FSF GCC merge 02/23/03
[official-gcc.git] / gcc / cp / search.c
blobf97cb743d2d33da9592cd475d3ce65ed0cea9206
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 /* Obstack used for remembering decision points of breadth-first. */
41 static struct obstack search_obstack;
43 /* Methods for pushing and popping objects to and from obstacks. */
45 struct stack_level *
46 push_stack_level (obstack, tp, size)
47 struct obstack *obstack;
48 char *tp; /* Sony NewsOS 5.0 compiler doesn't like void * here. */
49 int size;
51 struct stack_level *stack;
52 obstack_grow (obstack, tp, size);
53 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
54 obstack_finish (obstack);
55 stack->obstack = obstack;
56 stack->first = (tree *) obstack_base (obstack);
57 stack->limit = obstack_room (obstack) / sizeof (tree *);
58 return stack;
61 struct stack_level *
62 pop_stack_level (stack)
63 struct stack_level *stack;
65 struct stack_level *tem = stack;
66 struct obstack *obstack = tem->obstack;
67 stack = tem->prev;
68 obstack_free (obstack, tem);
69 return stack;
72 #define search_level stack_level
73 static struct search_level *search_stack;
75 struct vbase_info
77 /* The class dominating the hierarchy. */
78 tree type;
79 /* A pointer to a complete object of the indicated TYPE. */
80 tree decl_ptr;
81 tree inits;
84 static tree lookup_field_1 (tree, tree);
85 static tree dfs_check_overlap (tree, void *);
86 static tree dfs_no_overlap_yet (tree, int, void *);
87 static base_kind lookup_base_r (tree, tree, base_access,
88 bool, bool, bool, tree *);
89 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
90 static tree marked_pushdecls_p (tree, int, void *);
91 static tree unmarked_pushdecls_p (tree, int, void *);
92 static tree dfs_debug_unmarkedp (tree, int, void *);
93 static tree dfs_debug_mark (tree, void *);
94 static tree dfs_push_type_decls (tree, void *);
95 static tree dfs_push_decls (tree, void *);
96 static tree dfs_unuse_fields (tree, void *);
97 static tree add_conversions (tree, void *);
98 static int look_for_overrides_r (tree, tree);
99 static struct search_level *push_search_level (struct stack_level *,
100 struct obstack *);
101 static struct search_level *pop_search_level (struct stack_level *);
102 static tree bfs_walk (tree, tree (*) (tree, void *),
103 tree (*) (tree, int, void *), void *);
104 static tree lookup_field_queue_p (tree, int, void *);
105 static int shared_member_p (tree);
106 static tree lookup_field_r (tree, void *);
107 static tree dfs_accessible_queue_p (tree, int, void *);
108 static tree dfs_accessible_p (tree, void *);
109 static tree dfs_access_in_type (tree, void *);
110 static access_kind access_in_type (tree, tree);
111 static int protected_accessible_p (tree, tree, tree);
112 static int friend_accessible_p (tree, tree, tree);
113 static void setup_class_bindings (tree, int);
114 static int template_self_reference_p (tree, tree);
115 static tree dfs_get_pure_virtuals (tree, void *);
117 /* Allocate a level of searching. */
119 static struct search_level *
120 push_search_level (struct stack_level *stack, struct obstack *obstack)
122 struct search_level tem;
124 tem.prev = stack;
125 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
128 /* Discard a level of search allocation. */
130 static struct search_level *
131 pop_search_level (struct stack_level *obstack)
133 register struct search_level *stack = pop_stack_level (obstack);
135 return stack;
138 /* Variables for gathering statistics. */
139 #ifdef GATHER_STATISTICS
140 static int n_fields_searched;
141 static int n_calls_lookup_field, n_calls_lookup_field_1;
142 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
143 static int n_calls_get_base_type;
144 static int n_outer_fields_searched;
145 static int n_contexts_saved;
146 #endif /* GATHER_STATISTICS */
149 /* Worker for lookup_base. BINFO is the binfo we are searching at,
150 BASE is the RECORD_TYPE we are searching for. ACCESS is the
151 required access checks. WITHIN_CURRENT_SCOPE, IS_NON_PUBLIC and
152 IS_VIRTUAL indicate how BINFO was reached from the start of the
153 search. WITHIN_CURRENT_SCOPE is true if we met the current scope,
154 or friend thereof (this allows us to determine whether a protected
155 base is accessible or not). IS_NON_PUBLIC indicates whether BINFO
156 is accessible and IS_VIRTUAL indicates if it is morally virtual.
158 If BINFO is of the required type, then *BINFO_PTR is examined to
159 compare with any other instance of BASE we might have already
160 discovered. *BINFO_PTR is initialized and a base_kind return value
161 indicates what kind of base was located.
163 Otherwise BINFO's bases are searched. */
165 static base_kind
166 lookup_base_r (tree binfo, tree base, base_access access,
167 bool within_current_scope,
168 bool is_non_public, /* inside a non-public part */
169 bool is_virtual, /* inside a virtual part */
170 tree *binfo_ptr)
172 int i;
173 tree bases, accesses;
174 base_kind found = bk_not_base;
176 if (access == ba_check
177 && !within_current_scope
178 && is_friend (BINFO_TYPE (binfo), current_scope ()))
180 /* Do not clear is_non_public here. If A is a private base of B, A
181 is not allowed to convert a B* to an A*. */
182 within_current_scope = 1;
185 if (same_type_p (BINFO_TYPE (binfo), base))
187 /* We have found a base. Check against what we have found
188 already. */
189 found = bk_same_type;
190 if (is_virtual)
191 found = bk_via_virtual;
192 if (is_non_public)
193 found = bk_inaccessible;
195 if (!*binfo_ptr)
196 *binfo_ptr = binfo;
197 else if (binfo != *binfo_ptr)
199 if (access != ba_any)
200 *binfo_ptr = NULL;
201 else if (!is_virtual)
202 /* Prefer a non-virtual base. */
203 *binfo_ptr = binfo;
204 found = bk_ambig;
207 return found;
210 bases = BINFO_BASETYPES (binfo);
211 accesses = BINFO_BASEACCESSES (binfo);
212 if (!bases)
213 return bk_not_base;
215 for (i = TREE_VEC_LENGTH (bases); i--;)
217 tree base_binfo = TREE_VEC_ELT (bases, i);
218 tree base_access = TREE_VEC_ELT (accesses, i);
220 int this_non_public = is_non_public;
221 int this_virtual = is_virtual;
222 base_kind bk;
224 if (access <= ba_ignore)
225 ; /* no change */
226 else if (base_access == access_public_node)
227 ; /* no change */
228 else if (access == ba_not_special)
229 this_non_public = 1;
230 else if (base_access == access_protected_node && within_current_scope)
231 ; /* no change */
232 else if (is_friend (BINFO_TYPE (binfo), current_scope ()))
233 ; /* no change */
234 else
235 this_non_public = 1;
237 if (TREE_VIA_VIRTUAL (base_binfo))
238 this_virtual = 1;
240 bk = lookup_base_r (base_binfo, base,
241 access, within_current_scope,
242 this_non_public, this_virtual,
243 binfo_ptr);
245 switch (bk)
247 case bk_ambig:
248 if (access != ba_any)
249 return bk;
250 found = bk;
251 break;
253 case bk_inaccessible:
254 if (found == bk_not_base)
255 found = bk;
256 my_friendly_assert (found == bk_via_virtual
257 || found == bk_inaccessible, 20010723);
259 break;
261 case bk_same_type:
262 bk = bk_proper_base;
263 /* FALLTHROUGH */
264 case bk_proper_base:
265 my_friendly_assert (found == bk_not_base, 20010723);
266 found = bk;
267 break;
269 case bk_via_virtual:
270 if (found != bk_ambig)
271 found = bk;
272 break;
274 case bk_not_base:
275 break;
278 return found;
281 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
282 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
283 non-NULL, fill with information about what kind of base we
284 discovered.
286 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
287 not set in ACCESS, then an error is issued and error_mark_node is
288 returned. If the ba_quiet bit is set, then no error is issued and
289 NULL_TREE is returned. */
291 tree
292 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
294 tree binfo = NULL; /* The binfo we've found so far. */
295 tree t_binfo = NULL;
296 base_kind bk;
298 if (t == error_mark_node || base == error_mark_node)
300 if (kind_ptr)
301 *kind_ptr = bk_not_base;
302 return error_mark_node;
304 my_friendly_assert (TYPE_P (base), 20011127);
306 if (!TYPE_P (t))
308 t_binfo = t;
309 t = BINFO_TYPE (t);
311 else
312 t_binfo = TYPE_BINFO (t);
314 /* Ensure that the types are instantiated. */
315 t = complete_type (TYPE_MAIN_VARIANT (t));
316 base = complete_type (TYPE_MAIN_VARIANT (base));
318 bk = lookup_base_r (t_binfo, base, access & ~ba_quiet,
319 0, 0, 0, &binfo);
321 switch (bk)
323 case bk_inaccessible:
324 binfo = NULL_TREE;
325 if (!(access & ba_quiet))
327 error ("`%T' is an inaccessible base of `%T'", base, t);
328 binfo = error_mark_node;
330 break;
331 case bk_ambig:
332 if (access != ba_any)
334 binfo = NULL_TREE;
335 if (!(access & ba_quiet))
337 error ("`%T' is an ambiguous base of `%T'", base, t);
338 binfo = error_mark_node;
341 break;
342 default:;
345 if (kind_ptr)
346 *kind_ptr = bk;
348 return binfo;
351 /* Worker function for get_dynamic_cast_base_type. */
353 static int
354 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
355 tree *offset_ptr)
357 tree binfos, accesses;
358 int i, n_baselinks;
359 int worst = -2;
361 if (BINFO_TYPE (binfo) == subtype)
363 if (is_via_virtual)
364 return -1;
365 else
367 *offset_ptr = BINFO_OFFSET (binfo);
368 return 0;
372 binfos = BINFO_BASETYPES (binfo);
373 accesses = BINFO_BASEACCESSES (binfo);
374 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
375 for (i = 0; i < n_baselinks; i++)
377 tree base_binfo = TREE_VEC_ELT (binfos, i);
378 tree base_access = TREE_VEC_ELT (accesses, i);
379 int rval;
381 if (base_access != access_public_node)
382 continue;
383 rval = dynamic_cast_base_recurse
384 (subtype, base_binfo,
385 is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
386 if (worst == -2)
387 worst = rval;
388 else if (rval >= 0)
389 worst = worst >= 0 ? -3 : worst;
390 else if (rval == -1)
391 worst = -1;
392 else if (rval == -3 && worst != -1)
393 worst = -3;
395 return worst;
398 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
399 started from is related to the required TARGET type, in order to optimize
400 the inheritance graph search. This information is independent of the
401 current context, and ignores private paths, hence get_base_distance is
402 inappropriate. Return a TREE specifying the base offset, BOFF.
403 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
404 and there are no public virtual SUBTYPE bases.
405 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
406 BOFF == -2, SUBTYPE is not a public base.
407 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
409 tree
410 get_dynamic_cast_base_type (tree subtype, tree target)
412 tree offset = NULL_TREE;
413 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
414 false, &offset);
416 if (!boff)
417 return offset;
418 offset = build_int_2 (boff, -1);
419 TREE_TYPE (offset) = ssizetype;
420 return offset;
423 /* Search for a member with name NAME in a multiple inheritance lattice
424 specified by TYPE. If it does not exist, return NULL_TREE.
425 If the member is ambiguously referenced, return `error_mark_node'.
426 Otherwise, return the FIELD_DECL. */
428 /* Do a 1-level search for NAME as a member of TYPE. The caller must
429 figure out whether it can access this field. (Since it is only one
430 level, this is reasonable.) */
432 static tree
433 lookup_field_1 (tree type, tree name)
435 register tree field;
437 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
438 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
439 || TREE_CODE (type) == TYPENAME_TYPE)
440 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
441 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
442 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
443 the code often worked even when we treated the index as a list
444 of fields!)
445 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
446 return NULL_TREE;
448 if (TYPE_NAME (type)
449 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
450 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
452 tree *fields = &TREE_VEC_ELT (DECL_SORTED_FIELDS (TYPE_NAME (type)), 0);
453 int lo = 0, hi = TREE_VEC_LENGTH (DECL_SORTED_FIELDS (TYPE_NAME (type)));
454 int i;
456 while (lo < hi)
458 i = (lo + hi) / 2;
460 #ifdef GATHER_STATISTICS
461 n_fields_searched++;
462 #endif /* GATHER_STATISTICS */
464 if (DECL_NAME (fields[i]) > name)
465 hi = i;
466 else if (DECL_NAME (fields[i]) < name)
467 lo = i + 1;
468 else
470 /* We might have a nested class and a field with the
471 same name; we sorted them appropriately via
472 field_decl_cmp, so just look for the last field with
473 this name. */
474 while (i + 1 < hi
475 && DECL_NAME (fields[i+1]) == name)
476 ++i;
477 return fields[i];
480 return NULL_TREE;
483 field = TYPE_FIELDS (type);
485 #ifdef GATHER_STATISTICS
486 n_calls_lookup_field_1++;
487 #endif /* GATHER_STATISTICS */
488 while (field)
490 #ifdef GATHER_STATISTICS
491 n_fields_searched++;
492 #endif /* GATHER_STATISTICS */
493 my_friendly_assert (DECL_P (field), 0);
494 if (DECL_NAME (field) == NULL_TREE
495 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
497 tree temp = lookup_field_1 (TREE_TYPE (field), name);
498 if (temp)
499 return temp;
501 if (TREE_CODE (field) == USING_DECL)
502 /* For now, we're just treating member using declarations as
503 old ARM-style access declarations. Thus, there's no reason
504 to return a USING_DECL, and the rest of the compiler can't
505 handle it. Once the class is defined, these are purged
506 from TYPE_FIELDS anyhow; see handle_using_decl. */
508 else if (DECL_NAME (field) == name)
509 return field;
510 field = TREE_CHAIN (field);
512 /* Not found. */
513 if (name == vptr_identifier)
515 /* Give the user what s/he thinks s/he wants. */
516 if (TYPE_POLYMORPHIC_P (type))
517 return TYPE_VFIELD (type);
519 return NULL_TREE;
522 /* There are a number of cases we need to be aware of here:
523 current_class_type current_function_decl
524 global NULL NULL
525 fn-local NULL SET
526 class-local SET NULL
527 class->fn SET SET
528 fn->class SET SET
530 Those last two make life interesting. If we're in a function which is
531 itself inside a class, we need decls to go into the fn's decls (our
532 second case below). But if we're in a class and the class itself is
533 inside a function, we need decls to go into the decls for the class. To
534 achieve this last goal, we must see if, when both current_class_ptr and
535 current_function_decl are set, the class was declared inside that
536 function. If so, we know to put the decls into the class's scope. */
538 tree
539 current_scope ()
541 if (current_function_decl == NULL_TREE)
542 return current_class_type;
543 if (current_class_type == NULL_TREE)
544 return current_function_decl;
545 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
546 && same_type_p (DECL_CONTEXT (current_function_decl),
547 current_class_type))
548 || (DECL_FRIEND_CONTEXT (current_function_decl)
549 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
550 current_class_type)))
551 return current_function_decl;
553 return current_class_type;
556 /* Returns nonzero if we are currently in a function scope. Note
557 that this function returns zero if we are within a local class, but
558 not within a member function body of the local class. */
561 at_function_scope_p ()
563 tree cs = current_scope ();
564 return cs && TREE_CODE (cs) == FUNCTION_DECL;
567 /* Returns true if the innermost active scope is a class scope. */
569 bool
570 at_class_scope_p ()
572 tree cs = current_scope ();
573 return cs && TYPE_P (cs);
576 /* Return the scope of DECL, as appropriate when doing name-lookup. */
578 tree
579 context_for_name_lookup (tree decl)
581 /* [class.union]
583 For the purposes of name lookup, after the anonymous union
584 definition, the members of the anonymous union are considered to
585 have been defined in the scope in which the anonymous union is
586 declared. */
587 tree context = DECL_CONTEXT (decl);
589 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
590 context = TYPE_CONTEXT (context);
591 if (!context)
592 context = global_namespace;
594 return context;
597 /* The accessibility routines use BINFO_ACCESS for scratch space
598 during the computation of the accssibility of some declaration. */
600 #define BINFO_ACCESS(NODE) \
601 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
603 /* Set the access associated with NODE to ACCESS. */
605 #define SET_BINFO_ACCESS(NODE, ACCESS) \
606 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
607 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
609 /* Called from access_in_type via dfs_walk. Calculate the access to
610 DATA (which is really a DECL) in BINFO. */
612 static tree
613 dfs_access_in_type (tree binfo, void *data)
615 tree decl = (tree) data;
616 tree type = BINFO_TYPE (binfo);
617 access_kind access = ak_none;
619 if (context_for_name_lookup (decl) == type)
621 /* If we have desceneded to the scope of DECL, just note the
622 appropriate access. */
623 if (TREE_PRIVATE (decl))
624 access = ak_private;
625 else if (TREE_PROTECTED (decl))
626 access = ak_protected;
627 else
628 access = ak_public;
630 else
632 /* First, check for an access-declaration that gives us more
633 access to the DECL. The CONST_DECL for an enumeration
634 constant will not have DECL_LANG_SPECIFIC, and thus no
635 DECL_ACCESS. */
636 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
638 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
640 if (decl_access)
642 decl_access = TREE_VALUE (decl_access);
644 if (decl_access == access_public_node)
645 access = ak_public;
646 else if (decl_access == access_protected_node)
647 access = ak_protected;
648 else if (decl_access == access_private_node)
649 access = ak_private;
650 else
651 my_friendly_assert (false, 20030217);
655 if (!access)
657 int i;
658 int n_baselinks;
659 tree binfos, accesses;
661 /* Otherwise, scan our baseclasses, and pick the most favorable
662 access. */
663 binfos = BINFO_BASETYPES (binfo);
664 accesses = BINFO_BASEACCESSES (binfo);
665 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
666 for (i = 0; i < n_baselinks; ++i)
668 tree base_binfo = TREE_VEC_ELT (binfos, i);
669 tree base_access = TREE_VEC_ELT (accesses, i);
670 access_kind base_access_now = BINFO_ACCESS (base_binfo);
672 if (base_access_now == ak_none || base_access_now == ak_private)
673 /* If it was not accessible in the base, or only
674 accessible as a private member, we can't access it
675 all. */
676 base_access_now = ak_none;
677 else if (base_access == access_protected_node)
678 /* Public and protected members in the base become
679 protected here. */
680 base_access_now = ak_protected;
681 else if (base_access == access_private_node)
682 /* Public and protected members in the base become
683 private here. */
684 base_access_now = ak_private;
686 /* See if the new access, via this base, gives more
687 access than our previous best access. */
688 if (base_access_now != ak_none
689 && (access == ak_none || base_access_now < access))
691 access = base_access_now;
693 /* If the new access is public, we can't do better. */
694 if (access == ak_public)
695 break;
701 /* Note the access to DECL in TYPE. */
702 SET_BINFO_ACCESS (binfo, access);
704 /* Mark TYPE as visited so that if we reach it again we do not
705 duplicate our efforts here. */
706 BINFO_MARKED (binfo) = 1;
708 return NULL_TREE;
711 /* Return the access to DECL in TYPE. */
713 static access_kind
714 access_in_type (tree type, tree decl)
716 tree binfo = TYPE_BINFO (type);
718 /* We must take into account
720 [class.paths]
722 If a name can be reached by several paths through a multiple
723 inheritance graph, the access is that of the path that gives
724 most access.
726 The algorithm we use is to make a post-order depth-first traversal
727 of the base-class hierarchy. As we come up the tree, we annotate
728 each node with the most lenient access. */
729 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
730 dfs_walk (binfo, dfs_unmark, markedp, 0);
732 return BINFO_ACCESS (binfo);
735 /* Called from dfs_accessible_p via dfs_walk. */
737 static tree
738 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
740 tree binfo = BINFO_BASETYPE (derived, ix);
742 if (BINFO_MARKED (binfo))
743 return NULL_TREE;
745 /* If this class is inherited via private or protected inheritance,
746 then we can't see it, unless we are a friend of the derived class. */
747 if (BINFO_BASEACCESS (derived, ix) != access_public_node
748 && !is_friend (BINFO_TYPE (derived), current_scope ()))
749 return NULL_TREE;
751 return binfo;
754 /* Called from dfs_accessible_p via dfs_walk. */
756 static tree
757 dfs_accessible_p (tree binfo, void *data)
759 int protected_ok = data != 0;
760 access_kind access;
762 BINFO_MARKED (binfo) = 1;
763 access = BINFO_ACCESS (binfo);
764 if (access == ak_public || (access == ak_protected && protected_ok))
765 return binfo;
766 else if (access != ak_none
767 && is_friend (BINFO_TYPE (binfo), current_scope ()))
768 return binfo;
770 return NULL_TREE;
773 /* Returns nonzero if it is OK to access DECL through an object
774 indiated by BINFO in the context of DERIVED. */
776 static int
777 protected_accessible_p (tree decl, tree derived, tree binfo)
779 access_kind access;
781 /* We're checking this clause from [class.access.base]
783 m as a member of N is protected, and the reference occurs in a
784 member or friend of class N, or in a member or friend of a
785 class P derived from N, where m as a member of P is private or
786 protected.
788 Here DERIVED is a possible P and DECL is m. accessible_p will
789 iterate over various values of N, but the access to m in DERIVED
790 does not change.
792 Note that I believe that the passage above is wrong, and should read
793 "...is private or protected or public"; otherwise you get bizarre results
794 whereby a public using-decl can prevent you from accessing a protected
795 member of a base. (jason 2000/02/28) */
797 /* If DERIVED isn't derived from m's class, then it can't be a P. */
798 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
799 return 0;
801 access = access_in_type (derived, decl);
803 /* If m is inaccessible in DERIVED, then it's not a P. */
804 if (access == ak_none)
805 return 0;
807 /* [class.protected]
809 When a friend or a member function of a derived class references
810 a protected nonstatic member of a base class, an access check
811 applies in addition to those described earlier in clause
812 _class.access_) Except when forming a pointer to member
813 (_expr.unary.op_), the access must be through a pointer to,
814 reference to, or object of the derived class itself (or any class
815 derived from that class) (_expr.ref_). If the access is to form
816 a pointer to member, the nested-name-specifier shall name the
817 derived class (or any class derived from that class). */
818 if (DECL_NONSTATIC_MEMBER_P (decl))
820 /* We can tell through what the reference is occurring by
821 chasing BINFO up to the root. */
822 tree t = binfo;
823 while (BINFO_INHERITANCE_CHAIN (t))
824 t = BINFO_INHERITANCE_CHAIN (t);
826 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
827 return 0;
830 return 1;
833 /* Returns nonzero if SCOPE is a friend of a type which would be able
834 to access DECL through the object indicated by BINFO. */
836 static int
837 friend_accessible_p (tree scope, tree decl, tree binfo)
839 tree befriending_classes;
840 tree t;
842 if (!scope)
843 return 0;
845 if (TREE_CODE (scope) == FUNCTION_DECL
846 || DECL_FUNCTION_TEMPLATE_P (scope))
847 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
848 else if (TYPE_P (scope))
849 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
850 else
851 return 0;
853 for (t = befriending_classes; t; t = TREE_CHAIN (t))
854 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
855 return 1;
857 /* Nested classes are implicitly friends of their enclosing types, as
858 per core issue 45 (this is a change from the standard). */
859 if (TYPE_P (scope))
860 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
861 if (protected_accessible_p (decl, t, binfo))
862 return 1;
864 if (TREE_CODE (scope) == FUNCTION_DECL
865 || DECL_FUNCTION_TEMPLATE_P (scope))
867 /* Perhaps this SCOPE is a member of a class which is a
868 friend. */
869 if (DECL_CLASS_SCOPE_P (decl)
870 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
871 return 1;
873 /* Or an instantiation of something which is a friend. */
874 if (DECL_TEMPLATE_INFO (scope))
875 return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
877 else if (CLASSTYPE_TEMPLATE_INFO (scope))
878 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
880 return 0;
883 /* DECL is a declaration from a base class of TYPE, which was the
884 class used to name DECL. Return nonzero if, in the current
885 context, DECL is accessible. If TYPE is actually a BINFO node,
886 then we can tell in what context the access is occurring by looking
887 at the most derived class along the path indicated by BINFO. */
889 int
890 accessible_p (tree type, tree decl)
892 tree binfo;
893 tree t;
895 /* Nonzero if it's OK to access DECL if it has protected
896 accessibility in TYPE. */
897 int protected_ok = 0;
899 /* If we're not checking access, everything is accessible. */
900 if (!scope_chain->check_access)
901 return 1;
903 /* If this declaration is in a block or namespace scope, there's no
904 access control. */
905 if (!TYPE_P (context_for_name_lookup (decl)))
906 return 1;
908 if (!TYPE_P (type))
910 binfo = type;
911 type = BINFO_TYPE (type);
913 else
914 binfo = TYPE_BINFO (type);
916 /* [class.access.base]
918 A member m is accessible when named in class N if
920 --m as a member of N is public, or
922 --m as a member of N is private, and the reference occurs in a
923 member or friend of class N, or
925 --m as a member of N is protected, and the reference occurs in a
926 member or friend of class N, or in a member or friend of a
927 class P derived from N, where m as a member of P is private or
928 protected, or
930 --there exists a base class B of N that is accessible at the point
931 of reference, and m is accessible when named in class B.
933 We walk the base class hierarchy, checking these conditions. */
935 /* Figure out where the reference is occurring. Check to see if
936 DECL is private or protected in this scope, since that will
937 determine whether protected access is allowed. */
938 if (current_class_type)
939 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
941 /* Now, loop through the classes of which we are a friend. */
942 if (!protected_ok)
943 protected_ok = friend_accessible_p (current_scope (), decl, binfo);
945 /* Standardize the binfo that access_in_type will use. We don't
946 need to know what path was chosen from this point onwards. */
947 binfo = TYPE_BINFO (type);
949 /* Compute the accessibility of DECL in the class hierarchy
950 dominated by type. */
951 access_in_type (type, decl);
952 /* Walk the hierarchy again, looking for a base class that allows
953 access. */
954 t = dfs_walk (binfo, dfs_accessible_p,
955 dfs_accessible_queue_p,
956 protected_ok ? &protected_ok : 0);
957 /* Clear any mark bits. Note that we have to walk the whole tree
958 here, since we have aborted the previous walk from some point
959 deep in the tree. */
960 dfs_walk (binfo, dfs_unmark, 0, 0);
962 return t != NULL_TREE;
965 struct lookup_field_info {
966 /* The type in which we're looking. */
967 tree type;
968 /* The name of the field for which we're looking. */
969 tree name;
970 /* If non-NULL, the current result of the lookup. */
971 tree rval;
972 /* The path to RVAL. */
973 tree rval_binfo;
974 /* If non-NULL, the lookup was ambiguous, and this is a list of the
975 candidates. */
976 tree ambiguous;
977 /* If nonzero, we are looking for types, not data members. */
978 int want_type;
979 /* If something went wrong, a message indicating what. */
980 const char *errstr;
983 /* Returns nonzero if BINFO is not hidden by the value found by the
984 lookup so far. If BINFO is hidden, then there's no need to look in
985 it. DATA is really a struct lookup_field_info. Called from
986 lookup_field via breadth_first_search. */
988 static tree
989 lookup_field_queue_p (tree derived, int ix, void *data)
991 tree binfo = BINFO_BASETYPE (derived, ix);
992 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
994 /* Don't look for constructors or destructors in base classes. */
995 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
996 return NULL_TREE;
998 /* If this base class is hidden by the best-known value so far, we
999 don't need to look. */
1000 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1001 return NULL_TREE;
1003 /* If this is a dependent base, don't look in it. */
1004 if (BINFO_DEPENDENT_BASE_P (binfo))
1005 return NULL_TREE;
1007 return binfo;
1010 /* Within the scope of a template class, you can refer to the to the
1011 current specialization with the name of the template itself. For
1012 example:
1014 template <typename T> struct S { S* sp; }
1016 Returns nonzero if DECL is such a declaration in a class TYPE. */
1018 static int
1019 template_self_reference_p (tree type, tree decl)
1021 return (CLASSTYPE_USE_TEMPLATE (type)
1022 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1023 && TREE_CODE (decl) == TYPE_DECL
1024 && DECL_ARTIFICIAL (decl)
1025 && DECL_NAME (decl) == constructor_name (type));
1029 /* Nonzero for a class member means that it is shared between all objects
1030 of that class.
1032 [class.member.lookup]:If the resulting set of declarations are not all
1033 from sub-objects of the same type, or the set has a nonstatic member
1034 and includes members from distinct sub-objects, there is an ambiguity
1035 and the program is ill-formed.
1037 This function checks that T contains no nonstatic members. */
1039 static int
1040 shared_member_p (tree t)
1042 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1043 || TREE_CODE (t) == CONST_DECL)
1044 return 1;
1045 if (is_overloaded_fn (t))
1047 for (; t; t = OVL_NEXT (t))
1049 tree fn = OVL_CURRENT (t);
1050 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1051 return 0;
1053 return 1;
1055 return 0;
1058 /* DATA is really a struct lookup_field_info. Look for a field with
1059 the name indicated there in BINFO. If this function returns a
1060 non-NULL value it is the result of the lookup. Called from
1061 lookup_field via breadth_first_search. */
1063 static tree
1064 lookup_field_r (tree binfo, void *data)
1066 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1067 tree type = BINFO_TYPE (binfo);
1068 tree nval = NULL_TREE;
1070 /* First, look for a function. There can't be a function and a data
1071 member with the same name, and if there's a function and a type
1072 with the same name, the type is hidden by the function. */
1073 if (!lfi->want_type)
1075 int idx = lookup_fnfields_1 (type, lfi->name);
1076 if (idx >= 0)
1077 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1080 if (!nval)
1081 /* Look for a data member or type. */
1082 nval = lookup_field_1 (type, lfi->name);
1084 /* If there is no declaration with the indicated name in this type,
1085 then there's nothing to do. */
1086 if (!nval)
1087 return NULL_TREE;
1089 /* If we're looking up a type (as with an elaborated type specifier)
1090 we ignore all non-types we find. */
1091 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1092 && !DECL_CLASS_TEMPLATE_P (nval))
1094 if (lfi->name == TYPE_IDENTIFIER (type))
1096 /* If the aggregate has no user defined constructors, we allow
1097 it to have fields with the same name as the enclosing type.
1098 If we are looking for that name, find the corresponding
1099 TYPE_DECL. */
1100 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1101 if (DECL_NAME (nval) == lfi->name
1102 && TREE_CODE (nval) == TYPE_DECL)
1103 break;
1105 else
1106 nval = NULL_TREE;
1107 if (!nval)
1109 nval = purpose_member (lfi->name, CLASSTYPE_TAGS (type));
1110 if (nval)
1111 nval = TYPE_MAIN_DECL (TREE_VALUE (nval));
1112 else
1113 return NULL_TREE;
1117 /* You must name a template base class with a template-id. */
1118 if (!same_type_p (type, lfi->type)
1119 && template_self_reference_p (type, nval))
1120 return NULL_TREE;
1122 /* If the lookup already found a match, and the new value doesn't
1123 hide the old one, we might have an ambiguity. */
1124 if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
1126 if (nval == lfi->rval && shared_member_p (nval))
1127 /* The two things are really the same. */
1129 else if (original_binfo (binfo, lfi->rval_binfo))
1130 /* The previous value hides the new one. */
1132 else
1134 /* We have a real ambiguity. We keep a chain of all the
1135 candidates. */
1136 if (!lfi->ambiguous && lfi->rval)
1138 /* This is the first time we noticed an ambiguity. Add
1139 what we previously thought was a reasonable candidate
1140 to the list. */
1141 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1142 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1145 /* Add the new value. */
1146 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1147 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1148 lfi->errstr = "request for member `%D' is ambiguous";
1151 else
1153 lfi->rval = nval;
1154 lfi->rval_binfo = binfo;
1157 return NULL_TREE;
1160 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1161 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1162 FUNCTIONS, and OPTYPE respectively. */
1164 tree
1165 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1167 tree baselink;
1169 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1170 || TREE_CODE (functions) == TEMPLATE_DECL
1171 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1172 || TREE_CODE (functions) == OVERLOAD,
1173 20020730);
1174 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1175 my_friendly_assert (TREE_TYPE (functions), 20020805);
1177 baselink = make_node (BASELINK);
1178 TREE_TYPE (baselink) = TREE_TYPE (functions);
1179 BASELINK_BINFO (baselink) = binfo;
1180 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1181 BASELINK_FUNCTIONS (baselink) = functions;
1182 BASELINK_OPTYPE (baselink) = optype;
1184 return baselink;
1187 /* Look for a member named NAME in an inheritance lattice dominated by
1188 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1189 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1190 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1191 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1192 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1193 TREE_VALUEs are the list of ambiguous candidates.
1195 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1197 If nothing can be found return NULL_TREE and do not issue an error. */
1199 tree
1200 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1202 tree rval, rval_binfo = NULL_TREE;
1203 tree type = NULL_TREE, basetype_path = NULL_TREE;
1204 struct lookup_field_info lfi;
1206 /* rval_binfo is the binfo associated with the found member, note,
1207 this can be set with useful information, even when rval is not
1208 set, because it must deal with ALL members, not just non-function
1209 members. It is used for ambiguity checking and the hidden
1210 checks. Whereas rval is only set if a proper (not hidden)
1211 non-function member is found. */
1213 const char *errstr = 0;
1215 if (xbasetype == current_class_type && TYPE_BEING_DEFINED (xbasetype)
1216 && IDENTIFIER_CLASS_VALUE (name))
1218 tree field = IDENTIFIER_CLASS_VALUE (name);
1219 if (TREE_CODE (field) != FUNCTION_DECL
1220 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1221 /* We're in the scope of this class, and the value has already
1222 been looked up. Just return the cached value. */
1223 return field;
1226 if (TREE_CODE (xbasetype) == TREE_VEC)
1228 type = BINFO_TYPE (xbasetype);
1229 basetype_path = xbasetype;
1231 else if (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)))
1233 type = xbasetype;
1234 basetype_path = TYPE_BINFO (type);
1235 my_friendly_assert (BINFO_INHERITANCE_CHAIN (basetype_path) == NULL_TREE,
1236 980827);
1238 else
1239 abort ();
1241 complete_type (type);
1243 #ifdef GATHER_STATISTICS
1244 n_calls_lookup_field++;
1245 #endif /* GATHER_STATISTICS */
1247 memset ((PTR) &lfi, 0, sizeof (lfi));
1248 lfi.type = type;
1249 lfi.name = name;
1250 lfi.want_type = want_type;
1251 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1252 rval = lfi.rval;
1253 rval_binfo = lfi.rval_binfo;
1254 if (rval_binfo)
1255 type = BINFO_TYPE (rval_binfo);
1256 errstr = lfi.errstr;
1258 /* If we are not interested in ambiguities, don't report them;
1259 just return NULL_TREE. */
1260 if (!protect && lfi.ambiguous)
1261 return NULL_TREE;
1263 if (protect == 2)
1265 if (lfi.ambiguous)
1266 return lfi.ambiguous;
1267 else
1268 protect = 0;
1271 /* [class.access]
1273 In the case of overloaded function names, access control is
1274 applied to the function selected by overloaded resolution. */
1275 if (rval && protect && !is_overloaded_fn (rval)
1276 && !enforce_access (xbasetype, rval))
1277 return error_mark_node;
1279 if (errstr && protect)
1281 error (errstr, name, type);
1282 if (lfi.ambiguous)
1283 print_candidates (lfi.ambiguous);
1284 rval = error_mark_node;
1287 if (rval && is_overloaded_fn (rval))
1288 rval = build_baselink (rval_binfo, basetype_path, rval,
1289 (IDENTIFIER_TYPENAME_P (name)
1290 ? TREE_TYPE (name): NULL_TREE));
1291 return rval;
1294 /* Like lookup_member, except that if we find a function member we
1295 return NULL_TREE. */
1297 tree
1298 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1300 tree rval = lookup_member (xbasetype, name, protect, want_type);
1302 /* Ignore functions. */
1303 if (rval && BASELINK_P (rval))
1304 return NULL_TREE;
1306 return rval;
1309 /* Like lookup_member, except that if we find a non-function member we
1310 return NULL_TREE. */
1312 tree
1313 lookup_fnfields (tree xbasetype, tree name, int protect)
1315 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1317 /* Ignore non-functions. */
1318 if (rval && !BASELINK_P (rval))
1319 return NULL_TREE;
1321 return rval;
1324 /* TYPE is a class type. Return the index of the fields within
1325 the method vector with name NAME, or -1 is no such field exists. */
1328 lookup_fnfields_1 (tree type, tree name)
1330 tree method_vec = (CLASS_TYPE_P (type)
1331 ? CLASSTYPE_METHOD_VEC (type)
1332 : NULL_TREE);
1334 if (method_vec != 0)
1336 register int i;
1337 register tree *methods = &TREE_VEC_ELT (method_vec, 0);
1338 int len = TREE_VEC_LENGTH (method_vec);
1339 tree tmp;
1341 #ifdef GATHER_STATISTICS
1342 n_calls_lookup_fnfields_1++;
1343 #endif /* GATHER_STATISTICS */
1345 /* Constructors are first... */
1346 if (name == ctor_identifier)
1347 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1348 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1349 /* and destructors are second. */
1350 if (name == dtor_identifier)
1351 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1352 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1354 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1355 i < len && methods[i];
1356 ++i)
1358 #ifdef GATHER_STATISTICS
1359 n_outer_fields_searched++;
1360 #endif /* GATHER_STATISTICS */
1362 tmp = OVL_CURRENT (methods[i]);
1363 if (DECL_NAME (tmp) == name)
1364 return i;
1366 /* If the type is complete and we're past the conversion ops,
1367 switch to binary search. */
1368 if (! DECL_CONV_FN_P (tmp)
1369 && COMPLETE_TYPE_P (type))
1371 int lo = i + 1, hi = len;
1373 while (lo < hi)
1375 i = (lo + hi) / 2;
1377 #ifdef GATHER_STATISTICS
1378 n_outer_fields_searched++;
1379 #endif /* GATHER_STATISTICS */
1381 tmp = DECL_NAME (OVL_CURRENT (methods[i]));
1383 if (tmp > name)
1384 hi = i;
1385 else if (tmp < name)
1386 lo = i + 1;
1387 else
1388 return i;
1390 break;
1394 /* If we didn't find it, it might have been a template
1395 conversion operator to a templated type. If there are any,
1396 such template conversion operators will all be overloaded on
1397 the first conversion slot. (Note that we don't look for this
1398 case above so that we will always find specializations
1399 first.) */
1400 if (IDENTIFIER_TYPENAME_P (name))
1402 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1403 if (i < len && methods[i])
1405 tmp = OVL_CURRENT (methods[i]);
1406 if (TREE_CODE (tmp) == TEMPLATE_DECL
1407 && DECL_TEMPLATE_CONV_FN_P (tmp))
1408 return i;
1413 return -1;
1416 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1417 the class or namespace used to qualify the name. CONTEXT_CLASS is
1418 the class corresponding to the object in which DECL will be used.
1419 Return a possibly modified version of DECL that takes into account
1420 the CONTEXT_CLASS.
1422 In particular, consider an expression like `B::m' in the context of
1423 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1424 then the most derived class indicated by the BASELINK_BINFO will be
1425 `B', not `D'. This function makes that adjustment. */
1427 tree
1428 adjust_result_of_qualified_name_lookup (tree decl,
1429 tree qualifying_scope,
1430 tree context_class)
1432 if (context_class && CLASS_TYPE_P (qualifying_scope)
1433 && DERIVED_FROM_P (qualifying_scope, context_class)
1434 && BASELINK_P (decl))
1436 tree base;
1438 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1440 /* Look for the QUALIFYING_SCOPE as a base of the
1441 CONTEXT_CLASS. If QUALIFYING_SCOPE is ambiguous, we cannot
1442 be sure yet than an error has occurred; perhaps the function
1443 chosen by overload resolution will be static. */
1444 base = lookup_base (context_class, qualifying_scope,
1445 ba_ignore | ba_quiet, NULL);
1446 if (base)
1448 BASELINK_ACCESS_BINFO (decl) = base;
1449 BASELINK_BINFO (decl)
1450 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1451 ba_ignore | ba_quiet,
1452 NULL);
1456 return decl;
1460 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1461 type in the hierarchy, in a breadth-first preorder traversal.
1462 If it ever returns a non-NULL value, that value is immediately
1463 returned and the walk is terminated. At each node, FN is passed a
1464 BINFO indicating the path from the curently visited base-class to
1465 TYPE. Before each base-class is walked QFN is called. If the
1466 value returned is nonzero, the base-class is walked; otherwise it
1467 is not. If QFN is NULL, it is treated as a function which always
1468 returns 1. Both FN and QFN are passed the DATA whenever they are
1469 called.
1471 Implementation notes: Uses a circular queue, which starts off on
1472 the stack but gets moved to the malloc arena if it needs to be
1473 enlarged. The underflow and overflow conditions are
1474 indistinguishable except by context: if head == tail and we just
1475 moved the head pointer, the queue is empty, but if we just moved
1476 the tail pointer, the queue is full.
1477 Start with enough room for ten concurrent base classes. That
1478 will be enough for most hierarchies. */
1479 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1481 static tree
1482 bfs_walk (tree binfo,
1483 tree (*fn) (tree, void *),
1484 tree (*qfn) (tree, int, void *),
1485 void *data)
1487 tree rval = NULL_TREE;
1489 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1490 /* A circular queue of the base classes of BINFO. These will be
1491 built up in breadth-first order, except where QFN prunes the
1492 search. */
1493 size_t head, tail;
1494 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1495 tree *base_buffer = bases_initial;
1497 head = tail = 0;
1498 base_buffer[tail++] = binfo;
1500 while (head != tail)
1502 int n_bases, ix;
1503 tree binfo = base_buffer[head++];
1504 if (head == base_buffer_size)
1505 head = 0;
1507 /* Is this the one we're looking for? If so, we're done. */
1508 rval = fn (binfo, data);
1509 if (rval)
1510 goto done;
1512 n_bases = BINFO_N_BASETYPES (binfo);
1513 for (ix = 0; ix != n_bases; ix++)
1515 tree base_binfo;
1517 if (qfn)
1518 base_binfo = (*qfn) (binfo, ix, data);
1519 else
1520 base_binfo = BINFO_BASETYPE (binfo, ix);
1522 if (base_binfo)
1524 base_buffer[tail++] = base_binfo;
1525 if (tail == base_buffer_size)
1526 tail = 0;
1527 if (tail == head)
1529 tree *new_buffer = xmalloc (2 * base_buffer_size
1530 * sizeof (tree));
1531 memcpy (&new_buffer[0], &base_buffer[0],
1532 tail * sizeof (tree));
1533 memcpy (&new_buffer[head + base_buffer_size],
1534 &base_buffer[head],
1535 (base_buffer_size - head) * sizeof (tree));
1536 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1537 free (base_buffer);
1538 base_buffer = new_buffer;
1539 head += base_buffer_size;
1540 base_buffer_size *= 2;
1546 done:
1547 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1548 free (base_buffer);
1549 return rval;
1552 /* Exactly like bfs_walk, except that a depth-first traversal is
1553 performed, and PREFN is called in preorder, while POSTFN is called
1554 in postorder. */
1556 tree
1557 dfs_walk_real (tree binfo,
1558 tree (*prefn) (tree, void *),
1559 tree (*postfn) (tree, void *),
1560 tree (*qfn) (tree, int, void *),
1561 void *data)
1563 tree rval = NULL_TREE;
1565 /* Call the pre-order walking function. */
1566 if (prefn)
1568 rval = (*prefn) (binfo, data);
1569 if (rval)
1570 return rval;
1573 /* Process the basetypes. */
1574 if (BINFO_BASETYPES (binfo))
1576 int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
1577 for (i = 0; i != n; i++)
1579 tree base_binfo;
1581 if (qfn)
1582 base_binfo = (*qfn) (binfo, i, data);
1583 else
1584 base_binfo = BINFO_BASETYPE (binfo, i);
1586 if (base_binfo)
1588 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1589 if (rval)
1590 return rval;
1595 /* Call the post-order walking function. */
1596 if (postfn)
1597 rval = (*postfn) (binfo, data);
1599 return rval;
1602 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1603 performed. */
1605 tree
1606 dfs_walk (tree binfo,
1607 tree (*fn) (tree, void *),
1608 tree (*qfn) (tree, int, void *),
1609 void *data)
1611 return dfs_walk_real (binfo, 0, fn, qfn, data);
1614 /* Check that virtual overrider OVERRIDER is acceptable for base function
1615 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1618 check_final_overrider (tree overrider, tree basefn)
1620 tree over_type = TREE_TYPE (overrider);
1621 tree base_type = TREE_TYPE (basefn);
1622 tree over_return = TREE_TYPE (over_type);
1623 tree base_return = TREE_TYPE (base_type);
1624 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1625 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1626 int fail = 0;
1628 if (same_type_p (base_return, over_return))
1629 /* OK */;
1630 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1631 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1632 && POINTER_TYPE_P (base_return)))
1634 /* Potentially covariant. */
1635 unsigned base_quals, over_quals;
1637 fail = !POINTER_TYPE_P (base_return);
1638 if (!fail)
1640 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1642 base_return = TREE_TYPE (base_return);
1643 over_return = TREE_TYPE (over_return);
1645 base_quals = cp_type_quals (base_return);
1646 over_quals = cp_type_quals (over_return);
1648 if ((base_quals & over_quals) != over_quals)
1649 fail = 1;
1651 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1653 tree binfo = lookup_base (over_return, base_return,
1654 ba_check | ba_quiet, NULL);
1656 if (!binfo)
1657 fail = 1;
1659 else if (!pedantic
1660 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1661 /* GNU extension, allow trivial pointer conversions such as
1662 converting to void *, or qualification conversion. */
1664 /* can_convert will permit user defined conversion from a
1665 (reference to) class type. We must reject them. */
1666 over_return = TREE_TYPE (over_type);
1667 if (TREE_CODE (over_return) == REFERENCE_TYPE)
1668 over_return = TREE_TYPE (over_return);
1669 if (CLASS_TYPE_P (over_return))
1670 fail = 2;
1672 else
1673 fail = 2;
1675 else
1676 fail = 2;
1677 if (!fail)
1678 /* OK */;
1679 else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1680 return 0;
1681 else
1683 if (fail == 1)
1685 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1686 cp_error_at (" overriding `%#D'", basefn);
1688 else
1690 cp_error_at ("conflicting return type specified for `%#D'",
1691 overrider);
1692 cp_error_at (" overriding `%#D'", basefn);
1694 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1695 DECL_CONTEXT (overrider));
1696 return 0;
1699 /* Check throw specifier is at least as strict. */
1700 if (!comp_except_specs (base_throw, over_throw, 0))
1702 if (!IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1704 cp_error_at ("looser throw specifier for `%#F'", overrider);
1705 cp_error_at (" overriding `%#F'", basefn);
1706 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1707 DECL_CONTEXT (overrider));
1709 return 0;
1712 return 1;
1715 /* Given a class TYPE, and a function decl FNDECL, look for
1716 virtual functions in TYPE's hierarchy which FNDECL overrides.
1717 We do not look in TYPE itself, only its bases.
1719 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1720 find that it overrides anything.
1722 We check that every function which is overridden, is correctly
1723 overridden. */
1726 look_for_overrides (tree type, tree fndecl)
1728 tree binfo = TYPE_BINFO (type);
1729 tree basebinfos = BINFO_BASETYPES (binfo);
1730 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1731 int ix;
1732 int found = 0;
1734 for (ix = 0; ix != nbasebinfos; ix++)
1736 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1738 if (TYPE_POLYMORPHIC_P (basetype))
1739 found += look_for_overrides_r (basetype, fndecl);
1741 return found;
1744 /* Look in TYPE for virtual functions with the same signature as
1745 FNDECL. */
1747 tree
1748 look_for_overrides_here (tree type, tree fndecl)
1750 int ix;
1752 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1753 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1754 else
1755 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1756 if (ix >= 0)
1758 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1760 for (; fns; fns = OVL_NEXT (fns))
1762 tree fn = OVL_CURRENT (fns);
1764 if (!DECL_VIRTUAL_P (fn))
1765 /* Not a virtual. */;
1766 else if (DECL_CONTEXT (fn) != type)
1767 /* Introduced with a using declaration. */;
1768 else if (DECL_STATIC_FUNCTION_P (fndecl))
1770 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1771 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1772 if (compparms (TREE_CHAIN (btypes), dtypes))
1773 return fn;
1775 else if (same_signature_p (fndecl, fn))
1776 return fn;
1779 return NULL_TREE;
1782 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1783 TYPE itself and its bases. */
1785 static int
1786 look_for_overrides_r (tree type, tree fndecl)
1788 tree fn = look_for_overrides_here (type, fndecl);
1789 if (fn)
1791 if (DECL_STATIC_FUNCTION_P (fndecl))
1793 /* A static member function cannot match an inherited
1794 virtual member function. */
1795 cp_error_at ("`%#D' cannot be declared", fndecl);
1796 cp_error_at (" since `%#D' declared in base class", fn);
1798 else
1800 /* It's definitely virtual, even if not explicitly set. */
1801 DECL_VIRTUAL_P (fndecl) = 1;
1802 check_final_overrider (fndecl, fn);
1804 return 1;
1807 /* We failed to find one declared in this class. Look in its bases. */
1808 return look_for_overrides (type, fndecl);
1811 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1813 static tree
1814 dfs_get_pure_virtuals (tree binfo, void *data)
1816 tree type = (tree) data;
1818 /* We're not interested in primary base classes; the derived class
1819 of which they are a primary base will contain the information we
1820 need. */
1821 if (!BINFO_PRIMARY_P (binfo))
1823 tree virtuals;
1825 for (virtuals = BINFO_VIRTUALS (binfo);
1826 virtuals;
1827 virtuals = TREE_CHAIN (virtuals))
1828 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1829 CLASSTYPE_PURE_VIRTUALS (type)
1830 = tree_cons (NULL_TREE, BV_FN (virtuals),
1831 CLASSTYPE_PURE_VIRTUALS (type));
1834 BINFO_MARKED (binfo) = 1;
1836 return NULL_TREE;
1839 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1841 void
1842 get_pure_virtuals (tree type)
1844 tree vbases;
1846 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1847 is going to be overridden. */
1848 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1849 /* Now, run through all the bases which are not primary bases, and
1850 collect the pure virtual functions. We look at the vtable in
1851 each class to determine what pure virtual functions are present.
1852 (A primary base is not interesting because the derived class of
1853 which it is a primary base will contain vtable entries for the
1854 pure virtuals in the base class. */
1855 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1856 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1858 /* Put the pure virtuals in dfs order. */
1859 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1861 for (vbases = CLASSTYPE_VBASECLASSES (type);
1862 vbases;
1863 vbases = TREE_CHAIN (vbases))
1865 tree virtuals;
1867 for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
1868 virtuals;
1869 virtuals = TREE_CHAIN (virtuals))
1871 tree base_fndecl = BV_FN (virtuals);
1872 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1873 error ("`%#D' needs a final overrider", base_fndecl);
1878 /* DEPTH-FIRST SEARCH ROUTINES. */
1880 tree
1881 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1883 tree binfo = BINFO_BASETYPE (derived, ix);
1885 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1888 tree
1889 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1891 tree binfo = BINFO_BASETYPE (derived, ix);
1893 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1896 static tree
1897 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1899 tree binfo = BINFO_BASETYPE (derived, ix);
1901 return (!BINFO_DEPENDENT_BASE_P (binfo)
1902 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1905 static tree
1906 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1908 tree binfo = BINFO_BASETYPE (derived, ix);
1910 return (!BINFO_DEPENDENT_BASE_P (binfo)
1911 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1914 /* The worker functions for `dfs_walk'. These do not need to
1915 test anything (vis a vis marking) if they are paired with
1916 a predicate function (above). */
1918 tree
1919 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1921 BINFO_MARKED (binfo) = 0;
1922 return NULL_TREE;
1926 /* Debug info for C++ classes can get very large; try to avoid
1927 emitting it everywhere.
1929 Note that this optimization wins even when the target supports
1930 BINCL (if only slightly), and reduces the amount of work for the
1931 linker. */
1933 void
1934 maybe_suppress_debug_info (tree t)
1936 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
1937 does not support name references between translation units. It supports
1938 symbolic references between translation units, but only within a single
1939 executable or shared library.
1941 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
1942 that the type was never defined, so we only get the members we
1943 actually define. */
1944 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
1945 return;
1947 /* We might have set this earlier in cp_finish_decl. */
1948 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
1950 /* If we already know how we're handling this class, handle debug info
1951 the same way. */
1952 if (CLASSTYPE_INTERFACE_KNOWN (t))
1954 if (CLASSTYPE_INTERFACE_ONLY (t))
1955 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1956 /* else don't set it. */
1958 /* If the class has a vtable, write out the debug info along with
1959 the vtable. */
1960 else if (TYPE_CONTAINS_VPTR_P (t))
1961 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1963 /* Otherwise, just emit the debug info normally. */
1966 /* Note that we want debugging information for a base class of a class
1967 whose vtable is being emitted. Normally, this would happen because
1968 calling the constructor for a derived class implies calling the
1969 constructors for all bases, which involve initializing the
1970 appropriate vptr with the vtable for the base class; but in the
1971 presence of optimization, this initialization may be optimized
1972 away, so we tell finish_vtable_vardecl that we want the debugging
1973 information anyway. */
1975 static tree
1976 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
1978 tree t = BINFO_TYPE (binfo);
1980 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
1982 return NULL_TREE;
1985 /* Returns BINFO if we haven't already noted that we want debugging
1986 info for this base class. */
1988 static tree
1989 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1991 tree binfo = BINFO_BASETYPE (derived, ix);
1993 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
1994 ? binfo : NULL_TREE);
1997 /* Write out the debugging information for TYPE, whose vtable is being
1998 emitted. Also walk through our bases and note that we want to
1999 write out information for them. This avoids the problem of not
2000 writing any debug info for intermediate basetypes whose
2001 constructors, and thus the references to their vtables, and thus
2002 the vtables themselves, were optimized away. */
2004 void
2005 note_debug_info_needed (tree type)
2007 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2009 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2010 rest_of_type_compilation (type, toplevel_bindings_p ());
2013 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2016 /* Subroutines of push_class_decls (). */
2018 static void
2019 setup_class_bindings (tree name, int type_binding_p)
2021 tree type_binding = NULL_TREE;
2022 tree value_binding;
2024 /* If we've already done the lookup for this declaration, we're
2025 done. */
2026 if (IDENTIFIER_CLASS_VALUE (name))
2027 return;
2029 /* First, deal with the type binding. */
2030 if (type_binding_p)
2032 type_binding = lookup_member (current_class_type, name,
2033 /*protect=*/2, /*want_type=*/true);
2034 if (TREE_CODE (type_binding) == TREE_LIST
2035 && TREE_TYPE (type_binding) == error_mark_node)
2036 /* NAME is ambiguous. */
2037 push_class_level_binding (name, type_binding);
2038 else
2039 pushdecl_class_level (type_binding);
2042 /* Now, do the value binding. */
2043 value_binding = lookup_member (current_class_type, name,
2044 /*protect=*/2, /*want_type=*/false);
2046 if (type_binding_p
2047 && (TREE_CODE (value_binding) == TYPE_DECL
2048 || DECL_CLASS_TEMPLATE_P (value_binding)
2049 || (TREE_CODE (value_binding) == TREE_LIST
2050 && TREE_TYPE (value_binding) == error_mark_node
2051 && (TREE_CODE (TREE_VALUE (value_binding))
2052 == TYPE_DECL))))
2053 /* We found a type-binding, even when looking for a non-type
2054 binding. This means that we already processed this binding
2055 above. */;
2056 else if (value_binding)
2058 if (TREE_CODE (value_binding) == TREE_LIST
2059 && TREE_TYPE (value_binding) == error_mark_node)
2060 /* NAME is ambiguous. */
2061 push_class_level_binding (name, value_binding);
2062 else
2064 if (BASELINK_P (value_binding))
2065 /* NAME is some overloaded functions. */
2066 value_binding = BASELINK_FUNCTIONS (value_binding);
2067 pushdecl_class_level (value_binding);
2072 /* Push class-level declarations for any names appearing in BINFO that
2073 are TYPE_DECLS. */
2075 static tree
2076 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2078 tree type;
2079 tree fields;
2081 type = BINFO_TYPE (binfo);
2082 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2083 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2084 && !(!same_type_p (type, current_class_type)
2085 && template_self_reference_p (type, fields)))
2086 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2088 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2089 DERIVED_FROM_P, which calls get_base_distance. */
2090 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2092 return NULL_TREE;
2095 /* Push class-level declarations for any names appearing in BINFO that
2096 are not TYPE_DECLS. */
2098 static tree
2099 dfs_push_decls (tree binfo, void *data)
2101 tree type = BINFO_TYPE (binfo);
2102 tree method_vec;
2103 tree fields;
2105 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2106 if (DECL_NAME (fields)
2107 && TREE_CODE (fields) != TYPE_DECL
2108 && TREE_CODE (fields) != USING_DECL
2109 && !DECL_ARTIFICIAL (fields))
2110 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2111 else if (TREE_CODE (fields) == FIELD_DECL
2112 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2113 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2115 method_vec = (CLASS_TYPE_P (type)
2116 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2118 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2120 tree *methods;
2121 tree *end;
2123 /* Farm out constructors and destructors. */
2124 end = TREE_VEC_END (method_vec);
2126 for (methods = &TREE_VEC_ELT (method_vec, 2);
2127 methods < end && *methods;
2128 methods++)
2129 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2130 /*type_binding_p=*/0);
2133 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2135 return NULL_TREE;
2138 /* When entering the scope of a class, we cache all of the
2139 fields that that class provides within its inheritance
2140 lattice. Where ambiguities result, we mark them
2141 with `error_mark_node' so that if they are encountered
2142 without explicit qualification, we can emit an error
2143 message. */
2145 void
2146 push_class_decls (tree type)
2148 search_stack = push_search_level (search_stack, &search_obstack);
2150 /* Enter type declarations and mark. */
2151 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2153 /* Enter non-type declarations and unmark. */
2154 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2157 /* Here's a subroutine we need because C lacks lambdas. */
2159 static tree
2160 dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
2162 tree type = TREE_TYPE (binfo);
2163 tree fields;
2165 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2167 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
2168 continue;
2170 TREE_USED (fields) = 0;
2171 if (DECL_NAME (fields) == NULL_TREE
2172 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2173 unuse_fields (TREE_TYPE (fields));
2176 return NULL_TREE;
2179 void
2180 unuse_fields (tree type)
2182 dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
2185 void
2186 pop_class_decls ()
2188 /* We haven't pushed a search level when dealing with cached classes,
2189 so we'd better not try to pop it. */
2190 if (search_stack)
2191 search_stack = pop_search_level (search_stack);
2194 void
2195 print_search_statistics ()
2197 #ifdef GATHER_STATISTICS
2198 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2199 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2200 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2201 n_outer_fields_searched, n_calls_lookup_fnfields);
2202 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2203 #else /* GATHER_STATISTICS */
2204 fprintf (stderr, "no search statistics\n");
2205 #endif /* GATHER_STATISTICS */
2208 void
2209 init_search_processing ()
2211 gcc_obstack_init (&search_obstack);
2214 void
2215 reinit_search_statistics ()
2217 #ifdef GATHER_STATISTICS
2218 n_fields_searched = 0;
2219 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2220 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2221 n_calls_get_base_type = 0;
2222 n_outer_fields_searched = 0;
2223 n_contexts_saved = 0;
2224 #endif /* GATHER_STATISTICS */
2227 static tree
2228 add_conversions (tree binfo, void *data)
2230 int i;
2231 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2232 tree *conversions = (tree *) data;
2234 /* Some builtin types have no method vector, not even an empty one. */
2235 if (!method_vec)
2236 return NULL_TREE;
2238 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2240 tree tmp = TREE_VEC_ELT (method_vec, i);
2241 tree name;
2243 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2244 break;
2246 name = DECL_NAME (OVL_CURRENT (tmp));
2248 /* Make sure we don't already have this conversion. */
2249 if (! IDENTIFIER_MARKED (name))
2251 *conversions = tree_cons (binfo, tmp, *conversions);
2252 IDENTIFIER_MARKED (name) = 1;
2255 return NULL_TREE;
2258 /* Return a TREE_LIST containing all the non-hidden user-defined
2259 conversion functions for TYPE (and its base-classes). The
2260 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2261 containing the conversion functions. The TREE_PURPOSE is the BINFO
2262 from which the conversion functions in this node were selected. */
2264 tree
2265 lookup_conversions (tree type)
2267 tree t;
2268 tree conversions = NULL_TREE;
2270 if (COMPLETE_TYPE_P (type))
2271 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2273 for (t = conversions; t; t = TREE_CHAIN (t))
2274 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2276 return conversions;
2279 struct overlap_info
2281 tree compare_type;
2282 int found_overlap;
2285 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2286 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2288 static tree
2289 dfs_check_overlap (tree empty_binfo, void *data)
2291 struct overlap_info *oi = (struct overlap_info *) data;
2292 tree binfo;
2293 for (binfo = TYPE_BINFO (oi->compare_type);
2295 binfo = BINFO_BASETYPE (binfo, 0))
2297 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2299 oi->found_overlap = 1;
2300 break;
2302 else if (BINFO_BASETYPES (binfo) == NULL_TREE)
2303 break;
2306 return NULL_TREE;
2309 /* Trivial function to stop base traversal when we find something. */
2311 static tree
2312 dfs_no_overlap_yet (tree derived, int ix, void *data)
2314 tree binfo = BINFO_BASETYPE (derived, ix);
2315 struct overlap_info *oi = (struct overlap_info *) data;
2317 return !oi->found_overlap ? binfo : NULL_TREE;
2320 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2321 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2324 types_overlap_p (tree empty_type, tree next_type)
2326 struct overlap_info oi;
2328 if (! IS_AGGR_TYPE (next_type))
2329 return 0;
2330 oi.compare_type = next_type;
2331 oi.found_overlap = 0;
2332 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2333 dfs_no_overlap_yet, &oi);
2334 return oi.found_overlap;
2337 /* Given a vtable VAR, determine which of the inherited classes the vtable
2338 inherits (in a loose sense) functions from.
2340 FIXME: This does not work with the new ABI. */
2342 tree
2343 binfo_for_vtable (tree var)
2345 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2346 tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
2347 int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
2348 int i;
2350 for (i = 0; i < n_baseclasses; i++)
2352 tree base_binfo = TREE_VEC_ELT (binfos, i);
2353 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2354 return base_binfo;
2357 /* If no secondary base classes matched, return the primary base, if
2358 there is one. */
2359 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2360 return get_primary_binfo (main_binfo);
2362 return main_binfo;
2365 /* Returns the binfo of the first direct or indirect virtual base derived
2366 from BINFO, or NULL if binfo is not via virtual. */
2368 tree
2369 binfo_from_vbase (tree binfo)
2371 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2373 if (TREE_VIA_VIRTUAL (binfo))
2374 return binfo;
2376 return NULL_TREE;
2379 /* Returns the binfo of the first direct or indirect virtual base derived
2380 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2381 via virtual. */
2383 tree
2384 binfo_via_virtual (tree binfo, tree limit)
2386 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2387 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2389 if (TREE_VIA_VIRTUAL (binfo))
2390 return binfo;
2392 return NULL_TREE;
2395 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2396 Find the equivalent binfo within whatever graph HERE is located.
2397 This is the inverse of original_binfo. */
2399 tree
2400 copied_binfo (tree binfo, tree here)
2402 tree result = NULL_TREE;
2404 if (TREE_VIA_VIRTUAL (binfo))
2406 tree t;
2408 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2409 t = BINFO_INHERITANCE_CHAIN (t))
2410 continue;
2412 result = purpose_member (BINFO_TYPE (binfo),
2413 CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
2414 result = TREE_VALUE (result);
2416 else if (BINFO_INHERITANCE_CHAIN (binfo))
2418 tree base_binfos;
2419 int ix, n;
2421 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2422 base_binfos = BINFO_BASETYPES (base_binfos);
2423 n = TREE_VEC_LENGTH (base_binfos);
2424 for (ix = 0; ix != n; ix++)
2426 tree base = TREE_VEC_ELT (base_binfos, ix);
2428 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2430 result = base;
2431 break;
2435 else
2437 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2438 result = here;
2441 my_friendly_assert (result, 20030202);
2442 return result;
2445 /* BINFO is some base binfo of HERE, within some other
2446 hierachy. Return the equivalent binfo, but in the hierarchy
2447 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2448 is not a base binfo of HERE, returns NULL_TREE. */
2450 tree
2451 original_binfo (tree binfo, tree here)
2453 tree result = NULL;
2455 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2456 result = here;
2457 else if (TREE_VIA_VIRTUAL (binfo))
2459 result = purpose_member (BINFO_TYPE (binfo),
2460 CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
2461 if (result)
2462 result = TREE_VALUE (result);
2464 else if (BINFO_INHERITANCE_CHAIN (binfo))
2466 tree base_binfos;
2468 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2469 if (base_binfos)
2471 int ix, n;
2473 base_binfos = BINFO_BASETYPES (base_binfos);
2474 n = TREE_VEC_LENGTH (base_binfos);
2475 for (ix = 0; ix != n; ix++)
2477 tree base = TREE_VEC_ELT (base_binfos, ix);
2479 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2481 result = base;
2482 break;
2488 return result;