d: Add testcase from PR108962
[official-gcc.git] / gcc / ira.cc
blob02dea5d49ee7b11f4f7ee9232a0ebee5c645518e
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.cc) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.cc).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.cc).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.cc).
168 * IRA creates all caps (file ira-build.cc).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.cc). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.cc). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.cc). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.cc). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.cc). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.cc to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.cc.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.cc). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
539 for (i = 0; i < N_REG_CLASSES; i++)
541 if (i == (int) NO_REGS)
542 continue;
544 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
550 enum reg_class *p;
552 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
592 (machine_mode) mode))
593 continue;
595 if (ira_memory_move_cost[mode][NO_REGS][0]
596 > ira_memory_move_cost[mode][cl][0])
597 ira_max_memory_move_cost[mode][NO_REGS][0]
598 = ira_memory_move_cost[mode][NO_REGS][0]
599 = ira_memory_move_cost[mode][cl][0];
600 if (ira_memory_move_cost[mode][NO_REGS][1]
601 > ira_memory_move_cost[mode][cl][1])
602 ira_max_memory_move_cost[mode][NO_REGS][1]
603 = ira_memory_move_cost[mode][NO_REGS][1]
604 = ira_memory_move_cost[mode][cl][1];
607 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
608 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
610 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
611 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
612 ira_class_subset_p[cl][cl2]
613 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 if (! hard_reg_set_empty_p (temp_hard_regset2)
615 && hard_reg_set_subset_p (reg_class_contents[cl2],
616 reg_class_contents[cl]))
617 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
619 cost = ira_memory_move_cost[mode][cl2][0];
620 if (cost > ira_max_memory_move_cost[mode][cl][0])
621 ira_max_memory_move_cost[mode][cl][0] = cost;
622 cost = ira_memory_move_cost[mode][cl2][1];
623 if (cost > ira_max_memory_move_cost[mode][cl][1])
624 ira_max_memory_move_cost[mode][cl][1] = cost;
627 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
630 ira_memory_move_cost[mode][cl][0]
631 = ira_max_memory_move_cost[mode][cl][0];
632 ira_memory_move_cost[mode][cl][1]
633 = ira_max_memory_move_cost[mode][cl][1];
635 setup_reg_subclasses ();
640 /* Define the following macro if allocation through malloc if
641 preferable. */
642 #define IRA_NO_OBSTACK
644 #ifndef IRA_NO_OBSTACK
645 /* Obstack used for storing all dynamic data (except bitmaps) of the
646 IRA. */
647 static struct obstack ira_obstack;
648 #endif
650 /* Obstack used for storing all bitmaps of the IRA. */
651 static struct bitmap_obstack ira_bitmap_obstack;
653 /* Allocate memory of size LEN for IRA data. */
654 void *
655 ira_allocate (size_t len)
657 void *res;
659 #ifndef IRA_NO_OBSTACK
660 res = obstack_alloc (&ira_obstack, len);
661 #else
662 res = xmalloc (len);
663 #endif
664 return res;
667 /* Free memory ADDR allocated for IRA data. */
668 void
669 ira_free (void *addr ATTRIBUTE_UNUSED)
671 #ifndef IRA_NO_OBSTACK
672 /* do nothing */
673 #else
674 free (addr);
675 #endif
679 /* Allocate and returns bitmap for IRA. */
680 bitmap
681 ira_allocate_bitmap (void)
683 return BITMAP_ALLOC (&ira_bitmap_obstack);
686 /* Free bitmap B allocated for IRA. */
687 void
688 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
690 /* do nothing */
695 /* Output information about allocation of all allocnos (except for
696 caps) into file F. */
697 void
698 ira_print_disposition (FILE *f)
700 int i, n, max_regno;
701 ira_allocno_t a;
702 basic_block bb;
704 fprintf (f, "Disposition:");
705 max_regno = max_reg_num ();
706 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707 for (a = ira_regno_allocno_map[i];
708 a != NULL;
709 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
711 if (n % 4 == 0)
712 fprintf (f, "\n");
713 n++;
714 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 fprintf (f, "b%-3d", bb->index);
717 else
718 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 if (ALLOCNO_HARD_REGNO (a) >= 0)
720 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 else
722 fprintf (f, " mem");
724 fprintf (f, "\n");
727 /* Outputs information about allocation of all allocnos into
728 stderr. */
729 void
730 ira_debug_disposition (void)
732 ira_print_disposition (stderr);
737 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
738 register class containing stack registers or NO_REGS if there are
739 no stack registers. To find this class, we iterate through all
740 register pressure classes and choose the first register pressure
741 class containing all the stack registers and having the biggest
742 size. */
743 static void
744 setup_stack_reg_pressure_class (void)
746 ira_stack_reg_pressure_class = NO_REGS;
747 #ifdef STACK_REGS
749 int i, best, size;
750 enum reg_class cl;
751 HARD_REG_SET temp_hard_regset2;
753 CLEAR_HARD_REG_SET (temp_hard_regset);
754 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755 SET_HARD_REG_BIT (temp_hard_regset, i);
756 best = 0;
757 for (i = 0; i < ira_pressure_classes_num; i++)
759 cl = ira_pressure_classes[i];
760 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
761 size = hard_reg_set_size (temp_hard_regset2);
762 if (best < size)
764 best = size;
765 ira_stack_reg_pressure_class = cl;
769 #endif
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785 static void
786 setup_pressure_classes (void)
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
792 HARD_REG_SET temp_hard_regset2;
793 bool insert_p;
795 if (targetm.compute_pressure_classes)
796 n = targetm.compute_pressure_classes (pressure_classes);
797 else
799 n = 0;
800 for (cl = 0; cl < N_REG_CLASSES; cl++)
802 if (ira_class_hard_regs_num[cl] == 0)
803 continue;
804 if (ira_class_hard_regs_num[cl] != 1
805 /* A register class without subclasses may contain a few
806 hard registers and movement between them is costly
807 (e.g. SPARC FPCC registers). We still should consider it
808 as a candidate for a pressure class. */
809 && alloc_reg_class_subclasses[cl][0] < cl)
811 /* Check that the moves between any hard registers of the
812 current class are not more expensive for a legal mode
813 than load/store of the hard registers of the current
814 class. Such class is a potential candidate to be a
815 register pressure class. */
816 for (m = 0; m < NUM_MACHINE_MODES; m++)
818 temp_hard_regset
819 = (reg_class_contents[cl]
820 & ~(no_unit_alloc_regs
821 | ira_prohibited_class_mode_regs[cl][m]));
822 if (hard_reg_set_empty_p (temp_hard_regset))
823 continue;
824 ira_init_register_move_cost_if_necessary ((machine_mode) m);
825 cost = ira_register_move_cost[m][cl][cl];
826 if (cost <= ira_max_memory_move_cost[m][cl][1]
827 || cost <= ira_max_memory_move_cost[m][cl][0])
828 break;
830 if (m >= NUM_MACHINE_MODES)
831 continue;
833 curr = 0;
834 insert_p = true;
835 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
836 /* Remove so far added pressure classes which are subset of the
837 current candidate class. Prefer GENERAL_REGS as a pressure
838 register class to another class containing the same
839 allocatable hard registers. We do this because machine
840 dependent cost hooks might give wrong costs for the latter
841 class but always give the right cost for the former class
842 (GENERAL_REGS). */
843 for (i = 0; i < n; i++)
845 cl2 = pressure_classes[i];
846 temp_hard_regset2 = (reg_class_contents[cl2]
847 & ~no_unit_alloc_regs);
848 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
849 && (temp_hard_regset != temp_hard_regset2
850 || cl2 == (int) GENERAL_REGS))
852 pressure_classes[curr++] = (enum reg_class) cl2;
853 insert_p = false;
854 continue;
856 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
857 && (temp_hard_regset2 != temp_hard_regset
858 || cl == (int) GENERAL_REGS))
859 continue;
860 if (temp_hard_regset2 == temp_hard_regset)
861 insert_p = false;
862 pressure_classes[curr++] = (enum reg_class) cl2;
864 /* If the current candidate is a subset of a so far added
865 pressure class, don't add it to the list of the pressure
866 classes. */
867 if (insert_p)
868 pressure_classes[curr++] = (enum reg_class) cl;
869 n = curr;
872 #ifdef ENABLE_IRA_CHECKING
874 HARD_REG_SET ignore_hard_regs;
876 /* Check pressure classes correctness: here we check that hard
877 registers from all register pressure classes contains all hard
878 registers available for the allocation. */
879 CLEAR_HARD_REG_SET (temp_hard_regset);
880 CLEAR_HARD_REG_SET (temp_hard_regset2);
881 ignore_hard_regs = no_unit_alloc_regs;
882 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
884 /* For some targets (like MIPS with MD_REGS), there are some
885 classes with hard registers available for allocation but
886 not able to hold value of any mode. */
887 for (m = 0; m < NUM_MACHINE_MODES; m++)
888 if (contains_reg_of_mode[cl][m])
889 break;
890 if (m >= NUM_MACHINE_MODES)
892 ignore_hard_regs |= reg_class_contents[cl];
893 continue;
895 for (i = 0; i < n; i++)
896 if ((int) pressure_classes[i] == cl)
897 break;
898 temp_hard_regset2 |= reg_class_contents[cl];
899 if (i < n)
900 temp_hard_regset |= reg_class_contents[cl];
902 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
903 /* Some targets (like SPARC with ICC reg) have allocatable regs
904 for which no reg class is defined. */
905 if (REGNO_REG_CLASS (i) == NO_REGS)
906 SET_HARD_REG_BIT (ignore_hard_regs, i);
907 temp_hard_regset &= ~ignore_hard_regs;
908 temp_hard_regset2 &= ~ignore_hard_regs;
909 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
911 #endif
912 ira_pressure_classes_num = 0;
913 for (i = 0; i < n; i++)
915 cl = (int) pressure_classes[i];
916 ira_reg_pressure_class_p[cl] = true;
917 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
919 setup_stack_reg_pressure_class ();
922 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
923 whose register move cost between any registers of the class is the
924 same as for all its subclasses. We use the data to speed up the
925 2nd pass of calculations of allocno costs. */
926 static void
927 setup_uniform_class_p (void)
929 int i, cl, cl2, m;
931 for (cl = 0; cl < N_REG_CLASSES; cl++)
933 ira_uniform_class_p[cl] = false;
934 if (ira_class_hard_regs_num[cl] == 0)
935 continue;
936 /* We cannot use alloc_reg_class_subclasses here because move
937 cost hooks does not take into account that some registers are
938 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
939 is element of alloc_reg_class_subclasses for GENERAL_REGS
940 because SSE regs are unavailable. */
941 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
943 if (ira_class_hard_regs_num[cl2] == 0)
944 continue;
945 for (m = 0; m < NUM_MACHINE_MODES; m++)
946 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
948 ira_init_register_move_cost_if_necessary ((machine_mode) m);
949 if (ira_register_move_cost[m][cl][cl]
950 != ira_register_move_cost[m][cl2][cl2])
951 break;
953 if (m < NUM_MACHINE_MODES)
954 break;
956 if (cl2 == LIM_REG_CLASSES)
957 ira_uniform_class_p[cl] = true;
961 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
962 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
964 Target may have many subtargets and not all target hard registers can
965 be used for allocation, e.g. x86 port in 32-bit mode cannot use
966 hard registers introduced in x86-64 like r8-r15). Some classes
967 might have the same allocatable hard registers, e.g. INDEX_REGS
968 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
969 calculations efforts we introduce allocno classes which contain
970 unique non-empty sets of allocatable hard-registers.
972 Pseudo class cost calculation in ira-costs.cc is very expensive.
973 Therefore we are trying to decrease number of classes involved in
974 such calculation. Register classes used in the cost calculation
975 are called important classes. They are allocno classes and other
976 non-empty classes whose allocatable hard register sets are inside
977 of an allocno class hard register set. From the first sight, it
978 looks like that they are just allocno classes. It is not true. In
979 example of x86-port in 32-bit mode, allocno classes will contain
980 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
981 registers are the same for the both classes). The important
982 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
983 because a machine description insn constraint may refers for
984 LEGACY_REGS and code in ira-costs.cc is mostly base on investigation
985 of the insn constraints. */
986 static void
987 setup_allocno_and_important_classes (void)
989 int i, j, n, cl;
990 bool set_p;
991 HARD_REG_SET temp_hard_regset2;
992 static enum reg_class classes[LIM_REG_CLASSES + 1];
994 n = 0;
995 /* Collect classes which contain unique sets of allocatable hard
996 registers. Prefer GENERAL_REGS to other classes containing the
997 same set of hard registers. */
998 for (i = 0; i < LIM_REG_CLASSES; i++)
1000 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
1001 for (j = 0; j < n; j++)
1003 cl = classes[j];
1004 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1005 if (temp_hard_regset == temp_hard_regset2)
1006 break;
1008 if (j >= n || targetm.additional_allocno_class_p (i))
1009 classes[n++] = (enum reg_class) i;
1010 else if (i == GENERAL_REGS)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1014 registers). */
1015 classes[j] = (enum reg_class) i;
1017 classes[n] = LIM_REG_CLASSES;
1019 /* Set up classes which can be used for allocnos as classes
1020 containing non-empty unique sets of allocatable hard
1021 registers. */
1022 ira_allocno_classes_num = 0;
1023 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1024 if (ira_class_hard_regs_num[cl] > 0)
1025 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1026 ira_important_classes_num = 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl = 0; cl < N_REG_CLASSES; cl++)
1030 if (ira_class_hard_regs_num[cl] > 0)
1032 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1037 & ~no_unit_alloc_regs);
1038 if ((enum reg_class) cl == ira_allocno_classes[j])
1039 break;
1040 else if (hard_reg_set_subset_p (temp_hard_regset,
1041 temp_hard_regset2))
1042 set_p = true;
1044 if (set_p && j >= ira_allocno_classes_num)
1045 ira_important_classes[ira_important_classes_num++]
1046 = (enum reg_class) cl;
1048 /* Now add allocno classes to the important classes. */
1049 for (j = 0; j < ira_allocno_classes_num; j++)
1050 ira_important_classes[ira_important_classes_num++]
1051 = ira_allocno_classes[j];
1052 for (cl = 0; cl < N_REG_CLASSES; cl++)
1054 ira_reg_allocno_class_p[cl] = false;
1055 ira_reg_pressure_class_p[cl] = false;
1057 for (j = 0; j < ira_allocno_classes_num; j++)
1058 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1059 setup_pressure_classes ();
1060 setup_uniform_class_p ();
1063 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1064 given by array CLASSES of length CLASSES_NUM. The function is used
1065 make translation any reg class to an allocno class or to an
1066 pressure class. This translation is necessary for some
1067 calculations when we can use only allocno or pressure classes and
1068 such translation represents an approximate representation of all
1069 classes.
1071 The translation in case when allocatable hard register set of a
1072 given class is subset of allocatable hard register set of a class
1073 in CLASSES is pretty simple. We use smallest classes from CLASSES
1074 containing a given class. If allocatable hard register set of a
1075 given class is not a subset of any corresponding set of a class
1076 from CLASSES, we use the cheapest (with load/store point of view)
1077 class from CLASSES whose set intersects with given class set. */
1078 static void
1079 setup_class_translate_array (enum reg_class *class_translate,
1080 int classes_num, enum reg_class *classes)
1082 int cl, mode;
1083 enum reg_class aclass, best_class, *cl_ptr;
1084 int i, cost, min_cost, best_cost;
1086 for (cl = 0; cl < N_REG_CLASSES; cl++)
1087 class_translate[cl] = NO_REGS;
1089 for (i = 0; i < classes_num; i++)
1091 aclass = classes[i];
1092 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1093 (cl = *cl_ptr) != LIM_REG_CLASSES;
1094 cl_ptr++)
1095 if (class_translate[cl] == NO_REGS)
1096 class_translate[cl] = aclass;
1097 class_translate[aclass] = aclass;
1099 /* For classes which are not fully covered by one of given classes
1100 (in other words covered by more one given class), use the
1101 cheapest class. */
1102 for (cl = 0; cl < N_REG_CLASSES; cl++)
1104 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1105 continue;
1106 best_class = NO_REGS;
1107 best_cost = INT_MAX;
1108 for (i = 0; i < classes_num; i++)
1110 aclass = classes[i];
1111 temp_hard_regset = (reg_class_contents[aclass]
1112 & reg_class_contents[cl]
1113 & ~no_unit_alloc_regs);
1114 if (! hard_reg_set_empty_p (temp_hard_regset))
1116 min_cost = INT_MAX;
1117 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1119 cost = (ira_memory_move_cost[mode][aclass][0]
1120 + ira_memory_move_cost[mode][aclass][1]);
1121 if (min_cost > cost)
1122 min_cost = cost;
1124 if (best_class == NO_REGS || best_cost > min_cost)
1126 best_class = aclass;
1127 best_cost = min_cost;
1131 class_translate[cl] = best_class;
1135 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1136 IRA_PRESSURE_CLASS_TRANSLATE. */
1137 static void
1138 setup_class_translate (void)
1140 setup_class_translate_array (ira_allocno_class_translate,
1141 ira_allocno_classes_num, ira_allocno_classes);
1142 setup_class_translate_array (ira_pressure_class_translate,
1143 ira_pressure_classes_num, ira_pressure_classes);
1146 /* Order numbers of allocno classes in original target allocno class
1147 array, -1 for non-allocno classes. */
1148 static int allocno_class_order[N_REG_CLASSES];
1150 /* The function used to sort the important classes. */
1151 static int
1152 comp_reg_classes_func (const void *v1p, const void *v2p)
1154 enum reg_class cl1 = *(const enum reg_class *) v1p;
1155 enum reg_class cl2 = *(const enum reg_class *) v2p;
1156 enum reg_class tcl1, tcl2;
1157 int diff;
1159 tcl1 = ira_allocno_class_translate[cl1];
1160 tcl2 = ira_allocno_class_translate[cl2];
1161 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1162 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1163 return diff;
1164 return (int) cl1 - (int) cl2;
1167 /* For correct work of function setup_reg_class_relation we need to
1168 reorder important classes according to the order of their allocno
1169 classes. It places important classes containing the same
1170 allocatable hard register set adjacent to each other and allocno
1171 class with the allocatable hard register set right after the other
1172 important classes with the same set.
1174 In example from comments of function
1175 setup_allocno_and_important_classes, it places LEGACY_REGS and
1176 GENERAL_REGS close to each other and GENERAL_REGS is after
1177 LEGACY_REGS. */
1178 static void
1179 reorder_important_classes (void)
1181 int i;
1183 for (i = 0; i < N_REG_CLASSES; i++)
1184 allocno_class_order[i] = -1;
1185 for (i = 0; i < ira_allocno_classes_num; i++)
1186 allocno_class_order[ira_allocno_classes[i]] = i;
1187 qsort (ira_important_classes, ira_important_classes_num,
1188 sizeof (enum reg_class), comp_reg_classes_func);
1189 for (i = 0; i < ira_important_classes_num; i++)
1190 ira_important_class_nums[ira_important_classes[i]] = i;
1193 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1194 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1195 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1196 please see corresponding comments in ira-int.h. */
1197 static void
1198 setup_reg_class_relations (void)
1200 int i, cl1, cl2, cl3;
1201 HARD_REG_SET intersection_set, union_set, temp_set2;
1202 bool important_class_p[N_REG_CLASSES];
1204 memset (important_class_p, 0, sizeof (important_class_p));
1205 for (i = 0; i < ira_important_classes_num; i++)
1206 important_class_p[ira_important_classes[i]] = true;
1207 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1209 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1210 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1212 ira_reg_classes_intersect_p[cl1][cl2] = false;
1213 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1214 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1215 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1216 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1217 if (hard_reg_set_empty_p (temp_hard_regset)
1218 && hard_reg_set_empty_p (temp_set2))
1220 /* The both classes have no allocatable hard registers
1221 -- take all class hard registers into account and use
1222 reg_class_subunion and reg_class_superunion. */
1223 for (i = 0;; i++)
1225 cl3 = reg_class_subclasses[cl1][i];
1226 if (cl3 == LIM_REG_CLASSES)
1227 break;
1228 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1229 (enum reg_class) cl3))
1230 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1232 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1233 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1234 continue;
1236 ira_reg_classes_intersect_p[cl1][cl2]
1237 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1238 if (important_class_p[cl1] && important_class_p[cl2]
1239 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1241 /* CL1 and CL2 are important classes and CL1 allocatable
1242 hard register set is inside of CL2 allocatable hard
1243 registers -- make CL1 a superset of CL2. */
1244 enum reg_class *p;
1246 p = &ira_reg_class_super_classes[cl1][0];
1247 while (*p != LIM_REG_CLASSES)
1248 p++;
1249 *p++ = (enum reg_class) cl2;
1250 *p = LIM_REG_CLASSES;
1252 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1253 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1254 intersection_set = (reg_class_contents[cl1]
1255 & reg_class_contents[cl2]
1256 & ~no_unit_alloc_regs);
1257 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1258 & ~no_unit_alloc_regs);
1259 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1261 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1262 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1264 /* CL3 allocatable hard register set is inside of
1265 intersection of allocatable hard register sets
1266 of CL1 and CL2. */
1267 if (important_class_p[cl3])
1269 temp_set2
1270 = (reg_class_contents
1271 [ira_reg_class_intersect[cl1][cl2]]);
1272 temp_set2 &= ~no_unit_alloc_regs;
1273 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1274 /* If the allocatable hard register sets are
1275 the same, prefer GENERAL_REGS or the
1276 smallest class for debugging
1277 purposes. */
1278 || (temp_hard_regset == temp_set2
1279 && (cl3 == GENERAL_REGS
1280 || ((ira_reg_class_intersect[cl1][cl2]
1281 != GENERAL_REGS)
1282 && hard_reg_set_subset_p
1283 (reg_class_contents[cl3],
1284 reg_class_contents
1285 [(int)
1286 ira_reg_class_intersect[cl1][cl2]])))))
1287 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1289 temp_set2
1290 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1291 & ~no_unit_alloc_regs);
1292 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1293 /* Ignore unavailable hard registers and prefer
1294 smallest class for debugging purposes. */
1295 || (temp_hard_regset == temp_set2
1296 && hard_reg_set_subset_p
1297 (reg_class_contents[cl3],
1298 reg_class_contents
1299 [(int) ira_reg_class_subset[cl1][cl2]])))
1300 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1302 if (important_class_p[cl3]
1303 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1305 /* CL3 allocatable hard register set is inside of
1306 union of allocatable hard register sets of CL1
1307 and CL2. */
1308 temp_set2
1309 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1310 & ~no_unit_alloc_regs);
1311 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1312 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1314 && (temp_set2 != temp_hard_regset
1315 || cl3 == GENERAL_REGS
1316 /* If the allocatable hard register sets are the
1317 same, prefer GENERAL_REGS or the smallest
1318 class for debugging purposes. */
1319 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1320 && hard_reg_set_subset_p
1321 (reg_class_contents[cl3],
1322 reg_class_contents
1323 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1324 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1326 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1328 /* CL3 allocatable hard register set contains union
1329 of allocatable hard register sets of CL1 and
1330 CL2. */
1331 temp_set2
1332 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1333 & ~no_unit_alloc_regs);
1334 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1335 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1337 && (temp_set2 != temp_hard_regset
1338 || cl3 == GENERAL_REGS
1339 /* If the allocatable hard register sets are the
1340 same, prefer GENERAL_REGS or the smallest
1341 class for debugging purposes. */
1342 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1343 && hard_reg_set_subset_p
1344 (reg_class_contents[cl3],
1345 reg_class_contents
1346 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1347 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1354 /* Output all uniform and important classes into file F. */
1355 static void
1356 print_uniform_and_important_classes (FILE *f)
1358 int i, cl;
1360 fprintf (f, "Uniform classes:\n");
1361 for (cl = 0; cl < N_REG_CLASSES; cl++)
1362 if (ira_uniform_class_p[cl])
1363 fprintf (f, " %s", reg_class_names[cl]);
1364 fprintf (f, "\nImportant classes:\n");
1365 for (i = 0; i < ira_important_classes_num; i++)
1366 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1367 fprintf (f, "\n");
1370 /* Output all possible allocno or pressure classes and their
1371 translation map into file F. */
1372 static void
1373 print_translated_classes (FILE *f, bool pressure_p)
1375 int classes_num = (pressure_p
1376 ? ira_pressure_classes_num : ira_allocno_classes_num);
1377 enum reg_class *classes = (pressure_p
1378 ? ira_pressure_classes : ira_allocno_classes);
1379 enum reg_class *class_translate = (pressure_p
1380 ? ira_pressure_class_translate
1381 : ira_allocno_class_translate);
1382 int i;
1384 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1385 for (i = 0; i < classes_num; i++)
1386 fprintf (f, " %s", reg_class_names[classes[i]]);
1387 fprintf (f, "\nClass translation:\n");
1388 for (i = 0; i < N_REG_CLASSES; i++)
1389 fprintf (f, " %s -> %s\n", reg_class_names[i],
1390 reg_class_names[class_translate[i]]);
1393 /* Output all possible allocno and translation classes and the
1394 translation maps into stderr. */
1395 void
1396 ira_debug_allocno_classes (void)
1398 print_uniform_and_important_classes (stderr);
1399 print_translated_classes (stderr, false);
1400 print_translated_classes (stderr, true);
1403 /* Set up different arrays concerning class subsets, allocno and
1404 important classes. */
1405 static void
1406 find_reg_classes (void)
1408 setup_allocno_and_important_classes ();
1409 setup_class_translate ();
1410 reorder_important_classes ();
1411 setup_reg_class_relations ();
1416 /* Set up the array above. */
1417 static void
1418 setup_hard_regno_aclass (void)
1420 int i;
1422 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1424 #if 1
1425 ira_hard_regno_allocno_class[i]
1426 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1427 ? NO_REGS
1428 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1429 #else
1430 int j;
1431 enum reg_class cl;
1432 ira_hard_regno_allocno_class[i] = NO_REGS;
1433 for (j = 0; j < ira_allocno_classes_num; j++)
1435 cl = ira_allocno_classes[j];
1436 if (ira_class_hard_reg_index[cl][i] >= 0)
1438 ira_hard_regno_allocno_class[i] = cl;
1439 break;
1442 #endif
1448 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1449 static void
1450 setup_reg_class_nregs (void)
1452 int i, cl, cl2, m;
1454 for (m = 0; m < MAX_MACHINE_MODE; m++)
1456 for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 ira_reg_class_max_nregs[cl][m]
1458 = ira_reg_class_min_nregs[cl][m]
1459 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1460 for (cl = 0; cl < N_REG_CLASSES; cl++)
1461 for (i = 0;
1462 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1463 i++)
1464 if (ira_reg_class_min_nregs[cl2][m]
1465 < ira_reg_class_min_nregs[cl][m])
1466 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1472 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS, IRA_EXCLUDE_CLASS_MODE_REGS, and
1473 IRA_CLASS_SINGLETON. This function is called once IRA_CLASS_HARD_REGS has
1474 been initialized. */
1475 static void
1476 setup_prohibited_and_exclude_class_mode_regs (void)
1478 int j, k, hard_regno, cl, last_hard_regno, count;
1480 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1482 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1483 for (j = 0; j < NUM_MACHINE_MODES; j++)
1485 count = 0;
1486 last_hard_regno = -1;
1487 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1488 CLEAR_HARD_REG_SET (ira_exclude_class_mode_regs[cl][j]);
1489 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1491 hard_regno = ira_class_hard_regs[cl][k];
1492 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1493 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1494 hard_regno);
1495 else if (in_hard_reg_set_p (temp_hard_regset,
1496 (machine_mode) j, hard_regno))
1498 last_hard_regno = hard_regno;
1499 count++;
1501 else
1503 SET_HARD_REG_BIT (ira_exclude_class_mode_regs[cl][j], hard_regno);
1506 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1511 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1512 spanning from one register pressure class to another one. It is
1513 called after defining the pressure classes. */
1514 static void
1515 clarify_prohibited_class_mode_regs (void)
1517 int j, k, hard_regno, cl, pclass, nregs;
1519 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1520 for (j = 0; j < NUM_MACHINE_MODES; j++)
1522 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1523 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1525 hard_regno = ira_class_hard_regs[cl][k];
1526 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1527 continue;
1528 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1529 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1531 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1532 hard_regno);
1533 continue;
1535 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1536 for (nregs-- ;nregs >= 0; nregs--)
1537 if (((enum reg_class) pclass
1538 != ira_pressure_class_translate[REGNO_REG_CLASS
1539 (hard_regno + nregs)]))
1541 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1542 hard_regno);
1543 break;
1545 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1546 hard_regno))
1547 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1548 (machine_mode) j, hard_regno);
1553 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1554 and IRA_MAY_MOVE_OUT_COST for MODE. */
1555 void
1556 ira_init_register_move_cost (machine_mode mode)
1558 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1559 bool all_match = true;
1560 unsigned int i, cl1, cl2;
1561 HARD_REG_SET ok_regs;
1563 ira_assert (ira_register_move_cost[mode] == NULL
1564 && ira_may_move_in_cost[mode] == NULL
1565 && ira_may_move_out_cost[mode] == NULL);
1566 CLEAR_HARD_REG_SET (ok_regs);
1567 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1568 if (targetm.hard_regno_mode_ok (i, mode))
1569 SET_HARD_REG_BIT (ok_regs, i);
1571 /* Note that we might be asked about the move costs of modes that
1572 cannot be stored in any hard register, for example if an inline
1573 asm tries to create a register operand with an impossible mode.
1574 We therefore can't assert have_regs_of_mode[mode] here. */
1575 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1576 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1578 int cost;
1579 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1580 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1582 if ((ira_reg_class_max_nregs[cl1][mode]
1583 > ira_class_hard_regs_num[cl1])
1584 || (ira_reg_class_max_nregs[cl2][mode]
1585 > ira_class_hard_regs_num[cl2]))
1586 cost = 65535;
1587 else
1588 cost = (ira_memory_move_cost[mode][cl1][0]
1589 + ira_memory_move_cost[mode][cl2][1]) * 2;
1591 else
1593 cost = register_move_cost (mode, (enum reg_class) cl1,
1594 (enum reg_class) cl2);
1595 ira_assert (cost < 65535);
1597 all_match &= (last_move_cost[cl1][cl2] == cost);
1598 last_move_cost[cl1][cl2] = cost;
1600 if (all_match && last_mode_for_init_move_cost != -1)
1602 ira_register_move_cost[mode]
1603 = ira_register_move_cost[last_mode_for_init_move_cost];
1604 ira_may_move_in_cost[mode]
1605 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1606 ira_may_move_out_cost[mode]
1607 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1608 return;
1610 last_mode_for_init_move_cost = mode;
1611 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1613 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1614 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1615 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1617 int cost;
1618 enum reg_class *p1, *p2;
1620 if (last_move_cost[cl1][cl2] == 65535)
1622 ira_register_move_cost[mode][cl1][cl2] = 65535;
1623 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1624 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1626 else
1628 cost = last_move_cost[cl1][cl2];
1630 for (p2 = &reg_class_subclasses[cl2][0];
1631 *p2 != LIM_REG_CLASSES; p2++)
1632 if (ira_class_hard_regs_num[*p2] > 0
1633 && (ira_reg_class_max_nregs[*p2][mode]
1634 <= ira_class_hard_regs_num[*p2]))
1635 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1637 for (p1 = &reg_class_subclasses[cl1][0];
1638 *p1 != LIM_REG_CLASSES; p1++)
1639 if (ira_class_hard_regs_num[*p1] > 0
1640 && (ira_reg_class_max_nregs[*p1][mode]
1641 <= ira_class_hard_regs_num[*p1]))
1642 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1644 ira_assert (cost <= 65535);
1645 ira_register_move_cost[mode][cl1][cl2] = cost;
1647 if (ira_class_subset_p[cl1][cl2])
1648 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1649 else
1650 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1652 if (ira_class_subset_p[cl2][cl1])
1653 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1654 else
1655 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1662 /* This is called once during compiler work. It sets up
1663 different arrays whose values don't depend on the compiled
1664 function. */
1665 void
1666 ira_init_once (void)
1668 ira_init_costs_once ();
1669 lra_init_once ();
1671 ira_use_lra_p = targetm.lra_p ();
1674 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1675 ira_may_move_out_cost for each mode. */
1676 void
1677 target_ira_int::free_register_move_costs (void)
1679 int mode, i;
1681 /* Reset move_cost and friends, making sure we only free shared
1682 table entries once. */
1683 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1684 if (x_ira_register_move_cost[mode])
1686 for (i = 0;
1687 i < mode && (x_ira_register_move_cost[i]
1688 != x_ira_register_move_cost[mode]);
1689 i++)
1691 if (i == mode)
1693 free (x_ira_register_move_cost[mode]);
1694 free (x_ira_may_move_in_cost[mode]);
1695 free (x_ira_may_move_out_cost[mode]);
1698 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1699 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1700 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1701 last_mode_for_init_move_cost = -1;
1704 target_ira_int::~target_ira_int ()
1706 free_ira_costs ();
1707 free_register_move_costs ();
1710 /* This is called every time when register related information is
1711 changed. */
1712 void
1713 ira_init (void)
1715 this_target_ira_int->free_register_move_costs ();
1716 setup_reg_mode_hard_regset ();
1717 setup_alloc_regs (flag_omit_frame_pointer != 0);
1718 setup_class_subset_and_memory_move_costs ();
1719 setup_reg_class_nregs ();
1720 setup_prohibited_and_exclude_class_mode_regs ();
1721 find_reg_classes ();
1722 clarify_prohibited_class_mode_regs ();
1723 setup_hard_regno_aclass ();
1724 ira_init_costs ();
1728 #define ira_prohibited_mode_move_regs_initialized_p \
1729 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1731 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1732 static void
1733 setup_prohibited_mode_move_regs (void)
1735 int i, j;
1736 rtx test_reg1, test_reg2, move_pat;
1737 rtx_insn *move_insn;
1739 if (ira_prohibited_mode_move_regs_initialized_p)
1740 return;
1741 ira_prohibited_mode_move_regs_initialized_p = true;
1742 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1743 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1744 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1745 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1746 for (i = 0; i < NUM_MACHINE_MODES; i++)
1748 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1749 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1751 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1752 continue;
1753 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1754 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1755 INSN_CODE (move_insn) = -1;
1756 recog_memoized (move_insn);
1757 if (INSN_CODE (move_insn) < 0)
1758 continue;
1759 extract_insn (move_insn);
1760 /* We don't know whether the move will be in code that is optimized
1761 for size or speed, so consider all enabled alternatives. */
1762 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1763 continue;
1764 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1771 /* Extract INSN and return the set of alternatives that we should consider.
1772 This excludes any alternatives whose constraints are obviously impossible
1773 to meet (e.g. because the constraint requires a constant and the operand
1774 is nonconstant). It also excludes alternatives that are bound to need
1775 a spill or reload, as long as we have other alternatives that match
1776 exactly. */
1777 alternative_mask
1778 ira_setup_alts (rtx_insn *insn)
1780 int nop, nalt;
1781 bool curr_swapped;
1782 const char *p;
1783 int commutative = -1;
1785 extract_insn (insn);
1786 preprocess_constraints (insn);
1787 alternative_mask preferred = get_preferred_alternatives (insn);
1788 alternative_mask alts = 0;
1789 alternative_mask exact_alts = 0;
1790 /* Check that the hard reg set is enough for holding all
1791 alternatives. It is hard to imagine the situation when the
1792 assertion is wrong. */
1793 ira_assert (recog_data.n_alternatives
1794 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1795 FIRST_PSEUDO_REGISTER));
1796 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 if (recog_data.constraints[nop][0] == '%')
1799 commutative = nop;
1800 break;
1802 for (curr_swapped = false;; curr_swapped = true)
1804 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1806 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1807 continue;
1809 const operand_alternative *op_alt
1810 = &recog_op_alt[nalt * recog_data.n_operands];
1811 int this_reject = 0;
1812 for (nop = 0; nop < recog_data.n_operands; nop++)
1814 int c, len;
1816 this_reject += op_alt[nop].reject;
1818 rtx op = recog_data.operand[nop];
1819 p = op_alt[nop].constraint;
1820 if (*p == 0 || *p == ',')
1821 continue;
1823 bool win_p = false;
1825 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1827 case '#':
1828 case ',':
1829 c = '\0';
1830 /* FALLTHRU */
1831 case '\0':
1832 len = 0;
1833 break;
1835 case '%':
1836 /* The commutative modifier is handled above. */
1837 break;
1839 case '0': case '1': case '2': case '3': case '4':
1840 case '5': case '6': case '7': case '8': case '9':
1842 char *end;
1843 unsigned long dup = strtoul (p, &end, 10);
1844 rtx other = recog_data.operand[dup];
1845 len = end - p;
1846 if (MEM_P (other)
1847 ? rtx_equal_p (other, op)
1848 : REG_P (op) || SUBREG_P (op))
1849 goto op_success;
1850 win_p = true;
1852 break;
1854 case 'g':
1855 goto op_success;
1856 break;
1858 default:
1860 enum constraint_num cn = lookup_constraint (p);
1861 rtx mem = NULL;
1862 switch (get_constraint_type (cn))
1864 case CT_REGISTER:
1865 if (reg_class_for_constraint (cn) != NO_REGS)
1867 if (REG_P (op) || SUBREG_P (op))
1868 goto op_success;
1869 win_p = true;
1871 break;
1873 case CT_CONST_INT:
1874 if (CONST_INT_P (op)
1875 && (insn_const_int_ok_for_constraint
1876 (INTVAL (op), cn)))
1877 goto op_success;
1878 break;
1880 case CT_ADDRESS:
1881 goto op_success;
1883 case CT_MEMORY:
1884 case CT_RELAXED_MEMORY:
1885 mem = op;
1886 /* Fall through. */
1887 case CT_SPECIAL_MEMORY:
1888 if (!mem)
1889 mem = extract_mem_from_operand (op);
1890 if (MEM_P (mem))
1891 goto op_success;
1892 win_p = true;
1893 break;
1895 case CT_FIXED_FORM:
1896 if (constraint_satisfied_p (op, cn))
1897 goto op_success;
1898 break;
1900 break;
1903 while (p += len, c);
1904 if (!win_p)
1905 break;
1906 /* We can make the alternative match by spilling a register
1907 to memory or loading something into a register. Count a
1908 cost of one reload (the equivalent of the '?' constraint). */
1909 this_reject += 6;
1910 op_success:
1914 if (nop >= recog_data.n_operands)
1916 alts |= ALTERNATIVE_BIT (nalt);
1917 if (this_reject == 0)
1918 exact_alts |= ALTERNATIVE_BIT (nalt);
1921 if (commutative < 0)
1922 break;
1923 /* Swap forth and back to avoid changing recog_data. */
1924 std::swap (recog_data.operand[commutative],
1925 recog_data.operand[commutative + 1]);
1926 if (curr_swapped)
1927 break;
1929 return exact_alts ? exact_alts : alts;
1932 /* Return the number of the output non-early clobber operand which
1933 should be the same in any case as operand with number OP_NUM (or
1934 negative value if there is no such operand). ALTS is the mask
1935 of alternatives that we should consider. SINGLE_INPUT_OP_HAS_CSTR_P
1936 should be set in this function, it indicates whether there is only
1937 a single input operand which has the matching constraint on the
1938 output operand at the position specified in return value. If the
1939 pattern allows any one of several input operands holds the matching
1940 constraint, it's set as false, one typical case is destructive FMA
1941 instruction on target rs6000. Note that for a non-NO_REG preferred
1942 register class with no free register move copy, if the parameter
1943 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to one, this function
1944 will check all available alternatives for matching constraints,
1945 even if it has found or will find one alternative with non-NO_REG
1946 regclass, it can respect more cases with matching constraints. If
1947 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to zero,
1948 SINGLE_INPUT_OP_HAS_CSTR_P is always true, it will stop to find
1949 matching constraint relationship once it hits some alternative with
1950 some non-NO_REG regclass. */
1952 ira_get_dup_out_num (int op_num, alternative_mask alts,
1953 bool &single_input_op_has_cstr_p)
1955 int curr_alt, c, original;
1956 bool ignore_p, use_commut_op_p;
1957 const char *str;
1959 if (op_num < 0 || recog_data.n_alternatives == 0)
1960 return -1;
1961 /* We should find duplications only for input operands. */
1962 if (recog_data.operand_type[op_num] != OP_IN)
1963 return -1;
1964 str = recog_data.constraints[op_num];
1965 use_commut_op_p = false;
1966 single_input_op_has_cstr_p = true;
1968 rtx op = recog_data.operand[op_num];
1969 int op_regno = reg_or_subregno (op);
1970 enum reg_class op_pref_cl = reg_preferred_class (op_regno);
1971 machine_mode op_mode = GET_MODE (op);
1973 ira_init_register_move_cost_if_necessary (op_mode);
1974 /* If the preferred regclass isn't NO_REG, continue to find the matching
1975 constraint in all available alternatives with preferred regclass, even
1976 if we have found or will find one alternative whose constraint stands
1977 for a REG (non-NO_REG) regclass. Note that it would be fine not to
1978 respect matching constraint if the register copy is free, so exclude
1979 it. */
1980 bool respect_dup_despite_reg_cstr
1981 = param_ira_consider_dup_in_all_alts
1982 && op_pref_cl != NO_REGS
1983 && ira_register_move_cost[op_mode][op_pref_cl][op_pref_cl] > 0;
1985 /* Record the alternative whose constraint uses the same regclass as the
1986 preferred regclass, later if we find one matching constraint for this
1987 operand with preferred reclass, we will visit these recorded
1988 alternatives to check whether if there is one alternative in which no
1989 any INPUT operands have one matching constraint same as our candidate.
1990 If yes, it means there is one alternative which is perfectly fine
1991 without satisfying this matching constraint. If no, it means in any
1992 alternatives there is one other INPUT operand holding this matching
1993 constraint, it's fine to respect this matching constraint and further
1994 create this constraint copy since it would become harmless once some
1995 other takes preference and it's interfered. */
1996 alternative_mask pref_cl_alts;
1998 for (;;)
2000 pref_cl_alts = 0;
2002 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
2003 original = -1;;)
2005 c = *str;
2006 if (c == '\0')
2007 break;
2008 if (c == '#')
2009 ignore_p = true;
2010 else if (c == ',')
2012 curr_alt++;
2013 ignore_p = !TEST_BIT (alts, curr_alt);
2015 else if (! ignore_p)
2016 switch (c)
2018 case 'g':
2019 goto fail;
2020 default:
2022 enum constraint_num cn = lookup_constraint (str);
2023 enum reg_class cl = reg_class_for_constraint (cn);
2024 if (cl != NO_REGS && !targetm.class_likely_spilled_p (cl))
2026 if (respect_dup_despite_reg_cstr)
2028 /* If it's free to move from one preferred class to
2029 the one without matching constraint, it doesn't
2030 have to respect this constraint with costs. */
2031 if (cl != op_pref_cl
2032 && (ira_reg_class_intersect[cl][op_pref_cl]
2033 != NO_REGS)
2034 && (ira_may_move_in_cost[op_mode][op_pref_cl][cl]
2035 == 0))
2036 goto fail;
2037 else if (cl == op_pref_cl)
2038 pref_cl_alts |= ALTERNATIVE_BIT (curr_alt);
2040 else
2041 goto fail;
2043 if (constraint_satisfied_p (op, cn))
2044 goto fail;
2045 break;
2048 case '0': case '1': case '2': case '3': case '4':
2049 case '5': case '6': case '7': case '8': case '9':
2051 char *end;
2052 int n = (int) strtoul (str, &end, 10);
2053 str = end;
2054 if (original != -1 && original != n)
2055 goto fail;
2056 gcc_assert (n < recog_data.n_operands);
2057 if (respect_dup_despite_reg_cstr)
2059 const operand_alternative *op_alt
2060 = &recog_op_alt[curr_alt * recog_data.n_operands];
2061 /* Only respect the one with preferred rclass, without
2062 respect_dup_despite_reg_cstr it's possible to get
2063 one whose regclass isn't preferred first before,
2064 but it would fail since there should be other
2065 alternatives with preferred regclass. */
2066 if (op_alt[n].cl == op_pref_cl)
2067 original = n;
2069 else
2070 original = n;
2071 continue;
2074 str += CONSTRAINT_LEN (c, str);
2076 if (original == -1)
2077 goto fail;
2078 if (recog_data.operand_type[original] == OP_OUT)
2080 if (pref_cl_alts == 0)
2081 return original;
2082 /* Visit these recorded alternatives to check whether
2083 there is one alternative in which no any INPUT operands
2084 have one matching constraint same as our candidate.
2085 Give up this candidate if so. */
2086 int nop, nalt;
2087 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
2089 if (!TEST_BIT (pref_cl_alts, nalt))
2090 continue;
2091 const operand_alternative *op_alt
2092 = &recog_op_alt[nalt * recog_data.n_operands];
2093 bool dup_in_other = false;
2094 for (nop = 0; nop < recog_data.n_operands; nop++)
2096 if (recog_data.operand_type[nop] != OP_IN)
2097 continue;
2098 if (nop == op_num)
2099 continue;
2100 if (op_alt[nop].matches == original)
2102 dup_in_other = true;
2103 break;
2106 if (!dup_in_other)
2107 return -1;
2109 single_input_op_has_cstr_p = false;
2110 return original;
2112 fail:
2113 if (use_commut_op_p)
2114 break;
2115 use_commut_op_p = true;
2116 if (recog_data.constraints[op_num][0] == '%')
2117 str = recog_data.constraints[op_num + 1];
2118 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2119 str = recog_data.constraints[op_num - 1];
2120 else
2121 break;
2123 return -1;
2128 /* Search forward to see if the source register of a copy insn dies
2129 before either it or the destination register is modified, but don't
2130 scan past the end of the basic block. If so, we can replace the
2131 source with the destination and let the source die in the copy
2132 insn.
2134 This will reduce the number of registers live in that range and may
2135 enable the destination and the source coalescing, thus often saving
2136 one register in addition to a register-register copy. */
2138 static void
2139 decrease_live_ranges_number (void)
2141 basic_block bb;
2142 rtx_insn *insn;
2143 rtx set, src, dest, dest_death, note;
2144 rtx_insn *p, *q;
2145 int sregno, dregno;
2147 if (! flag_expensive_optimizations)
2148 return;
2150 if (ira_dump_file)
2151 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2153 FOR_EACH_BB_FN (bb, cfun)
2154 FOR_BB_INSNS (bb, insn)
2156 set = single_set (insn);
2157 if (! set)
2158 continue;
2159 src = SET_SRC (set);
2160 dest = SET_DEST (set);
2161 if (! REG_P (src) || ! REG_P (dest)
2162 || find_reg_note (insn, REG_DEAD, src))
2163 continue;
2164 sregno = REGNO (src);
2165 dregno = REGNO (dest);
2167 /* We don't want to mess with hard regs if register classes
2168 are small. */
2169 if (sregno == dregno
2170 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2171 && (sregno < FIRST_PSEUDO_REGISTER
2172 || dregno < FIRST_PSEUDO_REGISTER))
2173 /* We don't see all updates to SP if they are in an
2174 auto-inc memory reference, so we must disallow this
2175 optimization on them. */
2176 || sregno == STACK_POINTER_REGNUM
2177 || dregno == STACK_POINTER_REGNUM)
2178 continue;
2180 dest_death = NULL_RTX;
2182 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2184 if (! INSN_P (p))
2185 continue;
2186 if (BLOCK_FOR_INSN (p) != bb)
2187 break;
2189 if (reg_set_p (src, p) || reg_set_p (dest, p)
2190 /* If SRC is an asm-declared register, it must not be
2191 replaced in any asm. Unfortunately, the REG_EXPR
2192 tree for the asm variable may be absent in the SRC
2193 rtx, so we can't check the actual register
2194 declaration easily (the asm operand will have it,
2195 though). To avoid complicating the test for a rare
2196 case, we just don't perform register replacement
2197 for a hard reg mentioned in an asm. */
2198 || (sregno < FIRST_PSEUDO_REGISTER
2199 && asm_noperands (PATTERN (p)) >= 0
2200 && reg_overlap_mentioned_p (src, PATTERN (p)))
2201 /* Don't change hard registers used by a call. */
2202 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2203 && find_reg_fusage (p, USE, src))
2204 /* Don't change a USE of a register. */
2205 || (GET_CODE (PATTERN (p)) == USE
2206 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2207 break;
2209 /* See if all of SRC dies in P. This test is slightly
2210 more conservative than it needs to be. */
2211 if ((note = find_regno_note (p, REG_DEAD, sregno))
2212 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2214 int failed = 0;
2216 /* We can do the optimization. Scan forward from INSN
2217 again, replacing regs as we go. Set FAILED if a
2218 replacement can't be done. In that case, we can't
2219 move the death note for SRC. This should be
2220 rare. */
2222 /* Set to stop at next insn. */
2223 for (q = next_real_insn (insn);
2224 q != next_real_insn (p);
2225 q = next_real_insn (q))
2227 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2229 /* If SRC is a hard register, we might miss
2230 some overlapping registers with
2231 validate_replace_rtx, so we would have to
2232 undo it. We can't if DEST is present in
2233 the insn, so fail in that combination of
2234 cases. */
2235 if (sregno < FIRST_PSEUDO_REGISTER
2236 && reg_mentioned_p (dest, PATTERN (q)))
2237 failed = 1;
2239 /* Attempt to replace all uses. */
2240 else if (!validate_replace_rtx (src, dest, q))
2241 failed = 1;
2243 /* If this succeeded, but some part of the
2244 register is still present, undo the
2245 replacement. */
2246 else if (sregno < FIRST_PSEUDO_REGISTER
2247 && reg_overlap_mentioned_p (src, PATTERN (q)))
2249 validate_replace_rtx (dest, src, q);
2250 failed = 1;
2254 /* If DEST dies here, remove the death note and
2255 save it for later. Make sure ALL of DEST dies
2256 here; again, this is overly conservative. */
2257 if (! dest_death
2258 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2260 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2261 remove_note (q, dest_death);
2262 else
2264 failed = 1;
2265 dest_death = 0;
2270 if (! failed)
2272 /* Move death note of SRC from P to INSN. */
2273 remove_note (p, note);
2274 XEXP (note, 1) = REG_NOTES (insn);
2275 REG_NOTES (insn) = note;
2278 /* DEST is also dead if INSN has a REG_UNUSED note for
2279 DEST. */
2280 if (! dest_death
2281 && (dest_death
2282 = find_regno_note (insn, REG_UNUSED, dregno)))
2284 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2285 remove_note (insn, dest_death);
2288 /* Put death note of DEST on P if we saw it die. */
2289 if (dest_death)
2291 XEXP (dest_death, 1) = REG_NOTES (p);
2292 REG_NOTES (p) = dest_death;
2294 break;
2297 /* If SRC is a hard register which is set or killed in
2298 some other way, we can't do this optimization. */
2299 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2300 break;
2307 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2308 static bool
2309 ira_bad_reload_regno_1 (int regno, rtx x)
2311 int x_regno, n, i;
2312 ira_allocno_t a;
2313 enum reg_class pref;
2315 /* We only deal with pseudo regs. */
2316 if (! x || GET_CODE (x) != REG)
2317 return false;
2319 x_regno = REGNO (x);
2320 if (x_regno < FIRST_PSEUDO_REGISTER)
2321 return false;
2323 /* If the pseudo prefers REGNO explicitly, then do not consider
2324 REGNO a bad spill choice. */
2325 pref = reg_preferred_class (x_regno);
2326 if (reg_class_size[pref] == 1)
2327 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2329 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2330 poor choice for a reload regno. */
2331 a = ira_regno_allocno_map[x_regno];
2332 n = ALLOCNO_NUM_OBJECTS (a);
2333 for (i = 0; i < n; i++)
2335 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2336 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2337 return true;
2339 return false;
2342 /* Return nonzero if REGNO is a particularly bad choice for reloading
2343 IN or OUT. */
2344 bool
2345 ira_bad_reload_regno (int regno, rtx in, rtx out)
2347 return (ira_bad_reload_regno_1 (regno, in)
2348 || ira_bad_reload_regno_1 (regno, out));
2351 /* Add register clobbers from asm statements. */
2352 static void
2353 compute_regs_asm_clobbered (void)
2355 basic_block bb;
2357 FOR_EACH_BB_FN (bb, cfun)
2359 rtx_insn *insn;
2360 FOR_BB_INSNS_REVERSE (bb, insn)
2362 df_ref def;
2364 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2365 FOR_EACH_INSN_DEF (def, insn)
2367 unsigned int dregno = DF_REF_REGNO (def);
2368 if (HARD_REGISTER_NUM_P (dregno))
2369 add_to_hard_reg_set (&crtl->asm_clobbers,
2370 GET_MODE (DF_REF_REAL_REG (def)),
2371 dregno);
2378 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2379 REGS_EVER_LIVE. */
2380 void
2381 ira_setup_eliminable_regset (void)
2383 int i;
2384 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2385 int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2387 /* Setup is_leaf as frame_pointer_required may use it. This function
2388 is called by sched_init before ira if scheduling is enabled. */
2389 crtl->is_leaf = leaf_function_p ();
2391 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2392 sp for alloca. So we can't eliminate the frame pointer in that
2393 case. At some point, we should improve this by emitting the
2394 sp-adjusting insns for this case. */
2395 frame_pointer_needed
2396 = (! flag_omit_frame_pointer
2397 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2398 /* We need the frame pointer to catch stack overflow exceptions if
2399 the stack pointer is moving (as for the alloca case just above). */
2400 || (STACK_CHECK_MOVING_SP
2401 && flag_stack_check
2402 && flag_exceptions
2403 && cfun->can_throw_non_call_exceptions)
2404 || crtl->accesses_prior_frames
2405 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2406 || targetm.frame_pointer_required ());
2408 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2409 RTL is very small. So if we use frame pointer for RA and RTL
2410 actually prevents this, we will spill pseudos assigned to the
2411 frame pointer in LRA. */
2413 if (frame_pointer_needed)
2414 for (i = 0; i < fp_reg_count; i++)
2415 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2417 ira_no_alloc_regs = no_unit_alloc_regs;
2418 CLEAR_HARD_REG_SET (eliminable_regset);
2420 compute_regs_asm_clobbered ();
2422 /* Build the regset of all eliminable registers and show we can't
2423 use those that we already know won't be eliminated. */
2424 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2426 bool cannot_elim
2427 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2428 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2430 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2432 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2434 if (cannot_elim)
2435 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2437 else if (cannot_elim)
2438 error ("%s cannot be used in %<asm%> here",
2439 reg_names[eliminables[i].from]);
2440 else
2441 df_set_regs_ever_live (eliminables[i].from, true);
2443 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2445 for (i = 0; i < fp_reg_count; i++)
2446 if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
2447 /* Nothing to do: the register is already treated as live
2448 where appropriate, and cannot be eliminated. */
2450 else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2451 HARD_FRAME_POINTER_REGNUM + i))
2453 SET_HARD_REG_BIT (eliminable_regset,
2454 HARD_FRAME_POINTER_REGNUM + i);
2455 if (frame_pointer_needed)
2456 SET_HARD_REG_BIT (ira_no_alloc_regs,
2457 HARD_FRAME_POINTER_REGNUM + i);
2459 else if (frame_pointer_needed)
2460 error ("%s cannot be used in %<asm%> here",
2461 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2462 else
2463 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2469 /* Vector of substitutions of register numbers,
2470 used to map pseudo regs into hardware regs.
2471 This is set up as a result of register allocation.
2472 Element N is the hard reg assigned to pseudo reg N,
2473 or is -1 if no hard reg was assigned.
2474 If N is a hard reg number, element N is N. */
2475 short *reg_renumber;
2477 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2478 the allocation found by IRA. */
2479 static void
2480 setup_reg_renumber (void)
2482 int regno, hard_regno;
2483 ira_allocno_t a;
2484 ira_allocno_iterator ai;
2486 caller_save_needed = 0;
2487 FOR_EACH_ALLOCNO (a, ai)
2489 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2490 continue;
2491 /* There are no caps at this point. */
2492 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2493 if (! ALLOCNO_ASSIGNED_P (a))
2494 /* It can happen if A is not referenced but partially anticipated
2495 somewhere in a region. */
2496 ALLOCNO_ASSIGNED_P (a) = true;
2497 ira_free_allocno_updated_costs (a);
2498 hard_regno = ALLOCNO_HARD_REGNO (a);
2499 regno = ALLOCNO_REGNO (a);
2500 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2501 if (hard_regno >= 0)
2503 int i, nwords;
2504 enum reg_class pclass;
2505 ira_object_t obj;
2507 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2508 nwords = ALLOCNO_NUM_OBJECTS (a);
2509 for (i = 0; i < nwords; i++)
2511 obj = ALLOCNO_OBJECT (a, i);
2512 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2513 |= ~reg_class_contents[pclass];
2515 if (ira_need_caller_save_p (a, hard_regno))
2517 ira_assert (!optimize || flag_caller_saves
2518 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2519 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2520 || regno >= ira_reg_equiv_len
2521 || ira_equiv_no_lvalue_p (regno));
2522 caller_save_needed = 1;
2528 /* Set up allocno assignment flags for further allocation
2529 improvements. */
2530 static void
2531 setup_allocno_assignment_flags (void)
2533 int hard_regno;
2534 ira_allocno_t a;
2535 ira_allocno_iterator ai;
2537 FOR_EACH_ALLOCNO (a, ai)
2539 if (! ALLOCNO_ASSIGNED_P (a))
2540 /* It can happen if A is not referenced but partially anticipated
2541 somewhere in a region. */
2542 ira_free_allocno_updated_costs (a);
2543 hard_regno = ALLOCNO_HARD_REGNO (a);
2544 /* Don't assign hard registers to allocnos which are destination
2545 of removed store at the end of loop. It has no sense to keep
2546 the same value in different hard registers. It is also
2547 impossible to assign hard registers correctly to such
2548 allocnos because the cost info and info about intersected
2549 calls are incorrect for them. */
2550 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2551 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2552 || (ALLOCNO_MEMORY_COST (a)
2553 - ALLOCNO_CLASS_COST (a)) < 0);
2554 ira_assert
2555 (hard_regno < 0
2556 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2557 reg_class_contents[ALLOCNO_CLASS (a)]));
2561 /* Evaluate overall allocation cost and the costs for using hard
2562 registers and memory for allocnos. */
2563 static void
2564 calculate_allocation_cost (void)
2566 int hard_regno, cost;
2567 ira_allocno_t a;
2568 ira_allocno_iterator ai;
2570 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2571 FOR_EACH_ALLOCNO (a, ai)
2573 hard_regno = ALLOCNO_HARD_REGNO (a);
2574 ira_assert (hard_regno < 0
2575 || (ira_hard_reg_in_set_p
2576 (hard_regno, ALLOCNO_MODE (a),
2577 reg_class_contents[ALLOCNO_CLASS (a)])));
2578 if (hard_regno < 0)
2580 cost = ALLOCNO_MEMORY_COST (a);
2581 ira_mem_cost += cost;
2583 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2585 cost = (ALLOCNO_HARD_REG_COSTS (a)
2586 [ira_class_hard_reg_index
2587 [ALLOCNO_CLASS (a)][hard_regno]]);
2588 ira_reg_cost += cost;
2590 else
2592 cost = ALLOCNO_CLASS_COST (a);
2593 ira_reg_cost += cost;
2595 ira_overall_cost += cost;
2598 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2600 fprintf (ira_dump_file,
2601 "+++Costs: overall %" PRId64
2602 ", reg %" PRId64
2603 ", mem %" PRId64
2604 ", ld %" PRId64
2605 ", st %" PRId64
2606 ", move %" PRId64,
2607 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2608 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2609 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2610 ira_move_loops_num, ira_additional_jumps_num);
2615 #ifdef ENABLE_IRA_CHECKING
2616 /* Check the correctness of the allocation. We do need this because
2617 of complicated code to transform more one region internal
2618 representation into one region representation. */
2619 static void
2620 check_allocation (void)
2622 ira_allocno_t a;
2623 int hard_regno, nregs, conflict_nregs;
2624 ira_allocno_iterator ai;
2626 FOR_EACH_ALLOCNO (a, ai)
2628 int n = ALLOCNO_NUM_OBJECTS (a);
2629 int i;
2631 if (ALLOCNO_CAP_MEMBER (a) != NULL
2632 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2633 continue;
2634 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2635 if (nregs == 1)
2636 /* We allocated a single hard register. */
2637 n = 1;
2638 else if (n > 1)
2639 /* We allocated multiple hard registers, and we will test
2640 conflicts in a granularity of single hard regs. */
2641 nregs = 1;
2643 for (i = 0; i < n; i++)
2645 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2646 ira_object_t conflict_obj;
2647 ira_object_conflict_iterator oci;
2648 int this_regno = hard_regno;
2649 if (n > 1)
2651 if (REG_WORDS_BIG_ENDIAN)
2652 this_regno += n - i - 1;
2653 else
2654 this_regno += i;
2656 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2658 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2659 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2660 if (conflict_hard_regno < 0)
2661 continue;
2662 if (ira_soft_conflict (a, conflict_a))
2663 continue;
2665 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2666 ALLOCNO_MODE (conflict_a));
2668 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2669 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2671 if (REG_WORDS_BIG_ENDIAN)
2672 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2673 - OBJECT_SUBWORD (conflict_obj) - 1);
2674 else
2675 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2676 conflict_nregs = 1;
2679 if ((conflict_hard_regno <= this_regno
2680 && this_regno < conflict_hard_regno + conflict_nregs)
2681 || (this_regno <= conflict_hard_regno
2682 && conflict_hard_regno < this_regno + nregs))
2684 fprintf (stderr, "bad allocation for %d and %d\n",
2685 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2686 gcc_unreachable ();
2692 #endif
2694 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2695 be already calculated. */
2696 static void
2697 setup_reg_equiv_init (void)
2699 int i;
2700 int max_regno = max_reg_num ();
2702 for (i = 0; i < max_regno; i++)
2703 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2706 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2707 are insns which were generated for such movement. It is assumed
2708 that FROM_REGNO and TO_REGNO always have the same value at the
2709 point of any move containing such registers. This function is used
2710 to update equiv info for register shuffles on the region borders
2711 and for caller save/restore insns. */
2712 void
2713 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2715 rtx_insn *insn;
2716 rtx x, note;
2718 if (! ira_reg_equiv[from_regno].defined_p
2719 && (! ira_reg_equiv[to_regno].defined_p
2720 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2721 && ! MEM_READONLY_P (x))))
2722 return;
2723 insn = insns;
2724 if (NEXT_INSN (insn) != NULL_RTX)
2726 if (! ira_reg_equiv[to_regno].defined_p)
2728 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2729 return;
2731 ira_reg_equiv[to_regno].defined_p = false;
2732 ira_reg_equiv[to_regno].caller_save_p = false;
2733 ira_reg_equiv[to_regno].memory
2734 = ira_reg_equiv[to_regno].constant
2735 = ira_reg_equiv[to_regno].invariant
2736 = ira_reg_equiv[to_regno].init_insns = NULL;
2737 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2738 fprintf (ira_dump_file,
2739 " Invalidating equiv info for reg %d\n", to_regno);
2740 return;
2742 /* It is possible that FROM_REGNO still has no equivalence because
2743 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2744 insn was not processed yet. */
2745 if (ira_reg_equiv[from_regno].defined_p)
2747 ira_reg_equiv[to_regno].defined_p = true;
2748 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2750 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2751 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2752 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2753 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2754 ira_reg_equiv[to_regno].memory = x;
2755 if (! MEM_READONLY_P (x))
2756 /* We don't add the insn to insn init list because memory
2757 equivalence is just to say what memory is better to use
2758 when the pseudo is spilled. */
2759 return;
2761 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2763 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2764 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2765 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2766 ira_reg_equiv[to_regno].constant = x;
2768 else
2770 x = ira_reg_equiv[from_regno].invariant;
2771 ira_assert (x != NULL_RTX);
2772 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2773 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2774 ira_reg_equiv[to_regno].invariant = x;
2776 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2778 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2779 gcc_assert (note != NULL_RTX);
2780 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2782 fprintf (ira_dump_file,
2783 " Adding equiv note to insn %u for reg %d ",
2784 INSN_UID (insn), to_regno);
2785 dump_value_slim (ira_dump_file, x, 1);
2786 fprintf (ira_dump_file, "\n");
2790 ira_reg_equiv[to_regno].init_insns
2791 = gen_rtx_INSN_LIST (VOIDmode, insn,
2792 ira_reg_equiv[to_regno].init_insns);
2793 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2794 fprintf (ira_dump_file,
2795 " Adding equiv init move insn %u to reg %d\n",
2796 INSN_UID (insn), to_regno);
2799 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2800 by IRA. */
2801 static void
2802 fix_reg_equiv_init (void)
2804 int max_regno = max_reg_num ();
2805 int i, new_regno, max;
2806 rtx set;
2807 rtx_insn_list *x, *next, *prev;
2808 rtx_insn *insn;
2810 if (max_regno_before_ira < max_regno)
2812 max = vec_safe_length (reg_equivs);
2813 grow_reg_equivs ();
2814 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2815 for (prev = NULL, x = reg_equiv_init (i);
2816 x != NULL_RTX;
2817 x = next)
2819 next = x->next ();
2820 insn = x->insn ();
2821 set = single_set (insn);
2822 ira_assert (set != NULL_RTX
2823 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2824 if (REG_P (SET_DEST (set))
2825 && ((int) REGNO (SET_DEST (set)) == i
2826 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2827 new_regno = REGNO (SET_DEST (set));
2828 else if (REG_P (SET_SRC (set))
2829 && ((int) REGNO (SET_SRC (set)) == i
2830 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2831 new_regno = REGNO (SET_SRC (set));
2832 else
2833 gcc_unreachable ();
2834 if (new_regno == i)
2835 prev = x;
2836 else
2838 /* Remove the wrong list element. */
2839 if (prev == NULL_RTX)
2840 reg_equiv_init (i) = next;
2841 else
2842 XEXP (prev, 1) = next;
2843 XEXP (x, 1) = reg_equiv_init (new_regno);
2844 reg_equiv_init (new_regno) = x;
2850 #ifdef ENABLE_IRA_CHECKING
2851 /* Print redundant memory-memory copies. */
2852 static void
2853 print_redundant_copies (void)
2855 int hard_regno;
2856 ira_allocno_t a;
2857 ira_copy_t cp, next_cp;
2858 ira_allocno_iterator ai;
2860 FOR_EACH_ALLOCNO (a, ai)
2862 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2863 /* It is a cap. */
2864 continue;
2865 hard_regno = ALLOCNO_HARD_REGNO (a);
2866 if (hard_regno >= 0)
2867 continue;
2868 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2869 if (cp->first == a)
2870 next_cp = cp->next_first_allocno_copy;
2871 else
2873 next_cp = cp->next_second_allocno_copy;
2874 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2875 && cp->insn != NULL_RTX
2876 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2877 fprintf (ira_dump_file,
2878 " Redundant move from %d(freq %d):%d\n",
2879 INSN_UID (cp->insn), cp->freq, hard_regno);
2883 #endif
2885 /* Setup preferred and alternative classes for new pseudo-registers
2886 created by IRA starting with START. */
2887 static void
2888 setup_preferred_alternate_classes_for_new_pseudos (int start)
2890 int i, old_regno;
2891 int max_regno = max_reg_num ();
2893 for (i = start; i < max_regno; i++)
2895 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2896 ira_assert (i != old_regno);
2897 setup_reg_classes (i, reg_preferred_class (old_regno),
2898 reg_alternate_class (old_regno),
2899 reg_allocno_class (old_regno));
2900 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2901 fprintf (ira_dump_file,
2902 " New r%d: setting preferred %s, alternative %s\n",
2903 i, reg_class_names[reg_preferred_class (old_regno)],
2904 reg_class_names[reg_alternate_class (old_regno)]);
2909 /* The number of entries allocated in reg_info. */
2910 static int allocated_reg_info_size;
2912 /* Regional allocation can create new pseudo-registers. This function
2913 expands some arrays for pseudo-registers. */
2914 static void
2915 expand_reg_info (void)
2917 int i;
2918 int size = max_reg_num ();
2920 resize_reg_info ();
2921 for (i = allocated_reg_info_size; i < size; i++)
2922 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2923 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2924 allocated_reg_info_size = size;
2927 /* Return TRUE if there is too high register pressure in the function.
2928 It is used to decide when stack slot sharing is worth to do. */
2929 static bool
2930 too_high_register_pressure_p (void)
2932 int i;
2933 enum reg_class pclass;
2935 for (i = 0; i < ira_pressure_classes_num; i++)
2937 pclass = ira_pressure_classes[i];
2938 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2939 return true;
2941 return false;
2946 /* Indicate that hard register number FROM was eliminated and replaced with
2947 an offset from hard register number TO. The status of hard registers live
2948 at the start of a basic block is updated by replacing a use of FROM with
2949 a use of TO. */
2951 void
2952 mark_elimination (int from, int to)
2954 basic_block bb;
2955 bitmap r;
2957 FOR_EACH_BB_FN (bb, cfun)
2959 r = DF_LR_IN (bb);
2960 if (bitmap_bit_p (r, from))
2962 bitmap_clear_bit (r, from);
2963 bitmap_set_bit (r, to);
2965 if (! df_live)
2966 continue;
2967 r = DF_LIVE_IN (bb);
2968 if (bitmap_bit_p (r, from))
2970 bitmap_clear_bit (r, from);
2971 bitmap_set_bit (r, to);
2978 /* The length of the following array. */
2979 int ira_reg_equiv_len;
2981 /* Info about equiv. info for each register. */
2982 struct ira_reg_equiv_s *ira_reg_equiv;
2984 /* Expand ira_reg_equiv if necessary. */
2985 void
2986 ira_expand_reg_equiv (void)
2988 int old = ira_reg_equiv_len;
2990 if (ira_reg_equiv_len > max_reg_num ())
2991 return;
2992 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2993 ira_reg_equiv
2994 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2995 ira_reg_equiv_len
2996 * sizeof (struct ira_reg_equiv_s));
2997 gcc_assert (old < ira_reg_equiv_len);
2998 memset (ira_reg_equiv + old, 0,
2999 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
3002 static void
3003 init_reg_equiv (void)
3005 ira_reg_equiv_len = 0;
3006 ira_reg_equiv = NULL;
3007 ira_expand_reg_equiv ();
3010 static void
3011 finish_reg_equiv (void)
3013 free (ira_reg_equiv);
3018 struct equivalence
3020 /* Set when a REG_EQUIV note is found or created. Use to
3021 keep track of what memory accesses might be created later,
3022 e.g. by reload. */
3023 rtx replacement;
3024 rtx *src_p;
3026 /* The list of each instruction which initializes this register.
3028 NULL indicates we know nothing about this register's equivalence
3029 properties.
3031 An INSN_LIST with a NULL insn indicates this pseudo is already
3032 known to not have a valid equivalence. */
3033 rtx_insn_list *init_insns;
3035 /* Loop depth is used to recognize equivalences which appear
3036 to be present within the same loop (or in an inner loop). */
3037 short loop_depth;
3038 /* Nonzero if this had a preexisting REG_EQUIV note. */
3039 unsigned char is_arg_equivalence : 1;
3040 /* Set when an attempt should be made to replace a register
3041 with the associated src_p entry. */
3042 unsigned char replace : 1;
3043 /* Set if this register has no known equivalence. */
3044 unsigned char no_equiv : 1;
3045 /* Set if this register is mentioned in a paradoxical subreg. */
3046 unsigned char pdx_subregs : 1;
3049 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3050 structure for that register. */
3051 static struct equivalence *reg_equiv;
3053 /* Used for communication between the following two functions. */
3054 struct equiv_mem_data
3056 /* A MEM that we wish to ensure remains unchanged. */
3057 rtx equiv_mem;
3059 /* Set true if EQUIV_MEM is modified. */
3060 bool equiv_mem_modified;
3063 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3064 Called via note_stores. */
3065 static void
3066 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3067 void *data)
3069 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
3071 if ((REG_P (dest)
3072 && reg_overlap_mentioned_p (dest, info->equiv_mem))
3073 || (MEM_P (dest)
3074 && anti_dependence (info->equiv_mem, dest)))
3075 info->equiv_mem_modified = true;
3078 static int equiv_init_varies_p (rtx x);
3080 enum valid_equiv { valid_none, valid_combine, valid_reload };
3082 /* Verify that no store between START and the death of REG invalidates
3083 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3084 by storing into an overlapping memory location, or with a non-const
3085 CALL_INSN.
3087 Return VALID_RELOAD if MEMREF remains valid for both reload and
3088 combine_and_move insns, VALID_COMBINE if only valid for
3089 combine_and_move_insns, and VALID_NONE otherwise. */
3090 static enum valid_equiv
3091 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
3093 rtx_insn *insn;
3094 rtx note;
3095 struct equiv_mem_data info = { memref, false };
3096 enum valid_equiv ret = valid_reload;
3098 /* If the memory reference has side effects or is volatile, it isn't a
3099 valid equivalence. */
3100 if (side_effects_p (memref))
3101 return valid_none;
3103 for (insn = start; insn; insn = NEXT_INSN (insn))
3105 if (!INSN_P (insn))
3106 continue;
3108 if (find_reg_note (insn, REG_DEAD, reg))
3109 return ret;
3111 if (CALL_P (insn))
3113 /* We can combine a reg def from one insn into a reg use in
3114 another over a call if the memory is readonly or the call
3115 const/pure. However, we can't set reg_equiv notes up for
3116 reload over any call. The problem is the equivalent form
3117 may reference a pseudo which gets assigned a call
3118 clobbered hard reg. When we later replace REG with its
3119 equivalent form, the value in the call-clobbered reg has
3120 been changed and all hell breaks loose. */
3121 ret = valid_combine;
3122 if (!MEM_READONLY_P (memref)
3123 && (!RTL_CONST_OR_PURE_CALL_P (insn)
3124 || equiv_init_varies_p (XEXP (memref, 0))))
3125 return valid_none;
3128 note_stores (insn, validate_equiv_mem_from_store, &info);
3129 if (info.equiv_mem_modified)
3130 return valid_none;
3132 /* If a register mentioned in MEMREF is modified via an
3133 auto-increment, we lose the equivalence. Do the same if one
3134 dies; although we could extend the life, it doesn't seem worth
3135 the trouble. */
3137 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3138 if ((REG_NOTE_KIND (note) == REG_INC
3139 || REG_NOTE_KIND (note) == REG_DEAD)
3140 && REG_P (XEXP (note, 0))
3141 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3142 return valid_none;
3145 return valid_none;
3148 /* Returns zero if X is known to be invariant. */
3149 static int
3150 equiv_init_varies_p (rtx x)
3152 RTX_CODE code = GET_CODE (x);
3153 int i;
3154 const char *fmt;
3156 switch (code)
3158 case MEM:
3159 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3161 case CONST:
3162 CASE_CONST_ANY:
3163 case SYMBOL_REF:
3164 case LABEL_REF:
3165 return 0;
3167 case REG:
3168 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3170 case ASM_OPERANDS:
3171 if (MEM_VOLATILE_P (x))
3172 return 1;
3174 /* Fall through. */
3176 default:
3177 break;
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3182 if (fmt[i] == 'e')
3184 if (equiv_init_varies_p (XEXP (x, i)))
3185 return 1;
3187 else if (fmt[i] == 'E')
3189 int j;
3190 for (j = 0; j < XVECLEN (x, i); j++)
3191 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3192 return 1;
3195 return 0;
3198 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3199 X is only movable if the registers it uses have equivalent initializations
3200 which appear to be within the same loop (or in an inner loop) and movable
3201 or if they are not candidates for local_alloc and don't vary. */
3202 static int
3203 equiv_init_movable_p (rtx x, int regno)
3205 int i, j;
3206 const char *fmt;
3207 enum rtx_code code = GET_CODE (x);
3209 switch (code)
3211 case SET:
3212 return equiv_init_movable_p (SET_SRC (x), regno);
3214 case CLOBBER:
3215 return 0;
3217 case PRE_INC:
3218 case PRE_DEC:
3219 case POST_INC:
3220 case POST_DEC:
3221 case PRE_MODIFY:
3222 case POST_MODIFY:
3223 return 0;
3225 case REG:
3226 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3227 && reg_equiv[REGNO (x)].replace)
3228 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3229 && ! rtx_varies_p (x, 0)));
3231 case UNSPEC_VOLATILE:
3232 return 0;
3234 case ASM_OPERANDS:
3235 if (MEM_VOLATILE_P (x))
3236 return 0;
3238 /* Fall through. */
3240 default:
3241 break;
3244 fmt = GET_RTX_FORMAT (code);
3245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3246 switch (fmt[i])
3248 case 'e':
3249 if (! equiv_init_movable_p (XEXP (x, i), regno))
3250 return 0;
3251 break;
3252 case 'E':
3253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3254 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3255 return 0;
3256 break;
3259 return 1;
3262 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3264 /* Auxiliary function for memref_referenced_p. Process setting X for
3265 MEMREF store. */
3266 static bool
3267 process_set_for_memref_referenced_p (rtx memref, rtx x)
3269 /* If we are setting a MEM, it doesn't count (its address does), but any
3270 other SET_DEST that has a MEM in it is referencing the MEM. */
3271 if (MEM_P (x))
3273 if (memref_referenced_p (memref, XEXP (x, 0), true))
3274 return true;
3276 else if (memref_referenced_p (memref, x, false))
3277 return true;
3279 return false;
3282 /* TRUE if X references a memory location (as a read if READ_P) that
3283 would be affected by a store to MEMREF. */
3284 static bool
3285 memref_referenced_p (rtx memref, rtx x, bool read_p)
3287 int i, j;
3288 const char *fmt;
3289 enum rtx_code code = GET_CODE (x);
3291 switch (code)
3293 case CONST:
3294 case LABEL_REF:
3295 case SYMBOL_REF:
3296 CASE_CONST_ANY:
3297 case PC:
3298 case HIGH:
3299 case LO_SUM:
3300 return false;
3302 case REG:
3303 return (reg_equiv[REGNO (x)].replacement
3304 && memref_referenced_p (memref,
3305 reg_equiv[REGNO (x)].replacement, read_p));
3307 case MEM:
3308 /* Memory X might have another effective type than MEMREF. */
3309 if (read_p || true_dependence (memref, VOIDmode, x))
3310 return true;
3311 break;
3313 case SET:
3314 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3315 return true;
3317 return memref_referenced_p (memref, SET_SRC (x), true);
3319 case CLOBBER:
3320 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3321 return true;
3323 return false;
3325 case PRE_DEC:
3326 case POST_DEC:
3327 case PRE_INC:
3328 case POST_INC:
3329 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3330 return true;
3332 return memref_referenced_p (memref, XEXP (x, 0), true);
3334 case POST_MODIFY:
3335 case PRE_MODIFY:
3336 /* op0 = op0 + op1 */
3337 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3338 return true;
3340 if (memref_referenced_p (memref, XEXP (x, 0), true))
3341 return true;
3343 return memref_referenced_p (memref, XEXP (x, 1), true);
3345 default:
3346 break;
3349 fmt = GET_RTX_FORMAT (code);
3350 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3351 switch (fmt[i])
3353 case 'e':
3354 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3355 return true;
3356 break;
3357 case 'E':
3358 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3359 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3360 return true;
3361 break;
3364 return false;
3367 /* TRUE if some insn in the range (START, END] references a memory location
3368 that would be affected by a store to MEMREF.
3370 Callers should not call this routine if START is after END in the
3371 RTL chain. */
3373 static int
3374 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3376 rtx_insn *insn;
3378 for (insn = NEXT_INSN (start);
3379 insn && insn != NEXT_INSN (end);
3380 insn = NEXT_INSN (insn))
3382 if (!NONDEBUG_INSN_P (insn))
3383 continue;
3385 if (memref_referenced_p (memref, PATTERN (insn), false))
3386 return 1;
3388 /* Nonconst functions may access memory. */
3389 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3390 return 1;
3393 gcc_assert (insn == NEXT_INSN (end));
3394 return 0;
3397 /* Mark REG as having no known equivalence.
3398 Some instructions might have been processed before and furnished
3399 with REG_EQUIV notes for this register; these notes will have to be
3400 removed.
3401 STORE is the piece of RTL that does the non-constant / conflicting
3402 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3403 but needs to be there because this function is called from note_stores. */
3404 static void
3405 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3406 void *data ATTRIBUTE_UNUSED)
3408 int regno;
3409 rtx_insn_list *list;
3411 if (!REG_P (reg))
3412 return;
3413 regno = REGNO (reg);
3414 reg_equiv[regno].no_equiv = 1;
3415 list = reg_equiv[regno].init_insns;
3416 if (list && list->insn () == NULL)
3417 return;
3418 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3419 reg_equiv[regno].replacement = NULL_RTX;
3420 /* This doesn't matter for equivalences made for argument registers, we
3421 should keep their initialization insns. */
3422 if (reg_equiv[regno].is_arg_equivalence)
3423 return;
3424 ira_reg_equiv[regno].defined_p = false;
3425 ira_reg_equiv[regno].caller_save_p = false;
3426 ira_reg_equiv[regno].init_insns = NULL;
3427 for (; list; list = list->next ())
3429 rtx_insn *insn = list->insn ();
3430 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3434 /* Check whether the SUBREG is a paradoxical subreg and set the result
3435 in PDX_SUBREGS. */
3437 static void
3438 set_paradoxical_subreg (rtx_insn *insn)
3440 subrtx_iterator::array_type array;
3441 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3443 const_rtx subreg = *iter;
3444 if (GET_CODE (subreg) == SUBREG)
3446 const_rtx reg = SUBREG_REG (subreg);
3447 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3448 reg_equiv[REGNO (reg)].pdx_subregs = true;
3453 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3454 equivalent replacement. */
3456 static rtx
3457 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3459 if (REG_P (loc))
3461 bitmap cleared_regs = (bitmap) data;
3462 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3463 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3464 NULL_RTX, adjust_cleared_regs, data);
3466 return NULL_RTX;
3469 /* Given register REGNO is set only once, return true if the defining
3470 insn dominates all uses. */
3472 static bool
3473 def_dominates_uses (int regno)
3475 df_ref def = DF_REG_DEF_CHAIN (regno);
3477 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3478 /* If this is an artificial def (eh handler regs, hard frame pointer
3479 for non-local goto, regs defined on function entry) then def_info
3480 is NULL and the reg is always live before any use. We might
3481 reasonably return true in that case, but since the only call
3482 of this function is currently here in ira.cc when we are looking
3483 at a defining insn we can't have an artificial def as that would
3484 bump DF_REG_DEF_COUNT. */
3485 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3487 rtx_insn *def_insn = DF_REF_INSN (def);
3488 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3490 for (df_ref use = DF_REG_USE_CHAIN (regno);
3491 use;
3492 use = DF_REF_NEXT_REG (use))
3494 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3495 /* Only check real uses, not artificial ones. */
3496 if (use_info)
3498 rtx_insn *use_insn = DF_REF_INSN (use);
3499 if (!DEBUG_INSN_P (use_insn))
3501 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3502 if (use_bb != def_bb
3503 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3504 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3505 return false;
3509 return true;
3512 /* Scan the instructions before update_equiv_regs. Record which registers
3513 are referenced as paradoxical subregs. Also check for cases in which
3514 the current function needs to save a register that one of its call
3515 instructions clobbers.
3517 These things are logically unrelated, but it's more efficient to do
3518 them together. */
3520 static void
3521 update_equiv_regs_prescan (void)
3523 basic_block bb;
3524 rtx_insn *insn;
3525 function_abi_aggregator callee_abis;
3527 FOR_EACH_BB_FN (bb, cfun)
3528 FOR_BB_INSNS (bb, insn)
3529 if (NONDEBUG_INSN_P (insn))
3531 set_paradoxical_subreg (insn);
3532 if (CALL_P (insn))
3533 callee_abis.note_callee_abi (insn_callee_abi (insn));
3536 HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3537 if (!hard_reg_set_empty_p (extra_caller_saves))
3538 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3539 if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3540 df_set_regs_ever_live (regno, true);
3543 /* Find registers that are equivalent to a single value throughout the
3544 compilation (either because they can be referenced in memory or are
3545 set once from a single constant). Lower their priority for a
3546 register.
3548 If such a register is only referenced once, try substituting its
3549 value into the using insn. If it succeeds, we can eliminate the
3550 register completely.
3552 Initialize init_insns in ira_reg_equiv array. */
3553 static void
3554 update_equiv_regs (void)
3556 rtx_insn *insn;
3557 basic_block bb;
3559 /* Scan the insns and find which registers have equivalences. Do this
3560 in a separate scan of the insns because (due to -fcse-follow-jumps)
3561 a register can be set below its use. */
3562 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3563 FOR_EACH_BB_FN (bb, cfun)
3565 int loop_depth = bb_loop_depth (bb);
3567 for (insn = BB_HEAD (bb);
3568 insn != NEXT_INSN (BB_END (bb));
3569 insn = NEXT_INSN (insn))
3571 rtx note;
3572 rtx set;
3573 rtx dest, src;
3574 int regno;
3576 if (! INSN_P (insn))
3577 continue;
3579 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3580 if (REG_NOTE_KIND (note) == REG_INC)
3581 no_equiv (XEXP (note, 0), note, NULL);
3583 set = single_set (insn);
3585 /* If this insn contains more (or less) than a single SET,
3586 only mark all destinations as having no known equivalence. */
3587 if (set == NULL_RTX
3588 || side_effects_p (SET_SRC (set)))
3590 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3591 continue;
3593 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3595 int i;
3597 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3599 rtx part = XVECEXP (PATTERN (insn), 0, i);
3600 if (part != set)
3601 note_pattern_stores (part, no_equiv, NULL);
3605 dest = SET_DEST (set);
3606 src = SET_SRC (set);
3608 /* See if this is setting up the equivalence between an argument
3609 register and its stack slot. */
3610 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3611 if (note)
3613 gcc_assert (REG_P (dest));
3614 regno = REGNO (dest);
3616 /* Note that we don't want to clear init_insns in
3617 ira_reg_equiv even if there are multiple sets of this
3618 register. */
3619 reg_equiv[regno].is_arg_equivalence = 1;
3621 /* The insn result can have equivalence memory although
3622 the equivalence is not set up by the insn. We add
3623 this insn to init insns as it is a flag for now that
3624 regno has an equivalence. We will remove the insn
3625 from init insn list later. */
3626 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3627 ira_reg_equiv[regno].init_insns
3628 = gen_rtx_INSN_LIST (VOIDmode, insn,
3629 ira_reg_equiv[regno].init_insns);
3631 /* Continue normally in case this is a candidate for
3632 replacements. */
3635 if (!optimize)
3636 continue;
3638 /* We only handle the case of a pseudo register being set
3639 once, or always to the same value. */
3640 /* ??? The mn10200 port breaks if we add equivalences for
3641 values that need an ADDRESS_REGS register and set them equivalent
3642 to a MEM of a pseudo. The actual problem is in the over-conservative
3643 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3644 calculate_needs, but we traditionally work around this problem
3645 here by rejecting equivalences when the destination is in a register
3646 that's likely spilled. This is fragile, of course, since the
3647 preferred class of a pseudo depends on all instructions that set
3648 or use it. */
3650 if (!REG_P (dest)
3651 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3652 || (reg_equiv[regno].init_insns
3653 && reg_equiv[regno].init_insns->insn () == NULL)
3654 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3655 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3657 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3658 also set somewhere else to a constant. */
3659 note_pattern_stores (set, no_equiv, NULL);
3660 continue;
3663 /* Don't set reg mentioned in a paradoxical subreg
3664 equivalent to a mem. */
3665 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3667 note_pattern_stores (set, no_equiv, NULL);
3668 continue;
3671 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3673 /* cse sometimes generates function invariants, but doesn't put a
3674 REG_EQUAL note on the insn. Since this note would be redundant,
3675 there's no point creating it earlier than here. */
3676 if (! note && ! rtx_varies_p (src, 0))
3677 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3679 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3680 since it represents a function call. */
3681 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3682 note = NULL_RTX;
3684 if (DF_REG_DEF_COUNT (regno) != 1)
3686 bool equal_p = true;
3687 rtx_insn_list *list;
3689 /* If we have already processed this pseudo and determined it
3690 cannot have an equivalence, then honor that decision. */
3691 if (reg_equiv[regno].no_equiv)
3692 continue;
3694 if (! note
3695 || rtx_varies_p (XEXP (note, 0), 0)
3696 || (reg_equiv[regno].replacement
3697 && ! rtx_equal_p (XEXP (note, 0),
3698 reg_equiv[regno].replacement)))
3700 no_equiv (dest, set, NULL);
3701 continue;
3704 list = reg_equiv[regno].init_insns;
3705 for (; list; list = list->next ())
3707 rtx note_tmp;
3708 rtx_insn *insn_tmp;
3710 insn_tmp = list->insn ();
3711 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3712 gcc_assert (note_tmp);
3713 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3715 equal_p = false;
3716 break;
3720 if (! equal_p)
3722 no_equiv (dest, set, NULL);
3723 continue;
3727 /* Record this insn as initializing this register. */
3728 reg_equiv[regno].init_insns
3729 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3731 /* If this register is known to be equal to a constant, record that
3732 it is always equivalent to the constant.
3733 Note that it is possible to have a register use before
3734 the def in loops (see gcc.c-torture/execute/pr79286.c)
3735 where the reg is undefined on first use. If the def insn
3736 won't trap we can use it as an equivalence, effectively
3737 choosing the "undefined" value for the reg to be the
3738 same as the value set by the def. */
3739 if (DF_REG_DEF_COUNT (regno) == 1
3740 && note
3741 && !rtx_varies_p (XEXP (note, 0), 0)
3742 && (!may_trap_or_fault_p (XEXP (note, 0))
3743 || def_dominates_uses (regno)))
3745 rtx note_value = XEXP (note, 0);
3746 remove_note (insn, note);
3747 set_unique_reg_note (insn, REG_EQUIV, note_value);
3750 /* If this insn introduces a "constant" register, decrease the priority
3751 of that register. Record this insn if the register is only used once
3752 more and the equivalence value is the same as our source.
3754 The latter condition is checked for two reasons: First, it is an
3755 indication that it may be more efficient to actually emit the insn
3756 as written (if no registers are available, reload will substitute
3757 the equivalence). Secondly, it avoids problems with any registers
3758 dying in this insn whose death notes would be missed.
3760 If we don't have a REG_EQUIV note, see if this insn is loading
3761 a register used only in one basic block from a MEM. If so, and the
3762 MEM remains unchanged for the life of the register, add a REG_EQUIV
3763 note. */
3764 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3766 rtx replacement = NULL_RTX;
3767 if (note)
3768 replacement = XEXP (note, 0);
3769 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3770 && MEM_P (SET_SRC (set)))
3772 enum valid_equiv validity;
3773 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3774 if (validity != valid_none)
3776 replacement = copy_rtx (SET_SRC (set));
3777 if (validity == valid_reload)
3779 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3781 else if (ira_use_lra_p)
3783 /* We still can use this equivalence for caller save
3784 optimization in LRA. Mark this. */
3785 ira_reg_equiv[regno].caller_save_p = true;
3786 ira_reg_equiv[regno].init_insns
3787 = gen_rtx_INSN_LIST (VOIDmode, insn,
3788 ira_reg_equiv[regno].init_insns);
3793 /* If we haven't done so, record for reload that this is an
3794 equivalencing insn. */
3795 if (note && !reg_equiv[regno].is_arg_equivalence)
3796 ira_reg_equiv[regno].init_insns
3797 = gen_rtx_INSN_LIST (VOIDmode, insn,
3798 ira_reg_equiv[regno].init_insns);
3800 if (replacement)
3802 reg_equiv[regno].replacement = replacement;
3803 reg_equiv[regno].src_p = &SET_SRC (set);
3804 reg_equiv[regno].loop_depth = (short) loop_depth;
3806 /* Don't mess with things live during setjmp. */
3807 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3809 /* If the register is referenced exactly twice, meaning it is
3810 set once and used once, indicate that the reference may be
3811 replaced by the equivalence we computed above. Do this
3812 even if the register is only used in one block so that
3813 dependencies can be handled where the last register is
3814 used in a different block (i.e. HIGH / LO_SUM sequences)
3815 and to reduce the number of registers alive across
3816 calls. */
3818 if (REG_N_REFS (regno) == 2
3819 && (rtx_equal_p (replacement, src)
3820 || ! equiv_init_varies_p (src))
3821 && NONJUMP_INSN_P (insn)
3822 && equiv_init_movable_p (PATTERN (insn), regno))
3823 reg_equiv[regno].replace = 1;
3830 /* For insns that set a MEM to the contents of a REG that is only used
3831 in a single basic block, see if the register is always equivalent
3832 to that memory location and if moving the store from INSN to the
3833 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3834 initializing insn. */
3835 static void
3836 add_store_equivs (void)
3838 auto_bitmap seen_insns;
3840 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3842 rtx set, src, dest;
3843 unsigned regno;
3844 rtx_insn *init_insn;
3846 bitmap_set_bit (seen_insns, INSN_UID (insn));
3848 if (! INSN_P (insn))
3849 continue;
3851 set = single_set (insn);
3852 if (! set)
3853 continue;
3855 dest = SET_DEST (set);
3856 src = SET_SRC (set);
3858 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3859 REG_EQUIV is likely more useful than the one we are adding. */
3860 if (MEM_P (dest) && REG_P (src)
3861 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3862 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3863 && DF_REG_DEF_COUNT (regno) == 1
3864 && ! reg_equiv[regno].pdx_subregs
3865 && reg_equiv[regno].init_insns != NULL
3866 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3867 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3868 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3869 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3870 && ! memref_used_between_p (dest, init_insn, insn)
3871 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3872 multiple sets. */
3873 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3875 /* This insn makes the equivalence, not the one initializing
3876 the register. */
3877 ira_reg_equiv[regno].init_insns
3878 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3879 df_notes_rescan (init_insn);
3880 if (dump_file)
3881 fprintf (dump_file,
3882 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3883 INSN_UID (init_insn),
3884 INSN_UID (insn));
3889 /* Scan all regs killed in an insn to see if any of them are registers
3890 only used that once. If so, see if we can replace the reference
3891 with the equivalent form. If we can, delete the initializing
3892 reference and this register will go away. If we can't replace the
3893 reference, and the initializing reference is within the same loop
3894 (or in an inner loop), then move the register initialization just
3895 before the use, so that they are in the same basic block. */
3896 static void
3897 combine_and_move_insns (void)
3899 auto_bitmap cleared_regs;
3900 int max = max_reg_num ();
3902 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3904 if (!reg_equiv[regno].replace)
3905 continue;
3907 rtx_insn *use_insn = 0;
3908 for (df_ref use = DF_REG_USE_CHAIN (regno);
3909 use;
3910 use = DF_REF_NEXT_REG (use))
3911 if (DF_REF_INSN_INFO (use))
3913 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3914 continue;
3915 gcc_assert (!use_insn);
3916 use_insn = DF_REF_INSN (use);
3918 gcc_assert (use_insn);
3920 /* Don't substitute into jumps. indirect_jump_optimize does
3921 this for anything we are prepared to handle. */
3922 if (JUMP_P (use_insn))
3923 continue;
3925 /* Also don't substitute into a conditional trap insn -- it can become
3926 an unconditional trap, and that is a flow control insn. */
3927 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3928 continue;
3930 df_ref def = DF_REG_DEF_CHAIN (regno);
3931 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3932 rtx_insn *def_insn = DF_REF_INSN (def);
3934 /* We may not move instructions that can throw, since that
3935 changes basic block boundaries and we are not prepared to
3936 adjust the CFG to match. */
3937 if (can_throw_internal (def_insn))
3938 continue;
3940 /* Instructions with multiple sets can only be moved if DF analysis is
3941 performed for all of the registers set. See PR91052. */
3942 if (multiple_sets (def_insn))
3943 continue;
3945 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3946 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3947 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3948 continue;
3950 if (asm_noperands (PATTERN (def_insn)) < 0
3951 && validate_replace_rtx (regno_reg_rtx[regno],
3952 *reg_equiv[regno].src_p, use_insn))
3954 rtx link;
3955 /* Append the REG_DEAD notes from def_insn. */
3956 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3958 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3960 *p = XEXP (link, 1);
3961 XEXP (link, 1) = REG_NOTES (use_insn);
3962 REG_NOTES (use_insn) = link;
3964 else
3965 p = &XEXP (link, 1);
3968 remove_death (regno, use_insn);
3969 SET_REG_N_REFS (regno, 0);
3970 REG_FREQ (regno) = 0;
3971 df_ref use;
3972 FOR_EACH_INSN_USE (use, def_insn)
3974 unsigned int use_regno = DF_REF_REGNO (use);
3975 if (!HARD_REGISTER_NUM_P (use_regno))
3976 reg_equiv[use_regno].replace = 0;
3979 delete_insn (def_insn);
3981 reg_equiv[regno].init_insns = NULL;
3982 ira_reg_equiv[regno].init_insns = NULL;
3983 bitmap_set_bit (cleared_regs, regno);
3986 /* Move the initialization of the register to just before
3987 USE_INSN. Update the flow information. */
3988 else if (prev_nondebug_insn (use_insn) != def_insn)
3990 rtx_insn *new_insn;
3992 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3993 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3994 REG_NOTES (def_insn) = 0;
3995 /* Rescan it to process the notes. */
3996 df_insn_rescan (new_insn);
3998 /* Make sure this insn is recognized before reload begins,
3999 otherwise eliminate_regs_in_insn will die. */
4000 INSN_CODE (new_insn) = INSN_CODE (def_insn);
4002 delete_insn (def_insn);
4004 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
4006 REG_BASIC_BLOCK (regno) = use_bb->index;
4007 REG_N_CALLS_CROSSED (regno) = 0;
4009 if (use_insn == BB_HEAD (use_bb))
4010 BB_HEAD (use_bb) = new_insn;
4012 /* We know regno dies in use_insn, but inside a loop
4013 REG_DEAD notes might be missing when def_insn was in
4014 another basic block. However, when we move def_insn into
4015 this bb we'll definitely get a REG_DEAD note and reload
4016 will see the death. It's possible that update_equiv_regs
4017 set up an equivalence referencing regno for a reg set by
4018 use_insn, when regno was seen as non-local. Now that
4019 regno is local to this block, and dies, such an
4020 equivalence is invalid. */
4021 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
4023 rtx set = single_set (use_insn);
4024 if (set && REG_P (SET_DEST (set)))
4025 no_equiv (SET_DEST (set), set, NULL);
4028 ira_reg_equiv[regno].init_insns
4029 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
4030 bitmap_set_bit (cleared_regs, regno);
4034 if (!bitmap_empty_p (cleared_regs))
4036 basic_block bb;
4038 FOR_EACH_BB_FN (bb, cfun)
4040 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
4041 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
4042 if (!df_live)
4043 continue;
4044 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
4045 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
4048 /* Last pass - adjust debug insns referencing cleared regs. */
4049 if (MAY_HAVE_DEBUG_BIND_INSNS)
4050 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
4051 if (DEBUG_BIND_INSN_P (insn))
4053 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
4054 INSN_VAR_LOCATION_LOC (insn)
4055 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
4056 adjust_cleared_regs,
4057 (void *) cleared_regs);
4058 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
4059 df_insn_rescan (insn);
4064 /* A pass over indirect jumps, converting simple cases to direct jumps.
4065 Combine does this optimization too, but only within a basic block. */
4066 static void
4067 indirect_jump_optimize (void)
4069 basic_block bb;
4070 bool rebuild_p = false;
4072 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4074 rtx_insn *insn = BB_END (bb);
4075 if (!JUMP_P (insn)
4076 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
4077 continue;
4079 rtx x = pc_set (insn);
4080 if (!x || !REG_P (SET_SRC (x)))
4081 continue;
4083 int regno = REGNO (SET_SRC (x));
4084 if (DF_REG_DEF_COUNT (regno) == 1)
4086 df_ref def = DF_REG_DEF_CHAIN (regno);
4087 if (!DF_REF_IS_ARTIFICIAL (def))
4089 rtx_insn *def_insn = DF_REF_INSN (def);
4090 rtx lab = NULL_RTX;
4091 rtx set = single_set (def_insn);
4092 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
4093 lab = SET_SRC (set);
4094 else
4096 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
4097 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
4098 lab = XEXP (eqnote, 0);
4100 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
4101 rebuild_p = true;
4106 if (rebuild_p)
4108 timevar_push (TV_JUMP);
4109 rebuild_jump_labels (get_insns ());
4110 if (purge_all_dead_edges ())
4111 delete_unreachable_blocks ();
4112 timevar_pop (TV_JUMP);
4116 /* Set up fields memory, constant, and invariant from init_insns in
4117 the structures of array ira_reg_equiv. */
4118 static void
4119 setup_reg_equiv (void)
4121 int i;
4122 rtx_insn_list *elem, *prev_elem, *next_elem;
4123 rtx_insn *insn;
4124 rtx set, x;
4126 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
4127 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
4128 elem;
4129 prev_elem = elem, elem = next_elem)
4131 next_elem = elem->next ();
4132 insn = elem->insn ();
4133 set = single_set (insn);
4135 /* Init insns can set up equivalence when the reg is a destination or
4136 a source (in this case the destination is memory). */
4137 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
4139 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
4141 x = XEXP (x, 0);
4142 if (REG_P (SET_DEST (set))
4143 && REGNO (SET_DEST (set)) == (unsigned int) i
4144 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
4146 /* This insn reporting the equivalence but
4147 actually not setting it. Remove it from the
4148 list. */
4149 if (prev_elem == NULL)
4150 ira_reg_equiv[i].init_insns = next_elem;
4151 else
4152 XEXP (prev_elem, 1) = next_elem;
4153 elem = prev_elem;
4156 else if (REG_P (SET_DEST (set))
4157 && REGNO (SET_DEST (set)) == (unsigned int) i)
4158 x = SET_SRC (set);
4159 else
4161 gcc_assert (REG_P (SET_SRC (set))
4162 && REGNO (SET_SRC (set)) == (unsigned int) i);
4163 x = SET_DEST (set);
4165 if (! function_invariant_p (x)
4166 || ! flag_pic
4167 /* A function invariant is often CONSTANT_P but may
4168 include a register. We promise to only pass
4169 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4170 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4172 /* It can happen that a REG_EQUIV note contains a MEM
4173 that is not a legitimate memory operand. As later
4174 stages of reload assume that all addresses found in
4175 the lra_regno_equiv_* arrays were originally
4176 legitimate, we ignore such REG_EQUIV notes. */
4177 if (memory_operand (x, VOIDmode))
4179 ira_reg_equiv[i].defined_p = !ira_reg_equiv[i].caller_save_p;
4180 ira_reg_equiv[i].memory = x;
4181 continue;
4183 else if (function_invariant_p (x))
4185 machine_mode mode;
4187 mode = GET_MODE (SET_DEST (set));
4188 if (GET_CODE (x) == PLUS
4189 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4190 /* This is PLUS of frame pointer and a constant,
4191 or fp, or argp. */
4192 ira_reg_equiv[i].invariant = x;
4193 else if (targetm.legitimate_constant_p (mode, x))
4194 ira_reg_equiv[i].constant = x;
4195 else
4197 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4198 if (ira_reg_equiv[i].memory == NULL_RTX)
4200 ira_reg_equiv[i].defined_p = false;
4201 ira_reg_equiv[i].caller_save_p = false;
4202 ira_reg_equiv[i].init_insns = NULL;
4203 break;
4206 ira_reg_equiv[i].defined_p = true;
4207 continue;
4211 ira_reg_equiv[i].defined_p = false;
4212 ira_reg_equiv[i].caller_save_p = false;
4213 ira_reg_equiv[i].init_insns = NULL;
4214 break;
4220 /* Print chain C to FILE. */
4221 static void
4222 print_insn_chain (FILE *file, class insn_chain *c)
4224 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4225 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4226 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4230 /* Print all reload_insn_chains to FILE. */
4231 static void
4232 print_insn_chains (FILE *file)
4234 class insn_chain *c;
4235 for (c = reload_insn_chain; c ; c = c->next)
4236 print_insn_chain (file, c);
4239 /* Return true if pseudo REGNO should be added to set live_throughout
4240 or dead_or_set of the insn chains for reload consideration. */
4241 static bool
4242 pseudo_for_reload_consideration_p (int regno)
4244 /* Consider spilled pseudos too for IRA because they still have a
4245 chance to get hard-registers in the reload when IRA is used. */
4246 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4249 /* Return true if we can track the individual bytes of subreg X.
4250 When returning true, set *OUTER_SIZE to the number of bytes in
4251 X itself, *INNER_SIZE to the number of bytes in the inner register
4252 and *START to the offset of the first byte. */
4253 static bool
4254 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4255 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4257 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4258 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4259 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4260 && SUBREG_BYTE (x).is_constant (start));
4263 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4264 a register with SIZE bytes, making the register live if INIT_VALUE. */
4265 static void
4266 init_live_subregs (bool init_value, sbitmap *live_subregs,
4267 bitmap live_subregs_used, int allocnum, int size)
4269 gcc_assert (size > 0);
4271 /* Been there, done that. */
4272 if (bitmap_bit_p (live_subregs_used, allocnum))
4273 return;
4275 /* Create a new one. */
4276 if (live_subregs[allocnum] == NULL)
4277 live_subregs[allocnum] = sbitmap_alloc (size);
4279 /* If the entire reg was live before blasting into subregs, we need
4280 to init all of the subregs to ones else init to 0. */
4281 if (init_value)
4282 bitmap_ones (live_subregs[allocnum]);
4283 else
4284 bitmap_clear (live_subregs[allocnum]);
4286 bitmap_set_bit (live_subregs_used, allocnum);
4289 /* Walk the insns of the current function and build reload_insn_chain,
4290 and record register life information. */
4291 static void
4292 build_insn_chain (void)
4294 unsigned int i;
4295 class insn_chain **p = &reload_insn_chain;
4296 basic_block bb;
4297 class insn_chain *c = NULL;
4298 class insn_chain *next = NULL;
4299 auto_bitmap live_relevant_regs;
4300 auto_bitmap elim_regset;
4301 /* live_subregs is a vector used to keep accurate information about
4302 which hardregs are live in multiword pseudos. live_subregs and
4303 live_subregs_used are indexed by pseudo number. The live_subreg
4304 entry for a particular pseudo is only used if the corresponding
4305 element is non zero in live_subregs_used. The sbitmap size of
4306 live_subreg[allocno] is number of bytes that the pseudo can
4307 occupy. */
4308 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4309 auto_bitmap live_subregs_used;
4311 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4312 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4313 bitmap_set_bit (elim_regset, i);
4314 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4316 bitmap_iterator bi;
4317 rtx_insn *insn;
4319 CLEAR_REG_SET (live_relevant_regs);
4320 bitmap_clear (live_subregs_used);
4322 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4324 if (i >= FIRST_PSEUDO_REGISTER)
4325 break;
4326 bitmap_set_bit (live_relevant_regs, i);
4329 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4330 FIRST_PSEUDO_REGISTER, i, bi)
4332 if (pseudo_for_reload_consideration_p (i))
4333 bitmap_set_bit (live_relevant_regs, i);
4336 FOR_BB_INSNS_REVERSE (bb, insn)
4338 if (!NOTE_P (insn) && !BARRIER_P (insn))
4340 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4341 df_ref def, use;
4343 c = new_insn_chain ();
4344 c->next = next;
4345 next = c;
4346 *p = c;
4347 p = &c->prev;
4349 c->insn = insn;
4350 c->block = bb->index;
4352 if (NONDEBUG_INSN_P (insn))
4353 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4355 unsigned int regno = DF_REF_REGNO (def);
4357 /* Ignore may clobbers because these are generated
4358 from calls. However, every other kind of def is
4359 added to dead_or_set. */
4360 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4362 if (regno < FIRST_PSEUDO_REGISTER)
4364 if (!fixed_regs[regno])
4365 bitmap_set_bit (&c->dead_or_set, regno);
4367 else if (pseudo_for_reload_consideration_p (regno))
4368 bitmap_set_bit (&c->dead_or_set, regno);
4371 if ((regno < FIRST_PSEUDO_REGISTER
4372 || reg_renumber[regno] >= 0
4373 || ira_conflicts_p)
4374 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4376 rtx reg = DF_REF_REG (def);
4377 HOST_WIDE_INT outer_size, inner_size, start;
4379 /* We can usually track the liveness of individual
4380 bytes within a subreg. The only exceptions are
4381 subregs wrapped in ZERO_EXTRACTs and subregs whose
4382 size is not known; in those cases we need to be
4383 conservative and treat the definition as a partial
4384 definition of the full register rather than a full
4385 definition of a specific part of the register. */
4386 if (GET_CODE (reg) == SUBREG
4387 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4388 && get_subreg_tracking_sizes (reg, &outer_size,
4389 &inner_size, &start))
4391 HOST_WIDE_INT last = start + outer_size;
4393 init_live_subregs
4394 (bitmap_bit_p (live_relevant_regs, regno),
4395 live_subregs, live_subregs_used, regno,
4396 inner_size);
4398 if (!DF_REF_FLAGS_IS_SET
4399 (def, DF_REF_STRICT_LOW_PART))
4401 /* Expand the range to cover entire words.
4402 Bytes added here are "don't care". */
4403 start
4404 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4405 last = ((last + UNITS_PER_WORD - 1)
4406 / UNITS_PER_WORD * UNITS_PER_WORD);
4409 /* Ignore the paradoxical bits. */
4410 if (last > SBITMAP_SIZE (live_subregs[regno]))
4411 last = SBITMAP_SIZE (live_subregs[regno]);
4413 while (start < last)
4415 bitmap_clear_bit (live_subregs[regno], start);
4416 start++;
4419 if (bitmap_empty_p (live_subregs[regno]))
4421 bitmap_clear_bit (live_subregs_used, regno);
4422 bitmap_clear_bit (live_relevant_regs, regno);
4424 else
4425 /* Set live_relevant_regs here because
4426 that bit has to be true to get us to
4427 look at the live_subregs fields. */
4428 bitmap_set_bit (live_relevant_regs, regno);
4430 else
4432 /* DF_REF_PARTIAL is generated for
4433 subregs, STRICT_LOW_PART, and
4434 ZERO_EXTRACT. We handle the subreg
4435 case above so here we have to keep from
4436 modeling the def as a killing def. */
4437 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4439 bitmap_clear_bit (live_subregs_used, regno);
4440 bitmap_clear_bit (live_relevant_regs, regno);
4446 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4447 bitmap_copy (&c->live_throughout, live_relevant_regs);
4449 if (NONDEBUG_INSN_P (insn))
4450 FOR_EACH_INSN_INFO_USE (use, insn_info)
4452 unsigned int regno = DF_REF_REGNO (use);
4453 rtx reg = DF_REF_REG (use);
4455 /* DF_REF_READ_WRITE on a use means that this use
4456 is fabricated from a def that is a partial set
4457 to a multiword reg. Here, we only model the
4458 subreg case that is not wrapped in ZERO_EXTRACT
4459 precisely so we do not need to look at the
4460 fabricated use. */
4461 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4462 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4463 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4464 continue;
4466 /* Add the last use of each var to dead_or_set. */
4467 if (!bitmap_bit_p (live_relevant_regs, regno))
4469 if (regno < FIRST_PSEUDO_REGISTER)
4471 if (!fixed_regs[regno])
4472 bitmap_set_bit (&c->dead_or_set, regno);
4474 else if (pseudo_for_reload_consideration_p (regno))
4475 bitmap_set_bit (&c->dead_or_set, regno);
4478 if (regno < FIRST_PSEUDO_REGISTER
4479 || pseudo_for_reload_consideration_p (regno))
4481 HOST_WIDE_INT outer_size, inner_size, start;
4482 if (GET_CODE (reg) == SUBREG
4483 && !DF_REF_FLAGS_IS_SET (use,
4484 DF_REF_SIGN_EXTRACT
4485 | DF_REF_ZERO_EXTRACT)
4486 && get_subreg_tracking_sizes (reg, &outer_size,
4487 &inner_size, &start))
4489 HOST_WIDE_INT last = start + outer_size;
4491 init_live_subregs
4492 (bitmap_bit_p (live_relevant_regs, regno),
4493 live_subregs, live_subregs_used, regno,
4494 inner_size);
4496 /* Ignore the paradoxical bits. */
4497 if (last > SBITMAP_SIZE (live_subregs[regno]))
4498 last = SBITMAP_SIZE (live_subregs[regno]);
4500 while (start < last)
4502 bitmap_set_bit (live_subregs[regno], start);
4503 start++;
4506 else
4507 /* Resetting the live_subregs_used is
4508 effectively saying do not use the subregs
4509 because we are reading the whole
4510 pseudo. */
4511 bitmap_clear_bit (live_subregs_used, regno);
4512 bitmap_set_bit (live_relevant_regs, regno);
4518 /* FIXME!! The following code is a disaster. Reload needs to see the
4519 labels and jump tables that are just hanging out in between
4520 the basic blocks. See pr33676. */
4521 insn = BB_HEAD (bb);
4523 /* Skip over the barriers and cruft. */
4524 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4525 || BLOCK_FOR_INSN (insn) == bb))
4526 insn = PREV_INSN (insn);
4528 /* While we add anything except barriers and notes, the focus is
4529 to get the labels and jump tables into the
4530 reload_insn_chain. */
4531 while (insn)
4533 if (!NOTE_P (insn) && !BARRIER_P (insn))
4535 if (BLOCK_FOR_INSN (insn))
4536 break;
4538 c = new_insn_chain ();
4539 c->next = next;
4540 next = c;
4541 *p = c;
4542 p = &c->prev;
4544 /* The block makes no sense here, but it is what the old
4545 code did. */
4546 c->block = bb->index;
4547 c->insn = insn;
4548 bitmap_copy (&c->live_throughout, live_relevant_regs);
4550 insn = PREV_INSN (insn);
4554 reload_insn_chain = c;
4555 *p = NULL;
4557 for (i = 0; i < (unsigned int) max_regno; i++)
4558 if (live_subregs[i] != NULL)
4559 sbitmap_free (live_subregs[i]);
4560 free (live_subregs);
4562 if (dump_file)
4563 print_insn_chains (dump_file);
4566 /* Examine the rtx found in *LOC, which is read or written to as determined
4567 by TYPE. Return false if we find a reason why an insn containing this
4568 rtx should not be moved (such as accesses to non-constant memory), true
4569 otherwise. */
4570 static bool
4571 rtx_moveable_p (rtx *loc, enum op_type type)
4573 const char *fmt;
4574 rtx x = *loc;
4575 int i, j;
4577 enum rtx_code code = GET_CODE (x);
4578 switch (code)
4580 case CONST:
4581 CASE_CONST_ANY:
4582 case SYMBOL_REF:
4583 case LABEL_REF:
4584 return true;
4586 case PC:
4587 return type == OP_IN;
4589 case REG:
4590 if (x == frame_pointer_rtx)
4591 return true;
4592 if (HARD_REGISTER_P (x))
4593 return false;
4595 return true;
4597 case MEM:
4598 if (type == OP_IN && MEM_READONLY_P (x))
4599 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4600 return false;
4602 case SET:
4603 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4604 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4606 case STRICT_LOW_PART:
4607 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4609 case ZERO_EXTRACT:
4610 case SIGN_EXTRACT:
4611 return (rtx_moveable_p (&XEXP (x, 0), type)
4612 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4613 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4615 case CLOBBER:
4616 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4618 case UNSPEC_VOLATILE:
4619 /* It is a bad idea to consider insns with such rtl
4620 as moveable ones. The insn scheduler also considers them as barrier
4621 for a reason. */
4622 return false;
4624 case ASM_OPERANDS:
4625 /* The same is true for volatile asm: it has unknown side effects, it
4626 cannot be moved at will. */
4627 if (MEM_VOLATILE_P (x))
4628 return false;
4630 default:
4631 break;
4634 fmt = GET_RTX_FORMAT (code);
4635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4637 if (fmt[i] == 'e')
4639 if (!rtx_moveable_p (&XEXP (x, i), type))
4640 return false;
4642 else if (fmt[i] == 'E')
4643 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4645 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4646 return false;
4649 return true;
4652 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4653 to give dominance relationships between two insns I1 and I2. */
4654 static bool
4655 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4657 basic_block bb1 = BLOCK_FOR_INSN (i1);
4658 basic_block bb2 = BLOCK_FOR_INSN (i2);
4660 if (bb1 == bb2)
4661 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4662 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4665 /* Record the range of register numbers added by find_moveable_pseudos. */
4666 int first_moveable_pseudo, last_moveable_pseudo;
4668 /* These two vectors hold data for every register added by
4669 find_movable_pseudos, with index 0 holding data for the
4670 first_moveable_pseudo. */
4671 /* The original home register. */
4672 static vec<rtx> pseudo_replaced_reg;
4674 /* Look for instances where we have an instruction that is known to increase
4675 register pressure, and whose result is not used immediately. If it is
4676 possible to move the instruction downwards to just before its first use,
4677 split its lifetime into two ranges. We create a new pseudo to compute the
4678 value, and emit a move instruction just before the first use. If, after
4679 register allocation, the new pseudo remains unallocated, the function
4680 move_unallocated_pseudos then deletes the move instruction and places
4681 the computation just before the first use.
4683 Such a move is safe and profitable if all the input registers remain live
4684 and unchanged between the original computation and its first use. In such
4685 a situation, the computation is known to increase register pressure, and
4686 moving it is known to at least not worsen it.
4688 We restrict moves to only those cases where a register remains unallocated,
4689 in order to avoid interfering too much with the instruction schedule. As
4690 an exception, we may move insns which only modify their input register
4691 (typically induction variables), as this increases the freedom for our
4692 intended transformation, and does not limit the second instruction
4693 scheduler pass. */
4695 static void
4696 find_moveable_pseudos (void)
4698 unsigned i;
4699 int max_regs = max_reg_num ();
4700 int max_uid = get_max_uid ();
4701 basic_block bb;
4702 int *uid_luid = XNEWVEC (int, max_uid);
4703 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4704 /* A set of registers which are live but not modified throughout a block. */
4705 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4706 last_basic_block_for_fn (cfun));
4707 /* A set of registers which only exist in a given basic block. */
4708 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4709 last_basic_block_for_fn (cfun));
4710 /* A set of registers which are set once, in an instruction that can be
4711 moved freely downwards, but are otherwise transparent to a block. */
4712 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4713 last_basic_block_for_fn (cfun));
4714 auto_bitmap live, used, set, interesting, unusable_as_input;
4715 bitmap_iterator bi;
4717 first_moveable_pseudo = max_regs;
4718 pseudo_replaced_reg.release ();
4719 pseudo_replaced_reg.safe_grow_cleared (max_regs, true);
4721 df_analyze ();
4722 calculate_dominance_info (CDI_DOMINATORS);
4724 i = 0;
4725 FOR_EACH_BB_FN (bb, cfun)
4727 rtx_insn *insn;
4728 bitmap transp = bb_transp_live + bb->index;
4729 bitmap moveable = bb_moveable_reg_sets + bb->index;
4730 bitmap local = bb_local + bb->index;
4732 bitmap_initialize (local, 0);
4733 bitmap_initialize (transp, 0);
4734 bitmap_initialize (moveable, 0);
4735 bitmap_copy (live, df_get_live_out (bb));
4736 bitmap_and_into (live, df_get_live_in (bb));
4737 bitmap_copy (transp, live);
4738 bitmap_clear (moveable);
4739 bitmap_clear (live);
4740 bitmap_clear (used);
4741 bitmap_clear (set);
4742 FOR_BB_INSNS (bb, insn)
4743 if (NONDEBUG_INSN_P (insn))
4745 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4746 df_ref def, use;
4748 uid_luid[INSN_UID (insn)] = i++;
4750 def = df_single_def (insn_info);
4751 use = df_single_use (insn_info);
4752 if (use
4753 && def
4754 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4755 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4756 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4758 unsigned regno = DF_REF_REGNO (use);
4759 bitmap_set_bit (moveable, regno);
4760 bitmap_set_bit (set, regno);
4761 bitmap_set_bit (used, regno);
4762 bitmap_clear_bit (transp, regno);
4763 continue;
4765 FOR_EACH_INSN_INFO_USE (use, insn_info)
4767 unsigned regno = DF_REF_REGNO (use);
4768 bitmap_set_bit (used, regno);
4769 if (bitmap_clear_bit (moveable, regno))
4770 bitmap_clear_bit (transp, regno);
4773 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4775 unsigned regno = DF_REF_REGNO (def);
4776 bitmap_set_bit (set, regno);
4777 bitmap_clear_bit (transp, regno);
4778 bitmap_clear_bit (moveable, regno);
4783 FOR_EACH_BB_FN (bb, cfun)
4785 bitmap local = bb_local + bb->index;
4786 rtx_insn *insn;
4788 FOR_BB_INSNS (bb, insn)
4789 if (NONDEBUG_INSN_P (insn))
4791 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4792 rtx_insn *def_insn;
4793 rtx closest_use, note;
4794 df_ref def, use;
4795 unsigned regno;
4796 bool all_dominated, all_local;
4797 machine_mode mode;
4799 def = df_single_def (insn_info);
4800 /* There must be exactly one def in this insn. */
4801 if (!def || !single_set (insn))
4802 continue;
4803 /* This must be the only definition of the reg. We also limit
4804 which modes we deal with so that we can assume we can generate
4805 move instructions. */
4806 regno = DF_REF_REGNO (def);
4807 mode = GET_MODE (DF_REF_REG (def));
4808 if (DF_REG_DEF_COUNT (regno) != 1
4809 || !DF_REF_INSN_INFO (def)
4810 || HARD_REGISTER_NUM_P (regno)
4811 || DF_REG_EQ_USE_COUNT (regno) > 0
4812 || (!INTEGRAL_MODE_P (mode)
4813 && !FLOAT_MODE_P (mode)
4814 && !OPAQUE_MODE_P (mode)))
4815 continue;
4816 def_insn = DF_REF_INSN (def);
4818 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4819 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4820 break;
4822 if (note)
4824 if (dump_file)
4825 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4826 regno);
4827 bitmap_set_bit (unusable_as_input, regno);
4828 continue;
4831 use = DF_REG_USE_CHAIN (regno);
4832 all_dominated = true;
4833 all_local = true;
4834 closest_use = NULL_RTX;
4835 for (; use; use = DF_REF_NEXT_REG (use))
4837 rtx_insn *insn;
4838 if (!DF_REF_INSN_INFO (use))
4840 all_dominated = false;
4841 all_local = false;
4842 break;
4844 insn = DF_REF_INSN (use);
4845 if (DEBUG_INSN_P (insn))
4846 continue;
4847 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4848 all_local = false;
4849 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4850 all_dominated = false;
4851 if (closest_use != insn && closest_use != const0_rtx)
4853 if (closest_use == NULL_RTX)
4854 closest_use = insn;
4855 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4856 closest_use = insn;
4857 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4858 closest_use = const0_rtx;
4861 if (!all_dominated)
4863 if (dump_file)
4864 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4865 regno);
4866 continue;
4868 if (all_local)
4869 bitmap_set_bit (local, regno);
4870 if (closest_use == const0_rtx || closest_use == NULL
4871 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4873 if (dump_file)
4874 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4875 closest_use == const0_rtx || closest_use == NULL
4876 ? " (no unique first use)" : "");
4877 continue;
4880 bitmap_set_bit (interesting, regno);
4881 /* If we get here, we know closest_use is a non-NULL insn
4882 (as opposed to const_0_rtx). */
4883 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4885 if (dump_file && (all_local || all_dominated))
4887 fprintf (dump_file, "Reg %u:", regno);
4888 if (all_local)
4889 fprintf (dump_file, " local to bb %d", bb->index);
4890 if (all_dominated)
4891 fprintf (dump_file, " def dominates all uses");
4892 if (closest_use != const0_rtx)
4893 fprintf (dump_file, " has unique first use");
4894 fputs ("\n", dump_file);
4899 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4901 df_ref def = DF_REG_DEF_CHAIN (i);
4902 rtx_insn *def_insn = DF_REF_INSN (def);
4903 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4904 bitmap def_bb_local = bb_local + def_block->index;
4905 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4906 bitmap def_bb_transp = bb_transp_live + def_block->index;
4907 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4908 rtx_insn *use_insn = closest_uses[i];
4909 df_ref use;
4910 bool all_ok = true;
4911 bool all_transp = true;
4913 if (!REG_P (DF_REF_REG (def)))
4914 continue;
4916 if (!local_to_bb_p)
4918 if (dump_file)
4919 fprintf (dump_file, "Reg %u not local to one basic block\n",
4921 continue;
4923 if (reg_equiv_init (i) != NULL_RTX)
4925 if (dump_file)
4926 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4928 continue;
4930 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4932 if (dump_file)
4933 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4934 INSN_UID (def_insn), i);
4935 continue;
4937 if (dump_file)
4938 fprintf (dump_file, "Examining insn %d, def for %d\n",
4939 INSN_UID (def_insn), i);
4940 FOR_EACH_INSN_USE (use, def_insn)
4942 unsigned regno = DF_REF_REGNO (use);
4943 if (bitmap_bit_p (unusable_as_input, regno))
4945 all_ok = false;
4946 if (dump_file)
4947 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4948 break;
4950 if (!bitmap_bit_p (def_bb_transp, regno))
4952 if (bitmap_bit_p (def_bb_moveable, regno)
4953 && !control_flow_insn_p (use_insn))
4955 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4957 rtx_insn *x = NEXT_INSN (def_insn);
4958 while (!modified_in_p (DF_REF_REG (use), x))
4960 gcc_assert (x != use_insn);
4961 x = NEXT_INSN (x);
4963 if (dump_file)
4964 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4965 regno, INSN_UID (x));
4966 emit_insn_after (PATTERN (x), use_insn);
4967 set_insn_deleted (x);
4969 else
4971 if (dump_file)
4972 fprintf (dump_file, " input reg %u modified between def and use\n",
4973 regno);
4974 all_transp = false;
4977 else
4978 all_transp = false;
4981 if (!all_ok)
4982 continue;
4983 if (!dbg_cnt (ira_move))
4984 break;
4985 if (dump_file)
4986 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4988 if (all_transp)
4990 rtx def_reg = DF_REF_REG (def);
4991 rtx newreg = ira_create_new_reg (def_reg);
4992 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4994 unsigned nregno = REGNO (newreg);
4995 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4996 nregno -= max_regs;
4997 pseudo_replaced_reg[nregno] = def_reg;
5002 FOR_EACH_BB_FN (bb, cfun)
5004 bitmap_clear (bb_local + bb->index);
5005 bitmap_clear (bb_transp_live + bb->index);
5006 bitmap_clear (bb_moveable_reg_sets + bb->index);
5008 free (uid_luid);
5009 free (closest_uses);
5010 free (bb_local);
5011 free (bb_transp_live);
5012 free (bb_moveable_reg_sets);
5014 last_moveable_pseudo = max_reg_num ();
5016 fix_reg_equiv_init ();
5017 expand_reg_info ();
5018 regstat_free_n_sets_and_refs ();
5019 regstat_free_ri ();
5020 regstat_init_n_sets_and_refs ();
5021 regstat_compute_ri ();
5022 free_dominance_info (CDI_DOMINATORS);
5025 /* If SET pattern SET is an assignment from a hard register to a pseudo which
5026 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
5027 the destination. Otherwise return NULL. */
5029 static rtx
5030 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
5032 rtx src = SET_SRC (set);
5033 rtx dest = SET_DEST (set);
5034 if (!REG_P (src) || !HARD_REGISTER_P (src)
5035 || !REG_P (dest) || HARD_REGISTER_P (dest)
5036 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
5037 return NULL;
5038 return dest;
5041 /* If insn is interesting for parameter range-splitting shrink-wrapping
5042 preparation, i.e. it is a single set from a hard register to a pseudo, which
5043 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
5044 parallel statement with only one such statement, return the destination.
5045 Otherwise return NULL. */
5047 static rtx
5048 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
5050 if (!INSN_P (insn))
5051 return NULL;
5052 rtx pat = PATTERN (insn);
5053 if (GET_CODE (pat) == SET)
5054 return interesting_dest_for_shprep_1 (pat, call_dom);
5056 if (GET_CODE (pat) != PARALLEL)
5057 return NULL;
5058 rtx ret = NULL;
5059 for (int i = 0; i < XVECLEN (pat, 0); i++)
5061 rtx sub = XVECEXP (pat, 0, i);
5062 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
5063 continue;
5064 if (GET_CODE (sub) != SET
5065 || side_effects_p (sub))
5066 return NULL;
5067 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
5068 if (dest && ret)
5069 return NULL;
5070 if (dest)
5071 ret = dest;
5073 return ret;
5076 /* Split live ranges of pseudos that are loaded from hard registers in the
5077 first BB in a BB that dominates all non-sibling call if such a BB can be
5078 found and is not in a loop. Return true if the function has made any
5079 changes. */
5081 static bool
5082 split_live_ranges_for_shrink_wrap (void)
5084 basic_block bb, call_dom = NULL;
5085 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5086 rtx_insn *insn, *last_interesting_insn = NULL;
5087 auto_bitmap need_new, reachable;
5088 vec<basic_block> queue;
5090 if (!SHRINK_WRAPPING_ENABLED)
5091 return false;
5093 queue.create (n_basic_blocks_for_fn (cfun));
5095 FOR_EACH_BB_FN (bb, cfun)
5096 FOR_BB_INSNS (bb, insn)
5097 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
5099 if (bb == first)
5101 queue.release ();
5102 return false;
5105 bitmap_set_bit (need_new, bb->index);
5106 bitmap_set_bit (reachable, bb->index);
5107 queue.quick_push (bb);
5108 break;
5111 if (queue.is_empty ())
5113 queue.release ();
5114 return false;
5117 while (!queue.is_empty ())
5119 edge e;
5120 edge_iterator ei;
5122 bb = queue.pop ();
5123 FOR_EACH_EDGE (e, ei, bb->succs)
5124 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5125 && bitmap_set_bit (reachable, e->dest->index))
5126 queue.quick_push (e->dest);
5128 queue.release ();
5130 FOR_BB_INSNS (first, insn)
5132 rtx dest = interesting_dest_for_shprep (insn, NULL);
5133 if (!dest)
5134 continue;
5136 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
5137 return false;
5139 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
5140 use;
5141 use = DF_REF_NEXT_REG (use))
5143 int ubbi = DF_REF_BB (use)->index;
5144 if (bitmap_bit_p (reachable, ubbi))
5145 bitmap_set_bit (need_new, ubbi);
5147 last_interesting_insn = insn;
5150 if (!last_interesting_insn)
5151 return false;
5153 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5154 if (call_dom == first)
5155 return false;
5157 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5158 while (bb_loop_depth (call_dom) > 0)
5159 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5160 loop_optimizer_finalize ();
5162 if (call_dom == first)
5163 return false;
5165 calculate_dominance_info (CDI_POST_DOMINATORS);
5166 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5168 free_dominance_info (CDI_POST_DOMINATORS);
5169 return false;
5171 free_dominance_info (CDI_POST_DOMINATORS);
5173 if (dump_file)
5174 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5175 call_dom->index);
5177 bool ret = false;
5178 FOR_BB_INSNS (first, insn)
5180 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5181 if (!dest || dest == pic_offset_table_rtx)
5182 continue;
5184 bool need_newreg = false;
5185 df_ref use, next;
5186 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5188 rtx_insn *uin = DF_REF_INSN (use);
5189 next = DF_REF_NEXT_REG (use);
5191 if (DEBUG_INSN_P (uin))
5192 continue;
5194 basic_block ubb = BLOCK_FOR_INSN (uin);
5195 if (ubb == call_dom
5196 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5198 need_newreg = true;
5199 break;
5203 if (need_newreg)
5205 rtx newreg = ira_create_new_reg (dest);
5207 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5209 rtx_insn *uin = DF_REF_INSN (use);
5210 next = DF_REF_NEXT_REG (use);
5212 basic_block ubb = BLOCK_FOR_INSN (uin);
5213 if (ubb == call_dom
5214 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5215 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5218 rtx_insn *new_move = gen_move_insn (newreg, dest);
5219 emit_insn_after (new_move, bb_note (call_dom));
5220 if (dump_file)
5222 fprintf (dump_file, "Split live-range of register ");
5223 print_rtl_single (dump_file, dest);
5225 ret = true;
5228 if (insn == last_interesting_insn)
5229 break;
5231 apply_change_group ();
5232 return ret;
5235 /* Perform the second half of the transformation started in
5236 find_moveable_pseudos. We look for instances where the newly introduced
5237 pseudo remains unallocated, and remove it by moving the definition to
5238 just before its use, replacing the move instruction generated by
5239 find_moveable_pseudos. */
5240 static void
5241 move_unallocated_pseudos (void)
5243 int i;
5244 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5245 if (reg_renumber[i] < 0)
5247 int idx = i - first_moveable_pseudo;
5248 rtx other_reg = pseudo_replaced_reg[idx];
5249 /* The iterating range [first_moveable_pseudo, last_moveable_pseudo)
5250 covers every new pseudo created in find_moveable_pseudos,
5251 regardless of the validation with it is successful or not.
5252 So we need to skip the pseudos which were used in those failed
5253 validations to avoid unexpected DF info and consequent ICE.
5254 We only set pseudo_replaced_reg[] when the validation is successful
5255 in find_moveable_pseudos, it's enough to check it here. */
5256 if (!other_reg)
5257 continue;
5258 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5259 /* The use must follow all definitions of OTHER_REG, so we can
5260 insert the new definition immediately after any of them. */
5261 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5262 rtx_insn *move_insn = DF_REF_INSN (other_def);
5263 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5264 rtx set;
5265 int success;
5267 if (dump_file)
5268 fprintf (dump_file, "moving def of %d (insn %d now) ",
5269 REGNO (other_reg), INSN_UID (def_insn));
5271 delete_insn (move_insn);
5272 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5273 delete_insn (DF_REF_INSN (other_def));
5274 delete_insn (def_insn);
5276 set = single_set (newinsn);
5277 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5278 gcc_assert (success);
5279 if (dump_file)
5280 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5281 INSN_UID (newinsn), i);
5282 SET_REG_N_REFS (i, 0);
5285 first_moveable_pseudo = last_moveable_pseudo = 0;
5290 /* Code dealing with scratches (changing them onto
5291 pseudos and restoring them from the pseudos).
5293 We change scratches into pseudos at the beginning of IRA to
5294 simplify dealing with them (conflicts, hard register assignments).
5296 If the pseudo denoting scratch was spilled it means that we do not
5297 need a hard register for it. Such pseudos are transformed back to
5298 scratches at the end of LRA. */
5300 /* Description of location of a former scratch operand. */
5301 struct sloc
5303 rtx_insn *insn; /* Insn where the scratch was. */
5304 int nop; /* Number of the operand which was a scratch. */
5305 unsigned regno; /* regno gnerated instead of scratch */
5306 int icode; /* Original icode from which scratch was removed. */
5309 typedef struct sloc *sloc_t;
5311 /* Locations of the former scratches. */
5312 static vec<sloc_t> scratches;
5314 /* Bitmap of scratch regnos. */
5315 static bitmap_head scratch_bitmap;
5317 /* Bitmap of scratch operands. */
5318 static bitmap_head scratch_operand_bitmap;
5320 /* Return true if pseudo REGNO is made of SCRATCH. */
5321 bool
5322 ira_former_scratch_p (int regno)
5324 return bitmap_bit_p (&scratch_bitmap, regno);
5327 /* Return true if the operand NOP of INSN is a former scratch. */
5328 bool
5329 ira_former_scratch_operand_p (rtx_insn *insn, int nop)
5331 return bitmap_bit_p (&scratch_operand_bitmap,
5332 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
5335 /* Register operand NOP in INSN as a former scratch. It will be
5336 changed to scratch back, if it is necessary, at the LRA end. */
5337 void
5338 ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
5340 rtx op = *recog_data.operand_loc[nop];
5341 sloc_t loc = XNEW (struct sloc);
5342 ira_assert (REG_P (op));
5343 loc->insn = insn;
5344 loc->nop = nop;
5345 loc->regno = REGNO (op);
5346 loc->icode = icode;
5347 scratches.safe_push (loc);
5348 bitmap_set_bit (&scratch_bitmap, REGNO (op));
5349 bitmap_set_bit (&scratch_operand_bitmap,
5350 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
5351 add_reg_note (insn, REG_UNUSED, op);
5354 /* Return true if string STR contains constraint 'X'. */
5355 static bool
5356 contains_X_constraint_p (const char *str)
5358 int c;
5360 while ((c = *str))
5362 str += CONSTRAINT_LEN (c, str);
5363 if (c == 'X') return true;
5365 return false;
5368 /* Change INSN's scratches into pseudos and save their location.
5369 Return true if we changed any scratch. */
5370 bool
5371 ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file,
5372 rtx (*get_reg) (rtx original))
5374 int i;
5375 bool insn_changed_p;
5376 rtx reg, *loc;
5378 extract_insn (insn);
5379 insn_changed_p = false;
5380 for (i = 0; i < recog_data.n_operands; i++)
5382 loc = recog_data.operand_loc[i];
5383 if (GET_CODE (*loc) == SCRATCH && GET_MODE (*loc) != VOIDmode)
5385 if (! all_p && contains_X_constraint_p (recog_data.constraints[i]))
5386 continue;
5387 insn_changed_p = true;
5388 *loc = reg = get_reg (*loc);
5389 ira_register_new_scratch_op (insn, i, INSN_CODE (insn));
5390 if (ira_dump_file != NULL)
5391 fprintf (dump_file,
5392 "Removing SCRATCH to p%u in insn #%u (nop %d)\n",
5393 REGNO (reg), INSN_UID (insn), i);
5396 return insn_changed_p;
5399 /* Return new register of the same mode as ORIGINAL. Used in
5400 remove_scratches. */
5401 static rtx
5402 get_scratch_reg (rtx original)
5404 return gen_reg_rtx (GET_MODE (original));
5407 /* Change scratches into pseudos and save their location. Return true
5408 if we changed any scratch. */
5409 static bool
5410 remove_scratches (void)
5412 bool change_p = false;
5413 basic_block bb;
5414 rtx_insn *insn;
5416 scratches.create (get_max_uid ());
5417 bitmap_initialize (&scratch_bitmap, &reg_obstack);
5418 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
5419 FOR_EACH_BB_FN (bb, cfun)
5420 FOR_BB_INSNS (bb, insn)
5421 if (INSN_P (insn)
5422 && ira_remove_insn_scratches (insn, false, ira_dump_file, get_scratch_reg))
5424 /* Because we might use DF, we need to keep DF info up to date. */
5425 df_insn_rescan (insn);
5426 change_p = true;
5428 return change_p;
5431 /* Changes pseudos created by function remove_scratches onto scratches. */
5432 void
5433 ira_restore_scratches (FILE *dump_file)
5435 int regno, n;
5436 unsigned i;
5437 rtx *op_loc;
5438 sloc_t loc;
5440 for (i = 0; scratches.iterate (i, &loc); i++)
5442 /* Ignore already deleted insns. */
5443 if (NOTE_P (loc->insn)
5444 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
5445 continue;
5446 extract_insn (loc->insn);
5447 if (loc->icode != INSN_CODE (loc->insn))
5449 /* The icode doesn't match, which means the insn has been modified
5450 (e.g. register elimination). The scratch cannot be restored. */
5451 continue;
5453 op_loc = recog_data.operand_loc[loc->nop];
5454 if (REG_P (*op_loc)
5455 && ((regno = REGNO (*op_loc)) >= FIRST_PSEUDO_REGISTER)
5456 && reg_renumber[regno] < 0)
5458 /* It should be only case when scratch register with chosen
5459 constraint 'X' did not get memory or hard register. */
5460 ira_assert (ira_former_scratch_p (regno));
5461 *op_loc = gen_rtx_SCRATCH (GET_MODE (*op_loc));
5462 for (n = 0; n < recog_data.n_dups; n++)
5463 *recog_data.dup_loc[n]
5464 = *recog_data.operand_loc[(int) recog_data.dup_num[n]];
5465 if (dump_file != NULL)
5466 fprintf (dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
5467 INSN_UID (loc->insn), loc->nop);
5470 for (i = 0; scratches.iterate (i, &loc); i++)
5471 free (loc);
5472 scratches.release ();
5473 bitmap_clear (&scratch_bitmap);
5474 bitmap_clear (&scratch_operand_bitmap);
5479 /* If the backend knows where to allocate pseudos for hard
5480 register initial values, register these allocations now. */
5481 static void
5482 allocate_initial_values (void)
5484 if (targetm.allocate_initial_value)
5486 rtx hreg, preg, x;
5487 int i, regno;
5489 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5491 if (! initial_value_entry (i, &hreg, &preg))
5492 break;
5494 x = targetm.allocate_initial_value (hreg);
5495 regno = REGNO (preg);
5496 if (x && REG_N_SETS (regno) <= 1)
5498 if (MEM_P (x))
5499 reg_equiv_memory_loc (regno) = x;
5500 else
5502 basic_block bb;
5503 int new_regno;
5505 gcc_assert (REG_P (x));
5506 new_regno = REGNO (x);
5507 reg_renumber[regno] = new_regno;
5508 /* Poke the regno right into regno_reg_rtx so that even
5509 fixed regs are accepted. */
5510 SET_REGNO (preg, new_regno);
5511 /* Update global register liveness information. */
5512 FOR_EACH_BB_FN (bb, cfun)
5514 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5515 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5516 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5517 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5523 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5524 &hreg, &preg));
5531 /* True when we use LRA instead of reload pass for the current
5532 function. */
5533 bool ira_use_lra_p;
5535 /* True if we have allocno conflicts. It is false for non-optimized
5536 mode or when the conflict table is too big. */
5537 bool ira_conflicts_p;
5539 /* Saved between IRA and reload. */
5540 static int saved_flag_ira_share_spill_slots;
5542 /* This is the main entry of IRA. */
5543 static void
5544 ira (FILE *f)
5546 bool loops_p;
5547 int ira_max_point_before_emit;
5548 bool saved_flag_caller_saves = flag_caller_saves;
5549 enum ira_region saved_flag_ira_region = flag_ira_region;
5550 basic_block bb;
5551 edge_iterator ei;
5552 edge e;
5553 bool output_jump_reload_p = false;
5555 if (ira_use_lra_p)
5557 /* First put potential jump output reloads on the output edges
5558 as USE which will be removed at the end of LRA. The major
5559 goal is actually to create BBs for critical edges for LRA and
5560 populate them later by live info. In LRA it will be
5561 difficult to do this. */
5562 FOR_EACH_BB_FN (bb, cfun)
5564 rtx_insn *end = BB_END (bb);
5565 if (!JUMP_P (end))
5566 continue;
5567 extract_insn (end);
5568 for (int i = 0; i < recog_data.n_operands; i++)
5569 if (recog_data.operand_type[i] != OP_IN)
5571 bool skip_p = false;
5572 FOR_EACH_EDGE (e, ei, bb->succs)
5573 if (EDGE_CRITICAL_P (e)
5574 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5575 && (e->flags & EDGE_ABNORMAL))
5577 skip_p = true;
5578 break;
5580 if (skip_p)
5581 break;
5582 output_jump_reload_p = true;
5583 FOR_EACH_EDGE (e, ei, bb->succs)
5584 if (EDGE_CRITICAL_P (e)
5585 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
5587 start_sequence ();
5588 /* We need to put some no-op insn here. We can
5589 not put a note as commit_edges insertion will
5590 fail. */
5591 emit_insn (gen_rtx_USE (VOIDmode, const1_rtx));
5592 rtx_insn *insns = get_insns ();
5593 end_sequence ();
5594 insert_insn_on_edge (insns, e);
5596 break;
5599 if (output_jump_reload_p)
5600 commit_edge_insertions ();
5603 if (flag_ira_verbose < 10)
5605 internal_flag_ira_verbose = flag_ira_verbose;
5606 ira_dump_file = f;
5608 else
5610 internal_flag_ira_verbose = flag_ira_verbose - 10;
5611 ira_dump_file = stderr;
5614 clear_bb_flags ();
5616 /* Determine if the current function is a leaf before running IRA
5617 since this can impact optimizations done by the prologue and
5618 epilogue thus changing register elimination offsets.
5619 Other target callbacks may use crtl->is_leaf too, including
5620 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5621 crtl->is_leaf = leaf_function_p ();
5623 /* Perform target specific PIC register initialization. */
5624 targetm.init_pic_reg ();
5626 ira_conflicts_p = optimize > 0;
5628 /* Determine the number of pseudos actually requiring coloring. */
5629 unsigned int num_used_regs = 0;
5630 for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5631 if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5632 num_used_regs++;
5634 /* If there are too many pseudos and/or basic blocks (e.g. 10K pseudos and
5635 10K blocks or 100K pseudos and 1K blocks) or we have too many function
5636 insns, we will use simplified and faster algorithms in LRA. */
5637 lra_simple_p
5638 = (ira_use_lra_p
5639 && (num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun)
5640 /* max uid is a good evaluation of the number of insns as most
5641 optimizations are done on tree-SSA level. */
5642 || ((uint64_t) get_max_uid ()
5643 > (uint64_t) param_ira_simple_lra_insn_threshold * 1000)));
5645 if (lra_simple_p)
5647 /* It permits to skip live range splitting in LRA. */
5648 flag_caller_saves = false;
5649 /* There is no sense to do regional allocation when we use
5650 simplified LRA. */
5651 flag_ira_region = IRA_REGION_ONE;
5652 ira_conflicts_p = false;
5655 #ifndef IRA_NO_OBSTACK
5656 gcc_obstack_init (&ira_obstack);
5657 #endif
5658 bitmap_obstack_initialize (&ira_bitmap_obstack);
5660 /* LRA uses its own infrastructure to handle caller save registers. */
5661 if (flag_caller_saves && !ira_use_lra_p)
5662 init_caller_save ();
5664 setup_prohibited_mode_move_regs ();
5665 decrease_live_ranges_number ();
5666 df_note_add_problem ();
5668 /* DF_LIVE can't be used in the register allocator, too many other
5669 parts of the compiler depend on using the "classic" liveness
5670 interpretation of the DF_LR problem. See PR38711.
5671 Remove the problem, so that we don't spend time updating it in
5672 any of the df_analyze() calls during IRA/LRA. */
5673 if (optimize > 1)
5674 df_remove_problem (df_live);
5675 gcc_checking_assert (df_live == NULL);
5677 if (flag_checking)
5678 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5680 df_analyze ();
5682 init_reg_equiv ();
5683 if (ira_conflicts_p)
5685 calculate_dominance_info (CDI_DOMINATORS);
5687 if (split_live_ranges_for_shrink_wrap ())
5688 df_analyze ();
5690 free_dominance_info (CDI_DOMINATORS);
5693 df_clear_flags (DF_NO_INSN_RESCAN);
5695 indirect_jump_optimize ();
5696 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5697 df_analyze ();
5699 regstat_init_n_sets_and_refs ();
5700 regstat_compute_ri ();
5702 /* If we are not optimizing, then this is the only place before
5703 register allocation where dataflow is done. And that is needed
5704 to generate these warnings. */
5705 if (warn_clobbered)
5706 generate_setjmp_warnings ();
5708 /* update_equiv_regs can use reg classes of pseudos and they are set up in
5709 register pressure sensitive scheduling and loop invariant motion and in
5710 live range shrinking. This info can become obsolete if we add new pseudos
5711 since the last set up. Recalculate it again if the new pseudos were
5712 added. */
5713 if (resize_reg_info () && (flag_sched_pressure || flag_live_range_shrinkage
5714 || flag_ira_loop_pressure))
5715 ira_set_pseudo_classes (true, ira_dump_file);
5717 init_alias_analysis ();
5718 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5719 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5720 update_equiv_regs_prescan ();
5721 update_equiv_regs ();
5723 /* Don't move insns if live range shrinkage or register
5724 pressure-sensitive scheduling were done because it will not
5725 improve allocation but likely worsen insn scheduling. */
5726 if (optimize
5727 && !flag_live_range_shrinkage
5728 && !(flag_sched_pressure && flag_schedule_insns))
5729 combine_and_move_insns ();
5731 /* Gather additional equivalences with memory. */
5732 if (optimize)
5733 add_store_equivs ();
5735 loop_optimizer_finalize ();
5736 free_dominance_info (CDI_DOMINATORS);
5737 end_alias_analysis ();
5738 free (reg_equiv);
5740 /* Once max_regno changes, we need to free and re-init/re-compute
5741 some data structures like regstat_n_sets_and_refs and reg_info_p. */
5742 auto regstat_recompute_for_max_regno = []() {
5743 regstat_free_n_sets_and_refs ();
5744 regstat_free_ri ();
5745 regstat_init_n_sets_and_refs ();
5746 regstat_compute_ri ();
5747 resize_reg_info ();
5750 int max_regno_before_rm = max_reg_num ();
5751 if (ira_use_lra_p && remove_scratches ())
5753 ira_expand_reg_equiv ();
5754 /* For now remove_scatches is supposed to create pseudos when it
5755 succeeds, assert this happens all the time. Once it doesn't
5756 hold, we should guard the regstat recompute for the case
5757 max_regno changes. */
5758 gcc_assert (max_regno_before_rm != max_reg_num ());
5759 regstat_recompute_for_max_regno ();
5762 setup_reg_equiv ();
5763 grow_reg_equivs ();
5764 setup_reg_equiv_init ();
5766 allocated_reg_info_size = max_reg_num ();
5768 /* It is not worth to do such improvement when we use a simple
5769 allocation because of -O0 usage or because the function is too
5770 big. */
5771 if (ira_conflicts_p)
5772 find_moveable_pseudos ();
5774 max_regno_before_ira = max_reg_num ();
5775 ira_setup_eliminable_regset ();
5777 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5778 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5779 ira_move_loops_num = ira_additional_jumps_num = 0;
5781 ira_assert (current_loops == NULL);
5782 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5783 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5785 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5786 fprintf (ira_dump_file, "Building IRA IR\n");
5787 loops_p = ira_build ();
5789 ira_assert (ira_conflicts_p || !loops_p);
5791 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5792 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5793 /* It is just wasting compiler's time to pack spilled pseudos into
5794 stack slots in this case -- prohibit it. We also do this if
5795 there is setjmp call because a variable not modified between
5796 setjmp and longjmp the compiler is required to preserve its
5797 value and sharing slots does not guarantee it. */
5798 flag_ira_share_spill_slots = FALSE;
5800 ira_color ();
5802 ira_max_point_before_emit = ira_max_point;
5804 ira_initiate_emit_data ();
5806 ira_emit (loops_p);
5808 max_regno = max_reg_num ();
5809 if (ira_conflicts_p)
5811 if (! loops_p)
5813 if (! ira_use_lra_p)
5814 ira_initiate_assign ();
5816 else
5818 expand_reg_info ();
5820 if (ira_use_lra_p)
5822 ira_allocno_t a;
5823 ira_allocno_iterator ai;
5825 FOR_EACH_ALLOCNO (a, ai)
5827 int old_regno = ALLOCNO_REGNO (a);
5828 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5830 ALLOCNO_REGNO (a) = new_regno;
5832 if (old_regno != new_regno)
5833 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5834 reg_alternate_class (old_regno),
5835 reg_allocno_class (old_regno));
5838 else
5840 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5841 fprintf (ira_dump_file, "Flattening IR\n");
5842 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5844 /* New insns were generated: add notes and recalculate live
5845 info. */
5846 df_analyze ();
5848 /* ??? Rebuild the loop tree, but why? Does the loop tree
5849 change if new insns were generated? Can that be handled
5850 by updating the loop tree incrementally? */
5851 loop_optimizer_finalize ();
5852 free_dominance_info (CDI_DOMINATORS);
5853 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5854 | LOOPS_HAVE_RECORDED_EXITS);
5856 if (! ira_use_lra_p)
5858 setup_allocno_assignment_flags ();
5859 ira_initiate_assign ();
5860 ira_reassign_conflict_allocnos (max_regno);
5865 ira_finish_emit_data ();
5867 setup_reg_renumber ();
5869 calculate_allocation_cost ();
5871 #ifdef ENABLE_IRA_CHECKING
5872 if (ira_conflicts_p && ! ira_use_lra_p)
5873 /* Opposite to reload pass, LRA does not use any conflict info
5874 from IRA. We don't rebuild conflict info for LRA (through
5875 ira_flattening call) and cannot use the check here. We could
5876 rebuild this info for LRA in the check mode but there is a risk
5877 that code generated with the check and without it will be a bit
5878 different. Calling ira_flattening in any mode would be a
5879 wasting CPU time. So do not check the allocation for LRA. */
5880 check_allocation ();
5881 #endif
5883 if (max_regno != max_regno_before_ira)
5884 regstat_recompute_for_max_regno ();
5886 overall_cost_before = ira_overall_cost;
5887 if (! ira_conflicts_p)
5888 grow_reg_equivs ();
5889 else
5891 fix_reg_equiv_init ();
5893 #ifdef ENABLE_IRA_CHECKING
5894 print_redundant_copies ();
5895 #endif
5896 if (! ira_use_lra_p)
5898 ira_spilled_reg_stack_slots_num = 0;
5899 ira_spilled_reg_stack_slots
5900 = ((class ira_spilled_reg_stack_slot *)
5901 ira_allocate (max_regno
5902 * sizeof (class ira_spilled_reg_stack_slot)));
5903 memset ((void *)ira_spilled_reg_stack_slots, 0,
5904 max_regno * sizeof (class ira_spilled_reg_stack_slot));
5907 allocate_initial_values ();
5909 /* See comment for find_moveable_pseudos call. */
5910 if (ira_conflicts_p)
5911 move_unallocated_pseudos ();
5913 /* Restore original values. */
5914 if (lra_simple_p)
5916 flag_caller_saves = saved_flag_caller_saves;
5917 flag_ira_region = saved_flag_ira_region;
5921 /* Modify asm goto to avoid further trouble with this insn. We can
5922 not replace the insn by USE as in other asm insns as we still
5923 need to keep CFG consistency. */
5924 void
5925 ira_nullify_asm_goto (rtx_insn *insn)
5927 ira_assert (JUMP_P (insn) && INSN_CODE (insn) < 0);
5928 rtx tmp = extract_asm_operands (PATTERN (insn));
5929 PATTERN (insn) = gen_rtx_ASM_OPERANDS (VOIDmode, ggc_strdup (""), "", 0,
5930 rtvec_alloc (0),
5931 rtvec_alloc (0),
5932 ASM_OPERANDS_LABEL_VEC (tmp),
5933 ASM_OPERANDS_SOURCE_LOCATION(tmp));
5936 static void
5937 do_reload (void)
5939 basic_block bb;
5940 bool need_dce;
5941 unsigned pic_offset_table_regno = INVALID_REGNUM;
5943 if (flag_ira_verbose < 10)
5944 ira_dump_file = dump_file;
5946 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5947 after reload to avoid possible wrong usages of hard reg assigned
5948 to it. */
5949 if (pic_offset_table_rtx
5950 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5951 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5953 timevar_push (TV_RELOAD);
5954 if (ira_use_lra_p)
5956 if (current_loops != NULL)
5958 loop_optimizer_finalize ();
5959 free_dominance_info (CDI_DOMINATORS);
5961 FOR_ALL_BB_FN (bb, cfun)
5962 bb->loop_father = NULL;
5963 current_loops = NULL;
5965 ira_destroy ();
5967 lra (ira_dump_file);
5968 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5969 LRA. */
5970 vec_free (reg_equivs);
5971 reg_equivs = NULL;
5972 need_dce = false;
5974 else
5976 df_set_flags (DF_NO_INSN_RESCAN);
5977 build_insn_chain ();
5979 need_dce = reload (get_insns (), ira_conflicts_p);
5982 timevar_pop (TV_RELOAD);
5984 timevar_push (TV_IRA);
5986 if (ira_conflicts_p && ! ira_use_lra_p)
5988 ira_free (ira_spilled_reg_stack_slots);
5989 ira_finish_assign ();
5992 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5993 && overall_cost_before != ira_overall_cost)
5994 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5995 ira_overall_cost);
5997 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5999 if (! ira_use_lra_p)
6001 ira_destroy ();
6002 if (current_loops != NULL)
6004 loop_optimizer_finalize ();
6005 free_dominance_info (CDI_DOMINATORS);
6007 FOR_ALL_BB_FN (bb, cfun)
6008 bb->loop_father = NULL;
6009 current_loops = NULL;
6011 regstat_free_ri ();
6012 regstat_free_n_sets_and_refs ();
6015 if (optimize)
6016 cleanup_cfg (CLEANUP_EXPENSIVE);
6018 finish_reg_equiv ();
6020 bitmap_obstack_release (&ira_bitmap_obstack);
6021 #ifndef IRA_NO_OBSTACK
6022 obstack_free (&ira_obstack, NULL);
6023 #endif
6025 /* The code after the reload has changed so much that at this point
6026 we might as well just rescan everything. Note that
6027 df_rescan_all_insns is not going to help here because it does not
6028 touch the artificial uses and defs. */
6029 df_finish_pass (true);
6030 df_scan_alloc (NULL);
6031 df_scan_blocks ();
6033 if (optimize > 1)
6035 df_live_add_problem ();
6036 df_live_set_all_dirty ();
6039 if (optimize)
6040 df_analyze ();
6042 if (need_dce && optimize)
6043 run_fast_dce ();
6045 /* Diagnose uses of the hard frame pointer when it is used as a global
6046 register. Often we can get away with letting the user appropriate
6047 the frame pointer, but we should let them know when code generation
6048 makes that impossible. */
6049 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
6051 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
6052 error_at (DECL_SOURCE_LOCATION (current_function_decl),
6053 "frame pointer required, but reserved");
6054 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
6057 /* If we are doing generic stack checking, give a warning if this
6058 function's frame size is larger than we expect. */
6059 if (flag_stack_check == GENERIC_STACK_CHECK)
6061 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
6063 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6064 if (df_regs_ever_live_p (i)
6065 && !fixed_regs[i]
6066 && !crtl->abi->clobbers_full_reg_p (i))
6067 size += UNITS_PER_WORD;
6069 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
6070 warning (0, "frame size too large for reliable stack checking");
6073 if (pic_offset_table_regno != INVALID_REGNUM)
6074 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
6076 timevar_pop (TV_IRA);
6079 /* Run the integrated register allocator. */
6081 namespace {
6083 const pass_data pass_data_ira =
6085 RTL_PASS, /* type */
6086 "ira", /* name */
6087 OPTGROUP_NONE, /* optinfo_flags */
6088 TV_IRA, /* tv_id */
6089 0, /* properties_required */
6090 0, /* properties_provided */
6091 0, /* properties_destroyed */
6092 0, /* todo_flags_start */
6093 TODO_do_not_ggc_collect, /* todo_flags_finish */
6096 class pass_ira : public rtl_opt_pass
6098 public:
6099 pass_ira (gcc::context *ctxt)
6100 : rtl_opt_pass (pass_data_ira, ctxt)
6103 /* opt_pass methods: */
6104 bool gate (function *) final override
6106 return !targetm.no_register_allocation;
6108 unsigned int execute (function *) final override
6110 ira (dump_file);
6111 return 0;
6114 }; // class pass_ira
6116 } // anon namespace
6118 rtl_opt_pass *
6119 make_pass_ira (gcc::context *ctxt)
6121 return new pass_ira (ctxt);
6124 namespace {
6126 const pass_data pass_data_reload =
6128 RTL_PASS, /* type */
6129 "reload", /* name */
6130 OPTGROUP_NONE, /* optinfo_flags */
6131 TV_RELOAD, /* tv_id */
6132 0, /* properties_required */
6133 0, /* properties_provided */
6134 0, /* properties_destroyed */
6135 0, /* todo_flags_start */
6136 0, /* todo_flags_finish */
6139 class pass_reload : public rtl_opt_pass
6141 public:
6142 pass_reload (gcc::context *ctxt)
6143 : rtl_opt_pass (pass_data_reload, ctxt)
6146 /* opt_pass methods: */
6147 bool gate (function *) final override
6149 return !targetm.no_register_allocation;
6151 unsigned int execute (function *) final override
6153 do_reload ();
6154 return 0;
6157 }; // class pass_reload
6159 } // anon namespace
6161 rtl_opt_pass *
6162 make_pass_reload (gcc::context *ctxt)
6164 return new pass_reload (ctxt);