d: Add testcase from PR108962
[official-gcc.git] / gcc / tree-vectorizer.h
bloba36974c2c0d2103b0a2d0397d06ab84dace08129
1 /* Vectorizer
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
25 typedef struct _slp_tree *slp_tree;
27 #include "tree-data-ref.h"
28 #include "tree-hash-traits.h"
29 #include "target.h"
30 #include "internal-fn.h"
31 #include "tree-ssa-operands.h"
32 #include "gimple-match.h"
34 /* Used for naming of new temporaries. */
35 enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
42 /* Defines type of operation. */
43 enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
49 /* Define type of available alignment support. */
50 enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
58 /* Define type of def-use cross-iteration cycle. */
59 enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_first_order_recurrence,
69 vect_unknown_def_type
72 /* Define operation type of linear/non-linear induction variable. */
73 enum vect_induction_op_type {
74 vect_step_op_add = 0,
75 vect_step_op_neg,
76 vect_step_op_mul,
77 vect_step_op_shl,
78 vect_step_op_shr
81 /* Define type of reduction. */
82 enum vect_reduction_type {
83 TREE_CODE_REDUCTION,
84 COND_REDUCTION,
85 INTEGER_INDUC_COND_REDUCTION,
86 CONST_COND_REDUCTION,
88 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
89 to implement:
91 for (int i = 0; i < VF; ++i)
92 res = cond[i] ? val[i] : res; */
93 EXTRACT_LAST_REDUCTION,
95 /* Use a folding reduction within the loop to implement:
97 for (int i = 0; i < VF; ++i)
98 res = res OP val[i];
100 (with no reassocation). */
101 FOLD_LEFT_REDUCTION
104 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
105 || ((D) == vect_double_reduction_def) \
106 || ((D) == vect_nested_cycle))
108 /* Structure to encapsulate information about a group of like
109 instructions to be presented to the target cost model. */
110 struct stmt_info_for_cost {
111 int count;
112 enum vect_cost_for_stmt kind;
113 enum vect_cost_model_location where;
114 stmt_vec_info stmt_info;
115 slp_tree node;
116 tree vectype;
117 int misalign;
120 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
122 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
123 derived from that gives the maximum known alignment for that base. */
124 typedef hash_map<tree_operand_hash,
125 std::pair<stmt_vec_info, innermost_loop_behavior *> >
126 vec_base_alignments;
128 /* Represents elements [START, START + LENGTH) of cyclical array OPS*
129 (i.e. OPS repeated to give at least START + LENGTH elements) */
130 struct vect_scalar_ops_slice
132 tree op (unsigned int i) const;
133 bool all_same_p () const;
135 vec<tree> *ops;
136 unsigned int start;
137 unsigned int length;
140 /* Return element I of the slice. */
141 inline tree
142 vect_scalar_ops_slice::op (unsigned int i) const
144 return (*ops)[(i + start) % ops->length ()];
147 /* Hash traits for vect_scalar_ops_slice. */
148 struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
150 typedef vect_scalar_ops_slice value_type;
151 typedef vect_scalar_ops_slice compare_type;
153 static const bool empty_zero_p = true;
155 static void mark_deleted (value_type &s) { s.length = ~0U; }
156 static void mark_empty (value_type &s) { s.length = 0; }
157 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
158 static bool is_empty (const value_type &s) { return s.length == 0; }
159 static hashval_t hash (const value_type &);
160 static bool equal (const value_type &, const compare_type &);
163 /************************************************************************
165 ************************************************************************/
166 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
167 typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
168 typedef vec<unsigned> load_permutation_t;
169 typedef auto_vec<unsigned, 16> auto_load_permutation_t;
171 /* A computation tree of an SLP instance. Each node corresponds to a group of
172 stmts to be packed in a SIMD stmt. */
173 struct _slp_tree {
174 _slp_tree ();
175 ~_slp_tree ();
177 /* Nodes that contain def-stmts of this node statements operands. */
178 vec<slp_tree> children;
180 /* A group of scalar stmts to be vectorized together. */
181 vec<stmt_vec_info> stmts;
182 /* A group of scalar operands to be vectorized together. */
183 vec<tree> ops;
184 /* The representative that should be used for analysis and
185 code generation. */
186 stmt_vec_info representative;
188 /* Load permutation relative to the stores, NULL if there is no
189 permutation. */
190 load_permutation_t load_permutation;
191 /* Lane permutation of the operands scalar lanes encoded as pairs
192 of { operand number, lane number }. The number of elements
193 denotes the number of output lanes. */
194 lane_permutation_t lane_permutation;
196 tree vectype;
197 /* Vectorized stmt/s. */
198 vec<gimple *> vec_stmts;
199 vec<tree> vec_defs;
200 /* Number of vector stmts that are created to replace the group of scalar
201 stmts. It is calculated during the transformation phase as the number of
202 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
203 divided by vector size. */
204 unsigned int vec_stmts_size;
206 /* Reference count in the SLP graph. */
207 unsigned int refcnt;
208 /* The maximum number of vector elements for the subtree rooted
209 at this node. */
210 poly_uint64 max_nunits;
211 /* The DEF type of this node. */
212 enum vect_def_type def_type;
213 /* The number of scalar lanes produced by this node. */
214 unsigned int lanes;
215 /* The operation of this node. */
216 enum tree_code code;
218 int vertex;
220 /* If not NULL this is a cached failed SLP discovery attempt with
221 the lanes that failed during SLP discovery as 'false'. This is
222 a copy of the matches array. */
223 bool *failed;
225 /* Allocate from slp_tree_pool. */
226 static void *operator new (size_t);
228 /* Return memory to slp_tree_pool. */
229 static void operator delete (void *, size_t);
231 /* Linked list of nodes to release when we free the slp_tree_pool. */
232 slp_tree next_node;
233 slp_tree prev_node;
236 /* The enum describes the type of operations that an SLP instance
237 can perform. */
239 enum slp_instance_kind {
240 slp_inst_kind_store,
241 slp_inst_kind_reduc_group,
242 slp_inst_kind_reduc_chain,
243 slp_inst_kind_bb_reduc,
244 slp_inst_kind_ctor
247 /* SLP instance is a sequence of stmts in a loop that can be packed into
248 SIMD stmts. */
249 typedef class _slp_instance {
250 public:
251 /* The root of SLP tree. */
252 slp_tree root;
254 /* For vector constructors, the constructor stmt that the SLP tree is built
255 from, NULL otherwise. */
256 vec<stmt_vec_info> root_stmts;
258 /* The unrolling factor required to vectorized this SLP instance. */
259 poly_uint64 unrolling_factor;
261 /* The group of nodes that contain loads of this SLP instance. */
262 vec<slp_tree> loads;
264 /* The SLP node containing the reduction PHIs. */
265 slp_tree reduc_phis;
267 /* Vector cost of this entry to the SLP graph. */
268 stmt_vector_for_cost cost_vec;
270 /* If this instance is the main entry of a subgraph the set of
271 entries into the same subgraph, including itself. */
272 vec<_slp_instance *> subgraph_entries;
274 /* The type of operation the SLP instance is performing. */
275 slp_instance_kind kind;
277 dump_user_location_t location () const;
278 } *slp_instance;
281 /* Access Functions. */
282 #define SLP_INSTANCE_TREE(S) (S)->root
283 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
284 #define SLP_INSTANCE_LOADS(S) (S)->loads
285 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
286 #define SLP_INSTANCE_KIND(S) (S)->kind
288 #define SLP_TREE_CHILDREN(S) (S)->children
289 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
290 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
291 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
292 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
293 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
294 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
295 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
296 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
297 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
298 #define SLP_TREE_VECTYPE(S) (S)->vectype
299 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
300 #define SLP_TREE_LANES(S) (S)->lanes
301 #define SLP_TREE_CODE(S) (S)->code
303 enum vect_partial_vector_style {
304 vect_partial_vectors_none,
305 vect_partial_vectors_while_ult,
306 vect_partial_vectors_avx512,
307 vect_partial_vectors_len
310 /* Key for map that records association between
311 scalar conditions and corresponding loop mask, and
312 is populated by vect_record_loop_mask. */
314 struct scalar_cond_masked_key
316 scalar_cond_masked_key (tree t, unsigned ncopies_)
317 : ncopies (ncopies_)
319 get_cond_ops_from_tree (t);
322 void get_cond_ops_from_tree (tree);
324 unsigned ncopies;
325 bool inverted_p;
326 tree_code code;
327 tree op0;
328 tree op1;
331 template<>
332 struct default_hash_traits<scalar_cond_masked_key>
334 typedef scalar_cond_masked_key compare_type;
335 typedef scalar_cond_masked_key value_type;
337 static inline hashval_t
338 hash (value_type v)
340 inchash::hash h;
341 h.add_int (v.code);
342 inchash::add_expr (v.op0, h, 0);
343 inchash::add_expr (v.op1, h, 0);
344 h.add_int (v.ncopies);
345 h.add_flag (v.inverted_p);
346 return h.end ();
349 static inline bool
350 equal (value_type existing, value_type candidate)
352 return (existing.ncopies == candidate.ncopies
353 && existing.code == candidate.code
354 && existing.inverted_p == candidate.inverted_p
355 && operand_equal_p (existing.op0, candidate.op0, 0)
356 && operand_equal_p (existing.op1, candidate.op1, 0));
359 static const bool empty_zero_p = true;
361 static inline void
362 mark_empty (value_type &v)
364 v.ncopies = 0;
365 v.inverted_p = false;
368 static inline bool
369 is_empty (value_type v)
371 return v.ncopies == 0;
374 static inline void mark_deleted (value_type &) {}
376 static inline bool is_deleted (const value_type &)
378 return false;
381 static inline void remove (value_type &) {}
384 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
386 /* Key and map that records association between vector conditions and
387 corresponding loop mask, and is populated by prepare_vec_mask. */
389 typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
390 typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
392 /* Describes two objects whose addresses must be unequal for the vectorized
393 loop to be valid. */
394 typedef std::pair<tree, tree> vec_object_pair;
396 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
397 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
398 class vec_lower_bound {
399 public:
400 vec_lower_bound () {}
401 vec_lower_bound (tree e, bool u, poly_uint64 m)
402 : expr (e), unsigned_p (u), min_value (m) {}
404 tree expr;
405 bool unsigned_p;
406 poly_uint64 min_value;
409 /* Vectorizer state shared between different analyses like vector sizes
410 of the same CFG region. */
411 class vec_info_shared {
412 public:
413 vec_info_shared();
414 ~vec_info_shared();
416 void save_datarefs();
417 void check_datarefs();
419 /* The number of scalar stmts. */
420 unsigned n_stmts;
422 /* All data references. Freed by free_data_refs, so not an auto_vec. */
423 vec<data_reference_p> datarefs;
424 vec<data_reference> datarefs_copy;
426 /* The loop nest in which the data dependences are computed. */
427 auto_vec<loop_p> loop_nest;
429 /* All data dependences. Freed by free_dependence_relations, so not
430 an auto_vec. */
431 vec<ddr_p> ddrs;
434 /* Vectorizer state common between loop and basic-block vectorization. */
435 class vec_info {
436 public:
437 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
438 enum vec_kind { bb, loop };
440 vec_info (vec_kind, vec_info_shared *);
441 ~vec_info ();
443 stmt_vec_info add_stmt (gimple *);
444 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
445 stmt_vec_info lookup_stmt (gimple *);
446 stmt_vec_info lookup_def (tree);
447 stmt_vec_info lookup_single_use (tree);
448 class dr_vec_info *lookup_dr (data_reference *);
449 void move_dr (stmt_vec_info, stmt_vec_info);
450 void remove_stmt (stmt_vec_info);
451 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
452 void insert_on_entry (stmt_vec_info, gimple *);
453 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
455 /* The type of vectorization. */
456 vec_kind kind;
458 /* Shared vectorizer state. */
459 vec_info_shared *shared;
461 /* The mapping of GIMPLE UID to stmt_vec_info. */
462 vec<stmt_vec_info> stmt_vec_infos;
463 /* Whether the above mapping is complete. */
464 bool stmt_vec_info_ro;
466 /* Whether we've done a transform we think OK to not update virtual
467 SSA form. */
468 bool any_known_not_updated_vssa;
470 /* The SLP graph. */
471 auto_vec<slp_instance> slp_instances;
473 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
474 known alignment for that base. */
475 vec_base_alignments base_alignments;
477 /* All interleaving chains of stores, represented by the first
478 stmt in the chain. */
479 auto_vec<stmt_vec_info> grouped_stores;
481 /* The set of vector modes used in the vectorized region. */
482 mode_set used_vector_modes;
484 /* The argument we should pass to related_vector_mode when looking up
485 the vector mode for a scalar mode, or VOIDmode if we haven't yet
486 made any decisions about which vector modes to use. */
487 machine_mode vector_mode;
489 private:
490 stmt_vec_info new_stmt_vec_info (gimple *stmt);
491 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
492 void free_stmt_vec_infos ();
493 void free_stmt_vec_info (stmt_vec_info);
496 class _loop_vec_info;
497 class _bb_vec_info;
499 template<>
500 template<>
501 inline bool
502 is_a_helper <_loop_vec_info *>::test (vec_info *i)
504 return i->kind == vec_info::loop;
507 template<>
508 template<>
509 inline bool
510 is_a_helper <_bb_vec_info *>::test (vec_info *i)
512 return i->kind == vec_info::bb;
515 /* In general, we can divide the vector statements in a vectorized loop
516 into related groups ("rgroups") and say that for each rgroup there is
517 some nS such that the rgroup operates on nS values from one scalar
518 iteration followed by nS values from the next. That is, if VF is the
519 vectorization factor of the loop, the rgroup operates on a sequence:
521 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
523 where (i,j) represents a scalar value with index j in a scalar
524 iteration with index i.
526 [ We use the term "rgroup" to emphasise that this grouping isn't
527 necessarily the same as the grouping of statements used elsewhere.
528 For example, if we implement a group of scalar loads using gather
529 loads, we'll use a separate gather load for each scalar load, and
530 thus each gather load will belong to its own rgroup. ]
532 In general this sequence will occupy nV vectors concatenated
533 together. If these vectors have nL lanes each, the total number
534 of scalar values N is given by:
536 N = nS * VF = nV * nL
538 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
539 are compile-time constants but VF and nL can be variable (if the target
540 supports variable-length vectors).
542 In classical vectorization, each iteration of the vector loop would
543 handle exactly VF iterations of the original scalar loop. However,
544 in vector loops that are able to operate on partial vectors, a
545 particular iteration of the vector loop might handle fewer than VF
546 iterations of the scalar loop. The vector lanes that correspond to
547 iterations of the scalar loop are said to be "active" and the other
548 lanes are said to be "inactive".
550 In such vector loops, many rgroups need to be controlled to ensure
551 that they have no effect for the inactive lanes. Conceptually, each
552 such rgroup needs a sequence of booleans in the same order as above,
553 but with each (i,j) replaced by a boolean that indicates whether
554 iteration i is active. This sequence occupies nV vector controls
555 that again have nL lanes each. Thus the control sequence as a whole
556 consists of VF independent booleans that are each repeated nS times.
558 Taking mask-based approach as a partially-populated vectors example.
559 We make the simplifying assumption that if a sequence of nV masks is
560 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
561 VIEW_CONVERTing it. This holds for all current targets that support
562 fully-masked loops. For example, suppose the scalar loop is:
564 float *f;
565 double *d;
566 for (int i = 0; i < n; ++i)
568 f[i * 2 + 0] += 1.0f;
569 f[i * 2 + 1] += 2.0f;
570 d[i] += 3.0;
573 and suppose that vectors have 256 bits. The vectorized f accesses
574 will belong to one rgroup and the vectorized d access to another:
576 f rgroup: nS = 2, nV = 1, nL = 8
577 d rgroup: nS = 1, nV = 1, nL = 4
578 VF = 4
580 [ In this simple example the rgroups do correspond to the normal
581 SLP grouping scheme. ]
583 If only the first three lanes are active, the masks we need are:
585 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
586 d rgroup: 1 | 1 | 1 | 0
588 Here we can use a mask calculated for f's rgroup for d's, but not
589 vice versa.
591 Thus for each value of nV, it is enough to provide nV masks, with the
592 mask being calculated based on the highest nL (or, equivalently, based
593 on the highest nS) required by any rgroup with that nV. We therefore
594 represent the entire collection of masks as a two-level table, with the
595 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
596 the second being indexed by the mask index 0 <= i < nV. */
598 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
599 according to the description above. */
600 struct rgroup_controls {
601 /* The largest nS for all rgroups that use these controls.
602 For vect_partial_vectors_avx512 this is the constant nscalars_per_iter
603 for all members of the group. */
604 unsigned int max_nscalars_per_iter;
606 /* For the largest nS recorded above, the loop controls divide each scalar
607 into FACTOR equal-sized pieces. This is useful if we need to split
608 element-based accesses into byte-based accesses.
609 For vect_partial_vectors_avx512 this records nV instead. */
610 unsigned int factor;
612 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
613 For mask-based controls, it is the type of the masks in CONTROLS.
614 For length-based controls, it can be any vector type that has the
615 specified number of elements; the type of the elements doesn't matter. */
616 tree type;
618 /* When there is no uniformly used LOOP_VINFO_RGROUP_COMPARE_TYPE this
619 is the rgroup specific type used. */
620 tree compare_type;
622 /* A vector of nV controls, in iteration order. */
623 vec<tree> controls;
625 /* In case of len_load and len_store with a bias there is only one
626 rgroup. This holds the adjusted loop length for the this rgroup. */
627 tree bias_adjusted_ctrl;
630 struct vec_loop_masks
632 bool is_empty () const { return mask_set.is_empty (); }
634 /* Set to record vectype, nvector pairs. */
635 hash_set<pair_hash <nofree_ptr_hash <tree_node>,
636 int_hash<unsigned, 0>>> mask_set;
638 /* rgroup_controls used for the partial vector scheme. */
639 auto_vec<rgroup_controls> rgc_vec;
642 typedef auto_vec<rgroup_controls> vec_loop_lens;
644 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
646 /* Information about a reduction accumulator from the main loop that could
647 conceivably be reused as the input to a reduction in an epilogue loop. */
648 struct vect_reusable_accumulator {
649 /* The final value of the accumulator, which forms the input to the
650 reduction operation. */
651 tree reduc_input;
653 /* The stmt_vec_info that describes the reduction (i.e. the one for
654 which is_reduc_info is true). */
655 stmt_vec_info reduc_info;
658 /*-----------------------------------------------------------------*/
659 /* Info on vectorized loops. */
660 /*-----------------------------------------------------------------*/
661 typedef class _loop_vec_info : public vec_info {
662 public:
663 _loop_vec_info (class loop *, vec_info_shared *);
664 ~_loop_vec_info ();
666 /* The loop to which this info struct refers to. */
667 class loop *loop;
669 /* The loop basic blocks. */
670 basic_block *bbs;
672 /* Number of latch executions. */
673 tree num_itersm1;
674 /* Number of iterations. */
675 tree num_iters;
676 /* Number of iterations of the original loop. */
677 tree num_iters_unchanged;
678 /* Condition under which this loop is analyzed and versioned. */
679 tree num_iters_assumptions;
681 /* The cost of the vector code. */
682 class vector_costs *vector_costs;
684 /* The cost of the scalar code. */
685 class vector_costs *scalar_costs;
687 /* Threshold of number of iterations below which vectorization will not be
688 performed. It is calculated from MIN_PROFITABLE_ITERS and
689 param_min_vect_loop_bound. */
690 unsigned int th;
692 /* When applying loop versioning, the vector form should only be used
693 if the number of scalar iterations is >= this value, on top of all
694 the other requirements. Ignored when loop versioning is not being
695 used. */
696 poly_uint64 versioning_threshold;
698 /* Unrolling factor */
699 poly_uint64 vectorization_factor;
701 /* If this loop is an epilogue loop whose main loop can be skipped,
702 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
703 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
704 main loop and goes straight to this loop's preheader.
706 Both fields are null otherwise. */
707 edge main_loop_edge;
708 edge skip_main_loop_edge;
710 /* If this loop is an epilogue loop that might be skipped after executing
711 the main loop, this edge is the one that skips the epilogue. */
712 edge skip_this_loop_edge;
714 /* The vectorized form of a standard reduction replaces the original
715 scalar code's final result (a loop-closed SSA PHI) with the result
716 of a vector-to-scalar reduction operation. After vectorization,
717 this variable maps these vector-to-scalar results to information
718 about the reductions that generated them. */
719 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
721 /* The number of times that the target suggested we unroll the vector loop
722 in order to promote more ILP. This value will be used to re-analyze the
723 loop for vectorization and if successful the value will be folded into
724 vectorization_factor (and therefore exactly divides
725 vectorization_factor). */
726 unsigned int suggested_unroll_factor;
728 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
729 if there is no particular limit. */
730 unsigned HOST_WIDE_INT max_vectorization_factor;
732 /* The masks that a fully-masked loop should use to avoid operating
733 on inactive scalars. */
734 vec_loop_masks masks;
736 /* The lengths that a loop with length should use to avoid operating
737 on inactive scalars. */
738 vec_loop_lens lens;
740 /* Set of scalar conditions that have loop mask applied. */
741 scalar_cond_masked_set_type scalar_cond_masked_set;
743 /* Set of vector conditions that have loop mask applied. */
744 vec_cond_masked_set_type vec_cond_masked_set;
746 /* If we are using a loop mask to align memory addresses, this variable
747 contains the number of vector elements that we should skip in the
748 first iteration of the vector loop (i.e. the number of leading
749 elements that should be false in the first mask). */
750 tree mask_skip_niters;
752 /* The type that the loop control IV should be converted to before
753 testing which of the VF scalars are active and inactive.
754 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
755 tree rgroup_compare_type;
757 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
758 the loop should not be vectorized, if constant non-zero, simd_if_cond
759 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
760 should be versioned on that condition, using scalar loop if the condition
761 is false and vectorized loop otherwise. */
762 tree simd_if_cond;
764 /* The type that the vector loop control IV should have when
765 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
766 tree rgroup_iv_type;
768 /* The style used for implementing partial vectors when
769 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
770 vect_partial_vector_style partial_vector_style;
772 /* Unknown DRs according to which loop was peeled. */
773 class dr_vec_info *unaligned_dr;
775 /* peeling_for_alignment indicates whether peeling for alignment will take
776 place, and what the peeling factor should be:
777 peeling_for_alignment = X means:
778 If X=0: Peeling for alignment will not be applied.
779 If X>0: Peel first X iterations.
780 If X=-1: Generate a runtime test to calculate the number of iterations
781 to be peeled, using the dataref recorded in the field
782 unaligned_dr. */
783 int peeling_for_alignment;
785 /* The mask used to check the alignment of pointers or arrays. */
786 int ptr_mask;
788 /* Data Dependence Relations defining address ranges that are candidates
789 for a run-time aliasing check. */
790 auto_vec<ddr_p> may_alias_ddrs;
792 /* Data Dependence Relations defining address ranges together with segment
793 lengths from which the run-time aliasing check is built. */
794 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
796 /* Check that the addresses of each pair of objects is unequal. */
797 auto_vec<vec_object_pair> check_unequal_addrs;
799 /* List of values that are required to be nonzero. This is used to check
800 whether things like "x[i * n] += 1;" are safe and eventually gets added
801 to the checks for lower bounds below. */
802 auto_vec<tree> check_nonzero;
804 /* List of values that need to be checked for a minimum value. */
805 auto_vec<vec_lower_bound> lower_bounds;
807 /* Statements in the loop that have data references that are candidates for a
808 runtime (loop versioning) misalignment check. */
809 auto_vec<stmt_vec_info> may_misalign_stmts;
811 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
812 auto_vec<stmt_vec_info> reductions;
814 /* All reduction chains in the loop, represented by the first
815 stmt in the chain. */
816 auto_vec<stmt_vec_info> reduction_chains;
818 /* Cost vector for a single scalar iteration. */
819 auto_vec<stmt_info_for_cost> scalar_cost_vec;
821 /* Map of IV base/step expressions to inserted name in the preheader. */
822 hash_map<tree_operand_hash, tree> *ivexpr_map;
824 /* Map of OpenMP "omp simd array" scan variables to corresponding
825 rhs of the store of the initializer. */
826 hash_map<tree, tree> *scan_map;
828 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
829 applied to the loop, i.e., no unrolling is needed, this is 1. */
830 poly_uint64 slp_unrolling_factor;
832 /* The factor used to over weight those statements in an inner loop
833 relative to the loop being vectorized. */
834 unsigned int inner_loop_cost_factor;
836 /* Is the loop vectorizable? */
837 bool vectorizable;
839 /* Records whether we still have the option of vectorizing this loop
840 using partially-populated vectors; in other words, whether it is
841 still possible for one iteration of the vector loop to handle
842 fewer than VF scalars. */
843 bool can_use_partial_vectors_p;
845 /* True if we've decided to use partially-populated vectors, so that
846 the vector loop can handle fewer than VF scalars. */
847 bool using_partial_vectors_p;
849 /* True if we've decided to use a decrementing loop control IV that counts
850 scalars. This can be done for any loop that:
852 (a) uses length "controls"; and
853 (b) can iterate more than once. */
854 bool using_decrementing_iv_p;
856 /* True if we've decided to use output of select_vl to adjust IV of
857 both loop control and data reference pointer. This is only true
858 for single-rgroup control. */
859 bool using_select_vl_p;
861 /* True if we've decided to use partially-populated vectors for the
862 epilogue of loop. */
863 bool epil_using_partial_vectors_p;
865 /* The bias for len_load and len_store. For now, only 0 and -1 are
866 supported. -1 must be used when a backend does not support
867 len_load/len_store with a length of zero. */
868 signed char partial_load_store_bias;
870 /* When we have grouped data accesses with gaps, we may introduce invalid
871 memory accesses. We peel the last iteration of the loop to prevent
872 this. */
873 bool peeling_for_gaps;
875 /* When the number of iterations is not a multiple of the vector size
876 we need to peel off iterations at the end to form an epilogue loop. */
877 bool peeling_for_niter;
879 /* True if there are no loop carried data dependencies in the loop.
880 If loop->safelen <= 1, then this is always true, either the loop
881 didn't have any loop carried data dependencies, or the loop is being
882 vectorized guarded with some runtime alias checks, or couldn't
883 be vectorized at all, but then this field shouldn't be used.
884 For loop->safelen >= 2, the user has asserted that there are no
885 backward dependencies, but there still could be loop carried forward
886 dependencies in such loops. This flag will be false if normal
887 vectorizer data dependency analysis would fail or require versioning
888 for alias, but because of loop->safelen >= 2 it has been vectorized
889 even without versioning for alias. E.g. in:
890 #pragma omp simd
891 for (int i = 0; i < m; i++)
892 a[i] = a[i + k] * c;
893 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
894 DTRT even for k > 0 && k < m, but without safelen we would not
895 vectorize this, so this field would be false. */
896 bool no_data_dependencies;
898 /* Mark loops having masked stores. */
899 bool has_mask_store;
901 /* Queued scaling factor for the scalar loop. */
902 profile_probability scalar_loop_scaling;
904 /* If if-conversion versioned this loop before conversion, this is the
905 loop version without if-conversion. */
906 class loop *scalar_loop;
908 /* For loops being epilogues of already vectorized loops
909 this points to the original vectorized loop. Otherwise NULL. */
910 _loop_vec_info *orig_loop_info;
912 /* Used to store loop_vec_infos of epilogues of this loop during
913 analysis. */
914 vec<_loop_vec_info *> epilogue_vinfos;
916 } *loop_vec_info;
918 /* Access Functions. */
919 #define LOOP_VINFO_LOOP(L) (L)->loop
920 #define LOOP_VINFO_BBS(L) (L)->bbs
921 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
922 #define LOOP_VINFO_NITERS(L) (L)->num_iters
923 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
924 prologue peeling retain total unchanged scalar loop iterations for
925 cost model. */
926 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
927 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
928 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
929 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
930 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
931 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
932 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
933 #define LOOP_VINFO_USING_DECREMENTING_IV_P(L) (L)->using_decrementing_iv_p
934 #define LOOP_VINFO_USING_SELECT_VL_P(L) (L)->using_select_vl_p
935 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
936 (L)->epil_using_partial_vectors_p
937 #define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
938 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
939 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
940 #define LOOP_VINFO_MASKS(L) (L)->masks
941 #define LOOP_VINFO_LENS(L) (L)->lens
942 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
943 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
944 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
945 #define LOOP_VINFO_PARTIAL_VECTORS_STYLE(L) (L)->partial_vector_style
946 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
947 #define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
948 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
949 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
950 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
951 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
952 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
953 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
954 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
955 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
956 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
957 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
958 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
959 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
960 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
961 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
962 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
963 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
964 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
965 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
966 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
967 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
968 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
969 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
970 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
971 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
972 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
973 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
974 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
976 #define LOOP_VINFO_FULLY_MASKED_P(L) \
977 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
978 && !LOOP_VINFO_MASKS (L).is_empty ())
980 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
981 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
982 && !LOOP_VINFO_LENS (L).is_empty ())
984 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
985 ((L)->may_misalign_stmts.length () > 0)
986 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
987 ((L)->comp_alias_ddrs.length () > 0 \
988 || (L)->check_unequal_addrs.length () > 0 \
989 || (L)->lower_bounds.length () > 0)
990 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
991 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
992 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
993 (LOOP_VINFO_SIMD_IF_COND (L))
994 #define LOOP_REQUIRES_VERSIONING(L) \
995 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
996 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
997 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
998 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
1000 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
1001 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
1003 #define LOOP_VINFO_EPILOGUE_P(L) \
1004 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
1006 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
1007 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
1009 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
1010 value signifies success, and a NULL value signifies failure, supporting
1011 propagating an opt_problem * describing the failure back up the call
1012 stack. */
1013 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
1015 inline loop_vec_info
1016 loop_vec_info_for_loop (class loop *loop)
1018 return (loop_vec_info) loop->aux;
1021 struct slp_root
1023 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
1024 vec<stmt_vec_info> roots_)
1025 : kind(kind_), stmts(stmts_), roots(roots_) {}
1026 slp_instance_kind kind;
1027 vec<stmt_vec_info> stmts;
1028 vec<stmt_vec_info> roots;
1031 typedef class _bb_vec_info : public vec_info
1033 public:
1034 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
1035 ~_bb_vec_info ();
1037 /* The region we are operating on. bbs[0] is the entry, excluding
1038 its PHI nodes. In the future we might want to track an explicit
1039 entry edge to cover bbs[0] PHI nodes and have a region entry
1040 insert location. */
1041 vec<basic_block> bbs;
1043 vec<slp_root> roots;
1044 } *bb_vec_info;
1046 #define BB_VINFO_BB(B) (B)->bb
1047 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1048 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1049 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1050 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
1052 /*-----------------------------------------------------------------*/
1053 /* Info on vectorized defs. */
1054 /*-----------------------------------------------------------------*/
1055 enum stmt_vec_info_type {
1056 undef_vec_info_type = 0,
1057 load_vec_info_type,
1058 store_vec_info_type,
1059 shift_vec_info_type,
1060 op_vec_info_type,
1061 call_vec_info_type,
1062 call_simd_clone_vec_info_type,
1063 assignment_vec_info_type,
1064 condition_vec_info_type,
1065 comparison_vec_info_type,
1066 reduc_vec_info_type,
1067 induc_vec_info_type,
1068 type_promotion_vec_info_type,
1069 type_demotion_vec_info_type,
1070 type_conversion_vec_info_type,
1071 cycle_phi_info_type,
1072 lc_phi_info_type,
1073 phi_info_type,
1074 recurr_info_type,
1075 loop_exit_ctrl_vec_info_type
1078 /* Indicates whether/how a variable is used in the scope of loop/basic
1079 block. */
1080 enum vect_relevant {
1081 vect_unused_in_scope = 0,
1083 /* The def is only used outside the loop. */
1084 vect_used_only_live,
1085 /* The def is in the inner loop, and the use is in the outer loop, and the
1086 use is a reduction stmt. */
1087 vect_used_in_outer_by_reduction,
1088 /* The def is in the inner loop, and the use is in the outer loop (and is
1089 not part of reduction). */
1090 vect_used_in_outer,
1092 /* defs that feed computations that end up (only) in a reduction. These
1093 defs may be used by non-reduction stmts, but eventually, any
1094 computations/values that are affected by these defs are used to compute
1095 a reduction (i.e. don't get stored to memory, for example). We use this
1096 to identify computations that we can change the order in which they are
1097 computed. */
1098 vect_used_by_reduction,
1100 vect_used_in_scope
1103 /* The type of vectorization that can be applied to the stmt: regular loop-based
1104 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1105 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1106 a part of SLP instance and also must be loop-based vectorized, since it has
1107 uses outside SLP sequences.
1109 In the loop context the meanings of pure and hybrid SLP are slightly
1110 different. By saying that pure SLP is applied to the loop, we mean that we
1111 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1112 vectorized without doing any conceptual unrolling, cause we don't pack
1113 together stmts from different iterations, only within a single iteration.
1114 Loop hybrid SLP means that we exploit both intra-iteration and
1115 inter-iteration parallelism (e.g., number of elements in the vector is 4
1116 and the slp-group-size is 2, in which case we don't have enough parallelism
1117 within an iteration, so we obtain the rest of the parallelism from subsequent
1118 iterations by unrolling the loop by 2). */
1119 enum slp_vect_type {
1120 loop_vect = 0,
1121 pure_slp,
1122 hybrid
1125 /* Says whether a statement is a load, a store of a vectorized statement
1126 result, or a store of an invariant value. */
1127 enum vec_load_store_type {
1128 VLS_LOAD,
1129 VLS_STORE,
1130 VLS_STORE_INVARIANT
1133 /* Describes how we're going to vectorize an individual load or store,
1134 or a group of loads or stores. */
1135 enum vect_memory_access_type {
1136 /* An access to an invariant address. This is used only for loads. */
1137 VMAT_INVARIANT,
1139 /* A simple contiguous access. */
1140 VMAT_CONTIGUOUS,
1142 /* A contiguous access that goes down in memory rather than up,
1143 with no additional permutation. This is used only for stores
1144 of invariants. */
1145 VMAT_CONTIGUOUS_DOWN,
1147 /* A simple contiguous access in which the elements need to be permuted
1148 after loading or before storing. Only used for loop vectorization;
1149 SLP uses separate permutes. */
1150 VMAT_CONTIGUOUS_PERMUTE,
1152 /* A simple contiguous access in which the elements need to be reversed
1153 after loading or before storing. */
1154 VMAT_CONTIGUOUS_REVERSE,
1156 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1157 VMAT_LOAD_STORE_LANES,
1159 /* An access in which each scalar element is loaded or stored
1160 individually. */
1161 VMAT_ELEMENTWISE,
1163 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1164 SLP accesses. Each unrolled iteration uses a contiguous load
1165 or store for the whole group, but the groups from separate iterations
1166 are combined in the same way as for VMAT_ELEMENTWISE. */
1167 VMAT_STRIDED_SLP,
1169 /* The access uses gather loads or scatter stores. */
1170 VMAT_GATHER_SCATTER
1173 class dr_vec_info {
1174 public:
1175 /* The data reference itself. */
1176 data_reference *dr;
1177 /* The statement that contains the data reference. */
1178 stmt_vec_info stmt;
1179 /* The analysis group this DR belongs to when doing BB vectorization.
1180 DRs of the same group belong to the same conditional execution context. */
1181 unsigned group;
1182 /* The misalignment in bytes of the reference, or -1 if not known. */
1183 int misalignment;
1184 /* The byte alignment that we'd ideally like the reference to have,
1185 and the value that misalignment is measured against. */
1186 poly_uint64 target_alignment;
1187 /* If true the alignment of base_decl needs to be increased. */
1188 bool base_misaligned;
1189 tree base_decl;
1191 /* Stores current vectorized loop's offset. To be added to the DR's
1192 offset to calculate current offset of data reference. */
1193 tree offset;
1196 typedef struct data_reference *dr_p;
1198 class _stmt_vec_info {
1199 public:
1201 enum stmt_vec_info_type type;
1203 /* Indicates whether this stmts is part of a computation whose result is
1204 used outside the loop. */
1205 bool live;
1207 /* Stmt is part of some pattern (computation idiom) */
1208 bool in_pattern_p;
1210 /* True if the statement was created during pattern recognition as
1211 part of the replacement for RELATED_STMT. This implies that the
1212 statement isn't part of any basic block, although for convenience
1213 its gimple_bb is the same as for RELATED_STMT. */
1214 bool pattern_stmt_p;
1216 /* Is this statement vectorizable or should it be skipped in (partial)
1217 vectorization. */
1218 bool vectorizable;
1220 /* The stmt to which this info struct refers to. */
1221 gimple *stmt;
1223 /* The vector type to be used for the LHS of this statement. */
1224 tree vectype;
1226 /* The vectorized stmts. */
1227 vec<gimple *> vec_stmts;
1229 /* The following is relevant only for stmts that contain a non-scalar
1230 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1231 at most one such data-ref. */
1233 dr_vec_info dr_aux;
1235 /* Information about the data-ref relative to this loop
1236 nest (the loop that is being considered for vectorization). */
1237 innermost_loop_behavior dr_wrt_vec_loop;
1239 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1240 this information is still available in vect_update_ivs_after_vectorizer
1241 where we may not be able to re-analyze the PHI nodes evolution as
1242 peeling for the prologue loop can make it unanalyzable. The evolution
1243 part is still correct after peeling, but the base may have changed from
1244 the version here. */
1245 tree loop_phi_evolution_base_unchanged;
1246 tree loop_phi_evolution_part;
1247 enum vect_induction_op_type loop_phi_evolution_type;
1249 /* Used for various bookkeeping purposes, generally holding a pointer to
1250 some other stmt S that is in some way "related" to this stmt.
1251 Current use of this field is:
1252 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1253 true): S is the "pattern stmt" that represents (and replaces) the
1254 sequence of stmts that constitutes the pattern. Similarly, the
1255 related_stmt of the "pattern stmt" points back to this stmt (which is
1256 the last stmt in the original sequence of stmts that constitutes the
1257 pattern). */
1258 stmt_vec_info related_stmt;
1260 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1261 The sequence is attached to the original statement rather than the
1262 pattern statement. */
1263 gimple_seq pattern_def_seq;
1265 /* Selected SIMD clone's function info. First vector element
1266 is SIMD clone's function decl, followed by a pair of trees (base + step)
1267 for linear arguments (pair of NULLs for other arguments). */
1268 vec<tree> simd_clone_info;
1270 /* Classify the def of this stmt. */
1271 enum vect_def_type def_type;
1273 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1274 enum slp_vect_type slp_type;
1276 /* Interleaving and reduction chains info. */
1277 /* First element in the group. */
1278 stmt_vec_info first_element;
1279 /* Pointer to the next element in the group. */
1280 stmt_vec_info next_element;
1281 /* The size of the group. */
1282 unsigned int size;
1283 /* For stores, number of stores from this group seen. We vectorize the last
1284 one. */
1285 unsigned int store_count;
1286 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1287 is 1. */
1288 unsigned int gap;
1290 /* The minimum negative dependence distance this stmt participates in
1291 or zero if none. */
1292 unsigned int min_neg_dist;
1294 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1295 of the loop induction variable and computation of array indexes. relevant
1296 indicates whether the stmt needs to be vectorized. */
1297 enum vect_relevant relevant;
1299 /* For loads if this is a gather, for stores if this is a scatter. */
1300 bool gather_scatter_p;
1302 /* True if this is an access with loop-invariant stride. */
1303 bool strided_p;
1305 /* For both loads and stores. */
1306 unsigned simd_lane_access_p : 3;
1308 /* Classifies how the load or store is going to be implemented
1309 for loop vectorization. */
1310 vect_memory_access_type memory_access_type;
1312 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1313 tree induc_cond_initial_val;
1315 /* If not NULL the value to be added to compute final reduction value. */
1316 tree reduc_epilogue_adjustment;
1318 /* On a reduction PHI the reduction type as detected by
1319 vect_is_simple_reduction and vectorizable_reduction. */
1320 enum vect_reduction_type reduc_type;
1322 /* The original reduction code, to be used in the epilogue. */
1323 code_helper reduc_code;
1324 /* An internal function we should use in the epilogue. */
1325 internal_fn reduc_fn;
1327 /* On a stmt participating in the reduction the index of the operand
1328 on the reduction SSA cycle. */
1329 int reduc_idx;
1331 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1332 On the def returned by vect_force_simple_reduction the
1333 corresponding PHI. */
1334 stmt_vec_info reduc_def;
1336 /* The vector input type relevant for reduction vectorization. */
1337 tree reduc_vectype_in;
1339 /* The vector type for performing the actual reduction. */
1340 tree reduc_vectype;
1342 /* If IS_REDUC_INFO is true and if the vector code is performing
1343 N scalar reductions in parallel, this variable gives the initial
1344 scalar values of those N reductions. */
1345 vec<tree> reduc_initial_values;
1347 /* If IS_REDUC_INFO is true and if the vector code is performing
1348 N scalar reductions in parallel, this variable gives the vectorized code's
1349 final (scalar) result for each of those N reductions. In other words,
1350 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1351 SSA PHI for reduction number I. */
1352 vec<tree> reduc_scalar_results;
1354 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1355 being performed by an epilogue loop and we have decided to reuse
1356 this accumulator from the main loop. */
1357 vect_reusable_accumulator *reused_accumulator;
1359 /* Whether we force a single cycle PHI during reduction vectorization. */
1360 bool force_single_cycle;
1362 /* Whether on this stmt reduction meta is recorded. */
1363 bool is_reduc_info;
1365 /* If nonzero, the lhs of the statement could be truncated to this
1366 many bits without affecting any users of the result. */
1367 unsigned int min_output_precision;
1369 /* If nonzero, all non-boolean input operands have the same precision,
1370 and they could each be truncated to this many bits without changing
1371 the result. */
1372 unsigned int min_input_precision;
1374 /* If OPERATION_BITS is nonzero, the statement could be performed on
1375 an integer with the sign and number of bits given by OPERATION_SIGN
1376 and OPERATION_BITS without changing the result. */
1377 unsigned int operation_precision;
1378 signop operation_sign;
1380 /* If the statement produces a boolean result, this value describes
1381 how we should choose the associated vector type. The possible
1382 values are:
1384 - an integer precision N if we should use the vector mask type
1385 associated with N-bit integers. This is only used if all relevant
1386 input booleans also want the vector mask type for N-bit integers,
1387 or if we can convert them into that form by pattern-matching.
1389 - ~0U if we considered choosing a vector mask type but decided
1390 to treat the boolean as a normal integer type instead.
1392 - 0 otherwise. This means either that the operation isn't one that
1393 could have a vector mask type (and so should have a normal vector
1394 type instead) or that we simply haven't made a choice either way. */
1395 unsigned int mask_precision;
1397 /* True if this is only suitable for SLP vectorization. */
1398 bool slp_vect_only_p;
1400 /* True if this is a pattern that can only be handled by SLP
1401 vectorization. */
1402 bool slp_vect_pattern_only_p;
1405 /* Information about a gather/scatter call. */
1406 struct gather_scatter_info {
1407 /* The internal function to use for the gather/scatter operation,
1408 or IFN_LAST if a built-in function should be used instead. */
1409 internal_fn ifn;
1411 /* The FUNCTION_DECL for the built-in gather/scatter function,
1412 or null if an internal function should be used instead. */
1413 tree decl;
1415 /* The loop-invariant base value. */
1416 tree base;
1418 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1419 tree offset;
1421 /* Each offset element should be multiplied by this amount before
1422 being added to the base. */
1423 int scale;
1425 /* The definition type for the vectorized offset. */
1426 enum vect_def_type offset_dt;
1428 /* The type of the vectorized offset. */
1429 tree offset_vectype;
1431 /* The type of the scalar elements after loading or before storing. */
1432 tree element_type;
1434 /* The type of the scalar elements being loaded or stored. */
1435 tree memory_type;
1438 /* Access Functions. */
1439 #define STMT_VINFO_TYPE(S) (S)->type
1440 #define STMT_VINFO_STMT(S) (S)->stmt
1441 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1442 #define STMT_VINFO_LIVE_P(S) (S)->live
1443 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1444 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1445 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1446 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1447 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1448 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1449 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1450 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1451 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1452 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1453 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1454 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1456 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1457 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1458 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1459 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1460 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1461 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1462 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1463 (S)->dr_wrt_vec_loop.base_misalignment
1464 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1465 (S)->dr_wrt_vec_loop.offset_alignment
1466 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1467 (S)->dr_wrt_vec_loop.step_alignment
1469 #define STMT_VINFO_DR_INFO(S) \
1470 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1472 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1473 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1474 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1475 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1476 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1477 #define STMT_VINFO_GROUPED_ACCESS(S) \
1478 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1479 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1480 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1481 #define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1482 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1483 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1484 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1485 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1486 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1487 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1488 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1489 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1490 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1492 #define DR_GROUP_FIRST_ELEMENT(S) \
1493 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1494 #define DR_GROUP_NEXT_ELEMENT(S) \
1495 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1496 #define DR_GROUP_SIZE(S) \
1497 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1498 #define DR_GROUP_STORE_COUNT(S) \
1499 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1500 #define DR_GROUP_GAP(S) \
1501 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1503 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1504 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1505 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1506 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1507 #define REDUC_GROUP_SIZE(S) \
1508 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1510 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1512 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1513 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1514 #define STMT_SLP_TYPE(S) (S)->slp_type
1516 /* Contains the scalar or vector costs for a vec_info. */
1517 class vector_costs
1519 public:
1520 vector_costs (vec_info *, bool);
1521 virtual ~vector_costs () {}
1523 /* Update the costs in response to adding COUNT copies of a statement.
1525 - WHERE specifies whether the cost occurs in the loop prologue,
1526 the loop body, or the loop epilogue.
1527 - KIND is the kind of statement, which is always meaningful.
1528 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1529 vectorized.
1530 - VECTYPE, if nonnull, is the vector type that the vectorized
1531 statement will operate on. Note that this should be used in
1532 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1533 is not correct for SLP.
1534 - for unaligned_load and unaligned_store statements, MISALIGN is
1535 the byte misalignment of the load or store relative to the target's
1536 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1537 if the misalignment is not known.
1539 Return the calculated cost as well as recording it. The return
1540 value is used for dumping purposes. */
1541 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1542 stmt_vec_info stmt_info,
1543 slp_tree node,
1544 tree vectype, int misalign,
1545 vect_cost_model_location where);
1547 /* Finish calculating the cost of the code. The results can be
1548 read back using the functions below.
1550 If the costs describe vector code, SCALAR_COSTS gives the costs
1551 of the corresponding scalar code, otherwise it is null. */
1552 virtual void finish_cost (const vector_costs *scalar_costs);
1554 /* The costs in THIS and OTHER both describe ways of vectorizing
1555 a main loop. Return true if the costs described by THIS are
1556 cheaper than the costs described by OTHER. Return false if any
1557 of the following are true:
1559 - THIS and OTHER are of equal cost
1560 - OTHER is better than THIS
1561 - we can't be sure about the relative costs of THIS and OTHER. */
1562 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1564 /* Likewise, but the costs in THIS and OTHER both describe ways of
1565 vectorizing an epilogue loop of MAIN_LOOP. */
1566 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1567 loop_vec_info main_loop) const;
1569 unsigned int prologue_cost () const;
1570 unsigned int body_cost () const;
1571 unsigned int epilogue_cost () const;
1572 unsigned int outside_cost () const;
1573 unsigned int total_cost () const;
1574 unsigned int suggested_unroll_factor () const;
1576 protected:
1577 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1578 unsigned int);
1579 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1580 unsigned int);
1581 int compare_inside_loop_cost (const vector_costs *) const;
1582 int compare_outside_loop_cost (const vector_costs *) const;
1584 /* The region of code that we're considering vectorizing. */
1585 vec_info *m_vinfo;
1587 /* True if we're costing the scalar code, false if we're costing
1588 the vector code. */
1589 bool m_costing_for_scalar;
1591 /* The costs of the three regions, indexed by vect_cost_model_location. */
1592 unsigned int m_costs[3];
1594 /* The suggested unrolling factor determined at finish_cost. */
1595 unsigned int m_suggested_unroll_factor;
1597 /* True if finish_cost has been called. */
1598 bool m_finished;
1601 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1602 are for scalar code, false if they are for vector code. */
1604 inline
1605 vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1606 : m_vinfo (vinfo),
1607 m_costing_for_scalar (costing_for_scalar),
1608 m_costs (),
1609 m_suggested_unroll_factor(1),
1610 m_finished (false)
1614 /* Return the cost of the prologue code (in abstract units). */
1616 inline unsigned int
1617 vector_costs::prologue_cost () const
1619 gcc_checking_assert (m_finished);
1620 return m_costs[vect_prologue];
1623 /* Return the cost of the body code (in abstract units). */
1625 inline unsigned int
1626 vector_costs::body_cost () const
1628 gcc_checking_assert (m_finished);
1629 return m_costs[vect_body];
1632 /* Return the cost of the epilogue code (in abstract units). */
1634 inline unsigned int
1635 vector_costs::epilogue_cost () const
1637 gcc_checking_assert (m_finished);
1638 return m_costs[vect_epilogue];
1641 /* Return the cost of the prologue and epilogue code (in abstract units). */
1643 inline unsigned int
1644 vector_costs::outside_cost () const
1646 return prologue_cost () + epilogue_cost ();
1649 /* Return the cost of the prologue, body and epilogue code
1650 (in abstract units). */
1652 inline unsigned int
1653 vector_costs::total_cost () const
1655 return body_cost () + outside_cost ();
1658 /* Return the suggested unroll factor. */
1660 inline unsigned int
1661 vector_costs::suggested_unroll_factor () const
1663 gcc_checking_assert (m_finished);
1664 return m_suggested_unroll_factor;
1667 #define VECT_MAX_COST 1000
1669 /* The maximum number of intermediate steps required in multi-step type
1670 conversion. */
1671 #define MAX_INTERM_CVT_STEPS 3
1673 #define MAX_VECTORIZATION_FACTOR INT_MAX
1675 /* Nonzero if TYPE represents a (scalar) boolean type or type
1676 in the middle-end compatible with it (unsigned precision 1 integral
1677 types). Used to determine which types should be vectorized as
1678 VECTOR_BOOLEAN_TYPE_P. */
1680 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1681 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1682 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1683 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1684 && TYPE_PRECISION (TYPE) == 1 \
1685 && TYPE_UNSIGNED (TYPE)))
1687 inline bool
1688 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1690 return (loop->inner
1691 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1694 /* PHI is either a scalar reduction phi or a scalar induction phi.
1695 Return the initial value of the variable on entry to the containing
1696 loop. */
1698 inline tree
1699 vect_phi_initial_value (gphi *phi)
1701 basic_block bb = gimple_bb (phi);
1702 edge pe = loop_preheader_edge (bb->loop_father);
1703 gcc_assert (pe->dest == bb);
1704 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1707 /* Return true if STMT_INFO should produce a vector mask type rather than
1708 a normal nonmask type. */
1710 inline bool
1711 vect_use_mask_type_p (stmt_vec_info stmt_info)
1713 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1716 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1717 pattern. */
1719 inline bool
1720 is_pattern_stmt_p (stmt_vec_info stmt_info)
1722 return stmt_info->pattern_stmt_p;
1725 /* If STMT_INFO is a pattern statement, return the statement that it
1726 replaces, otherwise return STMT_INFO itself. */
1728 inline stmt_vec_info
1729 vect_orig_stmt (stmt_vec_info stmt_info)
1731 if (is_pattern_stmt_p (stmt_info))
1732 return STMT_VINFO_RELATED_STMT (stmt_info);
1733 return stmt_info;
1736 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1738 inline stmt_vec_info
1739 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1741 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1742 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1743 return stmt1_info;
1744 else
1745 return stmt2_info;
1748 /* If STMT_INFO has been replaced by a pattern statement, return the
1749 replacement statement, otherwise return STMT_INFO itself. */
1751 inline stmt_vec_info
1752 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1754 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1755 return STMT_VINFO_RELATED_STMT (stmt_info);
1756 return stmt_info;
1759 /* Return true if BB is a loop header. */
1761 inline bool
1762 is_loop_header_bb_p (basic_block bb)
1764 if (bb == (bb->loop_father)->header)
1765 return true;
1766 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1767 return false;
1770 /* Return pow2 (X). */
1772 inline int
1773 vect_pow2 (int x)
1775 int i, res = 1;
1777 for (i = 0; i < x; i++)
1778 res *= 2;
1780 return res;
1783 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1785 inline int
1786 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1787 tree vectype, int misalign)
1789 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1790 vectype, misalign);
1793 /* Get cost by calling cost target builtin. */
1795 inline
1796 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1798 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1801 /* Alias targetm.vectorize.init_cost. */
1803 inline vector_costs *
1804 init_cost (vec_info *vinfo, bool costing_for_scalar)
1806 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1809 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1810 stmt_vec_info, slp_tree, tree, int, unsigned,
1811 enum vect_cost_model_location);
1813 /* Alias targetm.vectorize.add_stmt_cost. */
1815 inline unsigned
1816 add_stmt_cost (vector_costs *costs, int count,
1817 enum vect_cost_for_stmt kind,
1818 stmt_vec_info stmt_info, slp_tree node,
1819 tree vectype, int misalign,
1820 enum vect_cost_model_location where)
1822 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1823 misalign, where);
1824 if (dump_file && (dump_flags & TDF_DETAILS))
1825 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1826 cost, where);
1827 return cost;
1830 inline unsigned
1831 add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1832 enum vect_cost_model_location where)
1834 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1835 || kind == scalar_stmt);
1836 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, 0, where);
1839 /* Alias targetm.vectorize.add_stmt_cost. */
1841 inline unsigned
1842 add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1844 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info, i->node,
1845 i->vectype, i->misalign, i->where);
1848 /* Alias targetm.vectorize.finish_cost. */
1850 inline void
1851 finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1852 unsigned *prologue_cost, unsigned *body_cost,
1853 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1855 costs->finish_cost (scalar_costs);
1856 *prologue_cost = costs->prologue_cost ();
1857 *body_cost = costs->body_cost ();
1858 *epilogue_cost = costs->epilogue_cost ();
1859 if (suggested_unroll_factor)
1860 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1863 inline void
1864 add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1866 stmt_info_for_cost *cost;
1867 unsigned i;
1868 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1869 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1870 cost->node, cost->vectype, cost->misalign, cost->where);
1873 /*-----------------------------------------------------------------*/
1874 /* Info on data references alignment. */
1875 /*-----------------------------------------------------------------*/
1876 #define DR_MISALIGNMENT_UNKNOWN (-1)
1877 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1879 inline void
1880 set_dr_misalignment (dr_vec_info *dr_info, int val)
1882 dr_info->misalignment = val;
1885 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1886 poly_int64 offset = 0);
1888 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1890 /* Only defined once DR_MISALIGNMENT is defined. */
1891 inline const poly_uint64
1892 dr_target_alignment (dr_vec_info *dr_info)
1894 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1895 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1896 return dr_info->target_alignment;
1898 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1900 inline void
1901 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1903 dr_info->target_alignment = val;
1905 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1907 /* Return true if data access DR_INFO is aligned to the targets
1908 preferred alignment for VECTYPE (which may be less than a full vector). */
1910 inline bool
1911 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1913 return (dr_misalignment (dr_info, vectype) == 0);
1916 /* Return TRUE if the (mis-)alignment of the data access is known with
1917 respect to the targets preferred alignment for VECTYPE, and FALSE
1918 otherwise. */
1920 inline bool
1921 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1923 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1926 /* Return the minimum alignment in bytes that the vectorized version
1927 of DR_INFO is guaranteed to have. */
1929 inline unsigned int
1930 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1932 int misalignment = dr_misalignment (dr_info, vectype);
1933 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1934 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1935 else if (misalignment == 0)
1936 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1937 return misalignment & -misalignment;
1940 /* Return the behavior of DR_INFO with respect to the vectorization context
1941 (which for outer loop vectorization might not be the behavior recorded
1942 in DR_INFO itself). */
1944 inline innermost_loop_behavior *
1945 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1947 stmt_vec_info stmt_info = dr_info->stmt;
1948 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1949 if (loop_vinfo == NULL
1950 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1951 return &DR_INNERMOST (dr_info->dr);
1952 else
1953 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1956 /* Return the offset calculated by adding the offset of this DR_INFO to the
1957 corresponding data_reference's offset. If CHECK_OUTER then use
1958 vect_dr_behavior to select the appropriate data_reference to use. */
1960 inline tree
1961 get_dr_vinfo_offset (vec_info *vinfo,
1962 dr_vec_info *dr_info, bool check_outer = false)
1964 innermost_loop_behavior *base;
1965 if (check_outer)
1966 base = vect_dr_behavior (vinfo, dr_info);
1967 else
1968 base = &dr_info->dr->innermost;
1970 tree offset = base->offset;
1972 if (!dr_info->offset)
1973 return offset;
1975 offset = fold_convert (sizetype, offset);
1976 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1977 dr_info->offset);
1981 /* Return the vect cost model for LOOP. */
1982 inline enum vect_cost_model
1983 loop_cost_model (loop_p loop)
1985 if (loop != NULL
1986 && loop->force_vectorize
1987 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1988 return flag_simd_cost_model;
1989 return flag_vect_cost_model;
1992 /* Return true if the vect cost model is unlimited. */
1993 inline bool
1994 unlimited_cost_model (loop_p loop)
1996 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
1999 /* Return true if the loop described by LOOP_VINFO is fully-masked and
2000 if the first iteration should use a partial mask in order to achieve
2001 alignment. */
2003 inline bool
2004 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
2006 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2007 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2010 /* Return the number of vectors of type VECTYPE that are needed to get
2011 NUNITS elements. NUNITS should be based on the vectorization factor,
2012 so it is always a known multiple of the number of elements in VECTYPE. */
2014 inline unsigned int
2015 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
2017 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
2020 /* Return the number of copies needed for loop vectorization when
2021 a statement operates on vectors of type VECTYPE. This is the
2022 vectorization factor divided by the number of elements in
2023 VECTYPE and is always known at compile time. */
2025 inline unsigned int
2026 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
2028 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
2031 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2032 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
2034 inline void
2035 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
2037 /* All unit counts have the form vec_info::vector_size * X for some
2038 rational X, so two unit sizes must have a common multiple.
2039 Everything is a multiple of the initial value of 1. */
2040 *max_nunits = force_common_multiple (*max_nunits, nunits);
2043 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2044 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2045 if we haven't yet recorded any vector types. */
2047 inline void
2048 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2050 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
2053 /* Return the vectorization factor that should be used for costing
2054 purposes while vectorizing the loop described by LOOP_VINFO.
2055 Pick a reasonable estimate if the vectorization factor isn't
2056 known at compile time. */
2058 inline unsigned int
2059 vect_vf_for_cost (loop_vec_info loop_vinfo)
2061 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2064 /* Estimate the number of elements in VEC_TYPE for costing purposes.
2065 Pick a reasonable estimate if the exact number isn't known at
2066 compile time. */
2068 inline unsigned int
2069 vect_nunits_for_cost (tree vec_type)
2071 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
2074 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
2076 inline unsigned HOST_WIDE_INT
2077 vect_max_vf (loop_vec_info loop_vinfo)
2079 unsigned HOST_WIDE_INT vf;
2080 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
2081 return vf;
2082 return MAX_VECTORIZATION_FACTOR;
2085 /* Return the size of the value accessed by unvectorized data reference
2086 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2087 for the associated gimple statement, since that guarantees that DR_INFO
2088 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2089 here includes things like V1SI, which can be vectorized in the same way
2090 as a plain SI.) */
2092 inline unsigned int
2093 vect_get_scalar_dr_size (dr_vec_info *dr_info)
2095 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2098 /* Return true if LOOP_VINFO requires a runtime check for whether the
2099 vector loop is profitable. */
2101 inline bool
2102 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2104 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2105 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2106 && th >= vect_vf_for_cost (loop_vinfo));
2109 /* Source location + hotness information. */
2110 extern dump_user_location_t vect_location;
2112 /* A macro for calling:
2113 dump_begin_scope (MSG, vect_location);
2114 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2115 and then calling
2116 dump_end_scope ();
2117 once the object goes out of scope, thus capturing the nesting of
2118 the scopes.
2120 These scopes affect dump messages within them: dump messages at the
2121 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2122 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2124 #define DUMP_VECT_SCOPE(MSG) \
2125 AUTO_DUMP_SCOPE (MSG, vect_location)
2127 /* A sentinel class for ensuring that the "vect_location" global gets
2128 reset at the end of a scope.
2130 The "vect_location" global is used during dumping and contains a
2131 location_t, which could contain references to a tree block via the
2132 ad-hoc data. This data is used for tracking inlining information,
2133 but it's not a GC root; it's simply assumed that such locations never
2134 get accessed if the blocks are optimized away.
2136 Hence we need to ensure that such locations are purged at the end
2137 of any operations using them (e.g. via this class). */
2139 class auto_purge_vect_location
2141 public:
2142 ~auto_purge_vect_location ();
2145 /*-----------------------------------------------------------------*/
2146 /* Function prototypes. */
2147 /*-----------------------------------------------------------------*/
2149 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
2150 in tree-vect-loop-manip.cc. */
2151 extern void vect_set_loop_condition (class loop *, loop_vec_info,
2152 tree, tree, tree, bool);
2153 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
2154 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
2155 class loop *, edge);
2156 class loop *vect_loop_versioning (loop_vec_info, gimple *);
2157 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2158 tree *, tree *, tree *, int, bool, bool,
2159 tree *);
2160 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2161 extern void vect_prepare_for_masked_peels (loop_vec_info);
2162 extern dump_user_location_t find_loop_location (class loop *);
2163 extern bool vect_can_advance_ivs_p (loop_vec_info);
2164 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2166 /* In tree-vect-stmts.cc. */
2167 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2168 poly_uint64 = 0);
2169 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2170 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2171 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2172 extern tree get_same_sized_vectype (tree, tree);
2173 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2174 extern bool vect_get_loop_mask_type (loop_vec_info);
2175 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2176 stmt_vec_info * = NULL, gimple ** = NULL);
2177 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2178 tree *, stmt_vec_info * = NULL,
2179 gimple ** = NULL);
2180 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2181 unsigned, tree *, slp_tree *,
2182 enum vect_def_type *,
2183 tree *, stmt_vec_info * = NULL);
2184 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2185 extern bool supportable_widening_operation (vec_info*, code_helper,
2186 stmt_vec_info, tree, tree,
2187 code_helper*, code_helper*,
2188 int*, vec<tree> *);
2189 extern bool supportable_narrowing_operation (code_helper, tree, tree,
2190 code_helper *, int *,
2191 vec<tree> *);
2193 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2194 enum vect_cost_for_stmt, stmt_vec_info,
2195 tree, int, enum vect_cost_model_location);
2196 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2197 enum vect_cost_for_stmt, slp_tree,
2198 tree, int, enum vect_cost_model_location);
2199 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2200 enum vect_cost_for_stmt,
2201 enum vect_cost_model_location);
2203 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2205 inline unsigned
2206 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2207 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2208 int misalign, enum vect_cost_model_location where)
2210 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2211 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2214 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2215 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2216 gimple_stmt_iterator *);
2217 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2218 extern tree vect_get_store_rhs (stmt_vec_info);
2219 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2220 tree op, vec<tree> *, tree = NULL);
2221 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2222 tree, vec<tree> *,
2223 tree = NULL, vec<tree> * = NULL,
2224 tree = NULL, vec<tree> * = NULL,
2225 tree = NULL, vec<tree> * = NULL);
2226 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2227 tree, vec<tree> *, tree,
2228 tree = NULL, vec<tree> * = NULL, tree = NULL,
2229 tree = NULL, vec<tree> * = NULL, tree = NULL,
2230 tree = NULL, vec<tree> * = NULL, tree = NULL);
2231 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2232 gimple_stmt_iterator *);
2233 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2234 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2235 gimple_stmt_iterator *,
2236 slp_tree, slp_instance);
2237 extern void vect_remove_stores (vec_info *, stmt_vec_info);
2238 extern bool vect_nop_conversion_p (stmt_vec_info);
2239 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2240 slp_tree,
2241 slp_instance, stmt_vector_for_cost *);
2242 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2243 dr_alignment_support, int, bool,
2244 unsigned int *, unsigned int *,
2245 stmt_vector_for_cost *,
2246 stmt_vector_for_cost *, bool);
2247 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2248 dr_alignment_support, int,
2249 unsigned int *, stmt_vector_for_cost *);
2250 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2251 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2252 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2253 extern void optimize_mask_stores (class loop*);
2254 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2255 const char * = nullptr);
2256 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2257 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2258 stmt_vec_info, tree *,
2259 tree *, unsigned int = 0);
2260 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2262 /* In tree-vect-data-refs.cc. */
2263 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2264 extern enum dr_alignment_support vect_supportable_dr_alignment
2265 (vec_info *, dr_vec_info *, tree, int);
2266 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2267 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2268 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2269 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2270 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2271 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2272 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2273 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2274 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2275 tree, int, internal_fn *, tree *);
2276 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2277 gather_scatter_info *);
2278 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2279 vec<data_reference_p> *,
2280 vec<int> *, int);
2281 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2282 extern void vect_record_base_alignments (vec_info *);
2283 extern tree vect_create_data_ref_ptr (vec_info *,
2284 stmt_vec_info, tree, class loop *, tree,
2285 tree *, gimple_stmt_iterator *,
2286 gimple **, bool,
2287 tree = NULL_TREE);
2288 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2289 stmt_vec_info, tree);
2290 extern void vect_copy_ref_info (tree, tree);
2291 extern tree vect_create_destination_var (tree, tree);
2292 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2293 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2294 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2295 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2296 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2297 unsigned int, stmt_vec_info,
2298 gimple_stmt_iterator *, vec<tree> *);
2299 extern tree vect_setup_realignment (vec_info *,
2300 stmt_vec_info, gimple_stmt_iterator *,
2301 tree *, enum dr_alignment_support, tree,
2302 class loop **);
2303 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2304 int, gimple_stmt_iterator *);
2305 extern void vect_record_grouped_load_vectors (vec_info *,
2306 stmt_vec_info, vec<tree>);
2307 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2308 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2309 const char * = NULL);
2310 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2311 stmt_vec_info, gimple_seq *,
2312 tree);
2314 /* In tree-vect-loop.cc. */
2315 extern tree neutral_op_for_reduction (tree, code_helper, tree);
2316 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2317 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2318 /* Used in tree-vect-loop-manip.cc */
2319 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2320 bool);
2321 /* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2322 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2323 enum tree_code);
2324 extern bool needs_fold_left_reduction_p (tree, code_helper);
2325 /* Drive for loop analysis stage. */
2326 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2327 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2328 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2329 tree *, bool);
2330 extern tree vect_halve_mask_nunits (tree, machine_mode);
2331 extern tree vect_double_mask_nunits (tree, machine_mode);
2332 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2333 unsigned int, tree, tree);
2334 extern tree vect_get_loop_mask (loop_vec_info, gimple_stmt_iterator *,
2335 vec_loop_masks *,
2336 unsigned int, tree, unsigned int);
2337 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2338 tree, unsigned int);
2339 extern tree vect_get_loop_len (loop_vec_info, gimple_stmt_iterator *,
2340 vec_loop_lens *, unsigned int, tree,
2341 unsigned int, unsigned int);
2342 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2343 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2344 extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2346 /* Drive for loop transformation stage. */
2347 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2348 struct vect_loop_form_info
2350 tree number_of_iterations;
2351 tree number_of_iterationsm1;
2352 tree assumptions;
2353 gcond *loop_cond;
2354 gcond *inner_loop_cond;
2356 extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2357 extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2358 const vect_loop_form_info *,
2359 loop_vec_info = nullptr);
2360 extern bool vectorizable_live_operation (vec_info *,
2361 stmt_vec_info, gimple_stmt_iterator *,
2362 slp_tree, slp_instance, int,
2363 bool, stmt_vector_for_cost *);
2364 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2365 slp_tree, slp_instance,
2366 stmt_vector_for_cost *);
2367 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2368 gimple **, slp_tree,
2369 stmt_vector_for_cost *);
2370 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2371 gimple_stmt_iterator *,
2372 gimple **, slp_tree);
2373 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2374 gimple **,
2375 slp_tree, slp_instance);
2376 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2377 gimple **, slp_tree);
2378 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2379 stmt_vector_for_cost *);
2380 extern bool vectorizable_recurr (loop_vec_info, stmt_vec_info,
2381 gimple **, slp_tree, stmt_vector_for_cost *);
2382 extern bool vect_emulated_vector_p (tree);
2383 extern bool vect_can_vectorize_without_simd_p (tree_code);
2384 extern bool vect_can_vectorize_without_simd_p (code_helper);
2385 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2386 stmt_vector_for_cost *,
2387 stmt_vector_for_cost *,
2388 stmt_vector_for_cost *);
2389 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2391 /* Nonlinear induction. */
2392 extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2393 tree, enum vect_induction_op_type);
2395 /* In tree-vect-slp.cc. */
2396 extern void vect_slp_init (void);
2397 extern void vect_slp_fini (void);
2398 extern void vect_free_slp_instance (slp_instance);
2399 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2400 gimple_stmt_iterator *, poly_uint64,
2401 bool, unsigned *,
2402 unsigned * = nullptr, bool = false);
2403 extern bool vect_slp_analyze_operations (vec_info *);
2404 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2405 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2406 extern bool vect_make_slp_decision (loop_vec_info);
2407 extern void vect_detect_hybrid_slp (loop_vec_info);
2408 extern void vect_optimize_slp (vec_info *);
2409 extern void vect_gather_slp_loads (vec_info *);
2410 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2411 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2412 unsigned n = -1U);
2413 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2414 extern bool vect_slp_function (function *);
2415 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2416 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2417 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2418 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2419 unsigned int * = NULL,
2420 tree * = NULL, tree * = NULL);
2421 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2422 const vec<tree> &, unsigned int, vec<tree> &);
2423 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2424 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2425 extern void vect_free_slp_tree (slp_tree);
2426 extern bool compatible_calls_p (gcall *, gcall *);
2428 /* In tree-vect-patterns.cc. */
2429 extern void
2430 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2431 extern bool vect_get_range_info (tree, wide_int*, wide_int*);
2433 /* Pattern recognition functions.
2434 Additional pattern recognition functions can (and will) be added
2435 in the future. */
2436 void vect_pattern_recog (vec_info *);
2438 /* In tree-vectorizer.cc. */
2439 unsigned vectorize_loops (void);
2440 void vect_free_loop_info_assumptions (class loop *);
2441 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2442 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2444 /* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2446 /* Forward declaration of possible two operands operation that can be matched
2447 by the complex numbers pattern matchers. */
2448 enum _complex_operation : unsigned;
2450 /* All possible load permute values that could result from the partial data-flow
2451 analysis. */
2452 typedef enum _complex_perm_kinds {
2453 PERM_UNKNOWN,
2454 PERM_EVENODD,
2455 PERM_ODDEVEN,
2456 PERM_ODDODD,
2457 PERM_EVENEVEN,
2458 /* Can be combined with any other PERM values. */
2459 PERM_TOP
2460 } complex_perm_kinds_t;
2462 /* Cache from nodes to the load permutation they represent. */
2463 typedef hash_map <slp_tree, complex_perm_kinds_t>
2464 slp_tree_to_load_perm_map_t;
2466 /* Cache from nodes pair to being compatible or not. */
2467 typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2468 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2469 typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2472 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2473 from this type. */
2475 class vect_pattern
2477 protected:
2478 /* The number of arguments that the IFN requires. */
2479 unsigned m_num_args;
2481 /* The internal function that will be used when a pattern is created. */
2482 internal_fn m_ifn;
2484 /* The current node being inspected. */
2485 slp_tree *m_node;
2487 /* The list of operands to be the children for the node produced when the
2488 internal function is created. */
2489 vec<slp_tree> m_ops;
2491 /* Default constructor where NODE is the root of the tree to inspect. */
2492 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2494 this->m_ifn = ifn;
2495 this->m_node = node;
2496 this->m_ops.create (0);
2497 if (m_ops)
2498 this->m_ops.safe_splice (*m_ops);
2501 public:
2503 /* Create a new instance of the pattern matcher class of the given type. */
2504 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2505 slp_compat_nodes_map_t *, slp_tree *);
2507 /* Build the pattern from the data collected so far. */
2508 virtual void build (vec_info *) = 0;
2510 /* Default destructor. */
2511 virtual ~vect_pattern ()
2513 this->m_ops.release ();
2517 /* Function pointer to create a new pattern matcher from a generic type. */
2518 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2519 slp_compat_nodes_map_t *,
2520 slp_tree *);
2522 /* List of supported pattern matchers. */
2523 extern vect_pattern_decl_t slp_patterns[];
2525 /* Number of supported pattern matchers. */
2526 extern size_t num__slp_patterns;
2528 /* ----------------------------------------------------------------------
2529 Target support routines
2530 -----------------------------------------------------------------------
2531 The following routines are provided to simplify costing decisions in
2532 target code. Please add more as needed. */
2534 /* Return true if an operaton of kind KIND for STMT_INFO represents
2535 the extraction of an element from a vector in preparation for
2536 storing the element to memory. */
2537 inline bool
2538 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2540 return (kind == vec_to_scalar
2541 && STMT_VINFO_DATA_REF (stmt_info)
2542 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2545 /* Return true if STMT_INFO represents part of a reduction. */
2546 inline bool
2547 vect_is_reduction (stmt_vec_info stmt_info)
2549 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2552 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2553 of the reduction it describes, otherwise return -1. */
2554 inline int
2555 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2557 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2558 if (STMT_VINFO_REDUC_DEF (stmt_info))
2560 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2561 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2563 return -1;
2566 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2567 scalar type of the values being compared. Return null otherwise. */
2568 inline tree
2569 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2571 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2572 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2574 tree cond = gimple_assign_rhs1 (assign);
2575 if (COMPARISON_CLASS_P (cond))
2576 return TREE_TYPE (TREE_OPERAND (cond, 0));
2578 return NULL_TREE;
2581 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2582 scalar type of the values being compared. Return null otherwise. */
2583 inline tree
2584 vect_comparison_type (stmt_vec_info stmt_info)
2586 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2587 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2588 return TREE_TYPE (gimple_assign_rhs1 (assign));
2589 return vect_embedded_comparison_type (stmt_info);
2592 /* Return true if STMT_INFO extends the result of a load. */
2593 inline bool
2594 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2596 /* Although this is quite large for an inline function, this part
2597 at least should be inline. */
2598 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2599 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2600 return false;
2602 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2603 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2604 tree rhs_type = TREE_TYPE (rhs);
2605 if (!INTEGRAL_TYPE_P (lhs_type)
2606 || !INTEGRAL_TYPE_P (rhs_type)
2607 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2608 return false;
2610 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2611 return (def_stmt_info
2612 && STMT_VINFO_DATA_REF (def_stmt_info)
2613 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2616 /* Return true if STMT_INFO is an integer truncation. */
2617 inline bool
2618 vect_is_integer_truncation (stmt_vec_info stmt_info)
2620 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2621 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2622 return false;
2624 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2625 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2626 return (INTEGRAL_TYPE_P (lhs_type)
2627 && INTEGRAL_TYPE_P (rhs_type)
2628 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2631 /* Build a GIMPLE_ASSIGN or GIMPLE_CALL with the tree_code,
2632 or internal_fn contained in ch, respectively. */
2633 gimple * vect_gimple_build (tree, code_helper, tree, tree = NULL_TREE);
2634 #endif /* GCC_TREE_VECTORIZER_H */