* loop-invariant.c (invariant_for_use, check_dependencies): Fail for
[official-gcc.git] / boehm-gc / os_dep.c
blobfb50a4554b778e9168e3a8fd6ee54da81e88229e
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
87 #if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
89 # if !defined(PCR)
90 # define NEED_FIND_LIMIT
91 # endif
92 #endif
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
98 #endif
100 #ifdef NEED_FIND_LIMIT
101 # include <setjmp.h>
102 #endif
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
123 #endif
124 #if defined(USE_MMAP) || defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126 --> USE_MUNMAP requires USE_MMAP
127 # endif
128 # include <sys/types.h>
129 # include <sys/mman.h>
130 # include <sys/stat.h>
131 # include <errno.h>
132 #endif
134 #ifdef UNIX_LIKE
135 # include <fcntl.h>
136 # if defined(SUNOS5SIGS) && !defined(FREEBSD)
137 # include <sys/siginfo.h>
138 # endif
139 /* Define SETJMP and friends to be the version that restores */
140 /* the signal mask. */
141 # define SETJMP(env) sigsetjmp(env, 1)
142 # define LONGJMP(env, val) siglongjmp(env, val)
143 # define JMP_BUF sigjmp_buf
144 #else
145 # define SETJMP(env) setjmp(env)
146 # define LONGJMP(env, val) longjmp(env, val)
147 # define JMP_BUF jmp_buf
148 #endif
150 #ifdef DARWIN
151 /* for get_etext and friends */
152 #include <mach-o/getsect.h>
153 #endif
155 #ifdef DJGPP
156 /* Apparently necessary for djgpp 2.01. May cause problems with */
157 /* other versions. */
158 typedef long unsigned int caddr_t;
159 #endif
161 #ifdef PCR
162 # include "il/PCR_IL.h"
163 # include "th/PCR_ThCtl.h"
164 # include "mm/PCR_MM.h"
165 #endif
167 #if !defined(NO_EXECUTE_PERMISSION)
168 # define OPT_PROT_EXEC PROT_EXEC
169 #else
170 # define OPT_PROT_EXEC 0
171 #endif
173 #if defined(LINUX) && \
174 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
176 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
177 /* and/or to find the register backing store base (IA64). Do it once */
178 /* here. */
180 #define READ read
182 /* Repeatedly perform a read call until the buffer is filled or */
183 /* we encounter EOF. */
184 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
186 ssize_t num_read = 0;
187 ssize_t result;
189 while (num_read < count) {
190 result = READ(fd, buf + num_read, count - num_read);
191 if (result < 0) return result;
192 if (result == 0) break;
193 num_read += result;
195 return num_read;
199 * Apply fn to a buffer containing the contents of /proc/self/maps.
200 * Return the result of fn or, if we failed, 0.
201 * We currently do nothing to /proc/self/maps other than simply read
202 * it. This code could be simplified if we could determine its size
203 * ahead of time.
206 word GC_apply_to_maps(word (*fn)(char *))
208 int f;
209 int result;
210 size_t maps_size = 4000; /* Initial guess. */
211 static char init_buf[1];
212 static char *maps_buf = init_buf;
213 static size_t maps_buf_sz = 1;
215 /* Read /proc/self/maps, growing maps_buf as necessary. */
216 /* Note that we may not allocate conventionally, and */
217 /* thus can't use stdio. */
218 do {
219 if (maps_size >= maps_buf_sz) {
220 /* Grow only by powers of 2, since we leak "too small" buffers. */
221 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
222 maps_buf = GC_scratch_alloc(maps_buf_sz);
223 if (maps_buf == 0) return 0;
225 f = open("/proc/self/maps", O_RDONLY);
226 if (-1 == f) return 0;
227 maps_size = 0;
228 do {
229 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
230 if (result <= 0) return 0;
231 maps_size += result;
232 } while (result == maps_buf_sz-1);
233 close(f);
234 } while (maps_size >= maps_buf_sz);
235 maps_buf[maps_size] = '\0';
237 /* Apply fn to result. */
238 return fn(maps_buf);
241 #endif /* Need GC_apply_to_maps */
243 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
245 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
246 // locate all writable data segments that belong to shared libraries.
247 // The format of one of these entries and the fields we care about
248 // is as follows:
249 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
250 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
251 // start end prot maj_dev
253 // Note that since about auguat 2003 kernels, the columns no longer have
254 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
255 // anywhere, which is safer anyway.
259 * Assign various fields of the first line in buf_ptr to *start, *end,
260 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
262 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
263 char *prot_buf, unsigned int *maj_dev)
265 char *start_start, *end_start, *prot_start, *maj_dev_start;
266 char *p;
267 char *endp;
269 if (buf_ptr == NULL || *buf_ptr == '\0') {
270 return NULL;
273 p = buf_ptr;
274 while (isspace(*p)) ++p;
275 start_start = p;
276 GC_ASSERT(isxdigit(*start_start));
277 *start = strtoul(start_start, &endp, 16); p = endp;
278 GC_ASSERT(*p=='-');
280 ++p;
281 end_start = p;
282 GC_ASSERT(isxdigit(*end_start));
283 *end = strtoul(end_start, &endp, 16); p = endp;
284 GC_ASSERT(isspace(*p));
286 while (isspace(*p)) ++p;
287 prot_start = p;
288 GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
289 memcpy(prot_buf, prot_start, 4);
290 prot_buf[4] = '\0';
291 if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
292 /* Skip past protection field to offset field */
293 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
294 GC_ASSERT(isxdigit(*p));
295 /* Skip past offset field, which we ignore */
296 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
297 maj_dev_start = p;
298 GC_ASSERT(isxdigit(*maj_dev_start));
299 *maj_dev = strtoul(maj_dev_start, NULL, 16);
302 while (*p && *p++ != '\n');
304 return p;
307 #endif /* Need to parse /proc/self/maps. */
309 #if defined(SEARCH_FOR_DATA_START)
310 /* The I386 case can be handled without a search. The Alpha case */
311 /* used to be handled differently as well, but the rules changed */
312 /* for recent Linux versions. This seems to be the easiest way to */
313 /* cover all versions. */
315 # ifdef LINUX
316 /* Some Linux distributions arrange to define __data_start. Some */
317 /* define data_start as a weak symbol. The latter is technically */
318 /* broken, since the user program may define data_start, in which */
319 /* case we lose. Nonetheless, we try both, prefering __data_start. */
320 /* We assume gcc-compatible pragmas. */
321 # pragma weak __data_start
322 extern int __data_start[];
323 # pragma weak data_start
324 extern int data_start[];
325 # endif /* LINUX */
326 extern int _end[];
328 ptr_t GC_data_start;
330 void GC_init_linux_data_start()
332 extern ptr_t GC_find_limit();
334 # ifdef LINUX
335 /* Try the easy approaches first: */
336 if ((ptr_t)__data_start != 0) {
337 GC_data_start = (ptr_t)(__data_start);
338 return;
340 if ((ptr_t)data_start != 0) {
341 GC_data_start = (ptr_t)(data_start);
342 return;
344 # endif /* LINUX */
345 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
347 #endif
349 # ifdef ECOS
351 # ifndef ECOS_GC_MEMORY_SIZE
352 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
353 # endif /* ECOS_GC_MEMORY_SIZE */
355 // setjmp() function, as described in ANSI para 7.6.1.1
356 #undef SETJMP
357 #define SETJMP( __env__ ) hal_setjmp( __env__ )
359 // FIXME: This is a simple way of allocating memory which is
360 // compatible with ECOS early releases. Later releases use a more
361 // sophisticated means of allocating memory than this simple static
362 // allocator, but this method is at least bound to work.
363 static char memory[ECOS_GC_MEMORY_SIZE];
364 static char *brk = memory;
366 static void *tiny_sbrk(ptrdiff_t increment)
368 void *p = brk;
370 brk += increment;
372 if (brk > memory + sizeof memory)
374 brk -= increment;
375 return NULL;
378 return p;
380 #define sbrk tiny_sbrk
381 # endif /* ECOS */
383 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
384 ptr_t GC_data_start;
386 void GC_init_netbsd_elf()
388 extern ptr_t GC_find_limit();
389 extern char **environ;
390 /* This may need to be environ, without the underscore, for */
391 /* some versions. */
392 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
394 #endif
396 # ifdef OS2
398 # include <stddef.h>
400 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
402 struct exe_hdr {
403 unsigned short magic_number;
404 unsigned short padding[29];
405 long new_exe_offset;
408 #define E_MAGIC(x) (x).magic_number
409 #define EMAGIC 0x5A4D
410 #define E_LFANEW(x) (x).new_exe_offset
412 struct e32_exe {
413 unsigned char magic_number[2];
414 unsigned char byte_order;
415 unsigned char word_order;
416 unsigned long exe_format_level;
417 unsigned short cpu;
418 unsigned short os;
419 unsigned long padding1[13];
420 unsigned long object_table_offset;
421 unsigned long object_count;
422 unsigned long padding2[31];
425 #define E32_MAGIC1(x) (x).magic_number[0]
426 #define E32MAGIC1 'L'
427 #define E32_MAGIC2(x) (x).magic_number[1]
428 #define E32MAGIC2 'X'
429 #define E32_BORDER(x) (x).byte_order
430 #define E32LEBO 0
431 #define E32_WORDER(x) (x).word_order
432 #define E32LEWO 0
433 #define E32_CPU(x) (x).cpu
434 #define E32CPU286 1
435 #define E32_OBJTAB(x) (x).object_table_offset
436 #define E32_OBJCNT(x) (x).object_count
438 struct o32_obj {
439 unsigned long size;
440 unsigned long base;
441 unsigned long flags;
442 unsigned long pagemap;
443 unsigned long mapsize;
444 unsigned long reserved;
447 #define O32_FLAGS(x) (x).flags
448 #define OBJREAD 0x0001L
449 #define OBJWRITE 0x0002L
450 #define OBJINVALID 0x0080L
451 #define O32_SIZE(x) (x).size
452 #define O32_BASE(x) (x).base
454 # else /* IBM's compiler */
456 /* A kludge to get around what appears to be a header file bug */
457 # ifndef WORD
458 # define WORD unsigned short
459 # endif
460 # ifndef DWORD
461 # define DWORD unsigned long
462 # endif
464 # define EXE386 1
465 # include <newexe.h>
466 # include <exe386.h>
468 # endif /* __IBMC__ */
470 # define INCL_DOSEXCEPTIONS
471 # define INCL_DOSPROCESS
472 # define INCL_DOSERRORS
473 # define INCL_DOSMODULEMGR
474 # define INCL_DOSMEMMGR
475 # include <os2.h>
478 /* Disable and enable signals during nontrivial allocations */
480 void GC_disable_signals(void)
482 ULONG nest;
484 DosEnterMustComplete(&nest);
485 if (nest != 1) ABORT("nested GC_disable_signals");
488 void GC_enable_signals(void)
490 ULONG nest;
492 DosExitMustComplete(&nest);
493 if (nest != 0) ABORT("GC_enable_signals");
497 # else
499 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
500 && !defined(MSWINCE) \
501 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
502 && !defined(NOSYS) && !defined(ECOS)
504 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
505 /* Use the traditional BSD interface */
506 # define SIGSET_T int
507 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
508 # define SIG_FILL(set) (set) = 0x7fffffff
509 /* Setting the leading bit appears to provoke a bug in some */
510 /* longjmp implementations. Most systems appear not to have */
511 /* a signal 32. */
512 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
513 # else
514 /* Use POSIX/SYSV interface */
515 # define SIGSET_T sigset_t
516 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
517 # define SIG_FILL(set) sigfillset(&set)
518 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
519 # endif
521 static GC_bool mask_initialized = FALSE;
523 static SIGSET_T new_mask;
525 static SIGSET_T old_mask;
527 static SIGSET_T dummy;
529 #if defined(PRINTSTATS) && !defined(THREADS)
530 # define CHECK_SIGNALS
531 int GC_sig_disabled = 0;
532 #endif
534 void GC_disable_signals()
536 if (!mask_initialized) {
537 SIG_FILL(new_mask);
539 SIG_DEL(new_mask, SIGSEGV);
540 SIG_DEL(new_mask, SIGILL);
541 SIG_DEL(new_mask, SIGQUIT);
542 # ifdef SIGBUS
543 SIG_DEL(new_mask, SIGBUS);
544 # endif
545 # ifdef SIGIOT
546 SIG_DEL(new_mask, SIGIOT);
547 # endif
548 # ifdef SIGEMT
549 SIG_DEL(new_mask, SIGEMT);
550 # endif
551 # ifdef SIGTRAP
552 SIG_DEL(new_mask, SIGTRAP);
553 # endif
554 mask_initialized = TRUE;
556 # ifdef CHECK_SIGNALS
557 if (GC_sig_disabled != 0) ABORT("Nested disables");
558 GC_sig_disabled++;
559 # endif
560 SIGSETMASK(old_mask,new_mask);
563 void GC_enable_signals()
565 # ifdef CHECK_SIGNALS
566 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
567 GC_sig_disabled--;
568 # endif
569 SIGSETMASK(dummy,old_mask);
572 # endif /* !PCR */
574 # endif /*!OS/2 */
576 /* Ivan Demakov: simplest way (to me) */
577 #if defined (DOS4GW)
578 void GC_disable_signals() { }
579 void GC_enable_signals() { }
580 #endif
582 /* Find the page size */
583 word GC_page_size;
585 # if defined(MSWIN32) || defined(MSWINCE)
586 void GC_setpagesize()
588 GetSystemInfo(&GC_sysinfo);
589 GC_page_size = GC_sysinfo.dwPageSize;
592 # else
593 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
594 || defined(USE_MUNMAP)
595 void GC_setpagesize()
597 GC_page_size = GETPAGESIZE();
599 # else
600 /* It's acceptable to fake it. */
601 void GC_setpagesize()
603 GC_page_size = HBLKSIZE;
605 # endif
606 # endif
609 * Find the base of the stack.
610 * Used only in single-threaded environment.
611 * With threads, GC_mark_roots needs to know how to do this.
612 * Called with allocator lock held.
614 # if defined(MSWIN32) || defined(MSWINCE)
615 # define is_writable(prot) ((prot) == PAGE_READWRITE \
616 || (prot) == PAGE_WRITECOPY \
617 || (prot) == PAGE_EXECUTE_READWRITE \
618 || (prot) == PAGE_EXECUTE_WRITECOPY)
619 /* Return the number of bytes that are writable starting at p. */
620 /* The pointer p is assumed to be page aligned. */
621 /* If base is not 0, *base becomes the beginning of the */
622 /* allocation region containing p. */
623 word GC_get_writable_length(ptr_t p, ptr_t *base)
625 MEMORY_BASIC_INFORMATION buf;
626 word result;
627 word protect;
629 result = VirtualQuery(p, &buf, sizeof(buf));
630 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
631 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
632 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
633 if (!is_writable(protect)) {
634 return(0);
636 if (buf.State != MEM_COMMIT) return(0);
637 return(buf.RegionSize);
640 ptr_t GC_get_stack_base()
642 int dummy;
643 ptr_t sp = (ptr_t)(&dummy);
644 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
645 word size = GC_get_writable_length(trunc_sp, 0);
647 return(trunc_sp + size);
651 # endif /* MS Windows */
653 # ifdef BEOS
654 # include <kernel/OS.h>
655 ptr_t GC_get_stack_base(){
656 thread_info th;
657 get_thread_info(find_thread(NULL),&th);
658 return th.stack_end;
660 # endif /* BEOS */
663 # ifdef OS2
665 ptr_t GC_get_stack_base()
667 PTIB ptib;
668 PPIB ppib;
670 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
671 GC_err_printf0("DosGetInfoBlocks failed\n");
672 ABORT("DosGetInfoBlocks failed\n");
674 return((ptr_t)(ptib -> tib_pstacklimit));
677 # endif /* OS2 */
679 # ifdef AMIGA
680 # define GC_AMIGA_SB
681 # include "AmigaOS.c"
682 # undef GC_AMIGA_SB
683 # endif /* AMIGA */
685 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
687 # ifdef __STDC__
688 typedef void (*handler)(int);
689 # else
690 typedef void (*handler)();
691 # endif
693 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
694 || defined(HURD) || defined(NETBSD)
695 static struct sigaction old_segv_act;
696 # if defined(IRIX5) || defined(HPUX) \
697 || defined(HURD) || defined(NETBSD)
698 static struct sigaction old_bus_act;
699 # endif
700 # else
701 static handler old_segv_handler, old_bus_handler;
702 # endif
704 # ifdef __STDC__
705 void GC_set_and_save_fault_handler(handler h)
706 # else
707 void GC_set_and_save_fault_handler(h)
708 handler h;
709 # endif
711 # if defined(SUNOS5SIGS) || defined(IRIX5) \
712 || defined(OSF1) || defined(HURD) || defined(NETBSD)
713 struct sigaction act;
715 act.sa_handler = h;
716 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
717 /* NetBSD bugs. */
718 act.sa_flags = SA_RESTART | SA_NODEFER;
719 # else
720 act.sa_flags = SA_RESTART;
721 # endif
723 (void) sigemptyset(&act.sa_mask);
724 # ifdef GC_IRIX_THREADS
725 /* Older versions have a bug related to retrieving and */
726 /* and setting a handler at the same time. */
727 (void) sigaction(SIGSEGV, 0, &old_segv_act);
728 (void) sigaction(SIGSEGV, &act, 0);
729 (void) sigaction(SIGBUS, 0, &old_bus_act);
730 (void) sigaction(SIGBUS, &act, 0);
731 # else
732 (void) sigaction(SIGSEGV, &act, &old_segv_act);
733 # if defined(IRIX5) \
734 || defined(HPUX) || defined(HURD) || defined(NETBSD)
735 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
736 /* Pthreads doesn't exist under Irix 5.x, so we */
737 /* don't have to worry in the threads case. */
738 (void) sigaction(SIGBUS, &act, &old_bus_act);
739 # endif
740 # endif /* GC_IRIX_THREADS */
741 # else
742 old_segv_handler = signal(SIGSEGV, h);
743 # ifdef SIGBUS
744 old_bus_handler = signal(SIGBUS, h);
745 # endif
746 # endif
748 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
750 # ifdef NEED_FIND_LIMIT
751 /* Some tools to implement HEURISTIC2 */
752 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
753 /* static */ JMP_BUF GC_jmp_buf;
755 /*ARGSUSED*/
756 void GC_fault_handler(sig)
757 int sig;
759 LONGJMP(GC_jmp_buf, 1);
762 void GC_setup_temporary_fault_handler()
764 GC_set_and_save_fault_handler(GC_fault_handler);
767 void GC_reset_fault_handler()
769 # if defined(SUNOS5SIGS) || defined(IRIX5) \
770 || defined(OSF1) || defined(HURD) || defined(NETBSD)
771 (void) sigaction(SIGSEGV, &old_segv_act, 0);
772 # if defined(IRIX5) \
773 || defined(HPUX) || defined(HURD) || defined(NETBSD)
774 (void) sigaction(SIGBUS, &old_bus_act, 0);
775 # endif
776 # else
777 (void) signal(SIGSEGV, old_segv_handler);
778 # ifdef SIGBUS
779 (void) signal(SIGBUS, old_bus_handler);
780 # endif
781 # endif
784 /* Return the first nonaddressible location > p (up) or */
785 /* the smallest location q s.t. [q,p) is addressable (!up). */
786 /* We assume that p (up) or p-1 (!up) is addressable. */
787 ptr_t GC_find_limit(p, up)
788 ptr_t p;
789 GC_bool up;
791 static VOLATILE ptr_t result;
792 /* Needs to be static, since otherwise it may not be */
793 /* preserved across the longjmp. Can safely be */
794 /* static since it's only called once, with the */
795 /* allocation lock held. */
798 GC_setup_temporary_fault_handler();
799 if (SETJMP(GC_jmp_buf) == 0) {
800 result = (ptr_t)(((word)(p))
801 & ~(MIN_PAGE_SIZE-1));
802 for (;;) {
803 if (up) {
804 result += MIN_PAGE_SIZE;
805 } else {
806 result -= MIN_PAGE_SIZE;
808 GC_noop1((word)(*result));
811 GC_reset_fault_handler();
812 if (!up) {
813 result += MIN_PAGE_SIZE;
815 return(result);
817 # endif
819 #if defined(ECOS) || defined(NOSYS)
820 ptr_t GC_get_stack_base()
822 return STACKBOTTOM;
824 #endif
826 #ifdef HPUX_STACKBOTTOM
828 #include <sys/param.h>
829 #include <sys/pstat.h>
831 ptr_t GC_get_register_stack_base(void)
833 struct pst_vm_status vm_status;
835 int i = 0;
836 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
837 if (vm_status.pst_type == PS_RSESTACK) {
838 return (ptr_t) vm_status.pst_vaddr;
842 /* old way to get the register stackbottom */
843 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
844 & ~(BACKING_STORE_ALIGNMENT - 1));
847 #endif /* HPUX_STACK_BOTTOM */
849 #ifdef LINUX_STACKBOTTOM
851 #include <sys/types.h>
852 #include <sys/stat.h>
854 # define STAT_SKIP 27 /* Number of fields preceding startstack */
855 /* field in /proc/self/stat */
857 #ifdef USE_LIBC_PRIVATES
858 # pragma weak __libc_stack_end
859 extern ptr_t __libc_stack_end;
860 #endif
862 # ifdef IA64
863 /* Try to read the backing store base from /proc/self/maps. */
864 /* We look for the writable mapping with a 0 major device, */
865 /* which is as close to our frame as possible, but below it.*/
866 static word backing_store_base_from_maps(char *maps)
868 char prot_buf[5];
869 char *buf_ptr = maps;
870 word start, end;
871 unsigned int maj_dev;
872 word current_best = 0;
873 word dummy;
875 for (;;) {
876 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
877 if (buf_ptr == NULL) return current_best;
878 if (prot_buf[1] == 'w' && maj_dev == 0) {
879 if (end < (word)(&dummy) && start > current_best) current_best = start;
882 return current_best;
885 static word backing_store_base_from_proc(void)
887 return GC_apply_to_maps(backing_store_base_from_maps);
890 # ifdef USE_LIBC_PRIVATES
891 # pragma weak __libc_ia64_register_backing_store_base
892 extern ptr_t __libc_ia64_register_backing_store_base;
893 # endif
895 ptr_t GC_get_register_stack_base(void)
897 # ifdef USE_LIBC_PRIVATES
898 if (0 != &__libc_ia64_register_backing_store_base
899 && 0 != __libc_ia64_register_backing_store_base) {
900 /* Glibc 2.2.4 has a bug such that for dynamically linked */
901 /* executables __libc_ia64_register_backing_store_base is */
902 /* defined but uninitialized during constructor calls. */
903 /* Hence we check for both nonzero address and value. */
904 return __libc_ia64_register_backing_store_base;
906 # endif
907 word result = backing_store_base_from_proc();
908 if (0 == result) {
909 /* Use dumb heuristics. Works only for default configuration. */
910 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
911 result += BACKING_STORE_ALIGNMENT - 1;
912 result &= ~(BACKING_STORE_ALIGNMENT - 1);
913 /* Verify that it's at least readable. If not, we goofed. */
914 GC_noop1(*(word *)result);
916 return (ptr_t)result;
918 # endif
920 ptr_t GC_linux_stack_base(void)
922 /* We read the stack base value from /proc/self/stat. We do this */
923 /* using direct I/O system calls in order to avoid calling malloc */
924 /* in case REDIRECT_MALLOC is defined. */
925 # define STAT_BUF_SIZE 4096
926 # define STAT_READ read
927 /* Should probably call the real read, if read is wrapped. */
928 char stat_buf[STAT_BUF_SIZE];
929 int f;
930 char c;
931 word result = 0;
932 size_t i, buf_offset = 0;
934 /* First try the easy way. This should work for glibc 2.2 */
935 /* This fails in a prelinked ("prelink" command) executable */
936 /* since the correct value of __libc_stack_end never */
937 /* becomes visible to us. The second test works around */
938 /* this. */
939 # ifdef USE_LIBC_PRIVATES
940 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
941 # ifdef IA64
942 /* Some versions of glibc set the address 16 bytes too */
943 /* low while the initialization code is running. */
944 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
945 return __libc_stack_end + 0x10;
946 } /* Otherwise it's not safe to add 16 bytes and we fall */
947 /* back to using /proc. */
948 # else
949 # ifdef SPARC
950 /* Older versions of glibc for 64-bit Sparc do not set
951 * this variable correctly, it gets set to either zero
952 * or one.
954 if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
955 return __libc_stack_end;
956 # else
957 return __libc_stack_end;
958 # endif
959 # endif
961 # endif
962 f = open("/proc/self/stat", O_RDONLY);
963 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
964 ABORT("Couldn't read /proc/self/stat");
966 c = stat_buf[buf_offset++];
967 /* Skip the required number of fields. This number is hopefully */
968 /* constant across all Linux implementations. */
969 for (i = 0; i < STAT_SKIP; ++i) {
970 while (isspace(c)) c = stat_buf[buf_offset++];
971 while (!isspace(c)) c = stat_buf[buf_offset++];
973 while (isspace(c)) c = stat_buf[buf_offset++];
974 while (isdigit(c)) {
975 result *= 10;
976 result += c - '0';
977 c = stat_buf[buf_offset++];
979 close(f);
980 if (result < 0x10000000) ABORT("Absurd stack bottom value");
981 return (ptr_t)result;
984 #endif /* LINUX_STACKBOTTOM */
986 #ifdef FREEBSD_STACKBOTTOM
988 /* This uses an undocumented sysctl call, but at least one expert */
989 /* believes it will stay. */
991 #include <unistd.h>
992 #include <sys/types.h>
993 #include <sys/sysctl.h>
995 ptr_t GC_freebsd_stack_base(void)
997 int nm[2] = {CTL_KERN, KERN_USRSTACK};
998 ptr_t base;
999 size_t len = sizeof(ptr_t);
1000 int r = sysctl(nm, 2, &base, &len, NULL, 0);
1002 if (r) ABORT("Error getting stack base");
1004 return base;
1007 #endif /* FREEBSD_STACKBOTTOM */
1009 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1010 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1012 ptr_t GC_get_stack_base()
1014 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1015 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1016 word dummy;
1017 ptr_t result;
1018 # endif
1020 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1022 # ifdef STACKBOTTOM
1023 return(STACKBOTTOM);
1024 # else
1025 # ifdef HEURISTIC1
1026 # ifdef STACK_GROWS_DOWN
1027 result = (ptr_t)((((word)(&dummy))
1028 + STACKBOTTOM_ALIGNMENT_M1)
1029 & ~STACKBOTTOM_ALIGNMENT_M1);
1030 # else
1031 result = (ptr_t)(((word)(&dummy))
1032 & ~STACKBOTTOM_ALIGNMENT_M1);
1033 # endif
1034 # endif /* HEURISTIC1 */
1035 # ifdef LINUX_STACKBOTTOM
1036 result = GC_linux_stack_base();
1037 # endif
1038 # ifdef FREEBSD_STACKBOTTOM
1039 result = GC_freebsd_stack_base();
1040 # endif
1041 # ifdef HEURISTIC2
1042 # ifdef STACK_GROWS_DOWN
1043 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1044 # ifdef HEURISTIC2_LIMIT
1045 if (result > HEURISTIC2_LIMIT
1046 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1047 result = HEURISTIC2_LIMIT;
1049 # endif
1050 # else
1051 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1052 # ifdef HEURISTIC2_LIMIT
1053 if (result < HEURISTIC2_LIMIT
1054 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1055 result = HEURISTIC2_LIMIT;
1057 # endif
1058 # endif
1060 # endif /* HEURISTIC2 */
1061 # ifdef STACK_GROWS_DOWN
1062 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1063 # endif
1064 return(result);
1065 # endif /* STACKBOTTOM */
1068 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1071 * Register static data segment(s) as roots.
1072 * If more data segments are added later then they need to be registered
1073 * add that point (as we do with SunOS dynamic loading),
1074 * or GC_mark_roots needs to check for them (as we do with PCR).
1075 * Called with allocator lock held.
1078 # ifdef OS2
1080 void GC_register_data_segments()
1082 PTIB ptib;
1083 PPIB ppib;
1084 HMODULE module_handle;
1085 # define PBUFSIZ 512
1086 UCHAR path[PBUFSIZ];
1087 FILE * myexefile;
1088 struct exe_hdr hdrdos; /* MSDOS header. */
1089 struct e32_exe hdr386; /* Real header for my executable */
1090 struct o32_obj seg; /* Currrent segment */
1091 int nsegs;
1094 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1095 GC_err_printf0("DosGetInfoBlocks failed\n");
1096 ABORT("DosGetInfoBlocks failed\n");
1098 module_handle = ppib -> pib_hmte;
1099 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1100 GC_err_printf0("DosQueryModuleName failed\n");
1101 ABORT("DosGetInfoBlocks failed\n");
1103 myexefile = fopen(path, "rb");
1104 if (myexefile == 0) {
1105 GC_err_puts("Couldn't open executable ");
1106 GC_err_puts(path); GC_err_puts("\n");
1107 ABORT("Failed to open executable\n");
1109 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1110 GC_err_puts("Couldn't read MSDOS header from ");
1111 GC_err_puts(path); GC_err_puts("\n");
1112 ABORT("Couldn't read MSDOS header");
1114 if (E_MAGIC(hdrdos) != EMAGIC) {
1115 GC_err_puts("Executable has wrong DOS magic number: ");
1116 GC_err_puts(path); GC_err_puts("\n");
1117 ABORT("Bad DOS magic number");
1119 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1120 GC_err_puts("Seek to new header failed in ");
1121 GC_err_puts(path); GC_err_puts("\n");
1122 ABORT("Bad DOS magic number");
1124 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1125 GC_err_puts("Couldn't read MSDOS header from ");
1126 GC_err_puts(path); GC_err_puts("\n");
1127 ABORT("Couldn't read OS/2 header");
1129 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1130 GC_err_puts("Executable has wrong OS/2 magic number:");
1131 GC_err_puts(path); GC_err_puts("\n");
1132 ABORT("Bad OS/2 magic number");
1134 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1135 GC_err_puts("Executable %s has wrong byte order: ");
1136 GC_err_puts(path); GC_err_puts("\n");
1137 ABORT("Bad byte order");
1139 if ( E32_CPU(hdr386) == E32CPU286) {
1140 GC_err_puts("GC can't handle 80286 executables: ");
1141 GC_err_puts(path); GC_err_puts("\n");
1142 EXIT();
1144 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1145 SEEK_SET) != 0) {
1146 GC_err_puts("Seek to object table failed: ");
1147 GC_err_puts(path); GC_err_puts("\n");
1148 ABORT("Seek to object table failed");
1150 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1151 int flags;
1152 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1153 GC_err_puts("Couldn't read obj table entry from ");
1154 GC_err_puts(path); GC_err_puts("\n");
1155 ABORT("Couldn't read obj table entry");
1157 flags = O32_FLAGS(seg);
1158 if (!(flags & OBJWRITE)) continue;
1159 if (!(flags & OBJREAD)) continue;
1160 if (flags & OBJINVALID) {
1161 GC_err_printf0("Object with invalid pages?\n");
1162 continue;
1164 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1168 # else /* !OS2 */
1170 # if defined(MSWIN32) || defined(MSWINCE)
1172 # ifdef MSWIN32
1173 /* Unfortunately, we have to handle win32s very differently from NT, */
1174 /* Since VirtualQuery has very different semantics. In particular, */
1175 /* under win32s a VirtualQuery call on an unmapped page returns an */
1176 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1177 /* all real work is done by GC_register_dynamic_libraries. Under */
1178 /* win32s, we cannot find the data segments associated with dll's. */
1179 /* We register the main data segment here. */
1180 GC_bool GC_no_win32_dlls = FALSE;
1181 /* This used to be set for gcc, to avoid dealing with */
1182 /* the structured exception handling issues. But we now have */
1183 /* assembly code to do that right. */
1185 void GC_init_win32()
1187 /* if we're running under win32s, assume that no DLLs will be loaded */
1188 DWORD v = GetVersion();
1189 GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1192 /* Return the smallest address a such that VirtualQuery */
1193 /* returns correct results for all addresses between a and start. */
1194 /* Assumes VirtualQuery returns correct information for start. */
1195 ptr_t GC_least_described_address(ptr_t start)
1197 MEMORY_BASIC_INFORMATION buf;
1198 DWORD result;
1199 LPVOID limit;
1200 ptr_t p;
1201 LPVOID q;
1203 limit = GC_sysinfo.lpMinimumApplicationAddress;
1204 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1205 for (;;) {
1206 q = (LPVOID)(p - GC_page_size);
1207 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1208 result = VirtualQuery(q, &buf, sizeof(buf));
1209 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1210 p = (ptr_t)(buf.AllocationBase);
1212 return(p);
1214 # endif
1216 # ifndef REDIRECT_MALLOC
1217 /* We maintain a linked list of AllocationBase values that we know */
1218 /* correspond to malloc heap sections. Currently this is only called */
1219 /* during a GC. But there is some hope that for long running */
1220 /* programs we will eventually see most heap sections. */
1222 /* In the long run, it would be more reliable to occasionally walk */
1223 /* the malloc heap with HeapWalk on the default heap. But that */
1224 /* apparently works only for NT-based Windows. */
1226 /* In the long run, a better data structure would also be nice ... */
1227 struct GC_malloc_heap_list {
1228 void * allocation_base;
1229 struct GC_malloc_heap_list *next;
1230 } *GC_malloc_heap_l = 0;
1232 /* Is p the base of one of the malloc heap sections we already know */
1233 /* about? */
1234 GC_bool GC_is_malloc_heap_base(ptr_t p)
1236 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1238 while (0 != q) {
1239 if (q -> allocation_base == p) return TRUE;
1240 q = q -> next;
1242 return FALSE;
1245 void *GC_get_allocation_base(void *p)
1247 MEMORY_BASIC_INFORMATION buf;
1248 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1249 if (result != sizeof(buf)) {
1250 ABORT("Weird VirtualQuery result");
1252 return buf.AllocationBase;
1255 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1257 void GC_add_current_malloc_heap()
1259 struct GC_malloc_heap_list *new_l =
1260 malloc(sizeof(struct GC_malloc_heap_list));
1261 void * candidate = GC_get_allocation_base(new_l);
1263 if (new_l == 0) return;
1264 if (GC_is_malloc_heap_base(candidate)) {
1265 /* Try a little harder to find malloc heap. */
1266 size_t req_size = 10000;
1267 do {
1268 void *p = malloc(req_size);
1269 if (0 == p) { free(new_l); return; }
1270 candidate = GC_get_allocation_base(p);
1271 free(p);
1272 req_size *= 2;
1273 } while (GC_is_malloc_heap_base(candidate)
1274 && req_size < GC_max_root_size/10 && req_size < 500000);
1275 if (GC_is_malloc_heap_base(candidate)) {
1276 free(new_l); return;
1279 # ifdef CONDPRINT
1280 if (GC_print_stats)
1281 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1282 candidate);
1283 # endif
1284 new_l -> allocation_base = candidate;
1285 new_l -> next = GC_malloc_heap_l;
1286 GC_malloc_heap_l = new_l;
1288 # endif /* REDIRECT_MALLOC */
1290 /* Is p the start of either the malloc heap, or of one of our */
1291 /* heap sections? */
1292 GC_bool GC_is_heap_base (ptr_t p)
1295 unsigned i;
1297 # ifndef REDIRECT_MALLOC
1298 static word last_gc_no = -1;
1300 if (last_gc_no != GC_gc_no) {
1301 GC_add_current_malloc_heap();
1302 last_gc_no = GC_gc_no;
1304 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1305 if (GC_is_malloc_heap_base(p)) return TRUE;
1306 # endif
1307 for (i = 0; i < GC_n_heap_bases; i++) {
1308 if (GC_heap_bases[i] == p) return TRUE;
1310 return FALSE ;
1313 # ifdef MSWIN32
1314 void GC_register_root_section(ptr_t static_root)
1316 MEMORY_BASIC_INFORMATION buf;
1317 DWORD result;
1318 DWORD protect;
1319 LPVOID p;
1320 char * base;
1321 char * limit, * new_limit;
1323 if (!GC_no_win32_dlls) return;
1324 p = base = limit = GC_least_described_address(static_root);
1325 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1326 result = VirtualQuery(p, &buf, sizeof(buf));
1327 if (result != sizeof(buf) || buf.AllocationBase == 0
1328 || GC_is_heap_base(buf.AllocationBase)) break;
1329 new_limit = (char *)p + buf.RegionSize;
1330 protect = buf.Protect;
1331 if (buf.State == MEM_COMMIT
1332 && is_writable(protect)) {
1333 if ((char *)p == limit) {
1334 limit = new_limit;
1335 } else {
1336 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1337 base = p;
1338 limit = new_limit;
1341 if (p > (LPVOID)new_limit /* overflow */) break;
1342 p = (LPVOID)new_limit;
1344 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1346 #endif
1348 void GC_register_data_segments()
1350 # ifdef MSWIN32
1351 static char dummy;
1352 GC_register_root_section((ptr_t)(&dummy));
1353 # endif
1356 # else /* !OS2 && !Windows */
1358 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1359 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1360 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1361 int max_page_size;
1362 int * etext_addr;
1364 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1365 & ~(sizeof(word) - 1);
1366 /* etext rounded to word boundary */
1367 word next_page = ((text_end + (word)max_page_size - 1)
1368 & ~((word)max_page_size - 1));
1369 word page_offset = (text_end & ((word)max_page_size - 1));
1370 VOLATILE char * result = (char *)(next_page + page_offset);
1371 /* Note that this isnt equivalent to just adding */
1372 /* max_page_size to &etext if &etext is at a page boundary */
1374 GC_setup_temporary_fault_handler();
1375 if (SETJMP(GC_jmp_buf) == 0) {
1376 /* Try writing to the address. */
1377 *result = *result;
1378 GC_reset_fault_handler();
1379 } else {
1380 GC_reset_fault_handler();
1381 /* We got here via a longjmp. The address is not readable. */
1382 /* This is known to happen under Solaris 2.4 + gcc, which place */
1383 /* string constants in the text segment, but after etext. */
1384 /* Use plan B. Note that we now know there is a gap between */
1385 /* text and data segments, so plan A bought us something. */
1386 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1388 return((ptr_t)result);
1390 # endif
1392 # if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1393 /* Its unclear whether this should be identical to the above, or */
1394 /* whether it should apply to non-X86 architectures. */
1395 /* For now we don't assume that there is always an empty page after */
1396 /* etext. But in some cases there actually seems to be slightly more. */
1397 /* This also deals with holes between read-only data and writable data. */
1398 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1399 int max_page_size;
1400 int * etext_addr;
1402 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1403 & ~(sizeof(word) - 1);
1404 /* etext rounded to word boundary */
1405 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1406 & ~((word)max_page_size - 1);
1407 VOLATILE ptr_t result = (ptr_t)text_end;
1408 GC_setup_temporary_fault_handler();
1409 if (SETJMP(GC_jmp_buf) == 0) {
1410 /* Try reading at the address. */
1411 /* This should happen before there is another thread. */
1412 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1413 *(VOLATILE char *)next_page;
1414 GC_reset_fault_handler();
1415 } else {
1416 GC_reset_fault_handler();
1417 /* As above, we go to plan B */
1418 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1420 return(result);
1423 # endif
1426 #ifdef AMIGA
1428 # define GC_AMIGA_DS
1429 # include "AmigaOS.c"
1430 # undef GC_AMIGA_DS
1432 #else /* !OS2 && !Windows && !AMIGA */
1434 void GC_register_data_segments()
1436 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1437 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1438 /* As of Solaris 2.3, the Solaris threads implementation */
1439 /* allocates the data structure for the initial thread with */
1440 /* sbrk at process startup. It needs to be scanned, so that */
1441 /* we don't lose some malloc allocated data structures */
1442 /* hanging from it. We're on thin ice here ... */
1443 extern caddr_t sbrk();
1445 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1446 # else
1447 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1448 # if defined(DATASTART2)
1449 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1450 # endif
1451 # endif
1452 # endif
1453 # if defined(MACOS)
1455 # if defined(THINK_C)
1456 extern void* GC_MacGetDataStart(void);
1457 /* globals begin above stack and end at a5. */
1458 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1459 (ptr_t)LMGetCurrentA5(), FALSE);
1460 # else
1461 # if defined(__MWERKS__)
1462 # if !__POWERPC__
1463 extern void* GC_MacGetDataStart(void);
1464 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1465 # if __option(far_data)
1466 extern void* GC_MacGetDataEnd(void);
1467 # endif
1468 /* globals begin above stack and end at a5. */
1469 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1470 (ptr_t)LMGetCurrentA5(), FALSE);
1471 /* MATTHEW: Handle Far Globals */
1472 # if __option(far_data)
1473 /* Far globals follow he QD globals: */
1474 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1475 (ptr_t)GC_MacGetDataEnd(), FALSE);
1476 # endif
1477 # else
1478 extern char __data_start__[], __data_end__[];
1479 GC_add_roots_inner((ptr_t)&__data_start__,
1480 (ptr_t)&__data_end__, FALSE);
1481 # endif /* __POWERPC__ */
1482 # endif /* __MWERKS__ */
1483 # endif /* !THINK_C */
1485 # endif /* MACOS */
1487 /* Dynamic libraries are added at every collection, since they may */
1488 /* change. */
1491 # endif /* ! AMIGA */
1492 # endif /* ! MSWIN32 && ! MSWINCE*/
1493 # endif /* ! OS2 */
1496 * Auxiliary routines for obtaining memory from OS.
1499 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1500 && !defined(MSWIN32) && !defined(MSWINCE) \
1501 && !defined(MACOS) && !defined(DOS4GW)
1503 # ifdef SUNOS4
1504 extern caddr_t sbrk();
1505 # endif
1506 # ifdef __STDC__
1507 # define SBRK_ARG_T ptrdiff_t
1508 # else
1509 # define SBRK_ARG_T int
1510 # endif
1513 # if 0 && defined(RS6000) /* We now use mmap */
1514 /* The compiler seems to generate speculative reads one past the end of */
1515 /* an allocated object. Hence we need to make sure that the page */
1516 /* following the last heap page is also mapped. */
1517 ptr_t GC_unix_get_mem(bytes)
1518 word bytes;
1520 caddr_t cur_brk = (caddr_t)sbrk(0);
1521 caddr_t result;
1522 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1523 static caddr_t my_brk_val = 0;
1525 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1526 if (lsbs != 0) {
1527 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1529 if (cur_brk == my_brk_val) {
1530 /* Use the extra block we allocated last time. */
1531 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1532 if (result == (caddr_t)(-1)) return(0);
1533 result -= GC_page_size;
1534 } else {
1535 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1536 if (result == (caddr_t)(-1)) return(0);
1538 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1539 return((ptr_t)result);
1542 #else /* Not RS6000 */
1544 #if defined(USE_MMAP) || defined(USE_MUNMAP)
1546 #ifdef USE_MMAP_FIXED
1547 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1548 /* Seems to yield better performance on Solaris 2, but can */
1549 /* be unreliable if something is already mapped at the address. */
1550 #else
1551 # define GC_MMAP_FLAGS MAP_PRIVATE
1552 #endif
1554 #ifdef USE_MMAP_ANON
1555 # define zero_fd -1
1556 # if defined(MAP_ANONYMOUS)
1557 # define OPT_MAP_ANON MAP_ANONYMOUS
1558 # else
1559 # define OPT_MAP_ANON MAP_ANON
1560 # endif
1561 #else
1562 static int zero_fd;
1563 # define OPT_MAP_ANON 0
1564 #endif
1566 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1568 #if defined(USE_MMAP)
1569 /* Tested only under Linux, IRIX5 and Solaris 2 */
1571 #ifndef HEAP_START
1572 # define HEAP_START 0
1573 #endif
1575 ptr_t GC_unix_get_mem(bytes)
1576 word bytes;
1578 void *result;
1579 static ptr_t last_addr = HEAP_START;
1581 # ifndef USE_MMAP_ANON
1582 static GC_bool initialized = FALSE;
1584 if (!initialized) {
1585 zero_fd = open("/dev/zero", O_RDONLY);
1586 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1587 initialized = TRUE;
1589 # endif
1591 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1592 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1593 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1594 if (result == MAP_FAILED) return(0);
1595 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1596 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1597 # if !defined(LINUX)
1598 if (last_addr == 0) {
1599 /* Oops. We got the end of the address space. This isn't */
1600 /* usable by arbitrary C code, since one-past-end pointers */
1601 /* don't work, so we discard it and try again. */
1602 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1603 /* Leave last page mapped, so we can't repeat. */
1604 return GC_unix_get_mem(bytes);
1606 # else
1607 GC_ASSERT(last_addr != 0);
1608 # endif
1609 return((ptr_t)result);
1612 #else /* Not RS6000, not USE_MMAP */
1613 ptr_t GC_unix_get_mem(bytes)
1614 word bytes;
1616 ptr_t result;
1617 # ifdef IRIX5
1618 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1619 /* The equivalent may be needed on other systems as well. */
1620 __LOCK_MALLOC();
1621 # endif
1623 ptr_t cur_brk = (ptr_t)sbrk(0);
1624 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1626 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1627 if (lsbs != 0) {
1628 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1630 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1631 if (result == (ptr_t)(-1)) result = 0;
1633 # ifdef IRIX5
1634 __UNLOCK_MALLOC();
1635 # endif
1636 return(result);
1639 #endif /* Not USE_MMAP */
1640 #endif /* Not RS6000 */
1642 # endif /* UN*X */
1644 # ifdef OS2
1646 void * os2_alloc(size_t bytes)
1648 void * result;
1650 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1651 PAG_WRITE | PAG_COMMIT)
1652 != NO_ERROR) {
1653 return(0);
1655 if (result == 0) return(os2_alloc(bytes));
1656 return(result);
1659 # endif /* OS2 */
1662 # if defined(MSWIN32) || defined(MSWINCE)
1663 SYSTEM_INFO GC_sysinfo;
1664 # endif
1666 # ifdef MSWIN32
1668 # ifdef USE_GLOBAL_ALLOC
1669 # define GLOBAL_ALLOC_TEST 1
1670 # else
1671 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1672 # endif
1674 word GC_n_heap_bases = 0;
1676 ptr_t GC_win32_get_mem(bytes)
1677 word bytes;
1679 ptr_t result;
1681 if (GLOBAL_ALLOC_TEST) {
1682 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1683 /* There are also unconfirmed rumors of other */
1684 /* problems, so we dodge the issue. */
1685 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1686 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1687 } else {
1688 /* VirtualProtect only works on regions returned by a */
1689 /* single VirtualAlloc call. Thus we allocate one */
1690 /* extra page, which will prevent merging of blocks */
1691 /* in separate regions, and eliminate any temptation */
1692 /* to call VirtualProtect on a range spanning regions. */
1693 /* This wastes a small amount of memory, and risks */
1694 /* increased fragmentation. But better alternatives */
1695 /* would require effort. */
1696 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1697 MEM_COMMIT | MEM_RESERVE,
1698 PAGE_EXECUTE_READWRITE);
1700 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1701 /* If I read the documentation correctly, this can */
1702 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1703 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1704 GC_heap_bases[GC_n_heap_bases++] = result;
1705 return(result);
1708 void GC_win32_free_heap ()
1710 if (GC_no_win32_dlls) {
1711 while (GC_n_heap_bases > 0) {
1712 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1713 GC_heap_bases[GC_n_heap_bases] = 0;
1717 # endif
1719 #ifdef AMIGA
1720 # define GC_AMIGA_AM
1721 # include "AmigaOS.c"
1722 # undef GC_AMIGA_AM
1723 #endif
1726 # ifdef MSWINCE
1727 word GC_n_heap_bases = 0;
1729 ptr_t GC_wince_get_mem(bytes)
1730 word bytes;
1732 ptr_t result;
1733 word i;
1735 /* Round up allocation size to multiple of page size */
1736 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1738 /* Try to find reserved, uncommitted pages */
1739 for (i = 0; i < GC_n_heap_bases; i++) {
1740 if (((word)(-(signed_word)GC_heap_lengths[i])
1741 & (GC_sysinfo.dwAllocationGranularity-1))
1742 >= bytes) {
1743 result = GC_heap_bases[i] + GC_heap_lengths[i];
1744 break;
1748 if (i == GC_n_heap_bases) {
1749 /* Reserve more pages */
1750 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1751 & ~(GC_sysinfo.dwAllocationGranularity-1);
1752 /* If we ever support MPROTECT_VDB here, we will probably need to */
1753 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1754 /* never spans regions. It seems to be OK for a VirtualFree argument */
1755 /* to span regions, so we should be OK for now. */
1756 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1757 MEM_RESERVE | MEM_TOP_DOWN,
1758 PAGE_EXECUTE_READWRITE);
1759 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1760 /* If I read the documentation correctly, this can */
1761 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1762 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1763 GC_heap_bases[GC_n_heap_bases] = result;
1764 GC_heap_lengths[GC_n_heap_bases] = 0;
1765 GC_n_heap_bases++;
1768 /* Commit pages */
1769 result = (ptr_t) VirtualAlloc(result, bytes,
1770 MEM_COMMIT,
1771 PAGE_EXECUTE_READWRITE);
1772 if (result != NULL) {
1773 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1774 GC_heap_lengths[i] += bytes;
1777 return(result);
1779 # endif
1781 #ifdef USE_MUNMAP
1783 /* For now, this only works on Win32/WinCE and some Unix-like */
1784 /* systems. If you have something else, don't define */
1785 /* USE_MUNMAP. */
1786 /* We assume ANSI C to support this feature. */
1788 #if !defined(MSWIN32) && !defined(MSWINCE)
1790 #include <unistd.h>
1791 #include <sys/mman.h>
1792 #include <sys/stat.h>
1793 #include <sys/types.h>
1795 #endif
1797 /* Compute a page aligned starting address for the unmap */
1798 /* operation on a block of size bytes starting at start. */
1799 /* Return 0 if the block is too small to make this feasible. */
1800 ptr_t GC_unmap_start(ptr_t start, word bytes)
1802 ptr_t result = start;
1803 /* Round start to next page boundary. */
1804 result += GC_page_size - 1;
1805 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1806 if (result + GC_page_size > start + bytes) return 0;
1807 return result;
1810 /* Compute end address for an unmap operation on the indicated */
1811 /* block. */
1812 ptr_t GC_unmap_end(ptr_t start, word bytes)
1814 ptr_t end_addr = start + bytes;
1815 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1816 return end_addr;
1819 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1820 /* memory using VirtualAlloc and VirtualFree. These functions */
1821 /* work on individual allocations of virtual memory, made */
1822 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1823 /* The ranges we need to (de)commit may span several of these */
1824 /* allocations; therefore we use VirtualQuery to check */
1825 /* allocation lengths, and split up the range as necessary. */
1827 /* We assume that GC_remap is called on exactly the same range */
1828 /* as a previous call to GC_unmap. It is safe to consistently */
1829 /* round the endpoints in both places. */
1830 void GC_unmap(ptr_t start, word bytes)
1832 ptr_t start_addr = GC_unmap_start(start, bytes);
1833 ptr_t end_addr = GC_unmap_end(start, bytes);
1834 word len = end_addr - start_addr;
1835 if (0 == start_addr) return;
1836 # if defined(MSWIN32) || defined(MSWINCE)
1837 while (len != 0) {
1838 MEMORY_BASIC_INFORMATION mem_info;
1839 GC_word free_len;
1840 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1841 != sizeof(mem_info))
1842 ABORT("Weird VirtualQuery result");
1843 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1844 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1845 ABORT("VirtualFree failed");
1846 GC_unmapped_bytes += free_len;
1847 start_addr += free_len;
1848 len -= free_len;
1850 # else
1851 /* We immediately remap it to prevent an intervening mmap from */
1852 /* accidentally grabbing the same address space. */
1854 void * result;
1855 result = mmap(start_addr, len, PROT_NONE,
1856 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1857 zero_fd, 0/* offset */);
1858 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1860 GC_unmapped_bytes += len;
1861 # endif
1865 void GC_remap(ptr_t start, word bytes)
1867 ptr_t start_addr = GC_unmap_start(start, bytes);
1868 ptr_t end_addr = GC_unmap_end(start, bytes);
1869 word len = end_addr - start_addr;
1871 # if defined(MSWIN32) || defined(MSWINCE)
1872 ptr_t result;
1874 if (0 == start_addr) return;
1875 while (len != 0) {
1876 MEMORY_BASIC_INFORMATION mem_info;
1877 GC_word alloc_len;
1878 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1879 != sizeof(mem_info))
1880 ABORT("Weird VirtualQuery result");
1881 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1882 result = VirtualAlloc(start_addr, alloc_len,
1883 MEM_COMMIT,
1884 PAGE_EXECUTE_READWRITE);
1885 if (result != start_addr) {
1886 ABORT("VirtualAlloc remapping failed");
1888 GC_unmapped_bytes -= alloc_len;
1889 start_addr += alloc_len;
1890 len -= alloc_len;
1892 # else
1893 /* It was already remapped with PROT_NONE. */
1894 int result;
1896 if (0 == start_addr) return;
1897 result = mprotect(start_addr, len,
1898 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1899 if (result != 0) {
1900 GC_err_printf3(
1901 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1902 start_addr, len, errno);
1903 ABORT("Mprotect remapping failed");
1905 GC_unmapped_bytes -= len;
1906 # endif
1909 /* Two adjacent blocks have already been unmapped and are about to */
1910 /* be merged. Unmap the whole block. This typically requires */
1911 /* that we unmap a small section in the middle that was not previously */
1912 /* unmapped due to alignment constraints. */
1913 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1915 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1916 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1917 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1918 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1919 ptr_t start_addr = end1_addr;
1920 ptr_t end_addr = start2_addr;
1921 word len;
1922 GC_ASSERT(start1 + bytes1 == start2);
1923 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1924 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1925 if (0 == start_addr) return;
1926 len = end_addr - start_addr;
1927 # if defined(MSWIN32) || defined(MSWINCE)
1928 while (len != 0) {
1929 MEMORY_BASIC_INFORMATION mem_info;
1930 GC_word free_len;
1931 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1932 != sizeof(mem_info))
1933 ABORT("Weird VirtualQuery result");
1934 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1935 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1936 ABORT("VirtualFree failed");
1937 GC_unmapped_bytes += free_len;
1938 start_addr += free_len;
1939 len -= free_len;
1941 # else
1942 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1943 GC_unmapped_bytes += len;
1944 # endif
1947 #endif /* USE_MUNMAP */
1949 /* Routine for pushing any additional roots. In THREADS */
1950 /* environment, this is also responsible for marking from */
1951 /* thread stacks. */
1952 #ifndef THREADS
1953 void (*GC_push_other_roots)() = 0;
1954 #else /* THREADS */
1956 # ifdef PCR
1957 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1959 struct PCR_ThCtl_TInfoRep info;
1960 PCR_ERes result;
1962 info.ti_stkLow = info.ti_stkHi = 0;
1963 result = PCR_ThCtl_GetInfo(t, &info);
1964 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1965 return(result);
1968 /* Push the contents of an old object. We treat this as stack */
1969 /* data only becasue that makes it robust against mark stack */
1970 /* overflow. */
1971 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1973 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1974 return(PCR_ERes_okay);
1978 void GC_default_push_other_roots GC_PROTO((void))
1980 /* Traverse data allocated by previous memory managers. */
1982 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1984 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1985 GC_push_old_obj, 0)
1986 != PCR_ERes_okay) {
1987 ABORT("Old object enumeration failed");
1990 /* Traverse all thread stacks. */
1991 if (PCR_ERes_IsErr(
1992 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1993 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1994 ABORT("Thread stack marking failed\n");
1998 # endif /* PCR */
2000 # ifdef SRC_M3
2002 # ifdef ALL_INTERIOR_POINTERS
2003 --> misconfigured
2004 # endif
2006 void GC_push_thread_structures GC_PROTO((void))
2008 /* Not our responsibibility. */
2011 extern void ThreadF__ProcessStacks();
2013 void GC_push_thread_stack(start, stop)
2014 word start, stop;
2016 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2019 /* Push routine with M3 specific calling convention. */
2020 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2021 word *p;
2022 ptr_t dummy1, dummy2;
2023 int dummy3;
2025 word q = *p;
2027 GC_PUSH_ONE_STACK(q, p);
2030 /* M3 set equivalent to RTHeap.TracedRefTypes */
2031 typedef struct { int elts[1]; } RefTypeSet;
2032 RefTypeSet GC_TracedRefTypes = {{0x1}};
2034 void GC_default_push_other_roots GC_PROTO((void))
2036 /* Use the M3 provided routine for finding static roots. */
2037 /* This is a bit dubious, since it presumes no C roots. */
2038 /* We handle the collector roots explicitly in GC_push_roots */
2039 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2040 if (GC_words_allocd > 0) {
2041 ThreadF__ProcessStacks(GC_push_thread_stack);
2043 /* Otherwise this isn't absolutely necessary, and we have */
2044 /* startup ordering problems. */
2047 # endif /* SRC_M3 */
2049 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2050 defined(GC_WIN32_THREADS)
2052 extern void GC_push_all_stacks();
2054 void GC_default_push_other_roots GC_PROTO((void))
2056 GC_push_all_stacks();
2059 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2061 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2063 #endif /* THREADS */
2066 * Routines for accessing dirty bits on virtual pages.
2067 * We plan to eventually implement four strategies for doing so:
2068 * DEFAULT_VDB: A simple dummy implementation that treats every page
2069 * as possibly dirty. This makes incremental collection
2070 * useless, but the implementation is still correct.
2071 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2072 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2073 * works under some SVR4 variants. Even then, it may be
2074 * too slow to be entirely satisfactory. Requires reading
2075 * dirty bits for entire address space. Implementations tend
2076 * to assume that the client is a (slow) debugger.
2077 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2078 * dirtied pages. The implementation (and implementability)
2079 * is highly system dependent. This usually fails when system
2080 * calls write to a protected page. We prevent the read system
2081 * call from doing so. It is the clients responsibility to
2082 * make sure that other system calls are similarly protected
2083 * or write only to the stack.
2085 GC_bool GC_dirty_maintained = FALSE;
2087 # ifdef DEFAULT_VDB
2089 /* All of the following assume the allocation lock is held, and */
2090 /* signals are disabled. */
2092 /* The client asserts that unallocated pages in the heap are never */
2093 /* written. */
2095 /* Initialize virtual dirty bit implementation. */
2096 void GC_dirty_init()
2098 # ifdef PRINTSTATS
2099 GC_printf0("Initializing DEFAULT_VDB...\n");
2100 # endif
2101 GC_dirty_maintained = TRUE;
2104 /* Retrieve system dirty bits for heap to a local buffer. */
2105 /* Restore the systems notion of which pages are dirty. */
2106 void GC_read_dirty()
2109 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2110 /* If the actual page size is different, this returns TRUE if any */
2111 /* of the pages overlapping h are dirty. This routine may err on the */
2112 /* side of labelling pages as dirty (and this implementation does). */
2113 /*ARGSUSED*/
2114 GC_bool GC_page_was_dirty(h)
2115 struct hblk *h;
2117 return(TRUE);
2121 * The following two routines are typically less crucial. They matter
2122 * most with large dynamic libraries, or if we can't accurately identify
2123 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2124 * versions are adequate.
2127 /* Could any valid GC heap pointer ever have been written to this page? */
2128 /*ARGSUSED*/
2129 GC_bool GC_page_was_ever_dirty(h)
2130 struct hblk *h;
2132 return(TRUE);
2135 /* Reset the n pages starting at h to "was never dirty" status. */
2136 void GC_is_fresh(h, n)
2137 struct hblk *h;
2138 word n;
2142 /* A call that: */
2143 /* I) hints that [h, h+nblocks) is about to be written. */
2144 /* II) guarantees that protection is removed. */
2145 /* (I) may speed up some dirty bit implementations. */
2146 /* (II) may be essential if we need to ensure that */
2147 /* pointer-free system call buffers in the heap are */
2148 /* not protected. */
2149 /*ARGSUSED*/
2150 void GC_remove_protection(h, nblocks, is_ptrfree)
2151 struct hblk *h;
2152 word nblocks;
2153 GC_bool is_ptrfree;
2157 # endif /* DEFAULT_VDB */
2160 # ifdef MPROTECT_VDB
2163 * See DEFAULT_VDB for interface descriptions.
2167 * This implementation maintains dirty bits itself by catching write
2168 * faults and keeping track of them. We assume nobody else catches
2169 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2170 * This means that clients must ensure that system calls don't write
2171 * to the write-protected heap. Probably the best way to do this is to
2172 * ensure that system calls write at most to POINTERFREE objects in the
2173 * heap, and do even that only if we are on a platform on which those
2174 * are not protected. Another alternative is to wrap system calls
2175 * (see example for read below), but the current implementation holds
2176 * a lock across blocking calls, making it problematic for multithreaded
2177 * applications.
2178 * We assume the page size is a multiple of HBLKSIZE.
2179 * We prefer them to be the same. We avoid protecting POINTERFREE
2180 * objects only if they are the same.
2183 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2185 # include <sys/mman.h>
2186 # include <signal.h>
2187 # include <sys/syscall.h>
2189 # define PROTECT(addr, len) \
2190 if (mprotect((caddr_t)(addr), (size_t)(len), \
2191 PROT_READ | OPT_PROT_EXEC) < 0) { \
2192 ABORT("mprotect failed"); \
2194 # define UNPROTECT(addr, len) \
2195 if (mprotect((caddr_t)(addr), (size_t)(len), \
2196 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2197 ABORT("un-mprotect failed"); \
2200 # else
2202 # ifdef DARWIN
2203 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2204 decrease the likelihood of some of the problems described below. */
2205 #include <mach/vm_map.h>
2206 static mach_port_t GC_task_self;
2207 #define PROTECT(addr,len) \
2208 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2209 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2210 ABORT("vm_portect failed"); \
2212 #define UNPROTECT(addr,len) \
2213 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2214 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2215 ABORT("vm_portect failed"); \
2217 # else
2219 # ifndef MSWINCE
2220 # include <signal.h>
2221 # endif
2223 static DWORD protect_junk;
2224 # define PROTECT(addr, len) \
2225 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2226 &protect_junk)) { \
2227 DWORD last_error = GetLastError(); \
2228 GC_printf1("Last error code: %lx\n", last_error); \
2229 ABORT("VirtualProtect failed"); \
2231 # define UNPROTECT(addr, len) \
2232 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2233 &protect_junk)) { \
2234 ABORT("un-VirtualProtect failed"); \
2236 # endif /* !DARWIN */
2237 # endif /* MSWIN32 || MSWINCE || DARWIN */
2239 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2240 typedef void (* SIG_PF)();
2241 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2243 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2244 || defined(HURD)
2245 # ifdef __STDC__
2246 typedef void (* SIG_PF)(int);
2247 # else
2248 typedef void (* SIG_PF)();
2249 # endif
2250 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2252 #if defined(MSWIN32)
2253 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2254 # undef SIG_DFL
2255 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2256 #endif
2257 #if defined(MSWINCE)
2258 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2259 # undef SIG_DFL
2260 # define SIG_DFL (SIG_PF) (-1)
2261 #endif
2263 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2264 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2265 #endif /* IRIX5 || OSF1 || HURD */
2267 #if defined(SUNOS5SIGS)
2268 # if defined(HPUX) || defined(FREEBSD)
2269 # define SIGINFO_T siginfo_t
2270 # else
2271 # define SIGINFO_T struct siginfo
2272 # endif
2273 # ifdef __STDC__
2274 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2275 # else
2276 typedef void (* REAL_SIG_PF)();
2277 # endif
2278 #endif /* SUNOS5SIGS */
2280 #if defined(LINUX)
2281 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2282 typedef struct sigcontext s_c;
2283 # else /* glibc < 2.2 */
2284 # include <linux/version.h>
2285 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2286 typedef struct sigcontext s_c;
2287 # else
2288 typedef struct sigcontext_struct s_c;
2289 # endif
2290 # endif /* glibc < 2.2 */
2291 # if defined(ALPHA) || defined(M68K)
2292 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2293 # else
2294 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2295 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2296 /* FIXME: */
2297 /* According to SUSV3, the last argument should have type */
2298 /* void * or ucontext_t * */
2299 # else
2300 typedef void (* REAL_SIG_PF)(int, s_c);
2301 # endif
2302 # endif
2303 # ifdef ALPHA
2304 /* Retrieve fault address from sigcontext structure by decoding */
2305 /* instruction. */
2306 char * get_fault_addr(s_c *sc) {
2307 unsigned instr;
2308 word faultaddr;
2310 instr = *((unsigned *)(sc->sc_pc));
2311 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2312 faultaddr += (word) (((int)instr << 16) >> 16);
2313 return (char *)faultaddr;
2315 # endif /* !ALPHA */
2316 # endif /* LINUX */
2318 #ifndef DARWIN
2319 SIG_PF GC_old_bus_handler;
2320 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2321 #endif /* !DARWIN */
2323 #if defined(THREADS)
2324 /* We need to lock around the bitmap update in the write fault handler */
2325 /* in order to avoid the risk of losing a bit. We do this with a */
2326 /* test-and-set spin lock if we know how to do that. Otherwise we */
2327 /* check whether we are already in the handler and use the dumb but */
2328 /* safe fallback algorithm of setting all bits in the word. */
2329 /* Contention should be very rare, so we do the minimum to handle it */
2330 /* correctly. */
2331 #ifdef GC_TEST_AND_SET_DEFINED
2332 static VOLATILE unsigned int fault_handler_lock = 0;
2333 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2334 while (GC_test_and_set(&fault_handler_lock)) {}
2335 /* Could also revert to set_pht_entry_from_index_safe if initial */
2336 /* GC_test_and_set fails. */
2337 set_pht_entry_from_index(db, index);
2338 GC_clear(&fault_handler_lock);
2340 #else /* !GC_TEST_AND_SET_DEFINED */
2341 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2342 /* just before we notice the conflict and correct it. We may end up */
2343 /* looking at it while it's wrong. But this requires contention */
2344 /* exactly when a GC is triggered, which seems far less likely to */
2345 /* fail than the old code, which had no reported failures. Thus we */
2346 /* leave it this way while we think of something better, or support */
2347 /* GC_test_and_set on the remaining platforms. */
2348 static VOLATILE word currently_updating = 0;
2349 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2350 unsigned int update_dummy;
2351 currently_updating = (word)(&update_dummy);
2352 set_pht_entry_from_index(db, index);
2353 /* If we get contention in the 10 or so instruction window here, */
2354 /* and we get stopped by a GC between the two updates, we lose! */
2355 if (currently_updating != (word)(&update_dummy)) {
2356 set_pht_entry_from_index_safe(db, index);
2357 /* We claim that if two threads concurrently try to update the */
2358 /* dirty bit vector, the first one to execute UPDATE_START */
2359 /* will see it changed when UPDATE_END is executed. (Note that */
2360 /* &update_dummy must differ in two distinct threads.) It */
2361 /* will then execute set_pht_entry_from_index_safe, thus */
2362 /* returning us to a safe state, though not soon enough. */
2365 #endif /* !GC_TEST_AND_SET_DEFINED */
2366 #else /* !THREADS */
2367 # define async_set_pht_entry_from_index(db, index) \
2368 set_pht_entry_from_index(db, index)
2369 #endif /* !THREADS */
2371 /*ARGSUSED*/
2372 #if !defined(DARWIN)
2373 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2374 void GC_write_fault_handler(sig, code, scp, addr)
2375 int sig, code;
2376 struct sigcontext *scp;
2377 char * addr;
2378 # ifdef SUNOS4
2379 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2380 # define CODE_OK (FC_CODE(code) == FC_PROT \
2381 || (FC_CODE(code) == FC_OBJERR \
2382 && FC_ERRNO(code) == FC_PROT))
2383 # endif
2384 # ifdef FREEBSD
2385 # define SIG_OK (sig == SIGBUS)
2386 # define CODE_OK TRUE
2387 # endif
2388 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2390 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2391 # include <errno.h>
2392 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2393 # ifdef OSF1
2394 # define SIG_OK (sig == SIGSEGV)
2395 # define CODE_OK (code == 2 /* experimentally determined */)
2396 # endif
2397 # ifdef IRIX5
2398 # define SIG_OK (sig == SIGSEGV)
2399 # define CODE_OK (code == EACCES)
2400 # endif
2401 # ifdef HURD
2402 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2403 # define CODE_OK TRUE
2404 # endif
2405 # endif /* IRIX5 || OSF1 || HURD */
2407 # if defined(LINUX)
2408 # if defined(ALPHA) || defined(M68K)
2409 void GC_write_fault_handler(int sig, int code, s_c * sc)
2410 # else
2411 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2412 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2413 # else
2414 # if defined(ARM32)
2415 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2416 # else
2417 void GC_write_fault_handler(int sig, s_c sc)
2418 # endif
2419 # endif
2420 # endif
2421 # define SIG_OK (sig == SIGSEGV)
2422 # define CODE_OK TRUE
2423 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2424 /* Should probably consider alignment issues on other */
2425 /* architectures. */
2426 # endif /* LINUX */
2428 # if defined(SUNOS5SIGS)
2429 # ifdef __STDC__
2430 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2431 # else
2432 void GC_write_fault_handler(sig, scp, context)
2433 int sig;
2434 SIGINFO_T *scp;
2435 void * context;
2436 # endif
2437 # ifdef HPUX
2438 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2439 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2440 || (scp -> si_code == BUS_ADRERR) \
2441 || (scp -> si_code == BUS_UNKNOWN) \
2442 || (scp -> si_code == SEGV_UNKNOWN) \
2443 || (scp -> si_code == BUS_OBJERR)
2444 # else
2445 # ifdef FREEBSD
2446 # define SIG_OK (sig == SIGBUS)
2447 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2448 # else
2449 # define SIG_OK (sig == SIGSEGV)
2450 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2451 # endif
2452 # endif
2453 # endif /* SUNOS5SIGS */
2455 # if defined(MSWIN32) || defined(MSWINCE)
2456 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2457 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2458 STATUS_ACCESS_VIOLATION)
2459 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2460 /* Write fault */
2461 # endif /* MSWIN32 || MSWINCE */
2463 register unsigned i;
2464 # if defined(HURD)
2465 char *addr = (char *) code;
2466 # endif
2467 # ifdef IRIX5
2468 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2469 # endif
2470 # if defined(OSF1) && defined(ALPHA)
2471 char * addr = (char *) (scp -> sc_traparg_a0);
2472 # endif
2473 # ifdef SUNOS5SIGS
2474 char * addr = (char *) (scp -> si_addr);
2475 # endif
2476 # ifdef LINUX
2477 # if defined(I386)
2478 char * addr = (char *) (sc.cr2);
2479 # else
2480 # if defined(M68K)
2481 char * addr = NULL;
2483 struct sigcontext *scp = (struct sigcontext *)(sc);
2485 int format = (scp->sc_formatvec >> 12) & 0xf;
2486 unsigned long *framedata = (unsigned long *)(scp + 1);
2487 unsigned long ea;
2489 if (format == 0xa || format == 0xb) {
2490 /* 68020/030 */
2491 ea = framedata[2];
2492 } else if (format == 7) {
2493 /* 68040 */
2494 ea = framedata[3];
2495 if (framedata[1] & 0x08000000) {
2496 /* correct addr on misaligned access */
2497 ea = (ea+4095)&(~4095);
2499 } else if (format == 4) {
2500 /* 68060 */
2501 ea = framedata[0];
2502 if (framedata[1] & 0x08000000) {
2503 /* correct addr on misaligned access */
2504 ea = (ea+4095)&(~4095);
2507 addr = (char *)ea;
2508 # else
2509 # ifdef ALPHA
2510 char * addr = get_fault_addr(sc);
2511 # else
2512 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2513 char * addr = si -> si_addr;
2514 /* I believe this is claimed to work on all platforms for */
2515 /* Linux 2.3.47 and later. Hopefully we don't have to */
2516 /* worry about earlier kernels on IA64. */
2517 # else
2518 # if defined(POWERPC)
2519 char * addr = (char *) (sc.regs->dar);
2520 # else
2521 # if defined(ARM32)
2522 char * addr = (char *)sc.fault_address;
2523 # else
2524 # if defined(CRIS)
2525 char * addr = (char *)sc.regs.csraddr;
2526 # else
2527 --> architecture not supported
2528 # endif
2529 # endif
2530 # endif
2531 # endif
2532 # endif
2533 # endif
2534 # endif
2535 # endif
2536 # if defined(MSWIN32) || defined(MSWINCE)
2537 char * addr = (char *) (exc_info -> ExceptionRecord
2538 -> ExceptionInformation[1]);
2539 # define sig SIGSEGV
2540 # endif
2542 if (SIG_OK && CODE_OK) {
2543 register struct hblk * h =
2544 (struct hblk *)((word)addr & ~(GC_page_size-1));
2545 GC_bool in_allocd_block;
2547 # ifdef SUNOS5SIGS
2548 /* Address is only within the correct physical page. */
2549 in_allocd_block = FALSE;
2550 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2551 if (HDR(h+i) != 0) {
2552 in_allocd_block = TRUE;
2555 # else
2556 in_allocd_block = (HDR(addr) != 0);
2557 # endif
2558 if (!in_allocd_block) {
2559 /* FIXME - We should make sure that we invoke the */
2560 /* old handler with the appropriate calling */
2561 /* sequence, which often depends on SA_SIGINFO. */
2563 /* Heap blocks now begin and end on page boundaries */
2564 SIG_PF old_handler;
2566 if (sig == SIGSEGV) {
2567 old_handler = GC_old_segv_handler;
2568 } else {
2569 old_handler = GC_old_bus_handler;
2571 if (old_handler == SIG_DFL) {
2572 # if !defined(MSWIN32) && !defined(MSWINCE)
2573 GC_err_printf1("Segfault at 0x%lx\n", addr);
2574 ABORT("Unexpected bus error or segmentation fault");
2575 # else
2576 return(EXCEPTION_CONTINUE_SEARCH);
2577 # endif
2578 } else {
2579 # if defined (SUNOS4) \
2580 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2581 (*old_handler) (sig, code, scp, addr);
2582 return;
2583 # endif
2584 # if defined (SUNOS5SIGS)
2586 * FIXME: For FreeBSD, this code should check if the
2587 * old signal handler used the traditional BSD style and
2588 * if so call it using that style.
2590 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2591 return;
2592 # endif
2593 # if defined (LINUX)
2594 # if defined(ALPHA) || defined(M68K)
2595 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2596 # else
2597 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2598 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2599 # else
2600 (*(REAL_SIG_PF)old_handler) (sig, sc);
2601 # endif
2602 # endif
2603 return;
2604 # endif
2605 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2606 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2607 return;
2608 # endif
2609 # ifdef MSWIN32
2610 return((*old_handler)(exc_info));
2611 # endif
2614 UNPROTECT(h, GC_page_size);
2615 /* We need to make sure that no collection occurs between */
2616 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2617 /* a write by a third thread might go unnoticed. Reversing */
2618 /* the order is just as bad, since we would end up unprotecting */
2619 /* a page in a GC cycle during which it's not marked. */
2620 /* Currently we do this by disabling the thread stopping */
2621 /* signals while this handler is running. An alternative might */
2622 /* be to record the fact that we're about to unprotect, or */
2623 /* have just unprotected a page in the GC's thread structure, */
2624 /* and then to have the thread stopping code set the dirty */
2625 /* flag, if necessary. */
2626 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2627 register int index = PHT_HASH(h+i);
2629 async_set_pht_entry_from_index(GC_dirty_pages, index);
2631 # if defined(OSF1)
2632 /* These reset the signal handler each time by default. */
2633 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2634 # endif
2635 /* The write may not take place before dirty bits are read. */
2636 /* But then we'll fault again ... */
2637 # if defined(MSWIN32) || defined(MSWINCE)
2638 return(EXCEPTION_CONTINUE_EXECUTION);
2639 # else
2640 return;
2641 # endif
2643 #if defined(MSWIN32) || defined(MSWINCE)
2644 return EXCEPTION_CONTINUE_SEARCH;
2645 #else
2646 GC_err_printf1("Segfault at 0x%lx\n", addr);
2647 ABORT("Unexpected bus error or segmentation fault");
2648 #endif
2650 #endif /* !DARWIN */
2653 * We hold the allocation lock. We expect block h to be written
2654 * shortly. Ensure that all pages containing any part of the n hblks
2655 * starting at h are no longer protected. If is_ptrfree is false,
2656 * also ensure that they will subsequently appear to be dirty.
2658 void GC_remove_protection(h, nblocks, is_ptrfree)
2659 struct hblk *h;
2660 word nblocks;
2661 GC_bool is_ptrfree;
2663 struct hblk * h_trunc; /* Truncated to page boundary */
2664 struct hblk * h_end; /* Page boundary following block end */
2665 struct hblk * current;
2666 GC_bool found_clean;
2668 if (!GC_dirty_maintained) return;
2669 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2670 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2671 & ~(GC_page_size-1));
2672 found_clean = FALSE;
2673 for (current = h_trunc; current < h_end; ++current) {
2674 int index = PHT_HASH(current);
2676 if (!is_ptrfree || current < h || current >= h + nblocks) {
2677 async_set_pht_entry_from_index(GC_dirty_pages, index);
2680 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2683 #if !defined(DARWIN)
2684 void GC_dirty_init()
2686 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2687 defined(OSF1) || defined(HURD)
2688 struct sigaction act, oldact;
2689 /* We should probably specify SA_SIGINFO for Linux, and handle */
2690 /* the different architectures more uniformly. */
2691 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2692 || defined(OSF1) || defined(HURD)
2693 act.sa_flags = SA_RESTART;
2694 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2695 # else
2696 act.sa_flags = SA_RESTART | SA_SIGINFO;
2697 act.sa_sigaction = GC_write_fault_handler;
2698 # endif
2699 (void)sigemptyset(&act.sa_mask);
2700 # ifdef SIG_SUSPEND
2701 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2702 /* handler. This effectively makes the handler atomic w.r.t. */
2703 /* stopping the world for GC. */
2704 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2705 # endif /* SIG_SUSPEND */
2706 # endif
2707 # ifdef PRINTSTATS
2708 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2709 # endif
2710 GC_dirty_maintained = TRUE;
2711 if (GC_page_size % HBLKSIZE != 0) {
2712 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2713 ABORT("Page size not multiple of HBLKSIZE");
2715 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2716 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2717 if (GC_old_bus_handler == SIG_IGN) {
2718 GC_err_printf0("Previously ignored bus error!?");
2719 GC_old_bus_handler = SIG_DFL;
2721 if (GC_old_bus_handler != SIG_DFL) {
2722 # ifdef PRINTSTATS
2723 GC_err_printf0("Replaced other SIGBUS handler\n");
2724 # endif
2726 # endif
2727 # if defined(SUNOS4)
2728 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2729 if (GC_old_segv_handler == SIG_IGN) {
2730 GC_err_printf0("Previously ignored segmentation violation!?");
2731 GC_old_segv_handler = SIG_DFL;
2733 if (GC_old_segv_handler != SIG_DFL) {
2734 # ifdef PRINTSTATS
2735 GC_err_printf0("Replaced other SIGSEGV handler\n");
2736 # endif
2738 # endif
2739 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2740 || defined(LINUX) || defined(OSF1) || defined(HURD)
2741 /* SUNOS5SIGS includes HPUX */
2742 # if defined(GC_IRIX_THREADS)
2743 sigaction(SIGSEGV, 0, &oldact);
2744 sigaction(SIGSEGV, &act, 0);
2745 # else
2747 int res = sigaction(SIGSEGV, &act, &oldact);
2748 if (res != 0) ABORT("Sigaction failed");
2750 # endif
2751 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2752 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2753 /* sa_sigaction. */
2754 GC_old_segv_handler = oldact.sa_handler;
2755 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2756 if (oldact.sa_flags & SA_SIGINFO) {
2757 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2758 } else {
2759 GC_old_segv_handler = oldact.sa_handler;
2761 # endif
2762 if (GC_old_segv_handler == SIG_IGN) {
2763 GC_err_printf0("Previously ignored segmentation violation!?");
2764 GC_old_segv_handler = SIG_DFL;
2766 if (GC_old_segv_handler != SIG_DFL) {
2767 # ifdef PRINTSTATS
2768 GC_err_printf0("Replaced other SIGSEGV handler\n");
2769 # endif
2771 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2772 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2773 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2774 sigaction(SIGBUS, &act, &oldact);
2775 GC_old_bus_handler = oldact.sa_handler;
2776 if (GC_old_bus_handler == SIG_IGN) {
2777 GC_err_printf0("Previously ignored bus error!?");
2778 GC_old_bus_handler = SIG_DFL;
2780 if (GC_old_bus_handler != SIG_DFL) {
2781 # ifdef PRINTSTATS
2782 GC_err_printf0("Replaced other SIGBUS handler\n");
2783 # endif
2785 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2786 # if defined(MSWIN32)
2787 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2788 if (GC_old_segv_handler != NULL) {
2789 # ifdef PRINTSTATS
2790 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2791 # endif
2792 } else {
2793 GC_old_segv_handler = SIG_DFL;
2795 # endif
2797 #endif /* !DARWIN */
2799 int GC_incremental_protection_needs()
2801 if (GC_page_size == HBLKSIZE) {
2802 return GC_PROTECTS_POINTER_HEAP;
2803 } else {
2804 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2808 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2810 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2812 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2813 void GC_protect_heap()
2815 ptr_t start;
2816 word len;
2817 struct hblk * current;
2818 struct hblk * current_start; /* Start of block to be protected. */
2819 struct hblk * limit;
2820 unsigned i;
2821 GC_bool protect_all =
2822 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2823 for (i = 0; i < GC_n_heap_sects; i++) {
2824 start = GC_heap_sects[i].hs_start;
2825 len = GC_heap_sects[i].hs_bytes;
2826 if (protect_all) {
2827 PROTECT(start, len);
2828 } else {
2829 GC_ASSERT(PAGE_ALIGNED(len))
2830 GC_ASSERT(PAGE_ALIGNED(start))
2831 current_start = current = (struct hblk *)start;
2832 limit = (struct hblk *)(start + len);
2833 while (current < limit) {
2834 hdr * hhdr;
2835 word nhblks;
2836 GC_bool is_ptrfree;
2838 GC_ASSERT(PAGE_ALIGNED(current));
2839 GET_HDR(current, hhdr);
2840 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2841 /* This can happen only if we're at the beginning of a */
2842 /* heap segment, and a block spans heap segments. */
2843 /* We will handle that block as part of the preceding */
2844 /* segment. */
2845 GC_ASSERT(current_start == current);
2846 current_start = ++current;
2847 continue;
2849 if (HBLK_IS_FREE(hhdr)) {
2850 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2851 nhblks = divHBLKSZ(hhdr -> hb_sz);
2852 is_ptrfree = TRUE; /* dirty on alloc */
2853 } else {
2854 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2855 is_ptrfree = IS_PTRFREE(hhdr);
2857 if (is_ptrfree) {
2858 if (current_start < current) {
2859 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2861 current_start = (current += nhblks);
2862 } else {
2863 current += nhblks;
2866 if (current_start < current) {
2867 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2873 /* We assume that either the world is stopped or its OK to lose dirty */
2874 /* bits while this is happenning (as in GC_enable_incremental). */
2875 void GC_read_dirty()
2877 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2878 (sizeof GC_dirty_pages));
2879 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2880 GC_protect_heap();
2883 GC_bool GC_page_was_dirty(h)
2884 struct hblk * h;
2886 register word index = PHT_HASH(h);
2888 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2892 * Acquiring the allocation lock here is dangerous, since this
2893 * can be called from within GC_call_with_alloc_lock, and the cord
2894 * package does so. On systems that allow nested lock acquisition, this
2895 * happens to work.
2896 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2899 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2901 void GC_begin_syscall()
2903 if (!I_HOLD_LOCK()) {
2904 LOCK();
2905 syscall_acquired_lock = TRUE;
2909 void GC_end_syscall()
2911 if (syscall_acquired_lock) {
2912 syscall_acquired_lock = FALSE;
2913 UNLOCK();
2917 void GC_unprotect_range(addr, len)
2918 ptr_t addr;
2919 word len;
2921 struct hblk * start_block;
2922 struct hblk * end_block;
2923 register struct hblk *h;
2924 ptr_t obj_start;
2926 if (!GC_dirty_maintained) return;
2927 obj_start = GC_base(addr);
2928 if (obj_start == 0) return;
2929 if (GC_base(addr + len - 1) != obj_start) {
2930 ABORT("GC_unprotect_range(range bigger than object)");
2932 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2933 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2934 end_block += GC_page_size/HBLKSIZE - 1;
2935 for (h = start_block; h <= end_block; h++) {
2936 register word index = PHT_HASH(h);
2938 async_set_pht_entry_from_index(GC_dirty_pages, index);
2940 UNPROTECT(start_block,
2941 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2944 #if 0
2946 /* We no longer wrap read by default, since that was causing too many */
2947 /* problems. It is preferred that the client instead avoids writing */
2948 /* to the write-protected heap with a system call. */
2949 /* This still serves as sample code if you do want to wrap system calls.*/
2951 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2952 /* Replacement for UNIX system call. */
2953 /* Other calls that write to the heap should be handled similarly. */
2954 /* Note that this doesn't work well for blocking reads: It will hold */
2955 /* the allocation lock for the entire duration of the call. Multithreaded */
2956 /* clients should really ensure that it won't block, either by setting */
2957 /* the descriptor nonblocking, or by calling select or poll first, to */
2958 /* make sure that input is available. */
2959 /* Another, preferred alternative is to ensure that system calls never */
2960 /* write to the protected heap (see above). */
2961 # if defined(__STDC__) && !defined(SUNOS4)
2962 # include <unistd.h>
2963 # include <sys/uio.h>
2964 ssize_t read(int fd, void *buf, size_t nbyte)
2965 # else
2966 # ifndef LINT
2967 int read(fd, buf, nbyte)
2968 # else
2969 int GC_read(fd, buf, nbyte)
2970 # endif
2971 int fd;
2972 char *buf;
2973 int nbyte;
2974 # endif
2976 int result;
2978 GC_begin_syscall();
2979 GC_unprotect_range(buf, (word)nbyte);
2980 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2981 /* Indirect system call may not always be easily available. */
2982 /* We could call _read, but that would interfere with the */
2983 /* libpthread interception of read. */
2984 /* On Linux, we have to be careful with the linuxthreads */
2985 /* read interception. */
2987 struct iovec iov;
2989 iov.iov_base = buf;
2990 iov.iov_len = nbyte;
2991 result = readv(fd, &iov, 1);
2993 # else
2994 # if defined(HURD)
2995 result = __read(fd, buf, nbyte);
2996 # else
2997 /* The two zero args at the end of this list are because one
2998 IA-64 syscall() implementation actually requires six args
2999 to be passed, even though they aren't always used. */
3000 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3001 # endif /* !HURD */
3002 # endif
3003 GC_end_syscall();
3004 return(result);
3006 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3008 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3009 /* We use the GNU ld call wrapping facility. */
3010 /* This requires that the linker be invoked with "--wrap read". */
3011 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3012 /* I'm not sure that this actually wraps whatever version of read */
3013 /* is called by stdio. That code also mentions __read. */
3014 # include <unistd.h>
3015 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3017 int result;
3019 GC_begin_syscall();
3020 GC_unprotect_range(buf, (word)nbyte);
3021 result = __real_read(fd, buf, nbyte);
3022 GC_end_syscall();
3023 return(result);
3026 /* We should probably also do this for __read, or whatever stdio */
3027 /* actually calls. */
3028 #endif
3030 #endif /* 0 */
3032 /*ARGSUSED*/
3033 GC_bool GC_page_was_ever_dirty(h)
3034 struct hblk *h;
3036 return(TRUE);
3039 /* Reset the n pages starting at h to "was never dirty" status. */
3040 /*ARGSUSED*/
3041 void GC_is_fresh(h, n)
3042 struct hblk *h;
3043 word n;
3047 # endif /* MPROTECT_VDB */
3049 # ifdef PROC_VDB
3052 * See DEFAULT_VDB for interface descriptions.
3056 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3057 * from which we can read page modified bits. This facility is far from
3058 * optimal (e.g. we would like to get the info for only some of the
3059 * address space), but it avoids intercepting system calls.
3062 #include <errno.h>
3063 #include <sys/types.h>
3064 #include <sys/signal.h>
3065 #include <sys/fault.h>
3066 #include <sys/syscall.h>
3067 #include <sys/procfs.h>
3068 #include <sys/stat.h>
3070 #define INITIAL_BUF_SZ 16384
3071 word GC_proc_buf_size = INITIAL_BUF_SZ;
3072 char *GC_proc_buf;
3074 #ifdef GC_SOLARIS_THREADS
3075 /* We don't have exact sp values for threads. So we count on */
3076 /* occasionally declaring stack pages to be fresh. Thus we */
3077 /* need a real implementation of GC_is_fresh. We can't clear */
3078 /* entries in GC_written_pages, since that would declare all */
3079 /* pages with the given hash address to be fresh. */
3080 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3081 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3082 /* Collisions are dropped. */
3084 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3085 # define ADD_FRESH_PAGE(h) \
3086 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3087 # define PAGE_IS_FRESH(h) \
3088 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3089 #endif
3091 /* Add all pages in pht2 to pht1 */
3092 void GC_or_pages(pht1, pht2)
3093 page_hash_table pht1, pht2;
3095 register int i;
3097 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3100 int GC_proc_fd;
3102 void GC_dirty_init()
3104 int fd;
3105 char buf[30];
3107 GC_dirty_maintained = TRUE;
3108 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3109 register int i;
3111 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3112 # ifdef PRINTSTATS
3113 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3114 (unsigned long)
3115 (GC_words_allocd + GC_words_allocd_before_gc));
3116 # endif
3118 sprintf(buf, "/proc/%d", getpid());
3119 fd = open(buf, O_RDONLY);
3120 if (fd < 0) {
3121 ABORT("/proc open failed");
3123 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3124 close(fd);
3125 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3126 if (GC_proc_fd < 0) {
3127 ABORT("/proc ioctl failed");
3129 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3130 # ifdef GC_SOLARIS_THREADS
3131 GC_fresh_pages = (struct hblk **)
3132 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3133 if (GC_fresh_pages == 0) {
3134 GC_err_printf0("No space for fresh pages\n");
3135 EXIT();
3137 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3138 # endif
3141 /* Ignore write hints. They don't help us here. */
3142 /*ARGSUSED*/
3143 void GC_remove_protection(h, nblocks, is_ptrfree)
3144 struct hblk *h;
3145 word nblocks;
3146 GC_bool is_ptrfree;
3150 #ifdef GC_SOLARIS_THREADS
3151 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3152 #else
3153 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3154 #endif
3156 void GC_read_dirty()
3158 unsigned long ps, np;
3159 int nmaps;
3160 ptr_t vaddr;
3161 struct prasmap * map;
3162 char * bufp;
3163 ptr_t current_addr, limit;
3164 int i;
3165 int dummy;
3167 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3169 bufp = GC_proc_buf;
3170 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3171 # ifdef PRINTSTATS
3172 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3173 GC_proc_buf_size);
3174 # endif
3176 /* Retry with larger buffer. */
3177 word new_size = 2 * GC_proc_buf_size;
3178 char * new_buf = GC_scratch_alloc(new_size);
3180 if (new_buf != 0) {
3181 GC_proc_buf = bufp = new_buf;
3182 GC_proc_buf_size = new_size;
3184 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3185 WARN("Insufficient space for /proc read\n", 0);
3186 /* Punt: */
3187 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3188 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3189 # ifdef GC_SOLARIS_THREADS
3190 BZERO(GC_fresh_pages,
3191 MAX_FRESH_PAGES * sizeof (struct hblk *));
3192 # endif
3193 return;
3197 /* Copy dirty bits into GC_grungy_pages */
3198 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3199 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3200 nmaps, PG_REFERENCED, PG_MODIFIED); */
3201 bufp = bufp + sizeof(struct prpageheader);
3202 for (i = 0; i < nmaps; i++) {
3203 map = (struct prasmap *)bufp;
3204 vaddr = (ptr_t)(map -> pr_vaddr);
3205 ps = map -> pr_pagesize;
3206 np = map -> pr_npage;
3207 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3208 limit = vaddr + ps * np;
3209 bufp += sizeof (struct prasmap);
3210 for (current_addr = vaddr;
3211 current_addr < limit; current_addr += ps){
3212 if ((*bufp++) & PG_MODIFIED) {
3213 register struct hblk * h = (struct hblk *) current_addr;
3215 while ((ptr_t)h < current_addr + ps) {
3216 register word index = PHT_HASH(h);
3218 set_pht_entry_from_index(GC_grungy_pages, index);
3219 # ifdef GC_SOLARIS_THREADS
3221 register int slot = FRESH_PAGE_SLOT(h);
3223 if (GC_fresh_pages[slot] == h) {
3224 GC_fresh_pages[slot] = 0;
3227 # endif
3228 h++;
3232 bufp += sizeof(long) - 1;
3233 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3235 /* Update GC_written_pages. */
3236 GC_or_pages(GC_written_pages, GC_grungy_pages);
3237 # ifdef GC_SOLARIS_THREADS
3238 /* Make sure that old stacks are considered completely clean */
3239 /* unless written again. */
3240 GC_old_stacks_are_fresh();
3241 # endif
3244 #undef READ
3246 GC_bool GC_page_was_dirty(h)
3247 struct hblk *h;
3249 register word index = PHT_HASH(h);
3250 register GC_bool result;
3252 result = get_pht_entry_from_index(GC_grungy_pages, index);
3253 # ifdef GC_SOLARIS_THREADS
3254 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3255 /* This happens only if page was declared fresh since */
3256 /* the read_dirty call, e.g. because it's in an unused */
3257 /* thread stack. It's OK to treat it as clean, in */
3258 /* that case. And it's consistent with */
3259 /* GC_page_was_ever_dirty. */
3260 # endif
3261 return(result);
3264 GC_bool GC_page_was_ever_dirty(h)
3265 struct hblk *h;
3267 register word index = PHT_HASH(h);
3268 register GC_bool result;
3270 result = get_pht_entry_from_index(GC_written_pages, index);
3271 # ifdef GC_SOLARIS_THREADS
3272 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3273 # endif
3274 return(result);
3277 /* Caller holds allocation lock. */
3278 void GC_is_fresh(h, n)
3279 struct hblk *h;
3280 word n;
3283 register word index;
3285 # ifdef GC_SOLARIS_THREADS
3286 register word i;
3288 if (GC_fresh_pages != 0) {
3289 for (i = 0; i < n; i++) {
3290 ADD_FRESH_PAGE(h + i);
3293 # endif
3296 # endif /* PROC_VDB */
3299 # ifdef PCR_VDB
3301 # include "vd/PCR_VD.h"
3303 # define NPAGES (32*1024) /* 128 MB */
3305 PCR_VD_DB GC_grungy_bits[NPAGES];
3307 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3308 /* HBLKSIZE aligned. */
3310 void GC_dirty_init()
3312 GC_dirty_maintained = TRUE;
3313 /* For the time being, we assume the heap generally grows up */
3314 GC_vd_base = GC_heap_sects[0].hs_start;
3315 if (GC_vd_base == 0) {
3316 ABORT("Bad initial heap segment");
3318 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3319 != PCR_ERes_okay) {
3320 ABORT("dirty bit initialization failed");
3324 void GC_read_dirty()
3326 /* lazily enable dirty bits on newly added heap sects */
3328 static int onhs = 0;
3329 int nhs = GC_n_heap_sects;
3330 for( ; onhs < nhs; onhs++ ) {
3331 PCR_VD_WriteProtectEnable(
3332 GC_heap_sects[onhs].hs_start,
3333 GC_heap_sects[onhs].hs_bytes );
3338 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3339 != PCR_ERes_okay) {
3340 ABORT("dirty bit read failed");
3344 GC_bool GC_page_was_dirty(h)
3345 struct hblk *h;
3347 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3348 return(TRUE);
3350 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3353 /*ARGSUSED*/
3354 void GC_remove_protection(h, nblocks, is_ptrfree)
3355 struct hblk *h;
3356 word nblocks;
3357 GC_bool is_ptrfree;
3359 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3360 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3363 # endif /* PCR_VDB */
3365 #if defined(MPROTECT_VDB) && defined(DARWIN)
3366 /* The following sources were used as a *reference* for this exception handling
3367 code:
3368 1. Apple's mach/xnu documentation
3369 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3370 omnigroup's macosx-dev list.
3371 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3372 3. macosx-nat.c from Apple's GDB source code.
3375 /* The bug that caused all this trouble should now be fixed. This should
3376 eventually be removed if all goes well. */
3377 /* define BROKEN_EXCEPTION_HANDLING */
3379 #include <mach/mach.h>
3380 #include <mach/mach_error.h>
3381 #include <mach/thread_status.h>
3382 #include <mach/exception.h>
3383 #include <mach/task.h>
3384 #include <pthread.h>
3386 /* These are not defined in any header, although they are documented */
3387 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3388 extern kern_return_t exception_raise(
3389 mach_port_t,mach_port_t,mach_port_t,
3390 exception_type_t,exception_data_t,mach_msg_type_number_t);
3391 extern kern_return_t exception_raise_state(
3392 mach_port_t,mach_port_t,mach_port_t,
3393 exception_type_t,exception_data_t,mach_msg_type_number_t,
3394 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3395 thread_state_t,mach_msg_type_number_t*);
3396 extern kern_return_t exception_raise_state_identity(
3397 mach_port_t,mach_port_t,mach_port_t,
3398 exception_type_t,exception_data_t,mach_msg_type_number_t,
3399 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3400 thread_state_t,mach_msg_type_number_t*);
3403 #define MAX_EXCEPTION_PORTS 16
3405 static struct {
3406 mach_msg_type_number_t count;
3407 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3408 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3409 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3410 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3411 } GC_old_exc_ports;
3413 static struct {
3414 mach_port_t exception;
3415 #if defined(THREADS)
3416 mach_port_t reply;
3417 #endif
3418 } GC_ports;
3420 typedef struct {
3421 mach_msg_header_t head;
3422 } GC_msg_t;
3424 typedef enum {
3425 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3426 } GC_mprotect_state_t;
3428 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3429 but it isn't documented. Use the source and see if they
3430 should be ok. */
3431 #define ID_STOP 1
3432 #define ID_RESUME 2
3434 /* These values are only used on the reply port */
3435 #define ID_ACK 3
3437 #if defined(THREADS)
3439 GC_mprotect_state_t GC_mprotect_state;
3441 /* The following should ONLY be called when the world is stopped */
3442 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3443 struct {
3444 GC_msg_t msg;
3445 mach_msg_trailer_t trailer;
3446 } buf;
3447 mach_msg_return_t r;
3448 /* remote, local */
3449 buf.msg.head.msgh_bits =
3450 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3451 buf.msg.head.msgh_size = sizeof(buf.msg);
3452 buf.msg.head.msgh_remote_port = GC_ports.exception;
3453 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3454 buf.msg.head.msgh_id = id;
3456 r = mach_msg(
3457 &buf.msg.head,
3458 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3459 sizeof(buf.msg),
3460 sizeof(buf),
3461 GC_ports.reply,
3462 MACH_MSG_TIMEOUT_NONE,
3463 MACH_PORT_NULL);
3464 if(r != MACH_MSG_SUCCESS)
3465 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3466 if(buf.msg.head.msgh_id != ID_ACK)
3467 ABORT("invalid ack in GC_mprotect_thread_notify");
3470 /* Should only be called by the mprotect thread */
3471 static void GC_mprotect_thread_reply() {
3472 GC_msg_t msg;
3473 mach_msg_return_t r;
3474 /* remote, local */
3475 msg.head.msgh_bits =
3476 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3477 msg.head.msgh_size = sizeof(msg);
3478 msg.head.msgh_remote_port = GC_ports.reply;
3479 msg.head.msgh_local_port = MACH_PORT_NULL;
3480 msg.head.msgh_id = ID_ACK;
3482 r = mach_msg(
3483 &msg.head,
3484 MACH_SEND_MSG,
3485 sizeof(msg),
3487 MACH_PORT_NULL,
3488 MACH_MSG_TIMEOUT_NONE,
3489 MACH_PORT_NULL);
3490 if(r != MACH_MSG_SUCCESS)
3491 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3494 void GC_mprotect_stop() {
3495 GC_mprotect_thread_notify(ID_STOP);
3497 void GC_mprotect_resume() {
3498 GC_mprotect_thread_notify(ID_RESUME);
3501 #else /* !THREADS */
3502 /* The compiler should optimize away any GC_mprotect_state computations */
3503 #define GC_mprotect_state GC_MP_NORMAL
3504 #endif
3506 static void *GC_mprotect_thread(void *arg) {
3507 mach_msg_return_t r;
3508 /* These two structures contain some private kernel data. We don't need to
3509 access any of it so we don't bother defining a proper struct. The
3510 correct definitions are in the xnu source code. */
3511 struct {
3512 mach_msg_header_t head;
3513 char data[256];
3514 } reply;
3515 struct {
3516 mach_msg_header_t head;
3517 mach_msg_body_t msgh_body;
3518 char data[1024];
3519 } msg;
3521 mach_msg_id_t id;
3523 GC_darwin_register_mach_handler_thread(mach_thread_self());
3525 for(;;) {
3526 r = mach_msg(
3527 &msg.head,
3528 MACH_RCV_MSG|MACH_RCV_LARGE|
3529 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3531 sizeof(msg),
3532 GC_ports.exception,
3533 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3534 MACH_PORT_NULL);
3536 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3538 #if defined(THREADS)
3539 if(GC_mprotect_state == GC_MP_DISCARDING) {
3540 if(r == MACH_RCV_TIMED_OUT) {
3541 GC_mprotect_state = GC_MP_STOPPED;
3542 GC_mprotect_thread_reply();
3543 continue;
3545 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3546 ABORT("out of order mprotect thread request");
3548 #endif
3550 if(r != MACH_MSG_SUCCESS) {
3551 GC_err_printf2("mach_msg failed with %d %s\n",
3552 (int)r,mach_error_string(r));
3553 ABORT("mach_msg failed");
3556 switch(id) {
3557 #if defined(THREADS)
3558 case ID_STOP:
3559 if(GC_mprotect_state != GC_MP_NORMAL)
3560 ABORT("Called mprotect_stop when state wasn't normal");
3561 GC_mprotect_state = GC_MP_DISCARDING;
3562 break;
3563 case ID_RESUME:
3564 if(GC_mprotect_state != GC_MP_STOPPED)
3565 ABORT("Called mprotect_resume when state wasn't stopped");
3566 GC_mprotect_state = GC_MP_NORMAL;
3567 GC_mprotect_thread_reply();
3568 break;
3569 #endif /* THREADS */
3570 default:
3571 /* Handle the message (calls catch_exception_raise) */
3572 if(!exc_server(&msg.head,&reply.head))
3573 ABORT("exc_server failed");
3574 /* Send the reply */
3575 r = mach_msg(
3576 &reply.head,
3577 MACH_SEND_MSG,
3578 reply.head.msgh_size,
3580 MACH_PORT_NULL,
3581 MACH_MSG_TIMEOUT_NONE,
3582 MACH_PORT_NULL);
3583 if(r != MACH_MSG_SUCCESS) {
3584 /* This will fail if the thread dies, but the thread shouldn't
3585 die... */
3586 #ifdef BROKEN_EXCEPTION_HANDLING
3587 GC_err_printf2(
3588 "mach_msg failed with %d %s while sending exc reply\n",
3589 (int)r,mach_error_string(r));
3590 #else
3591 ABORT("mach_msg failed while sending exception reply");
3592 #endif
3594 } /* switch */
3595 } /* for(;;) */
3596 /* NOT REACHED */
3597 return NULL;
3600 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3601 be going throught the mach exception handler. However, it seems a SIGBUS is
3602 occasionally sent for some unknown reason. Even more odd, it seems to be
3603 meaningless and safe to ignore. */
3604 #ifdef BROKEN_EXCEPTION_HANDLING
3606 typedef void (* SIG_PF)();
3607 static SIG_PF GC_old_bus_handler;
3609 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3610 Even if this doesn't get updated property, it isn't really a problem */
3611 static int GC_sigbus_count;
3613 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3614 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3616 /* Ugh... some seem safe to ignore, but too many in a row probably means
3617 trouble. GC_sigbus_count is reset for each mach exception that is
3618 handled */
3619 if(GC_sigbus_count >= 8) {
3620 ABORT("Got more than 8 SIGBUSs in a row!");
3621 } else {
3622 GC_sigbus_count++;
3623 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3626 #endif /* BROKEN_EXCEPTION_HANDLING */
3628 void GC_dirty_init() {
3629 kern_return_t r;
3630 mach_port_t me;
3631 pthread_t thread;
3632 pthread_attr_t attr;
3633 exception_mask_t mask;
3635 # ifdef PRINTSTATS
3636 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3637 "implementation\n");
3638 # endif
3639 # ifdef BROKEN_EXCEPTION_HANDLING
3640 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3641 "exception handling bugs.\n");
3642 # endif
3643 GC_dirty_maintained = TRUE;
3644 if (GC_page_size % HBLKSIZE != 0) {
3645 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3646 ABORT("Page size not multiple of HBLKSIZE");
3649 GC_task_self = me = mach_task_self();
3651 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3652 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3654 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3655 MACH_MSG_TYPE_MAKE_SEND);
3656 if(r != KERN_SUCCESS)
3657 ABORT("mach_port_insert_right failed (exception port)");
3659 #if defined(THREADS)
3660 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3661 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3662 #endif
3664 /* The exceptions we want to catch */
3665 mask = EXC_MASK_BAD_ACCESS;
3667 r = task_get_exception_ports(
3669 mask,
3670 GC_old_exc_ports.masks,
3671 &GC_old_exc_ports.count,
3672 GC_old_exc_ports.ports,
3673 GC_old_exc_ports.behaviors,
3674 GC_old_exc_ports.flavors
3676 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3678 r = task_set_exception_ports(
3680 mask,
3681 GC_ports.exception,
3682 EXCEPTION_DEFAULT,
3683 MACHINE_THREAD_STATE
3685 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3687 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3688 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3689 ABORT("pthread_attr_setdetachedstate failed");
3691 # undef pthread_create
3692 /* This will call the real pthread function, not our wrapper */
3693 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3694 ABORT("pthread_create failed");
3695 pthread_attr_destroy(&attr);
3697 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3698 #ifdef BROKEN_EXCEPTION_HANDLING
3700 struct sigaction sa, oldsa;
3701 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3702 sigemptyset(&sa.sa_mask);
3703 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3704 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3705 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3706 if (GC_old_bus_handler != SIG_DFL) {
3707 # ifdef PRINTSTATS
3708 GC_err_printf0("Replaced other SIGBUS handler\n");
3709 # endif
3712 #endif /* BROKEN_EXCEPTION_HANDLING */
3715 /* The source code for Apple's GDB was used as a reference for the exception
3716 forwarding code. This code is similar to be GDB code only because there is
3717 only one way to do it. */
3718 static kern_return_t GC_forward_exception(
3719 mach_port_t thread,
3720 mach_port_t task,
3721 exception_type_t exception,
3722 exception_data_t data,
3723 mach_msg_type_number_t data_count
3725 int i;
3726 kern_return_t r;
3727 mach_port_t port;
3728 exception_behavior_t behavior;
3729 thread_state_flavor_t flavor;
3731 thread_state_t thread_state;
3732 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3734 for(i=0;i<GC_old_exc_ports.count;i++)
3735 if(GC_old_exc_ports.masks[i] & (1 << exception))
3736 break;
3737 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3739 port = GC_old_exc_ports.ports[i];
3740 behavior = GC_old_exc_ports.behaviors[i];
3741 flavor = GC_old_exc_ports.flavors[i];
3743 if(behavior != EXCEPTION_DEFAULT) {
3744 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3745 if(r != KERN_SUCCESS)
3746 ABORT("thread_get_state failed in forward_exception");
3749 switch(behavior) {
3750 case EXCEPTION_DEFAULT:
3751 r = exception_raise(port,thread,task,exception,data,data_count);
3752 break;
3753 case EXCEPTION_STATE:
3754 r = exception_raise_state(port,thread,task,exception,data,
3755 data_count,&flavor,thread_state,thread_state_count,
3756 thread_state,&thread_state_count);
3757 break;
3758 case EXCEPTION_STATE_IDENTITY:
3759 r = exception_raise_state_identity(port,thread,task,exception,data,
3760 data_count,&flavor,thread_state,thread_state_count,
3761 thread_state,&thread_state_count);
3762 break;
3763 default:
3764 r = KERN_FAILURE; /* make gcc happy */
3765 ABORT("forward_exception: unknown behavior");
3766 break;
3769 if(behavior != EXCEPTION_DEFAULT) {
3770 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3771 if(r != KERN_SUCCESS)
3772 ABORT("thread_set_state failed in forward_exception");
3775 return r;
3778 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3780 /* This violates the namespace rules but there isn't anything that can be done
3781 about it. The exception handling stuff is hard coded to call this */
3782 kern_return_t
3783 catch_exception_raise(
3784 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3785 exception_type_t exception,exception_data_t code,
3786 mach_msg_type_number_t code_count
3788 kern_return_t r;
3789 char *addr;
3790 struct hblk *h;
3791 int i;
3792 # if defined(POWERPC)
3793 # if CPP_WORDSZ == 32
3794 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3795 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3796 ppc_exception_state_t exc_state;
3797 # else
3798 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3799 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3800 ppc_exception_state64_t exc_state;
3801 # endif
3802 # else
3803 # error FIXME for non-ppc darwin
3804 # endif
3807 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3808 #ifdef DEBUG_EXCEPTION_HANDLING
3809 /* We aren't interested, pass it on to the old handler */
3810 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3811 exception,
3812 code_count > 0 ? code[0] : -1,
3813 code_count > 1 ? code[1] : -1);
3814 #endif
3815 return FWD();
3818 r = thread_get_state(thread,flavor,
3819 (natural_t*)&exc_state,&exc_state_count);
3820 if(r != KERN_SUCCESS) {
3821 /* The thread is supposed to be suspended while the exception handler
3822 is called. This shouldn't fail. */
3823 #ifdef BROKEN_EXCEPTION_HANDLING
3824 GC_err_printf0("thread_get_state failed in "
3825 "catch_exception_raise\n");
3826 return KERN_SUCCESS;
3827 #else
3828 ABORT("thread_get_state failed in catch_exception_raise");
3829 #endif
3832 /* This is the address that caused the fault */
3833 addr = (char*) exc_state.dar;
3835 if((HDR(addr)) == 0) {
3836 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3837 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3838 a bunch in a row before doing anything about it. If a "real" fault
3839 ever occurres it'll just keep faulting over and over and we'll hit
3840 the limit pretty quickly. */
3841 #ifdef BROKEN_EXCEPTION_HANDLING
3842 static char *last_fault;
3843 static int last_fault_count;
3845 if(addr != last_fault) {
3846 last_fault = addr;
3847 last_fault_count = 0;
3849 if(++last_fault_count < 32) {
3850 if(last_fault_count == 1)
3851 GC_err_printf1(
3852 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3853 addr);
3854 return KERN_SUCCESS;
3857 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3858 /* Can't pass it along to the signal handler because that is
3859 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3860 signals don't always work too well from the exception handler. */
3861 GC_err_printf0("Aborting\n");
3862 exit(EXIT_FAILURE);
3863 #else /* BROKEN_EXCEPTION_HANDLING */
3864 /* Pass it along to the next exception handler
3865 (which should call SIGBUS/SIGSEGV) */
3866 return FWD();
3867 #endif /* !BROKEN_EXCEPTION_HANDLING */
3870 #ifdef BROKEN_EXCEPTION_HANDLING
3871 /* Reset the number of consecutive SIGBUSs */
3872 GC_sigbus_count = 0;
3873 #endif
3875 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3876 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3877 UNPROTECT(h, GC_page_size);
3878 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3879 register int index = PHT_HASH(h+i);
3880 async_set_pht_entry_from_index(GC_dirty_pages, index);
3882 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3883 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3884 when we're just going to PROTECT() it again later. The thread
3885 will just fault again once it resumes */
3886 } else {
3887 /* Shouldn't happen, i don't think */
3888 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3889 return FWD();
3891 return KERN_SUCCESS;
3893 #undef FWD
3895 /* These should never be called, but just in case... */
3896 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3897 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3898 int flavor, thread_state_t old_state, int old_stateCnt,
3899 thread_state_t new_state, int new_stateCnt)
3901 ABORT("catch_exception_raise_state");
3902 return(KERN_INVALID_ARGUMENT);
3904 kern_return_t catch_exception_raise_state_identity(
3905 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3906 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3907 int flavor, thread_state_t old_state, int old_stateCnt,
3908 thread_state_t new_state, int new_stateCnt)
3910 ABORT("catch_exception_raise_state_identity");
3911 return(KERN_INVALID_ARGUMENT);
3915 #endif /* DARWIN && MPROTECT_VDB */
3917 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3918 int GC_incremental_protection_needs()
3920 return GC_PROTECTS_NONE;
3922 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3925 * Call stack save code for debugging.
3926 * Should probably be in mach_dep.c, but that requires reorganization.
3929 /* I suspect the following works for most X86 *nix variants, so */
3930 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3931 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3932 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3933 # include <features.h>
3935 struct frame {
3936 struct frame *fr_savfp;
3937 long fr_savpc;
3938 long fr_arg[NARGS]; /* All the arguments go here. */
3940 #endif
3942 #if defined(SPARC)
3943 # if defined(LINUX)
3944 # include <features.h>
3946 struct frame {
3947 long fr_local[8];
3948 long fr_arg[6];
3949 struct frame *fr_savfp;
3950 long fr_savpc;
3951 # ifndef __arch64__
3952 char *fr_stret;
3953 # endif
3954 long fr_argd[6];
3955 long fr_argx[0];
3957 # else
3958 # if defined(SUNOS4)
3959 # include <machine/frame.h>
3960 # else
3961 # if defined (DRSNX)
3962 # include <sys/sparc/frame.h>
3963 # else
3964 # if defined(OPENBSD)
3965 # include <frame.h>
3966 # else
3967 # if defined(FREEBSD) || defined(NETBSD)
3968 # include <machine/frame.h>
3969 # else
3970 # include <sys/frame.h>
3971 # endif
3972 # endif
3973 # endif
3974 # endif
3975 # endif
3976 # if NARGS > 6
3977 --> We only know how to to get the first 6 arguments
3978 # endif
3979 #endif /* SPARC */
3981 #ifdef NEED_CALLINFO
3982 /* Fill in the pc and argument information for up to NFRAMES of my */
3983 /* callers. Ignore my frame and my callers frame. */
3985 #ifdef LINUX
3986 # include <unistd.h>
3987 #endif
3989 #endif /* NEED_CALLINFO */
3991 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
3992 # include <execinfo.h>
3993 #endif
3995 #ifdef SAVE_CALL_CHAIN
3997 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
3998 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4000 #ifdef REDIRECT_MALLOC
4001 /* Deal with possible malloc calls in backtrace by omitting */
4002 /* the infinitely recursing backtrace. */
4003 # ifdef THREADS
4004 __thread /* If your compiler doesn't understand this */
4005 /* you could use something like pthread_getspecific. */
4006 # endif
4007 GC_in_save_callers = FALSE;
4008 #endif
4010 void GC_save_callers (info)
4011 struct callinfo info[NFRAMES];
4013 void * tmp_info[NFRAMES + 1];
4014 int npcs, i;
4015 # define IGNORE_FRAMES 1
4017 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4018 /* points to our own frame. */
4019 # ifdef REDIRECT_MALLOC
4020 if (GC_in_save_callers) {
4021 info[0].ci_pc = (word)(&GC_save_callers);
4022 for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4023 return;
4025 GC_in_save_callers = TRUE;
4026 # endif
4027 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4028 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4029 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4030 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4031 # ifdef REDIRECT_MALLOC
4032 GC_in_save_callers = FALSE;
4033 # endif
4036 #else /* No builtin backtrace; do it ourselves */
4038 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4039 # define FR_SAVFP fr_fp
4040 # define FR_SAVPC fr_pc
4041 #else
4042 # define FR_SAVFP fr_savfp
4043 # define FR_SAVPC fr_savpc
4044 #endif
4046 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4047 # define BIAS 2047
4048 #else
4049 # define BIAS 0
4050 #endif
4052 void GC_save_callers (info)
4053 struct callinfo info[NFRAMES];
4055 struct frame *frame;
4056 struct frame *fp;
4057 int nframes = 0;
4058 # ifdef I386
4059 /* We assume this is turned on only with gcc as the compiler. */
4060 asm("movl %%ebp,%0" : "=r"(frame));
4061 fp = frame;
4062 # else
4063 frame = (struct frame *) GC_save_regs_in_stack ();
4064 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4065 #endif
4067 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4068 && (nframes < NFRAMES));
4069 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4070 register int i;
4072 info[nframes].ci_pc = fp->FR_SAVPC;
4073 # if NARGS > 0
4074 for (i = 0; i < NARGS; i++) {
4075 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4077 # endif /* NARGS > 0 */
4079 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4082 #endif /* No builtin backtrace */
4084 #endif /* SAVE_CALL_CHAIN */
4086 #ifdef NEED_CALLINFO
4088 /* Print info to stderr. We do NOT hold the allocation lock */
4089 void GC_print_callers (info)
4090 struct callinfo info[NFRAMES];
4092 register int i;
4093 static int reentry_count = 0;
4094 GC_bool stop = FALSE;
4096 /* FIXME: This should probably use a different lock, so that we */
4097 /* become callable with or without the allocation lock. */
4098 LOCK();
4099 ++reentry_count;
4100 UNLOCK();
4102 # if NFRAMES == 1
4103 GC_err_printf0("\tCaller at allocation:\n");
4104 # else
4105 GC_err_printf0("\tCall chain at allocation:\n");
4106 # endif
4107 for (i = 0; i < NFRAMES && !stop ; i++) {
4108 if (info[i].ci_pc == 0) break;
4109 # if NARGS > 0
4111 int j;
4113 GC_err_printf0("\t\targs: ");
4114 for (j = 0; j < NARGS; j++) {
4115 if (j != 0) GC_err_printf0(", ");
4116 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4117 ~(info[i].ci_arg[j]));
4119 GC_err_printf0("\n");
4121 # endif
4122 if (reentry_count > 1) {
4123 /* We were called during an allocation during */
4124 /* a previous GC_print_callers call; punt. */
4125 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4126 continue;
4129 # ifdef LINUX
4130 FILE *pipe;
4131 # endif
4132 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4133 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4134 char **sym_name =
4135 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4136 char *name = sym_name[0];
4137 # else
4138 char buf[40];
4139 char *name = buf;
4140 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4141 # endif
4142 # if defined(LINUX) && !defined(SMALL_CONFIG)
4143 /* Try for a line number. */
4145 # define EXE_SZ 100
4146 static char exe_name[EXE_SZ];
4147 # define CMD_SZ 200
4148 char cmd_buf[CMD_SZ];
4149 # define RESULT_SZ 200
4150 static char result_buf[RESULT_SZ];
4151 size_t result_len;
4152 char *old_preload;
4153 # define PRELOAD_SZ 200
4154 char preload_buf[PRELOAD_SZ];
4155 static GC_bool found_exe_name = FALSE;
4156 static GC_bool will_fail = FALSE;
4157 int ret_code;
4158 /* Try to get it via a hairy and expensive scheme. */
4159 /* First we get the name of the executable: */
4160 if (will_fail) goto out;
4161 if (!found_exe_name) {
4162 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4163 if (ret_code < 0 || ret_code >= EXE_SZ
4164 || exe_name[0] != '/') {
4165 will_fail = TRUE; /* Dont try again. */
4166 goto out;
4168 exe_name[ret_code] = '\0';
4169 found_exe_name = TRUE;
4171 /* Then we use popen to start addr2line -e <exe> <addr> */
4172 /* There are faster ways to do this, but hopefully this */
4173 /* isn't time critical. */
4174 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4175 (unsigned long)info[i].ci_pc);
4176 old_preload = getenv ("LD_PRELOAD");
4177 if (0 != old_preload) {
4178 if (strlen (old_preload) >= PRELOAD_SZ) {
4179 will_fail = TRUE;
4180 goto out;
4182 strcpy (preload_buf, old_preload);
4183 unsetenv ("LD_PRELOAD");
4185 pipe = popen(cmd_buf, "r");
4186 if (0 != old_preload
4187 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4188 WARN("Failed to reset LD_PRELOAD\n", 0);
4190 if (pipe == NULL
4191 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4192 == 0) {
4193 if (pipe != NULL) pclose(pipe);
4194 will_fail = TRUE;
4195 goto out;
4197 if (result_buf[result_len - 1] == '\n') --result_len;
4198 result_buf[result_len] = 0;
4199 if (result_buf[0] == '?'
4200 || result_buf[result_len-2] == ':'
4201 && result_buf[result_len-1] == '0') {
4202 pclose(pipe);
4203 goto out;
4205 /* Get rid of embedded newline, if any. Test for "main" */
4207 char * nl = strchr(result_buf, '\n');
4208 if (nl != NULL && nl < result_buf + result_len) {
4209 *nl = ':';
4211 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4212 stop = TRUE;
4215 if (result_len < RESULT_SZ - 25) {
4216 /* Add in hex address */
4217 sprintf(result_buf + result_len, " [0x%lx]",
4218 (unsigned long)info[i].ci_pc);
4220 name = result_buf;
4221 pclose(pipe);
4222 out:;
4224 # endif /* LINUX */
4225 GC_err_printf1("\t\t%s\n", name);
4226 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4227 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4228 free(sym_name); /* May call GC_free; that's OK */
4229 # endif
4232 LOCK();
4233 --reentry_count;
4234 UNLOCK();
4237 #endif /* NEED_CALLINFO */
4241 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4243 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4244 addresses in FIND_LEAK output. */
4246 static word dump_maps(char *maps)
4248 GC_err_write(maps, strlen(maps));
4249 return 1;
4252 void GC_print_address_map()
4254 GC_err_printf0("---------- Begin address map ----------\n");
4255 GC_apply_to_maps(dump_maps);
4256 GC_err_printf0("---------- End address map ----------\n");
4259 #endif