1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains various simple utilities to analyze the CFG. */
25 #include "coretypes.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
35 /* Store the data structures necessary for depth-first search. */
36 struct depth_first_search_dsS
{
37 /* stack for backtracking during the algorithm */
40 /* number of edges in the stack. That is, positions 0, ..., sp-1
44 /* record of basic blocks already seen by depth-first search */
45 sbitmap visited_blocks
;
47 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
49 static void flow_dfs_compute_reverse_init
50 PARAMS ((depth_first_search_ds
));
51 static void flow_dfs_compute_reverse_add_bb
52 PARAMS ((depth_first_search_ds
, basic_block
));
53 static basic_block flow_dfs_compute_reverse_execute
54 PARAMS ((depth_first_search_ds
));
55 static void flow_dfs_compute_reverse_finish
56 PARAMS ((depth_first_search_ds
));
57 static void remove_fake_successors
PARAMS ((basic_block
));
58 static bool need_fake_edge_p
PARAMS ((rtx
));
59 static bool flow_active_insn_p
PARAMS ((rtx
));
61 /* Like active_insn_p, except keep the return value clobber around
65 flow_active_insn_p (insn
)
68 if (active_insn_p (insn
))
71 /* A clobber of the function return value exists for buggy
72 programs that fail to return a value. Its effect is to
73 keep the return value from being live across the entire
74 function. If we allow it to be skipped, we introduce the
75 possibility for register livetime aborts. */
76 if (GET_CODE (PATTERN (insn
)) == CLOBBER
77 && GET_CODE (XEXP (PATTERN (insn
), 0)) == REG
78 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))
84 /* Return true if the block has no effect and only forwards control flow to
85 its single destination. */
88 forwarder_block_p (bb
)
93 if (bb
== EXIT_BLOCK_PTR
|| bb
== ENTRY_BLOCK_PTR
94 || !bb
->succ
|| bb
->succ
->succ_next
)
97 for (insn
= bb
->head
; insn
!= bb
->end
; insn
= NEXT_INSN (insn
))
98 if (INSN_P (insn
) && flow_active_insn_p (insn
))
101 return (!INSN_P (insn
)
102 || (GET_CODE (insn
) == JUMP_INSN
&& simplejump_p (insn
))
103 || !flow_active_insn_p (insn
));
106 /* Return nonzero if we can reach target from src by falling through. */
109 can_fallthru (src
, target
)
110 basic_block src
, target
;
113 rtx insn2
= target
->head
;
115 if (src
->next_bb
!= target
)
118 if (!active_insn_p (insn2
))
119 insn2
= next_active_insn (insn2
);
121 /* ??? Later we may add code to move jump tables offline. */
122 return next_active_insn (insn
) == insn2
;
125 /* Mark the back edges in DFS traversal.
126 Return nonzero if a loop (natural or otherwise) is present.
127 Inspired by Depth_First_Search_PP described in:
129 Advanced Compiler Design and Implementation
131 Morgan Kaufmann, 1997
133 and heavily borrowed from flow_depth_first_order_compute. */
136 mark_dfs_back_edges ()
147 /* Allocate the preorder and postorder number arrays. */
148 pre
= (int *) xcalloc (last_basic_block
, sizeof (int));
149 post
= (int *) xcalloc (last_basic_block
, sizeof (int));
151 /* Allocate stack for back-tracking up CFG. */
152 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
155 /* Allocate bitmap to track nodes that have been visited. */
156 visited
= sbitmap_alloc (last_basic_block
);
158 /* None of the nodes in the CFG have been visited yet. */
159 sbitmap_zero (visited
);
161 /* Push the first edge on to the stack. */
162 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
170 /* Look at the edge on the top of the stack. */
174 e
->flags
&= ~EDGE_DFS_BACK
;
176 /* Check if the edge destination has been visited yet. */
177 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
179 /* Mark that we have visited the destination. */
180 SET_BIT (visited
, dest
->index
);
182 pre
[dest
->index
] = prenum
++;
185 /* Since the DEST node has been visited for the first
186 time, check its successors. */
187 stack
[sp
++] = dest
->succ
;
190 post
[dest
->index
] = postnum
++;
194 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
195 && pre
[src
->index
] >= pre
[dest
->index
]
196 && post
[dest
->index
] == 0)
197 e
->flags
|= EDGE_DFS_BACK
, found
= true;
199 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
200 post
[src
->index
] = postnum
++;
203 stack
[sp
- 1] = e
->succ_next
;
212 sbitmap_free (visited
);
217 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
220 set_edge_can_fallthru_flag ()
228 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
229 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
230 if (e
->flags
& EDGE_FALLTHRU
)
231 e
->flags
|= EDGE_CAN_FALLTHRU
;
233 /* If the BB ends with an invertable condjump all (2) edges are
234 CAN_FALLTHRU edges. */
235 if (!bb
->succ
|| !bb
->succ
->succ_next
|| bb
->succ
->succ_next
->succ_next
)
237 if (!any_condjump_p (bb
->end
))
239 if (!invert_jump (bb
->end
, JUMP_LABEL (bb
->end
), 0))
241 invert_jump (bb
->end
, JUMP_LABEL (bb
->end
), 0);
242 bb
->succ
->flags
|= EDGE_CAN_FALLTHRU
;
243 bb
->succ
->succ_next
->flags
|= EDGE_CAN_FALLTHRU
;
247 /* Return true if we need to add fake edge to exit.
248 Helper function for the flow_call_edges_add. */
251 need_fake_edge_p (insn
)
257 if ((GET_CODE (insn
) == CALL_INSN
258 && !SIBLING_CALL_P (insn
)
259 && !find_reg_note (insn
, REG_NORETURN
, NULL
)
260 && !find_reg_note (insn
, REG_ALWAYS_RETURN
, NULL
)
261 && !CONST_OR_PURE_CALL_P (insn
)))
264 return ((GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
265 && MEM_VOLATILE_P (PATTERN (insn
)))
266 || (GET_CODE (PATTERN (insn
)) == PARALLEL
267 && asm_noperands (insn
) != -1
268 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn
), 0, 0)))
269 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
272 /* Add fake edges to the function exit for any non constant and non noreturn
273 calls, volatile inline assembly in the bitmap of blocks specified by
274 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
277 The goal is to expose cases in which entering a basic block does not imply
278 that all subsequent instructions must be executed. */
281 flow_call_edges_add (blocks
)
285 int blocks_split
= 0;
286 int last_bb
= last_basic_block
;
287 bool check_last_block
= false;
289 if (n_basic_blocks
== 0)
293 check_last_block
= true;
295 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
297 /* In the last basic block, before epilogue generation, there will be
298 a fallthru edge to EXIT. Special care is required if the last insn
299 of the last basic block is a call because make_edge folds duplicate
300 edges, which would result in the fallthru edge also being marked
301 fake, which would result in the fallthru edge being removed by
302 remove_fake_edges, which would result in an invalid CFG.
304 Moreover, we can't elide the outgoing fake edge, since the block
305 profiler needs to take this into account in order to solve the minimal
306 spanning tree in the case that the call doesn't return.
308 Handle this by adding a dummy instruction in a new last basic block. */
309 if (check_last_block
)
311 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
314 /* Back up past insns that must be kept in the same block as a call. */
315 while (insn
!= bb
->head
316 && keep_with_call_p (insn
))
317 insn
= PREV_INSN (insn
);
319 if (need_fake_edge_p (insn
))
323 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
324 if (e
->dest
== EXIT_BLOCK_PTR
)
327 insert_insn_on_edge (gen_rtx_USE (VOIDmode
, const0_rtx
), e
);
328 commit_edge_insertions ();
332 /* Now add fake edges to the function exit for any non constant
333 calls since there is no way that we can determine if they will
336 for (i
= 0; i
< last_bb
; i
++)
338 basic_block bb
= BASIC_BLOCK (i
);
345 if (blocks
&& !TEST_BIT (blocks
, i
))
348 for (insn
= bb
->end
; ; insn
= prev_insn
)
350 prev_insn
= PREV_INSN (insn
);
351 if (need_fake_edge_p (insn
))
354 rtx split_at_insn
= insn
;
356 /* Don't split the block between a call and an insn that should
357 remain in the same block as the call. */
358 if (GET_CODE (insn
) == CALL_INSN
)
359 while (split_at_insn
!= bb
->end
360 && keep_with_call_p (NEXT_INSN (split_at_insn
)))
361 split_at_insn
= NEXT_INSN (split_at_insn
);
363 /* The handling above of the final block before the epilogue
364 should be enough to verify that there is no edge to the exit
365 block in CFG already. Calling make_edge in such case would
366 cause us to mark that edge as fake and remove it later. */
368 #ifdef ENABLE_CHECKING
369 if (split_at_insn
== bb
->end
)
370 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
371 if (e
->dest
== EXIT_BLOCK_PTR
)
375 /* Note that the following may create a new basic block
376 and renumber the existing basic blocks. */
377 if (split_at_insn
!= bb
->end
)
379 e
= split_block (bb
, split_at_insn
);
384 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
387 if (insn
== bb
->head
)
398 /* Find unreachable blocks. An unreachable block will have 0 in
399 the reachable bit in block->flags. A nonzero value indicates the
400 block is reachable. */
403 find_unreachable_blocks ()
406 basic_block
*tos
, *worklist
, bb
;
409 (basic_block
*) xmalloc (sizeof (basic_block
) * n_basic_blocks
);
411 /* Clear all the reachability flags. */
414 bb
->flags
&= ~BB_REACHABLE
;
416 /* Add our starting points to the worklist. Almost always there will
417 be only one. It isn't inconceivable that we might one day directly
418 support Fortran alternate entry points. */
420 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
424 /* Mark the block reachable. */
425 e
->dest
->flags
|= BB_REACHABLE
;
428 /* Iterate: find everything reachable from what we've already seen. */
430 while (tos
!= worklist
)
432 basic_block b
= *--tos
;
434 for (e
= b
->succ
; e
; e
= e
->succ_next
)
435 if (!(e
->dest
->flags
& BB_REACHABLE
))
438 e
->dest
->flags
|= BB_REACHABLE
;
445 /* Functions to access an edge list with a vector representation.
446 Enough data is kept such that given an index number, the
447 pred and succ that edge represents can be determined, or
448 given a pred and a succ, its index number can be returned.
449 This allows algorithms which consume a lot of memory to
450 represent the normally full matrix of edge (pred,succ) with a
451 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
452 wasted space in the client code due to sparse flow graphs. */
454 /* This functions initializes the edge list. Basically the entire
455 flowgraph is processed, and all edges are assigned a number,
456 and the data structure is filled in. */
461 struct edge_list
*elist
;
467 block_count
= n_basic_blocks
+ 2; /* Include the entry and exit blocks. */
471 /* Determine the number of edges in the flow graph by counting successor
472 edges on each basic block. */
473 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
475 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
479 elist
= (struct edge_list
*) xmalloc (sizeof (struct edge_list
));
480 elist
->num_blocks
= block_count
;
481 elist
->num_edges
= num_edges
;
482 elist
->index_to_edge
= (edge
*) xmalloc (sizeof (edge
) * num_edges
);
486 /* Follow successors of blocks, and register these edges. */
487 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
488 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
489 elist
->index_to_edge
[num_edges
++] = e
;
494 /* This function free's memory associated with an edge list. */
497 free_edge_list (elist
)
498 struct edge_list
*elist
;
502 free (elist
->index_to_edge
);
507 /* This function provides debug output showing an edge list. */
510 print_edge_list (f
, elist
)
512 struct edge_list
*elist
;
516 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
517 elist
->num_blocks
- 2, elist
->num_edges
);
519 for (x
= 0; x
< elist
->num_edges
; x
++)
521 fprintf (f
, " %-4d - edge(", x
);
522 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
523 fprintf (f
, "entry,");
525 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
527 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
528 fprintf (f
, "exit)\n");
530 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
534 /* This function provides an internal consistency check of an edge list,
535 verifying that all edges are present, and that there are no
539 verify_edge_list (f
, elist
)
541 struct edge_list
*elist
;
543 int pred
, succ
, index
;
545 basic_block bb
, p
, s
;
547 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
549 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
551 pred
= e
->src
->index
;
552 succ
= e
->dest
->index
;
553 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
554 if (index
== EDGE_INDEX_NO_EDGE
)
556 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
560 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
561 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
562 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
563 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
564 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
565 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
569 /* We've verified that all the edges are in the list, now lets make sure
570 there are no spurious edges in the list. */
572 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
573 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
577 for (e
= p
->succ
; e
; e
= e
->succ_next
)
584 for (e
= s
->pred
; e
; e
= e
->pred_next
)
591 if (EDGE_INDEX (elist
, p
, s
)
592 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
593 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
595 if (EDGE_INDEX (elist
, p
, s
)
596 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
597 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
598 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
602 /* This routine will determine what, if any, edge there is between
603 a specified predecessor and successor. */
606 find_edge_index (edge_list
, pred
, succ
)
607 struct edge_list
*edge_list
;
608 basic_block pred
, succ
;
612 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
613 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
614 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
617 return (EDGE_INDEX_NO_EDGE
);
620 /* Dump the list of basic blocks in the bitmap NODES. */
623 flow_nodes_print (str
, nodes
, file
)
633 fprintf (file
, "%s { ", str
);
634 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {fprintf (file
, "%d ", node
);});
638 /* Dump the list of edges in the array EDGE_LIST. */
641 flow_edge_list_print (str
, edge_list
, num_edges
, file
)
643 const edge
*edge_list
;
652 fprintf (file
, "%s { ", str
);
653 for (i
= 0; i
< num_edges
; i
++)
654 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
655 edge_list
[i
]->dest
->index
);
661 /* This routine will remove any fake successor edges for a basic block.
662 When the edge is removed, it is also removed from whatever predecessor
666 remove_fake_successors (bb
)
671 for (e
= bb
->succ
; e
;)
676 if ((tmp
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
681 /* This routine will remove all fake edges from the flow graph. If
682 we remove all fake successors, it will automatically remove all
683 fake predecessors. */
690 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
691 remove_fake_successors (bb
);
694 /* This function will add a fake edge between any block which has no
695 successors, and the exit block. Some data flow equations require these
699 add_noreturn_fake_exit_edges ()
704 if (bb
->succ
== NULL
)
705 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
708 /* This function adds a fake edge between any infinite loops to the
709 exit block. Some optimizations require a path from each node to
712 See also Morgan, Figure 3.10, pp. 82-83.
714 The current implementation is ugly, not attempting to minimize the
715 number of inserted fake edges. To reduce the number of fake edges
716 to insert, add fake edges from _innermost_ loops containing only
717 nodes not reachable from the exit block. */
720 connect_infinite_loops_to_exit ()
722 basic_block unvisited_block
;
723 struct depth_first_search_dsS dfs_ds
;
725 /* Perform depth-first search in the reverse graph to find nodes
726 reachable from the exit block. */
727 flow_dfs_compute_reverse_init (&dfs_ds
);
728 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
730 /* Repeatedly add fake edges, updating the unreachable nodes. */
733 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
);
734 if (!unvisited_block
)
737 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
738 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
741 flow_dfs_compute_reverse_finish (&dfs_ds
);
745 /* Compute reverse top sort order */
748 flow_reverse_top_sort_order_compute (rts_order
)
756 /* Allocate stack for back-tracking up CFG. */
757 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
760 /* Allocate bitmap to track nodes that have been visited. */
761 visited
= sbitmap_alloc (last_basic_block
);
763 /* None of the nodes in the CFG have been visited yet. */
764 sbitmap_zero (visited
);
766 /* Push the first edge on to the stack. */
767 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
775 /* Look at the edge on the top of the stack. */
780 /* Check if the edge destination has been visited yet. */
781 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
783 /* Mark that we have visited the destination. */
784 SET_BIT (visited
, dest
->index
);
787 /* Since the DEST node has been visited for the first
788 time, check its successors. */
789 stack
[sp
++] = dest
->succ
;
791 rts_order
[postnum
++] = dest
->index
;
795 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
796 rts_order
[postnum
++] = src
->index
;
799 stack
[sp
- 1] = e
->succ_next
;
806 sbitmap_free (visited
);
809 /* Compute the depth first search order and store in the array
810 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
811 RC_ORDER is nonzero, return the reverse completion number for each
812 node. Returns the number of nodes visited. A depth first search
813 tries to get as far away from the starting point as quickly as
817 flow_depth_first_order_compute (dfs_order
, rc_order
)
824 int rcnum
= n_basic_blocks
- 1;
827 /* Allocate stack for back-tracking up CFG. */
828 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
831 /* Allocate bitmap to track nodes that have been visited. */
832 visited
= sbitmap_alloc (last_basic_block
);
834 /* None of the nodes in the CFG have been visited yet. */
835 sbitmap_zero (visited
);
837 /* Push the first edge on to the stack. */
838 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
846 /* Look at the edge on the top of the stack. */
851 /* Check if the edge destination has been visited yet. */
852 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
854 /* Mark that we have visited the destination. */
855 SET_BIT (visited
, dest
->index
);
858 dfs_order
[dfsnum
] = dest
->index
;
863 /* Since the DEST node has been visited for the first
864 time, check its successors. */
865 stack
[sp
++] = dest
->succ
;
867 /* There are no successors for the DEST node so assign
868 its reverse completion number. */
869 rc_order
[rcnum
--] = dest
->index
;
873 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
875 /* There are no more successors for the SRC node
876 so assign its reverse completion number. */
877 rc_order
[rcnum
--] = src
->index
;
880 stack
[sp
- 1] = e
->succ_next
;
887 sbitmap_free (visited
);
889 /* The number of nodes visited should not be greater than
891 if (dfsnum
> n_basic_blocks
)
894 /* There are some nodes left in the CFG that are unreachable. */
895 if (dfsnum
< n_basic_blocks
)
904 struct dfst_node
**node
;
905 struct dfst_node
*up
;
908 /* Compute a preorder transversal ordering such that a sub-tree which
909 is the source of a cross edge appears before the sub-tree which is
910 the destination of the cross edge. This allows for easy detection
911 of all the entry blocks for a loop.
913 The ordering is compute by:
915 1) Generating a depth first spanning tree.
917 2) Walking the resulting tree from right to left. */
920 flow_preorder_transversal_compute (pot_order
)
929 struct dfst_node
*node
;
930 struct dfst_node
*dfst
;
933 /* Allocate stack for back-tracking up CFG. */
934 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
937 /* Allocate the tree. */
938 dfst
= (struct dfst_node
*) xcalloc (last_basic_block
,
939 sizeof (struct dfst_node
));
944 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
949 ? (struct dfst_node
**) xcalloc (max_successors
,
950 sizeof (struct dfst_node
*))
954 /* Allocate bitmap to track nodes that have been visited. */
955 visited
= sbitmap_alloc (last_basic_block
);
957 /* None of the nodes in the CFG have been visited yet. */
958 sbitmap_zero (visited
);
960 /* Push the first edge on to the stack. */
961 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
968 /* Look at the edge on the top of the stack. */
973 /* Check if the edge destination has been visited yet. */
974 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
976 /* Mark that we have visited the destination. */
977 SET_BIT (visited
, dest
->index
);
979 /* Add the destination to the preorder tree. */
980 if (src
!= ENTRY_BLOCK_PTR
)
982 dfst
[src
->index
].node
[dfst
[src
->index
].nnodes
++]
983 = &dfst
[dest
->index
];
984 dfst
[dest
->index
].up
= &dfst
[src
->index
];
988 /* Since the DEST node has been visited for the first
989 time, check its successors. */
990 stack
[sp
++] = dest
->succ
;
993 else if (e
->succ_next
)
994 stack
[sp
- 1] = e
->succ_next
;
1000 sbitmap_free (visited
);
1002 /* Record the preorder transversal order by
1003 walking the tree from right to left. */
1006 node
= &dfst
[ENTRY_BLOCK_PTR
->next_bb
->index
];
1013 node
= node
->node
[--node
->nnodes
];
1014 pot_order
[i
++] = node
- dfst
;
1020 /* Free the tree. */
1022 for (i
= 0; i
< last_basic_block
; i
++)
1024 free (dfst
[i
].node
);
1029 /* Compute the depth first search order on the _reverse_ graph and
1030 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1031 Returns the number of nodes visited.
1033 The computation is split into three pieces:
1035 flow_dfs_compute_reverse_init () creates the necessary data
1038 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1039 structures. The block will start the search.
1041 flow_dfs_compute_reverse_execute () continues (or starts) the
1042 search using the block on the top of the stack, stopping when the
1045 flow_dfs_compute_reverse_finish () destroys the necessary data
1048 Thus, the user will probably call ..._init(), call ..._add_bb() to
1049 add a beginning basic block to the stack, call ..._execute(),
1050 possibly add another bb to the stack and again call ..._execute(),
1051 ..., and finally call _finish(). */
1053 /* Initialize the data structures used for depth-first search on the
1054 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1055 added to the basic block stack. DATA is the current depth-first
1056 search context. If INITIALIZE_STACK is nonzero, there is an
1057 element on the stack. */
1060 flow_dfs_compute_reverse_init (data
)
1061 depth_first_search_ds data
;
1063 /* Allocate stack for back-tracking up CFG. */
1064 data
->stack
= (basic_block
*) xmalloc ((n_basic_blocks
- (INVALID_BLOCK
+ 1))
1065 * sizeof (basic_block
));
1068 /* Allocate bitmap to track nodes that have been visited. */
1069 data
->visited_blocks
= sbitmap_alloc (last_basic_block
- (INVALID_BLOCK
+ 1));
1071 /* None of the nodes in the CFG have been visited yet. */
1072 sbitmap_zero (data
->visited_blocks
);
1077 /* Add the specified basic block to the top of the dfs data
1078 structures. When the search continues, it will start at the
1082 flow_dfs_compute_reverse_add_bb (data
, bb
)
1083 depth_first_search_ds data
;
1086 data
->stack
[data
->sp
++] = bb
;
1087 SET_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1));
1090 /* Continue the depth-first search through the reverse graph starting with the
1091 block at the stack's top and ending when the stack is empty. Visited nodes
1092 are marked. Returns an unvisited basic block, or NULL if there is none
1096 flow_dfs_compute_reverse_execute (data
)
1097 depth_first_search_ds data
;
1102 while (data
->sp
> 0)
1104 bb
= data
->stack
[--data
->sp
];
1106 /* Perform depth-first search on adjacent vertices. */
1107 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
1108 if (!TEST_BIT (data
->visited_blocks
,
1109 e
->src
->index
- (INVALID_BLOCK
+ 1)))
1110 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
1113 /* Determine if there are unvisited basic blocks. */
1114 FOR_BB_BETWEEN (bb
, EXIT_BLOCK_PTR
, NULL
, prev_bb
)
1115 if (!TEST_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1)))
1121 /* Destroy the data structures needed for depth-first search on the
1125 flow_dfs_compute_reverse_finish (data
)
1126 depth_first_search_ds data
;
1129 sbitmap_free (data
->visited_blocks
);
1132 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1133 if REVERSE, go against direction of edges. Returns number of blocks
1134 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1136 dfs_enumerate_from (bb
, reverse
, predicate
, rslt
, rslt_max
, data
)
1139 bool (*predicate
) PARAMS ((basic_block
, void *));
1144 basic_block
*st
, lbb
;
1147 st
= xcalloc (rslt_max
, sizeof (basic_block
));
1148 rslt
[tv
++] = st
[sp
++] = bb
;
1149 bb
->flags
|= BB_VISITED
;
1156 for (e
= lbb
->pred
; e
; e
= e
->pred_next
)
1157 if (!(e
->src
->flags
& BB_VISITED
) && predicate (e
->src
, data
))
1161 rslt
[tv
++] = st
[sp
++] = e
->src
;
1162 e
->src
->flags
|= BB_VISITED
;
1167 for (e
= lbb
->succ
; e
; e
= e
->succ_next
)
1168 if (!(e
->dest
->flags
& BB_VISITED
) && predicate (e
->dest
, data
))
1172 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1173 e
->dest
->flags
|= BB_VISITED
;
1178 for (sp
= 0; sp
< tv
; sp
++)
1179 rslt
[sp
]->flags
&= ~BB_VISITED
;