FSF GCC merge 02/23/03
[official-gcc.git] / gcc / combine.c
blob7792537d34b4e35e50099c4f4cb096fe163a18ba
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tm_p.h"
83 #include "flags.h"
84 #include "regs.h"
85 #include "hard-reg-set.h"
86 #include "basic-block.h"
87 #include "insn-config.h"
88 #include "function.h"
89 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
90 #include "expr.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
96 /* It is not safe to use ordinary gen_lowpart in combine.
97 Use gen_lowpart_for_combine instead. See comments there. */
98 #define gen_lowpart dont_use_gen_lowpart_you_dummy
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 #define nonzero_bits(X, M) \
143 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
145 #define num_sign_bit_copies(X, M) \
146 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 /* Record last point of death of (hard or pseudo) register n. */
154 static rtx *reg_last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
158 static rtx *reg_last_set;
160 /* Record the cuid of the last insn that invalidated memory
161 (anything that writes memory, and subroutine calls, but not pushes). */
163 static int mem_last_set;
165 /* Record the cuid of the last CALL_INSN
166 so we can tell whether a potential combination crosses any calls. */
168 static int last_call_cuid;
170 /* When `subst' is called, this is the insn that is being modified
171 (by combining in a previous insn). The PATTERN of this insn
172 is still the old pattern partially modified and it should not be
173 looked at, but this may be used to examine the successors of the insn
174 to judge whether a simplification is valid. */
176 static rtx subst_insn;
178 /* This is the lowest CUID that `subst' is currently dealing with.
179 get_last_value will not return a value if the register was set at or
180 after this CUID. If not for this mechanism, we could get confused if
181 I2 or I1 in try_combine were an insn that used the old value of a register
182 to obtain a new value. In that case, we might erroneously get the
183 new value of the register when we wanted the old one. */
185 static int subst_low_cuid;
187 /* This contains any hard registers that are used in newpat; reg_dead_at_p
188 must consider all these registers to be always live. */
190 static HARD_REG_SET newpat_used_regs;
192 /* This is an insn to which a LOG_LINKS entry has been added. If this
193 insn is the earlier than I2 or I3, combine should rescan starting at
194 that location. */
196 static rtx added_links_insn;
198 /* Basic block in which we are performing combines. */
199 static basic_block this_basic_block;
201 /* A bitmap indicating which blocks had registers go dead at entry.
202 After combine, we'll need to re-do global life analysis with
203 those blocks as starting points. */
204 static sbitmap refresh_blocks;
206 /* The next group of arrays allows the recording of the last value assigned
207 to (hard or pseudo) register n. We use this information to see if an
208 operation being processed is redundant given a prior operation performed
209 on the register. For example, an `and' with a constant is redundant if
210 all the zero bits are already known to be turned off.
212 We use an approach similar to that used by cse, but change it in the
213 following ways:
215 (1) We do not want to reinitialize at each label.
216 (2) It is useful, but not critical, to know the actual value assigned
217 to a register. Often just its form is helpful.
219 Therefore, we maintain the following arrays:
221 reg_last_set_value the last value assigned
222 reg_last_set_label records the value of label_tick when the
223 register was assigned
224 reg_last_set_table_tick records the value of label_tick when a
225 value using the register is assigned
226 reg_last_set_invalid set to nonzero when it is not valid
227 to use the value of this register in some
228 register's value
230 To understand the usage of these tables, it is important to understand
231 the distinction between the value in reg_last_set_value being valid
232 and the register being validly contained in some other expression in the
233 table.
235 Entry I in reg_last_set_value is valid if it is nonzero, and either
236 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
238 Register I may validly appear in any expression returned for the value
239 of another register if reg_n_sets[i] is 1. It may also appear in the
240 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
241 reg_last_set_invalid[j] is zero.
243 If an expression is found in the table containing a register which may
244 not validly appear in an expression, the register is replaced by
245 something that won't match, (clobber (const_int 0)).
247 reg_last_set_invalid[i] is set nonzero when register I is being assigned
248 to and reg_last_set_table_tick[i] == label_tick. */
250 /* Record last value assigned to (hard or pseudo) register n. */
252 static rtx *reg_last_set_value;
254 /* Record the value of label_tick when the value for register n is placed in
255 reg_last_set_value[n]. */
257 static int *reg_last_set_label;
259 /* Record the value of label_tick when an expression involving register n
260 is placed in reg_last_set_value. */
262 static int *reg_last_set_table_tick;
264 /* Set nonzero if references to register n in expressions should not be
265 used. */
267 static char *reg_last_set_invalid;
269 /* Incremented for each label. */
271 static int label_tick;
273 /* Some registers that are set more than once and used in more than one
274 basic block are nevertheless always set in similar ways. For example,
275 a QImode register may be loaded from memory in two places on a machine
276 where byte loads zero extend.
278 We record in the following array what we know about the nonzero
279 bits of a register, specifically which bits are known to be zero.
281 If an entry is zero, it means that we don't know anything special. */
283 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
285 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
286 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
288 static enum machine_mode nonzero_bits_mode;
290 /* Nonzero if we know that a register has some leading bits that are always
291 equal to the sign bit. */
293 static unsigned char *reg_sign_bit_copies;
295 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
296 It is zero while computing them and after combine has completed. This
297 former test prevents propagating values based on previously set values,
298 which can be incorrect if a variable is modified in a loop. */
300 static int nonzero_sign_valid;
302 /* These arrays are maintained in parallel with reg_last_set_value
303 and are used to store the mode in which the register was last set,
304 the bits that were known to be zero when it was last set, and the
305 number of sign bits copies it was known to have when it was last set. */
307 static enum machine_mode *reg_last_set_mode;
308 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
309 static char *reg_last_set_sign_bit_copies;
311 /* Record one modification to rtl structure
312 to be undone by storing old_contents into *where.
313 is_int is 1 if the contents are an int. */
315 struct undo
317 struct undo *next;
318 int is_int;
319 union {rtx r; int i;} old_contents;
320 union {rtx *r; int *i;} where;
323 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
324 num_undo says how many are currently recorded.
326 other_insn is nonzero if we have modified some other insn in the process
327 of working on subst_insn. It must be verified too. */
329 struct undobuf
331 struct undo *undos;
332 struct undo *frees;
333 rtx other_insn;
336 static struct undobuf undobuf;
338 /* Number of times the pseudo being substituted for
339 was found and replaced. */
341 static int n_occurrences;
343 static void do_SUBST PARAMS ((rtx *, rtx));
344 static void do_SUBST_INT PARAMS ((int *, int));
345 static void init_reg_last_arrays PARAMS ((void));
346 static void setup_incoming_promotions PARAMS ((void));
347 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
348 static int cant_combine_insn_p PARAMS ((rtx));
349 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
350 static int sets_function_arg_p PARAMS ((rtx));
351 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
352 static int contains_muldiv PARAMS ((rtx));
353 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
354 static void undo_all PARAMS ((void));
355 static void undo_commit PARAMS ((void));
356 static rtx *find_split_point PARAMS ((rtx *, rtx));
357 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
358 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
359 static rtx simplify_if_then_else PARAMS ((rtx));
360 static rtx simplify_set PARAMS ((rtx));
361 static rtx simplify_logical PARAMS ((rtx, int));
362 static rtx expand_compound_operation PARAMS ((rtx));
363 static rtx expand_field_assignment PARAMS ((rtx));
364 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
365 rtx, unsigned HOST_WIDE_INT, int,
366 int, int));
367 static rtx extract_left_shift PARAMS ((rtx, int));
368 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
369 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
370 unsigned HOST_WIDE_INT *));
371 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
372 unsigned HOST_WIDE_INT, rtx, int));
373 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
374 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
375 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
376 static rtx make_field_assignment PARAMS ((rtx));
377 static rtx apply_distributive_law PARAMS ((rtx));
378 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
379 unsigned HOST_WIDE_INT));
380 static unsigned HOST_WIDE_INT cached_nonzero_bits
381 PARAMS ((rtx, enum machine_mode, rtx,
382 enum machine_mode,
383 unsigned HOST_WIDE_INT));
384 static unsigned HOST_WIDE_INT nonzero_bits1
385 PARAMS ((rtx, enum machine_mode, rtx,
386 enum machine_mode,
387 unsigned HOST_WIDE_INT));
388 static unsigned int cached_num_sign_bit_copies
389 PARAMS ((rtx, enum machine_mode, rtx,
390 enum machine_mode, unsigned int));
391 static unsigned int num_sign_bit_copies1
392 PARAMS ((rtx, enum machine_mode, rtx,
393 enum machine_mode, unsigned int));
394 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
395 enum rtx_code, HOST_WIDE_INT,
396 enum machine_mode, int *));
397 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
398 rtx, int));
399 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
400 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
401 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
402 rtx, rtx));
403 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
404 static void update_table_tick PARAMS ((rtx));
405 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
406 static void check_promoted_subreg PARAMS ((rtx, rtx));
407 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
408 static void record_dead_and_set_regs PARAMS ((rtx));
409 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
410 static rtx get_last_value PARAMS ((rtx));
411 static int use_crosses_set_p PARAMS ((rtx, int));
412 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
413 static int reg_dead_at_p PARAMS ((rtx, rtx));
414 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
415 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
416 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
417 static void distribute_links PARAMS ((rtx));
418 static void mark_used_regs_combine PARAMS ((rtx));
419 static int insn_cuid PARAMS ((rtx));
420 static void record_promoted_value PARAMS ((rtx, rtx));
421 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
422 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
424 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
425 insn. The substitution can be undone by undo_all. If INTO is already
426 set to NEWVAL, do not record this change. Because computing NEWVAL might
427 also call SUBST, we have to compute it before we put anything into
428 the undo table. */
430 static void
431 do_SUBST (into, newval)
432 rtx *into, newval;
434 struct undo *buf;
435 rtx oldval = *into;
437 if (oldval == newval)
438 return;
440 /* We'd like to catch as many invalid transformations here as
441 possible. Unfortunately, there are way too many mode changes
442 that are perfectly valid, so we'd waste too much effort for
443 little gain doing the checks here. Focus on catching invalid
444 transformations involving integer constants. */
445 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
446 && GET_CODE (newval) == CONST_INT)
448 /* Sanity check that we're replacing oldval with a CONST_INT
449 that is a valid sign-extension for the original mode. */
450 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
451 GET_MODE (oldval)))
452 abort ();
454 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
455 CONST_INT is not valid, because after the replacement, the
456 original mode would be gone. Unfortunately, we can't tell
457 when do_SUBST is called to replace the operand thereof, so we
458 perform this test on oldval instead, checking whether an
459 invalid replacement took place before we got here. */
460 if ((GET_CODE (oldval) == SUBREG
461 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
462 || (GET_CODE (oldval) == ZERO_EXTEND
463 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
464 abort ();
467 if (undobuf.frees)
468 buf = undobuf.frees, undobuf.frees = buf->next;
469 else
470 buf = (struct undo *) xmalloc (sizeof (struct undo));
472 buf->is_int = 0;
473 buf->where.r = into;
474 buf->old_contents.r = oldval;
475 *into = newval;
477 buf->next = undobuf.undos, undobuf.undos = buf;
480 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
482 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
483 for the value of a HOST_WIDE_INT value (including CONST_INT) is
484 not safe. */
486 static void
487 do_SUBST_INT (into, newval)
488 int *into, newval;
490 struct undo *buf;
491 int oldval = *into;
493 if (oldval == newval)
494 return;
496 if (undobuf.frees)
497 buf = undobuf.frees, undobuf.frees = buf->next;
498 else
499 buf = (struct undo *) xmalloc (sizeof (struct undo));
501 buf->is_int = 1;
502 buf->where.i = into;
503 buf->old_contents.i = oldval;
504 *into = newval;
506 buf->next = undobuf.undos, undobuf.undos = buf;
509 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
511 /* Main entry point for combiner. F is the first insn of the function.
512 NREGS is the first unused pseudo-reg number.
514 Return nonzero if the combiner has turned an indirect jump
515 instruction into a direct jump. */
517 combine_instructions (f, nregs)
518 rtx f;
519 unsigned int nregs;
521 rtx insn, next;
522 #ifdef HAVE_cc0
523 rtx prev;
524 #endif
525 int i;
526 rtx links, nextlinks;
528 int new_direct_jump_p = 0;
530 combine_attempts = 0;
531 combine_merges = 0;
532 combine_extras = 0;
533 combine_successes = 0;
535 combine_max_regno = nregs;
537 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
538 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
539 reg_sign_bit_copies
540 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
542 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
543 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
544 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
545 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
546 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
547 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
548 reg_last_set_mode
549 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
550 reg_last_set_nonzero_bits
551 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
552 reg_last_set_sign_bit_copies
553 = (char *) xmalloc (nregs * sizeof (char));
555 init_reg_last_arrays ();
557 init_recog_no_volatile ();
559 /* Compute maximum uid value so uid_cuid can be allocated. */
561 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
562 if (INSN_UID (insn) > i)
563 i = INSN_UID (insn);
565 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
566 max_uid_cuid = i;
568 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
570 /* Don't use reg_nonzero_bits when computing it. This can cause problems
571 when, for example, we have j <<= 1 in a loop. */
573 nonzero_sign_valid = 0;
575 /* Compute the mapping from uids to cuids.
576 Cuids are numbers assigned to insns, like uids,
577 except that cuids increase monotonically through the code.
579 Scan all SETs and see if we can deduce anything about what
580 bits are known to be zero for some registers and how many copies
581 of the sign bit are known to exist for those registers.
583 Also set any known values so that we can use it while searching
584 for what bits are known to be set. */
586 label_tick = 1;
588 setup_incoming_promotions ();
590 refresh_blocks = sbitmap_alloc (last_basic_block);
591 sbitmap_zero (refresh_blocks);
593 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
595 uid_cuid[INSN_UID (insn)] = ++i;
596 subst_low_cuid = i;
597 subst_insn = insn;
599 if (INSN_P (insn))
601 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
602 NULL);
603 record_dead_and_set_regs (insn);
605 #ifdef AUTO_INC_DEC
606 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
607 if (REG_NOTE_KIND (links) == REG_INC)
608 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
609 NULL);
610 #endif
613 if (GET_CODE (insn) == CODE_LABEL)
614 label_tick++;
617 nonzero_sign_valid = 1;
619 /* Now scan all the insns in forward order. */
621 label_tick = 1;
622 last_call_cuid = 0;
623 mem_last_set = 0;
624 init_reg_last_arrays ();
625 setup_incoming_promotions ();
627 FOR_EACH_BB (this_basic_block)
629 for (insn = this_basic_block->head;
630 insn != NEXT_INSN (this_basic_block->end);
631 insn = next ? next : NEXT_INSN (insn))
633 next = 0;
635 if (GET_CODE (insn) == CODE_LABEL)
636 label_tick++;
638 else if (INSN_P (insn))
640 /* See if we know about function return values before this
641 insn based upon SUBREG flags. */
642 check_promoted_subreg (insn, PATTERN (insn));
644 /* Try this insn with each insn it links back to. */
646 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
647 if ((next = try_combine (insn, XEXP (links, 0),
648 NULL_RTX, &new_direct_jump_p)) != 0)
649 goto retry;
651 /* Try each sequence of three linked insns ending with this one. */
653 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
655 rtx link = XEXP (links, 0);
657 /* If the linked insn has been replaced by a note, then there
658 is no point in pursuing this chain any further. */
659 if (GET_CODE (link) == NOTE)
660 continue;
662 for (nextlinks = LOG_LINKS (link);
663 nextlinks;
664 nextlinks = XEXP (nextlinks, 1))
665 if ((next = try_combine (insn, link,
666 XEXP (nextlinks, 0),
667 &new_direct_jump_p)) != 0)
668 goto retry;
671 #ifdef HAVE_cc0
672 /* Try to combine a jump insn that uses CC0
673 with a preceding insn that sets CC0, and maybe with its
674 logical predecessor as well.
675 This is how we make decrement-and-branch insns.
676 We need this special code because data flow connections
677 via CC0 do not get entered in LOG_LINKS. */
679 if (GET_CODE (insn) == JUMP_INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev)))
684 if ((next = try_combine (insn, prev,
685 NULL_RTX, &new_direct_jump_p)) != 0)
686 goto retry;
688 for (nextlinks = LOG_LINKS (prev); nextlinks;
689 nextlinks = XEXP (nextlinks, 1))
690 if ((next = try_combine (insn, prev,
691 XEXP (nextlinks, 0),
692 &new_direct_jump_p)) != 0)
693 goto retry;
696 /* Do the same for an insn that explicitly references CC0. */
697 if (GET_CODE (insn) == INSN
698 && (prev = prev_nonnote_insn (insn)) != 0
699 && GET_CODE (prev) == INSN
700 && sets_cc0_p (PATTERN (prev))
701 && GET_CODE (PATTERN (insn)) == SET
702 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
704 if ((next = try_combine (insn, prev,
705 NULL_RTX, &new_direct_jump_p)) != 0)
706 goto retry;
708 for (nextlinks = LOG_LINKS (prev); nextlinks;
709 nextlinks = XEXP (nextlinks, 1))
710 if ((next = try_combine (insn, prev,
711 XEXP (nextlinks, 0),
712 &new_direct_jump_p)) != 0)
713 goto retry;
716 /* Finally, see if any of the insns that this insn links to
717 explicitly references CC0. If so, try this insn, that insn,
718 and its predecessor if it sets CC0. */
719 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
720 if (GET_CODE (XEXP (links, 0)) == INSN
721 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
722 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
723 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
724 && GET_CODE (prev) == INSN
725 && sets_cc0_p (PATTERN (prev))
726 && (next = try_combine (insn, XEXP (links, 0),
727 prev, &new_direct_jump_p)) != 0)
728 goto retry;
729 #endif
731 /* Try combining an insn with two different insns whose results it
732 uses. */
733 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
734 for (nextlinks = XEXP (links, 1); nextlinks;
735 nextlinks = XEXP (nextlinks, 1))
736 if ((next = try_combine (insn, XEXP (links, 0),
737 XEXP (nextlinks, 0),
738 &new_direct_jump_p)) != 0)
739 goto retry;
741 if (GET_CODE (insn) != NOTE)
742 record_dead_and_set_regs (insn);
744 retry:
749 clear_bb_flags ();
751 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
752 BASIC_BLOCK (i)->flags |= BB_DIRTY);
753 new_direct_jump_p |= purge_all_dead_edges (0);
754 delete_noop_moves (f);
756 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
757 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
758 | PROP_KILL_DEAD_CODE);
760 /* Clean up. */
761 sbitmap_free (refresh_blocks);
762 free (reg_nonzero_bits);
763 free (reg_sign_bit_copies);
764 free (reg_last_death);
765 free (reg_last_set);
766 free (reg_last_set_value);
767 free (reg_last_set_table_tick);
768 free (reg_last_set_label);
769 free (reg_last_set_invalid);
770 free (reg_last_set_mode);
771 free (reg_last_set_nonzero_bits);
772 free (reg_last_set_sign_bit_copies);
773 free (uid_cuid);
776 struct undo *undo, *next;
777 for (undo = undobuf.frees; undo; undo = next)
779 next = undo->next;
780 free (undo);
782 undobuf.frees = 0;
785 total_attempts += combine_attempts;
786 total_merges += combine_merges;
787 total_extras += combine_extras;
788 total_successes += combine_successes;
790 nonzero_sign_valid = 0;
792 /* Make recognizer allow volatile MEMs again. */
793 init_recog ();
795 return new_direct_jump_p;
798 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
800 static void
801 init_reg_last_arrays ()
803 unsigned int nregs = combine_max_regno;
805 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
806 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
807 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
808 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
809 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
810 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
811 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
812 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
813 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
816 /* Set up any promoted values for incoming argument registers. */
818 static void
819 setup_incoming_promotions ()
821 #ifdef PROMOTE_FUNCTION_ARGS
822 unsigned int regno;
823 rtx reg;
824 enum machine_mode mode;
825 int unsignedp;
826 rtx first = get_insns ();
828 #ifndef OUTGOING_REGNO
829 #define OUTGOING_REGNO(N) N
830 #endif
831 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
832 /* Check whether this register can hold an incoming pointer
833 argument. FUNCTION_ARG_REGNO_P tests outgoing register
834 numbers, so translate if necessary due to register windows. */
835 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
836 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
838 record_value_for_reg
839 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
840 : SIGN_EXTEND),
841 GET_MODE (reg),
842 gen_rtx_CLOBBER (mode, const0_rtx)));
844 #endif
847 /* Called via note_stores. If X is a pseudo that is narrower than
848 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
850 If we are setting only a portion of X and we can't figure out what
851 portion, assume all bits will be used since we don't know what will
852 be happening.
854 Similarly, set how many bits of X are known to be copies of the sign bit
855 at all locations in the function. This is the smallest number implied
856 by any set of X. */
858 static void
859 set_nonzero_bits_and_sign_copies (x, set, data)
860 rtx x;
861 rtx set;
862 void *data ATTRIBUTE_UNUSED;
864 unsigned int num;
866 if (GET_CODE (x) == REG
867 && REGNO (x) >= FIRST_PSEUDO_REGISTER
868 /* If this register is undefined at the start of the file, we can't
869 say what its contents were. */
870 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
871 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
873 if (set == 0 || GET_CODE (set) == CLOBBER)
875 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
876 reg_sign_bit_copies[REGNO (x)] = 1;
877 return;
880 /* If this is a complex assignment, see if we can convert it into a
881 simple assignment. */
882 set = expand_field_assignment (set);
884 /* If this is a simple assignment, or we have a paradoxical SUBREG,
885 set what we know about X. */
887 if (SET_DEST (set) == x
888 || (GET_CODE (SET_DEST (set)) == SUBREG
889 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
890 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
891 && SUBREG_REG (SET_DEST (set)) == x))
893 rtx src = SET_SRC (set);
895 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
896 /* If X is narrower than a word and SRC is a non-negative
897 constant that would appear negative in the mode of X,
898 sign-extend it for use in reg_nonzero_bits because some
899 machines (maybe most) will actually do the sign-extension
900 and this is the conservative approach.
902 ??? For 2.5, try to tighten up the MD files in this regard
903 instead of this kludge. */
905 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
906 && GET_CODE (src) == CONST_INT
907 && INTVAL (src) > 0
908 && 0 != (INTVAL (src)
909 & ((HOST_WIDE_INT) 1
910 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
911 src = GEN_INT (INTVAL (src)
912 | ((HOST_WIDE_INT) (-1)
913 << GET_MODE_BITSIZE (GET_MODE (x))));
914 #endif
916 /* Don't call nonzero_bits if it cannot change anything. */
917 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
918 reg_nonzero_bits[REGNO (x)]
919 |= nonzero_bits (src, nonzero_bits_mode);
920 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
921 if (reg_sign_bit_copies[REGNO (x)] == 0
922 || reg_sign_bit_copies[REGNO (x)] > num)
923 reg_sign_bit_copies[REGNO (x)] = num;
925 else
927 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
928 reg_sign_bit_copies[REGNO (x)] = 1;
933 /* See if INSN can be combined into I3. PRED and SUCC are optionally
934 insns that were previously combined into I3 or that will be combined
935 into the merger of INSN and I3.
937 Return 0 if the combination is not allowed for any reason.
939 If the combination is allowed, *PDEST will be set to the single
940 destination of INSN and *PSRC to the single source, and this function
941 will return 1. */
943 static int
944 can_combine_p (insn, i3, pred, succ, pdest, psrc)
945 rtx insn;
946 rtx i3;
947 rtx pred ATTRIBUTE_UNUSED;
948 rtx succ;
949 rtx *pdest, *psrc;
951 int i;
952 rtx set = 0, src, dest;
953 rtx p;
954 #ifdef AUTO_INC_DEC
955 rtx link;
956 #endif
957 int all_adjacent = (succ ? (next_active_insn (insn) == succ
958 && next_active_insn (succ) == i3)
959 : next_active_insn (insn) == i3);
961 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
962 or a PARALLEL consisting of such a SET and CLOBBERs.
964 If INSN has CLOBBER parallel parts, ignore them for our processing.
965 By definition, these happen during the execution of the insn. When it
966 is merged with another insn, all bets are off. If they are, in fact,
967 needed and aren't also supplied in I3, they may be added by
968 recog_for_combine. Otherwise, it won't match.
970 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
971 note.
973 Get the source and destination of INSN. If more than one, can't
974 combine. */
976 if (GET_CODE (PATTERN (insn)) == SET)
977 set = PATTERN (insn);
978 else if (GET_CODE (PATTERN (insn)) == PARALLEL
979 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
981 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
983 rtx elt = XVECEXP (PATTERN (insn), 0, i);
985 switch (GET_CODE (elt))
987 /* This is important to combine floating point insns
988 for the SH4 port. */
989 case USE:
990 /* Combining an isolated USE doesn't make sense.
991 We depend here on combinable_i3pat to reject them. */
992 /* The code below this loop only verifies that the inputs of
993 the SET in INSN do not change. We call reg_set_between_p
994 to verify that the REG in the USE does not change between
995 I3 and INSN.
996 If the USE in INSN was for a pseudo register, the matching
997 insn pattern will likely match any register; combining this
998 with any other USE would only be safe if we knew that the
999 used registers have identical values, or if there was
1000 something to tell them apart, e.g. different modes. For
1001 now, we forgo such complicated tests and simply disallow
1002 combining of USES of pseudo registers with any other USE. */
1003 if (GET_CODE (XEXP (elt, 0)) == REG
1004 && GET_CODE (PATTERN (i3)) == PARALLEL)
1006 rtx i3pat = PATTERN (i3);
1007 int i = XVECLEN (i3pat, 0) - 1;
1008 unsigned int regno = REGNO (XEXP (elt, 0));
1012 rtx i3elt = XVECEXP (i3pat, 0, i);
1014 if (GET_CODE (i3elt) == USE
1015 && GET_CODE (XEXP (i3elt, 0)) == REG
1016 && (REGNO (XEXP (i3elt, 0)) == regno
1017 ? reg_set_between_p (XEXP (elt, 0),
1018 PREV_INSN (insn), i3)
1019 : regno >= FIRST_PSEUDO_REGISTER))
1020 return 0;
1022 while (--i >= 0);
1024 break;
1026 /* We can ignore CLOBBERs. */
1027 case CLOBBER:
1028 break;
1030 case SET:
1031 /* Ignore SETs whose result isn't used but not those that
1032 have side-effects. */
1033 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1034 && ! side_effects_p (elt))
1035 break;
1037 /* If we have already found a SET, this is a second one and
1038 so we cannot combine with this insn. */
1039 if (set)
1040 return 0;
1042 set = elt;
1043 break;
1045 default:
1046 /* Anything else means we can't combine. */
1047 return 0;
1051 if (set == 0
1052 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1053 so don't do anything with it. */
1054 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1055 return 0;
1057 else
1058 return 0;
1060 if (set == 0)
1061 return 0;
1063 set = expand_field_assignment (set);
1064 src = SET_SRC (set), dest = SET_DEST (set);
1066 /* Don't eliminate a store in the stack pointer. */
1067 if (dest == stack_pointer_rtx
1068 /* If we couldn't eliminate a field assignment, we can't combine. */
1069 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1070 /* Don't combine with an insn that sets a register to itself if it has
1071 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1072 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1073 /* Can't merge an ASM_OPERANDS. */
1074 || GET_CODE (src) == ASM_OPERANDS
1075 /* Can't merge a function call. */
1076 || GET_CODE (src) == CALL
1077 /* Don't eliminate a function call argument. */
1078 || (GET_CODE (i3) == CALL_INSN
1079 && (find_reg_fusage (i3, USE, dest)
1080 || (GET_CODE (dest) == REG
1081 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1082 && global_regs[REGNO (dest)])))
1083 /* Don't substitute into an incremented register. */
1084 || FIND_REG_INC_NOTE (i3, dest)
1085 || (succ && FIND_REG_INC_NOTE (succ, dest))
1086 #if 0
1087 /* Don't combine the end of a libcall into anything. */
1088 /* ??? This gives worse code, and appears to be unnecessary, since no
1089 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1090 use REG_RETVAL notes for noconflict blocks, but other code here
1091 makes sure that those insns don't disappear. */
1092 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1093 #endif
1094 /* Make sure that DEST is not used after SUCC but before I3. */
1095 || (succ && ! all_adjacent
1096 && reg_used_between_p (dest, succ, i3))
1097 /* Make sure that the value that is to be substituted for the register
1098 does not use any registers whose values alter in between. However,
1099 If the insns are adjacent, a use can't cross a set even though we
1100 think it might (this can happen for a sequence of insns each setting
1101 the same destination; reg_last_set of that register might point to
1102 a NOTE). If INSN has a REG_EQUIV note, the register is always
1103 equivalent to the memory so the substitution is valid even if there
1104 are intervening stores. Also, don't move a volatile asm or
1105 UNSPEC_VOLATILE across any other insns. */
1106 || (! all_adjacent
1107 && (((GET_CODE (src) != MEM
1108 || ! find_reg_note (insn, REG_EQUIV, src))
1109 && use_crosses_set_p (src, INSN_CUID (insn)))
1110 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1111 || GET_CODE (src) == UNSPEC_VOLATILE))
1112 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1113 better register allocation by not doing the combine. */
1114 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1115 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1116 /* Don't combine across a CALL_INSN, because that would possibly
1117 change whether the life span of some REGs crosses calls or not,
1118 and it is a pain to update that information.
1119 Exception: if source is a constant, moving it later can't hurt.
1120 Accept that special case, because it helps -fforce-addr a lot. */
1121 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1122 return 0;
1124 /* DEST must either be a REG or CC0. */
1125 if (GET_CODE (dest) == REG)
1127 /* If register alignment is being enforced for multi-word items in all
1128 cases except for parameters, it is possible to have a register copy
1129 insn referencing a hard register that is not allowed to contain the
1130 mode being copied and which would not be valid as an operand of most
1131 insns. Eliminate this problem by not combining with such an insn.
1133 Also, on some machines we don't want to extend the life of a hard
1134 register. */
1136 if (GET_CODE (src) == REG
1137 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1138 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1139 /* Don't extend the life of a hard register unless it is
1140 user variable (if we have few registers) or it can't
1141 fit into the desired register (meaning something special
1142 is going on).
1143 Also avoid substituting a return register into I3, because
1144 reload can't handle a conflict with constraints of other
1145 inputs. */
1146 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1147 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1148 return 0;
1150 else if (GET_CODE (dest) != CC0)
1151 return 0;
1153 /* Don't substitute for a register intended as a clobberable operand.
1154 Similarly, don't substitute an expression containing a register that
1155 will be clobbered in I3. */
1156 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1157 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1158 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1159 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1160 src)
1161 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1162 return 0;
1164 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1165 or not), reject, unless nothing volatile comes between it and I3 */
1167 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1169 /* Make sure succ doesn't contain a volatile reference. */
1170 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1171 return 0;
1173 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1174 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1175 return 0;
1178 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1179 to be an explicit register variable, and was chosen for a reason. */
1181 if (GET_CODE (src) == ASM_OPERANDS
1182 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1183 return 0;
1185 /* If there are any volatile insns between INSN and I3, reject, because
1186 they might affect machine state. */
1188 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1189 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1190 return 0;
1192 /* If INSN or I2 contains an autoincrement or autodecrement,
1193 make sure that register is not used between there and I3,
1194 and not already used in I3 either.
1195 Also insist that I3 not be a jump; if it were one
1196 and the incremented register were spilled, we would lose. */
1198 #ifdef AUTO_INC_DEC
1199 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1200 if (REG_NOTE_KIND (link) == REG_INC
1201 && (GET_CODE (i3) == JUMP_INSN
1202 || reg_used_between_p (XEXP (link, 0), insn, i3)
1203 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1204 return 0;
1205 #endif
1207 #ifdef HAVE_cc0
1208 /* Don't combine an insn that follows a CC0-setting insn.
1209 An insn that uses CC0 must not be separated from the one that sets it.
1210 We do, however, allow I2 to follow a CC0-setting insn if that insn
1211 is passed as I1; in that case it will be deleted also.
1212 We also allow combining in this case if all the insns are adjacent
1213 because that would leave the two CC0 insns adjacent as well.
1214 It would be more logical to test whether CC0 occurs inside I1 or I2,
1215 but that would be much slower, and this ought to be equivalent. */
1217 p = prev_nonnote_insn (insn);
1218 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1219 && ! all_adjacent)
1220 return 0;
1221 #endif
1223 /* If we get here, we have passed all the tests and the combination is
1224 to be allowed. */
1226 *pdest = dest;
1227 *psrc = src;
1229 return 1;
1232 /* Check if PAT is an insn - or a part of it - used to set up an
1233 argument for a function in a hard register. */
1235 static int
1236 sets_function_arg_p (pat)
1237 rtx pat;
1239 int i;
1240 rtx inner_dest;
1242 switch (GET_CODE (pat))
1244 case INSN:
1245 return sets_function_arg_p (PATTERN (pat));
1247 case PARALLEL:
1248 for (i = XVECLEN (pat, 0); --i >= 0;)
1249 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1250 return 1;
1252 break;
1254 case SET:
1255 inner_dest = SET_DEST (pat);
1256 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1257 || GET_CODE (inner_dest) == SUBREG
1258 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1259 inner_dest = XEXP (inner_dest, 0);
1261 return (GET_CODE (inner_dest) == REG
1262 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1263 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1265 default:
1266 break;
1269 return 0;
1272 /* LOC is the location within I3 that contains its pattern or the component
1273 of a PARALLEL of the pattern. We validate that it is valid for combining.
1275 One problem is if I3 modifies its output, as opposed to replacing it
1276 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1277 so would produce an insn that is not equivalent to the original insns.
1279 Consider:
1281 (set (reg:DI 101) (reg:DI 100))
1282 (set (subreg:SI (reg:DI 101) 0) <foo>)
1284 This is NOT equivalent to:
1286 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1287 (set (reg:DI 101) (reg:DI 100))])
1289 Not only does this modify 100 (in which case it might still be valid
1290 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1292 We can also run into a problem if I2 sets a register that I1
1293 uses and I1 gets directly substituted into I3 (not via I2). In that
1294 case, we would be getting the wrong value of I2DEST into I3, so we
1295 must reject the combination. This case occurs when I2 and I1 both
1296 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1297 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1298 of a SET must prevent combination from occurring.
1300 Before doing the above check, we first try to expand a field assignment
1301 into a set of logical operations.
1303 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1304 we place a register that is both set and used within I3. If more than one
1305 such register is detected, we fail.
1307 Return 1 if the combination is valid, zero otherwise. */
1309 static int
1310 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1311 rtx i3;
1312 rtx *loc;
1313 rtx i2dest;
1314 rtx i1dest;
1315 int i1_not_in_src;
1316 rtx *pi3dest_killed;
1318 rtx x = *loc;
1320 if (GET_CODE (x) == SET)
1322 rtx set = expand_field_assignment (x);
1323 rtx dest = SET_DEST (set);
1324 rtx src = SET_SRC (set);
1325 rtx inner_dest = dest;
1327 #if 0
1328 rtx inner_src = src;
1329 #endif
1331 SUBST (*loc, set);
1333 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1334 || GET_CODE (inner_dest) == SUBREG
1335 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1336 inner_dest = XEXP (inner_dest, 0);
1338 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1339 was added. */
1340 #if 0
1341 while (GET_CODE (inner_src) == STRICT_LOW_PART
1342 || GET_CODE (inner_src) == SUBREG
1343 || GET_CODE (inner_src) == ZERO_EXTRACT)
1344 inner_src = XEXP (inner_src, 0);
1346 /* If it is better that two different modes keep two different pseudos,
1347 avoid combining them. This avoids producing the following pattern
1348 on a 386:
1349 (set (subreg:SI (reg/v:QI 21) 0)
1350 (lshiftrt:SI (reg/v:SI 20)
1351 (const_int 24)))
1352 If that were made, reload could not handle the pair of
1353 reg 20/21, since it would try to get any GENERAL_REGS
1354 but some of them don't handle QImode. */
1356 if (rtx_equal_p (inner_src, i2dest)
1357 && GET_CODE (inner_dest) == REG
1358 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1359 return 0;
1360 #endif
1362 /* Check for the case where I3 modifies its output, as
1363 discussed above. */
1364 if ((inner_dest != dest
1365 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1366 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1368 /* This is the same test done in can_combine_p except we can't test
1369 all_adjacent; we don't have to, since this instruction will stay
1370 in place, thus we are not considering increasing the lifetime of
1371 INNER_DEST.
1373 Also, if this insn sets a function argument, combining it with
1374 something that might need a spill could clobber a previous
1375 function argument; the all_adjacent test in can_combine_p also
1376 checks this; here, we do a more specific test for this case. */
1378 || (GET_CODE (inner_dest) == REG
1379 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1380 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1381 GET_MODE (inner_dest))))
1382 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1383 return 0;
1385 /* If DEST is used in I3, it is being killed in this insn,
1386 so record that for later.
1387 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1388 STACK_POINTER_REGNUM, since these are always considered to be
1389 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1390 if (pi3dest_killed && GET_CODE (dest) == REG
1391 && reg_referenced_p (dest, PATTERN (i3))
1392 && REGNO (dest) != FRAME_POINTER_REGNUM
1393 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1394 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1395 #endif
1396 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1397 && (REGNO (dest) != ARG_POINTER_REGNUM
1398 || ! fixed_regs [REGNO (dest)])
1399 #endif
1400 && REGNO (dest) != STACK_POINTER_REGNUM)
1402 if (*pi3dest_killed)
1403 return 0;
1405 *pi3dest_killed = dest;
1409 else if (GET_CODE (x) == PARALLEL)
1411 int i;
1413 for (i = 0; i < XVECLEN (x, 0); i++)
1414 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1415 i1_not_in_src, pi3dest_killed))
1416 return 0;
1419 return 1;
1422 /* Return 1 if X is an arithmetic expression that contains a multiplication
1423 and division. We don't count multiplications by powers of two here. */
1425 static int
1426 contains_muldiv (x)
1427 rtx x;
1429 switch (GET_CODE (x))
1431 case MOD: case DIV: case UMOD: case UDIV:
1432 return 1;
1434 case MULT:
1435 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1436 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1437 default:
1438 switch (GET_RTX_CLASS (GET_CODE (x)))
1440 case 'c': case '<': case '2':
1441 return contains_muldiv (XEXP (x, 0))
1442 || contains_muldiv (XEXP (x, 1));
1444 case '1':
1445 return contains_muldiv (XEXP (x, 0));
1447 default:
1448 return 0;
1453 /* Determine whether INSN can be used in a combination. Return nonzero if
1454 not. This is used in try_combine to detect early some cases where we
1455 can't perform combinations. */
1457 static int
1458 cant_combine_insn_p (insn)
1459 rtx insn;
1461 rtx set;
1462 rtx src, dest;
1464 /* If this isn't really an insn, we can't do anything.
1465 This can occur when flow deletes an insn that it has merged into an
1466 auto-increment address. */
1467 if (! INSN_P (insn))
1468 return 1;
1470 /* Never combine loads and stores involving hard regs. The register
1471 allocator can usually handle such reg-reg moves by tying. If we allow
1472 the combiner to make substitutions of hard regs, we risk aborting in
1473 reload on machines that have SMALL_REGISTER_CLASSES.
1474 As an exception, we allow combinations involving fixed regs; these are
1475 not available to the register allocator so there's no risk involved. */
1477 set = single_set (insn);
1478 if (! set)
1479 return 0;
1480 src = SET_SRC (set);
1481 dest = SET_DEST (set);
1482 if (GET_CODE (src) == SUBREG)
1483 src = SUBREG_REG (src);
1484 if (GET_CODE (dest) == SUBREG)
1485 dest = SUBREG_REG (dest);
1486 if (REG_P (src) && REG_P (dest)
1487 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1488 && ! fixed_regs[REGNO (src)])
1489 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1490 && ! fixed_regs[REGNO (dest)])))
1491 return 1;
1493 return 0;
1496 /* Try to combine the insns I1 and I2 into I3.
1497 Here I1 and I2 appear earlier than I3.
1498 I1 can be zero; then we combine just I2 into I3.
1500 If we are combining three insns and the resulting insn is not recognized,
1501 try splitting it into two insns. If that happens, I2 and I3 are retained
1502 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1503 are pseudo-deleted.
1505 Return 0 if the combination does not work. Then nothing is changed.
1506 If we did the combination, return the insn at which combine should
1507 resume scanning.
1509 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1510 new direct jump instruction. */
1512 static rtx
1513 try_combine (i3, i2, i1, new_direct_jump_p)
1514 rtx i3, i2, i1;
1515 int *new_direct_jump_p;
1517 /* New patterns for I3 and I2, respectively. */
1518 rtx newpat, newi2pat = 0;
1519 int substed_i2 = 0, substed_i1 = 0;
1520 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1521 int added_sets_1, added_sets_2;
1522 /* Total number of SETs to put into I3. */
1523 int total_sets;
1524 /* Nonzero is I2's body now appears in I3. */
1525 int i2_is_used;
1526 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1527 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1528 /* Contains I3 if the destination of I3 is used in its source, which means
1529 that the old life of I3 is being killed. If that usage is placed into
1530 I2 and not in I3, a REG_DEAD note must be made. */
1531 rtx i3dest_killed = 0;
1532 /* SET_DEST and SET_SRC of I2 and I1. */
1533 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1534 /* PATTERN (I2), or a copy of it in certain cases. */
1535 rtx i2pat;
1536 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1537 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1538 int i1_feeds_i3 = 0;
1539 /* Notes that must be added to REG_NOTES in I3 and I2. */
1540 rtx new_i3_notes, new_i2_notes;
1541 /* Notes that we substituted I3 into I2 instead of the normal case. */
1542 int i3_subst_into_i2 = 0;
1543 /* Notes that I1, I2 or I3 is a MULT operation. */
1544 int have_mult = 0;
1546 int maxreg;
1547 rtx temp;
1548 rtx link;
1549 int i;
1551 /* Exit early if one of the insns involved can't be used for
1552 combinations. */
1553 if (cant_combine_insn_p (i3)
1554 || cant_combine_insn_p (i2)
1555 || (i1 && cant_combine_insn_p (i1))
1556 /* We also can't do anything if I3 has a
1557 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1558 libcall. */
1559 #if 0
1560 /* ??? This gives worse code, and appears to be unnecessary, since no
1561 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1562 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1563 #endif
1565 return 0;
1567 combine_attempts++;
1568 undobuf.other_insn = 0;
1570 /* Reset the hard register usage information. */
1571 CLEAR_HARD_REG_SET (newpat_used_regs);
1573 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1574 code below, set I1 to be the earlier of the two insns. */
1575 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1576 temp = i1, i1 = i2, i2 = temp;
1578 added_links_insn = 0;
1580 /* First check for one important special-case that the code below will
1581 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1582 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1583 we may be able to replace that destination with the destination of I3.
1584 This occurs in the common code where we compute both a quotient and
1585 remainder into a structure, in which case we want to do the computation
1586 directly into the structure to avoid register-register copies.
1588 Note that this case handles both multiple sets in I2 and also
1589 cases where I2 has a number of CLOBBER or PARALLELs.
1591 We make very conservative checks below and only try to handle the
1592 most common cases of this. For example, we only handle the case
1593 where I2 and I3 are adjacent to avoid making difficult register
1594 usage tests. */
1596 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1597 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1598 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1599 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1600 && GET_CODE (PATTERN (i2)) == PARALLEL
1601 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1602 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1603 below would need to check what is inside (and reg_overlap_mentioned_p
1604 doesn't support those codes anyway). Don't allow those destinations;
1605 the resulting insn isn't likely to be recognized anyway. */
1606 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1607 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1608 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1609 SET_DEST (PATTERN (i3)))
1610 && next_real_insn (i2) == i3)
1612 rtx p2 = PATTERN (i2);
1614 /* Make sure that the destination of I3,
1615 which we are going to substitute into one output of I2,
1616 is not used within another output of I2. We must avoid making this:
1617 (parallel [(set (mem (reg 69)) ...)
1618 (set (reg 69) ...)])
1619 which is not well-defined as to order of actions.
1620 (Besides, reload can't handle output reloads for this.)
1622 The problem can also happen if the dest of I3 is a memory ref,
1623 if another dest in I2 is an indirect memory ref. */
1624 for (i = 0; i < XVECLEN (p2, 0); i++)
1625 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1626 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1627 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1628 SET_DEST (XVECEXP (p2, 0, i))))
1629 break;
1631 if (i == XVECLEN (p2, 0))
1632 for (i = 0; i < XVECLEN (p2, 0); i++)
1633 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1634 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1635 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1637 combine_merges++;
1639 subst_insn = i3;
1640 subst_low_cuid = INSN_CUID (i2);
1642 added_sets_2 = added_sets_1 = 0;
1643 i2dest = SET_SRC (PATTERN (i3));
1645 /* Replace the dest in I2 with our dest and make the resulting
1646 insn the new pattern for I3. Then skip to where we
1647 validate the pattern. Everything was set up above. */
1648 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1649 SET_DEST (PATTERN (i3)));
1651 newpat = p2;
1652 i3_subst_into_i2 = 1;
1653 goto validate_replacement;
1657 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1658 one of those words to another constant, merge them by making a new
1659 constant. */
1660 if (i1 == 0
1661 && (temp = single_set (i2)) != 0
1662 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1663 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1664 && GET_CODE (SET_DEST (temp)) == REG
1665 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1666 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1667 && GET_CODE (PATTERN (i3)) == SET
1668 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1669 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1670 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1671 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1672 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1674 HOST_WIDE_INT lo, hi;
1676 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1677 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1678 else
1680 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1681 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1684 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1686 /* We don't handle the case of the target word being wider
1687 than a host wide int. */
1688 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1689 abort ();
1691 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1692 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1693 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1696 hi = INTVAL (SET_SRC (PATTERN (i3)));
1697 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1699 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1700 >> (HOST_BITS_PER_WIDE_INT - 1));
1702 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1703 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1704 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1705 (INTVAL (SET_SRC (PATTERN (i3)))));
1706 if (hi == sign)
1707 hi = lo < 0 ? -1 : 0;
1709 else
1710 /* We don't handle the case of the higher word not fitting
1711 entirely in either hi or lo. */
1712 abort ();
1714 combine_merges++;
1715 subst_insn = i3;
1716 subst_low_cuid = INSN_CUID (i2);
1717 added_sets_2 = added_sets_1 = 0;
1718 i2dest = SET_DEST (temp);
1720 SUBST (SET_SRC (temp),
1721 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1723 newpat = PATTERN (i2);
1724 goto validate_replacement;
1727 #ifndef HAVE_cc0
1728 /* If we have no I1 and I2 looks like:
1729 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1730 (set Y OP)])
1731 make up a dummy I1 that is
1732 (set Y OP)
1733 and change I2 to be
1734 (set (reg:CC X) (compare:CC Y (const_int 0)))
1736 (We can ignore any trailing CLOBBERs.)
1738 This undoes a previous combination and allows us to match a branch-and-
1739 decrement insn. */
1741 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1742 && XVECLEN (PATTERN (i2), 0) >= 2
1743 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1744 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1745 == MODE_CC)
1746 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1747 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1748 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1749 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1750 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1751 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1753 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1754 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1755 break;
1757 if (i == 1)
1759 /* We make I1 with the same INSN_UID as I2. This gives it
1760 the same INSN_CUID for value tracking. Our fake I1 will
1761 never appear in the insn stream so giving it the same INSN_UID
1762 as I2 will not cause a problem. */
1764 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1765 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1766 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1767 NULL_RTX);
1769 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1770 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1771 SET_DEST (PATTERN (i1)));
1774 #endif
1776 /* Verify that I2 and I1 are valid for combining. */
1777 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1778 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1780 undo_all ();
1781 return 0;
1784 /* Record whether I2DEST is used in I2SRC and similarly for the other
1785 cases. Knowing this will help in register status updating below. */
1786 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1787 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1788 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1790 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1791 in I2SRC. */
1792 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1794 /* Ensure that I3's pattern can be the destination of combines. */
1795 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1796 i1 && i2dest_in_i1src && i1_feeds_i3,
1797 &i3dest_killed))
1799 undo_all ();
1800 return 0;
1803 /* See if any of the insns is a MULT operation. Unless one is, we will
1804 reject a combination that is, since it must be slower. Be conservative
1805 here. */
1806 if (GET_CODE (i2src) == MULT
1807 || (i1 != 0 && GET_CODE (i1src) == MULT)
1808 || (GET_CODE (PATTERN (i3)) == SET
1809 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1810 have_mult = 1;
1812 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1813 We used to do this EXCEPT in one case: I3 has a post-inc in an
1814 output operand. However, that exception can give rise to insns like
1815 mov r3,(r3)+
1816 which is a famous insn on the PDP-11 where the value of r3 used as the
1817 source was model-dependent. Avoid this sort of thing. */
1819 #if 0
1820 if (!(GET_CODE (PATTERN (i3)) == SET
1821 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1822 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1823 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1824 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1825 /* It's not the exception. */
1826 #endif
1827 #ifdef AUTO_INC_DEC
1828 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1829 if (REG_NOTE_KIND (link) == REG_INC
1830 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1831 || (i1 != 0
1832 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1834 undo_all ();
1835 return 0;
1837 #endif
1839 /* See if the SETs in I1 or I2 need to be kept around in the merged
1840 instruction: whenever the value set there is still needed past I3.
1841 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1843 For the SET in I1, we have two cases: If I1 and I2 independently
1844 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1845 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1846 in I1 needs to be kept around unless I1DEST dies or is set in either
1847 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1848 I1DEST. If so, we know I1 feeds into I2. */
1850 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1852 added_sets_1
1853 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1854 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1856 /* If the set in I2 needs to be kept around, we must make a copy of
1857 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1858 PATTERN (I2), we are only substituting for the original I1DEST, not into
1859 an already-substituted copy. This also prevents making self-referential
1860 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1861 I2DEST. */
1863 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1864 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1865 : PATTERN (i2));
1867 if (added_sets_2)
1868 i2pat = copy_rtx (i2pat);
1870 combine_merges++;
1872 /* Substitute in the latest insn for the regs set by the earlier ones. */
1874 maxreg = max_reg_num ();
1876 subst_insn = i3;
1878 /* It is possible that the source of I2 or I1 may be performing an
1879 unneeded operation, such as a ZERO_EXTEND of something that is known
1880 to have the high part zero. Handle that case by letting subst look at
1881 the innermost one of them.
1883 Another way to do this would be to have a function that tries to
1884 simplify a single insn instead of merging two or more insns. We don't
1885 do this because of the potential of infinite loops and because
1886 of the potential extra memory required. However, doing it the way
1887 we are is a bit of a kludge and doesn't catch all cases.
1889 But only do this if -fexpensive-optimizations since it slows things down
1890 and doesn't usually win. */
1892 if (flag_expensive_optimizations)
1894 /* Pass pc_rtx so no substitutions are done, just simplifications.
1895 The cases that we are interested in here do not involve the few
1896 cases were is_replaced is checked. */
1897 if (i1)
1899 subst_low_cuid = INSN_CUID (i1);
1900 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1902 else
1904 subst_low_cuid = INSN_CUID (i2);
1905 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1909 #ifndef HAVE_cc0
1910 /* Many machines that don't use CC0 have insns that can both perform an
1911 arithmetic operation and set the condition code. These operations will
1912 be represented as a PARALLEL with the first element of the vector
1913 being a COMPARE of an arithmetic operation with the constant zero.
1914 The second element of the vector will set some pseudo to the result
1915 of the same arithmetic operation. If we simplify the COMPARE, we won't
1916 match such a pattern and so will generate an extra insn. Here we test
1917 for this case, where both the comparison and the operation result are
1918 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1919 I2SRC. Later we will make the PARALLEL that contains I2. */
1921 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1922 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1923 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1924 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1926 #ifdef EXTRA_CC_MODES
1927 rtx *cc_use;
1928 enum machine_mode compare_mode;
1929 #endif
1931 newpat = PATTERN (i3);
1932 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1934 i2_is_used = 1;
1936 #ifdef EXTRA_CC_MODES
1937 /* See if a COMPARE with the operand we substituted in should be done
1938 with the mode that is currently being used. If not, do the same
1939 processing we do in `subst' for a SET; namely, if the destination
1940 is used only once, try to replace it with a register of the proper
1941 mode and also replace the COMPARE. */
1942 if (undobuf.other_insn == 0
1943 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1944 &undobuf.other_insn))
1945 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1946 i2src, const0_rtx))
1947 != GET_MODE (SET_DEST (newpat))))
1949 unsigned int regno = REGNO (SET_DEST (newpat));
1950 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1952 if (regno < FIRST_PSEUDO_REGISTER
1953 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1954 && ! REG_USERVAR_P (SET_DEST (newpat))))
1956 if (regno >= FIRST_PSEUDO_REGISTER)
1957 SUBST (regno_reg_rtx[regno], new_dest);
1959 SUBST (SET_DEST (newpat), new_dest);
1960 SUBST (XEXP (*cc_use, 0), new_dest);
1961 SUBST (SET_SRC (newpat),
1962 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1964 else
1965 undobuf.other_insn = 0;
1967 #endif
1969 else
1970 #endif
1972 n_occurrences = 0; /* `subst' counts here */
1974 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1975 need to make a unique copy of I2SRC each time we substitute it
1976 to avoid self-referential rtl. */
1978 subst_low_cuid = INSN_CUID (i2);
1979 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1980 ! i1_feeds_i3 && i1dest_in_i1src);
1981 substed_i2 = 1;
1983 /* Record whether i2's body now appears within i3's body. */
1984 i2_is_used = n_occurrences;
1987 /* If we already got a failure, don't try to do more. Otherwise,
1988 try to substitute in I1 if we have it. */
1990 if (i1 && GET_CODE (newpat) != CLOBBER)
1992 /* Before we can do this substitution, we must redo the test done
1993 above (see detailed comments there) that ensures that I1DEST
1994 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1996 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1997 0, (rtx*) 0))
1999 undo_all ();
2000 return 0;
2003 n_occurrences = 0;
2004 subst_low_cuid = INSN_CUID (i1);
2005 newpat = subst (newpat, i1dest, i1src, 0, 0);
2006 substed_i1 = 1;
2009 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2010 to count all the ways that I2SRC and I1SRC can be used. */
2011 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2012 && i2_is_used + added_sets_2 > 1)
2013 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2014 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2015 > 1))
2016 /* Fail if we tried to make a new register (we used to abort, but there's
2017 really no reason to). */
2018 || max_reg_num () != maxreg
2019 /* Fail if we couldn't do something and have a CLOBBER. */
2020 || GET_CODE (newpat) == CLOBBER
2021 /* Fail if this new pattern is a MULT and we didn't have one before
2022 at the outer level. */
2023 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2024 && ! have_mult))
2026 undo_all ();
2027 return 0;
2030 /* If the actions of the earlier insns must be kept
2031 in addition to substituting them into the latest one,
2032 we must make a new PARALLEL for the latest insn
2033 to hold additional the SETs. */
2035 if (added_sets_1 || added_sets_2)
2037 combine_extras++;
2039 if (GET_CODE (newpat) == PARALLEL)
2041 rtvec old = XVEC (newpat, 0);
2042 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2044 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2045 sizeof (old->elem[0]) * old->num_elem);
2047 else
2049 rtx old = newpat;
2050 total_sets = 1 + added_sets_1 + added_sets_2;
2051 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2052 XVECEXP (newpat, 0, 0) = old;
2055 if (added_sets_1)
2056 XVECEXP (newpat, 0, --total_sets)
2057 = (GET_CODE (PATTERN (i1)) == PARALLEL
2058 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2060 if (added_sets_2)
2062 /* If there is no I1, use I2's body as is. We used to also not do
2063 the subst call below if I2 was substituted into I3,
2064 but that could lose a simplification. */
2065 if (i1 == 0)
2066 XVECEXP (newpat, 0, --total_sets) = i2pat;
2067 else
2068 /* See comment where i2pat is assigned. */
2069 XVECEXP (newpat, 0, --total_sets)
2070 = subst (i2pat, i1dest, i1src, 0, 0);
2074 /* We come here when we are replacing a destination in I2 with the
2075 destination of I3. */
2076 validate_replacement:
2078 /* Note which hard regs this insn has as inputs. */
2079 mark_used_regs_combine (newpat);
2081 /* Is the result of combination a valid instruction? */
2082 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2084 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2085 the second SET's destination is a register that is unused. In that case,
2086 we just need the first SET. This can occur when simplifying a divmod
2087 insn. We *must* test for this case here because the code below that
2088 splits two independent SETs doesn't handle this case correctly when it
2089 updates the register status. Also check the case where the first
2090 SET's destination is unused. That would not cause incorrect code, but
2091 does cause an unneeded insn to remain. */
2093 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2094 && XVECLEN (newpat, 0) == 2
2095 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2096 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2097 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2098 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2099 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2100 && asm_noperands (newpat) < 0)
2102 newpat = XVECEXP (newpat, 0, 0);
2103 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2106 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2107 && XVECLEN (newpat, 0) == 2
2108 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2109 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2110 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2111 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2112 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2113 && asm_noperands (newpat) < 0)
2115 newpat = XVECEXP (newpat, 0, 1);
2116 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2119 /* If we were combining three insns and the result is a simple SET
2120 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2121 insns. There are two ways to do this. It can be split using a
2122 machine-specific method (like when you have an addition of a large
2123 constant) or by combine in the function find_split_point. */
2125 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2126 && asm_noperands (newpat) < 0)
2128 rtx m_split, *split;
2129 rtx ni2dest = i2dest;
2131 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2132 use I2DEST as a scratch register will help. In the latter case,
2133 convert I2DEST to the mode of the source of NEWPAT if we can. */
2135 m_split = split_insns (newpat, i3);
2137 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2138 inputs of NEWPAT. */
2140 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2141 possible to try that as a scratch reg. This would require adding
2142 more code to make it work though. */
2144 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2146 /* If I2DEST is a hard register or the only use of a pseudo,
2147 we can change its mode. */
2148 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2149 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2150 && GET_CODE (i2dest) == REG
2151 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2152 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2153 && ! REG_USERVAR_P (i2dest))))
2154 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2155 REGNO (i2dest));
2157 m_split = split_insns (gen_rtx_PARALLEL
2158 (VOIDmode,
2159 gen_rtvec (2, newpat,
2160 gen_rtx_CLOBBER (VOIDmode,
2161 ni2dest))),
2162 i3);
2163 /* If the split with the mode-changed register didn't work, try
2164 the original register. */
2165 if (! m_split && ni2dest != i2dest)
2167 ni2dest = i2dest;
2168 m_split = split_insns (gen_rtx_PARALLEL
2169 (VOIDmode,
2170 gen_rtvec (2, newpat,
2171 gen_rtx_CLOBBER (VOIDmode,
2172 i2dest))),
2173 i3);
2177 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2179 m_split = PATTERN (m_split);
2180 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2181 if (insn_code_number >= 0)
2182 newpat = m_split;
2184 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2185 && (next_real_insn (i2) == i3
2186 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2188 rtx i2set, i3set;
2189 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2190 newi2pat = PATTERN (m_split);
2192 i3set = single_set (NEXT_INSN (m_split));
2193 i2set = single_set (m_split);
2195 /* In case we changed the mode of I2DEST, replace it in the
2196 pseudo-register table here. We can't do it above in case this
2197 code doesn't get executed and we do a split the other way. */
2199 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2200 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2202 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2204 /* If I2 or I3 has multiple SETs, we won't know how to track
2205 register status, so don't use these insns. If I2's destination
2206 is used between I2 and I3, we also can't use these insns. */
2208 if (i2_code_number >= 0 && i2set && i3set
2209 && (next_real_insn (i2) == i3
2210 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2211 insn_code_number = recog_for_combine (&newi3pat, i3,
2212 &new_i3_notes);
2213 if (insn_code_number >= 0)
2214 newpat = newi3pat;
2216 /* It is possible that both insns now set the destination of I3.
2217 If so, we must show an extra use of it. */
2219 if (insn_code_number >= 0)
2221 rtx new_i3_dest = SET_DEST (i3set);
2222 rtx new_i2_dest = SET_DEST (i2set);
2224 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2225 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2226 || GET_CODE (new_i3_dest) == SUBREG)
2227 new_i3_dest = XEXP (new_i3_dest, 0);
2229 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2230 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2231 || GET_CODE (new_i2_dest) == SUBREG)
2232 new_i2_dest = XEXP (new_i2_dest, 0);
2234 if (GET_CODE (new_i3_dest) == REG
2235 && GET_CODE (new_i2_dest) == REG
2236 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2237 REG_N_SETS (REGNO (new_i2_dest))++;
2241 /* If we can split it and use I2DEST, go ahead and see if that
2242 helps things be recognized. Verify that none of the registers
2243 are set between I2 and I3. */
2244 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2245 #ifdef HAVE_cc0
2246 && GET_CODE (i2dest) == REG
2247 #endif
2248 /* We need I2DEST in the proper mode. If it is a hard register
2249 or the only use of a pseudo, we can change its mode. */
2250 && (GET_MODE (*split) == GET_MODE (i2dest)
2251 || GET_MODE (*split) == VOIDmode
2252 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2253 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2254 && ! REG_USERVAR_P (i2dest)))
2255 && (next_real_insn (i2) == i3
2256 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2257 /* We can't overwrite I2DEST if its value is still used by
2258 NEWPAT. */
2259 && ! reg_referenced_p (i2dest, newpat))
2261 rtx newdest = i2dest;
2262 enum rtx_code split_code = GET_CODE (*split);
2263 enum machine_mode split_mode = GET_MODE (*split);
2265 /* Get NEWDEST as a register in the proper mode. We have already
2266 validated that we can do this. */
2267 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2269 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2271 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2272 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2275 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2276 an ASHIFT. This can occur if it was inside a PLUS and hence
2277 appeared to be a memory address. This is a kludge. */
2278 if (split_code == MULT
2279 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2280 && INTVAL (XEXP (*split, 1)) > 0
2281 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2283 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2284 XEXP (*split, 0), GEN_INT (i)));
2285 /* Update split_code because we may not have a multiply
2286 anymore. */
2287 split_code = GET_CODE (*split);
2290 #ifdef INSN_SCHEDULING
2291 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2292 be written as a ZERO_EXTEND. */
2293 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2295 #ifdef LOAD_EXTEND_OP
2296 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2297 what it really is. */
2298 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2299 == SIGN_EXTEND)
2300 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2301 SUBREG_REG (*split)));
2302 else
2303 #endif
2304 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2305 SUBREG_REG (*split)));
2307 #endif
2309 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2310 SUBST (*split, newdest);
2311 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2313 /* If the split point was a MULT and we didn't have one before,
2314 don't use one now. */
2315 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2316 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2320 /* Check for a case where we loaded from memory in a narrow mode and
2321 then sign extended it, but we need both registers. In that case,
2322 we have a PARALLEL with both loads from the same memory location.
2323 We can split this into a load from memory followed by a register-register
2324 copy. This saves at least one insn, more if register allocation can
2325 eliminate the copy.
2327 We cannot do this if the destination of the first assignment is a
2328 condition code register or cc0. We eliminate this case by making sure
2329 the SET_DEST and SET_SRC have the same mode.
2331 We cannot do this if the destination of the second assignment is
2332 a register that we have already assumed is zero-extended. Similarly
2333 for a SUBREG of such a register. */
2335 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2336 && GET_CODE (newpat) == PARALLEL
2337 && XVECLEN (newpat, 0) == 2
2338 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2339 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2340 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2341 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2342 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2343 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2344 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2345 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2346 INSN_CUID (i2))
2347 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2348 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2349 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2350 (GET_CODE (temp) == REG
2351 && reg_nonzero_bits[REGNO (temp)] != 0
2352 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2353 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2354 && (reg_nonzero_bits[REGNO (temp)]
2355 != GET_MODE_MASK (word_mode))))
2356 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2357 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2358 (GET_CODE (temp) == REG
2359 && reg_nonzero_bits[REGNO (temp)] != 0
2360 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2361 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2362 && (reg_nonzero_bits[REGNO (temp)]
2363 != GET_MODE_MASK (word_mode)))))
2364 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2365 SET_SRC (XVECEXP (newpat, 0, 1)))
2366 && ! find_reg_note (i3, REG_UNUSED,
2367 SET_DEST (XVECEXP (newpat, 0, 0))))
2369 rtx ni2dest;
2371 newi2pat = XVECEXP (newpat, 0, 0);
2372 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2373 newpat = XVECEXP (newpat, 0, 1);
2374 SUBST (SET_SRC (newpat),
2375 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2376 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2378 if (i2_code_number >= 0)
2379 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2381 if (insn_code_number >= 0)
2383 rtx insn;
2384 rtx link;
2386 /* If we will be able to accept this, we have made a change to the
2387 destination of I3. This can invalidate a LOG_LINKS pointing
2388 to I3. No other part of combine.c makes such a transformation.
2390 The new I3 will have a destination that was previously the
2391 destination of I1 or I2 and which was used in i2 or I3. Call
2392 distribute_links to make a LOG_LINK from the next use of
2393 that destination. */
2395 PATTERN (i3) = newpat;
2396 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2398 /* I3 now uses what used to be its destination and which is
2399 now I2's destination. That means we need a LOG_LINK from
2400 I3 to I2. But we used to have one, so we still will.
2402 However, some later insn might be using I2's dest and have
2403 a LOG_LINK pointing at I3. We must remove this link.
2404 The simplest way to remove the link is to point it at I1,
2405 which we know will be a NOTE. */
2407 for (insn = NEXT_INSN (i3);
2408 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2409 || insn != this_basic_block->next_bb->head);
2410 insn = NEXT_INSN (insn))
2412 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2414 for (link = LOG_LINKS (insn); link;
2415 link = XEXP (link, 1))
2416 if (XEXP (link, 0) == i3)
2417 XEXP (link, 0) = i1;
2419 break;
2425 /* Similarly, check for a case where we have a PARALLEL of two independent
2426 SETs but we started with three insns. In this case, we can do the sets
2427 as two separate insns. This case occurs when some SET allows two
2428 other insns to combine, but the destination of that SET is still live. */
2430 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2431 && GET_CODE (newpat) == PARALLEL
2432 && XVECLEN (newpat, 0) == 2
2433 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2434 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2435 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2436 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2437 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2438 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2439 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2440 INSN_CUID (i2))
2441 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2442 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2443 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2444 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2445 XVECEXP (newpat, 0, 0))
2446 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2447 XVECEXP (newpat, 0, 1))
2448 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2449 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2451 /* Normally, it doesn't matter which of the two is done first,
2452 but it does if one references cc0. In that case, it has to
2453 be first. */
2454 #ifdef HAVE_cc0
2455 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2457 newi2pat = XVECEXP (newpat, 0, 0);
2458 newpat = XVECEXP (newpat, 0, 1);
2460 else
2461 #endif
2463 newi2pat = XVECEXP (newpat, 0, 1);
2464 newpat = XVECEXP (newpat, 0, 0);
2467 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2469 if (i2_code_number >= 0)
2470 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2473 /* If it still isn't recognized, fail and change things back the way they
2474 were. */
2475 if ((insn_code_number < 0
2476 /* Is the result a reasonable ASM_OPERANDS? */
2477 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2479 undo_all ();
2480 return 0;
2483 /* If we had to change another insn, make sure it is valid also. */
2484 if (undobuf.other_insn)
2486 rtx other_pat = PATTERN (undobuf.other_insn);
2487 rtx new_other_notes;
2488 rtx note, next;
2490 CLEAR_HARD_REG_SET (newpat_used_regs);
2492 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2493 &new_other_notes);
2495 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2497 undo_all ();
2498 return 0;
2501 PATTERN (undobuf.other_insn) = other_pat;
2503 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2504 are still valid. Then add any non-duplicate notes added by
2505 recog_for_combine. */
2506 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2508 next = XEXP (note, 1);
2510 if (REG_NOTE_KIND (note) == REG_UNUSED
2511 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2513 if (GET_CODE (XEXP (note, 0)) == REG)
2514 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2516 remove_note (undobuf.other_insn, note);
2520 for (note = new_other_notes; note; note = XEXP (note, 1))
2521 if (GET_CODE (XEXP (note, 0)) == REG)
2522 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2524 distribute_notes (new_other_notes, undobuf.other_insn,
2525 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2527 #ifdef HAVE_cc0
2528 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2529 they are adjacent to each other or not. */
2531 rtx p = prev_nonnote_insn (i3);
2532 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2533 && sets_cc0_p (newi2pat))
2535 undo_all ();
2536 return 0;
2539 #endif
2541 /* We now know that we can do this combination. Merge the insns and
2542 update the status of registers and LOG_LINKS. */
2545 rtx i3notes, i2notes, i1notes = 0;
2546 rtx i3links, i2links, i1links = 0;
2547 rtx midnotes = 0;
2548 unsigned int regno;
2549 /* Compute which registers we expect to eliminate. newi2pat may be setting
2550 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2551 same as i3dest, in which case newi2pat may be setting i1dest. */
2552 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2553 || i2dest_in_i2src || i2dest_in_i1src
2554 ? 0 : i2dest);
2555 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2556 || (newi2pat && reg_set_p (i1dest, newi2pat))
2557 ? 0 : i1dest);
2559 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2560 clear them. */
2561 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2562 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2563 if (i1)
2564 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2566 /* Ensure that we do not have something that should not be shared but
2567 occurs multiple times in the new insns. Check this by first
2568 resetting all the `used' flags and then copying anything is shared. */
2570 reset_used_flags (i3notes);
2571 reset_used_flags (i2notes);
2572 reset_used_flags (i1notes);
2573 reset_used_flags (newpat);
2574 reset_used_flags (newi2pat);
2575 if (undobuf.other_insn)
2576 reset_used_flags (PATTERN (undobuf.other_insn));
2578 i3notes = copy_rtx_if_shared (i3notes);
2579 i2notes = copy_rtx_if_shared (i2notes);
2580 i1notes = copy_rtx_if_shared (i1notes);
2581 newpat = copy_rtx_if_shared (newpat);
2582 newi2pat = copy_rtx_if_shared (newi2pat);
2583 if (undobuf.other_insn)
2584 reset_used_flags (PATTERN (undobuf.other_insn));
2586 INSN_CODE (i3) = insn_code_number;
2587 PATTERN (i3) = newpat;
2589 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2591 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2593 reset_used_flags (call_usage);
2594 call_usage = copy_rtx (call_usage);
2596 if (substed_i2)
2597 replace_rtx (call_usage, i2dest, i2src);
2599 if (substed_i1)
2600 replace_rtx (call_usage, i1dest, i1src);
2602 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2605 if (undobuf.other_insn)
2606 INSN_CODE (undobuf.other_insn) = other_code_number;
2608 /* We had one special case above where I2 had more than one set and
2609 we replaced a destination of one of those sets with the destination
2610 of I3. In that case, we have to update LOG_LINKS of insns later
2611 in this basic block. Note that this (expensive) case is rare.
2613 Also, in this case, we must pretend that all REG_NOTEs for I2
2614 actually came from I3, so that REG_UNUSED notes from I2 will be
2615 properly handled. */
2617 if (i3_subst_into_i2)
2619 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2620 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2621 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2622 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2623 && ! find_reg_note (i2, REG_UNUSED,
2624 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2625 for (temp = NEXT_INSN (i2);
2626 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2627 || this_basic_block->head != temp);
2628 temp = NEXT_INSN (temp))
2629 if (temp != i3 && INSN_P (temp))
2630 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2631 if (XEXP (link, 0) == i2)
2632 XEXP (link, 0) = i3;
2634 if (i3notes)
2636 rtx link = i3notes;
2637 while (XEXP (link, 1))
2638 link = XEXP (link, 1);
2639 XEXP (link, 1) = i2notes;
2641 else
2642 i3notes = i2notes;
2643 i2notes = 0;
2646 LOG_LINKS (i3) = 0;
2647 REG_NOTES (i3) = 0;
2648 LOG_LINKS (i2) = 0;
2649 REG_NOTES (i2) = 0;
2651 if (newi2pat)
2653 INSN_CODE (i2) = i2_code_number;
2654 PATTERN (i2) = newi2pat;
2656 else
2658 PUT_CODE (i2, NOTE);
2659 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2660 NOTE_SOURCE_FILE (i2) = 0;
2663 if (i1)
2665 LOG_LINKS (i1) = 0;
2666 REG_NOTES (i1) = 0;
2667 PUT_CODE (i1, NOTE);
2668 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2669 NOTE_SOURCE_FILE (i1) = 0;
2672 /* Get death notes for everything that is now used in either I3 or
2673 I2 and used to die in a previous insn. If we built two new
2674 patterns, move from I1 to I2 then I2 to I3 so that we get the
2675 proper movement on registers that I2 modifies. */
2677 if (newi2pat)
2679 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2680 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2682 else
2683 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2684 i3, &midnotes);
2686 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2687 if (i3notes)
2688 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2689 elim_i2, elim_i1);
2690 if (i2notes)
2691 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2692 elim_i2, elim_i1);
2693 if (i1notes)
2694 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2695 elim_i2, elim_i1);
2696 if (midnotes)
2697 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2698 elim_i2, elim_i1);
2700 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2701 know these are REG_UNUSED and want them to go to the desired insn,
2702 so we always pass it as i3. We have not counted the notes in
2703 reg_n_deaths yet, so we need to do so now. */
2705 if (newi2pat && new_i2_notes)
2707 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2708 if (GET_CODE (XEXP (temp, 0)) == REG)
2709 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2711 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2714 if (new_i3_notes)
2716 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2717 if (GET_CODE (XEXP (temp, 0)) == REG)
2718 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2720 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2723 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2724 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2725 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2726 in that case, it might delete I2. Similarly for I2 and I1.
2727 Show an additional death due to the REG_DEAD note we make here. If
2728 we discard it in distribute_notes, we will decrement it again. */
2730 if (i3dest_killed)
2732 if (GET_CODE (i3dest_killed) == REG)
2733 REG_N_DEATHS (REGNO (i3dest_killed))++;
2735 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2736 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2737 NULL_RTX),
2738 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2739 else
2740 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2741 NULL_RTX),
2742 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2743 elim_i2, elim_i1);
2746 if (i2dest_in_i2src)
2748 if (GET_CODE (i2dest) == REG)
2749 REG_N_DEATHS (REGNO (i2dest))++;
2751 if (newi2pat && reg_set_p (i2dest, newi2pat))
2752 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2753 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2754 else
2755 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2756 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2757 NULL_RTX, NULL_RTX);
2760 if (i1dest_in_i1src)
2762 if (GET_CODE (i1dest) == REG)
2763 REG_N_DEATHS (REGNO (i1dest))++;
2765 if (newi2pat && reg_set_p (i1dest, newi2pat))
2766 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2767 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2768 else
2769 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2770 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2771 NULL_RTX, NULL_RTX);
2774 distribute_links (i3links);
2775 distribute_links (i2links);
2776 distribute_links (i1links);
2778 if (GET_CODE (i2dest) == REG)
2780 rtx link;
2781 rtx i2_insn = 0, i2_val = 0, set;
2783 /* The insn that used to set this register doesn't exist, and
2784 this life of the register may not exist either. See if one of
2785 I3's links points to an insn that sets I2DEST. If it does,
2786 that is now the last known value for I2DEST. If we don't update
2787 this and I2 set the register to a value that depended on its old
2788 contents, we will get confused. If this insn is used, thing
2789 will be set correctly in combine_instructions. */
2791 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2792 if ((set = single_set (XEXP (link, 0))) != 0
2793 && rtx_equal_p (i2dest, SET_DEST (set)))
2794 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2796 record_value_for_reg (i2dest, i2_insn, i2_val);
2798 /* If the reg formerly set in I2 died only once and that was in I3,
2799 zero its use count so it won't make `reload' do any work. */
2800 if (! added_sets_2
2801 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2802 && ! i2dest_in_i2src)
2804 regno = REGNO (i2dest);
2805 REG_N_SETS (regno)--;
2809 if (i1 && GET_CODE (i1dest) == REG)
2811 rtx link;
2812 rtx i1_insn = 0, i1_val = 0, set;
2814 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2815 if ((set = single_set (XEXP (link, 0))) != 0
2816 && rtx_equal_p (i1dest, SET_DEST (set)))
2817 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2819 record_value_for_reg (i1dest, i1_insn, i1_val);
2821 regno = REGNO (i1dest);
2822 if (! added_sets_1 && ! i1dest_in_i1src)
2823 REG_N_SETS (regno)--;
2826 /* Update reg_nonzero_bits et al for any changes that may have been made
2827 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2828 important. Because newi2pat can affect nonzero_bits of newpat */
2829 if (newi2pat)
2830 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2831 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2833 /* Set new_direct_jump_p if a new return or simple jump instruction
2834 has been created.
2836 If I3 is now an unconditional jump, ensure that it has a
2837 BARRIER following it since it may have initially been a
2838 conditional jump. It may also be the last nonnote insn. */
2840 if (returnjump_p (i3) || any_uncondjump_p (i3))
2842 *new_direct_jump_p = 1;
2844 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2845 || GET_CODE (temp) != BARRIER)
2846 emit_barrier_after (i3);
2849 if (undobuf.other_insn != NULL_RTX
2850 && (returnjump_p (undobuf.other_insn)
2851 || any_uncondjump_p (undobuf.other_insn)))
2853 *new_direct_jump_p = 1;
2855 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2856 || GET_CODE (temp) != BARRIER)
2857 emit_barrier_after (undobuf.other_insn);
2860 /* An NOOP jump does not need barrier, but it does need cleaning up
2861 of CFG. */
2862 if (GET_CODE (newpat) == SET
2863 && SET_SRC (newpat) == pc_rtx
2864 && SET_DEST (newpat) == pc_rtx)
2865 *new_direct_jump_p = 1;
2868 combine_successes++;
2869 undo_commit ();
2871 if (added_links_insn
2872 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2873 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2874 return added_links_insn;
2875 else
2876 return newi2pat ? i2 : i3;
2879 /* Undo all the modifications recorded in undobuf. */
2881 static void
2882 undo_all ()
2884 struct undo *undo, *next;
2886 for (undo = undobuf.undos; undo; undo = next)
2888 next = undo->next;
2889 if (undo->is_int)
2890 *undo->where.i = undo->old_contents.i;
2891 else
2892 *undo->where.r = undo->old_contents.r;
2894 undo->next = undobuf.frees;
2895 undobuf.frees = undo;
2898 undobuf.undos = 0;
2901 /* We've committed to accepting the changes we made. Move all
2902 of the undos to the free list. */
2904 static void
2905 undo_commit ()
2907 struct undo *undo, *next;
2909 for (undo = undobuf.undos; undo; undo = next)
2911 next = undo->next;
2912 undo->next = undobuf.frees;
2913 undobuf.frees = undo;
2915 undobuf.undos = 0;
2919 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2920 where we have an arithmetic expression and return that point. LOC will
2921 be inside INSN.
2923 try_combine will call this function to see if an insn can be split into
2924 two insns. */
2926 static rtx *
2927 find_split_point (loc, insn)
2928 rtx *loc;
2929 rtx insn;
2931 rtx x = *loc;
2932 enum rtx_code code = GET_CODE (x);
2933 rtx *split;
2934 unsigned HOST_WIDE_INT len = 0;
2935 HOST_WIDE_INT pos = 0;
2936 int unsignedp = 0;
2937 rtx inner = NULL_RTX;
2939 /* First special-case some codes. */
2940 switch (code)
2942 case SUBREG:
2943 #ifdef INSN_SCHEDULING
2944 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2945 point. */
2946 if (GET_CODE (SUBREG_REG (x)) == MEM)
2947 return loc;
2948 #endif
2949 return find_split_point (&SUBREG_REG (x), insn);
2951 case MEM:
2952 #ifdef HAVE_lo_sum
2953 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2954 using LO_SUM and HIGH. */
2955 if (GET_CODE (XEXP (x, 0)) == CONST
2956 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2958 SUBST (XEXP (x, 0),
2959 gen_rtx_LO_SUM (Pmode,
2960 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2961 XEXP (x, 0)));
2962 return &XEXP (XEXP (x, 0), 0);
2964 #endif
2966 /* If we have a PLUS whose second operand is a constant and the
2967 address is not valid, perhaps will can split it up using
2968 the machine-specific way to split large constants. We use
2969 the first pseudo-reg (one of the virtual regs) as a placeholder;
2970 it will not remain in the result. */
2971 if (GET_CODE (XEXP (x, 0)) == PLUS
2972 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2973 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2975 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2976 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2977 subst_insn);
2979 /* This should have produced two insns, each of which sets our
2980 placeholder. If the source of the second is a valid address,
2981 we can make put both sources together and make a split point
2982 in the middle. */
2984 if (seq
2985 && NEXT_INSN (seq) != NULL_RTX
2986 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2987 && GET_CODE (seq) == INSN
2988 && GET_CODE (PATTERN (seq)) == SET
2989 && SET_DEST (PATTERN (seq)) == reg
2990 && ! reg_mentioned_p (reg,
2991 SET_SRC (PATTERN (seq)))
2992 && GET_CODE (NEXT_INSN (seq)) == INSN
2993 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2994 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2995 && memory_address_p (GET_MODE (x),
2996 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2998 rtx src1 = SET_SRC (PATTERN (seq));
2999 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3001 /* Replace the placeholder in SRC2 with SRC1. If we can
3002 find where in SRC2 it was placed, that can become our
3003 split point and we can replace this address with SRC2.
3004 Just try two obvious places. */
3006 src2 = replace_rtx (src2, reg, src1);
3007 split = 0;
3008 if (XEXP (src2, 0) == src1)
3009 split = &XEXP (src2, 0);
3010 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3011 && XEXP (XEXP (src2, 0), 0) == src1)
3012 split = &XEXP (XEXP (src2, 0), 0);
3014 if (split)
3016 SUBST (XEXP (x, 0), src2);
3017 return split;
3021 /* If that didn't work, perhaps the first operand is complex and
3022 needs to be computed separately, so make a split point there.
3023 This will occur on machines that just support REG + CONST
3024 and have a constant moved through some previous computation. */
3026 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3027 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3028 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3029 == 'o')))
3030 return &XEXP (XEXP (x, 0), 0);
3032 break;
3034 case SET:
3035 #ifdef HAVE_cc0
3036 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3037 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3038 we need to put the operand into a register. So split at that
3039 point. */
3041 if (SET_DEST (x) == cc0_rtx
3042 && GET_CODE (SET_SRC (x)) != COMPARE
3043 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3044 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3045 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3046 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3047 return &SET_SRC (x);
3048 #endif
3050 /* See if we can split SET_SRC as it stands. */
3051 split = find_split_point (&SET_SRC (x), insn);
3052 if (split && split != &SET_SRC (x))
3053 return split;
3055 /* See if we can split SET_DEST as it stands. */
3056 split = find_split_point (&SET_DEST (x), insn);
3057 if (split && split != &SET_DEST (x))
3058 return split;
3060 /* See if this is a bitfield assignment with everything constant. If
3061 so, this is an IOR of an AND, so split it into that. */
3062 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3063 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3064 <= HOST_BITS_PER_WIDE_INT)
3065 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3066 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3067 && GET_CODE (SET_SRC (x)) == CONST_INT
3068 && ((INTVAL (XEXP (SET_DEST (x), 1))
3069 + INTVAL (XEXP (SET_DEST (x), 2)))
3070 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3071 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3073 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3074 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3075 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3076 rtx dest = XEXP (SET_DEST (x), 0);
3077 enum machine_mode mode = GET_MODE (dest);
3078 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3080 if (BITS_BIG_ENDIAN)
3081 pos = GET_MODE_BITSIZE (mode) - len - pos;
3083 if (src == mask)
3084 SUBST (SET_SRC (x),
3085 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3086 else
3087 SUBST (SET_SRC (x),
3088 gen_binary (IOR, mode,
3089 gen_binary (AND, mode, dest,
3090 gen_int_mode (~(mask << pos),
3091 mode)),
3092 GEN_INT (src << pos)));
3094 SUBST (SET_DEST (x), dest);
3096 split = find_split_point (&SET_SRC (x), insn);
3097 if (split && split != &SET_SRC (x))
3098 return split;
3101 /* Otherwise, see if this is an operation that we can split into two.
3102 If so, try to split that. */
3103 code = GET_CODE (SET_SRC (x));
3105 switch (code)
3107 case AND:
3108 /* If we are AND'ing with a large constant that is only a single
3109 bit and the result is only being used in a context where we
3110 need to know if it is zero or nonzero, replace it with a bit
3111 extraction. This will avoid the large constant, which might
3112 have taken more than one insn to make. If the constant were
3113 not a valid argument to the AND but took only one insn to make,
3114 this is no worse, but if it took more than one insn, it will
3115 be better. */
3117 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3118 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3119 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3120 && GET_CODE (SET_DEST (x)) == REG
3121 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3122 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3123 && XEXP (*split, 0) == SET_DEST (x)
3124 && XEXP (*split, 1) == const0_rtx)
3126 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3127 XEXP (SET_SRC (x), 0),
3128 pos, NULL_RTX, 1, 1, 0, 0);
3129 if (extraction != 0)
3131 SUBST (SET_SRC (x), extraction);
3132 return find_split_point (loc, insn);
3135 break;
3137 case NE:
3138 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3139 is known to be on, this can be converted into a NEG of a shift. */
3140 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3141 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3142 && 1 <= (pos = exact_log2
3143 (nonzero_bits (XEXP (SET_SRC (x), 0),
3144 GET_MODE (XEXP (SET_SRC (x), 0))))))
3146 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3148 SUBST (SET_SRC (x),
3149 gen_rtx_NEG (mode,
3150 gen_rtx_LSHIFTRT (mode,
3151 XEXP (SET_SRC (x), 0),
3152 GEN_INT (pos))));
3154 split = find_split_point (&SET_SRC (x), insn);
3155 if (split && split != &SET_SRC (x))
3156 return split;
3158 break;
3160 case SIGN_EXTEND:
3161 inner = XEXP (SET_SRC (x), 0);
3163 /* We can't optimize if either mode is a partial integer
3164 mode as we don't know how many bits are significant
3165 in those modes. */
3166 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3167 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3168 break;
3170 pos = 0;
3171 len = GET_MODE_BITSIZE (GET_MODE (inner));
3172 unsignedp = 0;
3173 break;
3175 case SIGN_EXTRACT:
3176 case ZERO_EXTRACT:
3177 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3178 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3180 inner = XEXP (SET_SRC (x), 0);
3181 len = INTVAL (XEXP (SET_SRC (x), 1));
3182 pos = INTVAL (XEXP (SET_SRC (x), 2));
3184 if (BITS_BIG_ENDIAN)
3185 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3186 unsignedp = (code == ZERO_EXTRACT);
3188 break;
3190 default:
3191 break;
3194 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3196 enum machine_mode mode = GET_MODE (SET_SRC (x));
3198 /* For unsigned, we have a choice of a shift followed by an
3199 AND or two shifts. Use two shifts for field sizes where the
3200 constant might be too large. We assume here that we can
3201 always at least get 8-bit constants in an AND insn, which is
3202 true for every current RISC. */
3204 if (unsignedp && len <= 8)
3206 SUBST (SET_SRC (x),
3207 gen_rtx_AND (mode,
3208 gen_rtx_LSHIFTRT
3209 (mode, gen_lowpart_for_combine (mode, inner),
3210 GEN_INT (pos)),
3211 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3213 split = find_split_point (&SET_SRC (x), insn);
3214 if (split && split != &SET_SRC (x))
3215 return split;
3217 else
3219 SUBST (SET_SRC (x),
3220 gen_rtx_fmt_ee
3221 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3222 gen_rtx_ASHIFT (mode,
3223 gen_lowpart_for_combine (mode, inner),
3224 GEN_INT (GET_MODE_BITSIZE (mode)
3225 - len - pos)),
3226 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3228 split = find_split_point (&SET_SRC (x), insn);
3229 if (split && split != &SET_SRC (x))
3230 return split;
3234 /* See if this is a simple operation with a constant as the second
3235 operand. It might be that this constant is out of range and hence
3236 could be used as a split point. */
3237 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3238 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3239 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3240 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3241 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3242 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3243 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3244 == 'o'))))
3245 return &XEXP (SET_SRC (x), 1);
3247 /* Finally, see if this is a simple operation with its first operand
3248 not in a register. The operation might require this operand in a
3249 register, so return it as a split point. We can always do this
3250 because if the first operand were another operation, we would have
3251 already found it as a split point. */
3252 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3253 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3254 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3255 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3256 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3257 return &XEXP (SET_SRC (x), 0);
3259 return 0;
3261 case AND:
3262 case IOR:
3263 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3264 it is better to write this as (not (ior A B)) so we can split it.
3265 Similarly for IOR. */
3266 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3268 SUBST (*loc,
3269 gen_rtx_NOT (GET_MODE (x),
3270 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3271 GET_MODE (x),
3272 XEXP (XEXP (x, 0), 0),
3273 XEXP (XEXP (x, 1), 0))));
3274 return find_split_point (loc, insn);
3277 /* Many RISC machines have a large set of logical insns. If the
3278 second operand is a NOT, put it first so we will try to split the
3279 other operand first. */
3280 if (GET_CODE (XEXP (x, 1)) == NOT)
3282 rtx tem = XEXP (x, 0);
3283 SUBST (XEXP (x, 0), XEXP (x, 1));
3284 SUBST (XEXP (x, 1), tem);
3286 break;
3288 default:
3289 break;
3292 /* Otherwise, select our actions depending on our rtx class. */
3293 switch (GET_RTX_CLASS (code))
3295 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3296 case '3':
3297 split = find_split_point (&XEXP (x, 2), insn);
3298 if (split)
3299 return split;
3300 /* ... fall through ... */
3301 case '2':
3302 case 'c':
3303 case '<':
3304 split = find_split_point (&XEXP (x, 1), insn);
3305 if (split)
3306 return split;
3307 /* ... fall through ... */
3308 case '1':
3309 /* Some machines have (and (shift ...) ...) insns. If X is not
3310 an AND, but XEXP (X, 0) is, use it as our split point. */
3311 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3312 return &XEXP (x, 0);
3314 split = find_split_point (&XEXP (x, 0), insn);
3315 if (split)
3316 return split;
3317 return loc;
3320 /* Otherwise, we don't have a split point. */
3321 return 0;
3324 /* Throughout X, replace FROM with TO, and return the result.
3325 The result is TO if X is FROM;
3326 otherwise the result is X, but its contents may have been modified.
3327 If they were modified, a record was made in undobuf so that
3328 undo_all will (among other things) return X to its original state.
3330 If the number of changes necessary is too much to record to undo,
3331 the excess changes are not made, so the result is invalid.
3332 The changes already made can still be undone.
3333 undobuf.num_undo is incremented for such changes, so by testing that
3334 the caller can tell whether the result is valid.
3336 `n_occurrences' is incremented each time FROM is replaced.
3338 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3340 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3341 by copying if `n_occurrences' is nonzero. */
3343 static rtx
3344 subst (x, from, to, in_dest, unique_copy)
3345 rtx x, from, to;
3346 int in_dest;
3347 int unique_copy;
3349 enum rtx_code code = GET_CODE (x);
3350 enum machine_mode op0_mode = VOIDmode;
3351 const char *fmt;
3352 int len, i;
3353 rtx new;
3355 /* Two expressions are equal if they are identical copies of a shared
3356 RTX or if they are both registers with the same register number
3357 and mode. */
3359 #define COMBINE_RTX_EQUAL_P(X,Y) \
3360 ((X) == (Y) \
3361 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3362 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3364 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3366 n_occurrences++;
3367 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3370 /* If X and FROM are the same register but different modes, they will
3371 not have been seen as equal above. However, flow.c will make a
3372 LOG_LINKS entry for that case. If we do nothing, we will try to
3373 rerecognize our original insn and, when it succeeds, we will
3374 delete the feeding insn, which is incorrect.
3376 So force this insn not to match in this (rare) case. */
3377 if (! in_dest && code == REG && GET_CODE (from) == REG
3378 && REGNO (x) == REGNO (from))
3379 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3381 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3382 of which may contain things that can be combined. */
3383 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3384 return x;
3386 /* It is possible to have a subexpression appear twice in the insn.
3387 Suppose that FROM is a register that appears within TO.
3388 Then, after that subexpression has been scanned once by `subst',
3389 the second time it is scanned, TO may be found. If we were
3390 to scan TO here, we would find FROM within it and create a
3391 self-referent rtl structure which is completely wrong. */
3392 if (COMBINE_RTX_EQUAL_P (x, to))
3393 return to;
3395 /* Parallel asm_operands need special attention because all of the
3396 inputs are shared across the arms. Furthermore, unsharing the
3397 rtl results in recognition failures. Failure to handle this case
3398 specially can result in circular rtl.
3400 Solve this by doing a normal pass across the first entry of the
3401 parallel, and only processing the SET_DESTs of the subsequent
3402 entries. Ug. */
3404 if (code == PARALLEL
3405 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3406 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3408 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3410 /* If this substitution failed, this whole thing fails. */
3411 if (GET_CODE (new) == CLOBBER
3412 && XEXP (new, 0) == const0_rtx)
3413 return new;
3415 SUBST (XVECEXP (x, 0, 0), new);
3417 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3419 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3421 if (GET_CODE (dest) != REG
3422 && GET_CODE (dest) != CC0
3423 && GET_CODE (dest) != PC)
3425 new = subst (dest, from, to, 0, unique_copy);
3427 /* If this substitution failed, this whole thing fails. */
3428 if (GET_CODE (new) == CLOBBER
3429 && XEXP (new, 0) == const0_rtx)
3430 return new;
3432 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3436 else
3438 len = GET_RTX_LENGTH (code);
3439 fmt = GET_RTX_FORMAT (code);
3441 /* We don't need to process a SET_DEST that is a register, CC0,
3442 or PC, so set up to skip this common case. All other cases
3443 where we want to suppress replacing something inside a
3444 SET_SRC are handled via the IN_DEST operand. */
3445 if (code == SET
3446 && (GET_CODE (SET_DEST (x)) == REG
3447 || GET_CODE (SET_DEST (x)) == CC0
3448 || GET_CODE (SET_DEST (x)) == PC))
3449 fmt = "ie";
3451 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3452 constant. */
3453 if (fmt[0] == 'e')
3454 op0_mode = GET_MODE (XEXP (x, 0));
3456 for (i = 0; i < len; i++)
3458 if (fmt[i] == 'E')
3460 int j;
3461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3463 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3465 new = (unique_copy && n_occurrences
3466 ? copy_rtx (to) : to);
3467 n_occurrences++;
3469 else
3471 new = subst (XVECEXP (x, i, j), from, to, 0,
3472 unique_copy);
3474 /* If this substitution failed, this whole thing
3475 fails. */
3476 if (GET_CODE (new) == CLOBBER
3477 && XEXP (new, 0) == const0_rtx)
3478 return new;
3481 SUBST (XVECEXP (x, i, j), new);
3484 else if (fmt[i] == 'e')
3486 /* If this is a register being set, ignore it. */
3487 new = XEXP (x, i);
3488 if (in_dest
3489 && (code == SUBREG || code == STRICT_LOW_PART
3490 || code == ZERO_EXTRACT)
3491 && i == 0
3492 && GET_CODE (new) == REG)
3495 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3497 /* In general, don't install a subreg involving two
3498 modes not tieable. It can worsen register
3499 allocation, and can even make invalid reload
3500 insns, since the reg inside may need to be copied
3501 from in the outside mode, and that may be invalid
3502 if it is an fp reg copied in integer mode.
3504 We allow two exceptions to this: It is valid if
3505 it is inside another SUBREG and the mode of that
3506 SUBREG and the mode of the inside of TO is
3507 tieable and it is valid if X is a SET that copies
3508 FROM to CC0. */
3510 if (GET_CODE (to) == SUBREG
3511 && ! MODES_TIEABLE_P (GET_MODE (to),
3512 GET_MODE (SUBREG_REG (to)))
3513 && ! (code == SUBREG
3514 && MODES_TIEABLE_P (GET_MODE (x),
3515 GET_MODE (SUBREG_REG (to))))
3516 #ifdef HAVE_cc0
3517 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3518 #endif
3520 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3522 #ifdef CANNOT_CHANGE_MODE_CLASS
3523 if (code == SUBREG
3524 && GET_CODE (to) == REG
3525 && REGNO (to) < FIRST_PSEUDO_REGISTER
3526 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3527 GET_MODE (to),
3528 GET_MODE (x)))
3529 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3530 #endif
3532 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3533 n_occurrences++;
3535 else
3536 /* If we are in a SET_DEST, suppress most cases unless we
3537 have gone inside a MEM, in which case we want to
3538 simplify the address. We assume here that things that
3539 are actually part of the destination have their inner
3540 parts in the first expression. This is true for SUBREG,
3541 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3542 things aside from REG and MEM that should appear in a
3543 SET_DEST. */
3544 new = subst (XEXP (x, i), from, to,
3545 (((in_dest
3546 && (code == SUBREG || code == STRICT_LOW_PART
3547 || code == ZERO_EXTRACT))
3548 || code == SET)
3549 && i == 0), unique_copy);
3551 /* If we found that we will have to reject this combination,
3552 indicate that by returning the CLOBBER ourselves, rather than
3553 an expression containing it. This will speed things up as
3554 well as prevent accidents where two CLOBBERs are considered
3555 to be equal, thus producing an incorrect simplification. */
3557 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3558 return new;
3560 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3562 enum machine_mode mode = GET_MODE (x);
3564 x = simplify_subreg (GET_MODE (x), new,
3565 GET_MODE (SUBREG_REG (x)),
3566 SUBREG_BYTE (x));
3567 if (! x)
3568 x = gen_rtx_CLOBBER (mode, const0_rtx);
3570 else if (GET_CODE (new) == CONST_INT
3571 && GET_CODE (x) == ZERO_EXTEND)
3573 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3574 new, GET_MODE (XEXP (x, 0)));
3575 if (! x)
3576 abort ();
3578 else
3579 SUBST (XEXP (x, i), new);
3584 /* Try to simplify X. If the simplification changed the code, it is likely
3585 that further simplification will help, so loop, but limit the number
3586 of repetitions that will be performed. */
3588 for (i = 0; i < 4; i++)
3590 /* If X is sufficiently simple, don't bother trying to do anything
3591 with it. */
3592 if (code != CONST_INT && code != REG && code != CLOBBER)
3593 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3595 if (GET_CODE (x) == code)
3596 break;
3598 code = GET_CODE (x);
3600 /* We no longer know the original mode of operand 0 since we
3601 have changed the form of X) */
3602 op0_mode = VOIDmode;
3605 return x;
3608 /* Simplify X, a piece of RTL. We just operate on the expression at the
3609 outer level; call `subst' to simplify recursively. Return the new
3610 expression.
3612 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3613 will be the iteration even if an expression with a code different from
3614 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3616 static rtx
3617 combine_simplify_rtx (x, op0_mode, last, in_dest)
3618 rtx x;
3619 enum machine_mode op0_mode;
3620 int last;
3621 int in_dest;
3623 enum rtx_code code = GET_CODE (x);
3624 enum machine_mode mode = GET_MODE (x);
3625 rtx temp;
3626 rtx reversed;
3627 int i;
3629 /* If this is a commutative operation, put a constant last and a complex
3630 expression first. We don't need to do this for comparisons here. */
3631 if (GET_RTX_CLASS (code) == 'c'
3632 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3634 temp = XEXP (x, 0);
3635 SUBST (XEXP (x, 0), XEXP (x, 1));
3636 SUBST (XEXP (x, 1), temp);
3639 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3640 sign extension of a PLUS with a constant, reverse the order of the sign
3641 extension and the addition. Note that this not the same as the original
3642 code, but overflow is undefined for signed values. Also note that the
3643 PLUS will have been partially moved "inside" the sign-extension, so that
3644 the first operand of X will really look like:
3645 (ashiftrt (plus (ashift A C4) C5) C4).
3646 We convert this to
3647 (plus (ashiftrt (ashift A C4) C2) C4)
3648 and replace the first operand of X with that expression. Later parts
3649 of this function may simplify the expression further.
3651 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3652 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3653 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3655 We do this to simplify address expressions. */
3657 if ((code == PLUS || code == MINUS || code == MULT)
3658 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3659 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3660 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3661 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3662 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3663 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3664 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3665 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3666 XEXP (XEXP (XEXP (x, 0), 0), 1),
3667 XEXP (XEXP (x, 0), 1))) != 0)
3669 rtx new
3670 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3671 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3672 INTVAL (XEXP (XEXP (x, 0), 1)));
3674 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3675 INTVAL (XEXP (XEXP (x, 0), 1)));
3677 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3680 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3681 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3682 things. Check for cases where both arms are testing the same
3683 condition.
3685 Don't do anything if all operands are very simple. */
3687 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3688 || GET_RTX_CLASS (code) == '<')
3689 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3690 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3691 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3692 == 'o')))
3693 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3694 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3695 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3696 == 'o')))))
3697 || (GET_RTX_CLASS (code) == '1'
3698 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3699 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3700 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3701 == 'o'))))))
3703 rtx cond, true_rtx, false_rtx;
3705 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3706 if (cond != 0
3707 /* If everything is a comparison, what we have is highly unlikely
3708 to be simpler, so don't use it. */
3709 && ! (GET_RTX_CLASS (code) == '<'
3710 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3711 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3713 rtx cop1 = const0_rtx;
3714 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3716 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3717 return x;
3719 /* Simplify the alternative arms; this may collapse the true and
3720 false arms to store-flag values. */
3721 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3722 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3724 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3725 is unlikely to be simpler. */
3726 if (general_operand (true_rtx, VOIDmode)
3727 && general_operand (false_rtx, VOIDmode))
3729 enum rtx_code reversed;
3731 /* Restarting if we generate a store-flag expression will cause
3732 us to loop. Just drop through in this case. */
3734 /* If the result values are STORE_FLAG_VALUE and zero, we can
3735 just make the comparison operation. */
3736 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3737 x = gen_binary (cond_code, mode, cond, cop1);
3738 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3739 && ((reversed = reversed_comparison_code_parts
3740 (cond_code, cond, cop1, NULL))
3741 != UNKNOWN))
3742 x = gen_binary (reversed, mode, cond, cop1);
3744 /* Likewise, we can make the negate of a comparison operation
3745 if the result values are - STORE_FLAG_VALUE and zero. */
3746 else if (GET_CODE (true_rtx) == CONST_INT
3747 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3748 && false_rtx == const0_rtx)
3749 x = simplify_gen_unary (NEG, mode,
3750 gen_binary (cond_code, mode, cond,
3751 cop1),
3752 mode);
3753 else if (GET_CODE (false_rtx) == CONST_INT
3754 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3755 && true_rtx == const0_rtx
3756 && ((reversed = reversed_comparison_code_parts
3757 (cond_code, cond, cop1, NULL))
3758 != UNKNOWN))
3759 x = simplify_gen_unary (NEG, mode,
3760 gen_binary (reversed, mode,
3761 cond, cop1),
3762 mode);
3763 else
3764 return gen_rtx_IF_THEN_ELSE (mode,
3765 gen_binary (cond_code, VOIDmode,
3766 cond, cop1),
3767 true_rtx, false_rtx);
3769 code = GET_CODE (x);
3770 op0_mode = VOIDmode;
3775 /* Try to fold this expression in case we have constants that weren't
3776 present before. */
3777 temp = 0;
3778 switch (GET_RTX_CLASS (code))
3780 case '1':
3781 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3782 break;
3783 case '<':
3785 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3786 if (cmp_mode == VOIDmode)
3788 cmp_mode = GET_MODE (XEXP (x, 1));
3789 if (cmp_mode == VOIDmode)
3790 cmp_mode = op0_mode;
3792 temp = simplify_relational_operation (code, cmp_mode,
3793 XEXP (x, 0), XEXP (x, 1));
3795 #ifdef FLOAT_STORE_FLAG_VALUE
3796 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3798 if (temp == const0_rtx)
3799 temp = CONST0_RTX (mode);
3800 else
3801 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3802 mode);
3804 #endif
3805 break;
3806 case 'c':
3807 case '2':
3808 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3809 break;
3810 case 'b':
3811 case '3':
3812 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3813 XEXP (x, 1), XEXP (x, 2));
3814 break;
3817 if (temp)
3819 x = temp;
3820 code = GET_CODE (temp);
3821 op0_mode = VOIDmode;
3822 mode = GET_MODE (temp);
3825 /* First see if we can apply the inverse distributive law. */
3826 if (code == PLUS || code == MINUS
3827 || code == AND || code == IOR || code == XOR)
3829 x = apply_distributive_law (x);
3830 code = GET_CODE (x);
3831 op0_mode = VOIDmode;
3834 /* If CODE is an associative operation not otherwise handled, see if we
3835 can associate some operands. This can win if they are constants or
3836 if they are logically related (i.e. (a & b) & a). */
3837 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3838 || code == AND || code == IOR || code == XOR
3839 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3840 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3841 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3843 if (GET_CODE (XEXP (x, 0)) == code)
3845 rtx other = XEXP (XEXP (x, 0), 0);
3846 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3847 rtx inner_op1 = XEXP (x, 1);
3848 rtx inner;
3850 /* Make sure we pass the constant operand if any as the second
3851 one if this is a commutative operation. */
3852 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3854 rtx tem = inner_op0;
3855 inner_op0 = inner_op1;
3856 inner_op1 = tem;
3858 inner = simplify_binary_operation (code == MINUS ? PLUS
3859 : code == DIV ? MULT
3860 : code,
3861 mode, inner_op0, inner_op1);
3863 /* For commutative operations, try the other pair if that one
3864 didn't simplify. */
3865 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3867 other = XEXP (XEXP (x, 0), 1);
3868 inner = simplify_binary_operation (code, mode,
3869 XEXP (XEXP (x, 0), 0),
3870 XEXP (x, 1));
3873 if (inner)
3874 return gen_binary (code, mode, other, inner);
3878 /* A little bit of algebraic simplification here. */
3879 switch (code)
3881 case MEM:
3882 /* Ensure that our address has any ASHIFTs converted to MULT in case
3883 address-recognizing predicates are called later. */
3884 temp = make_compound_operation (XEXP (x, 0), MEM);
3885 SUBST (XEXP (x, 0), temp);
3886 break;
3888 case SUBREG:
3889 if (op0_mode == VOIDmode)
3890 op0_mode = GET_MODE (SUBREG_REG (x));
3892 /* simplify_subreg can't use gen_lowpart_for_combine. */
3893 if (CONSTANT_P (SUBREG_REG (x))
3894 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3895 /* Don't call gen_lowpart_for_combine if the inner mode
3896 is VOIDmode and we cannot simplify it, as SUBREG without
3897 inner mode is invalid. */
3898 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3899 || gen_lowpart_common (mode, SUBREG_REG (x))))
3900 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3902 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3903 break;
3905 rtx temp;
3906 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3907 SUBREG_BYTE (x));
3908 if (temp)
3909 return temp;
3912 /* Don't change the mode of the MEM if that would change the meaning
3913 of the address. */
3914 if (GET_CODE (SUBREG_REG (x)) == MEM
3915 && (MEM_VOLATILE_P (SUBREG_REG (x))
3916 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3917 return gen_rtx_CLOBBER (mode, const0_rtx);
3919 /* Note that we cannot do any narrowing for non-constants since
3920 we might have been counting on using the fact that some bits were
3921 zero. We now do this in the SET. */
3923 break;
3925 case NOT:
3926 /* (not (plus X -1)) can become (neg X). */
3927 if (GET_CODE (XEXP (x, 0)) == PLUS
3928 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3929 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3931 /* Similarly, (not (neg X)) is (plus X -1). */
3932 if (GET_CODE (XEXP (x, 0)) == NEG)
3933 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3935 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3936 if (GET_CODE (XEXP (x, 0)) == XOR
3937 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3938 && (temp = simplify_unary_operation (NOT, mode,
3939 XEXP (XEXP (x, 0), 1),
3940 mode)) != 0)
3941 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3943 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3944 other than 1, but that is not valid. We could do a similar
3945 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3946 but this doesn't seem common enough to bother with. */
3947 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3948 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3949 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3950 const1_rtx, mode),
3951 XEXP (XEXP (x, 0), 1));
3953 if (GET_CODE (XEXP (x, 0)) == SUBREG
3954 && subreg_lowpart_p (XEXP (x, 0))
3955 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3956 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3957 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3958 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3960 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3962 x = gen_rtx_ROTATE (inner_mode,
3963 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3964 inner_mode),
3965 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3966 return gen_lowpart_for_combine (mode, x);
3969 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3970 reversing the comparison code if valid. */
3971 if (STORE_FLAG_VALUE == -1
3972 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3973 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3974 XEXP (XEXP (x, 0), 1))))
3975 return reversed;
3977 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3978 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3979 perform the above simplification. */
3981 if (STORE_FLAG_VALUE == -1
3982 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3983 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3984 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3985 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3987 /* Apply De Morgan's laws to reduce number of patterns for machines
3988 with negating logical insns (and-not, nand, etc.). If result has
3989 only one NOT, put it first, since that is how the patterns are
3990 coded. */
3992 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3994 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3995 enum machine_mode op_mode;
3997 op_mode = GET_MODE (in1);
3998 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4000 op_mode = GET_MODE (in2);
4001 if (op_mode == VOIDmode)
4002 op_mode = mode;
4003 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4005 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4007 rtx tem = in2;
4008 in2 = in1; in1 = tem;
4011 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4012 mode, in1, in2);
4014 break;
4016 case NEG:
4017 /* (neg (plus X 1)) can become (not X). */
4018 if (GET_CODE (XEXP (x, 0)) == PLUS
4019 && XEXP (XEXP (x, 0), 1) == const1_rtx)
4020 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
4022 /* Similarly, (neg (not X)) is (plus X 1). */
4023 if (GET_CODE (XEXP (x, 0)) == NOT)
4024 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4026 /* (neg (minus X Y)) can become (minus Y X). This transformation
4027 isn't safe for modes with signed zeros, since if X and Y are
4028 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4029 mode is towards +infinity (or -infinity) then the two expressions
4030 will be rounded differently. */
4031 if (GET_CODE (XEXP (x, 0)) == MINUS
4032 && !HONOR_SIGNED_ZEROS (mode)
4033 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4034 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4035 XEXP (XEXP (x, 0), 0));
4037 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
4038 if (GET_CODE (XEXP (x, 0)) == PLUS
4039 && !HONOR_SIGNED_ZEROS (mode)
4040 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4042 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4043 temp = combine_simplify_rtx (temp, mode, last, in_dest);
4044 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
4047 /* (neg (mult A B)) becomes (mult (neg A) B).
4048 This works even for floating-point values. */
4049 if (GET_CODE (XEXP (x, 0)) == MULT)
4051 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4052 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
4055 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4056 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4057 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4058 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4060 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4061 if we can then eliminate the NEG (e.g.,
4062 if the operand is a constant). */
4064 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4066 temp = simplify_unary_operation (NEG, mode,
4067 XEXP (XEXP (x, 0), 0), mode);
4068 if (temp)
4069 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4072 temp = expand_compound_operation (XEXP (x, 0));
4074 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4075 replaced by (lshiftrt X C). This will convert
4076 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4078 if (GET_CODE (temp) == ASHIFTRT
4079 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4080 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4081 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4082 INTVAL (XEXP (temp, 1)));
4084 /* If X has only a single bit that might be nonzero, say, bit I, convert
4085 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4086 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4087 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4088 or a SUBREG of one since we'd be making the expression more
4089 complex if it was just a register. */
4091 if (GET_CODE (temp) != REG
4092 && ! (GET_CODE (temp) == SUBREG
4093 && GET_CODE (SUBREG_REG (temp)) == REG)
4094 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4096 rtx temp1 = simplify_shift_const
4097 (NULL_RTX, ASHIFTRT, mode,
4098 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4099 GET_MODE_BITSIZE (mode) - 1 - i),
4100 GET_MODE_BITSIZE (mode) - 1 - i);
4102 /* If all we did was surround TEMP with the two shifts, we
4103 haven't improved anything, so don't use it. Otherwise,
4104 we are better off with TEMP1. */
4105 if (GET_CODE (temp1) != ASHIFTRT
4106 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4107 || XEXP (XEXP (temp1, 0), 0) != temp)
4108 return temp1;
4110 break;
4112 case TRUNCATE:
4113 /* We can't handle truncation to a partial integer mode here
4114 because we don't know the real bitsize of the partial
4115 integer mode. */
4116 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4117 break;
4119 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4120 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4121 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4122 SUBST (XEXP (x, 0),
4123 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4124 GET_MODE_MASK (mode), NULL_RTX, 0));
4126 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4127 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4128 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4129 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4130 return XEXP (XEXP (x, 0), 0);
4132 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4133 (OP:SI foo:SI) if OP is NEG or ABS. */
4134 if ((GET_CODE (XEXP (x, 0)) == ABS
4135 || GET_CODE (XEXP (x, 0)) == NEG)
4136 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4137 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4138 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4139 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4140 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4142 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4143 (truncate:SI x). */
4144 if (GET_CODE (XEXP (x, 0)) == SUBREG
4145 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4146 && subreg_lowpart_p (XEXP (x, 0)))
4147 return SUBREG_REG (XEXP (x, 0));
4149 /* If we know that the value is already truncated, we can
4150 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4151 is nonzero for the corresponding modes. But don't do this
4152 for an (LSHIFTRT (MULT ...)) since this will cause problems
4153 with the umulXi3_highpart patterns. */
4154 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4155 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4156 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4157 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4158 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4159 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4160 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4162 /* A truncate of a comparison can be replaced with a subreg if
4163 STORE_FLAG_VALUE permits. This is like the previous test,
4164 but it works even if the comparison is done in a mode larger
4165 than HOST_BITS_PER_WIDE_INT. */
4166 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4167 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4168 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4169 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4171 /* Similarly, a truncate of a register whose value is a
4172 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4173 permits. */
4174 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4175 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4176 && (temp = get_last_value (XEXP (x, 0)))
4177 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4178 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4180 break;
4182 case FLOAT_TRUNCATE:
4183 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4184 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4185 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4186 return XEXP (XEXP (x, 0), 0);
4188 /* (float_truncate:SF (float_truncate:DF foo:XF))
4189 = (float_truncate:SF foo:XF).
4190 This may elliminate double rounding, so it is unsafe.
4192 (float_truncate:SF (float_extend:XF foo:DF))
4193 = (float_truncate:SF foo:DF).
4195 (float_truncate:DF (float_extend:XF foo:SF))
4196 = (float_extend:SF foo:DF). */
4197 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4198 && flag_unsafe_math_optimizations)
4199 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4200 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4201 0)))
4202 > GET_MODE_SIZE (mode)
4203 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4204 mode,
4205 XEXP (XEXP (x, 0), 0), mode);
4207 /* (float_truncate (float x)) is (float x) */
4208 if (GET_CODE (XEXP (x, 0)) == FLOAT
4209 && (flag_unsafe_math_optimizations
4210 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4211 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4212 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4213 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4214 return simplify_gen_unary (FLOAT, mode,
4215 XEXP (XEXP (x, 0), 0),
4216 GET_MODE (XEXP (XEXP (x, 0), 0)));
4218 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4219 (OP:SF foo:SF) if OP is NEG or ABS. */
4220 if ((GET_CODE (XEXP (x, 0)) == ABS
4221 || GET_CODE (XEXP (x, 0)) == NEG)
4222 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4223 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4224 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4225 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4227 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4228 is (float_truncate:SF x). */
4229 if (GET_CODE (XEXP (x, 0)) == SUBREG
4230 && subreg_lowpart_p (XEXP (x, 0))
4231 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4232 return SUBREG_REG (XEXP (x, 0));
4233 break;
4234 case FLOAT_EXTEND:
4235 /* (float_extend (float_extend x)) is (float_extend x)
4237 (float_extend (float x)) is (float x) assuming that double
4238 rounding can't happen.
4240 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4241 || (GET_CODE (XEXP (x, 0)) == FLOAT
4242 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4243 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4244 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4245 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4246 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4247 XEXP (XEXP (x, 0), 0),
4248 GET_MODE (XEXP (XEXP (x, 0), 0)));
4250 break;
4251 #ifdef HAVE_cc0
4252 case COMPARE:
4253 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4254 using cc0, in which case we want to leave it as a COMPARE
4255 so we can distinguish it from a register-register-copy. */
4256 if (XEXP (x, 1) == const0_rtx)
4257 return XEXP (x, 0);
4259 /* x - 0 is the same as x unless x's mode has signed zeros and
4260 allows rounding towards -infinity. Under those conditions,
4261 0 - 0 is -0. */
4262 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4263 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4264 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4265 return XEXP (x, 0);
4266 break;
4267 #endif
4269 case CONST:
4270 /* (const (const X)) can become (const X). Do it this way rather than
4271 returning the inner CONST since CONST can be shared with a
4272 REG_EQUAL note. */
4273 if (GET_CODE (XEXP (x, 0)) == CONST)
4274 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4275 break;
4277 #ifdef HAVE_lo_sum
4278 case LO_SUM:
4279 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4280 can add in an offset. find_split_point will split this address up
4281 again if it doesn't match. */
4282 if (GET_CODE (XEXP (x, 0)) == HIGH
4283 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4284 return XEXP (x, 1);
4285 break;
4286 #endif
4288 case PLUS:
4289 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4291 if (GET_CODE (XEXP (x, 0)) == MULT
4292 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4294 rtx in1, in2;
4296 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4297 in2 = XEXP (XEXP (x, 0), 1);
4298 return gen_binary (MINUS, mode, XEXP (x, 1),
4299 gen_binary (MULT, mode, in1, in2));
4302 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4303 outermost. That's because that's the way indexed addresses are
4304 supposed to appear. This code used to check many more cases, but
4305 they are now checked elsewhere. */
4306 if (GET_CODE (XEXP (x, 0)) == PLUS
4307 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4308 return gen_binary (PLUS, mode,
4309 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4310 XEXP (x, 1)),
4311 XEXP (XEXP (x, 0), 1));
4313 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4314 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4315 bit-field and can be replaced by either a sign_extend or a
4316 sign_extract. The `and' may be a zero_extend and the two
4317 <c>, -<c> constants may be reversed. */
4318 if (GET_CODE (XEXP (x, 0)) == XOR
4319 && GET_CODE (XEXP (x, 1)) == CONST_INT
4320 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4321 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4322 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4323 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4324 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4325 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4326 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4327 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4328 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4329 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4330 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4331 == (unsigned int) i + 1))))
4332 return simplify_shift_const
4333 (NULL_RTX, ASHIFTRT, mode,
4334 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4335 XEXP (XEXP (XEXP (x, 0), 0), 0),
4336 GET_MODE_BITSIZE (mode) - (i + 1)),
4337 GET_MODE_BITSIZE (mode) - (i + 1));
4339 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4340 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4341 is 1. This produces better code than the alternative immediately
4342 below. */
4343 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4344 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4345 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4346 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4347 XEXP (XEXP (x, 0), 0),
4348 XEXP (XEXP (x, 0), 1))))
4349 return
4350 simplify_gen_unary (NEG, mode, reversed, mode);
4352 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4353 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4354 the bitsize of the mode - 1. This allows simplification of
4355 "a = (b & 8) == 0;" */
4356 if (XEXP (x, 1) == constm1_rtx
4357 && GET_CODE (XEXP (x, 0)) != REG
4358 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4359 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4360 && nonzero_bits (XEXP (x, 0), mode) == 1)
4361 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4362 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4363 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4364 GET_MODE_BITSIZE (mode) - 1),
4365 GET_MODE_BITSIZE (mode) - 1);
4367 /* If we are adding two things that have no bits in common, convert
4368 the addition into an IOR. This will often be further simplified,
4369 for example in cases like ((a & 1) + (a & 2)), which can
4370 become a & 3. */
4372 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4373 && (nonzero_bits (XEXP (x, 0), mode)
4374 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4376 /* Try to simplify the expression further. */
4377 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4378 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4380 /* If we could, great. If not, do not go ahead with the IOR
4381 replacement, since PLUS appears in many special purpose
4382 address arithmetic instructions. */
4383 if (GET_CODE (temp) != CLOBBER && temp != tor)
4384 return temp;
4386 break;
4388 case MINUS:
4389 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4390 by reversing the comparison code if valid. */
4391 if (STORE_FLAG_VALUE == 1
4392 && XEXP (x, 0) == const1_rtx
4393 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4394 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4395 XEXP (XEXP (x, 1), 0),
4396 XEXP (XEXP (x, 1), 1))))
4397 return reversed;
4399 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4400 (and <foo> (const_int pow2-1)) */
4401 if (GET_CODE (XEXP (x, 1)) == AND
4402 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4403 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4404 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4405 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4406 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4408 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4410 if (GET_CODE (XEXP (x, 1)) == MULT
4411 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4413 rtx in1, in2;
4415 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4416 in2 = XEXP (XEXP (x, 1), 1);
4417 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4418 XEXP (x, 0));
4421 /* Canonicalize (minus (neg A) (mult B C)) to
4422 (minus (mult (neg B) C) A). */
4423 if (GET_CODE (XEXP (x, 1)) == MULT
4424 && GET_CODE (XEXP (x, 0)) == NEG)
4426 rtx in1, in2;
4428 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4429 in2 = XEXP (XEXP (x, 1), 1);
4430 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4431 XEXP (XEXP (x, 0), 0));
4434 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4435 integers. */
4436 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4437 return gen_binary (MINUS, mode,
4438 gen_binary (MINUS, mode, XEXP (x, 0),
4439 XEXP (XEXP (x, 1), 0)),
4440 XEXP (XEXP (x, 1), 1));
4441 break;
4443 case MULT:
4444 /* If we have (mult (plus A B) C), apply the distributive law and then
4445 the inverse distributive law to see if things simplify. This
4446 occurs mostly in addresses, often when unrolling loops. */
4448 if (GET_CODE (XEXP (x, 0)) == PLUS)
4450 x = apply_distributive_law
4451 (gen_binary (PLUS, mode,
4452 gen_binary (MULT, mode,
4453 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4454 gen_binary (MULT, mode,
4455 XEXP (XEXP (x, 0), 1),
4456 copy_rtx (XEXP (x, 1)))));
4458 if (GET_CODE (x) != MULT)
4459 return x;
4461 /* Try simplify a*(b/c) as (a*b)/c. */
4462 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4463 && GET_CODE (XEXP (x, 0)) == DIV)
4465 rtx tem = simplify_binary_operation (MULT, mode,
4466 XEXP (XEXP (x, 0), 0),
4467 XEXP (x, 1));
4468 if (tem)
4469 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4471 break;
4473 case UDIV:
4474 /* If this is a divide by a power of two, treat it as a shift if
4475 its first operand is a shift. */
4476 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4477 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4478 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4479 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4480 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4481 || GET_CODE (XEXP (x, 0)) == ROTATE
4482 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4483 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4484 break;
4486 case EQ: case NE:
4487 case GT: case GTU: case GE: case GEU:
4488 case LT: case LTU: case LE: case LEU:
4489 case UNEQ: case LTGT:
4490 case UNGT: case UNGE:
4491 case UNLT: case UNLE:
4492 case UNORDERED: case ORDERED:
4493 /* If the first operand is a condition code, we can't do anything
4494 with it. */
4495 if (GET_CODE (XEXP (x, 0)) == COMPARE
4496 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4497 #ifdef HAVE_cc0
4498 && XEXP (x, 0) != cc0_rtx
4499 #endif
4502 rtx op0 = XEXP (x, 0);
4503 rtx op1 = XEXP (x, 1);
4504 enum rtx_code new_code;
4506 if (GET_CODE (op0) == COMPARE)
4507 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4509 /* Simplify our comparison, if possible. */
4510 new_code = simplify_comparison (code, &op0, &op1);
4512 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4513 if only the low-order bit is possibly nonzero in X (such as when
4514 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4515 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4516 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4517 (plus X 1).
4519 Remove any ZERO_EXTRACT we made when thinking this was a
4520 comparison. It may now be simpler to use, e.g., an AND. If a
4521 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4522 the call to make_compound_operation in the SET case. */
4524 if (STORE_FLAG_VALUE == 1
4525 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4526 && op1 == const0_rtx
4527 && mode == GET_MODE (op0)
4528 && nonzero_bits (op0, mode) == 1)
4529 return gen_lowpart_for_combine (mode,
4530 expand_compound_operation (op0));
4532 else if (STORE_FLAG_VALUE == 1
4533 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4534 && op1 == const0_rtx
4535 && mode == GET_MODE (op0)
4536 && (num_sign_bit_copies (op0, mode)
4537 == GET_MODE_BITSIZE (mode)))
4539 op0 = expand_compound_operation (op0);
4540 return simplify_gen_unary (NEG, mode,
4541 gen_lowpart_for_combine (mode, op0),
4542 mode);
4545 else if (STORE_FLAG_VALUE == 1
4546 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4547 && op1 == const0_rtx
4548 && mode == GET_MODE (op0)
4549 && nonzero_bits (op0, mode) == 1)
4551 op0 = expand_compound_operation (op0);
4552 return gen_binary (XOR, mode,
4553 gen_lowpart_for_combine (mode, op0),
4554 const1_rtx);
4557 else if (STORE_FLAG_VALUE == 1
4558 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4559 && op1 == const0_rtx
4560 && mode == GET_MODE (op0)
4561 && (num_sign_bit_copies (op0, mode)
4562 == GET_MODE_BITSIZE (mode)))
4564 op0 = expand_compound_operation (op0);
4565 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4568 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4569 those above. */
4570 if (STORE_FLAG_VALUE == -1
4571 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4572 && op1 == const0_rtx
4573 && (num_sign_bit_copies (op0, mode)
4574 == GET_MODE_BITSIZE (mode)))
4575 return gen_lowpart_for_combine (mode,
4576 expand_compound_operation (op0));
4578 else if (STORE_FLAG_VALUE == -1
4579 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4580 && op1 == const0_rtx
4581 && mode == GET_MODE (op0)
4582 && nonzero_bits (op0, mode) == 1)
4584 op0 = expand_compound_operation (op0);
4585 return simplify_gen_unary (NEG, mode,
4586 gen_lowpart_for_combine (mode, op0),
4587 mode);
4590 else if (STORE_FLAG_VALUE == -1
4591 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4592 && op1 == const0_rtx
4593 && mode == GET_MODE (op0)
4594 && (num_sign_bit_copies (op0, mode)
4595 == GET_MODE_BITSIZE (mode)))
4597 op0 = expand_compound_operation (op0);
4598 return simplify_gen_unary (NOT, mode,
4599 gen_lowpart_for_combine (mode, op0),
4600 mode);
4603 /* If X is 0/1, (eq X 0) is X-1. */
4604 else if (STORE_FLAG_VALUE == -1
4605 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4606 && op1 == const0_rtx
4607 && mode == GET_MODE (op0)
4608 && nonzero_bits (op0, mode) == 1)
4610 op0 = expand_compound_operation (op0);
4611 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4614 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4615 one bit that might be nonzero, we can convert (ne x 0) to
4616 (ashift x c) where C puts the bit in the sign bit. Remove any
4617 AND with STORE_FLAG_VALUE when we are done, since we are only
4618 going to test the sign bit. */
4619 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4620 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4621 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4622 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4623 && op1 == const0_rtx
4624 && mode == GET_MODE (op0)
4625 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4627 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4628 expand_compound_operation (op0),
4629 GET_MODE_BITSIZE (mode) - 1 - i);
4630 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4631 return XEXP (x, 0);
4632 else
4633 return x;
4636 /* If the code changed, return a whole new comparison. */
4637 if (new_code != code)
4638 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4640 /* Otherwise, keep this operation, but maybe change its operands.
4641 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4642 SUBST (XEXP (x, 0), op0);
4643 SUBST (XEXP (x, 1), op1);
4645 break;
4647 case IF_THEN_ELSE:
4648 return simplify_if_then_else (x);
4650 case ZERO_EXTRACT:
4651 case SIGN_EXTRACT:
4652 case ZERO_EXTEND:
4653 case SIGN_EXTEND:
4654 /* If we are processing SET_DEST, we are done. */
4655 if (in_dest)
4656 return x;
4658 return expand_compound_operation (x);
4660 case SET:
4661 return simplify_set (x);
4663 case AND:
4664 case IOR:
4665 case XOR:
4666 return simplify_logical (x, last);
4668 case ABS:
4669 /* (abs (neg <foo>)) -> (abs <foo>) */
4670 if (GET_CODE (XEXP (x, 0)) == NEG)
4671 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4673 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4674 do nothing. */
4675 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4676 break;
4678 /* If operand is something known to be positive, ignore the ABS. */
4679 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4680 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4681 <= HOST_BITS_PER_WIDE_INT)
4682 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4683 & ((HOST_WIDE_INT) 1
4684 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4685 == 0)))
4686 return XEXP (x, 0);
4688 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4689 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4690 return gen_rtx_NEG (mode, XEXP (x, 0));
4692 break;
4694 case FFS:
4695 /* (ffs (*_extend <X>)) = (ffs <X>) */
4696 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4697 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4698 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4699 break;
4701 case POPCOUNT:
4702 case PARITY:
4703 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4704 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4705 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4706 break;
4708 case FLOAT:
4709 /* (float (sign_extend <X>)) = (float <X>). */
4710 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4711 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4712 break;
4714 case ASHIFT:
4715 case LSHIFTRT:
4716 case ASHIFTRT:
4717 case ROTATE:
4718 case ROTATERT:
4719 /* If this is a shift by a constant amount, simplify it. */
4720 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4721 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4722 INTVAL (XEXP (x, 1)));
4724 #ifdef SHIFT_COUNT_TRUNCATED
4725 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4726 SUBST (XEXP (x, 1),
4727 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4728 ((HOST_WIDE_INT) 1
4729 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4730 - 1,
4731 NULL_RTX, 0));
4732 #endif
4734 break;
4736 case VEC_SELECT:
4738 rtx op0 = XEXP (x, 0);
4739 rtx op1 = XEXP (x, 1);
4740 int len;
4742 if (GET_CODE (op1) != PARALLEL)
4743 abort ();
4744 len = XVECLEN (op1, 0);
4745 if (len == 1
4746 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4747 && GET_CODE (op0) == VEC_CONCAT)
4749 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4751 /* Try to find the element in the VEC_CONCAT. */
4752 for (;;)
4754 if (GET_MODE (op0) == GET_MODE (x))
4755 return op0;
4756 if (GET_CODE (op0) == VEC_CONCAT)
4758 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4759 if (op0_size < offset)
4760 op0 = XEXP (op0, 0);
4761 else
4763 offset -= op0_size;
4764 op0 = XEXP (op0, 1);
4767 else
4768 break;
4773 break;
4775 default:
4776 break;
4779 return x;
4782 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4784 static rtx
4785 simplify_if_then_else (x)
4786 rtx x;
4788 enum machine_mode mode = GET_MODE (x);
4789 rtx cond = XEXP (x, 0);
4790 rtx true_rtx = XEXP (x, 1);
4791 rtx false_rtx = XEXP (x, 2);
4792 enum rtx_code true_code = GET_CODE (cond);
4793 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4794 rtx temp;
4795 int i;
4796 enum rtx_code false_code;
4797 rtx reversed;
4799 /* Simplify storing of the truth value. */
4800 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4801 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4803 /* Also when the truth value has to be reversed. */
4804 if (comparison_p
4805 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4806 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4807 XEXP (cond, 1))))
4808 return reversed;
4810 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4811 in it is being compared against certain values. Get the true and false
4812 comparisons and see if that says anything about the value of each arm. */
4814 if (comparison_p
4815 && ((false_code = combine_reversed_comparison_code (cond))
4816 != UNKNOWN)
4817 && GET_CODE (XEXP (cond, 0)) == REG)
4819 HOST_WIDE_INT nzb;
4820 rtx from = XEXP (cond, 0);
4821 rtx true_val = XEXP (cond, 1);
4822 rtx false_val = true_val;
4823 int swapped = 0;
4825 /* If FALSE_CODE is EQ, swap the codes and arms. */
4827 if (false_code == EQ)
4829 swapped = 1, true_code = EQ, false_code = NE;
4830 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4833 /* If we are comparing against zero and the expression being tested has
4834 only a single bit that might be nonzero, that is its value when it is
4835 not equal to zero. Similarly if it is known to be -1 or 0. */
4837 if (true_code == EQ && true_val == const0_rtx
4838 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4839 false_code = EQ, false_val = GEN_INT (nzb);
4840 else if (true_code == EQ && true_val == const0_rtx
4841 && (num_sign_bit_copies (from, GET_MODE (from))
4842 == GET_MODE_BITSIZE (GET_MODE (from))))
4843 false_code = EQ, false_val = constm1_rtx;
4845 /* Now simplify an arm if we know the value of the register in the
4846 branch and it is used in the arm. Be careful due to the potential
4847 of locally-shared RTL. */
4849 if (reg_mentioned_p (from, true_rtx))
4850 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4851 from, true_val),
4852 pc_rtx, pc_rtx, 0, 0);
4853 if (reg_mentioned_p (from, false_rtx))
4854 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4855 from, false_val),
4856 pc_rtx, pc_rtx, 0, 0);
4858 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4859 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4861 true_rtx = XEXP (x, 1);
4862 false_rtx = XEXP (x, 2);
4863 true_code = GET_CODE (cond);
4866 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4867 reversed, do so to avoid needing two sets of patterns for
4868 subtract-and-branch insns. Similarly if we have a constant in the true
4869 arm, the false arm is the same as the first operand of the comparison, or
4870 the false arm is more complicated than the true arm. */
4872 if (comparison_p
4873 && combine_reversed_comparison_code (cond) != UNKNOWN
4874 && (true_rtx == pc_rtx
4875 || (CONSTANT_P (true_rtx)
4876 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4877 || true_rtx == const0_rtx
4878 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4879 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4880 || (GET_CODE (true_rtx) == SUBREG
4881 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4882 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4883 || reg_mentioned_p (true_rtx, false_rtx)
4884 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4886 true_code = reversed_comparison_code (cond, NULL);
4887 SUBST (XEXP (x, 0),
4888 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4889 XEXP (cond, 1)));
4891 SUBST (XEXP (x, 1), false_rtx);
4892 SUBST (XEXP (x, 2), true_rtx);
4894 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4895 cond = XEXP (x, 0);
4897 /* It is possible that the conditional has been simplified out. */
4898 true_code = GET_CODE (cond);
4899 comparison_p = GET_RTX_CLASS (true_code) == '<';
4902 /* If the two arms are identical, we don't need the comparison. */
4904 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4905 return true_rtx;
4907 /* Convert a == b ? b : a to "a". */
4908 if (true_code == EQ && ! side_effects_p (cond)
4909 && !HONOR_NANS (mode)
4910 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4911 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4912 return false_rtx;
4913 else if (true_code == NE && ! side_effects_p (cond)
4914 && !HONOR_NANS (mode)
4915 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4916 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4917 return true_rtx;
4919 /* Look for cases where we have (abs x) or (neg (abs X)). */
4921 if (GET_MODE_CLASS (mode) == MODE_INT
4922 && GET_CODE (false_rtx) == NEG
4923 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4924 && comparison_p
4925 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4926 && ! side_effects_p (true_rtx))
4927 switch (true_code)
4929 case GT:
4930 case GE:
4931 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4932 case LT:
4933 case LE:
4934 return
4935 simplify_gen_unary (NEG, mode,
4936 simplify_gen_unary (ABS, mode, true_rtx, mode),
4937 mode);
4938 default:
4939 break;
4942 /* Look for MIN or MAX. */
4944 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4945 && comparison_p
4946 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4947 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4948 && ! side_effects_p (cond))
4949 switch (true_code)
4951 case GE:
4952 case GT:
4953 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4954 case LE:
4955 case LT:
4956 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4957 case GEU:
4958 case GTU:
4959 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4960 case LEU:
4961 case LTU:
4962 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4963 default:
4964 break;
4967 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4968 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4969 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4970 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4971 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4972 neither 1 or -1, but it isn't worth checking for. */
4974 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4975 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4977 rtx t = make_compound_operation (true_rtx, SET);
4978 rtx f = make_compound_operation (false_rtx, SET);
4979 rtx cond_op0 = XEXP (cond, 0);
4980 rtx cond_op1 = XEXP (cond, 1);
4981 enum rtx_code op = NIL, extend_op = NIL;
4982 enum machine_mode m = mode;
4983 rtx z = 0, c1 = NULL_RTX;
4985 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4986 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4987 || GET_CODE (t) == ASHIFT
4988 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4989 && rtx_equal_p (XEXP (t, 0), f))
4990 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4992 /* If an identity-zero op is commutative, check whether there
4993 would be a match if we swapped the operands. */
4994 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4995 || GET_CODE (t) == XOR)
4996 && rtx_equal_p (XEXP (t, 1), f))
4997 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4998 else if (GET_CODE (t) == SIGN_EXTEND
4999 && (GET_CODE (XEXP (t, 0)) == PLUS
5000 || GET_CODE (XEXP (t, 0)) == MINUS
5001 || GET_CODE (XEXP (t, 0)) == IOR
5002 || GET_CODE (XEXP (t, 0)) == XOR
5003 || GET_CODE (XEXP (t, 0)) == ASHIFT
5004 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5005 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5006 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5007 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5008 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5009 && (num_sign_bit_copies (f, GET_MODE (f))
5010 > (unsigned int)
5011 (GET_MODE_BITSIZE (mode)
5012 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5014 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5015 extend_op = SIGN_EXTEND;
5016 m = GET_MODE (XEXP (t, 0));
5018 else if (GET_CODE (t) == SIGN_EXTEND
5019 && (GET_CODE (XEXP (t, 0)) == PLUS
5020 || GET_CODE (XEXP (t, 0)) == IOR
5021 || GET_CODE (XEXP (t, 0)) == XOR)
5022 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5023 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5024 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5025 && (num_sign_bit_copies (f, GET_MODE (f))
5026 > (unsigned int)
5027 (GET_MODE_BITSIZE (mode)
5028 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5030 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5031 extend_op = SIGN_EXTEND;
5032 m = GET_MODE (XEXP (t, 0));
5034 else if (GET_CODE (t) == ZERO_EXTEND
5035 && (GET_CODE (XEXP (t, 0)) == PLUS
5036 || GET_CODE (XEXP (t, 0)) == MINUS
5037 || GET_CODE (XEXP (t, 0)) == IOR
5038 || GET_CODE (XEXP (t, 0)) == XOR
5039 || GET_CODE (XEXP (t, 0)) == ASHIFT
5040 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5041 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5042 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5043 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5044 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5045 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5046 && ((nonzero_bits (f, GET_MODE (f))
5047 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5048 == 0))
5050 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5051 extend_op = ZERO_EXTEND;
5052 m = GET_MODE (XEXP (t, 0));
5054 else if (GET_CODE (t) == ZERO_EXTEND
5055 && (GET_CODE (XEXP (t, 0)) == PLUS
5056 || GET_CODE (XEXP (t, 0)) == IOR
5057 || GET_CODE (XEXP (t, 0)) == XOR)
5058 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5059 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5060 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5061 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5062 && ((nonzero_bits (f, GET_MODE (f))
5063 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5064 == 0))
5066 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5067 extend_op = ZERO_EXTEND;
5068 m = GET_MODE (XEXP (t, 0));
5071 if (z)
5073 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5074 pc_rtx, pc_rtx, 0, 0);
5075 temp = gen_binary (MULT, m, temp,
5076 gen_binary (MULT, m, c1, const_true_rtx));
5077 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5078 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
5080 if (extend_op != NIL)
5081 temp = simplify_gen_unary (extend_op, mode, temp, m);
5083 return temp;
5087 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5088 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5089 negation of a single bit, we can convert this operation to a shift. We
5090 can actually do this more generally, but it doesn't seem worth it. */
5092 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5093 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5094 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5095 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5096 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5097 == GET_MODE_BITSIZE (mode))
5098 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5099 return
5100 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5101 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5103 return x;
5106 /* Simplify X, a SET expression. Return the new expression. */
5108 static rtx
5109 simplify_set (x)
5110 rtx x;
5112 rtx src = SET_SRC (x);
5113 rtx dest = SET_DEST (x);
5114 enum machine_mode mode
5115 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5116 rtx other_insn;
5117 rtx *cc_use;
5119 /* (set (pc) (return)) gets written as (return). */
5120 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5121 return src;
5123 /* Now that we know for sure which bits of SRC we are using, see if we can
5124 simplify the expression for the object knowing that we only need the
5125 low-order bits. */
5127 if (GET_MODE_CLASS (mode) == MODE_INT
5128 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5130 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5131 SUBST (SET_SRC (x), src);
5134 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5135 the comparison result and try to simplify it unless we already have used
5136 undobuf.other_insn. */
5137 if ((GET_MODE_CLASS (mode) == MODE_CC
5138 || GET_CODE (src) == COMPARE
5139 || CC0_P (dest))
5140 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5141 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5142 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5143 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5145 enum rtx_code old_code = GET_CODE (*cc_use);
5146 enum rtx_code new_code;
5147 rtx op0, op1, tmp;
5148 int other_changed = 0;
5149 enum machine_mode compare_mode = GET_MODE (dest);
5150 enum machine_mode tmp_mode;
5152 if (GET_CODE (src) == COMPARE)
5153 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5154 else
5155 op0 = src, op1 = const0_rtx;
5157 /* Check whether the comparison is known at compile time. */
5158 if (GET_MODE (op0) != VOIDmode)
5159 tmp_mode = GET_MODE (op0);
5160 else if (GET_MODE (op1) != VOIDmode)
5161 tmp_mode = GET_MODE (op1);
5162 else
5163 tmp_mode = compare_mode;
5164 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5165 if (tmp != NULL_RTX)
5167 rtx pat = PATTERN (other_insn);
5168 undobuf.other_insn = other_insn;
5169 SUBST (*cc_use, tmp);
5171 /* Attempt to simplify CC user. */
5172 if (GET_CODE (pat) == SET)
5174 rtx new = simplify_rtx (SET_SRC (pat));
5175 if (new != NULL_RTX)
5176 SUBST (SET_SRC (pat), new);
5179 /* Convert X into a no-op move. */
5180 SUBST (SET_DEST (x), pc_rtx);
5181 SUBST (SET_SRC (x), pc_rtx);
5182 return x;
5185 /* Simplify our comparison, if possible. */
5186 new_code = simplify_comparison (old_code, &op0, &op1);
5188 #ifdef EXTRA_CC_MODES
5189 /* If this machine has CC modes other than CCmode, check to see if we
5190 need to use a different CC mode here. */
5191 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5192 #endif /* EXTRA_CC_MODES */
5194 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5195 /* If the mode changed, we have to change SET_DEST, the mode in the
5196 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5197 a hard register, just build new versions with the proper mode. If it
5198 is a pseudo, we lose unless it is only time we set the pseudo, in
5199 which case we can safely change its mode. */
5200 if (compare_mode != GET_MODE (dest))
5202 unsigned int regno = REGNO (dest);
5203 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5205 if (regno < FIRST_PSEUDO_REGISTER
5206 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5208 if (regno >= FIRST_PSEUDO_REGISTER)
5209 SUBST (regno_reg_rtx[regno], new_dest);
5211 SUBST (SET_DEST (x), new_dest);
5212 SUBST (XEXP (*cc_use, 0), new_dest);
5213 other_changed = 1;
5215 dest = new_dest;
5218 #endif
5220 /* If the code changed, we have to build a new comparison in
5221 undobuf.other_insn. */
5222 if (new_code != old_code)
5224 unsigned HOST_WIDE_INT mask;
5226 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5227 dest, const0_rtx));
5229 /* If the only change we made was to change an EQ into an NE or
5230 vice versa, OP0 has only one bit that might be nonzero, and OP1
5231 is zero, check if changing the user of the condition code will
5232 produce a valid insn. If it won't, we can keep the original code
5233 in that insn by surrounding our operation with an XOR. */
5235 if (((old_code == NE && new_code == EQ)
5236 || (old_code == EQ && new_code == NE))
5237 && ! other_changed && op1 == const0_rtx
5238 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5239 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5241 rtx pat = PATTERN (other_insn), note = 0;
5243 if ((recog_for_combine (&pat, other_insn, &note) < 0
5244 && ! check_asm_operands (pat)))
5246 PUT_CODE (*cc_use, old_code);
5247 other_insn = 0;
5249 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5253 other_changed = 1;
5256 if (other_changed)
5257 undobuf.other_insn = other_insn;
5259 #ifdef HAVE_cc0
5260 /* If we are now comparing against zero, change our source if
5261 needed. If we do not use cc0, we always have a COMPARE. */
5262 if (op1 == const0_rtx && dest == cc0_rtx)
5264 SUBST (SET_SRC (x), op0);
5265 src = op0;
5267 else
5268 #endif
5270 /* Otherwise, if we didn't previously have a COMPARE in the
5271 correct mode, we need one. */
5272 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5274 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5275 src = SET_SRC (x);
5277 else
5279 /* Otherwise, update the COMPARE if needed. */
5280 SUBST (XEXP (src, 0), op0);
5281 SUBST (XEXP (src, 1), op1);
5284 else
5286 /* Get SET_SRC in a form where we have placed back any
5287 compound expressions. Then do the checks below. */
5288 src = make_compound_operation (src, SET);
5289 SUBST (SET_SRC (x), src);
5292 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5293 and X being a REG or (subreg (reg)), we may be able to convert this to
5294 (set (subreg:m2 x) (op)).
5296 We can always do this if M1 is narrower than M2 because that means that
5297 we only care about the low bits of the result.
5299 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5300 perform a narrower operation than requested since the high-order bits will
5301 be undefined. On machine where it is defined, this transformation is safe
5302 as long as M1 and M2 have the same number of words. */
5304 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5305 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5306 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5307 / UNITS_PER_WORD)
5308 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5309 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5310 #ifndef WORD_REGISTER_OPERATIONS
5311 && (GET_MODE_SIZE (GET_MODE (src))
5312 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5313 #endif
5314 #ifdef CANNOT_CHANGE_MODE_CLASS
5315 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5316 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5317 GET_MODE (SUBREG_REG (src)),
5318 GET_MODE (src)))
5319 #endif
5320 && (GET_CODE (dest) == REG
5321 || (GET_CODE (dest) == SUBREG
5322 && GET_CODE (SUBREG_REG (dest)) == REG)))
5324 SUBST (SET_DEST (x),
5325 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5326 dest));
5327 SUBST (SET_SRC (x), SUBREG_REG (src));
5329 src = SET_SRC (x), dest = SET_DEST (x);
5332 #ifdef HAVE_cc0
5333 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5334 in SRC. */
5335 if (dest == cc0_rtx
5336 && GET_CODE (src) == SUBREG
5337 && subreg_lowpart_p (src)
5338 && (GET_MODE_BITSIZE (GET_MODE (src))
5339 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5341 rtx inner = SUBREG_REG (src);
5342 enum machine_mode inner_mode = GET_MODE (inner);
5344 /* Here we make sure that we don't have a sign bit on. */
5345 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5346 && (nonzero_bits (inner, inner_mode)
5347 < ((unsigned HOST_WIDE_INT) 1
5348 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5350 SUBST (SET_SRC (x), inner);
5351 src = SET_SRC (x);
5354 #endif
5356 #ifdef LOAD_EXTEND_OP
5357 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5358 would require a paradoxical subreg. Replace the subreg with a
5359 zero_extend to avoid the reload that would otherwise be required. */
5361 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5362 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5363 && SUBREG_BYTE (src) == 0
5364 && (GET_MODE_SIZE (GET_MODE (src))
5365 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5366 && GET_CODE (SUBREG_REG (src)) == MEM)
5368 SUBST (SET_SRC (x),
5369 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5370 GET_MODE (src), SUBREG_REG (src)));
5372 src = SET_SRC (x);
5374 #endif
5376 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5377 are comparing an item known to be 0 or -1 against 0, use a logical
5378 operation instead. Check for one of the arms being an IOR of the other
5379 arm with some value. We compute three terms to be IOR'ed together. In
5380 practice, at most two will be nonzero. Then we do the IOR's. */
5382 if (GET_CODE (dest) != PC
5383 && GET_CODE (src) == IF_THEN_ELSE
5384 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5385 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5386 && XEXP (XEXP (src, 0), 1) == const0_rtx
5387 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5388 #ifdef HAVE_conditional_move
5389 && ! can_conditionally_move_p (GET_MODE (src))
5390 #endif
5391 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5392 GET_MODE (XEXP (XEXP (src, 0), 0)))
5393 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5394 && ! side_effects_p (src))
5396 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5397 ? XEXP (src, 1) : XEXP (src, 2));
5398 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5399 ? XEXP (src, 2) : XEXP (src, 1));
5400 rtx term1 = const0_rtx, term2, term3;
5402 if (GET_CODE (true_rtx) == IOR
5403 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5404 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5405 else if (GET_CODE (true_rtx) == IOR
5406 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5407 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5408 else if (GET_CODE (false_rtx) == IOR
5409 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5410 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5411 else if (GET_CODE (false_rtx) == IOR
5412 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5413 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5415 term2 = gen_binary (AND, GET_MODE (src),
5416 XEXP (XEXP (src, 0), 0), true_rtx);
5417 term3 = gen_binary (AND, GET_MODE (src),
5418 simplify_gen_unary (NOT, GET_MODE (src),
5419 XEXP (XEXP (src, 0), 0),
5420 GET_MODE (src)),
5421 false_rtx);
5423 SUBST (SET_SRC (x),
5424 gen_binary (IOR, GET_MODE (src),
5425 gen_binary (IOR, GET_MODE (src), term1, term2),
5426 term3));
5428 src = SET_SRC (x);
5431 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5432 whole thing fail. */
5433 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5434 return src;
5435 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5436 return dest;
5437 else
5438 /* Convert this into a field assignment operation, if possible. */
5439 return make_field_assignment (x);
5442 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5443 result. LAST is nonzero if this is the last retry. */
5445 static rtx
5446 simplify_logical (x, last)
5447 rtx x;
5448 int last;
5450 enum machine_mode mode = GET_MODE (x);
5451 rtx op0 = XEXP (x, 0);
5452 rtx op1 = XEXP (x, 1);
5453 rtx reversed;
5455 switch (GET_CODE (x))
5457 case AND:
5458 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5459 insn (and may simplify more). */
5460 if (GET_CODE (op0) == XOR
5461 && rtx_equal_p (XEXP (op0, 0), op1)
5462 && ! side_effects_p (op1))
5463 x = gen_binary (AND, mode,
5464 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5465 op1);
5467 if (GET_CODE (op0) == XOR
5468 && rtx_equal_p (XEXP (op0, 1), op1)
5469 && ! side_effects_p (op1))
5470 x = gen_binary (AND, mode,
5471 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5472 op1);
5474 /* Similarly for (~(A ^ B)) & A. */
5475 if (GET_CODE (op0) == NOT
5476 && GET_CODE (XEXP (op0, 0)) == XOR
5477 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5478 && ! side_effects_p (op1))
5479 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5481 if (GET_CODE (op0) == NOT
5482 && GET_CODE (XEXP (op0, 0)) == XOR
5483 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5484 && ! side_effects_p (op1))
5485 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5487 /* We can call simplify_and_const_int only if we don't lose
5488 any (sign) bits when converting INTVAL (op1) to
5489 "unsigned HOST_WIDE_INT". */
5490 if (GET_CODE (op1) == CONST_INT
5491 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5492 || INTVAL (op1) > 0))
5494 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5496 /* If we have (ior (and (X C1) C2)) and the next restart would be
5497 the last, simplify this by making C1 as small as possible
5498 and then exit. */
5499 if (last
5500 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5501 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5502 && GET_CODE (op1) == CONST_INT)
5503 return gen_binary (IOR, mode,
5504 gen_binary (AND, mode, XEXP (op0, 0),
5505 GEN_INT (INTVAL (XEXP (op0, 1))
5506 & ~INTVAL (op1))), op1);
5508 if (GET_CODE (x) != AND)
5509 return x;
5511 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5512 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5513 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5516 /* Convert (A | B) & A to A. */
5517 if (GET_CODE (op0) == IOR
5518 && (rtx_equal_p (XEXP (op0, 0), op1)
5519 || rtx_equal_p (XEXP (op0, 1), op1))
5520 && ! side_effects_p (XEXP (op0, 0))
5521 && ! side_effects_p (XEXP (op0, 1)))
5522 return op1;
5524 /* In the following group of tests (and those in case IOR below),
5525 we start with some combination of logical operations and apply
5526 the distributive law followed by the inverse distributive law.
5527 Most of the time, this results in no change. However, if some of
5528 the operands are the same or inverses of each other, simplifications
5529 will result.
5531 For example, (and (ior A B) (not B)) can occur as the result of
5532 expanding a bit field assignment. When we apply the distributive
5533 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5534 which then simplifies to (and (A (not B))).
5536 If we have (and (ior A B) C), apply the distributive law and then
5537 the inverse distributive law to see if things simplify. */
5539 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5541 x = apply_distributive_law
5542 (gen_binary (GET_CODE (op0), mode,
5543 gen_binary (AND, mode, XEXP (op0, 0), op1),
5544 gen_binary (AND, mode, XEXP (op0, 1),
5545 copy_rtx (op1))));
5546 if (GET_CODE (x) != AND)
5547 return x;
5550 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5551 return apply_distributive_law
5552 (gen_binary (GET_CODE (op1), mode,
5553 gen_binary (AND, mode, XEXP (op1, 0), op0),
5554 gen_binary (AND, mode, XEXP (op1, 1),
5555 copy_rtx (op0))));
5557 /* Similarly, taking advantage of the fact that
5558 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5560 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5561 return apply_distributive_law
5562 (gen_binary (XOR, mode,
5563 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5564 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5565 XEXP (op1, 1))));
5567 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5568 return apply_distributive_law
5569 (gen_binary (XOR, mode,
5570 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5571 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5572 break;
5574 case IOR:
5575 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5576 if (GET_CODE (op1) == CONST_INT
5577 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5578 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5579 return op1;
5581 /* Convert (A & B) | A to A. */
5582 if (GET_CODE (op0) == AND
5583 && (rtx_equal_p (XEXP (op0, 0), op1)
5584 || rtx_equal_p (XEXP (op0, 1), op1))
5585 && ! side_effects_p (XEXP (op0, 0))
5586 && ! side_effects_p (XEXP (op0, 1)))
5587 return op1;
5589 /* If we have (ior (and A B) C), apply the distributive law and then
5590 the inverse distributive law to see if things simplify. */
5592 if (GET_CODE (op0) == AND)
5594 x = apply_distributive_law
5595 (gen_binary (AND, mode,
5596 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5597 gen_binary (IOR, mode, XEXP (op0, 1),
5598 copy_rtx (op1))));
5600 if (GET_CODE (x) != IOR)
5601 return x;
5604 if (GET_CODE (op1) == AND)
5606 x = apply_distributive_law
5607 (gen_binary (AND, mode,
5608 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5609 gen_binary (IOR, mode, XEXP (op1, 1),
5610 copy_rtx (op0))));
5612 if (GET_CODE (x) != IOR)
5613 return x;
5616 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5617 mode size to (rotate A CX). */
5619 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5620 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5621 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5622 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5623 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5624 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5625 == GET_MODE_BITSIZE (mode)))
5626 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5627 (GET_CODE (op0) == ASHIFT
5628 ? XEXP (op0, 1) : XEXP (op1, 1)));
5630 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5631 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5632 does not affect any of the bits in OP1, it can really be done
5633 as a PLUS and we can associate. We do this by seeing if OP1
5634 can be safely shifted left C bits. */
5635 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5636 && GET_CODE (XEXP (op0, 0)) == PLUS
5637 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5638 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5639 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5641 int count = INTVAL (XEXP (op0, 1));
5642 HOST_WIDE_INT mask = INTVAL (op1) << count;
5644 if (mask >> count == INTVAL (op1)
5645 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5647 SUBST (XEXP (XEXP (op0, 0), 1),
5648 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5649 return op0;
5652 break;
5654 case XOR:
5655 /* If we are XORing two things that have no bits in common,
5656 convert them into an IOR. This helps to detect rotation encoded
5657 using those methods and possibly other simplifications. */
5659 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5660 && (nonzero_bits (op0, mode)
5661 & nonzero_bits (op1, mode)) == 0)
5662 return (gen_binary (IOR, mode, op0, op1));
5664 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5665 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5666 (NOT y). */
5668 int num_negated = 0;
5670 if (GET_CODE (op0) == NOT)
5671 num_negated++, op0 = XEXP (op0, 0);
5672 if (GET_CODE (op1) == NOT)
5673 num_negated++, op1 = XEXP (op1, 0);
5675 if (num_negated == 2)
5677 SUBST (XEXP (x, 0), op0);
5678 SUBST (XEXP (x, 1), op1);
5680 else if (num_negated == 1)
5681 return
5682 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5683 mode);
5686 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5687 correspond to a machine insn or result in further simplifications
5688 if B is a constant. */
5690 if (GET_CODE (op0) == AND
5691 && rtx_equal_p (XEXP (op0, 1), op1)
5692 && ! side_effects_p (op1))
5693 return gen_binary (AND, mode,
5694 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5695 op1);
5697 else if (GET_CODE (op0) == AND
5698 && rtx_equal_p (XEXP (op0, 0), op1)
5699 && ! side_effects_p (op1))
5700 return gen_binary (AND, mode,
5701 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5702 op1);
5704 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5705 comparison if STORE_FLAG_VALUE is 1. */
5706 if (STORE_FLAG_VALUE == 1
5707 && op1 == const1_rtx
5708 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5709 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5710 XEXP (op0, 1))))
5711 return reversed;
5713 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5714 is (lt foo (const_int 0)), so we can perform the above
5715 simplification if STORE_FLAG_VALUE is 1. */
5717 if (STORE_FLAG_VALUE == 1
5718 && op1 == const1_rtx
5719 && GET_CODE (op0) == LSHIFTRT
5720 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5721 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5722 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5724 /* (xor (comparison foo bar) (const_int sign-bit))
5725 when STORE_FLAG_VALUE is the sign bit. */
5726 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5727 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5728 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5729 && op1 == const_true_rtx
5730 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5731 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5732 XEXP (op0, 1))))
5733 return reversed;
5735 break;
5737 default:
5738 abort ();
5741 return x;
5744 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5745 operations" because they can be replaced with two more basic operations.
5746 ZERO_EXTEND is also considered "compound" because it can be replaced with
5747 an AND operation, which is simpler, though only one operation.
5749 The function expand_compound_operation is called with an rtx expression
5750 and will convert it to the appropriate shifts and AND operations,
5751 simplifying at each stage.
5753 The function make_compound_operation is called to convert an expression
5754 consisting of shifts and ANDs into the equivalent compound expression.
5755 It is the inverse of this function, loosely speaking. */
5757 static rtx
5758 expand_compound_operation (x)
5759 rtx x;
5761 unsigned HOST_WIDE_INT pos = 0, len;
5762 int unsignedp = 0;
5763 unsigned int modewidth;
5764 rtx tem;
5766 switch (GET_CODE (x))
5768 case ZERO_EXTEND:
5769 unsignedp = 1;
5770 case SIGN_EXTEND:
5771 /* We can't necessarily use a const_int for a multiword mode;
5772 it depends on implicitly extending the value.
5773 Since we don't know the right way to extend it,
5774 we can't tell whether the implicit way is right.
5776 Even for a mode that is no wider than a const_int,
5777 we can't win, because we need to sign extend one of its bits through
5778 the rest of it, and we don't know which bit. */
5779 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5780 return x;
5782 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5783 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5784 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5785 reloaded. If not for that, MEM's would very rarely be safe.
5787 Reject MODEs bigger than a word, because we might not be able
5788 to reference a two-register group starting with an arbitrary register
5789 (and currently gen_lowpart might crash for a SUBREG). */
5791 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5792 return x;
5794 /* Reject MODEs that aren't scalar integers because turning vector
5795 or complex modes into shifts causes problems. */
5797 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5798 return x;
5800 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5801 /* If the inner object has VOIDmode (the only way this can happen
5802 is if it is an ASM_OPERANDS), we can't do anything since we don't
5803 know how much masking to do. */
5804 if (len == 0)
5805 return x;
5807 break;
5809 case ZERO_EXTRACT:
5810 unsignedp = 1;
5811 case SIGN_EXTRACT:
5812 /* If the operand is a CLOBBER, just return it. */
5813 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5814 return XEXP (x, 0);
5816 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5817 || GET_CODE (XEXP (x, 2)) != CONST_INT
5818 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5819 return x;
5821 /* Reject MODEs that aren't scalar integers because turning vector
5822 or complex modes into shifts causes problems. */
5824 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5825 return x;
5827 len = INTVAL (XEXP (x, 1));
5828 pos = INTVAL (XEXP (x, 2));
5830 /* If this goes outside the object being extracted, replace the object
5831 with a (use (mem ...)) construct that only combine understands
5832 and is used only for this purpose. */
5833 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5834 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5836 if (BITS_BIG_ENDIAN)
5837 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5839 break;
5841 default:
5842 return x;
5844 /* Convert sign extension to zero extension, if we know that the high
5845 bit is not set, as this is easier to optimize. It will be converted
5846 back to cheaper alternative in make_extraction. */
5847 if (GET_CODE (x) == SIGN_EXTEND
5848 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5849 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5850 & ~(((unsigned HOST_WIDE_INT)
5851 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5852 >> 1))
5853 == 0)))
5855 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5856 return expand_compound_operation (temp);
5859 /* We can optimize some special cases of ZERO_EXTEND. */
5860 if (GET_CODE (x) == ZERO_EXTEND)
5862 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5863 know that the last value didn't have any inappropriate bits
5864 set. */
5865 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5866 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5867 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5868 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5869 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5870 return XEXP (XEXP (x, 0), 0);
5872 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5873 if (GET_CODE (XEXP (x, 0)) == SUBREG
5874 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5875 && subreg_lowpart_p (XEXP (x, 0))
5876 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5877 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5878 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5879 return SUBREG_REG (XEXP (x, 0));
5881 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5882 is a comparison and STORE_FLAG_VALUE permits. This is like
5883 the first case, but it works even when GET_MODE (x) is larger
5884 than HOST_WIDE_INT. */
5885 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5886 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5887 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5888 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5889 <= HOST_BITS_PER_WIDE_INT)
5890 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5891 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5892 return XEXP (XEXP (x, 0), 0);
5894 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5895 if (GET_CODE (XEXP (x, 0)) == SUBREG
5896 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5897 && subreg_lowpart_p (XEXP (x, 0))
5898 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5899 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5900 <= HOST_BITS_PER_WIDE_INT)
5901 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5902 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5903 return SUBREG_REG (XEXP (x, 0));
5907 /* If we reach here, we want to return a pair of shifts. The inner
5908 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5909 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5910 logical depending on the value of UNSIGNEDP.
5912 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5913 converted into an AND of a shift.
5915 We must check for the case where the left shift would have a negative
5916 count. This can happen in a case like (x >> 31) & 255 on machines
5917 that can't shift by a constant. On those machines, we would first
5918 combine the shift with the AND to produce a variable-position
5919 extraction. Then the constant of 31 would be substituted in to produce
5920 a such a position. */
5922 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5923 if (modewidth + len >= pos)
5924 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5925 GET_MODE (x),
5926 simplify_shift_const (NULL_RTX, ASHIFT,
5927 GET_MODE (x),
5928 XEXP (x, 0),
5929 modewidth - pos - len),
5930 modewidth - len);
5932 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5933 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5934 simplify_shift_const (NULL_RTX, LSHIFTRT,
5935 GET_MODE (x),
5936 XEXP (x, 0), pos),
5937 ((HOST_WIDE_INT) 1 << len) - 1);
5938 else
5939 /* Any other cases we can't handle. */
5940 return x;
5942 /* If we couldn't do this for some reason, return the original
5943 expression. */
5944 if (GET_CODE (tem) == CLOBBER)
5945 return x;
5947 return tem;
5950 /* X is a SET which contains an assignment of one object into
5951 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5952 or certain SUBREGS). If possible, convert it into a series of
5953 logical operations.
5955 We half-heartedly support variable positions, but do not at all
5956 support variable lengths. */
5958 static rtx
5959 expand_field_assignment (x)
5960 rtx x;
5962 rtx inner;
5963 rtx pos; /* Always counts from low bit. */
5964 int len;
5965 rtx mask;
5966 enum machine_mode compute_mode;
5968 /* Loop until we find something we can't simplify. */
5969 while (1)
5971 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5972 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5974 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5975 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5976 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5978 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5979 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5981 inner = XEXP (SET_DEST (x), 0);
5982 len = INTVAL (XEXP (SET_DEST (x), 1));
5983 pos = XEXP (SET_DEST (x), 2);
5985 /* If the position is constant and spans the width of INNER,
5986 surround INNER with a USE to indicate this. */
5987 if (GET_CODE (pos) == CONST_INT
5988 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5989 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5991 if (BITS_BIG_ENDIAN)
5993 if (GET_CODE (pos) == CONST_INT)
5994 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5995 - INTVAL (pos));
5996 else if (GET_CODE (pos) == MINUS
5997 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5998 && (INTVAL (XEXP (pos, 1))
5999 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6000 /* If position is ADJUST - X, new position is X. */
6001 pos = XEXP (pos, 0);
6002 else
6003 pos = gen_binary (MINUS, GET_MODE (pos),
6004 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
6005 - len),
6006 pos);
6010 /* A SUBREG between two modes that occupy the same numbers of words
6011 can be done by moving the SUBREG to the source. */
6012 else if (GET_CODE (SET_DEST (x)) == SUBREG
6013 /* We need SUBREGs to compute nonzero_bits properly. */
6014 && nonzero_sign_valid
6015 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6016 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6017 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6018 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6020 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6021 gen_lowpart_for_combine
6022 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6023 SET_SRC (x)));
6024 continue;
6026 else
6027 break;
6029 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6030 inner = SUBREG_REG (inner);
6032 compute_mode = GET_MODE (inner);
6034 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6035 if (! SCALAR_INT_MODE_P (compute_mode))
6037 enum machine_mode imode;
6039 /* Don't do anything for vector or complex integral types. */
6040 if (! FLOAT_MODE_P (compute_mode))
6041 break;
6043 /* Try to find an integral mode to pun with. */
6044 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6045 if (imode == BLKmode)
6046 break;
6048 compute_mode = imode;
6049 inner = gen_lowpart_for_combine (imode, inner);
6052 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6053 if (len < HOST_BITS_PER_WIDE_INT)
6054 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6055 else
6056 break;
6058 /* Now compute the equivalent expression. Make a copy of INNER
6059 for the SET_DEST in case it is a MEM into which we will substitute;
6060 we don't want shared RTL in that case. */
6061 x = gen_rtx_SET
6062 (VOIDmode, copy_rtx (inner),
6063 gen_binary (IOR, compute_mode,
6064 gen_binary (AND, compute_mode,
6065 simplify_gen_unary (NOT, compute_mode,
6066 gen_binary (ASHIFT,
6067 compute_mode,
6068 mask, pos),
6069 compute_mode),
6070 inner),
6071 gen_binary (ASHIFT, compute_mode,
6072 gen_binary (AND, compute_mode,
6073 gen_lowpart_for_combine
6074 (compute_mode, SET_SRC (x)),
6075 mask),
6076 pos)));
6079 return x;
6082 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6083 it is an RTX that represents a variable starting position; otherwise,
6084 POS is the (constant) starting bit position (counted from the LSB).
6086 INNER may be a USE. This will occur when we started with a bitfield
6087 that went outside the boundary of the object in memory, which is
6088 allowed on most machines. To isolate this case, we produce a USE
6089 whose mode is wide enough and surround the MEM with it. The only
6090 code that understands the USE is this routine. If it is not removed,
6091 it will cause the resulting insn not to match.
6093 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6094 signed reference.
6096 IN_DEST is nonzero if this is a reference in the destination of a
6097 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6098 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6099 be used.
6101 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6102 ZERO_EXTRACT should be built even for bits starting at bit 0.
6104 MODE is the desired mode of the result (if IN_DEST == 0).
6106 The result is an RTX for the extraction or NULL_RTX if the target
6107 can't handle it. */
6109 static rtx
6110 make_extraction (mode, inner, pos, pos_rtx, len,
6111 unsignedp, in_dest, in_compare)
6112 enum machine_mode mode;
6113 rtx inner;
6114 HOST_WIDE_INT pos;
6115 rtx pos_rtx;
6116 unsigned HOST_WIDE_INT len;
6117 int unsignedp;
6118 int in_dest, in_compare;
6120 /* This mode describes the size of the storage area
6121 to fetch the overall value from. Within that, we
6122 ignore the POS lowest bits, etc. */
6123 enum machine_mode is_mode = GET_MODE (inner);
6124 enum machine_mode inner_mode;
6125 enum machine_mode wanted_inner_mode = byte_mode;
6126 enum machine_mode wanted_inner_reg_mode = word_mode;
6127 enum machine_mode pos_mode = word_mode;
6128 enum machine_mode extraction_mode = word_mode;
6129 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6130 int spans_byte = 0;
6131 rtx new = 0;
6132 rtx orig_pos_rtx = pos_rtx;
6133 HOST_WIDE_INT orig_pos;
6135 /* Get some information about INNER and get the innermost object. */
6136 if (GET_CODE (inner) == USE)
6137 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6138 /* We don't need to adjust the position because we set up the USE
6139 to pretend that it was a full-word object. */
6140 spans_byte = 1, inner = XEXP (inner, 0);
6141 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6143 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6144 consider just the QI as the memory to extract from.
6145 The subreg adds or removes high bits; its mode is
6146 irrelevant to the meaning of this extraction,
6147 since POS and LEN count from the lsb. */
6148 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6149 is_mode = GET_MODE (SUBREG_REG (inner));
6150 inner = SUBREG_REG (inner);
6152 else if (GET_CODE (inner) == ASHIFT
6153 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6154 && pos_rtx == 0 && pos == 0
6155 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6157 /* We're extracting the least significant bits of an rtx
6158 (ashift X (const_int C)), where LEN > C. Extract the
6159 least significant (LEN - C) bits of X, giving an rtx
6160 whose mode is MODE, then shift it left C times. */
6161 new = make_extraction (mode, XEXP (inner, 0),
6162 0, 0, len - INTVAL (XEXP (inner, 1)),
6163 unsignedp, in_dest, in_compare);
6164 if (new != 0)
6165 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6168 inner_mode = GET_MODE (inner);
6170 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6171 pos = INTVAL (pos_rtx), pos_rtx = 0;
6173 /* See if this can be done without an extraction. We never can if the
6174 width of the field is not the same as that of some integer mode. For
6175 registers, we can only avoid the extraction if the position is at the
6176 low-order bit and this is either not in the destination or we have the
6177 appropriate STRICT_LOW_PART operation available.
6179 For MEM, we can avoid an extract if the field starts on an appropriate
6180 boundary and we can change the mode of the memory reference. However,
6181 we cannot directly access the MEM if we have a USE and the underlying
6182 MEM is not TMODE. This combination means that MEM was being used in a
6183 context where bits outside its mode were being referenced; that is only
6184 valid in bit-field insns. */
6186 if (tmode != BLKmode
6187 && ! (spans_byte && inner_mode != tmode)
6188 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6189 && GET_CODE (inner) != MEM
6190 && (! in_dest
6191 || (GET_CODE (inner) == REG
6192 && have_insn_for (STRICT_LOW_PART, tmode))))
6193 || (GET_CODE (inner) == MEM && pos_rtx == 0
6194 && (pos
6195 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6196 : BITS_PER_UNIT)) == 0
6197 /* We can't do this if we are widening INNER_MODE (it
6198 may not be aligned, for one thing). */
6199 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6200 && (inner_mode == tmode
6201 || (! mode_dependent_address_p (XEXP (inner, 0))
6202 && ! MEM_VOLATILE_P (inner))))))
6204 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6205 field. If the original and current mode are the same, we need not
6206 adjust the offset. Otherwise, we do if bytes big endian.
6208 If INNER is not a MEM, get a piece consisting of just the field
6209 of interest (in this case POS % BITS_PER_WORD must be 0). */
6211 if (GET_CODE (inner) == MEM)
6213 HOST_WIDE_INT offset;
6215 /* POS counts from lsb, but make OFFSET count in memory order. */
6216 if (BYTES_BIG_ENDIAN)
6217 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6218 else
6219 offset = pos / BITS_PER_UNIT;
6221 new = adjust_address_nv (inner, tmode, offset);
6223 else if (GET_CODE (inner) == REG)
6225 /* We can't call gen_lowpart_for_combine here since we always want
6226 a SUBREG and it would sometimes return a new hard register. */
6227 if (tmode != inner_mode)
6229 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6231 if (WORDS_BIG_ENDIAN
6232 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6233 final_word = ((GET_MODE_SIZE (inner_mode)
6234 - GET_MODE_SIZE (tmode))
6235 / UNITS_PER_WORD) - final_word;
6237 final_word *= UNITS_PER_WORD;
6238 if (BYTES_BIG_ENDIAN &&
6239 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6240 final_word += (GET_MODE_SIZE (inner_mode)
6241 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6243 /* Avoid creating invalid subregs, for example when
6244 simplifying (x>>32)&255. */
6245 if (final_word >= GET_MODE_SIZE (inner_mode))
6246 return NULL_RTX;
6248 new = gen_rtx_SUBREG (tmode, inner, final_word);
6250 else
6251 new = inner;
6253 else
6254 new = force_to_mode (inner, tmode,
6255 len >= HOST_BITS_PER_WIDE_INT
6256 ? ~(unsigned HOST_WIDE_INT) 0
6257 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6258 NULL_RTX, 0);
6260 /* If this extraction is going into the destination of a SET,
6261 make a STRICT_LOW_PART unless we made a MEM. */
6263 if (in_dest)
6264 return (GET_CODE (new) == MEM ? new
6265 : (GET_CODE (new) != SUBREG
6266 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6267 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6269 if (mode == tmode)
6270 return new;
6272 if (GET_CODE (new) == CONST_INT)
6273 return gen_int_mode (INTVAL (new), mode);
6275 /* If we know that no extraneous bits are set, and that the high
6276 bit is not set, convert the extraction to the cheaper of
6277 sign and zero extension, that are equivalent in these cases. */
6278 if (flag_expensive_optimizations
6279 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6280 && ((nonzero_bits (new, tmode)
6281 & ~(((unsigned HOST_WIDE_INT)
6282 GET_MODE_MASK (tmode))
6283 >> 1))
6284 == 0)))
6286 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6287 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6289 /* Prefer ZERO_EXTENSION, since it gives more information to
6290 backends. */
6291 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6292 return temp;
6293 return temp1;
6296 /* Otherwise, sign- or zero-extend unless we already are in the
6297 proper mode. */
6299 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6300 mode, new));
6303 /* Unless this is a COMPARE or we have a funny memory reference,
6304 don't do anything with zero-extending field extracts starting at
6305 the low-order bit since they are simple AND operations. */
6306 if (pos_rtx == 0 && pos == 0 && ! in_dest
6307 && ! in_compare && ! spans_byte && unsignedp)
6308 return 0;
6310 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6311 we would be spanning bytes or if the position is not a constant and the
6312 length is not 1. In all other cases, we would only be going outside
6313 our object in cases when an original shift would have been
6314 undefined. */
6315 if (! spans_byte && GET_CODE (inner) == MEM
6316 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6317 || (pos_rtx != 0 && len != 1)))
6318 return 0;
6320 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6321 and the mode for the result. */
6322 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6324 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6325 pos_mode = mode_for_extraction (EP_insv, 2);
6326 extraction_mode = mode_for_extraction (EP_insv, 3);
6329 if (! in_dest && unsignedp
6330 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6332 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6333 pos_mode = mode_for_extraction (EP_extzv, 3);
6334 extraction_mode = mode_for_extraction (EP_extzv, 0);
6337 if (! in_dest && ! unsignedp
6338 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6340 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6341 pos_mode = mode_for_extraction (EP_extv, 3);
6342 extraction_mode = mode_for_extraction (EP_extv, 0);
6345 /* Never narrow an object, since that might not be safe. */
6347 if (mode != VOIDmode
6348 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6349 extraction_mode = mode;
6351 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6352 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6353 pos_mode = GET_MODE (pos_rtx);
6355 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6356 if we have to change the mode of memory and cannot, the desired mode is
6357 EXTRACTION_MODE. */
6358 if (GET_CODE (inner) != MEM)
6359 wanted_inner_mode = wanted_inner_reg_mode;
6360 else if (inner_mode != wanted_inner_mode
6361 && (mode_dependent_address_p (XEXP (inner, 0))
6362 || MEM_VOLATILE_P (inner)))
6363 wanted_inner_mode = extraction_mode;
6365 orig_pos = pos;
6367 if (BITS_BIG_ENDIAN)
6369 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6370 BITS_BIG_ENDIAN style. If position is constant, compute new
6371 position. Otherwise, build subtraction.
6372 Note that POS is relative to the mode of the original argument.
6373 If it's a MEM we need to recompute POS relative to that.
6374 However, if we're extracting from (or inserting into) a register,
6375 we want to recompute POS relative to wanted_inner_mode. */
6376 int width = (GET_CODE (inner) == MEM
6377 ? GET_MODE_BITSIZE (is_mode)
6378 : GET_MODE_BITSIZE (wanted_inner_mode));
6380 if (pos_rtx == 0)
6381 pos = width - len - pos;
6382 else
6383 pos_rtx
6384 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6385 /* POS may be less than 0 now, but we check for that below.
6386 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6389 /* If INNER has a wider mode, make it smaller. If this is a constant
6390 extract, try to adjust the byte to point to the byte containing
6391 the value. */
6392 if (wanted_inner_mode != VOIDmode
6393 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6394 && ((GET_CODE (inner) == MEM
6395 && (inner_mode == wanted_inner_mode
6396 || (! mode_dependent_address_p (XEXP (inner, 0))
6397 && ! MEM_VOLATILE_P (inner))))))
6399 int offset = 0;
6401 /* The computations below will be correct if the machine is big
6402 endian in both bits and bytes or little endian in bits and bytes.
6403 If it is mixed, we must adjust. */
6405 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6406 adjust OFFSET to compensate. */
6407 if (BYTES_BIG_ENDIAN
6408 && ! spans_byte
6409 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6410 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6412 /* If this is a constant position, we can move to the desired byte. */
6413 if (pos_rtx == 0)
6415 offset += pos / BITS_PER_UNIT;
6416 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6419 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6420 && ! spans_byte
6421 && is_mode != wanted_inner_mode)
6422 offset = (GET_MODE_SIZE (is_mode)
6423 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6425 if (offset != 0 || inner_mode != wanted_inner_mode)
6426 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6429 /* If INNER is not memory, we can always get it into the proper mode. If we
6430 are changing its mode, POS must be a constant and smaller than the size
6431 of the new mode. */
6432 else if (GET_CODE (inner) != MEM)
6434 if (GET_MODE (inner) != wanted_inner_mode
6435 && (pos_rtx != 0
6436 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6437 return 0;
6439 inner = force_to_mode (inner, wanted_inner_mode,
6440 pos_rtx
6441 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6442 ? ~(unsigned HOST_WIDE_INT) 0
6443 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6444 << orig_pos),
6445 NULL_RTX, 0);
6448 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6449 have to zero extend. Otherwise, we can just use a SUBREG. */
6450 if (pos_rtx != 0
6451 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6453 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6455 /* If we know that no extraneous bits are set, and that the high
6456 bit is not set, convert extraction to cheaper one - either
6457 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6458 cases. */
6459 if (flag_expensive_optimizations
6460 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6461 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6462 & ~(((unsigned HOST_WIDE_INT)
6463 GET_MODE_MASK (GET_MODE (pos_rtx)))
6464 >> 1))
6465 == 0)))
6467 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6469 /* Prefer ZERO_EXTENSION, since it gives more information to
6470 backends. */
6471 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6472 temp = temp1;
6474 pos_rtx = temp;
6476 else if (pos_rtx != 0
6477 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6478 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6480 /* Make POS_RTX unless we already have it and it is correct. If we don't
6481 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6482 be a CONST_INT. */
6483 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6484 pos_rtx = orig_pos_rtx;
6486 else if (pos_rtx == 0)
6487 pos_rtx = GEN_INT (pos);
6489 /* Make the required operation. See if we can use existing rtx. */
6490 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6491 extraction_mode, inner, GEN_INT (len), pos_rtx);
6492 if (! in_dest)
6493 new = gen_lowpart_for_combine (mode, new);
6495 return new;
6498 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6499 with any other operations in X. Return X without that shift if so. */
6501 static rtx
6502 extract_left_shift (x, count)
6503 rtx x;
6504 int count;
6506 enum rtx_code code = GET_CODE (x);
6507 enum machine_mode mode = GET_MODE (x);
6508 rtx tem;
6510 switch (code)
6512 case ASHIFT:
6513 /* This is the shift itself. If it is wide enough, we will return
6514 either the value being shifted if the shift count is equal to
6515 COUNT or a shift for the difference. */
6516 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6517 && INTVAL (XEXP (x, 1)) >= count)
6518 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6519 INTVAL (XEXP (x, 1)) - count);
6520 break;
6522 case NEG: case NOT:
6523 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6524 return simplify_gen_unary (code, mode, tem, mode);
6526 break;
6528 case PLUS: case IOR: case XOR: case AND:
6529 /* If we can safely shift this constant and we find the inner shift,
6530 make a new operation. */
6531 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6532 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6533 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6534 return gen_binary (code, mode, tem,
6535 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6537 break;
6539 default:
6540 break;
6543 return 0;
6546 /* Look at the expression rooted at X. Look for expressions
6547 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6548 Form these expressions.
6550 Return the new rtx, usually just X.
6552 Also, for machines like the VAX that don't have logical shift insns,
6553 try to convert logical to arithmetic shift operations in cases where
6554 they are equivalent. This undoes the canonicalizations to logical
6555 shifts done elsewhere.
6557 We try, as much as possible, to re-use rtl expressions to save memory.
6559 IN_CODE says what kind of expression we are processing. Normally, it is
6560 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6561 being kludges), it is MEM. When processing the arguments of a comparison
6562 or a COMPARE against zero, it is COMPARE. */
6564 static rtx
6565 make_compound_operation (x, in_code)
6566 rtx x;
6567 enum rtx_code in_code;
6569 enum rtx_code code = GET_CODE (x);
6570 enum machine_mode mode = GET_MODE (x);
6571 int mode_width = GET_MODE_BITSIZE (mode);
6572 rtx rhs, lhs;
6573 enum rtx_code next_code;
6574 int i;
6575 rtx new = 0;
6576 rtx tem;
6577 const char *fmt;
6579 /* Select the code to be used in recursive calls. Once we are inside an
6580 address, we stay there. If we have a comparison, set to COMPARE,
6581 but once inside, go back to our default of SET. */
6583 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6584 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6585 && XEXP (x, 1) == const0_rtx) ? COMPARE
6586 : in_code == COMPARE ? SET : in_code);
6588 /* Process depending on the code of this operation. If NEW is set
6589 nonzero, it will be returned. */
6591 switch (code)
6593 case ASHIFT:
6594 /* Convert shifts by constants into multiplications if inside
6595 an address. */
6596 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6597 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6598 && INTVAL (XEXP (x, 1)) >= 0)
6600 new = make_compound_operation (XEXP (x, 0), next_code);
6601 new = gen_rtx_MULT (mode, new,
6602 GEN_INT ((HOST_WIDE_INT) 1
6603 << INTVAL (XEXP (x, 1))));
6605 break;
6607 case AND:
6608 /* If the second operand is not a constant, we can't do anything
6609 with it. */
6610 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6611 break;
6613 /* If the constant is a power of two minus one and the first operand
6614 is a logical right shift, make an extraction. */
6615 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6616 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6618 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6619 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6620 0, in_code == COMPARE);
6623 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6624 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6625 && subreg_lowpart_p (XEXP (x, 0))
6626 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6627 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6629 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6630 next_code);
6631 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6632 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6633 0, in_code == COMPARE);
6635 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6636 else if ((GET_CODE (XEXP (x, 0)) == XOR
6637 || GET_CODE (XEXP (x, 0)) == IOR)
6638 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6639 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6640 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6642 /* Apply the distributive law, and then try to make extractions. */
6643 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6644 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6645 XEXP (x, 1)),
6646 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6647 XEXP (x, 1)));
6648 new = make_compound_operation (new, in_code);
6651 /* If we are have (and (rotate X C) M) and C is larger than the number
6652 of bits in M, this is an extraction. */
6654 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6655 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6656 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6657 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6659 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6660 new = make_extraction (mode, new,
6661 (GET_MODE_BITSIZE (mode)
6662 - INTVAL (XEXP (XEXP (x, 0), 1))),
6663 NULL_RTX, i, 1, 0, in_code == COMPARE);
6666 /* On machines without logical shifts, if the operand of the AND is
6667 a logical shift and our mask turns off all the propagated sign
6668 bits, we can replace the logical shift with an arithmetic shift. */
6669 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6670 && !have_insn_for (LSHIFTRT, mode)
6671 && have_insn_for (ASHIFTRT, mode)
6672 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6673 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6674 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6675 && mode_width <= HOST_BITS_PER_WIDE_INT)
6677 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6679 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6680 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6681 SUBST (XEXP (x, 0),
6682 gen_rtx_ASHIFTRT (mode,
6683 make_compound_operation
6684 (XEXP (XEXP (x, 0), 0), next_code),
6685 XEXP (XEXP (x, 0), 1)));
6688 /* If the constant is one less than a power of two, this might be
6689 representable by an extraction even if no shift is present.
6690 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6691 we are in a COMPARE. */
6692 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6693 new = make_extraction (mode,
6694 make_compound_operation (XEXP (x, 0),
6695 next_code),
6696 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6698 /* If we are in a comparison and this is an AND with a power of two,
6699 convert this into the appropriate bit extract. */
6700 else if (in_code == COMPARE
6701 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6702 new = make_extraction (mode,
6703 make_compound_operation (XEXP (x, 0),
6704 next_code),
6705 i, NULL_RTX, 1, 1, 0, 1);
6707 break;
6709 case LSHIFTRT:
6710 /* If the sign bit is known to be zero, replace this with an
6711 arithmetic shift. */
6712 if (have_insn_for (ASHIFTRT, mode)
6713 && ! have_insn_for (LSHIFTRT, mode)
6714 && mode_width <= HOST_BITS_PER_WIDE_INT
6715 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6717 new = gen_rtx_ASHIFTRT (mode,
6718 make_compound_operation (XEXP (x, 0),
6719 next_code),
6720 XEXP (x, 1));
6721 break;
6724 /* ... fall through ... */
6726 case ASHIFTRT:
6727 lhs = XEXP (x, 0);
6728 rhs = XEXP (x, 1);
6730 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6731 this is a SIGN_EXTRACT. */
6732 if (GET_CODE (rhs) == CONST_INT
6733 && GET_CODE (lhs) == ASHIFT
6734 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6735 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6737 new = make_compound_operation (XEXP (lhs, 0), next_code);
6738 new = make_extraction (mode, new,
6739 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6740 NULL_RTX, mode_width - INTVAL (rhs),
6741 code == LSHIFTRT, 0, in_code == COMPARE);
6742 break;
6745 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6746 If so, try to merge the shifts into a SIGN_EXTEND. We could
6747 also do this for some cases of SIGN_EXTRACT, but it doesn't
6748 seem worth the effort; the case checked for occurs on Alpha. */
6750 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6751 && ! (GET_CODE (lhs) == SUBREG
6752 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6753 && GET_CODE (rhs) == CONST_INT
6754 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6755 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6756 new = make_extraction (mode, make_compound_operation (new, next_code),
6757 0, NULL_RTX, mode_width - INTVAL (rhs),
6758 code == LSHIFTRT, 0, in_code == COMPARE);
6760 break;
6762 case SUBREG:
6763 /* Call ourselves recursively on the inner expression. If we are
6764 narrowing the object and it has a different RTL code from
6765 what it originally did, do this SUBREG as a force_to_mode. */
6767 tem = make_compound_operation (SUBREG_REG (x), in_code);
6768 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6769 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6770 && subreg_lowpart_p (x))
6772 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6773 NULL_RTX, 0);
6775 /* If we have something other than a SUBREG, we might have
6776 done an expansion, so rerun ourselves. */
6777 if (GET_CODE (newer) != SUBREG)
6778 newer = make_compound_operation (newer, in_code);
6780 return newer;
6783 /* If this is a paradoxical subreg, and the new code is a sign or
6784 zero extension, omit the subreg and widen the extension. If it
6785 is a regular subreg, we can still get rid of the subreg by not
6786 widening so much, or in fact removing the extension entirely. */
6787 if ((GET_CODE (tem) == SIGN_EXTEND
6788 || GET_CODE (tem) == ZERO_EXTEND)
6789 && subreg_lowpart_p (x))
6791 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6792 || (GET_MODE_SIZE (mode) >
6793 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6795 if (! SCALAR_INT_MODE_P (mode))
6796 break;
6797 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6799 else
6800 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6801 return tem;
6803 break;
6805 default:
6806 break;
6809 if (new)
6811 x = gen_lowpart_for_combine (mode, new);
6812 code = GET_CODE (x);
6815 /* Now recursively process each operand of this operation. */
6816 fmt = GET_RTX_FORMAT (code);
6817 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6818 if (fmt[i] == 'e')
6820 new = make_compound_operation (XEXP (x, i), next_code);
6821 SUBST (XEXP (x, i), new);
6824 return x;
6827 /* Given M see if it is a value that would select a field of bits
6828 within an item, but not the entire word. Return -1 if not.
6829 Otherwise, return the starting position of the field, where 0 is the
6830 low-order bit.
6832 *PLEN is set to the length of the field. */
6834 static int
6835 get_pos_from_mask (m, plen)
6836 unsigned HOST_WIDE_INT m;
6837 unsigned HOST_WIDE_INT *plen;
6839 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6840 int pos = exact_log2 (m & -m);
6841 int len;
6843 if (pos < 0)
6844 return -1;
6846 /* Now shift off the low-order zero bits and see if we have a power of
6847 two minus 1. */
6848 len = exact_log2 ((m >> pos) + 1);
6850 if (len <= 0)
6851 return -1;
6853 *plen = len;
6854 return pos;
6857 /* See if X can be simplified knowing that we will only refer to it in
6858 MODE and will only refer to those bits that are nonzero in MASK.
6859 If other bits are being computed or if masking operations are done
6860 that select a superset of the bits in MASK, they can sometimes be
6861 ignored.
6863 Return a possibly simplified expression, but always convert X to
6864 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6866 Also, if REG is nonzero and X is a register equal in value to REG,
6867 replace X with REG.
6869 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6870 are all off in X. This is used when X will be complemented, by either
6871 NOT, NEG, or XOR. */
6873 static rtx
6874 force_to_mode (x, mode, mask, reg, just_select)
6875 rtx x;
6876 enum machine_mode mode;
6877 unsigned HOST_WIDE_INT mask;
6878 rtx reg;
6879 int just_select;
6881 enum rtx_code code = GET_CODE (x);
6882 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6883 enum machine_mode op_mode;
6884 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6885 rtx op0, op1, temp;
6887 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6888 code below will do the wrong thing since the mode of such an
6889 expression is VOIDmode.
6891 Also do nothing if X is a CLOBBER; this can happen if X was
6892 the return value from a call to gen_lowpart_for_combine. */
6893 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6894 return x;
6896 /* We want to perform the operation is its present mode unless we know
6897 that the operation is valid in MODE, in which case we do the operation
6898 in MODE. */
6899 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6900 && have_insn_for (code, mode))
6901 ? mode : GET_MODE (x));
6903 /* It is not valid to do a right-shift in a narrower mode
6904 than the one it came in with. */
6905 if ((code == LSHIFTRT || code == ASHIFTRT)
6906 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6907 op_mode = GET_MODE (x);
6909 /* Truncate MASK to fit OP_MODE. */
6910 if (op_mode)
6911 mask &= GET_MODE_MASK (op_mode);
6913 /* When we have an arithmetic operation, or a shift whose count we
6914 do not know, we need to assume that all bit the up to the highest-order
6915 bit in MASK will be needed. This is how we form such a mask. */
6916 if (op_mode)
6917 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6918 ? GET_MODE_MASK (op_mode)
6919 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6920 - 1));
6921 else
6922 fuller_mask = ~(HOST_WIDE_INT) 0;
6924 /* Determine what bits of X are guaranteed to be (non)zero. */
6925 nonzero = nonzero_bits (x, mode);
6927 /* If none of the bits in X are needed, return a zero. */
6928 if (! just_select && (nonzero & mask) == 0)
6929 x = const0_rtx;
6931 /* If X is a CONST_INT, return a new one. Do this here since the
6932 test below will fail. */
6933 if (GET_CODE (x) == CONST_INT)
6935 if (SCALAR_INT_MODE_P (mode))
6936 return gen_int_mode (INTVAL (x) & mask, mode);
6937 else
6939 x = GEN_INT (INTVAL (x) & mask);
6940 return gen_lowpart_common (mode, x);
6944 /* If X is narrower than MODE and we want all the bits in X's mode, just
6945 get X in the proper mode. */
6946 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6947 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6948 return gen_lowpart_for_combine (mode, x);
6950 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6951 MASK are already known to be zero in X, we need not do anything. */
6952 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6953 return x;
6955 switch (code)
6957 case CLOBBER:
6958 /* If X is a (clobber (const_int)), return it since we know we are
6959 generating something that won't match. */
6960 return x;
6962 case USE:
6963 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6964 spanned the boundary of the MEM. If we are now masking so it is
6965 within that boundary, we don't need the USE any more. */
6966 if (! BITS_BIG_ENDIAN
6967 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6968 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6969 break;
6971 case SIGN_EXTEND:
6972 case ZERO_EXTEND:
6973 case ZERO_EXTRACT:
6974 case SIGN_EXTRACT:
6975 x = expand_compound_operation (x);
6976 if (GET_CODE (x) != code)
6977 return force_to_mode (x, mode, mask, reg, next_select);
6978 break;
6980 case REG:
6981 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6982 || rtx_equal_p (reg, get_last_value (x))))
6983 x = reg;
6984 break;
6986 case SUBREG:
6987 if (subreg_lowpart_p (x)
6988 /* We can ignore the effect of this SUBREG if it narrows the mode or
6989 if the constant masks to zero all the bits the mode doesn't
6990 have. */
6991 && ((GET_MODE_SIZE (GET_MODE (x))
6992 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6993 || (0 == (mask
6994 & GET_MODE_MASK (GET_MODE (x))
6995 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6996 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6997 break;
6999 case AND:
7000 /* If this is an AND with a constant, convert it into an AND
7001 whose constant is the AND of that constant with MASK. If it
7002 remains an AND of MASK, delete it since it is redundant. */
7004 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7006 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7007 mask & INTVAL (XEXP (x, 1)));
7009 /* If X is still an AND, see if it is an AND with a mask that
7010 is just some low-order bits. If so, and it is MASK, we don't
7011 need it. */
7013 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7014 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7015 == mask))
7016 x = XEXP (x, 0);
7018 /* If it remains an AND, try making another AND with the bits
7019 in the mode mask that aren't in MASK turned on. If the
7020 constant in the AND is wide enough, this might make a
7021 cheaper constant. */
7023 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7024 && GET_MODE_MASK (GET_MODE (x)) != mask
7025 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7027 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7028 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7029 int width = GET_MODE_BITSIZE (GET_MODE (x));
7030 rtx y;
7032 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
7033 number, sign extend it. */
7034 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7035 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7036 cval |= (HOST_WIDE_INT) -1 << width;
7038 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7039 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7040 x = y;
7043 break;
7046 goto binop;
7048 case PLUS:
7049 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7050 low-order bits (as in an alignment operation) and FOO is already
7051 aligned to that boundary, mask C1 to that boundary as well.
7052 This may eliminate that PLUS and, later, the AND. */
7055 unsigned int width = GET_MODE_BITSIZE (mode);
7056 unsigned HOST_WIDE_INT smask = mask;
7058 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7059 number, sign extend it. */
7061 if (width < HOST_BITS_PER_WIDE_INT
7062 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7063 smask |= (HOST_WIDE_INT) -1 << width;
7065 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7066 && exact_log2 (- smask) >= 0
7067 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7068 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7069 return force_to_mode (plus_constant (XEXP (x, 0),
7070 (INTVAL (XEXP (x, 1)) & smask)),
7071 mode, smask, reg, next_select);
7074 /* ... fall through ... */
7076 case MULT:
7077 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7078 most significant bit in MASK since carries from those bits will
7079 affect the bits we are interested in. */
7080 mask = fuller_mask;
7081 goto binop;
7083 case MINUS:
7084 /* If X is (minus C Y) where C's least set bit is larger than any bit
7085 in the mask, then we may replace with (neg Y). */
7086 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7087 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7088 & -INTVAL (XEXP (x, 0))))
7089 > mask))
7091 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7092 GET_MODE (x));
7093 return force_to_mode (x, mode, mask, reg, next_select);
7096 /* Similarly, if C contains every bit in the fuller_mask, then we may
7097 replace with (not Y). */
7098 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7099 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7100 == INTVAL (XEXP (x, 0))))
7102 x = simplify_gen_unary (NOT, GET_MODE (x),
7103 XEXP (x, 1), GET_MODE (x));
7104 return force_to_mode (x, mode, mask, reg, next_select);
7107 mask = fuller_mask;
7108 goto binop;
7110 case IOR:
7111 case XOR:
7112 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7113 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7114 operation which may be a bitfield extraction. Ensure that the
7115 constant we form is not wider than the mode of X. */
7117 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7118 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7119 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7120 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7121 && GET_CODE (XEXP (x, 1)) == CONST_INT
7122 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7123 + floor_log2 (INTVAL (XEXP (x, 1))))
7124 < GET_MODE_BITSIZE (GET_MODE (x)))
7125 && (INTVAL (XEXP (x, 1))
7126 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7128 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7129 << INTVAL (XEXP (XEXP (x, 0), 1)));
7130 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7131 XEXP (XEXP (x, 0), 0), temp);
7132 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7133 XEXP (XEXP (x, 0), 1));
7134 return force_to_mode (x, mode, mask, reg, next_select);
7137 binop:
7138 /* For most binary operations, just propagate into the operation and
7139 change the mode if we have an operation of that mode. */
7141 op0 = gen_lowpart_for_combine (op_mode,
7142 force_to_mode (XEXP (x, 0), mode, mask,
7143 reg, next_select));
7144 op1 = gen_lowpart_for_combine (op_mode,
7145 force_to_mode (XEXP (x, 1), mode, mask,
7146 reg, next_select));
7148 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7149 x = gen_binary (code, op_mode, op0, op1);
7150 break;
7152 case ASHIFT:
7153 /* For left shifts, do the same, but just for the first operand.
7154 However, we cannot do anything with shifts where we cannot
7155 guarantee that the counts are smaller than the size of the mode
7156 because such a count will have a different meaning in a
7157 wider mode. */
7159 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7160 && INTVAL (XEXP (x, 1)) >= 0
7161 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7162 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7163 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7164 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7165 break;
7167 /* If the shift count is a constant and we can do arithmetic in
7168 the mode of the shift, refine which bits we need. Otherwise, use the
7169 conservative form of the mask. */
7170 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7171 && INTVAL (XEXP (x, 1)) >= 0
7172 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7173 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7174 mask >>= INTVAL (XEXP (x, 1));
7175 else
7176 mask = fuller_mask;
7178 op0 = gen_lowpart_for_combine (op_mode,
7179 force_to_mode (XEXP (x, 0), op_mode,
7180 mask, reg, next_select));
7182 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7183 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7184 break;
7186 case LSHIFTRT:
7187 /* Here we can only do something if the shift count is a constant,
7188 this shift constant is valid for the host, and we can do arithmetic
7189 in OP_MODE. */
7191 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7192 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7193 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7195 rtx inner = XEXP (x, 0);
7196 unsigned HOST_WIDE_INT inner_mask;
7198 /* Select the mask of the bits we need for the shift operand. */
7199 inner_mask = mask << INTVAL (XEXP (x, 1));
7201 /* We can only change the mode of the shift if we can do arithmetic
7202 in the mode of the shift and INNER_MASK is no wider than the
7203 width of OP_MODE. */
7204 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7205 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7206 op_mode = GET_MODE (x);
7208 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7210 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7211 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7214 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7215 shift and AND produces only copies of the sign bit (C2 is one less
7216 than a power of two), we can do this with just a shift. */
7218 if (GET_CODE (x) == LSHIFTRT
7219 && GET_CODE (XEXP (x, 1)) == CONST_INT
7220 /* The shift puts one of the sign bit copies in the least significant
7221 bit. */
7222 && ((INTVAL (XEXP (x, 1))
7223 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7224 >= GET_MODE_BITSIZE (GET_MODE (x)))
7225 && exact_log2 (mask + 1) >= 0
7226 /* Number of bits left after the shift must be more than the mask
7227 needs. */
7228 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7229 <= GET_MODE_BITSIZE (GET_MODE (x)))
7230 /* Must be more sign bit copies than the mask needs. */
7231 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7232 >= exact_log2 (mask + 1)))
7233 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7234 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7235 - exact_log2 (mask + 1)));
7237 goto shiftrt;
7239 case ASHIFTRT:
7240 /* If we are just looking for the sign bit, we don't need this shift at
7241 all, even if it has a variable count. */
7242 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7243 && (mask == ((unsigned HOST_WIDE_INT) 1
7244 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7245 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7247 /* If this is a shift by a constant, get a mask that contains those bits
7248 that are not copies of the sign bit. We then have two cases: If
7249 MASK only includes those bits, this can be a logical shift, which may
7250 allow simplifications. If MASK is a single-bit field not within
7251 those bits, we are requesting a copy of the sign bit and hence can
7252 shift the sign bit to the appropriate location. */
7254 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7255 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7257 int i = -1;
7259 /* If the considered data is wider than HOST_WIDE_INT, we can't
7260 represent a mask for all its bits in a single scalar.
7261 But we only care about the lower bits, so calculate these. */
7263 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7265 nonzero = ~(HOST_WIDE_INT) 0;
7267 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7268 is the number of bits a full-width mask would have set.
7269 We need only shift if these are fewer than nonzero can
7270 hold. If not, we must keep all bits set in nonzero. */
7272 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7273 < HOST_BITS_PER_WIDE_INT)
7274 nonzero >>= INTVAL (XEXP (x, 1))
7275 + HOST_BITS_PER_WIDE_INT
7276 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7278 else
7280 nonzero = GET_MODE_MASK (GET_MODE (x));
7281 nonzero >>= INTVAL (XEXP (x, 1));
7284 if ((mask & ~nonzero) == 0
7285 || (i = exact_log2 (mask)) >= 0)
7287 x = simplify_shift_const
7288 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7289 i < 0 ? INTVAL (XEXP (x, 1))
7290 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7292 if (GET_CODE (x) != ASHIFTRT)
7293 return force_to_mode (x, mode, mask, reg, next_select);
7297 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7298 even if the shift count isn't a constant. */
7299 if (mask == 1)
7300 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7302 shiftrt:
7304 /* If this is a zero- or sign-extension operation that just affects bits
7305 we don't care about, remove it. Be sure the call above returned
7306 something that is still a shift. */
7308 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7309 && GET_CODE (XEXP (x, 1)) == CONST_INT
7310 && INTVAL (XEXP (x, 1)) >= 0
7311 && (INTVAL (XEXP (x, 1))
7312 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7313 && GET_CODE (XEXP (x, 0)) == ASHIFT
7314 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7315 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7316 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7317 reg, next_select);
7319 break;
7321 case ROTATE:
7322 case ROTATERT:
7323 /* If the shift count is constant and we can do computations
7324 in the mode of X, compute where the bits we care about are.
7325 Otherwise, we can't do anything. Don't change the mode of
7326 the shift or propagate MODE into the shift, though. */
7327 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7328 && INTVAL (XEXP (x, 1)) >= 0)
7330 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7331 GET_MODE (x), GEN_INT (mask),
7332 XEXP (x, 1));
7333 if (temp && GET_CODE (temp) == CONST_INT)
7334 SUBST (XEXP (x, 0),
7335 force_to_mode (XEXP (x, 0), GET_MODE (x),
7336 INTVAL (temp), reg, next_select));
7338 break;
7340 case NEG:
7341 /* If we just want the low-order bit, the NEG isn't needed since it
7342 won't change the low-order bit. */
7343 if (mask == 1)
7344 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7346 /* We need any bits less significant than the most significant bit in
7347 MASK since carries from those bits will affect the bits we are
7348 interested in. */
7349 mask = fuller_mask;
7350 goto unop;
7352 case NOT:
7353 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7354 same as the XOR case above. Ensure that the constant we form is not
7355 wider than the mode of X. */
7357 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7358 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7359 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7360 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7361 < GET_MODE_BITSIZE (GET_MODE (x)))
7362 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7364 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7365 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7366 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7368 return force_to_mode (x, mode, mask, reg, next_select);
7371 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7372 use the full mask inside the NOT. */
7373 mask = fuller_mask;
7375 unop:
7376 op0 = gen_lowpart_for_combine (op_mode,
7377 force_to_mode (XEXP (x, 0), mode, mask,
7378 reg, next_select));
7379 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7380 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7381 break;
7383 case NE:
7384 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7385 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7386 which is equal to STORE_FLAG_VALUE. */
7387 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7388 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7389 && (nonzero_bits (XEXP (x, 0), mode)
7390 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7391 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7393 break;
7395 case IF_THEN_ELSE:
7396 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7397 written in a narrower mode. We play it safe and do not do so. */
7399 SUBST (XEXP (x, 1),
7400 gen_lowpart_for_combine (GET_MODE (x),
7401 force_to_mode (XEXP (x, 1), mode,
7402 mask, reg, next_select)));
7403 SUBST (XEXP (x, 2),
7404 gen_lowpart_for_combine (GET_MODE (x),
7405 force_to_mode (XEXP (x, 2), mode,
7406 mask, reg, next_select)));
7407 break;
7409 default:
7410 break;
7413 /* Ensure we return a value of the proper mode. */
7414 return gen_lowpart_for_combine (mode, x);
7417 /* Return nonzero if X is an expression that has one of two values depending on
7418 whether some other value is zero or nonzero. In that case, we return the
7419 value that is being tested, *PTRUE is set to the value if the rtx being
7420 returned has a nonzero value, and *PFALSE is set to the other alternative.
7422 If we return zero, we set *PTRUE and *PFALSE to X. */
7424 static rtx
7425 if_then_else_cond (x, ptrue, pfalse)
7426 rtx x;
7427 rtx *ptrue, *pfalse;
7429 enum machine_mode mode = GET_MODE (x);
7430 enum rtx_code code = GET_CODE (x);
7431 rtx cond0, cond1, true0, true1, false0, false1;
7432 unsigned HOST_WIDE_INT nz;
7434 /* If we are comparing a value against zero, we are done. */
7435 if ((code == NE || code == EQ)
7436 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7438 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7439 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7440 return XEXP (x, 0);
7443 /* If this is a unary operation whose operand has one of two values, apply
7444 our opcode to compute those values. */
7445 else if (GET_RTX_CLASS (code) == '1'
7446 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7448 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7449 *pfalse = simplify_gen_unary (code, mode, false0,
7450 GET_MODE (XEXP (x, 0)));
7451 return cond0;
7454 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7455 make can't possibly match and would suppress other optimizations. */
7456 else if (code == COMPARE)
7459 /* If this is a binary operation, see if either side has only one of two
7460 values. If either one does or if both do and they are conditional on
7461 the same value, compute the new true and false values. */
7462 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7463 || GET_RTX_CLASS (code) == '<')
7465 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7466 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7468 if ((cond0 != 0 || cond1 != 0)
7469 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7471 /* If if_then_else_cond returned zero, then true/false are the
7472 same rtl. We must copy one of them to prevent invalid rtl
7473 sharing. */
7474 if (cond0 == 0)
7475 true0 = copy_rtx (true0);
7476 else if (cond1 == 0)
7477 true1 = copy_rtx (true1);
7479 *ptrue = gen_binary (code, mode, true0, true1);
7480 *pfalse = gen_binary (code, mode, false0, false1);
7481 return cond0 ? cond0 : cond1;
7484 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7485 operands is zero when the other is nonzero, and vice-versa,
7486 and STORE_FLAG_VALUE is 1 or -1. */
7488 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7489 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7490 || code == UMAX)
7491 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7493 rtx op0 = XEXP (XEXP (x, 0), 1);
7494 rtx op1 = XEXP (XEXP (x, 1), 1);
7496 cond0 = XEXP (XEXP (x, 0), 0);
7497 cond1 = XEXP (XEXP (x, 1), 0);
7499 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7500 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7501 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7502 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7503 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7504 || ((swap_condition (GET_CODE (cond0))
7505 == combine_reversed_comparison_code (cond1))
7506 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7507 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7508 && ! side_effects_p (x))
7510 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7511 *pfalse = gen_binary (MULT, mode,
7512 (code == MINUS
7513 ? simplify_gen_unary (NEG, mode, op1,
7514 mode)
7515 : op1),
7516 const_true_rtx);
7517 return cond0;
7521 /* Similarly for MULT, AND and UMIN, except that for these the result
7522 is always zero. */
7523 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7524 && (code == MULT || code == AND || code == UMIN)
7525 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7527 cond0 = XEXP (XEXP (x, 0), 0);
7528 cond1 = XEXP (XEXP (x, 1), 0);
7530 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7531 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7532 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7533 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7534 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7535 || ((swap_condition (GET_CODE (cond0))
7536 == combine_reversed_comparison_code (cond1))
7537 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7538 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7539 && ! side_effects_p (x))
7541 *ptrue = *pfalse = const0_rtx;
7542 return cond0;
7547 else if (code == IF_THEN_ELSE)
7549 /* If we have IF_THEN_ELSE already, extract the condition and
7550 canonicalize it if it is NE or EQ. */
7551 cond0 = XEXP (x, 0);
7552 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7553 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7554 return XEXP (cond0, 0);
7555 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7557 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7558 return XEXP (cond0, 0);
7560 else
7561 return cond0;
7564 /* If X is a SUBREG, we can narrow both the true and false values
7565 if the inner expression, if there is a condition. */
7566 else if (code == SUBREG
7567 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7568 &true0, &false0)))
7570 *ptrue = simplify_gen_subreg (mode, true0,
7571 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7572 *pfalse = simplify_gen_subreg (mode, false0,
7573 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7575 return cond0;
7578 /* If X is a constant, this isn't special and will cause confusions
7579 if we treat it as such. Likewise if it is equivalent to a constant. */
7580 else if (CONSTANT_P (x)
7581 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7584 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7585 will be least confusing to the rest of the compiler. */
7586 else if (mode == BImode)
7588 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7589 return x;
7592 /* If X is known to be either 0 or -1, those are the true and
7593 false values when testing X. */
7594 else if (x == constm1_rtx || x == const0_rtx
7595 || (mode != VOIDmode
7596 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7598 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7599 return x;
7602 /* Likewise for 0 or a single bit. */
7603 else if (mode != VOIDmode
7604 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7605 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7607 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7608 return x;
7611 /* Otherwise fail; show no condition with true and false values the same. */
7612 *ptrue = *pfalse = x;
7613 return 0;
7616 /* Return the value of expression X given the fact that condition COND
7617 is known to be true when applied to REG as its first operand and VAL
7618 as its second. X is known to not be shared and so can be modified in
7619 place.
7621 We only handle the simplest cases, and specifically those cases that
7622 arise with IF_THEN_ELSE expressions. */
7624 static rtx
7625 known_cond (x, cond, reg, val)
7626 rtx x;
7627 enum rtx_code cond;
7628 rtx reg, val;
7630 enum rtx_code code = GET_CODE (x);
7631 rtx temp;
7632 const char *fmt;
7633 int i, j;
7635 if (side_effects_p (x))
7636 return x;
7638 /* If either operand of the condition is a floating point value,
7639 then we have to avoid collapsing an EQ comparison. */
7640 if (cond == EQ
7641 && rtx_equal_p (x, reg)
7642 && ! FLOAT_MODE_P (GET_MODE (x))
7643 && ! FLOAT_MODE_P (GET_MODE (val)))
7644 return val;
7646 if (cond == UNEQ && rtx_equal_p (x, reg))
7647 return val;
7649 /* If X is (abs REG) and we know something about REG's relationship
7650 with zero, we may be able to simplify this. */
7652 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7653 switch (cond)
7655 case GE: case GT: case EQ:
7656 return XEXP (x, 0);
7657 case LT: case LE:
7658 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7659 XEXP (x, 0),
7660 GET_MODE (XEXP (x, 0)));
7661 default:
7662 break;
7665 /* The only other cases we handle are MIN, MAX, and comparisons if the
7666 operands are the same as REG and VAL. */
7668 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7670 if (rtx_equal_p (XEXP (x, 0), val))
7671 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7673 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7675 if (GET_RTX_CLASS (code) == '<')
7677 if (comparison_dominates_p (cond, code))
7678 return const_true_rtx;
7680 code = combine_reversed_comparison_code (x);
7681 if (code != UNKNOWN
7682 && comparison_dominates_p (cond, code))
7683 return const0_rtx;
7684 else
7685 return x;
7687 else if (code == SMAX || code == SMIN
7688 || code == UMIN || code == UMAX)
7690 int unsignedp = (code == UMIN || code == UMAX);
7692 /* Do not reverse the condition when it is NE or EQ.
7693 This is because we cannot conclude anything about
7694 the value of 'SMAX (x, y)' when x is not equal to y,
7695 but we can when x equals y. */
7696 if ((code == SMAX || code == UMAX)
7697 && ! (cond == EQ || cond == NE))
7698 cond = reverse_condition (cond);
7700 switch (cond)
7702 case GE: case GT:
7703 return unsignedp ? x : XEXP (x, 1);
7704 case LE: case LT:
7705 return unsignedp ? x : XEXP (x, 0);
7706 case GEU: case GTU:
7707 return unsignedp ? XEXP (x, 1) : x;
7708 case LEU: case LTU:
7709 return unsignedp ? XEXP (x, 0) : x;
7710 default:
7711 break;
7716 else if (code == SUBREG)
7718 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7719 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7721 if (SUBREG_REG (x) != r)
7723 /* We must simplify subreg here, before we lose track of the
7724 original inner_mode. */
7725 new = simplify_subreg (GET_MODE (x), r,
7726 inner_mode, SUBREG_BYTE (x));
7727 if (new)
7728 return new;
7729 else
7730 SUBST (SUBREG_REG (x), r);
7733 return x;
7735 /* We don't have to handle SIGN_EXTEND here, because even in the
7736 case of replacing something with a modeless CONST_INT, a
7737 CONST_INT is already (supposed to be) a valid sign extension for
7738 its narrower mode, which implies it's already properly
7739 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7740 story is different. */
7741 else if (code == ZERO_EXTEND)
7743 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7744 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7746 if (XEXP (x, 0) != r)
7748 /* We must simplify the zero_extend here, before we lose
7749 track of the original inner_mode. */
7750 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7751 r, inner_mode);
7752 if (new)
7753 return new;
7754 else
7755 SUBST (XEXP (x, 0), r);
7758 return x;
7761 fmt = GET_RTX_FORMAT (code);
7762 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7764 if (fmt[i] == 'e')
7765 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7766 else if (fmt[i] == 'E')
7767 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7768 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7769 cond, reg, val));
7772 return x;
7775 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7776 assignment as a field assignment. */
7778 static int
7779 rtx_equal_for_field_assignment_p (x, y)
7780 rtx x;
7781 rtx y;
7783 if (x == y || rtx_equal_p (x, y))
7784 return 1;
7786 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7787 return 0;
7789 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7790 Note that all SUBREGs of MEM are paradoxical; otherwise they
7791 would have been rewritten. */
7792 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7793 && GET_CODE (SUBREG_REG (y)) == MEM
7794 && rtx_equal_p (SUBREG_REG (y),
7795 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7796 return 1;
7798 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7799 && GET_CODE (SUBREG_REG (x)) == MEM
7800 && rtx_equal_p (SUBREG_REG (x),
7801 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7802 return 1;
7804 /* We used to see if get_last_value of X and Y were the same but that's
7805 not correct. In one direction, we'll cause the assignment to have
7806 the wrong destination and in the case, we'll import a register into this
7807 insn that might have already have been dead. So fail if none of the
7808 above cases are true. */
7809 return 0;
7812 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7813 Return that assignment if so.
7815 We only handle the most common cases. */
7817 static rtx
7818 make_field_assignment (x)
7819 rtx x;
7821 rtx dest = SET_DEST (x);
7822 rtx src = SET_SRC (x);
7823 rtx assign;
7824 rtx rhs, lhs;
7825 HOST_WIDE_INT c1;
7826 HOST_WIDE_INT pos;
7827 unsigned HOST_WIDE_INT len;
7828 rtx other;
7829 enum machine_mode mode;
7831 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7832 a clear of a one-bit field. We will have changed it to
7833 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7834 for a SUBREG. */
7836 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7837 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7838 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7839 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7841 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7842 1, 1, 1, 0);
7843 if (assign != 0)
7844 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7845 return x;
7848 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7849 && subreg_lowpart_p (XEXP (src, 0))
7850 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7851 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7852 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7853 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7854 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7856 assign = make_extraction (VOIDmode, dest, 0,
7857 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7858 1, 1, 1, 0);
7859 if (assign != 0)
7860 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7861 return x;
7864 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7865 one-bit field. */
7866 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7867 && XEXP (XEXP (src, 0), 0) == const1_rtx
7868 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7870 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7871 1, 1, 1, 0);
7872 if (assign != 0)
7873 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7874 return x;
7877 /* The other case we handle is assignments into a constant-position
7878 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7879 a mask that has all one bits except for a group of zero bits and
7880 OTHER is known to have zeros where C1 has ones, this is such an
7881 assignment. Compute the position and length from C1. Shift OTHER
7882 to the appropriate position, force it to the required mode, and
7883 make the extraction. Check for the AND in both operands. */
7885 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7886 return x;
7888 rhs = expand_compound_operation (XEXP (src, 0));
7889 lhs = expand_compound_operation (XEXP (src, 1));
7891 if (GET_CODE (rhs) == AND
7892 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7893 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7894 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7895 else if (GET_CODE (lhs) == AND
7896 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7897 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7898 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7899 else
7900 return x;
7902 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7903 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7904 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7905 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7906 return x;
7908 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7909 if (assign == 0)
7910 return x;
7912 /* The mode to use for the source is the mode of the assignment, or of
7913 what is inside a possible STRICT_LOW_PART. */
7914 mode = (GET_CODE (assign) == STRICT_LOW_PART
7915 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7917 /* Shift OTHER right POS places and make it the source, restricting it
7918 to the proper length and mode. */
7920 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7921 GET_MODE (src), other, pos),
7922 mode,
7923 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7924 ? ~(unsigned HOST_WIDE_INT) 0
7925 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7926 dest, 0);
7928 return gen_rtx_SET (VOIDmode, assign, src);
7931 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7932 if so. */
7934 static rtx
7935 apply_distributive_law (x)
7936 rtx x;
7938 enum rtx_code code = GET_CODE (x);
7939 rtx lhs, rhs, other;
7940 rtx tem;
7941 enum rtx_code inner_code;
7943 /* Distributivity is not true for floating point.
7944 It can change the value. So don't do it.
7945 -- rms and moshier@world.std.com. */
7946 if (FLOAT_MODE_P (GET_MODE (x)))
7947 return x;
7949 /* The outer operation can only be one of the following: */
7950 if (code != IOR && code != AND && code != XOR
7951 && code != PLUS && code != MINUS)
7952 return x;
7954 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7956 /* If either operand is a primitive we can't do anything, so get out
7957 fast. */
7958 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7959 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7960 return x;
7962 lhs = expand_compound_operation (lhs);
7963 rhs = expand_compound_operation (rhs);
7964 inner_code = GET_CODE (lhs);
7965 if (inner_code != GET_CODE (rhs))
7966 return x;
7968 /* See if the inner and outer operations distribute. */
7969 switch (inner_code)
7971 case LSHIFTRT:
7972 case ASHIFTRT:
7973 case AND:
7974 case IOR:
7975 /* These all distribute except over PLUS. */
7976 if (code == PLUS || code == MINUS)
7977 return x;
7978 break;
7980 case MULT:
7981 if (code != PLUS && code != MINUS)
7982 return x;
7983 break;
7985 case ASHIFT:
7986 /* This is also a multiply, so it distributes over everything. */
7987 break;
7989 case SUBREG:
7990 /* Non-paradoxical SUBREGs distributes over all operations, provided
7991 the inner modes and byte offsets are the same, this is an extraction
7992 of a low-order part, we don't convert an fp operation to int or
7993 vice versa, and we would not be converting a single-word
7994 operation into a multi-word operation. The latter test is not
7995 required, but it prevents generating unneeded multi-word operations.
7996 Some of the previous tests are redundant given the latter test, but
7997 are retained because they are required for correctness.
7999 We produce the result slightly differently in this case. */
8001 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8002 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8003 || ! subreg_lowpart_p (lhs)
8004 || (GET_MODE_CLASS (GET_MODE (lhs))
8005 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8006 || (GET_MODE_SIZE (GET_MODE (lhs))
8007 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8008 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8009 return x;
8011 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8012 SUBREG_REG (lhs), SUBREG_REG (rhs));
8013 return gen_lowpart_for_combine (GET_MODE (x), tem);
8015 default:
8016 return x;
8019 /* Set LHS and RHS to the inner operands (A and B in the example
8020 above) and set OTHER to the common operand (C in the example).
8021 These is only one way to do this unless the inner operation is
8022 commutative. */
8023 if (GET_RTX_CLASS (inner_code) == 'c'
8024 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8025 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8026 else if (GET_RTX_CLASS (inner_code) == 'c'
8027 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8028 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8029 else if (GET_RTX_CLASS (inner_code) == 'c'
8030 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8031 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8032 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8033 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8034 else
8035 return x;
8037 /* Form the new inner operation, seeing if it simplifies first. */
8038 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8040 /* There is one exception to the general way of distributing:
8041 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
8042 if (code == XOR && inner_code == IOR)
8044 inner_code = AND;
8045 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8048 /* We may be able to continuing distributing the result, so call
8049 ourselves recursively on the inner operation before forming the
8050 outer operation, which we return. */
8051 return gen_binary (inner_code, GET_MODE (x),
8052 apply_distributive_law (tem), other);
8055 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8056 in MODE.
8058 Return an equivalent form, if different from X. Otherwise, return X. If
8059 X is zero, we are to always construct the equivalent form. */
8061 static rtx
8062 simplify_and_const_int (x, mode, varop, constop)
8063 rtx x;
8064 enum machine_mode mode;
8065 rtx varop;
8066 unsigned HOST_WIDE_INT constop;
8068 unsigned HOST_WIDE_INT nonzero;
8069 int i;
8071 /* Simplify VAROP knowing that we will be only looking at some of the
8072 bits in it.
8074 Note by passing in CONSTOP, we guarantee that the bits not set in
8075 CONSTOP are not significant and will never be examined. We must
8076 ensure that is the case by explicitly masking out those bits
8077 before returning. */
8078 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8080 /* If VAROP is a CLOBBER, we will fail so return it. */
8081 if (GET_CODE (varop) == CLOBBER)
8082 return varop;
8084 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8085 to VAROP and return the new constant. */
8086 if (GET_CODE (varop) == CONST_INT)
8087 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8089 /* See what bits may be nonzero in VAROP. Unlike the general case of
8090 a call to nonzero_bits, here we don't care about bits outside
8091 MODE. */
8093 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8095 /* Turn off all bits in the constant that are known to already be zero.
8096 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8097 which is tested below. */
8099 constop &= nonzero;
8101 /* If we don't have any bits left, return zero. */
8102 if (constop == 0)
8103 return const0_rtx;
8105 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8106 a power of two, we can replace this with an ASHIFT. */
8107 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8108 && (i = exact_log2 (constop)) >= 0)
8109 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8111 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8112 or XOR, then try to apply the distributive law. This may eliminate
8113 operations if either branch can be simplified because of the AND.
8114 It may also make some cases more complex, but those cases probably
8115 won't match a pattern either with or without this. */
8117 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8118 return
8119 gen_lowpart_for_combine
8120 (mode,
8121 apply_distributive_law
8122 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8123 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8124 XEXP (varop, 0), constop),
8125 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8126 XEXP (varop, 1), constop))));
8128 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8129 the AND and see if one of the operands simplifies to zero. If so, we
8130 may eliminate it. */
8132 if (GET_CODE (varop) == PLUS
8133 && exact_log2 (constop + 1) >= 0)
8135 rtx o0, o1;
8137 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8138 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8139 if (o0 == const0_rtx)
8140 return o1;
8141 if (o1 == const0_rtx)
8142 return o0;
8145 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8146 if we already had one (just check for the simplest cases). */
8147 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8148 && GET_MODE (XEXP (x, 0)) == mode
8149 && SUBREG_REG (XEXP (x, 0)) == varop)
8150 varop = XEXP (x, 0);
8151 else
8152 varop = gen_lowpart_for_combine (mode, varop);
8154 /* If we can't make the SUBREG, try to return what we were given. */
8155 if (GET_CODE (varop) == CLOBBER)
8156 return x ? x : varop;
8158 /* If we are only masking insignificant bits, return VAROP. */
8159 if (constop == nonzero)
8160 x = varop;
8161 else
8163 /* Otherwise, return an AND. */
8164 constop = trunc_int_for_mode (constop, mode);
8165 /* See how much, if any, of X we can use. */
8166 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8167 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8169 else
8171 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8172 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8173 SUBST (XEXP (x, 1), GEN_INT (constop));
8175 SUBST (XEXP (x, 0), varop);
8179 return x;
8182 #define nonzero_bits_with_known(X, MODE) \
8183 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8185 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8186 It avoids exponential behavior in nonzero_bits1 when X has
8187 identical subexpressions on the first or the second level. */
8189 static unsigned HOST_WIDE_INT
8190 cached_nonzero_bits (x, mode, known_x, known_mode, known_ret)
8191 rtx x;
8192 enum machine_mode mode;
8193 rtx known_x;
8194 enum machine_mode known_mode;
8195 unsigned HOST_WIDE_INT known_ret;
8197 if (x == known_x && mode == known_mode)
8198 return known_ret;
8200 /* Try to find identical subexpressions. If found call
8201 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8202 precomputed value for the subexpression as KNOWN_RET. */
8204 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8205 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8207 rtx x0 = XEXP (x, 0);
8208 rtx x1 = XEXP (x, 1);
8210 /* Check the first level. */
8211 if (x0 == x1)
8212 return nonzero_bits1 (x, mode, x0, mode,
8213 nonzero_bits_with_known (x0, mode));
8215 /* Check the second level. */
8216 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8217 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8218 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8219 return nonzero_bits1 (x, mode, x1, mode,
8220 nonzero_bits_with_known (x1, mode));
8222 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8223 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8224 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8225 return nonzero_bits1 (x, mode, x0, mode,
8226 nonzero_bits_with_known (x0, mode));
8229 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8232 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8233 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8234 is less useful. We can't allow both, because that results in exponential
8235 run time recursion. There is a nullstone testcase that triggered
8236 this. This macro avoids accidental uses of num_sign_bit_copies. */
8237 #define cached_num_sign_bit_copies()
8239 /* Given an expression, X, compute which bits in X can be nonzero.
8240 We don't care about bits outside of those defined in MODE.
8242 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8243 a shift, AND, or zero_extract, we can do better. */
8245 static unsigned HOST_WIDE_INT
8246 nonzero_bits1 (x, mode, known_x, known_mode, known_ret)
8247 rtx x;
8248 enum machine_mode mode;
8249 rtx known_x;
8250 enum machine_mode known_mode;
8251 unsigned HOST_WIDE_INT known_ret;
8253 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8254 unsigned HOST_WIDE_INT inner_nz;
8255 enum rtx_code code;
8256 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8257 rtx tem;
8259 /* For floating-point values, assume all bits are needed. */
8260 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8261 return nonzero;
8263 /* If X is wider than MODE, use its mode instead. */
8264 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8266 mode = GET_MODE (x);
8267 nonzero = GET_MODE_MASK (mode);
8268 mode_width = GET_MODE_BITSIZE (mode);
8271 if (mode_width > HOST_BITS_PER_WIDE_INT)
8272 /* Our only callers in this case look for single bit values. So
8273 just return the mode mask. Those tests will then be false. */
8274 return nonzero;
8276 #ifndef WORD_REGISTER_OPERATIONS
8277 /* If MODE is wider than X, but both are a single word for both the host
8278 and target machines, we can compute this from which bits of the
8279 object might be nonzero in its own mode, taking into account the fact
8280 that on many CISC machines, accessing an object in a wider mode
8281 causes the high-order bits to become undefined. So they are
8282 not known to be zero. */
8284 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8285 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8286 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8287 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8289 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8290 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8291 return nonzero;
8293 #endif
8295 code = GET_CODE (x);
8296 switch (code)
8298 case REG:
8299 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8300 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8301 all the bits above ptr_mode are known to be zero. */
8302 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8303 && REG_POINTER (x))
8304 nonzero &= GET_MODE_MASK (ptr_mode);
8305 #endif
8307 /* Include declared information about alignment of pointers. */
8308 /* ??? We don't properly preserve REG_POINTER changes across
8309 pointer-to-integer casts, so we can't trust it except for
8310 things that we know must be pointers. See execute/960116-1.c. */
8311 if ((x == stack_pointer_rtx
8312 || x == frame_pointer_rtx
8313 || x == arg_pointer_rtx)
8314 && REGNO_POINTER_ALIGN (REGNO (x)))
8316 unsigned HOST_WIDE_INT alignment
8317 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8319 #ifdef PUSH_ROUNDING
8320 /* If PUSH_ROUNDING is defined, it is possible for the
8321 stack to be momentarily aligned only to that amount,
8322 so we pick the least alignment. */
8323 if (x == stack_pointer_rtx && PUSH_ARGS)
8324 alignment = MIN (PUSH_ROUNDING (1), alignment);
8325 #endif
8327 nonzero &= ~(alignment - 1);
8330 /* If X is a register whose nonzero bits value is current, use it.
8331 Otherwise, if X is a register whose value we can find, use that
8332 value. Otherwise, use the previously-computed global nonzero bits
8333 for this register. */
8335 if (reg_last_set_value[REGNO (x)] != 0
8336 && (reg_last_set_mode[REGNO (x)] == mode
8337 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8338 && GET_MODE_CLASS (mode) == MODE_INT))
8339 && (reg_last_set_label[REGNO (x)] == label_tick
8340 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8341 && REG_N_SETS (REGNO (x)) == 1
8342 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8343 REGNO (x))))
8344 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8345 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8347 tem = get_last_value (x);
8349 if (tem)
8351 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8352 /* If X is narrower than MODE and TEM is a non-negative
8353 constant that would appear negative in the mode of X,
8354 sign-extend it for use in reg_nonzero_bits because some
8355 machines (maybe most) will actually do the sign-extension
8356 and this is the conservative approach.
8358 ??? For 2.5, try to tighten up the MD files in this regard
8359 instead of this kludge. */
8361 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8362 && GET_CODE (tem) == CONST_INT
8363 && INTVAL (tem) > 0
8364 && 0 != (INTVAL (tem)
8365 & ((HOST_WIDE_INT) 1
8366 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8367 tem = GEN_INT (INTVAL (tem)
8368 | ((HOST_WIDE_INT) (-1)
8369 << GET_MODE_BITSIZE (GET_MODE (x))));
8370 #endif
8371 return nonzero_bits_with_known (tem, mode) & nonzero;
8373 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8375 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8377 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8378 /* We don't know anything about the upper bits. */
8379 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8380 return nonzero & mask;
8382 else
8383 return nonzero;
8385 case CONST_INT:
8386 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8387 /* If X is negative in MODE, sign-extend the value. */
8388 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8389 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8390 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8391 #endif
8393 return INTVAL (x);
8395 case MEM:
8396 #ifdef LOAD_EXTEND_OP
8397 /* In many, if not most, RISC machines, reading a byte from memory
8398 zeros the rest of the register. Noticing that fact saves a lot
8399 of extra zero-extends. */
8400 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8401 nonzero &= GET_MODE_MASK (GET_MODE (x));
8402 #endif
8403 break;
8405 case EQ: case NE:
8406 case UNEQ: case LTGT:
8407 case GT: case GTU: case UNGT:
8408 case LT: case LTU: case UNLT:
8409 case GE: case GEU: case UNGE:
8410 case LE: case LEU: case UNLE:
8411 case UNORDERED: case ORDERED:
8413 /* If this produces an integer result, we know which bits are set.
8414 Code here used to clear bits outside the mode of X, but that is
8415 now done above. */
8417 if (GET_MODE_CLASS (mode) == MODE_INT
8418 && mode_width <= HOST_BITS_PER_WIDE_INT)
8419 nonzero = STORE_FLAG_VALUE;
8420 break;
8422 case NEG:
8423 #if 0
8424 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8425 and num_sign_bit_copies. */
8426 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8427 == GET_MODE_BITSIZE (GET_MODE (x)))
8428 nonzero = 1;
8429 #endif
8431 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8432 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8433 break;
8435 case ABS:
8436 #if 0
8437 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8438 and num_sign_bit_copies. */
8439 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8440 == GET_MODE_BITSIZE (GET_MODE (x)))
8441 nonzero = 1;
8442 #endif
8443 break;
8445 case TRUNCATE:
8446 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8447 & GET_MODE_MASK (mode));
8448 break;
8450 case ZERO_EXTEND:
8451 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8452 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8453 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8454 break;
8456 case SIGN_EXTEND:
8457 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8458 Otherwise, show all the bits in the outer mode but not the inner
8459 may be nonzero. */
8460 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8461 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8463 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8464 if (inner_nz
8465 & (((HOST_WIDE_INT) 1
8466 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8467 inner_nz |= (GET_MODE_MASK (mode)
8468 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8471 nonzero &= inner_nz;
8472 break;
8474 case AND:
8475 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8476 & nonzero_bits_with_known (XEXP (x, 1), mode));
8477 break;
8479 case XOR: case IOR:
8480 case UMIN: case UMAX: case SMIN: case SMAX:
8482 unsigned HOST_WIDE_INT nonzero0 =
8483 nonzero_bits_with_known (XEXP (x, 0), mode);
8485 /* Don't call nonzero_bits for the second time if it cannot change
8486 anything. */
8487 if ((nonzero & nonzero0) != nonzero)
8488 nonzero &= (nonzero0
8489 | nonzero_bits_with_known (XEXP (x, 1), mode));
8491 break;
8493 case PLUS: case MINUS:
8494 case MULT:
8495 case DIV: case UDIV:
8496 case MOD: case UMOD:
8497 /* We can apply the rules of arithmetic to compute the number of
8498 high- and low-order zero bits of these operations. We start by
8499 computing the width (position of the highest-order nonzero bit)
8500 and the number of low-order zero bits for each value. */
8502 unsigned HOST_WIDE_INT nz0 =
8503 nonzero_bits_with_known (XEXP (x, 0), mode);
8504 unsigned HOST_WIDE_INT nz1 =
8505 nonzero_bits_with_known (XEXP (x, 1), mode);
8506 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8507 int width0 = floor_log2 (nz0) + 1;
8508 int width1 = floor_log2 (nz1) + 1;
8509 int low0 = floor_log2 (nz0 & -nz0);
8510 int low1 = floor_log2 (nz1 & -nz1);
8511 HOST_WIDE_INT op0_maybe_minusp
8512 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8513 HOST_WIDE_INT op1_maybe_minusp
8514 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8515 unsigned int result_width = mode_width;
8516 int result_low = 0;
8518 switch (code)
8520 case PLUS:
8521 result_width = MAX (width0, width1) + 1;
8522 result_low = MIN (low0, low1);
8523 break;
8524 case MINUS:
8525 result_low = MIN (low0, low1);
8526 break;
8527 case MULT:
8528 result_width = width0 + width1;
8529 result_low = low0 + low1;
8530 break;
8531 case DIV:
8532 if (width1 == 0)
8533 break;
8534 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8535 result_width = width0;
8536 break;
8537 case UDIV:
8538 if (width1 == 0)
8539 break;
8540 result_width = width0;
8541 break;
8542 case MOD:
8543 if (width1 == 0)
8544 break;
8545 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8546 result_width = MIN (width0, width1);
8547 result_low = MIN (low0, low1);
8548 break;
8549 case UMOD:
8550 if (width1 == 0)
8551 break;
8552 result_width = MIN (width0, width1);
8553 result_low = MIN (low0, low1);
8554 break;
8555 default:
8556 abort ();
8559 if (result_width < mode_width)
8560 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8562 if (result_low > 0)
8563 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8565 #ifdef POINTERS_EXTEND_UNSIGNED
8566 /* If pointers extend unsigned and this is an addition or subtraction
8567 to a pointer in Pmode, all the bits above ptr_mode are known to be
8568 zero. */
8569 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8570 && (code == PLUS || code == MINUS)
8571 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8572 nonzero &= GET_MODE_MASK (ptr_mode);
8573 #endif
8575 break;
8577 case ZERO_EXTRACT:
8578 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8579 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8580 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8581 break;
8583 case SUBREG:
8584 /* If this is a SUBREG formed for a promoted variable that has
8585 been zero-extended, we know that at least the high-order bits
8586 are zero, though others might be too. */
8588 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8589 nonzero = (GET_MODE_MASK (GET_MODE (x))
8590 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8592 /* If the inner mode is a single word for both the host and target
8593 machines, we can compute this from which bits of the inner
8594 object might be nonzero. */
8595 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8596 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8597 <= HOST_BITS_PER_WIDE_INT))
8599 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8601 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8602 /* If this is a typical RISC machine, we only have to worry
8603 about the way loads are extended. */
8604 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8605 ? (((nonzero
8606 & (((unsigned HOST_WIDE_INT) 1
8607 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8608 != 0))
8609 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8610 || GET_CODE (SUBREG_REG (x)) != MEM)
8611 #endif
8613 /* On many CISC machines, accessing an object in a wider mode
8614 causes the high-order bits to become undefined. So they are
8615 not known to be zero. */
8616 if (GET_MODE_SIZE (GET_MODE (x))
8617 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8618 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8619 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8622 break;
8624 case ASHIFTRT:
8625 case LSHIFTRT:
8626 case ASHIFT:
8627 case ROTATE:
8628 /* The nonzero bits are in two classes: any bits within MODE
8629 that aren't in GET_MODE (x) are always significant. The rest of the
8630 nonzero bits are those that are significant in the operand of
8631 the shift when shifted the appropriate number of bits. This
8632 shows that high-order bits are cleared by the right shift and
8633 low-order bits by left shifts. */
8634 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8635 && INTVAL (XEXP (x, 1)) >= 0
8636 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8638 enum machine_mode inner_mode = GET_MODE (x);
8639 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8640 int count = INTVAL (XEXP (x, 1));
8641 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8642 unsigned HOST_WIDE_INT op_nonzero =
8643 nonzero_bits_with_known (XEXP (x, 0), mode);
8644 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8645 unsigned HOST_WIDE_INT outer = 0;
8647 if (mode_width > width)
8648 outer = (op_nonzero & nonzero & ~mode_mask);
8650 if (code == LSHIFTRT)
8651 inner >>= count;
8652 else if (code == ASHIFTRT)
8654 inner >>= count;
8656 /* If the sign bit may have been nonzero before the shift, we
8657 need to mark all the places it could have been copied to
8658 by the shift as possibly nonzero. */
8659 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8660 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8662 else if (code == ASHIFT)
8663 inner <<= count;
8664 else
8665 inner = ((inner << (count % width)
8666 | (inner >> (width - (count % width)))) & mode_mask);
8668 nonzero &= (outer | inner);
8670 break;
8672 case FFS:
8673 case POPCOUNT:
8674 /* This is at most the number of bits in the mode. */
8675 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8676 break;
8678 case CLZ:
8679 /* If CLZ has a known value at zero, then the nonzero bits are
8680 that value, plus the number of bits in the mode minus one. */
8681 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8682 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8683 else
8684 nonzero = -1;
8685 break;
8687 case CTZ:
8688 /* If CTZ has a known value at zero, then the nonzero bits are
8689 that value, plus the number of bits in the mode minus one. */
8690 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8691 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8692 else
8693 nonzero = -1;
8694 break;
8696 case PARITY:
8697 nonzero = 1;
8698 break;
8700 case IF_THEN_ELSE:
8701 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8702 | nonzero_bits_with_known (XEXP (x, 2), mode));
8703 break;
8705 default:
8706 break;
8709 return nonzero;
8712 /* See the macro definition above. */
8713 #undef cached_num_sign_bit_copies
8715 #define num_sign_bit_copies_with_known(X, M) \
8716 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8718 /* The function cached_num_sign_bit_copies is a wrapper around
8719 num_sign_bit_copies1. It avoids exponential behavior in
8720 num_sign_bit_copies1 when X has identical subexpressions on the
8721 first or the second level. */
8723 static unsigned int
8724 cached_num_sign_bit_copies (x, mode, known_x, known_mode, known_ret)
8725 rtx x;
8726 enum machine_mode mode;
8727 rtx known_x;
8728 enum machine_mode known_mode;
8729 unsigned int known_ret;
8731 if (x == known_x && mode == known_mode)
8732 return known_ret;
8734 /* Try to find identical subexpressions. If found call
8735 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8736 the precomputed value for the subexpression as KNOWN_RET. */
8738 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8739 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8741 rtx x0 = XEXP (x, 0);
8742 rtx x1 = XEXP (x, 1);
8744 /* Check the first level. */
8745 if (x0 == x1)
8746 return
8747 num_sign_bit_copies1 (x, mode, x0, mode,
8748 num_sign_bit_copies_with_known (x0, mode));
8750 /* Check the second level. */
8751 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8752 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8753 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8754 return
8755 num_sign_bit_copies1 (x, mode, x1, mode,
8756 num_sign_bit_copies_with_known (x1, mode));
8758 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8759 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8760 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8761 return
8762 num_sign_bit_copies1 (x, mode, x0, mode,
8763 num_sign_bit_copies_with_known (x0, mode));
8766 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8769 /* Return the number of bits at the high-order end of X that are known to
8770 be equal to the sign bit. X will be used in mode MODE; if MODE is
8771 VOIDmode, X will be used in its own mode. The returned value will always
8772 be between 1 and the number of bits in MODE. */
8774 static unsigned int
8775 num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret)
8776 rtx x;
8777 enum machine_mode mode;
8778 rtx known_x;
8779 enum machine_mode known_mode;
8780 unsigned int known_ret;
8782 enum rtx_code code = GET_CODE (x);
8783 unsigned int bitwidth;
8784 int num0, num1, result;
8785 unsigned HOST_WIDE_INT nonzero;
8786 rtx tem;
8788 /* If we weren't given a mode, use the mode of X. If the mode is still
8789 VOIDmode, we don't know anything. Likewise if one of the modes is
8790 floating-point. */
8792 if (mode == VOIDmode)
8793 mode = GET_MODE (x);
8795 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8796 return 1;
8798 bitwidth = GET_MODE_BITSIZE (mode);
8800 /* For a smaller object, just ignore the high bits. */
8801 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8803 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8804 return MAX (1,
8805 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8808 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8810 #ifndef WORD_REGISTER_OPERATIONS
8811 /* If this machine does not do all register operations on the entire
8812 register and MODE is wider than the mode of X, we can say nothing
8813 at all about the high-order bits. */
8814 return 1;
8815 #else
8816 /* Likewise on machines that do, if the mode of the object is smaller
8817 than a word and loads of that size don't sign extend, we can say
8818 nothing about the high order bits. */
8819 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8820 #ifdef LOAD_EXTEND_OP
8821 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8822 #endif
8824 return 1;
8825 #endif
8828 switch (code)
8830 case REG:
8832 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8833 /* If pointers extend signed and this is a pointer in Pmode, say that
8834 all the bits above ptr_mode are known to be sign bit copies. */
8835 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8836 && REG_POINTER (x))
8837 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8838 #endif
8840 if (reg_last_set_value[REGNO (x)] != 0
8841 && reg_last_set_mode[REGNO (x)] == mode
8842 && (reg_last_set_label[REGNO (x)] == label_tick
8843 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8844 && REG_N_SETS (REGNO (x)) == 1
8845 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8846 REGNO (x))))
8847 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8848 return reg_last_set_sign_bit_copies[REGNO (x)];
8850 tem = get_last_value (x);
8851 if (tem != 0)
8852 return num_sign_bit_copies_with_known (tem, mode);
8854 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8855 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8856 return reg_sign_bit_copies[REGNO (x)];
8857 break;
8859 case MEM:
8860 #ifdef LOAD_EXTEND_OP
8861 /* Some RISC machines sign-extend all loads of smaller than a word. */
8862 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8863 return MAX (1, ((int) bitwidth
8864 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8865 #endif
8866 break;
8868 case CONST_INT:
8869 /* If the constant is negative, take its 1's complement and remask.
8870 Then see how many zero bits we have. */
8871 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8872 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8873 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8874 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8876 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8878 case SUBREG:
8879 /* If this is a SUBREG for a promoted object that is sign-extended
8880 and we are looking at it in a wider mode, we know that at least the
8881 high-order bits are known to be sign bit copies. */
8883 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8885 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8886 return MAX ((int) bitwidth
8887 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8888 num0);
8891 /* For a smaller object, just ignore the high bits. */
8892 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8894 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8895 return MAX (1, (num0
8896 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8897 - bitwidth)));
8900 #ifdef WORD_REGISTER_OPERATIONS
8901 #ifdef LOAD_EXTEND_OP
8902 /* For paradoxical SUBREGs on machines where all register operations
8903 affect the entire register, just look inside. Note that we are
8904 passing MODE to the recursive call, so the number of sign bit copies
8905 will remain relative to that mode, not the inner mode. */
8907 /* This works only if loads sign extend. Otherwise, if we get a
8908 reload for the inner part, it may be loaded from the stack, and
8909 then we lose all sign bit copies that existed before the store
8910 to the stack. */
8912 if ((GET_MODE_SIZE (GET_MODE (x))
8913 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8914 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8915 && GET_CODE (SUBREG_REG (x)) == MEM)
8916 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8917 #endif
8918 #endif
8919 break;
8921 case SIGN_EXTRACT:
8922 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8923 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8924 break;
8926 case SIGN_EXTEND:
8927 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8928 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8930 case TRUNCATE:
8931 /* For a smaller object, just ignore the high bits. */
8932 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8933 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8934 - bitwidth)));
8936 case NOT:
8937 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8939 case ROTATE: case ROTATERT:
8940 /* If we are rotating left by a number of bits less than the number
8941 of sign bit copies, we can just subtract that amount from the
8942 number. */
8943 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8944 && INTVAL (XEXP (x, 1)) >= 0
8945 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8947 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8948 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8949 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8951 break;
8953 case NEG:
8954 /* In general, this subtracts one sign bit copy. But if the value
8955 is known to be positive, the number of sign bit copies is the
8956 same as that of the input. Finally, if the input has just one bit
8957 that might be nonzero, all the bits are copies of the sign bit. */
8958 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8959 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8960 return num0 > 1 ? num0 - 1 : 1;
8962 nonzero = nonzero_bits (XEXP (x, 0), mode);
8963 if (nonzero == 1)
8964 return bitwidth;
8966 if (num0 > 1
8967 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8968 num0--;
8970 return num0;
8972 case IOR: case AND: case XOR:
8973 case SMIN: case SMAX: case UMIN: case UMAX:
8974 /* Logical operations will preserve the number of sign-bit copies.
8975 MIN and MAX operations always return one of the operands. */
8976 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8977 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8978 return MIN (num0, num1);
8980 case PLUS: case MINUS:
8981 /* For addition and subtraction, we can have a 1-bit carry. However,
8982 if we are subtracting 1 from a positive number, there will not
8983 be such a carry. Furthermore, if the positive number is known to
8984 be 0 or 1, we know the result is either -1 or 0. */
8986 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8987 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8989 nonzero = nonzero_bits (XEXP (x, 0), mode);
8990 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8991 return (nonzero == 1 || nonzero == 0 ? bitwidth
8992 : bitwidth - floor_log2 (nonzero) - 1);
8995 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8996 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8997 result = MAX (1, MIN (num0, num1) - 1);
8999 #ifdef POINTERS_EXTEND_UNSIGNED
9000 /* If pointers extend signed and this is an addition or subtraction
9001 to a pointer in Pmode, all the bits above ptr_mode are known to be
9002 sign bit copies. */
9003 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
9004 && (code == PLUS || code == MINUS)
9005 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
9006 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
9007 - GET_MODE_BITSIZE (ptr_mode) + 1),
9008 result);
9009 #endif
9010 return result;
9012 case MULT:
9013 /* The number of bits of the product is the sum of the number of
9014 bits of both terms. However, unless one of the terms if known
9015 to be positive, we must allow for an additional bit since negating
9016 a negative number can remove one sign bit copy. */
9018 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9019 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9021 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
9022 if (result > 0
9023 && (bitwidth > HOST_BITS_PER_WIDE_INT
9024 || (((nonzero_bits (XEXP (x, 0), mode)
9025 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9026 && ((nonzero_bits (XEXP (x, 1), mode)
9027 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
9028 result--;
9030 return MAX (1, result);
9032 case UDIV:
9033 /* The result must be <= the first operand. If the first operand
9034 has the high bit set, we know nothing about the number of sign
9035 bit copies. */
9036 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9037 return 1;
9038 else if ((nonzero_bits (XEXP (x, 0), mode)
9039 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9040 return 1;
9041 else
9042 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9044 case UMOD:
9045 /* The result must be <= the second operand. */
9046 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9048 case DIV:
9049 /* Similar to unsigned division, except that we have to worry about
9050 the case where the divisor is negative, in which case we have
9051 to add 1. */
9052 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9053 if (result > 1
9054 && (bitwidth > HOST_BITS_PER_WIDE_INT
9055 || (nonzero_bits (XEXP (x, 1), mode)
9056 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
9057 result--;
9059 return result;
9061 case MOD:
9062 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9063 if (result > 1
9064 && (bitwidth > HOST_BITS_PER_WIDE_INT
9065 || (nonzero_bits (XEXP (x, 1), mode)
9066 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
9067 result--;
9069 return result;
9071 case ASHIFTRT:
9072 /* Shifts by a constant add to the number of bits equal to the
9073 sign bit. */
9074 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9075 if (GET_CODE (XEXP (x, 1)) == CONST_INT
9076 && INTVAL (XEXP (x, 1)) > 0)
9077 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
9079 return num0;
9081 case ASHIFT:
9082 /* Left shifts destroy copies. */
9083 if (GET_CODE (XEXP (x, 1)) != CONST_INT
9084 || INTVAL (XEXP (x, 1)) < 0
9085 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
9086 return 1;
9088 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
9089 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
9091 case IF_THEN_ELSE:
9092 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9093 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
9094 return MIN (num0, num1);
9096 case EQ: case NE: case GE: case GT: case LE: case LT:
9097 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
9098 case GEU: case GTU: case LEU: case LTU:
9099 case UNORDERED: case ORDERED:
9100 /* If the constant is negative, take its 1's complement and remask.
9101 Then see how many zero bits we have. */
9102 nonzero = STORE_FLAG_VALUE;
9103 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9104 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9105 nonzero = (~nonzero) & GET_MODE_MASK (mode);
9107 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
9108 break;
9110 default:
9111 break;
9114 /* If we haven't been able to figure it out by one of the above rules,
9115 see if some of the high-order bits are known to be zero. If so,
9116 count those bits and return one less than that amount. If we can't
9117 safely compute the mask for this mode, always return BITWIDTH. */
9119 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9120 return 1;
9122 nonzero = nonzero_bits (x, mode);
9123 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
9124 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
9127 /* Return the number of "extended" bits there are in X, when interpreted
9128 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9129 unsigned quantities, this is the number of high-order zero bits.
9130 For signed quantities, this is the number of copies of the sign bit
9131 minus 1. In both case, this function returns the number of "spare"
9132 bits. For example, if two quantities for which this function returns
9133 at least 1 are added, the addition is known not to overflow.
9135 This function will always return 0 unless called during combine, which
9136 implies that it must be called from a define_split. */
9138 unsigned int
9139 extended_count (x, mode, unsignedp)
9140 rtx x;
9141 enum machine_mode mode;
9142 int unsignedp;
9144 if (nonzero_sign_valid == 0)
9145 return 0;
9147 return (unsignedp
9148 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9149 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9150 - floor_log2 (nonzero_bits (x, mode)))
9151 : 0)
9152 : num_sign_bit_copies (x, mode) - 1);
9155 /* This function is called from `simplify_shift_const' to merge two
9156 outer operations. Specifically, we have already found that we need
9157 to perform operation *POP0 with constant *PCONST0 at the outermost
9158 position. We would now like to also perform OP1 with constant CONST1
9159 (with *POP0 being done last).
9161 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9162 the resulting operation. *PCOMP_P is set to 1 if we would need to
9163 complement the innermost operand, otherwise it is unchanged.
9165 MODE is the mode in which the operation will be done. No bits outside
9166 the width of this mode matter. It is assumed that the width of this mode
9167 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9169 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9170 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9171 result is simply *PCONST0.
9173 If the resulting operation cannot be expressed as one operation, we
9174 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9176 static int
9177 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
9178 enum rtx_code *pop0;
9179 HOST_WIDE_INT *pconst0;
9180 enum rtx_code op1;
9181 HOST_WIDE_INT const1;
9182 enum machine_mode mode;
9183 int *pcomp_p;
9185 enum rtx_code op0 = *pop0;
9186 HOST_WIDE_INT const0 = *pconst0;
9188 const0 &= GET_MODE_MASK (mode);
9189 const1 &= GET_MODE_MASK (mode);
9191 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9192 if (op0 == AND)
9193 const1 &= const0;
9195 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9196 if OP0 is SET. */
9198 if (op1 == NIL || op0 == SET)
9199 return 1;
9201 else if (op0 == NIL)
9202 op0 = op1, const0 = const1;
9204 else if (op0 == op1)
9206 switch (op0)
9208 case AND:
9209 const0 &= const1;
9210 break;
9211 case IOR:
9212 const0 |= const1;
9213 break;
9214 case XOR:
9215 const0 ^= const1;
9216 break;
9217 case PLUS:
9218 const0 += const1;
9219 break;
9220 case NEG:
9221 op0 = NIL;
9222 break;
9223 default:
9224 break;
9228 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9229 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9230 return 0;
9232 /* If the two constants aren't the same, we can't do anything. The
9233 remaining six cases can all be done. */
9234 else if (const0 != const1)
9235 return 0;
9237 else
9238 switch (op0)
9240 case IOR:
9241 if (op1 == AND)
9242 /* (a & b) | b == b */
9243 op0 = SET;
9244 else /* op1 == XOR */
9245 /* (a ^ b) | b == a | b */
9247 break;
9249 case XOR:
9250 if (op1 == AND)
9251 /* (a & b) ^ b == (~a) & b */
9252 op0 = AND, *pcomp_p = 1;
9253 else /* op1 == IOR */
9254 /* (a | b) ^ b == a & ~b */
9255 op0 = AND, *pconst0 = ~const0;
9256 break;
9258 case AND:
9259 if (op1 == IOR)
9260 /* (a | b) & b == b */
9261 op0 = SET;
9262 else /* op1 == XOR */
9263 /* (a ^ b) & b) == (~a) & b */
9264 *pcomp_p = 1;
9265 break;
9266 default:
9267 break;
9270 /* Check for NO-OP cases. */
9271 const0 &= GET_MODE_MASK (mode);
9272 if (const0 == 0
9273 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9274 op0 = NIL;
9275 else if (const0 == 0 && op0 == AND)
9276 op0 = SET;
9277 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9278 && op0 == AND)
9279 op0 = NIL;
9281 /* ??? Slightly redundant with the above mask, but not entirely.
9282 Moving this above means we'd have to sign-extend the mode mask
9283 for the final test. */
9284 const0 = trunc_int_for_mode (const0, mode);
9286 *pop0 = op0;
9287 *pconst0 = const0;
9289 return 1;
9292 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9293 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9294 that we started with.
9296 The shift is normally computed in the widest mode we find in VAROP, as
9297 long as it isn't a different number of words than RESULT_MODE. Exceptions
9298 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9300 static rtx
9301 simplify_shift_const (x, code, result_mode, varop, orig_count)
9302 rtx x;
9303 enum rtx_code code;
9304 enum machine_mode result_mode;
9305 rtx varop;
9306 int orig_count;
9308 enum rtx_code orig_code = code;
9309 unsigned int count;
9310 int signed_count;
9311 enum machine_mode mode = result_mode;
9312 enum machine_mode shift_mode, tmode;
9313 unsigned int mode_words
9314 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9315 /* We form (outer_op (code varop count) (outer_const)). */
9316 enum rtx_code outer_op = NIL;
9317 HOST_WIDE_INT outer_const = 0;
9318 rtx const_rtx;
9319 int complement_p = 0;
9320 rtx new;
9322 /* Make sure and truncate the "natural" shift on the way in. We don't
9323 want to do this inside the loop as it makes it more difficult to
9324 combine shifts. */
9325 #ifdef SHIFT_COUNT_TRUNCATED
9326 if (SHIFT_COUNT_TRUNCATED)
9327 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9328 #endif
9330 /* If we were given an invalid count, don't do anything except exactly
9331 what was requested. */
9333 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9335 if (x)
9336 return x;
9338 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9341 count = orig_count;
9343 /* Unless one of the branches of the `if' in this loop does a `continue',
9344 we will `break' the loop after the `if'. */
9346 while (count != 0)
9348 /* If we have an operand of (clobber (const_int 0)), just return that
9349 value. */
9350 if (GET_CODE (varop) == CLOBBER)
9351 return varop;
9353 /* If we discovered we had to complement VAROP, leave. Making a NOT
9354 here would cause an infinite loop. */
9355 if (complement_p)
9356 break;
9358 /* Convert ROTATERT to ROTATE. */
9359 if (code == ROTATERT)
9361 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9362 code = ROTATE;
9363 if (VECTOR_MODE_P (result_mode))
9364 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9365 else
9366 count = bitsize - count;
9369 /* We need to determine what mode we will do the shift in. If the
9370 shift is a right shift or a ROTATE, we must always do it in the mode
9371 it was originally done in. Otherwise, we can do it in MODE, the
9372 widest mode encountered. */
9373 shift_mode
9374 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9375 ? result_mode : mode);
9377 /* Handle cases where the count is greater than the size of the mode
9378 minus 1. For ASHIFT, use the size minus one as the count (this can
9379 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9380 take the count modulo the size. For other shifts, the result is
9381 zero.
9383 Since these shifts are being produced by the compiler by combining
9384 multiple operations, each of which are defined, we know what the
9385 result is supposed to be. */
9387 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9389 if (code == ASHIFTRT)
9390 count = GET_MODE_BITSIZE (shift_mode) - 1;
9391 else if (code == ROTATE || code == ROTATERT)
9392 count %= GET_MODE_BITSIZE (shift_mode);
9393 else
9395 /* We can't simply return zero because there may be an
9396 outer op. */
9397 varop = const0_rtx;
9398 count = 0;
9399 break;
9403 /* An arithmetic right shift of a quantity known to be -1 or 0
9404 is a no-op. */
9405 if (code == ASHIFTRT
9406 && (num_sign_bit_copies (varop, shift_mode)
9407 == GET_MODE_BITSIZE (shift_mode)))
9409 count = 0;
9410 break;
9413 /* If we are doing an arithmetic right shift and discarding all but
9414 the sign bit copies, this is equivalent to doing a shift by the
9415 bitsize minus one. Convert it into that shift because it will often
9416 allow other simplifications. */
9418 if (code == ASHIFTRT
9419 && (count + num_sign_bit_copies (varop, shift_mode)
9420 >= GET_MODE_BITSIZE (shift_mode)))
9421 count = GET_MODE_BITSIZE (shift_mode) - 1;
9423 /* We simplify the tests below and elsewhere by converting
9424 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9425 `make_compound_operation' will convert it to an ASHIFTRT for
9426 those machines (such as VAX) that don't have an LSHIFTRT. */
9427 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9428 && code == ASHIFTRT
9429 && ((nonzero_bits (varop, shift_mode)
9430 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9431 == 0))
9432 code = LSHIFTRT;
9434 if (code == LSHIFTRT
9435 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9436 && !(nonzero_bits (varop, shift_mode) >> count))
9437 return const0_rtx;
9438 if (code == ASHIFT
9439 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9440 && !((nonzero_bits (varop, shift_mode) << count)
9441 & GET_MODE_MASK (shift_mode)))
9442 return const0_rtx;
9444 switch (GET_CODE (varop))
9446 case SIGN_EXTEND:
9447 case ZERO_EXTEND:
9448 case SIGN_EXTRACT:
9449 case ZERO_EXTRACT:
9450 new = expand_compound_operation (varop);
9451 if (new != varop)
9453 varop = new;
9454 continue;
9456 break;
9458 case MEM:
9459 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9460 minus the width of a smaller mode, we can do this with a
9461 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9462 if ((code == ASHIFTRT || code == LSHIFTRT)
9463 && ! mode_dependent_address_p (XEXP (varop, 0))
9464 && ! MEM_VOLATILE_P (varop)
9465 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9466 MODE_INT, 1)) != BLKmode)
9468 new = adjust_address_nv (varop, tmode,
9469 BYTES_BIG_ENDIAN ? 0
9470 : count / BITS_PER_UNIT);
9472 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9473 : ZERO_EXTEND, mode, new);
9474 count = 0;
9475 continue;
9477 break;
9479 case USE:
9480 /* Similar to the case above, except that we can only do this if
9481 the resulting mode is the same as that of the underlying
9482 MEM and adjust the address depending on the *bits* endianness
9483 because of the way that bit-field extract insns are defined. */
9484 if ((code == ASHIFTRT || code == LSHIFTRT)
9485 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9486 MODE_INT, 1)) != BLKmode
9487 && tmode == GET_MODE (XEXP (varop, 0)))
9489 if (BITS_BIG_ENDIAN)
9490 new = XEXP (varop, 0);
9491 else
9493 new = copy_rtx (XEXP (varop, 0));
9494 SUBST (XEXP (new, 0),
9495 plus_constant (XEXP (new, 0),
9496 count / BITS_PER_UNIT));
9499 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9500 : ZERO_EXTEND, mode, new);
9501 count = 0;
9502 continue;
9504 break;
9506 case SUBREG:
9507 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9508 the same number of words as what we've seen so far. Then store
9509 the widest mode in MODE. */
9510 if (subreg_lowpart_p (varop)
9511 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9512 > GET_MODE_SIZE (GET_MODE (varop)))
9513 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9514 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9515 == mode_words)
9517 varop = SUBREG_REG (varop);
9518 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9519 mode = GET_MODE (varop);
9520 continue;
9522 break;
9524 case MULT:
9525 /* Some machines use MULT instead of ASHIFT because MULT
9526 is cheaper. But it is still better on those machines to
9527 merge two shifts into one. */
9528 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9529 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9531 varop
9532 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9533 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9534 continue;
9536 break;
9538 case UDIV:
9539 /* Similar, for when divides are cheaper. */
9540 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9541 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9543 varop
9544 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9545 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9546 continue;
9548 break;
9550 case ASHIFTRT:
9551 /* If we are extracting just the sign bit of an arithmetic
9552 right shift, that shift is not needed. However, the sign
9553 bit of a wider mode may be different from what would be
9554 interpreted as the sign bit in a narrower mode, so, if
9555 the result is narrower, don't discard the shift. */
9556 if (code == LSHIFTRT
9557 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9558 && (GET_MODE_BITSIZE (result_mode)
9559 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9561 varop = XEXP (varop, 0);
9562 continue;
9565 /* ... fall through ... */
9567 case LSHIFTRT:
9568 case ASHIFT:
9569 case ROTATE:
9570 /* Here we have two nested shifts. The result is usually the
9571 AND of a new shift with a mask. We compute the result below. */
9572 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9573 && INTVAL (XEXP (varop, 1)) >= 0
9574 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9575 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9576 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9578 enum rtx_code first_code = GET_CODE (varop);
9579 unsigned int first_count = INTVAL (XEXP (varop, 1));
9580 unsigned HOST_WIDE_INT mask;
9581 rtx mask_rtx;
9583 /* We have one common special case. We can't do any merging if
9584 the inner code is an ASHIFTRT of a smaller mode. However, if
9585 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9586 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9587 we can convert it to
9588 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9589 This simplifies certain SIGN_EXTEND operations. */
9590 if (code == ASHIFT && first_code == ASHIFTRT
9591 && count == (unsigned int)
9592 (GET_MODE_BITSIZE (result_mode)
9593 - GET_MODE_BITSIZE (GET_MODE (varop))))
9595 /* C3 has the low-order C1 bits zero. */
9597 mask = (GET_MODE_MASK (mode)
9598 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9600 varop = simplify_and_const_int (NULL_RTX, result_mode,
9601 XEXP (varop, 0), mask);
9602 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9603 varop, count);
9604 count = first_count;
9605 code = ASHIFTRT;
9606 continue;
9609 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9610 than C1 high-order bits equal to the sign bit, we can convert
9611 this to either an ASHIFT or an ASHIFTRT depending on the
9612 two counts.
9614 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9616 if (code == ASHIFTRT && first_code == ASHIFT
9617 && GET_MODE (varop) == shift_mode
9618 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9619 > first_count))
9621 varop = XEXP (varop, 0);
9623 signed_count = count - first_count;
9624 if (signed_count < 0)
9625 count = -signed_count, code = ASHIFT;
9626 else
9627 count = signed_count;
9629 continue;
9632 /* There are some cases we can't do. If CODE is ASHIFTRT,
9633 we can only do this if FIRST_CODE is also ASHIFTRT.
9635 We can't do the case when CODE is ROTATE and FIRST_CODE is
9636 ASHIFTRT.
9638 If the mode of this shift is not the mode of the outer shift,
9639 we can't do this if either shift is a right shift or ROTATE.
9641 Finally, we can't do any of these if the mode is too wide
9642 unless the codes are the same.
9644 Handle the case where the shift codes are the same
9645 first. */
9647 if (code == first_code)
9649 if (GET_MODE (varop) != result_mode
9650 && (code == ASHIFTRT || code == LSHIFTRT
9651 || code == ROTATE))
9652 break;
9654 count += first_count;
9655 varop = XEXP (varop, 0);
9656 continue;
9659 if (code == ASHIFTRT
9660 || (code == ROTATE && first_code == ASHIFTRT)
9661 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9662 || (GET_MODE (varop) != result_mode
9663 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9664 || first_code == ROTATE
9665 || code == ROTATE)))
9666 break;
9668 /* To compute the mask to apply after the shift, shift the
9669 nonzero bits of the inner shift the same way the
9670 outer shift will. */
9672 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9674 mask_rtx
9675 = simplify_binary_operation (code, result_mode, mask_rtx,
9676 GEN_INT (count));
9678 /* Give up if we can't compute an outer operation to use. */
9679 if (mask_rtx == 0
9680 || GET_CODE (mask_rtx) != CONST_INT
9681 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9682 INTVAL (mask_rtx),
9683 result_mode, &complement_p))
9684 break;
9686 /* If the shifts are in the same direction, we add the
9687 counts. Otherwise, we subtract them. */
9688 signed_count = count;
9689 if ((code == ASHIFTRT || code == LSHIFTRT)
9690 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9691 signed_count += first_count;
9692 else
9693 signed_count -= first_count;
9695 /* If COUNT is positive, the new shift is usually CODE,
9696 except for the two exceptions below, in which case it is
9697 FIRST_CODE. If the count is negative, FIRST_CODE should
9698 always be used */
9699 if (signed_count > 0
9700 && ((first_code == ROTATE && code == ASHIFT)
9701 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9702 code = first_code, count = signed_count;
9703 else if (signed_count < 0)
9704 code = first_code, count = -signed_count;
9705 else
9706 count = signed_count;
9708 varop = XEXP (varop, 0);
9709 continue;
9712 /* If we have (A << B << C) for any shift, we can convert this to
9713 (A << C << B). This wins if A is a constant. Only try this if
9714 B is not a constant. */
9716 else if (GET_CODE (varop) == code
9717 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9718 && 0 != (new
9719 = simplify_binary_operation (code, mode,
9720 XEXP (varop, 0),
9721 GEN_INT (count))))
9723 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9724 count = 0;
9725 continue;
9727 break;
9729 case NOT:
9730 /* Make this fit the case below. */
9731 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9732 GEN_INT (GET_MODE_MASK (mode)));
9733 continue;
9735 case IOR:
9736 case AND:
9737 case XOR:
9738 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9739 with C the size of VAROP - 1 and the shift is logical if
9740 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9741 we have an (le X 0) operation. If we have an arithmetic shift
9742 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9743 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9745 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9746 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9747 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9748 && (code == LSHIFTRT || code == ASHIFTRT)
9749 && count == (unsigned int)
9750 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9751 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9753 count = 0;
9754 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9755 const0_rtx);
9757 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9758 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9760 continue;
9763 /* If we have (shift (logical)), move the logical to the outside
9764 to allow it to possibly combine with another logical and the
9765 shift to combine with another shift. This also canonicalizes to
9766 what a ZERO_EXTRACT looks like. Also, some machines have
9767 (and (shift)) insns. */
9769 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9770 && (new = simplify_binary_operation (code, result_mode,
9771 XEXP (varop, 1),
9772 GEN_INT (count))) != 0
9773 && GET_CODE (new) == CONST_INT
9774 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9775 INTVAL (new), result_mode, &complement_p))
9777 varop = XEXP (varop, 0);
9778 continue;
9781 /* If we can't do that, try to simplify the shift in each arm of the
9782 logical expression, make a new logical expression, and apply
9783 the inverse distributive law. */
9785 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9786 XEXP (varop, 0), count);
9787 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9788 XEXP (varop, 1), count);
9790 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9791 varop = apply_distributive_law (varop);
9793 count = 0;
9795 break;
9797 case EQ:
9798 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9799 says that the sign bit can be tested, FOO has mode MODE, C is
9800 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9801 that may be nonzero. */
9802 if (code == LSHIFTRT
9803 && XEXP (varop, 1) == const0_rtx
9804 && GET_MODE (XEXP (varop, 0)) == result_mode
9805 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9806 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9807 && ((STORE_FLAG_VALUE
9808 & ((HOST_WIDE_INT) 1
9809 < (GET_MODE_BITSIZE (result_mode) - 1))))
9810 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9811 && merge_outer_ops (&outer_op, &outer_const, XOR,
9812 (HOST_WIDE_INT) 1, result_mode,
9813 &complement_p))
9815 varop = XEXP (varop, 0);
9816 count = 0;
9817 continue;
9819 break;
9821 case NEG:
9822 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9823 than the number of bits in the mode is equivalent to A. */
9824 if (code == LSHIFTRT
9825 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9826 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9828 varop = XEXP (varop, 0);
9829 count = 0;
9830 continue;
9833 /* NEG commutes with ASHIFT since it is multiplication. Move the
9834 NEG outside to allow shifts to combine. */
9835 if (code == ASHIFT
9836 && merge_outer_ops (&outer_op, &outer_const, NEG,
9837 (HOST_WIDE_INT) 0, result_mode,
9838 &complement_p))
9840 varop = XEXP (varop, 0);
9841 continue;
9843 break;
9845 case PLUS:
9846 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9847 is one less than the number of bits in the mode is
9848 equivalent to (xor A 1). */
9849 if (code == LSHIFTRT
9850 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9851 && XEXP (varop, 1) == constm1_rtx
9852 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9853 && merge_outer_ops (&outer_op, &outer_const, XOR,
9854 (HOST_WIDE_INT) 1, result_mode,
9855 &complement_p))
9857 count = 0;
9858 varop = XEXP (varop, 0);
9859 continue;
9862 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9863 that might be nonzero in BAR are those being shifted out and those
9864 bits are known zero in FOO, we can replace the PLUS with FOO.
9865 Similarly in the other operand order. This code occurs when
9866 we are computing the size of a variable-size array. */
9868 if ((code == ASHIFTRT || code == LSHIFTRT)
9869 && count < HOST_BITS_PER_WIDE_INT
9870 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9871 && (nonzero_bits (XEXP (varop, 1), result_mode)
9872 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9874 varop = XEXP (varop, 0);
9875 continue;
9877 else if ((code == ASHIFTRT || code == LSHIFTRT)
9878 && count < HOST_BITS_PER_WIDE_INT
9879 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9880 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9881 >> count)
9882 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9883 & nonzero_bits (XEXP (varop, 1),
9884 result_mode)))
9886 varop = XEXP (varop, 1);
9887 continue;
9890 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9891 if (code == ASHIFT
9892 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9893 && (new = simplify_binary_operation (ASHIFT, result_mode,
9894 XEXP (varop, 1),
9895 GEN_INT (count))) != 0
9896 && GET_CODE (new) == CONST_INT
9897 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9898 INTVAL (new), result_mode, &complement_p))
9900 varop = XEXP (varop, 0);
9901 continue;
9903 break;
9905 case MINUS:
9906 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9907 with C the size of VAROP - 1 and the shift is logical if
9908 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9909 we have a (gt X 0) operation. If the shift is arithmetic with
9910 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9911 we have a (neg (gt X 0)) operation. */
9913 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9914 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9915 && count == (unsigned int)
9916 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9917 && (code == LSHIFTRT || code == ASHIFTRT)
9918 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9919 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9920 == count
9921 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9923 count = 0;
9924 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9925 const0_rtx);
9927 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9928 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9930 continue;
9932 break;
9934 case TRUNCATE:
9935 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9936 if the truncate does not affect the value. */
9937 if (code == LSHIFTRT
9938 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9939 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9940 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9941 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9942 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9944 rtx varop_inner = XEXP (varop, 0);
9946 varop_inner
9947 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9948 XEXP (varop_inner, 0),
9949 GEN_INT
9950 (count + INTVAL (XEXP (varop_inner, 1))));
9951 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9952 count = 0;
9953 continue;
9955 break;
9957 default:
9958 break;
9961 break;
9964 /* We need to determine what mode to do the shift in. If the shift is
9965 a right shift or ROTATE, we must always do it in the mode it was
9966 originally done in. Otherwise, we can do it in MODE, the widest mode
9967 encountered. The code we care about is that of the shift that will
9968 actually be done, not the shift that was originally requested. */
9969 shift_mode
9970 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9971 ? result_mode : mode);
9973 /* We have now finished analyzing the shift. The result should be
9974 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9975 OUTER_OP is non-NIL, it is an operation that needs to be applied
9976 to the result of the shift. OUTER_CONST is the relevant constant,
9977 but we must turn off all bits turned off in the shift.
9979 If we were passed a value for X, see if we can use any pieces of
9980 it. If not, make new rtx. */
9982 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9983 && GET_CODE (XEXP (x, 1)) == CONST_INT
9984 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9985 const_rtx = XEXP (x, 1);
9986 else
9987 const_rtx = GEN_INT (count);
9989 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9990 && GET_MODE (XEXP (x, 0)) == shift_mode
9991 && SUBREG_REG (XEXP (x, 0)) == varop)
9992 varop = XEXP (x, 0);
9993 else if (GET_MODE (varop) != shift_mode)
9994 varop = gen_lowpart_for_combine (shift_mode, varop);
9996 /* If we can't make the SUBREG, try to return what we were given. */
9997 if (GET_CODE (varop) == CLOBBER)
9998 return x ? x : varop;
10000 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
10001 if (new != 0)
10002 x = new;
10003 else
10004 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
10006 /* If we have an outer operation and we just made a shift, it is
10007 possible that we could have simplified the shift were it not
10008 for the outer operation. So try to do the simplification
10009 recursively. */
10011 if (outer_op != NIL && GET_CODE (x) == code
10012 && GET_CODE (XEXP (x, 1)) == CONST_INT)
10013 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
10014 INTVAL (XEXP (x, 1)));
10016 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10017 turn off all the bits that the shift would have turned off. */
10018 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10019 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10020 GET_MODE_MASK (result_mode) >> orig_count);
10022 /* Do the remainder of the processing in RESULT_MODE. */
10023 x = gen_lowpart_for_combine (result_mode, x);
10025 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10026 operation. */
10027 if (complement_p)
10028 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10030 if (outer_op != NIL)
10032 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10033 outer_const = trunc_int_for_mode (outer_const, result_mode);
10035 if (outer_op == AND)
10036 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10037 else if (outer_op == SET)
10038 /* This means that we have determined that the result is
10039 equivalent to a constant. This should be rare. */
10040 x = GEN_INT (outer_const);
10041 else if (GET_RTX_CLASS (outer_op) == '1')
10042 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10043 else
10044 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
10047 return x;
10050 /* Like recog, but we receive the address of a pointer to a new pattern.
10051 We try to match the rtx that the pointer points to.
10052 If that fails, we may try to modify or replace the pattern,
10053 storing the replacement into the same pointer object.
10055 Modifications include deletion or addition of CLOBBERs.
10057 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10058 the CLOBBERs are placed.
10060 The value is the final insn code from the pattern ultimately matched,
10061 or -1. */
10063 static int
10064 recog_for_combine (pnewpat, insn, pnotes)
10065 rtx *pnewpat;
10066 rtx insn;
10067 rtx *pnotes;
10069 rtx pat = *pnewpat;
10070 int insn_code_number;
10071 int num_clobbers_to_add = 0;
10072 int i;
10073 rtx notes = 0;
10074 rtx dummy_insn;
10076 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10077 we use to indicate that something didn't match. If we find such a
10078 thing, force rejection. */
10079 if (GET_CODE (pat) == PARALLEL)
10080 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10081 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10082 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10083 return -1;
10085 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
10086 instruction for pattern recognition. */
10087 dummy_insn = shallow_copy_rtx (insn);
10088 PATTERN (dummy_insn) = pat;
10089 REG_NOTES (dummy_insn) = 0;
10091 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10093 /* If it isn't, there is the possibility that we previously had an insn
10094 that clobbered some register as a side effect, but the combined
10095 insn doesn't need to do that. So try once more without the clobbers
10096 unless this represents an ASM insn. */
10098 if (insn_code_number < 0 && ! check_asm_operands (pat)
10099 && GET_CODE (pat) == PARALLEL)
10101 int pos;
10103 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10104 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10106 if (i != pos)
10107 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10108 pos++;
10111 SUBST_INT (XVECLEN (pat, 0), pos);
10113 if (pos == 1)
10114 pat = XVECEXP (pat, 0, 0);
10116 PATTERN (dummy_insn) = pat;
10117 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10120 /* Recognize all noop sets, these will be killed by followup pass. */
10121 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10122 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10124 /* If we had any clobbers to add, make a new pattern than contains
10125 them. Then check to make sure that all of them are dead. */
10126 if (num_clobbers_to_add)
10128 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10129 rtvec_alloc (GET_CODE (pat) == PARALLEL
10130 ? (XVECLEN (pat, 0)
10131 + num_clobbers_to_add)
10132 : num_clobbers_to_add + 1));
10134 if (GET_CODE (pat) == PARALLEL)
10135 for (i = 0; i < XVECLEN (pat, 0); i++)
10136 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10137 else
10138 XVECEXP (newpat, 0, 0) = pat;
10140 add_clobbers (newpat, insn_code_number);
10142 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10143 i < XVECLEN (newpat, 0); i++)
10145 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
10146 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10147 return -1;
10148 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
10149 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10151 pat = newpat;
10154 *pnewpat = pat;
10155 *pnotes = notes;
10157 return insn_code_number;
10160 /* Like gen_lowpart but for use by combine. In combine it is not possible
10161 to create any new pseudoregs. However, it is safe to create
10162 invalid memory addresses, because combine will try to recognize
10163 them and all they will do is make the combine attempt fail.
10165 If for some reason this cannot do its job, an rtx
10166 (clobber (const_int 0)) is returned.
10167 An insn containing that will not be recognized. */
10169 #undef gen_lowpart
10171 static rtx
10172 gen_lowpart_for_combine (mode, x)
10173 enum machine_mode mode;
10174 rtx x;
10176 rtx result;
10178 if (GET_MODE (x) == mode)
10179 return x;
10181 /* We can only support MODE being wider than a word if X is a
10182 constant integer or has a mode the same size. */
10184 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10185 && ! ((GET_MODE (x) == VOIDmode
10186 && (GET_CODE (x) == CONST_INT
10187 || GET_CODE (x) == CONST_DOUBLE))
10188 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10189 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10191 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10192 won't know what to do. So we will strip off the SUBREG here and
10193 process normally. */
10194 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10196 x = SUBREG_REG (x);
10197 if (GET_MODE (x) == mode)
10198 return x;
10201 result = gen_lowpart_common (mode, x);
10202 #ifdef CANNOT_CHANGE_MODE_CLASS
10203 if (result != 0
10204 && GET_CODE (result) == SUBREG
10205 && GET_CODE (SUBREG_REG (result)) == REG
10206 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10207 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (result)],
10208 REGNO (SUBREG_REG (result)));
10209 #endif
10211 if (result)
10212 return result;
10214 if (GET_CODE (x) == MEM)
10216 int offset = 0;
10218 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10219 address. */
10220 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10221 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10223 /* If we want to refer to something bigger than the original memref,
10224 generate a perverse subreg instead. That will force a reload
10225 of the original memref X. */
10226 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10227 return gen_rtx_SUBREG (mode, x, 0);
10229 if (WORDS_BIG_ENDIAN)
10230 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10231 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10233 if (BYTES_BIG_ENDIAN)
10235 /* Adjust the address so that the address-after-the-data is
10236 unchanged. */
10237 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10238 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10241 return adjust_address_nv (x, mode, offset);
10244 /* If X is a comparison operator, rewrite it in a new mode. This
10245 probably won't match, but may allow further simplifications. */
10246 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10247 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10249 /* If we couldn't simplify X any other way, just enclose it in a
10250 SUBREG. Normally, this SUBREG won't match, but some patterns may
10251 include an explicit SUBREG or we may simplify it further in combine. */
10252 else
10254 int offset = 0;
10255 rtx res;
10256 enum machine_mode sub_mode = GET_MODE (x);
10258 offset = subreg_lowpart_offset (mode, sub_mode);
10259 if (sub_mode == VOIDmode)
10261 sub_mode = int_mode_for_mode (mode);
10262 x = gen_lowpart_common (sub_mode, x);
10264 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10265 if (res)
10266 return res;
10267 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10271 /* These routines make binary and unary operations by first seeing if they
10272 fold; if not, a new expression is allocated. */
10274 static rtx
10275 gen_binary (code, mode, op0, op1)
10276 enum rtx_code code;
10277 enum machine_mode mode;
10278 rtx op0, op1;
10280 rtx result;
10281 rtx tem;
10283 if (GET_RTX_CLASS (code) == 'c'
10284 && swap_commutative_operands_p (op0, op1))
10285 tem = op0, op0 = op1, op1 = tem;
10287 if (GET_RTX_CLASS (code) == '<')
10289 enum machine_mode op_mode = GET_MODE (op0);
10291 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10292 just (REL_OP X Y). */
10293 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10295 op1 = XEXP (op0, 1);
10296 op0 = XEXP (op0, 0);
10297 op_mode = GET_MODE (op0);
10300 if (op_mode == VOIDmode)
10301 op_mode = GET_MODE (op1);
10302 result = simplify_relational_operation (code, op_mode, op0, op1);
10304 else
10305 result = simplify_binary_operation (code, mode, op0, op1);
10307 if (result)
10308 return result;
10310 /* Put complex operands first and constants second. */
10311 if (GET_RTX_CLASS (code) == 'c'
10312 && swap_commutative_operands_p (op0, op1))
10313 return gen_rtx_fmt_ee (code, mode, op1, op0);
10315 /* If we are turning off bits already known off in OP0, we need not do
10316 an AND. */
10317 else if (code == AND && GET_CODE (op1) == CONST_INT
10318 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10319 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10320 return op0;
10322 return gen_rtx_fmt_ee (code, mode, op0, op1);
10325 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10326 comparison code that will be tested.
10328 The result is a possibly different comparison code to use. *POP0 and
10329 *POP1 may be updated.
10331 It is possible that we might detect that a comparison is either always
10332 true or always false. However, we do not perform general constant
10333 folding in combine, so this knowledge isn't useful. Such tautologies
10334 should have been detected earlier. Hence we ignore all such cases. */
10336 static enum rtx_code
10337 simplify_comparison (code, pop0, pop1)
10338 enum rtx_code code;
10339 rtx *pop0;
10340 rtx *pop1;
10342 rtx op0 = *pop0;
10343 rtx op1 = *pop1;
10344 rtx tem, tem1;
10345 int i;
10346 enum machine_mode mode, tmode;
10348 /* Try a few ways of applying the same transformation to both operands. */
10349 while (1)
10351 #ifndef WORD_REGISTER_OPERATIONS
10352 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10353 so check specially. */
10354 if (code != GTU && code != GEU && code != LTU && code != LEU
10355 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10356 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10357 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10358 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10359 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10360 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10361 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10362 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10363 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10364 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10365 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10366 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10367 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10368 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10369 && (INTVAL (XEXP (op0, 1))
10370 == (GET_MODE_BITSIZE (GET_MODE (op0))
10371 - (GET_MODE_BITSIZE
10372 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10374 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10375 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10377 #endif
10379 /* If both operands are the same constant shift, see if we can ignore the
10380 shift. We can if the shift is a rotate or if the bits shifted out of
10381 this shift are known to be zero for both inputs and if the type of
10382 comparison is compatible with the shift. */
10383 if (GET_CODE (op0) == GET_CODE (op1)
10384 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10385 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10386 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10387 && (code != GT && code != LT && code != GE && code != LE))
10388 || (GET_CODE (op0) == ASHIFTRT
10389 && (code != GTU && code != LTU
10390 && code != GEU && code != LEU)))
10391 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10392 && INTVAL (XEXP (op0, 1)) >= 0
10393 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10394 && XEXP (op0, 1) == XEXP (op1, 1))
10396 enum machine_mode mode = GET_MODE (op0);
10397 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10398 int shift_count = INTVAL (XEXP (op0, 1));
10400 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10401 mask &= (mask >> shift_count) << shift_count;
10402 else if (GET_CODE (op0) == ASHIFT)
10403 mask = (mask & (mask << shift_count)) >> shift_count;
10405 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10406 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10407 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10408 else
10409 break;
10412 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10413 SUBREGs are of the same mode, and, in both cases, the AND would
10414 be redundant if the comparison was done in the narrower mode,
10415 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10416 and the operand's possibly nonzero bits are 0xffffff01; in that case
10417 if we only care about QImode, we don't need the AND). This case
10418 occurs if the output mode of an scc insn is not SImode and
10419 STORE_FLAG_VALUE == 1 (e.g., the 386).
10421 Similarly, check for a case where the AND's are ZERO_EXTEND
10422 operations from some narrower mode even though a SUBREG is not
10423 present. */
10425 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10426 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10427 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10429 rtx inner_op0 = XEXP (op0, 0);
10430 rtx inner_op1 = XEXP (op1, 0);
10431 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10432 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10433 int changed = 0;
10435 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10436 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10437 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10438 && (GET_MODE (SUBREG_REG (inner_op0))
10439 == GET_MODE (SUBREG_REG (inner_op1)))
10440 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10441 <= HOST_BITS_PER_WIDE_INT)
10442 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10443 GET_MODE (SUBREG_REG (inner_op0)))))
10444 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10445 GET_MODE (SUBREG_REG (inner_op1))))))
10447 op0 = SUBREG_REG (inner_op0);
10448 op1 = SUBREG_REG (inner_op1);
10450 /* The resulting comparison is always unsigned since we masked
10451 off the original sign bit. */
10452 code = unsigned_condition (code);
10454 changed = 1;
10457 else if (c0 == c1)
10458 for (tmode = GET_CLASS_NARROWEST_MODE
10459 (GET_MODE_CLASS (GET_MODE (op0)));
10460 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10461 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10463 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10464 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10465 code = unsigned_condition (code);
10466 changed = 1;
10467 break;
10470 if (! changed)
10471 break;
10474 /* If both operands are NOT, we can strip off the outer operation
10475 and adjust the comparison code for swapped operands; similarly for
10476 NEG, except that this must be an equality comparison. */
10477 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10478 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10479 && (code == EQ || code == NE)))
10480 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10482 else
10483 break;
10486 /* If the first operand is a constant, swap the operands and adjust the
10487 comparison code appropriately, but don't do this if the second operand
10488 is already a constant integer. */
10489 if (swap_commutative_operands_p (op0, op1))
10491 tem = op0, op0 = op1, op1 = tem;
10492 code = swap_condition (code);
10495 /* We now enter a loop during which we will try to simplify the comparison.
10496 For the most part, we only are concerned with comparisons with zero,
10497 but some things may really be comparisons with zero but not start
10498 out looking that way. */
10500 while (GET_CODE (op1) == CONST_INT)
10502 enum machine_mode mode = GET_MODE (op0);
10503 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10504 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10505 int equality_comparison_p;
10506 int sign_bit_comparison_p;
10507 int unsigned_comparison_p;
10508 HOST_WIDE_INT const_op;
10510 /* We only want to handle integral modes. This catches VOIDmode,
10511 CCmode, and the floating-point modes. An exception is that we
10512 can handle VOIDmode if OP0 is a COMPARE or a comparison
10513 operation. */
10515 if (GET_MODE_CLASS (mode) != MODE_INT
10516 && ! (mode == VOIDmode
10517 && (GET_CODE (op0) == COMPARE
10518 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10519 break;
10521 /* Get the constant we are comparing against and turn off all bits
10522 not on in our mode. */
10523 const_op = INTVAL (op1);
10524 if (mode != VOIDmode)
10525 const_op = trunc_int_for_mode (const_op, mode);
10526 op1 = GEN_INT (const_op);
10528 /* If we are comparing against a constant power of two and the value
10529 being compared can only have that single bit nonzero (e.g., it was
10530 `and'ed with that bit), we can replace this with a comparison
10531 with zero. */
10532 if (const_op
10533 && (code == EQ || code == NE || code == GE || code == GEU
10534 || code == LT || code == LTU)
10535 && mode_width <= HOST_BITS_PER_WIDE_INT
10536 && exact_log2 (const_op) >= 0
10537 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10539 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10540 op1 = const0_rtx, const_op = 0;
10543 /* Similarly, if we are comparing a value known to be either -1 or
10544 0 with -1, change it to the opposite comparison against zero. */
10546 if (const_op == -1
10547 && (code == EQ || code == NE || code == GT || code == LE
10548 || code == GEU || code == LTU)
10549 && num_sign_bit_copies (op0, mode) == mode_width)
10551 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10552 op1 = const0_rtx, const_op = 0;
10555 /* Do some canonicalizations based on the comparison code. We prefer
10556 comparisons against zero and then prefer equality comparisons.
10557 If we can reduce the size of a constant, we will do that too. */
10559 switch (code)
10561 case LT:
10562 /* < C is equivalent to <= (C - 1) */
10563 if (const_op > 0)
10565 const_op -= 1;
10566 op1 = GEN_INT (const_op);
10567 code = LE;
10568 /* ... fall through to LE case below. */
10570 else
10571 break;
10573 case LE:
10574 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10575 if (const_op < 0)
10577 const_op += 1;
10578 op1 = GEN_INT (const_op);
10579 code = LT;
10582 /* If we are doing a <= 0 comparison on a value known to have
10583 a zero sign bit, we can replace this with == 0. */
10584 else if (const_op == 0
10585 && mode_width <= HOST_BITS_PER_WIDE_INT
10586 && (nonzero_bits (op0, mode)
10587 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10588 code = EQ;
10589 break;
10591 case GE:
10592 /* >= C is equivalent to > (C - 1). */
10593 if (const_op > 0)
10595 const_op -= 1;
10596 op1 = GEN_INT (const_op);
10597 code = GT;
10598 /* ... fall through to GT below. */
10600 else
10601 break;
10603 case GT:
10604 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10605 if (const_op < 0)
10607 const_op += 1;
10608 op1 = GEN_INT (const_op);
10609 code = GE;
10612 /* If we are doing a > 0 comparison on a value known to have
10613 a zero sign bit, we can replace this with != 0. */
10614 else if (const_op == 0
10615 && mode_width <= HOST_BITS_PER_WIDE_INT
10616 && (nonzero_bits (op0, mode)
10617 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10618 code = NE;
10619 break;
10621 case LTU:
10622 /* < C is equivalent to <= (C - 1). */
10623 if (const_op > 0)
10625 const_op -= 1;
10626 op1 = GEN_INT (const_op);
10627 code = LEU;
10628 /* ... fall through ... */
10631 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10632 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10633 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10635 const_op = 0, op1 = const0_rtx;
10636 code = GE;
10637 break;
10639 else
10640 break;
10642 case LEU:
10643 /* unsigned <= 0 is equivalent to == 0 */
10644 if (const_op == 0)
10645 code = EQ;
10647 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10648 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10649 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10651 const_op = 0, op1 = const0_rtx;
10652 code = GE;
10654 break;
10656 case GEU:
10657 /* >= C is equivalent to < (C - 1). */
10658 if (const_op > 1)
10660 const_op -= 1;
10661 op1 = GEN_INT (const_op);
10662 code = GTU;
10663 /* ... fall through ... */
10666 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10667 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10668 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10670 const_op = 0, op1 = const0_rtx;
10671 code = LT;
10672 break;
10674 else
10675 break;
10677 case GTU:
10678 /* unsigned > 0 is equivalent to != 0 */
10679 if (const_op == 0)
10680 code = NE;
10682 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10683 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10684 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10686 const_op = 0, op1 = const0_rtx;
10687 code = LT;
10689 break;
10691 default:
10692 break;
10695 /* Compute some predicates to simplify code below. */
10697 equality_comparison_p = (code == EQ || code == NE);
10698 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10699 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10700 || code == GEU);
10702 /* If this is a sign bit comparison and we can do arithmetic in
10703 MODE, say that we will only be needing the sign bit of OP0. */
10704 if (sign_bit_comparison_p
10705 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10706 op0 = force_to_mode (op0, mode,
10707 ((HOST_WIDE_INT) 1
10708 << (GET_MODE_BITSIZE (mode) - 1)),
10709 NULL_RTX, 0);
10711 /* Now try cases based on the opcode of OP0. If none of the cases
10712 does a "continue", we exit this loop immediately after the
10713 switch. */
10715 switch (GET_CODE (op0))
10717 case ZERO_EXTRACT:
10718 /* If we are extracting a single bit from a variable position in
10719 a constant that has only a single bit set and are comparing it
10720 with zero, we can convert this into an equality comparison
10721 between the position and the location of the single bit. */
10723 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10724 && XEXP (op0, 1) == const1_rtx
10725 && equality_comparison_p && const_op == 0
10726 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10728 if (BITS_BIG_ENDIAN)
10730 enum machine_mode new_mode
10731 = mode_for_extraction (EP_extzv, 1);
10732 if (new_mode == MAX_MACHINE_MODE)
10733 i = BITS_PER_WORD - 1 - i;
10734 else
10736 mode = new_mode;
10737 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10741 op0 = XEXP (op0, 2);
10742 op1 = GEN_INT (i);
10743 const_op = i;
10745 /* Result is nonzero iff shift count is equal to I. */
10746 code = reverse_condition (code);
10747 continue;
10750 /* ... fall through ... */
10752 case SIGN_EXTRACT:
10753 tem = expand_compound_operation (op0);
10754 if (tem != op0)
10756 op0 = tem;
10757 continue;
10759 break;
10761 case NOT:
10762 /* If testing for equality, we can take the NOT of the constant. */
10763 if (equality_comparison_p
10764 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10766 op0 = XEXP (op0, 0);
10767 op1 = tem;
10768 continue;
10771 /* If just looking at the sign bit, reverse the sense of the
10772 comparison. */
10773 if (sign_bit_comparison_p)
10775 op0 = XEXP (op0, 0);
10776 code = (code == GE ? LT : GE);
10777 continue;
10779 break;
10781 case NEG:
10782 /* If testing for equality, we can take the NEG of the constant. */
10783 if (equality_comparison_p
10784 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10786 op0 = XEXP (op0, 0);
10787 op1 = tem;
10788 continue;
10791 /* The remaining cases only apply to comparisons with zero. */
10792 if (const_op != 0)
10793 break;
10795 /* When X is ABS or is known positive,
10796 (neg X) is < 0 if and only if X != 0. */
10798 if (sign_bit_comparison_p
10799 && (GET_CODE (XEXP (op0, 0)) == ABS
10800 || (mode_width <= HOST_BITS_PER_WIDE_INT
10801 && (nonzero_bits (XEXP (op0, 0), mode)
10802 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10804 op0 = XEXP (op0, 0);
10805 code = (code == LT ? NE : EQ);
10806 continue;
10809 /* If we have NEG of something whose two high-order bits are the
10810 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10811 if (num_sign_bit_copies (op0, mode) >= 2)
10813 op0 = XEXP (op0, 0);
10814 code = swap_condition (code);
10815 continue;
10817 break;
10819 case ROTATE:
10820 /* If we are testing equality and our count is a constant, we
10821 can perform the inverse operation on our RHS. */
10822 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10823 && (tem = simplify_binary_operation (ROTATERT, mode,
10824 op1, XEXP (op0, 1))) != 0)
10826 op0 = XEXP (op0, 0);
10827 op1 = tem;
10828 continue;
10831 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10832 a particular bit. Convert it to an AND of a constant of that
10833 bit. This will be converted into a ZERO_EXTRACT. */
10834 if (const_op == 0 && sign_bit_comparison_p
10835 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10836 && mode_width <= HOST_BITS_PER_WIDE_INT)
10838 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10839 ((HOST_WIDE_INT) 1
10840 << (mode_width - 1
10841 - INTVAL (XEXP (op0, 1)))));
10842 code = (code == LT ? NE : EQ);
10843 continue;
10846 /* Fall through. */
10848 case ABS:
10849 /* ABS is ignorable inside an equality comparison with zero. */
10850 if (const_op == 0 && equality_comparison_p)
10852 op0 = XEXP (op0, 0);
10853 continue;
10855 break;
10857 case SIGN_EXTEND:
10858 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10859 to (compare FOO CONST) if CONST fits in FOO's mode and we
10860 are either testing inequality or have an unsigned comparison
10861 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10862 if (! unsigned_comparison_p
10863 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10864 <= HOST_BITS_PER_WIDE_INT)
10865 && ((unsigned HOST_WIDE_INT) const_op
10866 < (((unsigned HOST_WIDE_INT) 1
10867 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10869 op0 = XEXP (op0, 0);
10870 continue;
10872 break;
10874 case SUBREG:
10875 /* Check for the case where we are comparing A - C1 with C2,
10876 both constants are smaller than 1/2 the maximum positive
10877 value in MODE, and the comparison is equality or unsigned.
10878 In that case, if A is either zero-extended to MODE or has
10879 sufficient sign bits so that the high-order bit in MODE
10880 is a copy of the sign in the inner mode, we can prove that it is
10881 safe to do the operation in the wider mode. This simplifies
10882 many range checks. */
10884 if (mode_width <= HOST_BITS_PER_WIDE_INT
10885 && subreg_lowpart_p (op0)
10886 && GET_CODE (SUBREG_REG (op0)) == PLUS
10887 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10888 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10889 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10890 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10891 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10892 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10893 GET_MODE (SUBREG_REG (op0)))
10894 & ~GET_MODE_MASK (mode))
10895 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10896 GET_MODE (SUBREG_REG (op0)))
10897 > (unsigned int)
10898 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10899 - GET_MODE_BITSIZE (mode)))))
10901 op0 = SUBREG_REG (op0);
10902 continue;
10905 /* If the inner mode is narrower and we are extracting the low part,
10906 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10907 if (subreg_lowpart_p (op0)
10908 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10909 /* Fall through */ ;
10910 else
10911 break;
10913 /* ... fall through ... */
10915 case ZERO_EXTEND:
10916 if ((unsigned_comparison_p || equality_comparison_p)
10917 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10918 <= HOST_BITS_PER_WIDE_INT)
10919 && ((unsigned HOST_WIDE_INT) const_op
10920 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10922 op0 = XEXP (op0, 0);
10923 continue;
10925 break;
10927 case PLUS:
10928 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10929 this for equality comparisons due to pathological cases involving
10930 overflows. */
10931 if (equality_comparison_p
10932 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10933 op1, XEXP (op0, 1))))
10935 op0 = XEXP (op0, 0);
10936 op1 = tem;
10937 continue;
10940 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10941 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10942 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10944 op0 = XEXP (XEXP (op0, 0), 0);
10945 code = (code == LT ? EQ : NE);
10946 continue;
10948 break;
10950 case MINUS:
10951 /* We used to optimize signed comparisons against zero, but that
10952 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10953 arrive here as equality comparisons, or (GEU, LTU) are
10954 optimized away. No need to special-case them. */
10956 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10957 (eq B (minus A C)), whichever simplifies. We can only do
10958 this for equality comparisons due to pathological cases involving
10959 overflows. */
10960 if (equality_comparison_p
10961 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10962 XEXP (op0, 1), op1)))
10964 op0 = XEXP (op0, 0);
10965 op1 = tem;
10966 continue;
10969 if (equality_comparison_p
10970 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10971 XEXP (op0, 0), op1)))
10973 op0 = XEXP (op0, 1);
10974 op1 = tem;
10975 continue;
10978 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10979 of bits in X minus 1, is one iff X > 0. */
10980 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10981 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10982 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10983 == mode_width - 1
10984 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10986 op0 = XEXP (op0, 1);
10987 code = (code == GE ? LE : GT);
10988 continue;
10990 break;
10992 case XOR:
10993 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10994 if C is zero or B is a constant. */
10995 if (equality_comparison_p
10996 && 0 != (tem = simplify_binary_operation (XOR, mode,
10997 XEXP (op0, 1), op1)))
10999 op0 = XEXP (op0, 0);
11000 op1 = tem;
11001 continue;
11003 break;
11005 case EQ: case NE:
11006 case UNEQ: case LTGT:
11007 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11008 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11009 case UNORDERED: case ORDERED:
11010 /* We can't do anything if OP0 is a condition code value, rather
11011 than an actual data value. */
11012 if (const_op != 0
11013 #ifdef HAVE_cc0
11014 || XEXP (op0, 0) == cc0_rtx
11015 #endif
11016 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11017 break;
11019 /* Get the two operands being compared. */
11020 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11021 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11022 else
11023 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11025 /* Check for the cases where we simply want the result of the
11026 earlier test or the opposite of that result. */
11027 if (code == NE || code == EQ
11028 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11029 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11030 && (STORE_FLAG_VALUE
11031 & (((HOST_WIDE_INT) 1
11032 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11033 && (code == LT || code == GE)))
11035 enum rtx_code new_code;
11036 if (code == LT || code == NE)
11037 new_code = GET_CODE (op0);
11038 else
11039 new_code = combine_reversed_comparison_code (op0);
11041 if (new_code != UNKNOWN)
11043 code = new_code;
11044 op0 = tem;
11045 op1 = tem1;
11046 continue;
11049 break;
11051 case IOR:
11052 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11053 iff X <= 0. */
11054 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11055 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11056 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11058 op0 = XEXP (op0, 1);
11059 code = (code == GE ? GT : LE);
11060 continue;
11062 break;
11064 case AND:
11065 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11066 will be converted to a ZERO_EXTRACT later. */
11067 if (const_op == 0 && equality_comparison_p
11068 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11069 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11071 op0 = simplify_and_const_int
11072 (op0, mode, gen_rtx_LSHIFTRT (mode,
11073 XEXP (op0, 1),
11074 XEXP (XEXP (op0, 0), 1)),
11075 (HOST_WIDE_INT) 1);
11076 continue;
11079 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11080 zero and X is a comparison and C1 and C2 describe only bits set
11081 in STORE_FLAG_VALUE, we can compare with X. */
11082 if (const_op == 0 && equality_comparison_p
11083 && mode_width <= HOST_BITS_PER_WIDE_INT
11084 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11085 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11086 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11087 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11088 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11090 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11091 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11092 if ((~STORE_FLAG_VALUE & mask) == 0
11093 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
11094 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11095 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
11097 op0 = XEXP (XEXP (op0, 0), 0);
11098 continue;
11102 /* If we are doing an equality comparison of an AND of a bit equal
11103 to the sign bit, replace this with a LT or GE comparison of
11104 the underlying value. */
11105 if (equality_comparison_p
11106 && const_op == 0
11107 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11108 && mode_width <= HOST_BITS_PER_WIDE_INT
11109 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11110 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11112 op0 = XEXP (op0, 0);
11113 code = (code == EQ ? GE : LT);
11114 continue;
11117 /* If this AND operation is really a ZERO_EXTEND from a narrower
11118 mode, the constant fits within that mode, and this is either an
11119 equality or unsigned comparison, try to do this comparison in
11120 the narrower mode. */
11121 if ((equality_comparison_p || unsigned_comparison_p)
11122 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11123 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11124 & GET_MODE_MASK (mode))
11125 + 1)) >= 0
11126 && const_op >> i == 0
11127 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
11129 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
11130 continue;
11133 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
11134 in both M1 and M2 and the SUBREG is either paradoxical or
11135 represents the low part, permute the SUBREG and the AND and
11136 try again. */
11137 if (GET_CODE (XEXP (op0, 0)) == SUBREG
11138 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
11139 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
11140 As originally written the upper bits have a defined value
11141 due to the AND operation. However, if we commute the AND
11142 inside the SUBREG then they no longer have defined values
11143 and the meaning of the code has been changed. */
11144 && (0
11145 #ifdef WORD_REGISTER_OPERATIONS
11146 || ((mode_width
11147 > (GET_MODE_BITSIZE
11148 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11149 && mode_width <= BITS_PER_WORD)
11150 #endif
11151 || ((mode_width
11152 <= (GET_MODE_BITSIZE
11153 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11154 && subreg_lowpart_p (XEXP (op0, 0))))
11155 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11156 && mode_width <= HOST_BITS_PER_WIDE_INT
11157 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11158 <= HOST_BITS_PER_WIDE_INT)
11159 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
11160 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
11161 & INTVAL (XEXP (op0, 1)))
11162 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
11163 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11164 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
11168 = gen_lowpart_for_combine
11169 (mode,
11170 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
11171 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
11172 continue;
11175 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11176 (eq (and (lshiftrt X) 1) 0). */
11177 if (const_op == 0 && equality_comparison_p
11178 && XEXP (op0, 1) == const1_rtx
11179 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11180 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
11182 op0 = simplify_and_const_int
11183 (op0, mode,
11184 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
11185 XEXP (XEXP (op0, 0), 1)),
11186 (HOST_WIDE_INT) 1);
11187 code = (code == NE ? EQ : NE);
11188 continue;
11190 break;
11192 case ASHIFT:
11193 /* If we have (compare (ashift FOO N) (const_int C)) and
11194 the high order N bits of FOO (N+1 if an inequality comparison)
11195 are known to be zero, we can do this by comparing FOO with C
11196 shifted right N bits so long as the low-order N bits of C are
11197 zero. */
11198 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11199 && INTVAL (XEXP (op0, 1)) >= 0
11200 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11201 < HOST_BITS_PER_WIDE_INT)
11202 && ((const_op
11203 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11204 && mode_width <= HOST_BITS_PER_WIDE_INT
11205 && (nonzero_bits (XEXP (op0, 0), mode)
11206 & ~(mask >> (INTVAL (XEXP (op0, 1))
11207 + ! equality_comparison_p))) == 0)
11209 /* We must perform a logical shift, not an arithmetic one,
11210 as we want the top N bits of C to be zero. */
11211 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11213 temp >>= INTVAL (XEXP (op0, 1));
11214 op1 = gen_int_mode (temp, mode);
11215 op0 = XEXP (op0, 0);
11216 continue;
11219 /* If we are doing a sign bit comparison, it means we are testing
11220 a particular bit. Convert it to the appropriate AND. */
11221 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11222 && mode_width <= HOST_BITS_PER_WIDE_INT)
11224 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11225 ((HOST_WIDE_INT) 1
11226 << (mode_width - 1
11227 - INTVAL (XEXP (op0, 1)))));
11228 code = (code == LT ? NE : EQ);
11229 continue;
11232 /* If this an equality comparison with zero and we are shifting
11233 the low bit to the sign bit, we can convert this to an AND of the
11234 low-order bit. */
11235 if (const_op == 0 && equality_comparison_p
11236 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11237 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11238 == mode_width - 1)
11240 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11241 (HOST_WIDE_INT) 1);
11242 continue;
11244 break;
11246 case ASHIFTRT:
11247 /* If this is an equality comparison with zero, we can do this
11248 as a logical shift, which might be much simpler. */
11249 if (equality_comparison_p && const_op == 0
11250 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11252 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11253 XEXP (op0, 0),
11254 INTVAL (XEXP (op0, 1)));
11255 continue;
11258 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11259 do the comparison in a narrower mode. */
11260 if (! unsigned_comparison_p
11261 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11262 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11263 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11264 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11265 MODE_INT, 1)) != BLKmode
11266 && (((unsigned HOST_WIDE_INT) const_op
11267 + (GET_MODE_MASK (tmode) >> 1) + 1)
11268 <= GET_MODE_MASK (tmode)))
11270 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11271 continue;
11274 /* Likewise if OP0 is a PLUS of a sign extension with a
11275 constant, which is usually represented with the PLUS
11276 between the shifts. */
11277 if (! unsigned_comparison_p
11278 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11279 && GET_CODE (XEXP (op0, 0)) == PLUS
11280 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11281 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11282 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11283 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11284 MODE_INT, 1)) != BLKmode
11285 && (((unsigned HOST_WIDE_INT) const_op
11286 + (GET_MODE_MASK (tmode) >> 1) + 1)
11287 <= GET_MODE_MASK (tmode)))
11289 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11290 rtx add_const = XEXP (XEXP (op0, 0), 1);
11291 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11292 XEXP (op0, 1));
11294 op0 = gen_binary (PLUS, tmode,
11295 gen_lowpart_for_combine (tmode, inner),
11296 new_const);
11297 continue;
11300 /* ... fall through ... */
11301 case LSHIFTRT:
11302 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11303 the low order N bits of FOO are known to be zero, we can do this
11304 by comparing FOO with C shifted left N bits so long as no
11305 overflow occurs. */
11306 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11307 && INTVAL (XEXP (op0, 1)) >= 0
11308 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11309 && mode_width <= HOST_BITS_PER_WIDE_INT
11310 && (nonzero_bits (XEXP (op0, 0), mode)
11311 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11312 && (((unsigned HOST_WIDE_INT) const_op
11313 + (GET_CODE (op0) != LSHIFTRT
11314 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11315 + 1)
11316 : 0))
11317 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11319 /* If the shift was logical, then we must make the condition
11320 unsigned. */
11321 if (GET_CODE (op0) == LSHIFTRT)
11322 code = unsigned_condition (code);
11324 const_op <<= INTVAL (XEXP (op0, 1));
11325 op1 = GEN_INT (const_op);
11326 op0 = XEXP (op0, 0);
11327 continue;
11330 /* If we are using this shift to extract just the sign bit, we
11331 can replace this with an LT or GE comparison. */
11332 if (const_op == 0
11333 && (equality_comparison_p || sign_bit_comparison_p)
11334 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11335 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11336 == mode_width - 1)
11338 op0 = XEXP (op0, 0);
11339 code = (code == NE || code == GT ? LT : GE);
11340 continue;
11342 break;
11344 default:
11345 break;
11348 break;
11351 /* Now make any compound operations involved in this comparison. Then,
11352 check for an outmost SUBREG on OP0 that is not doing anything or is
11353 paradoxical. The latter transformation must only be performed when
11354 it is known that the "extra" bits will be the same in op0 and op1 or
11355 that they don't matter. There are three cases to consider:
11357 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11358 care bits and we can assume they have any convenient value. So
11359 making the transformation is safe.
11361 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11362 In this case the upper bits of op0 are undefined. We should not make
11363 the simplification in that case as we do not know the contents of
11364 those bits.
11366 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11367 NIL. In that case we know those bits are zeros or ones. We must
11368 also be sure that they are the same as the upper bits of op1.
11370 We can never remove a SUBREG for a non-equality comparison because
11371 the sign bit is in a different place in the underlying object. */
11373 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11374 op1 = make_compound_operation (op1, SET);
11376 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11377 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11378 implemented. */
11379 && GET_CODE (SUBREG_REG (op0)) == REG
11380 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11381 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11382 && (code == NE || code == EQ))
11384 if (GET_MODE_SIZE (GET_MODE (op0))
11385 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11387 op0 = SUBREG_REG (op0);
11388 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11390 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11391 <= HOST_BITS_PER_WIDE_INT)
11392 && (nonzero_bits (SUBREG_REG (op0),
11393 GET_MODE (SUBREG_REG (op0)))
11394 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11396 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11398 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11399 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11400 op0 = SUBREG_REG (op0), op1 = tem;
11404 /* We now do the opposite procedure: Some machines don't have compare
11405 insns in all modes. If OP0's mode is an integer mode smaller than a
11406 word and we can't do a compare in that mode, see if there is a larger
11407 mode for which we can do the compare. There are a number of cases in
11408 which we can use the wider mode. */
11410 mode = GET_MODE (op0);
11411 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11412 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11413 && ! have_insn_for (COMPARE, mode))
11414 for (tmode = GET_MODE_WIDER_MODE (mode);
11415 (tmode != VOIDmode
11416 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11417 tmode = GET_MODE_WIDER_MODE (tmode))
11418 if (have_insn_for (COMPARE, tmode))
11420 int zero_extended;
11422 /* If the only nonzero bits in OP0 and OP1 are those in the
11423 narrower mode and this is an equality or unsigned comparison,
11424 we can use the wider mode. Similarly for sign-extended
11425 values, in which case it is true for all comparisons. */
11426 zero_extended = ((code == EQ || code == NE
11427 || code == GEU || code == GTU
11428 || code == LEU || code == LTU)
11429 && (nonzero_bits (op0, tmode)
11430 & ~GET_MODE_MASK (mode)) == 0
11431 && ((GET_CODE (op1) == CONST_INT
11432 || (nonzero_bits (op1, tmode)
11433 & ~GET_MODE_MASK (mode)) == 0)));
11435 if (zero_extended
11436 || ((num_sign_bit_copies (op0, tmode)
11437 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11438 - GET_MODE_BITSIZE (mode)))
11439 && (num_sign_bit_copies (op1, tmode)
11440 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11441 - GET_MODE_BITSIZE (mode)))))
11443 /* If OP0 is an AND and we don't have an AND in MODE either,
11444 make a new AND in the proper mode. */
11445 if (GET_CODE (op0) == AND
11446 && !have_insn_for (AND, mode))
11447 op0 = gen_binary (AND, tmode,
11448 gen_lowpart_for_combine (tmode,
11449 XEXP (op0, 0)),
11450 gen_lowpart_for_combine (tmode,
11451 XEXP (op0, 1)));
11453 op0 = gen_lowpart_for_combine (tmode, op0);
11454 if (zero_extended && GET_CODE (op1) == CONST_INT)
11455 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11456 op1 = gen_lowpart_for_combine (tmode, op1);
11457 break;
11460 /* If this is a test for negative, we can make an explicit
11461 test of the sign bit. */
11463 if (op1 == const0_rtx && (code == LT || code == GE)
11464 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11466 op0 = gen_binary (AND, tmode,
11467 gen_lowpart_for_combine (tmode, op0),
11468 GEN_INT ((HOST_WIDE_INT) 1
11469 << (GET_MODE_BITSIZE (mode) - 1)));
11470 code = (code == LT) ? NE : EQ;
11471 break;
11475 #ifdef CANONICALIZE_COMPARISON
11476 /* If this machine only supports a subset of valid comparisons, see if we
11477 can convert an unsupported one into a supported one. */
11478 CANONICALIZE_COMPARISON (code, op0, op1);
11479 #endif
11481 *pop0 = op0;
11482 *pop1 = op1;
11484 return code;
11487 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11488 searching backward. */
11489 static enum rtx_code
11490 combine_reversed_comparison_code (exp)
11491 rtx exp;
11493 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11494 rtx x;
11496 if (code1 != UNKNOWN
11497 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11498 return code1;
11499 /* Otherwise try and find where the condition codes were last set and
11500 use that. */
11501 x = get_last_value (XEXP (exp, 0));
11502 if (!x || GET_CODE (x) != COMPARE)
11503 return UNKNOWN;
11504 return reversed_comparison_code_parts (GET_CODE (exp),
11505 XEXP (x, 0), XEXP (x, 1), NULL);
11508 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11509 Return NULL_RTX in case we fail to do the reversal. */
11510 static rtx
11511 reversed_comparison (exp, mode, op0, op1)
11512 rtx exp, op0, op1;
11513 enum machine_mode mode;
11515 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11516 if (reversed_code == UNKNOWN)
11517 return NULL_RTX;
11518 else
11519 return gen_binary (reversed_code, mode, op0, op1);
11522 /* Utility function for following routine. Called when X is part of a value
11523 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11524 for each register mentioned. Similar to mention_regs in cse.c */
11526 static void
11527 update_table_tick (x)
11528 rtx x;
11530 enum rtx_code code = GET_CODE (x);
11531 const char *fmt = GET_RTX_FORMAT (code);
11532 int i;
11534 if (code == REG)
11536 unsigned int regno = REGNO (x);
11537 unsigned int endregno
11538 = regno + (regno < FIRST_PSEUDO_REGISTER
11539 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11540 unsigned int r;
11542 for (r = regno; r < endregno; r++)
11543 reg_last_set_table_tick[r] = label_tick;
11545 return;
11548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11549 /* Note that we can't have an "E" in values stored; see
11550 get_last_value_validate. */
11551 if (fmt[i] == 'e')
11553 /* Check for identical subexpressions. If x contains
11554 identical subexpression we only have to traverse one of
11555 them. */
11556 if (i == 0
11557 && (GET_RTX_CLASS (code) == '2'
11558 || GET_RTX_CLASS (code) == 'c'))
11560 /* Note that at this point x1 has already been
11561 processed. */
11562 rtx x0 = XEXP (x, 0);
11563 rtx x1 = XEXP (x, 1);
11565 /* If x0 and x1 are identical then there is no need to
11566 process x0. */
11567 if (x0 == x1)
11568 break;
11570 /* If x0 is identical to a subexpression of x1 then while
11571 processing x1, x0 has already been processed. Thus we
11572 are done with x. */
11573 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11574 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11575 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11576 break;
11578 /* If x1 is identical to a subexpression of x0 then we
11579 still have to process the rest of x0. */
11580 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11581 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11582 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11584 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11585 break;
11589 update_table_tick (XEXP (x, i));
11593 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11594 are saying that the register is clobbered and we no longer know its
11595 value. If INSN is zero, don't update reg_last_set; this is only permitted
11596 with VALUE also zero and is used to invalidate the register. */
11598 static void
11599 record_value_for_reg (reg, insn, value)
11600 rtx reg;
11601 rtx insn;
11602 rtx value;
11604 unsigned int regno = REGNO (reg);
11605 unsigned int endregno
11606 = regno + (regno < FIRST_PSEUDO_REGISTER
11607 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11608 unsigned int i;
11610 /* If VALUE contains REG and we have a previous value for REG, substitute
11611 the previous value. */
11612 if (value && insn && reg_overlap_mentioned_p (reg, value))
11614 rtx tem;
11616 /* Set things up so get_last_value is allowed to see anything set up to
11617 our insn. */
11618 subst_low_cuid = INSN_CUID (insn);
11619 tem = get_last_value (reg);
11621 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11622 it isn't going to be useful and will take a lot of time to process,
11623 so just use the CLOBBER. */
11625 if (tem)
11627 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11628 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11629 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11630 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11631 tem = XEXP (tem, 0);
11633 value = replace_rtx (copy_rtx (value), reg, tem);
11637 /* For each register modified, show we don't know its value, that
11638 we don't know about its bitwise content, that its value has been
11639 updated, and that we don't know the location of the death of the
11640 register. */
11641 for (i = regno; i < endregno; i++)
11643 if (insn)
11644 reg_last_set[i] = insn;
11646 reg_last_set_value[i] = 0;
11647 reg_last_set_mode[i] = 0;
11648 reg_last_set_nonzero_bits[i] = 0;
11649 reg_last_set_sign_bit_copies[i] = 0;
11650 reg_last_death[i] = 0;
11653 /* Mark registers that are being referenced in this value. */
11654 if (value)
11655 update_table_tick (value);
11657 /* Now update the status of each register being set.
11658 If someone is using this register in this block, set this register
11659 to invalid since we will get confused between the two lives in this
11660 basic block. This makes using this register always invalid. In cse, we
11661 scan the table to invalidate all entries using this register, but this
11662 is too much work for us. */
11664 for (i = regno; i < endregno; i++)
11666 reg_last_set_label[i] = label_tick;
11667 if (value && reg_last_set_table_tick[i] == label_tick)
11668 reg_last_set_invalid[i] = 1;
11669 else
11670 reg_last_set_invalid[i] = 0;
11673 /* The value being assigned might refer to X (like in "x++;"). In that
11674 case, we must replace it with (clobber (const_int 0)) to prevent
11675 infinite loops. */
11676 if (value && ! get_last_value_validate (&value, insn,
11677 reg_last_set_label[regno], 0))
11679 value = copy_rtx (value);
11680 if (! get_last_value_validate (&value, insn,
11681 reg_last_set_label[regno], 1))
11682 value = 0;
11685 /* For the main register being modified, update the value, the mode, the
11686 nonzero bits, and the number of sign bit copies. */
11688 reg_last_set_value[regno] = value;
11690 if (value)
11692 enum machine_mode mode = GET_MODE (reg);
11693 subst_low_cuid = INSN_CUID (insn);
11694 reg_last_set_mode[regno] = mode;
11695 if (GET_MODE_CLASS (mode) == MODE_INT
11696 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11697 mode = nonzero_bits_mode;
11698 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11699 reg_last_set_sign_bit_copies[regno]
11700 = num_sign_bit_copies (value, GET_MODE (reg));
11704 /* Called via note_stores from record_dead_and_set_regs to handle one
11705 SET or CLOBBER in an insn. DATA is the instruction in which the
11706 set is occurring. */
11708 static void
11709 record_dead_and_set_regs_1 (dest, setter, data)
11710 rtx dest, setter;
11711 void *data;
11713 rtx record_dead_insn = (rtx) data;
11715 if (GET_CODE (dest) == SUBREG)
11716 dest = SUBREG_REG (dest);
11718 if (GET_CODE (dest) == REG)
11720 /* If we are setting the whole register, we know its value. Otherwise
11721 show that we don't know the value. We can handle SUBREG in
11722 some cases. */
11723 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11724 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11725 else if (GET_CODE (setter) == SET
11726 && GET_CODE (SET_DEST (setter)) == SUBREG
11727 && SUBREG_REG (SET_DEST (setter)) == dest
11728 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11729 && subreg_lowpart_p (SET_DEST (setter)))
11730 record_value_for_reg (dest, record_dead_insn,
11731 gen_lowpart_for_combine (GET_MODE (dest),
11732 SET_SRC (setter)));
11733 else
11734 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11736 else if (GET_CODE (dest) == MEM
11737 /* Ignore pushes, they clobber nothing. */
11738 && ! push_operand (dest, GET_MODE (dest)))
11739 mem_last_set = INSN_CUID (record_dead_insn);
11742 /* Update the records of when each REG was most recently set or killed
11743 for the things done by INSN. This is the last thing done in processing
11744 INSN in the combiner loop.
11746 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11747 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11748 and also the similar information mem_last_set (which insn most recently
11749 modified memory) and last_call_cuid (which insn was the most recent
11750 subroutine call). */
11752 static void
11753 record_dead_and_set_regs (insn)
11754 rtx insn;
11756 rtx link;
11757 unsigned int i;
11759 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11761 if (REG_NOTE_KIND (link) == REG_DEAD
11762 && GET_CODE (XEXP (link, 0)) == REG)
11764 unsigned int regno = REGNO (XEXP (link, 0));
11765 unsigned int endregno
11766 = regno + (regno < FIRST_PSEUDO_REGISTER
11767 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11768 : 1);
11770 for (i = regno; i < endregno; i++)
11771 reg_last_death[i] = insn;
11773 else if (REG_NOTE_KIND (link) == REG_INC)
11774 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11777 if (GET_CODE (insn) == CALL_INSN)
11779 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11780 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11782 reg_last_set_value[i] = 0;
11783 reg_last_set_mode[i] = 0;
11784 reg_last_set_nonzero_bits[i] = 0;
11785 reg_last_set_sign_bit_copies[i] = 0;
11786 reg_last_death[i] = 0;
11789 last_call_cuid = mem_last_set = INSN_CUID (insn);
11791 /* Don't bother recording what this insn does. It might set the
11792 return value register, but we can't combine into a call
11793 pattern anyway, so there's no point trying (and it may cause
11794 a crash, if e.g. we wind up asking for last_set_value of a
11795 SUBREG of the return value register). */
11796 return;
11799 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11802 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11803 register present in the SUBREG, so for each such SUBREG go back and
11804 adjust nonzero and sign bit information of the registers that are
11805 known to have some zero/sign bits set.
11807 This is needed because when combine blows the SUBREGs away, the
11808 information on zero/sign bits is lost and further combines can be
11809 missed because of that. */
11811 static void
11812 record_promoted_value (insn, subreg)
11813 rtx insn;
11814 rtx subreg;
11816 rtx links, set;
11817 unsigned int regno = REGNO (SUBREG_REG (subreg));
11818 enum machine_mode mode = GET_MODE (subreg);
11820 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11821 return;
11823 for (links = LOG_LINKS (insn); links;)
11825 insn = XEXP (links, 0);
11826 set = single_set (insn);
11828 if (! set || GET_CODE (SET_DEST (set)) != REG
11829 || REGNO (SET_DEST (set)) != regno
11830 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11832 links = XEXP (links, 1);
11833 continue;
11836 if (reg_last_set[regno] == insn)
11838 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11839 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11842 if (GET_CODE (SET_SRC (set)) == REG)
11844 regno = REGNO (SET_SRC (set));
11845 links = LOG_LINKS (insn);
11847 else
11848 break;
11852 /* Scan X for promoted SUBREGs. For each one found,
11853 note what it implies to the registers used in it. */
11855 static void
11856 check_promoted_subreg (insn, x)
11857 rtx insn;
11858 rtx x;
11860 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11861 && GET_CODE (SUBREG_REG (x)) == REG)
11862 record_promoted_value (insn, x);
11863 else
11865 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11866 int i, j;
11868 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11869 switch (format[i])
11871 case 'e':
11872 check_promoted_subreg (insn, XEXP (x, i));
11873 break;
11874 case 'V':
11875 case 'E':
11876 if (XVEC (x, i) != 0)
11877 for (j = 0; j < XVECLEN (x, i); j++)
11878 check_promoted_subreg (insn, XVECEXP (x, i, j));
11879 break;
11884 /* Utility routine for the following function. Verify that all the registers
11885 mentioned in *LOC are valid when *LOC was part of a value set when
11886 label_tick == TICK. Return 0 if some are not.
11888 If REPLACE is nonzero, replace the invalid reference with
11889 (clobber (const_int 0)) and return 1. This replacement is useful because
11890 we often can get useful information about the form of a value (e.g., if
11891 it was produced by a shift that always produces -1 or 0) even though
11892 we don't know exactly what registers it was produced from. */
11894 static int
11895 get_last_value_validate (loc, insn, tick, replace)
11896 rtx *loc;
11897 rtx insn;
11898 int tick;
11899 int replace;
11901 rtx x = *loc;
11902 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11903 int len = GET_RTX_LENGTH (GET_CODE (x));
11904 int i;
11906 if (GET_CODE (x) == REG)
11908 unsigned int regno = REGNO (x);
11909 unsigned int endregno
11910 = regno + (regno < FIRST_PSEUDO_REGISTER
11911 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11912 unsigned int j;
11914 for (j = regno; j < endregno; j++)
11915 if (reg_last_set_invalid[j]
11916 /* If this is a pseudo-register that was only set once and not
11917 live at the beginning of the function, it is always valid. */
11918 || (! (regno >= FIRST_PSEUDO_REGISTER
11919 && REG_N_SETS (regno) == 1
11920 && (! REGNO_REG_SET_P
11921 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11922 && reg_last_set_label[j] > tick))
11924 if (replace)
11925 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11926 return replace;
11929 return 1;
11931 /* If this is a memory reference, make sure that there were
11932 no stores after it that might have clobbered the value. We don't
11933 have alias info, so we assume any store invalidates it. */
11934 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11935 && INSN_CUID (insn) <= mem_last_set)
11937 if (replace)
11938 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11939 return replace;
11942 for (i = 0; i < len; i++)
11944 if (fmt[i] == 'e')
11946 /* Check for identical subexpressions. If x contains
11947 identical subexpression we only have to traverse one of
11948 them. */
11949 if (i == 1
11950 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11951 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11953 /* Note that at this point x0 has already been checked
11954 and found valid. */
11955 rtx x0 = XEXP (x, 0);
11956 rtx x1 = XEXP (x, 1);
11958 /* If x0 and x1 are identical then x is also valid. */
11959 if (x0 == x1)
11960 return 1;
11962 /* If x1 is identical to a subexpression of x0 then
11963 while checking x0, x1 has already been checked. Thus
11964 it is valid and so as x. */
11965 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11966 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11967 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11968 return 1;
11970 /* If x0 is identical to a subexpression of x1 then x is
11971 valid iff the rest of x1 is valid. */
11972 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11973 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11974 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11975 return
11976 get_last_value_validate (&XEXP (x1,
11977 x0 == XEXP (x1, 0) ? 1 : 0),
11978 insn, tick, replace);
11981 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11982 replace) == 0)
11983 return 0;
11985 /* Don't bother with these. They shouldn't occur anyway. */
11986 else if (fmt[i] == 'E')
11987 return 0;
11990 /* If we haven't found a reason for it to be invalid, it is valid. */
11991 return 1;
11994 /* Get the last value assigned to X, if known. Some registers
11995 in the value may be replaced with (clobber (const_int 0)) if their value
11996 is known longer known reliably. */
11998 static rtx
11999 get_last_value (x)
12000 rtx x;
12002 unsigned int regno;
12003 rtx value;
12005 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12006 then convert it to the desired mode. If this is a paradoxical SUBREG,
12007 we cannot predict what values the "extra" bits might have. */
12008 if (GET_CODE (x) == SUBREG
12009 && subreg_lowpart_p (x)
12010 && (GET_MODE_SIZE (GET_MODE (x))
12011 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12012 && (value = get_last_value (SUBREG_REG (x))) != 0)
12013 return gen_lowpart_for_combine (GET_MODE (x), value);
12015 if (GET_CODE (x) != REG)
12016 return 0;
12018 regno = REGNO (x);
12019 value = reg_last_set_value[regno];
12021 /* If we don't have a value, or if it isn't for this basic block and
12022 it's either a hard register, set more than once, or it's a live
12023 at the beginning of the function, return 0.
12025 Because if it's not live at the beginning of the function then the reg
12026 is always set before being used (is never used without being set).
12027 And, if it's set only once, and it's always set before use, then all
12028 uses must have the same last value, even if it's not from this basic
12029 block. */
12031 if (value == 0
12032 || (reg_last_set_label[regno] != label_tick
12033 && (regno < FIRST_PSEUDO_REGISTER
12034 || REG_N_SETS (regno) != 1
12035 || (REGNO_REG_SET_P
12036 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
12037 return 0;
12039 /* If the value was set in a later insn than the ones we are processing,
12040 we can't use it even if the register was only set once. */
12041 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
12042 return 0;
12044 /* If the value has all its registers valid, return it. */
12045 if (get_last_value_validate (&value, reg_last_set[regno],
12046 reg_last_set_label[regno], 0))
12047 return value;
12049 /* Otherwise, make a copy and replace any invalid register with
12050 (clobber (const_int 0)). If that fails for some reason, return 0. */
12052 value = copy_rtx (value);
12053 if (get_last_value_validate (&value, reg_last_set[regno],
12054 reg_last_set_label[regno], 1))
12055 return value;
12057 return 0;
12060 /* Return nonzero if expression X refers to a REG or to memory
12061 that is set in an instruction more recent than FROM_CUID. */
12063 static int
12064 use_crosses_set_p (x, from_cuid)
12065 rtx x;
12066 int from_cuid;
12068 const char *fmt;
12069 int i;
12070 enum rtx_code code = GET_CODE (x);
12072 if (code == REG)
12074 unsigned int regno = REGNO (x);
12075 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
12076 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
12078 #ifdef PUSH_ROUNDING
12079 /* Don't allow uses of the stack pointer to be moved,
12080 because we don't know whether the move crosses a push insn. */
12081 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12082 return 1;
12083 #endif
12084 for (; regno < endreg; regno++)
12085 if (reg_last_set[regno]
12086 && INSN_CUID (reg_last_set[regno]) > from_cuid)
12087 return 1;
12088 return 0;
12091 if (code == MEM && mem_last_set > from_cuid)
12092 return 1;
12094 fmt = GET_RTX_FORMAT (code);
12096 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12098 if (fmt[i] == 'E')
12100 int j;
12101 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12102 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
12103 return 1;
12105 else if (fmt[i] == 'e'
12106 && use_crosses_set_p (XEXP (x, i), from_cuid))
12107 return 1;
12109 return 0;
12112 /* Define three variables used for communication between the following
12113 routines. */
12115 static unsigned int reg_dead_regno, reg_dead_endregno;
12116 static int reg_dead_flag;
12118 /* Function called via note_stores from reg_dead_at_p.
12120 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12121 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12123 static void
12124 reg_dead_at_p_1 (dest, x, data)
12125 rtx dest;
12126 rtx x;
12127 void *data ATTRIBUTE_UNUSED;
12129 unsigned int regno, endregno;
12131 if (GET_CODE (dest) != REG)
12132 return;
12134 regno = REGNO (dest);
12135 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
12136 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
12138 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12139 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12142 /* Return nonzero if REG is known to be dead at INSN.
12144 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12145 referencing REG, it is dead. If we hit a SET referencing REG, it is
12146 live. Otherwise, see if it is live or dead at the start of the basic
12147 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12148 must be assumed to be always live. */
12150 static int
12151 reg_dead_at_p (reg, insn)
12152 rtx reg;
12153 rtx insn;
12155 basic_block block;
12156 unsigned int i;
12158 /* Set variables for reg_dead_at_p_1. */
12159 reg_dead_regno = REGNO (reg);
12160 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
12161 ? HARD_REGNO_NREGS (reg_dead_regno,
12162 GET_MODE (reg))
12163 : 1);
12165 reg_dead_flag = 0;
12167 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
12168 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12170 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12171 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
12172 return 0;
12175 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
12176 beginning of function. */
12177 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
12178 insn = prev_nonnote_insn (insn))
12180 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12181 if (reg_dead_flag)
12182 return reg_dead_flag == 1 ? 1 : 0;
12184 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12185 return 1;
12188 /* Get the basic block that we were in. */
12189 if (insn == 0)
12190 block = ENTRY_BLOCK_PTR->next_bb;
12191 else
12193 FOR_EACH_BB (block)
12194 if (insn == block->head)
12195 break;
12197 if (block == EXIT_BLOCK_PTR)
12198 return 0;
12201 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12202 if (REGNO_REG_SET_P (block->global_live_at_start, i))
12203 return 0;
12205 return 1;
12208 /* Note hard registers in X that are used. This code is similar to
12209 that in flow.c, but much simpler since we don't care about pseudos. */
12211 static void
12212 mark_used_regs_combine (x)
12213 rtx x;
12215 RTX_CODE code = GET_CODE (x);
12216 unsigned int regno;
12217 int i;
12219 switch (code)
12221 case LABEL_REF:
12222 case SYMBOL_REF:
12223 case CONST_INT:
12224 case CONST:
12225 case CONST_DOUBLE:
12226 case CONST_VECTOR:
12227 case PC:
12228 case ADDR_VEC:
12229 case ADDR_DIFF_VEC:
12230 case ASM_INPUT:
12231 #ifdef HAVE_cc0
12232 /* CC0 must die in the insn after it is set, so we don't need to take
12233 special note of it here. */
12234 case CC0:
12235 #endif
12236 return;
12238 case CLOBBER:
12239 /* If we are clobbering a MEM, mark any hard registers inside the
12240 address as used. */
12241 if (GET_CODE (XEXP (x, 0)) == MEM)
12242 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12243 return;
12245 case REG:
12246 regno = REGNO (x);
12247 /* A hard reg in a wide mode may really be multiple registers.
12248 If so, mark all of them just like the first. */
12249 if (regno < FIRST_PSEUDO_REGISTER)
12251 unsigned int endregno, r;
12253 /* None of this applies to the stack, frame or arg pointers. */
12254 if (regno == STACK_POINTER_REGNUM
12255 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12256 || regno == HARD_FRAME_POINTER_REGNUM
12257 #endif
12258 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12259 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12260 #endif
12261 || regno == FRAME_POINTER_REGNUM)
12262 return;
12264 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12265 for (r = regno; r < endregno; r++)
12266 SET_HARD_REG_BIT (newpat_used_regs, r);
12268 return;
12270 case SET:
12272 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12273 the address. */
12274 rtx testreg = SET_DEST (x);
12276 while (GET_CODE (testreg) == SUBREG
12277 || GET_CODE (testreg) == ZERO_EXTRACT
12278 || GET_CODE (testreg) == SIGN_EXTRACT
12279 || GET_CODE (testreg) == STRICT_LOW_PART)
12280 testreg = XEXP (testreg, 0);
12282 if (GET_CODE (testreg) == MEM)
12283 mark_used_regs_combine (XEXP (testreg, 0));
12285 mark_used_regs_combine (SET_SRC (x));
12287 return;
12289 default:
12290 break;
12293 /* Recursively scan the operands of this expression. */
12296 const char *fmt = GET_RTX_FORMAT (code);
12298 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12300 if (fmt[i] == 'e')
12301 mark_used_regs_combine (XEXP (x, i));
12302 else if (fmt[i] == 'E')
12304 int j;
12306 for (j = 0; j < XVECLEN (x, i); j++)
12307 mark_used_regs_combine (XVECEXP (x, i, j));
12313 /* Remove register number REGNO from the dead registers list of INSN.
12315 Return the note used to record the death, if there was one. */
12318 remove_death (regno, insn)
12319 unsigned int regno;
12320 rtx insn;
12322 rtx note = find_regno_note (insn, REG_DEAD, regno);
12324 if (note)
12326 REG_N_DEATHS (regno)--;
12327 remove_note (insn, note);
12330 return note;
12333 /* For each register (hardware or pseudo) used within expression X, if its
12334 death is in an instruction with cuid between FROM_CUID (inclusive) and
12335 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12336 list headed by PNOTES.
12338 That said, don't move registers killed by maybe_kill_insn.
12340 This is done when X is being merged by combination into TO_INSN. These
12341 notes will then be distributed as needed. */
12343 static void
12344 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
12345 rtx x;
12346 rtx maybe_kill_insn;
12347 int from_cuid;
12348 rtx to_insn;
12349 rtx *pnotes;
12351 const char *fmt;
12352 int len, i;
12353 enum rtx_code code = GET_CODE (x);
12355 if (code == REG)
12357 unsigned int regno = REGNO (x);
12358 rtx where_dead = reg_last_death[regno];
12359 rtx before_dead, after_dead;
12361 /* Don't move the register if it gets killed in between from and to. */
12362 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12363 && ! reg_referenced_p (x, maybe_kill_insn))
12364 return;
12366 /* WHERE_DEAD could be a USE insn made by combine, so first we
12367 make sure that we have insns with valid INSN_CUID values. */
12368 before_dead = where_dead;
12369 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12370 before_dead = PREV_INSN (before_dead);
12372 after_dead = where_dead;
12373 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12374 after_dead = NEXT_INSN (after_dead);
12376 if (before_dead && after_dead
12377 && INSN_CUID (before_dead) >= from_cuid
12378 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12379 || (where_dead != after_dead
12380 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12382 rtx note = remove_death (regno, where_dead);
12384 /* It is possible for the call above to return 0. This can occur
12385 when reg_last_death points to I2 or I1 that we combined with.
12386 In that case make a new note.
12388 We must also check for the case where X is a hard register
12389 and NOTE is a death note for a range of hard registers
12390 including X. In that case, we must put REG_DEAD notes for
12391 the remaining registers in place of NOTE. */
12393 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12394 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12395 > GET_MODE_SIZE (GET_MODE (x))))
12397 unsigned int deadregno = REGNO (XEXP (note, 0));
12398 unsigned int deadend
12399 = (deadregno + HARD_REGNO_NREGS (deadregno,
12400 GET_MODE (XEXP (note, 0))));
12401 unsigned int ourend
12402 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12403 unsigned int i;
12405 for (i = deadregno; i < deadend; i++)
12406 if (i < regno || i >= ourend)
12407 REG_NOTES (where_dead)
12408 = gen_rtx_EXPR_LIST (REG_DEAD,
12409 regno_reg_rtx[i],
12410 REG_NOTES (where_dead));
12413 /* If we didn't find any note, or if we found a REG_DEAD note that
12414 covers only part of the given reg, and we have a multi-reg hard
12415 register, then to be safe we must check for REG_DEAD notes
12416 for each register other than the first. They could have
12417 their own REG_DEAD notes lying around. */
12418 else if ((note == 0
12419 || (note != 0
12420 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12421 < GET_MODE_SIZE (GET_MODE (x)))))
12422 && regno < FIRST_PSEUDO_REGISTER
12423 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12425 unsigned int ourend
12426 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12427 unsigned int i, offset;
12428 rtx oldnotes = 0;
12430 if (note)
12431 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12432 else
12433 offset = 1;
12435 for (i = regno + offset; i < ourend; i++)
12436 move_deaths (regno_reg_rtx[i],
12437 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12440 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12442 XEXP (note, 1) = *pnotes;
12443 *pnotes = note;
12445 else
12446 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12448 REG_N_DEATHS (regno)++;
12451 return;
12454 else if (GET_CODE (x) == SET)
12456 rtx dest = SET_DEST (x);
12458 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12460 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12461 that accesses one word of a multi-word item, some
12462 piece of everything register in the expression is used by
12463 this insn, so remove any old death. */
12464 /* ??? So why do we test for equality of the sizes? */
12466 if (GET_CODE (dest) == ZERO_EXTRACT
12467 || GET_CODE (dest) == STRICT_LOW_PART
12468 || (GET_CODE (dest) == SUBREG
12469 && (((GET_MODE_SIZE (GET_MODE (dest))
12470 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12471 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12472 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12474 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12475 return;
12478 /* If this is some other SUBREG, we know it replaces the entire
12479 value, so use that as the destination. */
12480 if (GET_CODE (dest) == SUBREG)
12481 dest = SUBREG_REG (dest);
12483 /* If this is a MEM, adjust deaths of anything used in the address.
12484 For a REG (the only other possibility), the entire value is
12485 being replaced so the old value is not used in this insn. */
12487 if (GET_CODE (dest) == MEM)
12488 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12489 to_insn, pnotes);
12490 return;
12493 else if (GET_CODE (x) == CLOBBER)
12494 return;
12496 len = GET_RTX_LENGTH (code);
12497 fmt = GET_RTX_FORMAT (code);
12499 for (i = 0; i < len; i++)
12501 if (fmt[i] == 'E')
12503 int j;
12504 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12505 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12506 to_insn, pnotes);
12508 else if (fmt[i] == 'e')
12509 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12513 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12514 pattern of an insn. X must be a REG. */
12516 static int
12517 reg_bitfield_target_p (x, body)
12518 rtx x;
12519 rtx body;
12521 int i;
12523 if (GET_CODE (body) == SET)
12525 rtx dest = SET_DEST (body);
12526 rtx target;
12527 unsigned int regno, tregno, endregno, endtregno;
12529 if (GET_CODE (dest) == ZERO_EXTRACT)
12530 target = XEXP (dest, 0);
12531 else if (GET_CODE (dest) == STRICT_LOW_PART)
12532 target = SUBREG_REG (XEXP (dest, 0));
12533 else
12534 return 0;
12536 if (GET_CODE (target) == SUBREG)
12537 target = SUBREG_REG (target);
12539 if (GET_CODE (target) != REG)
12540 return 0;
12542 tregno = REGNO (target), regno = REGNO (x);
12543 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12544 return target == x;
12546 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12547 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12549 return endregno > tregno && regno < endtregno;
12552 else if (GET_CODE (body) == PARALLEL)
12553 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12554 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12555 return 1;
12557 return 0;
12560 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12561 as appropriate. I3 and I2 are the insns resulting from the combination
12562 insns including FROM (I2 may be zero).
12564 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12565 not need REG_DEAD notes because they are being substituted for. This
12566 saves searching in the most common cases.
12568 Each note in the list is either ignored or placed on some insns, depending
12569 on the type of note. */
12571 static void
12572 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12573 rtx notes;
12574 rtx from_insn;
12575 rtx i3, i2;
12576 rtx elim_i2, elim_i1;
12578 rtx note, next_note;
12579 rtx tem;
12581 for (note = notes; note; note = next_note)
12583 rtx place = 0, place2 = 0;
12585 /* If this NOTE references a pseudo register, ensure it references
12586 the latest copy of that register. */
12587 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12588 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12589 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12591 next_note = XEXP (note, 1);
12592 switch (REG_NOTE_KIND (note))
12594 case REG_BR_PROB:
12595 case REG_BR_PRED:
12596 /* Doesn't matter much where we put this, as long as it's somewhere.
12597 It is preferable to keep these notes on branches, which is most
12598 likely to be i3. */
12599 place = i3;
12600 break;
12602 case REG_VTABLE_REF:
12603 /* ??? Should remain with *a particular* memory load. Given the
12604 nature of vtable data, the last insn seems relatively safe. */
12605 place = i3;
12606 break;
12608 case REG_NON_LOCAL_GOTO:
12609 if (GET_CODE (i3) == JUMP_INSN)
12610 place = i3;
12611 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12612 place = i2;
12613 else
12614 abort ();
12615 break;
12617 case REG_EH_REGION:
12618 /* These notes must remain with the call or trapping instruction. */
12619 if (GET_CODE (i3) == CALL_INSN)
12620 place = i3;
12621 else if (i2 && GET_CODE (i2) == CALL_INSN)
12622 place = i2;
12623 else if (flag_non_call_exceptions)
12625 if (may_trap_p (i3))
12626 place = i3;
12627 else if (i2 && may_trap_p (i2))
12628 place = i2;
12629 /* ??? Otherwise assume we've combined things such that we
12630 can now prove that the instructions can't trap. Drop the
12631 note in this case. */
12633 else
12634 abort ();
12635 break;
12637 case REG_NORETURN:
12638 case REG_SETJMP:
12639 /* These notes must remain with the call. It should not be
12640 possible for both I2 and I3 to be a call. */
12641 if (GET_CODE (i3) == CALL_INSN)
12642 place = i3;
12643 else if (i2 && GET_CODE (i2) == CALL_INSN)
12644 place = i2;
12645 else
12646 abort ();
12647 break;
12649 case REG_UNUSED:
12650 /* Any clobbers for i3 may still exist, and so we must process
12651 REG_UNUSED notes from that insn.
12653 Any clobbers from i2 or i1 can only exist if they were added by
12654 recog_for_combine. In that case, recog_for_combine created the
12655 necessary REG_UNUSED notes. Trying to keep any original
12656 REG_UNUSED notes from these insns can cause incorrect output
12657 if it is for the same register as the original i3 dest.
12658 In that case, we will notice that the register is set in i3,
12659 and then add a REG_UNUSED note for the destination of i3, which
12660 is wrong. However, it is possible to have REG_UNUSED notes from
12661 i2 or i1 for register which were both used and clobbered, so
12662 we keep notes from i2 or i1 if they will turn into REG_DEAD
12663 notes. */
12665 /* If this register is set or clobbered in I3, put the note there
12666 unless there is one already. */
12667 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12669 if (from_insn != i3)
12670 break;
12672 if (! (GET_CODE (XEXP (note, 0)) == REG
12673 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12674 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12675 place = i3;
12677 /* Otherwise, if this register is used by I3, then this register
12678 now dies here, so we must put a REG_DEAD note here unless there
12679 is one already. */
12680 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12681 && ! (GET_CODE (XEXP (note, 0)) == REG
12682 ? find_regno_note (i3, REG_DEAD,
12683 REGNO (XEXP (note, 0)))
12684 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12686 PUT_REG_NOTE_KIND (note, REG_DEAD);
12687 place = i3;
12689 break;
12691 case REG_EQUAL:
12692 case REG_EQUIV:
12693 case REG_NOALIAS:
12694 /* These notes say something about results of an insn. We can
12695 only support them if they used to be on I3 in which case they
12696 remain on I3. Otherwise they are ignored.
12698 If the note refers to an expression that is not a constant, we
12699 must also ignore the note since we cannot tell whether the
12700 equivalence is still true. It might be possible to do
12701 slightly better than this (we only have a problem if I2DEST
12702 or I1DEST is present in the expression), but it doesn't
12703 seem worth the trouble. */
12705 if (from_insn == i3
12706 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12707 place = i3;
12708 break;
12710 case REG_INC:
12711 case REG_NO_CONFLICT:
12712 /* These notes say something about how a register is used. They must
12713 be present on any use of the register in I2 or I3. */
12714 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12715 place = i3;
12717 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12719 if (place)
12720 place2 = i2;
12721 else
12722 place = i2;
12724 break;
12726 case REG_LABEL:
12727 /* This can show up in several ways -- either directly in the
12728 pattern, or hidden off in the constant pool with (or without?)
12729 a REG_EQUAL note. */
12730 /* ??? Ignore the without-reg_equal-note problem for now. */
12731 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12732 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12733 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12734 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12735 place = i3;
12737 if (i2
12738 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12739 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12740 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12741 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12743 if (place)
12744 place2 = i2;
12745 else
12746 place = i2;
12749 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12750 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12751 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12753 if (JUMP_LABEL (place) != XEXP (note, 0))
12754 abort ();
12755 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12756 LABEL_NUSES (JUMP_LABEL (place))--;
12757 place = 0;
12759 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12761 if (JUMP_LABEL (place2) != XEXP (note, 0))
12762 abort ();
12763 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12764 LABEL_NUSES (JUMP_LABEL (place2))--;
12765 place2 = 0;
12767 break;
12769 case REG_NONNEG:
12770 case REG_WAS_0:
12771 /* These notes say something about the value of a register prior
12772 to the execution of an insn. It is too much trouble to see
12773 if the note is still correct in all situations. It is better
12774 to simply delete it. */
12775 break;
12777 case REG_RETVAL:
12778 /* If the insn previously containing this note still exists,
12779 put it back where it was. Otherwise move it to the previous
12780 insn. Adjust the corresponding REG_LIBCALL note. */
12781 if (GET_CODE (from_insn) != NOTE)
12782 place = from_insn;
12783 else
12785 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12786 place = prev_real_insn (from_insn);
12787 if (tem && place)
12788 XEXP (tem, 0) = place;
12789 /* If we're deleting the last remaining instruction of a
12790 libcall sequence, don't add the notes. */
12791 else if (XEXP (note, 0) == from_insn)
12792 tem = place = 0;
12794 break;
12796 case REG_LIBCALL:
12797 /* This is handled similarly to REG_RETVAL. */
12798 if (GET_CODE (from_insn) != NOTE)
12799 place = from_insn;
12800 else
12802 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12803 place = next_real_insn (from_insn);
12804 if (tem && place)
12805 XEXP (tem, 0) = place;
12806 /* If we're deleting the last remaining instruction of a
12807 libcall sequence, don't add the notes. */
12808 else if (XEXP (note, 0) == from_insn)
12809 tem = place = 0;
12811 break;
12813 case REG_DEAD:
12814 /* If the register is used as an input in I3, it dies there.
12815 Similarly for I2, if it is nonzero and adjacent to I3.
12817 If the register is not used as an input in either I3 or I2
12818 and it is not one of the registers we were supposed to eliminate,
12819 there are two possibilities. We might have a non-adjacent I2
12820 or we might have somehow eliminated an additional register
12821 from a computation. For example, we might have had A & B where
12822 we discover that B will always be zero. In this case we will
12823 eliminate the reference to A.
12825 In both cases, we must search to see if we can find a previous
12826 use of A and put the death note there. */
12828 if (from_insn
12829 && GET_CODE (from_insn) == CALL_INSN
12830 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12831 place = from_insn;
12832 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12833 place = i3;
12834 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12835 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12836 place = i2;
12838 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12839 || rtx_equal_p (XEXP (note, 0), elim_i1))
12840 break;
12842 if (place == 0)
12844 basic_block bb = this_basic_block;
12846 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12848 if (! INSN_P (tem))
12850 if (tem == bb->head)
12851 break;
12852 continue;
12855 /* If the register is being set at TEM, see if that is all
12856 TEM is doing. If so, delete TEM. Otherwise, make this
12857 into a REG_UNUSED note instead. */
12858 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12860 rtx set = single_set (tem);
12861 rtx inner_dest = 0;
12862 #ifdef HAVE_cc0
12863 rtx cc0_setter = NULL_RTX;
12864 #endif
12866 if (set != 0)
12867 for (inner_dest = SET_DEST (set);
12868 (GET_CODE (inner_dest) == STRICT_LOW_PART
12869 || GET_CODE (inner_dest) == SUBREG
12870 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12871 inner_dest = XEXP (inner_dest, 0))
12874 /* Verify that it was the set, and not a clobber that
12875 modified the register.
12877 CC0 targets must be careful to maintain setter/user
12878 pairs. If we cannot delete the setter due to side
12879 effects, mark the user with an UNUSED note instead
12880 of deleting it. */
12882 if (set != 0 && ! side_effects_p (SET_SRC (set))
12883 && rtx_equal_p (XEXP (note, 0), inner_dest)
12884 #ifdef HAVE_cc0
12885 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12886 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12887 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12888 #endif
12891 /* Move the notes and links of TEM elsewhere.
12892 This might delete other dead insns recursively.
12893 First set the pattern to something that won't use
12894 any register. */
12896 PATTERN (tem) = pc_rtx;
12898 distribute_notes (REG_NOTES (tem), tem, tem,
12899 NULL_RTX, NULL_RTX, NULL_RTX);
12900 distribute_links (LOG_LINKS (tem));
12902 PUT_CODE (tem, NOTE);
12903 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12904 NOTE_SOURCE_FILE (tem) = 0;
12906 #ifdef HAVE_cc0
12907 /* Delete the setter too. */
12908 if (cc0_setter)
12910 PATTERN (cc0_setter) = pc_rtx;
12912 distribute_notes (REG_NOTES (cc0_setter),
12913 cc0_setter, cc0_setter,
12914 NULL_RTX, NULL_RTX, NULL_RTX);
12915 distribute_links (LOG_LINKS (cc0_setter));
12917 PUT_CODE (cc0_setter, NOTE);
12918 NOTE_LINE_NUMBER (cc0_setter)
12919 = NOTE_INSN_DELETED;
12920 NOTE_SOURCE_FILE (cc0_setter) = 0;
12922 #endif
12924 /* If the register is both set and used here, put the
12925 REG_DEAD note here, but place a REG_UNUSED note
12926 here too unless there already is one. */
12927 else if (reg_referenced_p (XEXP (note, 0),
12928 PATTERN (tem)))
12930 place = tem;
12932 if (! find_regno_note (tem, REG_UNUSED,
12933 REGNO (XEXP (note, 0))))
12934 REG_NOTES (tem)
12935 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12936 REG_NOTES (tem));
12938 else
12940 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12942 /* If there isn't already a REG_UNUSED note, put one
12943 here. */
12944 if (! find_regno_note (tem, REG_UNUSED,
12945 REGNO (XEXP (note, 0))))
12946 place = tem;
12947 break;
12950 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12951 || (GET_CODE (tem) == CALL_INSN
12952 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12954 place = tem;
12956 /* If we are doing a 3->2 combination, and we have a
12957 register which formerly died in i3 and was not used
12958 by i2, which now no longer dies in i3 and is used in
12959 i2 but does not die in i2, and place is between i2
12960 and i3, then we may need to move a link from place to
12961 i2. */
12962 if (i2 && INSN_UID (place) <= max_uid_cuid
12963 && INSN_CUID (place) > INSN_CUID (i2)
12964 && from_insn
12965 && INSN_CUID (from_insn) > INSN_CUID (i2)
12966 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12968 rtx links = LOG_LINKS (place);
12969 LOG_LINKS (place) = 0;
12970 distribute_links (links);
12972 break;
12975 if (tem == bb->head)
12976 break;
12979 /* We haven't found an insn for the death note and it
12980 is still a REG_DEAD note, but we have hit the beginning
12981 of the block. If the existing life info says the reg
12982 was dead, there's nothing left to do. Otherwise, we'll
12983 need to do a global life update after combine. */
12984 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12985 && REGNO_REG_SET_P (bb->global_live_at_start,
12986 REGNO (XEXP (note, 0))))
12987 SET_BIT (refresh_blocks, this_basic_block->index);
12990 /* If the register is set or already dead at PLACE, we needn't do
12991 anything with this note if it is still a REG_DEAD note.
12992 We can here if it is set at all, not if is it totally replace,
12993 which is what `dead_or_set_p' checks, so also check for it being
12994 set partially. */
12996 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12998 unsigned int regno = REGNO (XEXP (note, 0));
13000 /* Similarly, if the instruction on which we want to place
13001 the note is a noop, we'll need do a global live update
13002 after we remove them in delete_noop_moves. */
13003 if (noop_move_p (place))
13004 SET_BIT (refresh_blocks, this_basic_block->index);
13006 if (dead_or_set_p (place, XEXP (note, 0))
13007 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13009 /* Unless the register previously died in PLACE, clear
13010 reg_last_death. [I no longer understand why this is
13011 being done.] */
13012 if (reg_last_death[regno] != place)
13013 reg_last_death[regno] = 0;
13014 place = 0;
13016 else
13017 reg_last_death[regno] = place;
13019 /* If this is a death note for a hard reg that is occupying
13020 multiple registers, ensure that we are still using all
13021 parts of the object. If we find a piece of the object
13022 that is unused, we must arrange for an appropriate REG_DEAD
13023 note to be added for it. However, we can't just emit a USE
13024 and tag the note to it, since the register might actually
13025 be dead; so we recourse, and the recursive call then finds
13026 the previous insn that used this register. */
13028 if (place && regno < FIRST_PSEUDO_REGISTER
13029 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
13031 unsigned int endregno
13032 = regno + HARD_REGNO_NREGS (regno,
13033 GET_MODE (XEXP (note, 0)));
13034 int all_used = 1;
13035 unsigned int i;
13037 for (i = regno; i < endregno; i++)
13038 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13039 && ! find_regno_fusage (place, USE, i))
13040 || dead_or_set_regno_p (place, i))
13041 all_used = 0;
13043 if (! all_used)
13045 /* Put only REG_DEAD notes for pieces that are
13046 not already dead or set. */
13048 for (i = regno; i < endregno;
13049 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
13051 rtx piece = regno_reg_rtx[i];
13052 basic_block bb = this_basic_block;
13054 if (! dead_or_set_p (place, piece)
13055 && ! reg_bitfield_target_p (piece,
13056 PATTERN (place)))
13058 rtx new_note
13059 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
13061 distribute_notes (new_note, place, place,
13062 NULL_RTX, NULL_RTX, NULL_RTX);
13064 else if (! refers_to_regno_p (i, i + 1,
13065 PATTERN (place), 0)
13066 && ! find_regno_fusage (place, USE, i))
13067 for (tem = PREV_INSN (place); ;
13068 tem = PREV_INSN (tem))
13070 if (! INSN_P (tem))
13072 if (tem == bb->head)
13074 SET_BIT (refresh_blocks,
13075 this_basic_block->index);
13076 break;
13078 continue;
13080 if (dead_or_set_p (tem, piece)
13081 || reg_bitfield_target_p (piece,
13082 PATTERN (tem)))
13084 REG_NOTES (tem)
13085 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
13086 REG_NOTES (tem));
13087 break;
13093 place = 0;
13097 break;
13099 default:
13100 /* Any other notes should not be present at this point in the
13101 compilation. */
13102 abort ();
13105 if (place)
13107 XEXP (note, 1) = REG_NOTES (place);
13108 REG_NOTES (place) = note;
13110 else if ((REG_NOTE_KIND (note) == REG_DEAD
13111 || REG_NOTE_KIND (note) == REG_UNUSED)
13112 && GET_CODE (XEXP (note, 0)) == REG)
13113 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
13115 if (place2)
13117 if ((REG_NOTE_KIND (note) == REG_DEAD
13118 || REG_NOTE_KIND (note) == REG_UNUSED)
13119 && GET_CODE (XEXP (note, 0)) == REG)
13120 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
13122 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
13123 REG_NOTE_KIND (note),
13124 XEXP (note, 0),
13125 REG_NOTES (place2));
13130 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13131 I3, I2, and I1 to new locations. This is also called in one case to
13132 add a link pointing at I3 when I3's destination is changed. */
13134 static void
13135 distribute_links (links)
13136 rtx links;
13138 rtx link, next_link;
13140 for (link = links; link; link = next_link)
13142 rtx place = 0;
13143 rtx insn;
13144 rtx set, reg;
13146 next_link = XEXP (link, 1);
13148 /* If the insn that this link points to is a NOTE or isn't a single
13149 set, ignore it. In the latter case, it isn't clear what we
13150 can do other than ignore the link, since we can't tell which
13151 register it was for. Such links wouldn't be used by combine
13152 anyway.
13154 It is not possible for the destination of the target of the link to
13155 have been changed by combine. The only potential of this is if we
13156 replace I3, I2, and I1 by I3 and I2. But in that case the
13157 destination of I2 also remains unchanged. */
13159 if (GET_CODE (XEXP (link, 0)) == NOTE
13160 || (set = single_set (XEXP (link, 0))) == 0)
13161 continue;
13163 reg = SET_DEST (set);
13164 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13165 || GET_CODE (reg) == SIGN_EXTRACT
13166 || GET_CODE (reg) == STRICT_LOW_PART)
13167 reg = XEXP (reg, 0);
13169 /* A LOG_LINK is defined as being placed on the first insn that uses
13170 a register and points to the insn that sets the register. Start
13171 searching at the next insn after the target of the link and stop
13172 when we reach a set of the register or the end of the basic block.
13174 Note that this correctly handles the link that used to point from
13175 I3 to I2. Also note that not much searching is typically done here
13176 since most links don't point very far away. */
13178 for (insn = NEXT_INSN (XEXP (link, 0));
13179 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13180 || this_basic_block->next_bb->head != insn));
13181 insn = NEXT_INSN (insn))
13182 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13184 if (reg_referenced_p (reg, PATTERN (insn)))
13185 place = insn;
13186 break;
13188 else if (GET_CODE (insn) == CALL_INSN
13189 && find_reg_fusage (insn, USE, reg))
13191 place = insn;
13192 break;
13195 /* If we found a place to put the link, place it there unless there
13196 is already a link to the same insn as LINK at that point. */
13198 if (place)
13200 rtx link2;
13202 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13203 if (XEXP (link2, 0) == XEXP (link, 0))
13204 break;
13206 if (link2 == 0)
13208 XEXP (link, 1) = LOG_LINKS (place);
13209 LOG_LINKS (place) = link;
13211 /* Set added_links_insn to the earliest insn we added a
13212 link to. */
13213 if (added_links_insn == 0
13214 || INSN_CUID (added_links_insn) > INSN_CUID (place))
13215 added_links_insn = place;
13221 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13223 static int
13224 insn_cuid (insn)
13225 rtx insn;
13227 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13228 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13229 insn = NEXT_INSN (insn);
13231 if (INSN_UID (insn) > max_uid_cuid)
13232 abort ();
13234 return INSN_CUID (insn);
13237 void
13238 dump_combine_stats (file)
13239 FILE *file;
13241 fnotice
13242 (file,
13243 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13244 combine_attempts, combine_merges, combine_extras, combine_successes);
13247 void
13248 dump_combine_total_stats (file)
13249 FILE *file;
13251 fnotice
13252 (file,
13253 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13254 total_attempts, total_merges, total_extras, total_successes);