 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1449 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1451 init_ref
= gimple_assign_rhs1 (init_stmt
);
1452 if (!REFERENCE_CLASS_P (init_ref
)
1453 && !DECL_P (init_ref
))
1456 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1457 loop enclosing PHI). */
1458 memset (&init_dr
, 0, sizeof (struct data_reference
));
1459 DR_REF (&init_dr
) = init_ref
;
1460 DR_STMT (&init_dr
) = phi
;
1461 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr
), init_ref
, m_loop
,
1465 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1468 /* Make sure nothing clobbers the location we re-use the initial value
1470 if (entry_vuse
!= gimple_vuse (init_stmt
))
1473 ao_ref_init (&ref
, init_ref
);
1474 unsigned limit
= param_sccvn_max_alias_queries_per_access
;
1475 tree vdef
= entry_vuse
;
1478 gimple
*def
= SSA_NAME_DEF_STMT (vdef
);
1479 if (limit
-- == 0 || gimple_code (def
) == GIMPLE_PHI
)
1481 if (stmt_may_clobber_ref_p_1 (def
, &ref
))
1482 /* When the stmt is an assign to init_ref we could in theory
1483 use its RHS for the initial value of the looparound PHI
1484 we replace in prepare_initializers_chain, but we have
1485 no convenient place to store this info at the moment. */
1487 vdef
= gimple_vuse (def
);
1489 while (vdef
!= gimple_vuse (init_stmt
));
1495 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1498 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1500 dref nw
= XCNEW (class dref_d
), aref
;
1504 nw
->distance
= ref
->distance
+ 1;
1505 nw
->always_accessed
= 1;
1507 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1508 if (aref
->distance
>= nw
->distance
)
1510 chain
->refs
.safe_insert (i
, nw
);
1512 if (nw
->distance
> chain
->length
)
1514 chain
->length
= nw
->distance
;
1515 chain
->has_max_use_after
= false;
1519 /* For references in CHAIN that are copied around the loop (created previously
1520 by PRE, or by user), add the results of such copies to the chain. This
1521 enables us to remove the copies by unrolling, and may need less registers
1522 (also, it may allow us to combine chains together). */
1525 pcom_worker::add_looparound_copies (chain_p chain
)
1528 dref ref
, root
= get_chain_root (chain
);
1531 if (chain
->type
== CT_STORE_STORE
)
1534 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1536 phi
= find_looparound_phi (ref
, root
);
1540 bitmap_set_bit (m_looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1541 insert_looparound_copy (chain
, ref
, phi
);
1545 /* Find roots of the values and determine distances in the component COMP.
1546 The references are redistributed into chains. */
1549 pcom_worker::determine_roots_comp (struct component
*comp
)
1553 chain_p chain
= NULL
;
1554 widest_int last_ofs
= 0;
1555 enum chain_type type
;
1557 /* Invariants are handled specially. */
1558 if (comp
->comp_step
== RS_INVARIANT
)
1560 chain
= make_invariant_chain (comp
);
1561 m_chains
.safe_push (chain
);
1565 /* Trivial component. */
1566 if (comp
->refs
.length () <= 1)
1568 if (comp
->refs
.length () == 1)
1570 free (comp
->refs
[0]);
1571 comp
->refs
.truncate (0);
1576 comp
->refs
.qsort (order_drefs
);
1578 /* For Store-Store chain, we only support load if it is dominated by a
1579 store statement in the same iteration of loop. */
1580 if (comp
->eliminate_store_p
)
1581 for (a
= NULL
, i
= 0; i
< comp
->refs
.length (); i
++)
1583 if (DR_IS_WRITE (comp
->refs
[i
]->ref
))
1585 else if (a
== NULL
|| a
->offset
!= comp
->refs
[i
]->offset
)
1587 /* If there is load that is not dominated by a store in the
1588 same iteration of loop, clear the flag so no Store-Store
1589 chain is generated for this component. */
1590 comp
->eliminate_store_p
= false;
1595 /* Determine roots and create chains for components. */
1596 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1599 || (chain
->type
== CT_LOAD
&& DR_IS_WRITE (a
->ref
))
1600 || (!comp
->eliminate_store_p
&& DR_IS_WRITE (a
->ref
))
1601 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1603 if (nontrivial_chain_p (chain
))
1605 add_looparound_copies (chain
);
1606 m_chains
.safe_push (chain
);
1609 release_chain (chain
);
1611 /* Determine type of the chain. If the root reference is a load,
1612 this can only be a CT_LOAD chain; other chains are intialized
1613 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1614 new reference is added. */
1615 type
= DR_IS_READ (a
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1616 chain
= make_rooted_chain (a
, type
);
1617 last_ofs
= a
->offset
;
1621 add_ref_to_chain (chain
, a
);
1624 if (nontrivial_chain_p (chain
))
1626 add_looparound_copies (chain
);
1627 m_chains
.safe_push (chain
);
1630 release_chain (chain
);
1633 /* Find roots of the values and determine distances in components COMPS, and
1634 separates the references to chains. */
1637 pcom_worker::determine_roots (struct component
*comps
)
1639 struct component
*comp
;
1641 for (comp
= comps
; comp
; comp
= comp
->next
)
1642 determine_roots_comp (comp
);
1645 /* Replace the reference in statement STMT with temporary variable
1646 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1647 the reference in the statement. IN_LHS is true if the reference
1648 is in the lhs of STMT, false if it is in rhs. */
1651 replace_ref_with (gimple
*stmt
, tree new_tree
, bool set
, bool in_lhs
)
1655 gimple_stmt_iterator bsi
, psi
;
1657 if (gimple_code (stmt
) == GIMPLE_PHI
)
1659 gcc_assert (!in_lhs
&& !set
);
1661 val
= PHI_RESULT (stmt
);
1662 bsi
= gsi_after_labels (gimple_bb (stmt
));
1663 psi
= gsi_for_stmt (stmt
);
1664 remove_phi_node (&psi
, false);
1666 /* Turn the phi node into GIMPLE_ASSIGN. */
1667 new_stmt
= gimple_build_assign (val
, new_tree
);
1668 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1672 /* Since the reference is of gimple_reg type, it should only
1673 appear as lhs or rhs of modify statement. */
1674 gcc_assert (is_gimple_assign (stmt
));
1676 bsi
= gsi_for_stmt (stmt
);
1678 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1681 gcc_assert (!in_lhs
);
1682 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1683 stmt
= gsi_stmt (bsi
);
1690 /* We have statement
1694 If OLD is a memory reference, then VAL is gimple_val, and we transform
1700 Otherwise, we are replacing a combination chain,
1701 VAL is the expression that performs the combination, and OLD is an
1702 SSA name. In this case, we transform the assignment to
1709 val
= gimple_assign_lhs (stmt
);
1710 if (TREE_CODE (val
) != SSA_NAME
)
1712 val
= gimple_assign_rhs1 (stmt
);
1713 gcc_assert (gimple_assign_single_p (stmt
));
1714 if (TREE_CLOBBER_P (val
))
1715 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1717 gcc_assert (gimple_assign_copy_p (stmt
));
1729 val
= gimple_assign_lhs (stmt
);
1732 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1733 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1736 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1737 of the loop it was analyzed in. Append init stmts to STMTS. */
1740 ref_at_iteration (data_reference_p dr
, int iter
,
1741 gimple_seq
*stmts
, tree niters
= NULL_TREE
)
1743 tree off
= DR_OFFSET (dr
);
1744 tree coff
= DR_INIT (dr
);
1745 tree ref
= DR_REF (dr
);
1746 enum tree_code ref_code
= ERROR_MARK
;
1747 tree ref_type
= NULL_TREE
;
1748 tree ref_op1
= NULL_TREE
;
1749 tree ref_op2
= NULL_TREE
;
1754 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
));
1755 if (TREE_CODE (new_offset
) == INTEGER_CST
)
1756 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1758 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1761 if (niters
!= NULL_TREE
)
1763 niters
= fold_convert (ssizetype
, niters
);
1764 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), niters
);
1765 if (TREE_CODE (niters
) == INTEGER_CST
)
1766 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1768 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1771 /* While data-ref analysis punts on bit offsets it still handles
1772 bitfield accesses at byte boundaries. Cope with that. Note that
1773 if the bitfield object also starts at a byte-boundary we can simply
1774 replicate the COMPONENT_REF, but we have to subtract the component's
1775 byte-offset from the MEM_REF address first.
1776 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1777 start at offset zero. */
1778 if (TREE_CODE (ref
) == COMPONENT_REF
1779 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
1781 unsigned HOST_WIDE_INT boff
;
1782 tree field
= TREE_OPERAND (ref
, 1);
1783 tree offset
= component_ref_field_offset (ref
);
1784 ref_type
= TREE_TYPE (ref
);
1785 boff
= tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
));
1786 /* This can occur in Ada. See the comment in get_bit_range. */
1787 if (boff
% BITS_PER_UNIT
!= 0
1788 || !tree_fits_uhwi_p (offset
))
1790 ref_code
= BIT_FIELD_REF
;
1791 ref_op1
= DECL_SIZE (field
);
1792 ref_op2
= bitsize_zero_node
;
1796 boff
>>= LOG2_BITS_PER_UNIT
;
1797 boff
+= tree_to_uhwi (offset
);
1798 coff
= size_binop (MINUS_EXPR
, coff
, ssize_int (boff
));
1799 ref_code
= COMPONENT_REF
;
1801 ref_op2
= TREE_OPERAND (ref
, 2);
1802 ref
= TREE_OPERAND (ref
, 0);
1805 /* We may not associate the constant offset across the pointer plus
1806 expression because that might form a pointer to before the object
1807 then. But for some cases we can retain that to allow tree_could_trap_p
1808 to return false - see gcc.dg/tree-ssa/predcom-1.c */
1809 tree addr
, alias_ptr
;
1810 if (integer_zerop (off
))
1812 alias_ptr
= fold_convert (reference_alias_ptr_type (ref
), coff
);
1813 addr
= DR_BASE_ADDRESS (dr
);
1817 alias_ptr
= build_zero_cst (reference_alias_ptr_type (ref
));
1818 off
= size_binop (PLUS_EXPR
, off
, coff
);
1819 addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1821 addr
= force_gimple_operand_1 (unshare_expr (addr
), stmts
,
1822 is_gimple_mem_ref_addr
, NULL_TREE
);
1823 tree type
= build_aligned_type (TREE_TYPE (ref
),
1824 get_object_alignment (ref
));
1825 ref
= build2 (MEM_REF
, type
, addr
, alias_ptr
);
1827 ref
= build3 (ref_code
, ref_type
, ref
, ref_op1
, ref_op2
);
1831 /* Get the initialization expression for the INDEX-th temporary variable
1835 get_init_expr (chain_p chain
, unsigned index
)
1837 if (chain
->type
== CT_COMBINATION
)
1839 tree e1
= get_init_expr (chain
->ch1
, index
);
1840 tree e2
= get_init_expr (chain
->ch2
, index
);
1842 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1845 return chain
->inits
[index
];
1848 /* Returns a new temporary variable used for the I-th variable carrying
1849 value of REF. The variable's uid is marked in TMP_VARS. */
1852 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1854 tree type
= TREE_TYPE (ref
);
1855 /* We never access the components of the temporary variable in predictive
1857 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1858 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1862 /* Creates the variables for CHAIN, as well as phi nodes for them and
1863 initialization on entry to LOOP. Uids of the newly created
1864 temporary variables are marked in TMP_VARS. */
1867 initialize_root_vars (class loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1870 unsigned n
= chain
->length
;
1871 dref root
= get_chain_root (chain
);
1872 bool reuse_first
= !chain
->has_max_use_after
;
1873 tree ref
, init
, var
, next
;
1876 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1878 /* If N == 0, then all the references are within the single iteration. And
1879 since this is an nonempty chain, reuse_first cannot be true. */
1880 gcc_assert (n
> 0 || !reuse_first
);
1882 chain
->vars
.create (n
+ 1);
1884 if (chain
->type
== CT_COMBINATION
)
1885 ref
= gimple_assign_lhs (root
->stmt
);
1887 ref
= DR_REF (root
->ref
);
1889 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1891 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1892 chain
->vars
.quick_push (var
);
1895 chain
->vars
.quick_push (chain
->vars
[0]);
1897 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1898 chain
->vars
[i
] = make_ssa_name (var
);
1900 for (i
= 0; i
< n
; i
++)
1902 var
= chain
->vars
[i
];
1903 next
= chain
->vars
[i
+ 1];
1904 init
= get_init_expr (chain
, i
);
1906 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1908 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1910 phi
= create_phi_node (var
, loop
->header
);
1911 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1912 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1916 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1917 all stores to be eliminated store loop invariant values into memory.
1918 In this case, we can use these invariant values directly after LOOP. */
1921 is_inv_store_elimination_chain (class loop
*loop
, chain_p chain
)
1923 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
1926 gcc_assert (!chain
->has_max_use_after
);
1928 /* If loop iterates for unknown times or fewer times than chain->length,
1929 we still need to setup root variable and propagate it with PHI node. */
1930 tree niters
= number_of_latch_executions (loop
);
1931 if (TREE_CODE (niters
) != INTEGER_CST
1932 || wi::leu_p (wi::to_wide (niters
), chain
->length
))
1935 /* Check stores in chain for elimination if they only store loop invariant
1937 for (unsigned i
= 0; i
< chain
->length
; i
++)
1939 dref a
= get_chain_last_write_at (chain
, i
);
1943 gimple
*def_stmt
, *stmt
= a
->stmt
;
1944 if (!gimple_assign_single_p (stmt
))
1947 tree val
= gimple_assign_rhs1 (stmt
);
1948 if (TREE_CLOBBER_P (val
))
1951 if (CONSTANT_CLASS_P (val
))
1954 if (TREE_CODE (val
) != SSA_NAME
)
1957 def_stmt
= SSA_NAME_DEF_STMT (val
);
1958 if (gimple_nop_p (def_stmt
))
1961 if (flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
)))
1967 /* Creates root variables for store elimination CHAIN in which stores for
1968 elimination only store loop invariant values. In this case, we neither
1969 need to load root variables before loop nor propagate it with PHI nodes. */
1972 initialize_root_vars_store_elim_1 (chain_p chain
)
1975 unsigned i
, n
= chain
->length
;
1977 chain
->vars
.create (n
);
1978 chain
->vars
.safe_grow_cleared (n
, true);
1980 /* Initialize root value for eliminated stores at each distance. */
1981 for (i
= 0; i
< n
; i
++)
1983 dref a
= get_chain_last_write_at (chain
, i
);
1987 var
= gimple_assign_rhs1 (a
->stmt
);
1988 chain
->vars
[a
->distance
] = var
;
1991 /* We don't propagate values with PHI nodes, so manually propagate value
1992 to bubble positions. */
1993 var
= chain
->vars
[0];
1994 for (i
= 1; i
< n
; i
++)
1996 if (chain
->vars
[i
] != NULL_TREE
)
1998 var
= chain
->vars
[i
];
2001 chain
->vars
[i
] = var
;
2004 /* Revert the vector. */
2005 for (i
= 0; i
< n
/ 2; i
++)
2006 std::swap (chain
->vars
[i
], chain
->vars
[n
- i
- 1]);
2009 /* Creates root variables for store elimination CHAIN in which stores for
2010 elimination store loop variant values. In this case, we may need to
2011 load root variables before LOOP and propagate it with PHI nodes. Uids
2012 of the newly created root variables are marked in TMP_VARS. */
2015 initialize_root_vars_store_elim_2 (class loop
*loop
,
2016 chain_p chain
, bitmap tmp_vars
)
2018 unsigned i
, n
= chain
->length
;
2019 tree ref
, init
, var
, next
, val
, phi_result
;
2023 chain
->vars
.create (n
);
2025 ref
= DR_REF (get_chain_root (chain
)->ref
);
2026 for (i
= 0; i
< n
; i
++)
2028 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
2029 chain
->vars
.quick_push (var
);
2032 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
2033 chain
->vars
[i
] = make_ssa_name (var
);
2035 /* Root values are either rhs operand of stores to be eliminated, or
2036 loaded from memory before loop. */
2037 auto_vec
<tree
> vtemps
;
2038 vtemps
.safe_grow_cleared (n
, true);
2039 for (i
= 0; i
< n
; i
++)
2041 init
= get_init_expr (chain
, i
);
2042 if (init
== NULL_TREE
)
2044 /* Root value is rhs operand of the store to be eliminated if
2045 it isn't loaded from memory before loop. */
2046 dref a
= get_chain_last_write_at (chain
, i
);
2047 val
= gimple_assign_rhs1 (a
->stmt
);
2048 if (TREE_CLOBBER_P (val
))
2050 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (var
));
2051 gimple_assign_set_rhs1 (a
->stmt
, val
);
2054 vtemps
[n
- i
- 1] = val
;
2058 edge latch
= loop_latch_edge (loop
);
2059 edge entry
= loop_preheader_edge (loop
);
2061 /* Root value is loaded from memory before loop, we also need
2062 to add PHI nodes to propagate the value across iterations. */
2063 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
2065 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2067 next
= chain
->vars
[n
- i
];
2068 phi_result
= copy_ssa_name (next
);
2069 gphi
*phi
= create_phi_node (phi_result
, loop
->header
);
2070 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
2071 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
2072 vtemps
[n
- i
- 1] = phi_result
;
2076 /* Find the insertion position. */
2077 dref last
= get_chain_root (chain
);
2078 for (i
= 0; i
< chain
->refs
.length (); i
++)
2080 if (chain
->refs
[i
]->pos
> last
->pos
)
2081 last
= chain
->refs
[i
];
2084 gimple_stmt_iterator gsi
= gsi_for_stmt (last
->stmt
);
2086 /* Insert statements copying root value to root variable. */
2087 for (i
= 0; i
< n
; i
++)
2089 var
= chain
->vars
[i
];
2091 stmt
= gimple_build_assign (var
, val
);
2092 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
2096 /* Generates stores for CHAIN's eliminated stores in LOOP's last
2097 (CHAIN->length - 1) iterations. */
2100 finalize_eliminated_stores (class loop
*loop
, chain_p chain
)
2102 unsigned i
, n
= chain
->length
;
2104 for (i
= 0; i
< n
; i
++)
2106 tree var
= chain
->vars
[i
];
2107 tree fini
= chain
->finis
[n
- i
- 1];
2108 gimple
*stmt
= gimple_build_assign (fini
, var
);
2110 gimple_seq_add_stmt_without_update (&chain
->fini_seq
, stmt
);
2113 if (chain
->fini_seq
)
2115 gsi_insert_seq_on_edge_immediate (single_exit (loop
), chain
->fini_seq
);
2116 chain
->fini_seq
= NULL
;
2120 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
2121 initialization on entry to LOOP if necessary. The ssa name for the variable
2122 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
2123 around the loop is created. Uid of the newly created temporary variable
2124 is marked in TMP_VARS. INITS is the list containing the (single)
2128 initialize_root_vars_lm (class loop
*loop
, dref root
, bool written
,
2129 vec
<tree
> *vars
, const vec
<tree
> &inits
,
2133 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
2136 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
2138 /* Find the initializer for the variable, and check that it cannot
2142 vars
->create (written
? 2 : 1);
2143 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
2144 vars
->quick_push (var
);
2146 vars
->quick_push ((*vars
)[0]);
2148 FOR_EACH_VEC_ELT (*vars
, i
, var
)
2149 (*vars
)[i
] = make_ssa_name (var
);
2153 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
2155 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2160 phi
= create_phi_node (var
, loop
->header
);
2161 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
2162 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
2166 gassign
*init_stmt
= gimple_build_assign (var
, init
);
2167 gsi_insert_on_edge_immediate (entry
, init_stmt
);
2172 /* Execute load motion for references in chain CHAIN. Uids of the newly
2173 created temporary variables are marked in TMP_VARS. */
2176 execute_load_motion (class loop
*loop
, chain_p chain
, bitmap tmp_vars
)
2178 auto_vec
<tree
> vars
;
2180 unsigned n_writes
= 0, ridx
, i
;
2183 gcc_assert (chain
->type
== CT_INVARIANT
);
2184 gcc_assert (!chain
->combined
);
2185 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
2186 if (DR_IS_WRITE (a
->ref
))
2189 /* If there are no reads in the loop, there is nothing to do. */
2190 if (n_writes
== chain
->refs
.length ())
2193 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
2194 &vars
, chain
->inits
, tmp_vars
);
2197 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
2199 bool is_read
= DR_IS_READ (a
->ref
);
2201 if (DR_IS_WRITE (a
->ref
))
2207 var
= make_ssa_name (SSA_NAME_VAR (var
));
2214 replace_ref_with (a
->stmt
, vars
[ridx
],
2215 !is_read
, !is_read
);
2219 /* Returns the single statement in that NAME is used, excepting
2220 the looparound phi nodes contained in one of the chains. If there is no
2221 such statement, or more statements, NULL is returned. */
2224 pcom_worker::single_nonlooparound_use (tree name
)
2227 imm_use_iterator it
;
2228 gimple
*stmt
, *ret
= NULL
;
2230 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
2232 stmt
= USE_STMT (use
);
2234 if (gimple_code (stmt
) == GIMPLE_PHI
)
2236 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2237 could not be processed anyway, so just fail for them. */
2238 if (bitmap_bit_p (m_looparound_phis
,
2239 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
2244 else if (is_gimple_debug (stmt
))
2246 else if (ret
!= NULL
)
2255 /* Remove statement STMT, as well as the chain of assignments in that it is
2259 pcom_worker::remove_stmt (gimple
*stmt
)
2263 gimple_stmt_iterator psi
;
2265 if (gimple_code (stmt
) == GIMPLE_PHI
)
2267 name
= PHI_RESULT (stmt
);
2268 next
= single_nonlooparound_use (name
);
2269 reset_debug_uses (stmt
);
2270 psi
= gsi_for_stmt (stmt
);
2271 remove_phi_node (&psi
, true);
2274 || !gimple_assign_ssa_name_copy_p (next
)
2275 || gimple_assign_rhs1 (next
) != name
)
2283 gimple_stmt_iterator bsi
;
2285 bsi
= gsi_for_stmt (stmt
);
2287 name
= gimple_assign_lhs (stmt
);
2288 if (TREE_CODE (name
) == SSA_NAME
)
2290 next
= single_nonlooparound_use (name
);
2291 reset_debug_uses (stmt
);
2295 /* This is a store to be eliminated. */
2296 gcc_assert (gimple_vdef (stmt
) != NULL
);
2300 unlink_stmt_vdef (stmt
);
2301 gsi_remove (&bsi
, true);
2302 release_defs (stmt
);
2305 || !gimple_assign_ssa_name_copy_p (next
)
2306 || gimple_assign_rhs1 (next
) != name
)
2313 /* Perform the predictive commoning optimization for a chain CHAIN.
2314 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2317 pcom_worker::execute_pred_commoning_chain (chain_p chain
,
2325 if (chain
->combined
)
2327 /* For combined chains, just remove the statements that are used to
2328 compute the values of the expression (except for the root one).
2329 We delay this until after all chains are processed. */
2331 else if (chain
->type
== CT_STORE_STORE
)
2333 if (chain
->length
> 0)
2335 if (chain
->inv_store_elimination
)
2337 /* If dead stores in this chain only store loop invariant
2338 values, we can simply record the invariant value and use
2339 it directly after loop. */
2340 initialize_root_vars_store_elim_1 (chain
);
2344 /* If dead stores in this chain store loop variant values,
2345 we need to set up the variables by loading from memory
2346 before loop and propagating it with PHI nodes. */
2347 initialize_root_vars_store_elim_2 (m_loop
, chain
, tmp_vars
);
2350 /* For inter-iteration store elimination chain, stores at each
2351 distance in loop's last (chain->length - 1) iterations can't
2352 be eliminated, because there is no following killing store.
2353 We need to generate these stores after loop. */
2354 finalize_eliminated_stores (m_loop
, chain
);
2357 bool last_store_p
= true;
2358 for (i
= chain
->refs
.length (); i
> 0; i
--)
2360 a
= chain
->refs
[i
- 1];
2361 /* Preserve the last store of the chain. Eliminate other stores
2362 which are killed by the last one. */
2363 if (DR_IS_WRITE (a
->ref
))
2366 last_store_p
= false;
2368 remove_stmt (a
->stmt
);
2373 /* Any load in Store-Store chain must be dominated by a previous
2374 store, we replace the load reference with rhs of the store. */
2375 dref b
= get_chain_last_write_before_load (chain
, i
- 1);
2376 gcc_assert (b
!= NULL
);
2377 var
= gimple_assign_rhs1 (b
->stmt
);
2378 replace_ref_with (a
->stmt
, var
, false, false);
2383 /* For non-combined chains, set up the variables that hold its value. */
2384 initialize_root_vars (m_loop
, chain
, tmp_vars
);
2385 a
= get_chain_root (chain
);
2386 in_lhs
= (chain
->type
== CT_STORE_LOAD
2387 || chain
->type
== CT_COMBINATION
);
2388 replace_ref_with (a
->stmt
, chain
->vars
[chain
->length
], true, in_lhs
);
2390 /* Replace the uses of the original references by these variables. */
2391 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
2393 var
= chain
->vars
[chain
->length
- a
->distance
];
2394 replace_ref_with (a
->stmt
, var
, false, false);
2399 /* Determines the unroll factor necessary to remove as many temporary variable
2400 copies as possible. CHAINS is the list of chains that will be
2404 determine_unroll_factor (const vec
<chain_p
> &chains
)
2407 unsigned factor
= 1, af
, nfactor
, i
;
2408 unsigned max
= param_max_unroll_times
;
2410 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2412 if (chain
->type
== CT_INVARIANT
)
2414 /* For now we can't handle unrolling when eliminating stores. */
2415 else if (chain
->type
== CT_STORE_STORE
)
2418 if (chain
->combined
)
2420 /* For combined chains, we can't handle unrolling if we replace
2424 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2425 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2430 /* The best unroll factor for this chain is equal to the number of
2431 temporary variables that we create for it. */
2433 if (chain
->has_max_use_after
)
2436 nfactor
= factor
* af
/ gcd (factor
, af
);
2444 /* Perform the predictive commoning optimization for chains.
2445 Uids of the newly created temporary variables are marked in TMP_VARS. */
2448 pcom_worker::execute_pred_commoning (bitmap tmp_vars
)
2453 FOR_EACH_VEC_ELT (m_chains
, i
, chain
)
2455 if (chain
->type
== CT_INVARIANT
)
2456 execute_load_motion (m_loop
, chain
, tmp_vars
);
2458 execute_pred_commoning_chain (chain
, tmp_vars
);
2461 FOR_EACH_VEC_ELT (m_chains
, i
, chain
)
2463 if (chain
->type
== CT_INVARIANT
)
2465 else if (chain
->combined
)
2467 /* For combined chains, just remove the statements that are used to
2468 compute the values of the expression (except for the root one). */
2471 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2472 remove_stmt (a
->stmt
);
2477 /* For each reference in CHAINS, if its defining statement is
2478 phi node, record the ssa name that is defined by it. */
2481 replace_phis_by_defined_names (vec
<chain_p
> &chains
)
2487 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2488 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2490 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2492 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
2498 /* For each reference in CHAINS, if name_defined_by_phi is not
2499 NULL, use it to set the stmt field. */
2502 replace_names_by_phis (vec
<chain_p
> chains
)
2508 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2509 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2510 if (a
->stmt
== NULL
)
2512 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
2513 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
2514 a
->name_defined_by_phi
= NULL_TREE
;
2518 /* Wrapper over execute_pred_commoning, to pass it as a callback
2519 to tree_transform_and_unroll_loop. */
2523 vec
<chain_p
> chains
;
2525 pcom_worker
*worker
;
2529 execute_pred_commoning_cbck (class loop
*loop ATTRIBUTE_UNUSED
, void *data
)
2531 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
2532 pcom_worker
*worker
= dta
->worker
;
2534 /* Restore phi nodes that were replaced by ssa names before
2535 tree_transform_and_unroll_loop (see detailed description in
2536 tree_predictive_commoning_loop). */
2537 replace_names_by_phis (dta
->chains
);
2538 worker
->execute_pred_commoning (dta
->tmp_vars
);
2541 /* Base NAME and all the names in the chain of phi nodes that use it
2542 on variable VAR. The phi nodes are recognized by being in the copies of
2543 the header of the LOOP. */
2546 base_names_in_chain_on (class loop
*loop
, tree name
, tree var
)
2549 imm_use_iterator iter
;
2551 replace_ssa_name_symbol (name
, var
);
2556 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
2558 if (gimple_code (stmt
) == GIMPLE_PHI
2559 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2568 name
= PHI_RESULT (phi
);
2569 replace_ssa_name_symbol (name
, var
);
2573 /* Given an unrolled LOOP after predictive commoning, remove the
2574 register copies arising from phi nodes by changing the base
2575 variables of SSA names. TMP_VARS is the set of the temporary variables
2576 for those we want to perform this. */
2579 eliminate_temp_copies (class loop
*loop
, bitmap tmp_vars
)
2584 tree name
, use
, var
;
2587 e
= loop_latch_edge (loop
);
2588 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
2591 name
= PHI_RESULT (phi
);
2592 var
= SSA_NAME_VAR (name
);
2593 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
2595 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
2596 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
2598 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2599 stmt
= SSA_NAME_DEF_STMT (use
);
2600 while (gimple_code (stmt
) == GIMPLE_PHI
2601 /* In case we could not unroll the loop enough to eliminate
2602 all copies, we may reach the loop header before the defining
2603 statement (in that case, some register copies will be present
2604 in loop latch in the final code, corresponding to the newly
2605 created looparound phi nodes). */
2606 && gimple_bb (stmt
) != loop
->header
)
2608 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2609 use
= PHI_ARG_DEF (stmt
, 0);
2610 stmt
= SSA_NAME_DEF_STMT (use
);
2613 base_names_in_chain_on (loop
, use
, var
);
2617 /* Returns true if CHAIN is suitable to be combined. */
2620 chain_can_be_combined_p (chain_p chain
)
2622 return (!chain
->combined
2623 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2626 /* Returns the modify statement that uses NAME. Skips over assignment
2627 statements, NAME is replaced with the actual name used in the returned
2631 pcom_worker::find_use_stmt (tree
*name
)
2636 /* Skip over assignments. */
2639 stmt
= single_nonlooparound_use (*name
);
2643 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2646 lhs
= gimple_assign_lhs (stmt
);
2647 if (TREE_CODE (lhs
) != SSA_NAME
)
2650 if (gimple_assign_copy_p (stmt
))
2652 rhs
= gimple_assign_rhs1 (stmt
);
2658 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2659 == GIMPLE_BINARY_RHS
)
2666 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2669 may_reassociate_p (tree type
, enum tree_code code
)
2671 if (FLOAT_TYPE_P (type
)
2672 && !flag_unsafe_math_optimizations
)
2675 return (commutative_tree_code (code
)
2676 && associative_tree_code (code
));
2679 /* If the operation used in STMT is associative and commutative, go through the
2680 tree of the same operations and returns its root. Distance to the root
2681 is stored in DISTANCE. */
2684 pcom_worker::find_associative_operation_root (gimple
*stmt
, unsigned *distance
)
2688 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2689 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2692 if (!may_reassociate_p (type
, code
))
2697 lhs
= gimple_assign_lhs (stmt
);
2698 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2700 next
= find_use_stmt (&lhs
);
2702 || gimple_assign_rhs_code (next
) != code
)
2714 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2715 is no such statement, returns NULL_TREE. In case the operation used on
2716 NAME1 and NAME2 is associative and commutative, returns the root of the
2717 tree formed by this operation instead of the statement that uses NAME1 or
2721 pcom_worker::find_common_use_stmt (tree
*name1
, tree
*name2
)
2723 gimple
*stmt1
, *stmt2
;
2725 stmt1
= find_use_stmt (name1
);
2729 stmt2
= find_use_stmt (name2
);
2736 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2739 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2743 return (stmt1
== stmt2
? stmt1
: NULL
);
2746 /* Checks whether R1 and R2 are combined together using CODE, with the result
2747 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2748 if it is true. If CODE is ERROR_MARK, set these values instead. */
2751 pcom_worker::combinable_refs_p (dref r1
, dref r2
,
2752 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2754 enum tree_code acode
;
2760 name1
= name_for_ref (r1
);
2761 name2
= name_for_ref (r2
);
2762 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2764 stmt
= find_common_use_stmt (&name1
, &name2
);
2767 /* A simple post-dominance check - make sure the combination
2768 is executed under the same condition as the references. */
2769 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2770 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2773 acode
= gimple_assign_rhs_code (stmt
);
2774 aswap
= (!commutative_tree_code (acode
)
2775 && gimple_assign_rhs1 (stmt
) != name1
);
2776 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2778 if (*code
== ERROR_MARK
)
2786 return (*code
== acode
2788 && *rslt_type
== atype
);
2791 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2792 an assignment of the remaining operand. */
2795 remove_name_from_operation (gimple
*stmt
, tree op
)
2798 gimple_stmt_iterator si
;
2800 gcc_assert (is_gimple_assign (stmt
));
2802 if (gimple_assign_rhs1 (stmt
) == op
)
2803 other_op
= gimple_assign_rhs2 (stmt
);
2805 other_op
= gimple_assign_rhs1 (stmt
);
2807 si
= gsi_for_stmt (stmt
);
2808 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2810 /* We should not have reallocated STMT. */
2811 gcc_assert (gsi_stmt (si
) == stmt
);
2816 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2817 are combined in a single statement, and returns this statement. */
2820 pcom_worker::reassociate_to_the_same_stmt (tree name1
, tree name2
)
2822 gimple
*stmt1
, *stmt2
, *root1
, *root2
, *s1
, *s2
;
2823 gassign
*new_stmt
, *tmp_stmt
;
2824 tree new_name
, tmp_name
, var
, r1
, r2
;
2825 unsigned dist1
, dist2
;
2826 enum tree_code code
;
2827 tree type
= TREE_TYPE (name1
);
2828 gimple_stmt_iterator bsi
;
2830 stmt1
= find_use_stmt (&name1
);
2831 stmt2
= find_use_stmt (&name2
);
2832 root1
= find_associative_operation_root (stmt1
, &dist1
);
2833 root2
= find_associative_operation_root (stmt2
, &dist2
);
2834 code
= gimple_assign_rhs_code (stmt1
);
2836 gcc_assert (root1
&& root2
&& root1
== root2
2837 && code
== gimple_assign_rhs_code (stmt2
));
2839 /* Find the root of the nearest expression in that both NAME1 and NAME2
2846 while (dist1
> dist2
)
2848 s1
= find_use_stmt (&r1
);
2849 r1
= gimple_assign_lhs (s1
);
2852 while (dist2
> dist1
)
2854 s2
= find_use_stmt (&r2
);
2855 r2
= gimple_assign_lhs (s2
);
2861 s1
= find_use_stmt (&r1
);
2862 r1
= gimple_assign_lhs (s1
);
2863 s2
= find_use_stmt (&r2
);
2864 r2
= gimple_assign_lhs (s2
);
2867 /* Remove NAME1 and NAME2 from the statements in that they are used
2869 remove_name_from_operation (stmt1
, name1
);
2870 remove_name_from_operation (stmt2
, name2
);
2872 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2873 combine it with the rhs of S1. */
2874 var
= create_tmp_reg (type
, "predreastmp");
2875 new_name
= make_ssa_name (var
);
2876 new_stmt
= gimple_build_assign (new_name
, code
, name1
, name2
);
2878 var
= create_tmp_reg (type
, "predreastmp");
2879 tmp_name
= make_ssa_name (var
);
2881 /* Rhs of S1 may now be either a binary expression with operation
2882 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2883 so that name1 or name2 was removed from it). */
2884 tmp_stmt
= gimple_build_assign (tmp_name
, gimple_assign_rhs_code (s1
),
2885 gimple_assign_rhs1 (s1
),
2886 gimple_assign_rhs2 (s1
));
2888 bsi
= gsi_for_stmt (s1
);
2889 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2890 s1
= gsi_stmt (bsi
);
2893 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2894 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2899 /* Returns the statement that combines references R1 and R2. In case R1
2900 and R2 are not used in the same statement, but they are used with an
2901 associative and commutative operation in the same expression, reassociate
2902 the expression so that they are used in the same statement. */
2905 pcom_worker::stmt_combining_refs (dref r1
, dref r2
)
2907 gimple
*stmt1
, *stmt2
;
2908 tree name1
= name_for_ref (r1
);
2909 tree name2
= name_for_ref (r2
);
2911 stmt1
= find_use_stmt (&name1
);
2912 stmt2
= find_use_stmt (&name2
);
2916 return reassociate_to_the_same_stmt (name1
, name2
);
2919 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2920 description of the new chain is returned, otherwise we return NULL. */
2923 pcom_worker::combine_chains (chain_p ch1
, chain_p ch2
)
2926 enum tree_code op
= ERROR_MARK
;
2930 tree rslt_type
= NULL_TREE
;
2934 if (ch1
->length
!= ch2
->length
)
2937 if (ch1
->refs
.length () != ch2
->refs
.length ())
2940 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2941 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2943 if (r1
->distance
!= r2
->distance
)
2946 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2951 std::swap (ch1
, ch2
);
2953 new_chain
= new struct chain (CT_COMBINATION
);
2955 new_chain
->ch1
= ch1
;
2956 new_chain
->ch2
= ch2
;
2957 new_chain
->rslt_type
= rslt_type
;
2958 new_chain
->length
= ch1
->length
;
2960 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2961 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2963 nw
= XCNEW (class dref_d
);
2964 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2965 nw
->distance
= r1
->distance
;
2967 new_chain
->refs
.safe_push (nw
);
2970 ch1
->combined
= true;
2971 ch2
->combined
= true;
2975 /* Recursively update position information of all offspring chains to ROOT
2976 chain's position information. */
2979 update_pos_for_combined_chains (chain_p root
)
2981 chain_p ch1
= root
->ch1
, ch2
= root
->ch2
;
2982 dref ref
, ref1
, ref2
;
2983 for (unsigned j
= 0; (root
->refs
.iterate (j
, &ref
)
2984 && ch1
->refs
.iterate (j
, &ref1
)
2985 && ch2
->refs
.iterate (j
, &ref2
)); ++j
)
2986 ref1
->pos
= ref2
->pos
= ref
->pos
;
2988 if (ch1
->type
== CT_COMBINATION
)
2989 update_pos_for_combined_chains (ch1
);
2990 if (ch2
->type
== CT_COMBINATION
)
2991 update_pos_for_combined_chains (ch2
);
2994 /* Returns true if statement S1 dominates statement S2. */
2997 pcom_stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
2999 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
3001 if (!bb1
|| s1
== s2
)
3005 return gimple_uid (s1
) < gimple_uid (s2
);
3007 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
3010 /* Try to combine the chains. */
3013 pcom_worker::try_combine_chains ()
3016 chain_p ch1
, ch2
, cch
;
3017 auto_vec
<chain_p
> worklist
;
3018 bool combined_p
= false;
3020 FOR_EACH_VEC_ELT (m_chains
, i
, ch1
)
3021 if (chain_can_be_combined_p (ch1
))
3022 worklist
.safe_push (ch1
);
3024 while (!worklist
.is_empty ())
3026 ch1
= worklist
.pop ();
3027 if (!chain_can_be_combined_p (ch1
))
3030 FOR_EACH_VEC_ELT (m_chains
, j
, ch2
)
3032 if (!chain_can_be_combined_p (ch2
))
3035 cch
= combine_chains (ch1
, ch2
);
3038 worklist
.safe_push (cch
);
3039 m_chains
.safe_push (cch
);
3048 /* Setup UID for all statements in dominance order. */
3049 basic_block
*bbs
= get_loop_body_in_dom_order (m_loop
);
3050 renumber_gimple_stmt_uids_in_blocks (bbs
, m_loop
->num_nodes
);
3053 /* Re-association in combined chains may generate statements different to
3054 order of references of the original chain. We need to keep references
3055 of combined chain in dominance order so that all uses will be inserted
3056 after definitions. Note:
3057 A) This is necessary for all combined chains.
3058 B) This is only necessary for ZERO distance references because other
3059 references inherit value from loop carried PHIs.
3061 We first update position information for all combined chains. */
3063 for (i
= 0; m_chains
.iterate (i
, &ch1
); ++i
)
3065 if (ch1
->type
!= CT_COMBINATION
|| ch1
->combined
)
3068 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
3069 ref
->pos
= gimple_uid (ref
->stmt
);
3071 update_pos_for_combined_chains (ch1
);
3073 /* Then sort references according to newly updated position information. */
3074 for (i
= 0; m_chains
.iterate (i
, &ch1
); ++i
)
3076 if (ch1
->type
!= CT_COMBINATION
&& !ch1
->combined
)
3079 /* Find the first reference with non-ZERO distance. */
3080 if (ch1
->length
== 0)
3081 j
= ch1
->refs
.length();
3084 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
3085 if (ref
->distance
!= 0)
3089 /* Sort all ZERO distance references by position. */
3090 qsort (&ch1
->refs
[0], j
, sizeof (ch1
->refs
[0]), order_drefs_by_pos
);
3095 /* For ZERO length chain, has_max_use_after must be true since root
3096 combined stmt must dominates others. */
3097 if (ch1
->length
== 0)
3099 ch1
->has_max_use_after
= true;
3102 /* Check if there is use at max distance after root for combined chains
3103 and set flag accordingly. */
3104 ch1
->has_max_use_after
= false;
3105 gimple
*root_stmt
= get_chain_root (ch1
)->stmt
;
3106 for (j
= 1; ch1
->refs
.iterate (j
, &ref
); ++j
)
3108 if (ref
->distance
== ch1
->length
3109 && !pcom_stmt_dominates_stmt_p (ref
->stmt
, root_stmt
))
3111 ch1
->has_max_use_after
= true;
3118 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
3119 if this is impossible because one of these initializers may trap, true
3123 prepare_initializers_chain_store_elim (class loop
*loop
, chain_p chain
)
3125 unsigned i
, n
= chain
->length
;
3127 /* For now we can't eliminate stores if some of them are conditional
3129 if (!chain
->all_always_accessed
)
3132 /* Nothing to intialize for intra-iteration store elimination. */
3133 if (n
== 0 && chain
->type
== CT_STORE_STORE
)
3136 /* For store elimination chain, there is nothing to initialize if stores
3137 to be eliminated only store loop invariant values into memory. */
3138 if (chain
->type
== CT_STORE_STORE
3139 && is_inv_store_elimination_chain (loop
, chain
))
3141 chain
->inv_store_elimination
= true;
3145 chain
->inits
.create (n
);
3146 chain
->inits
.safe_grow_cleared (n
, true);
3148 /* For store eliminatin chain like below:
3150 for (i = 0; i < len; i++)
3157 store to a[i + 1] is missed in loop body, it acts like bubbles. The
3158 content of a[i + 1] remain the same if the loop iterates fewer times
3159 than chain->length. We need to set up root variables for such stores
3160 by loading from memory before loop. Note we only need to load bubble
3161 elements because loop body is guaranteed to be executed at least once
3162 after loop's preheader edge. */
3163 auto_vec
<bool> bubbles
;
3164 bubbles
.safe_grow_cleared (n
+ 1, true);
3165 for (i
= 0; i
< chain
->refs
.length (); i
++)
3166 bubbles
[chain
->refs
[i
]->distance
] = true;
3168 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3169 for (i
= 0; i
< n
; i
++)
3174 gimple_seq stmts
= NULL
;
3176 tree init
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
);
3178 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
3180 chain
->inits
[i
] = init
;
3186 /* Prepare initializers for CHAIN. Returns false if this is impossible
3187 because one of these initializers may trap, true otherwise. */
3190 pcom_worker::prepare_initializers_chain (chain_p chain
)
3192 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
3193 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3196 edge entry
= loop_preheader_edge (m_loop
);
3198 if (chain
->type
== CT_STORE_STORE
)
3199 return prepare_initializers_chain_store_elim (m_loop
, chain
);
3201 /* Find the initializers for the variables, and check that they cannot
3203 chain
->inits
.create (n
);
3204 for (i
= 0; i
< n
; i
++)
3205 chain
->inits
.quick_push (NULL_TREE
);
3207 /* If we have replaced some looparound phi nodes, use their initializers
3208 instead of creating our own. */
3209 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
3211 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
3214 gcc_assert (laref
->distance
> 0);
3215 chain
->inits
[n
- laref
->distance
]
3216 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
3219 for (i
= 0; i
< n
; i
++)
3221 gimple_seq stmts
= NULL
;
3223 if (chain
->inits
[i
] != NULL_TREE
)
3226 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
3227 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
3229 gimple_seq_discard (stmts
);
3234 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
3236 chain
->inits
[i
] = init
;
3242 /* Prepare initializers for chains, and free chains that cannot
3243 be used because the initializers might trap. */
3246 pcom_worker::prepare_initializers ()
3251 for (i
= 0; i
< m_chains
.length (); )
3253 chain
= m_chains
[i
];
3254 if (prepare_initializers_chain (chain
))
3258 release_chain (chain
);
3259 m_chains
.unordered_remove (i
);
3264 /* Generates finalizer memory references for CHAIN. Returns true
3265 if finalizer code for CHAIN can be generated, otherwise false. */
3268 pcom_worker::prepare_finalizers_chain (chain_p chain
)
3270 unsigned i
, n
= chain
->length
;
3271 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3272 tree fini
, niters
= number_of_latch_executions (m_loop
);
3274 /* For now we can't eliminate stores if some of them are conditional
3276 if (!chain
->all_always_accessed
)
3279 chain
->finis
.create (n
);
3280 for (i
= 0; i
< n
; i
++)
3281 chain
->finis
.quick_push (NULL_TREE
);
3283 /* We never use looparound phi node for store elimination chains. */
3285 /* Find the finalizers for the variables, and check that they cannot
3287 for (i
= 0; i
< n
; i
++)
3289 gimple_seq stmts
= NULL
;
3290 gcc_assert (chain
->finis
[i
] == NULL_TREE
);
3292 if (TREE_CODE (niters
) != INTEGER_CST
&& TREE_CODE (niters
) != SSA_NAME
)
3294 niters
= unshare_expr (niters
);
3295 niters
= force_gimple_operand (niters
, &stmts
, true, NULL
);
3298 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3302 fini
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
, niters
);
3304 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3306 chain
->finis
[i
] = fini
;
3312 /* Generates finalizer memory reference for chains. Returns true if
3313 finalizer code generation for chains breaks loop closed ssa form. */
3316 pcom_worker::prepare_finalizers ()
3320 bool loop_closed_ssa
= false;
3322 for (i
= 0; i
< m_chains
.length ();)
3324 chain
= m_chains
[i
];
3326 /* Finalizer is only necessary for inter-iteration store elimination
3328 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
3334 if (prepare_finalizers_chain (chain
))
3337 /* Be conservative, assume loop closed ssa form is corrupted
3338 by store-store chain. Though it's not always the case if
3339 eliminated stores only store loop invariant values into
3341 loop_closed_ssa
= true;
3345 release_chain (chain
);
3346 m_chains
.unordered_remove (i
);
3349 return loop_closed_ssa
;
3352 /* Insert all initializing gimple stmts into LOOP's entry edge. */
3355 insert_init_seqs (class loop
*loop
, vec
<chain_p
> &chains
)
3358 edge entry
= loop_preheader_edge (loop
);
3360 for (i
= 0; i
< chains
.length (); ++i
)
3361 if (chains
[i
]->init_seq
)
3363 gsi_insert_seq_on_edge_immediate (entry
, chains
[i
]->init_seq
);
3364 chains
[i
]->init_seq
= NULL
;
3368 /* Performs predictive commoning for LOOP. Sets bit 1<<1 of return value
3369 if LOOP was unrolled; Sets bit 1<<2 of return value if loop closed ssa
3370 form was corrupted. Non-zero return value indicates some changes were
3371 applied to this loop. */
3374 pcom_worker::tree_predictive_commoning_loop (bool allow_unroll_p
)
3376 struct component
*components
;
3377 unsigned unroll_factor
= 0;
3378 class tree_niter_desc desc
;
3379 bool unroll
= false, loop_closed_ssa
= false;
3381 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3382 fprintf (dump_file
, "Processing loop %d\n", m_loop
->num
);
3384 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3385 if (get_max_loop_iterations_int (m_loop
) == 0)
3387 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3388 fprintf (dump_file
, "Loop iterates only 1 time, nothing to do.\n");
3393 /* Find the data references and split them into components according to their
3394 dependence relations. */
3395 auto_vec
<loop_p
, 3> loop_nest
;
3396 if (!compute_data_dependences_for_loop (m_loop
, true, &loop_nest
, &m_datarefs
,
3399 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3400 fprintf (dump_file
, "Cannot analyze data dependencies\n");
3404 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3405 dump_data_dependence_relations (dump_file
, m_dependences
);
3407 components
= split_data_refs_to_components ();
3409 loop_nest
.release ();
3413 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3415 fprintf (dump_file
, "Initial state:\n\n");
3416 dump_components (dump_file
, components
);
3419 /* Find the suitable components and split them into chains. */
3420 components
= filter_suitable_components (components
);
3422 auto_bitmap tmp_vars
;
3423 determine_roots (components
);
3424 release_components (components
);
3426 if (!m_chains
.exists ())
3428 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3430 "Predictive commoning failed: no suitable chains\n");
3434 prepare_initializers ();
3435 loop_closed_ssa
= prepare_finalizers ();
3437 /* Try to combine the chains that are always worked with together. */
3438 try_combine_chains ();
3440 insert_init_seqs (m_loop
, m_chains
);
3442 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3444 fprintf (dump_file
, "Before commoning:\n\n");
3445 dump_chains (dump_file
, m_chains
);
3449 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3450 that its number of iterations is divisible by the factor. */
3451 unroll_factor
= determine_unroll_factor (m_chains
);
3453 if (unroll_factor
> 1)
3454 unroll
= can_unroll_loop_p (m_loop
, unroll_factor
, &desc
);
3456 /* Execute the predictive commoning transformations, and possibly unroll the
3460 struct epcc_data dta
;
3462 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3463 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
3465 dta
.tmp_vars
= tmp_vars
;
3466 dta
.chains
= m_chains
.to_vec_legacy ();
3469 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3470 execute_pred_commoning_cbck is called may cause phi nodes to be
3471 reallocated, which is a problem since CHAINS may point to these
3472 statements. To fix this, we store the ssa names defined by the
3473 phi nodes here instead of the phi nodes themselves, and restore
3474 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3475 replace_phis_by_defined_names (m_chains
);
3477 tree_transform_and_unroll_loop (m_loop
, unroll_factor
, &desc
,
3478 execute_pred_commoning_cbck
, &dta
);
3479 eliminate_temp_copies (m_loop
, tmp_vars
);
3483 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3485 "Executing predictive commoning without unrolling.\n");
3486 execute_pred_commoning (tmp_vars
);
3489 return (unroll
? 2 : 1) | (loop_closed_ssa
? 4 : 1);
3492 /* Runs predictive commoning. */
3495 tree_predictive_commoning (bool allow_unroll_p
)
3497 unsigned ret
= 0, changed
= 0;
3499 initialize_original_copy_tables ();
3500 for (auto loop
: loops_list (cfun
, LI_ONLY_INNERMOST
))
3501 if (optimize_loop_for_speed_p (loop
))
3503 pcom_worker
w(loop
);
3504 changed
|= w
.tree_predictive_commoning_loop (allow_unroll_p
);
3506 free_original_copy_tables ();
3510 ret
= TODO_update_ssa_only_virtuals
;
3512 /* Some loop(s) got unrolled. */
3517 /* Need to fix up loop closed SSA. */
3519 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3521 ret
|= TODO_cleanup_cfg
;
3528 /* Predictive commoning Pass. */
3531 run_tree_predictive_commoning (struct function
*fun
, bool allow_unroll_p
)
3533 if (number_of_loops (fun
) <= 1)
3536 return tree_predictive_commoning (allow_unroll_p
);
3541 const pass_data pass_data_predcom
=
3543 GIMPLE_PASS
, /* type */
3545 OPTGROUP_LOOP
, /* optinfo_flags */
3546 TV_PREDCOM
, /* tv_id */
3547 PROP_cfg
, /* properties_required */
3548 0, /* properties_provided */
3549 0, /* properties_destroyed */
3550 0, /* todo_flags_start */
3551 0, /* todo_flags_finish */
3554 class pass_predcom
: public gimple_opt_pass
3557 pass_predcom (gcc::context
*ctxt
)
3558 : gimple_opt_pass (pass_data_predcom
, ctxt
)
3561 /* opt_pass methods: */
3563 gate (function
*) final override
3565 if (flag_predictive_commoning
!= 0)
3567 /* Loop vectorization enables predictive commoning implicitly
3568 only if predictive commoning isn't set explicitly, and it
3569 doesn't allow unrolling. */
3570 if (flag_tree_loop_vectorize
3571 && !OPTION_SET_P (flag_predictive_commoning
))
3578 execute (function
*fun
) final override
3580 bool allow_unroll_p
= flag_predictive_commoning
!= 0;
3581 return run_tree_predictive_commoning (fun
, allow_unroll_p
);
3584 }; // class pass_predcom
3589 make_pass_predcom (gcc::context
*ctxt
)
3591 return new pass_predcom (ctxt
);