2011-01-30 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vect-loop.c
blobd474688ebecba312228d4c2ac29e4f4201cbf68a
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "optabs.h"
39 #include "params.h"
40 #include "diagnostic-core.h"
41 #include "tree-chrec.h"
42 #include "tree-scalar-evolution.h"
43 #include "tree-vectorizer.h"
44 #include "target.h"
46 /* Loop Vectorization Pass.
48 This pass tries to vectorize loops.
50 For example, the vectorizer transforms the following simple loop:
52 short a[N]; short b[N]; short c[N]; int i;
54 for (i=0; i<N; i++){
55 a[i] = b[i] + c[i];
58 as if it was manually vectorized by rewriting the source code into:
60 typedef int __attribute__((mode(V8HI))) v8hi;
61 short a[N]; short b[N]; short c[N]; int i;
62 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
63 v8hi va, vb, vc;
65 for (i=0; i<N/8; i++){
66 vb = pb[i];
67 vc = pc[i];
68 va = vb + vc;
69 pa[i] = va;
72 The main entry to this pass is vectorize_loops(), in which
73 the vectorizer applies a set of analyses on a given set of loops,
74 followed by the actual vectorization transformation for the loops that
75 had successfully passed the analysis phase.
76 Throughout this pass we make a distinction between two types of
77 data: scalars (which are represented by SSA_NAMES), and memory references
78 ("data-refs"). These two types of data require different handling both
79 during analysis and transformation. The types of data-refs that the
80 vectorizer currently supports are ARRAY_REFS which base is an array DECL
81 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
82 accesses are required to have a simple (consecutive) access pattern.
84 Analysis phase:
85 ===============
86 The driver for the analysis phase is vect_analyze_loop().
87 It applies a set of analyses, some of which rely on the scalar evolution
88 analyzer (scev) developed by Sebastian Pop.
90 During the analysis phase the vectorizer records some information
91 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
92 loop, as well as general information about the loop as a whole, which is
93 recorded in a "loop_vec_info" struct attached to each loop.
95 Transformation phase:
96 =====================
97 The loop transformation phase scans all the stmts in the loop, and
98 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
99 the loop that needs to be vectorized. It inserts the vector code sequence
100 just before the scalar stmt S, and records a pointer to the vector code
101 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
102 attached to S). This pointer will be used for the vectorization of following
103 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
104 otherwise, we rely on dead code elimination for removing it.
106 For example, say stmt S1 was vectorized into stmt VS1:
108 VS1: vb = px[i];
109 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
110 S2: a = b;
112 To vectorize stmt S2, the vectorizer first finds the stmt that defines
113 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
114 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
115 resulting sequence would be:
117 VS1: vb = px[i];
118 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
119 VS2: va = vb;
120 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
122 Operands that are not SSA_NAMEs, are data-refs that appear in
123 load/store operations (like 'x[i]' in S1), and are handled differently.
125 Target modeling:
126 =================
127 Currently the only target specific information that is used is the
128 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
129 Targets that can support different sizes of vectors, for now will need
130 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
131 flexibility will be added in the future.
133 Since we only vectorize operations which vector form can be
134 expressed using existing tree codes, to verify that an operation is
135 supported, the vectorizer checks the relevant optab at the relevant
136 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
137 the value found is CODE_FOR_nothing, then there's no target support, and
138 we can't vectorize the stmt.
140 For additional information on this project see:
141 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
185 if (vect_print_dump_info (REPORT_DETAILS))
186 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
188 for (i = 0; i < nbbs; i++)
190 basic_block bb = bbs[i];
192 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
194 phi = gsi_stmt (si);
195 stmt_info = vinfo_for_stmt (phi);
196 if (vect_print_dump_info (REPORT_DETAILS))
198 fprintf (vect_dump, "==> examining phi: ");
199 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
202 gcc_assert (stmt_info);
204 if (STMT_VINFO_RELEVANT_P (stmt_info))
206 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
207 scalar_type = TREE_TYPE (PHI_RESULT (phi));
209 if (vect_print_dump_info (REPORT_DETAILS))
211 fprintf (vect_dump, "get vectype for scalar type: ");
212 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
215 vectype = get_vectype_for_scalar_type (scalar_type);
216 if (!vectype)
218 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
220 fprintf (vect_dump,
221 "not vectorized: unsupported data-type ");
222 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
224 return false;
226 STMT_VINFO_VECTYPE (stmt_info) = vectype;
228 if (vect_print_dump_info (REPORT_DETAILS))
230 fprintf (vect_dump, "vectype: ");
231 print_generic_expr (vect_dump, vectype, TDF_SLIM);
234 nunits = TYPE_VECTOR_SUBPARTS (vectype);
235 if (vect_print_dump_info (REPORT_DETAILS))
236 fprintf (vect_dump, "nunits = %d", nunits);
238 if (!vectorization_factor
239 || (nunits > vectorization_factor))
240 vectorization_factor = nunits;
244 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
246 tree vf_vectype;
247 gimple stmt = gsi_stmt (si);
248 stmt_info = vinfo_for_stmt (stmt);
250 if (vect_print_dump_info (REPORT_DETAILS))
252 fprintf (vect_dump, "==> examining statement: ");
253 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
256 gcc_assert (stmt_info);
258 /* skip stmts which do not need to be vectorized. */
259 if (!STMT_VINFO_RELEVANT_P (stmt_info)
260 && !STMT_VINFO_LIVE_P (stmt_info))
262 if (vect_print_dump_info (REPORT_DETAILS))
263 fprintf (vect_dump, "skip.");
264 continue;
267 if (gimple_get_lhs (stmt) == NULL_TREE)
269 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
271 fprintf (vect_dump, "not vectorized: irregular stmt.");
272 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
274 return false;
277 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
279 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
281 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
282 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
284 return false;
287 if (STMT_VINFO_VECTYPE (stmt_info))
289 /* The only case when a vectype had been already set is for stmts
290 that contain a dataref, or for "pattern-stmts" (stmts generated
291 by the vectorizer to represent/replace a certain idiom). */
292 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
293 || is_pattern_stmt_p (stmt_info));
294 vectype = STMT_VINFO_VECTYPE (stmt_info);
296 else
298 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info)
299 && !is_pattern_stmt_p (stmt_info));
301 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
302 if (vect_print_dump_info (REPORT_DETAILS))
304 fprintf (vect_dump, "get vectype for scalar type: ");
305 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
307 vectype = get_vectype_for_scalar_type (scalar_type);
308 if (!vectype)
310 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
312 fprintf (vect_dump,
313 "not vectorized: unsupported data-type ");
314 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
316 return false;
319 STMT_VINFO_VECTYPE (stmt_info) = vectype;
322 /* The vectorization factor is according to the smallest
323 scalar type (or the largest vector size, but we only
324 support one vector size per loop). */
325 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
326 &dummy);
327 if (vect_print_dump_info (REPORT_DETAILS))
329 fprintf (vect_dump, "get vectype for scalar type: ");
330 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
332 vf_vectype = get_vectype_for_scalar_type (scalar_type);
333 if (!vf_vectype)
335 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
337 fprintf (vect_dump,
338 "not vectorized: unsupported data-type ");
339 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
341 return false;
344 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
345 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
347 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
349 fprintf (vect_dump,
350 "not vectorized: different sized vector "
351 "types in statement, ");
352 print_generic_expr (vect_dump, vectype, TDF_SLIM);
353 fprintf (vect_dump, " and ");
354 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
356 return false;
359 if (vect_print_dump_info (REPORT_DETAILS))
361 fprintf (vect_dump, "vectype: ");
362 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
365 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
366 if (vect_print_dump_info (REPORT_DETAILS))
367 fprintf (vect_dump, "nunits = %d", nunits);
369 if (!vectorization_factor
370 || (nunits > vectorization_factor))
371 vectorization_factor = nunits;
375 /* TODO: Analyze cost. Decide if worth while to vectorize. */
376 if (vect_print_dump_info (REPORT_DETAILS))
377 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
378 if (vectorization_factor <= 1)
380 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
381 fprintf (vect_dump, "not vectorized: unsupported data-type");
382 return false;
384 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
386 return true;
390 /* Function vect_is_simple_iv_evolution.
392 FORNOW: A simple evolution of an induction variables in the loop is
393 considered a polynomial evolution with constant step. */
395 static bool
396 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
397 tree * step)
399 tree init_expr;
400 tree step_expr;
401 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
403 /* When there is no evolution in this loop, the evolution function
404 is not "simple". */
405 if (evolution_part == NULL_TREE)
406 return false;
408 /* When the evolution is a polynomial of degree >= 2
409 the evolution function is not "simple". */
410 if (tree_is_chrec (evolution_part))
411 return false;
413 step_expr = evolution_part;
414 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
416 if (vect_print_dump_info (REPORT_DETAILS))
418 fprintf (vect_dump, "step: ");
419 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
420 fprintf (vect_dump, ", init: ");
421 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
424 *init = init_expr;
425 *step = step_expr;
427 if (TREE_CODE (step_expr) != INTEGER_CST)
429 if (vect_print_dump_info (REPORT_DETAILS))
430 fprintf (vect_dump, "step unknown.");
431 return false;
434 return true;
437 /* Function vect_analyze_scalar_cycles_1.
439 Examine the cross iteration def-use cycles of scalar variables
440 in LOOP. LOOP_VINFO represents the loop that is now being
441 considered for vectorization (can be LOOP, or an outer-loop
442 enclosing LOOP). */
444 static void
445 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
447 basic_block bb = loop->header;
448 tree dumy;
449 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
450 gimple_stmt_iterator gsi;
451 bool double_reduc;
453 if (vect_print_dump_info (REPORT_DETAILS))
454 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
456 /* First - identify all inductions. Reduction detection assumes that all the
457 inductions have been identified, therefore, this order must not be
458 changed. */
459 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
461 gimple phi = gsi_stmt (gsi);
462 tree access_fn = NULL;
463 tree def = PHI_RESULT (phi);
464 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
466 if (vect_print_dump_info (REPORT_DETAILS))
468 fprintf (vect_dump, "Analyze phi: ");
469 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
472 /* Skip virtual phi's. The data dependences that are associated with
473 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
474 if (!is_gimple_reg (SSA_NAME_VAR (def)))
475 continue;
477 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
479 /* Analyze the evolution function. */
480 access_fn = analyze_scalar_evolution (loop, def);
481 if (access_fn)
482 STRIP_NOPS (access_fn);
483 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
485 fprintf (vect_dump, "Access function of PHI: ");
486 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
489 if (!access_fn
490 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
492 VEC_safe_push (gimple, heap, worklist, phi);
493 continue;
496 if (vect_print_dump_info (REPORT_DETAILS))
497 fprintf (vect_dump, "Detected induction.");
498 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
502 /* Second - identify all reductions and nested cycles. */
503 while (VEC_length (gimple, worklist) > 0)
505 gimple phi = VEC_pop (gimple, worklist);
506 tree def = PHI_RESULT (phi);
507 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
508 gimple reduc_stmt;
509 bool nested_cycle;
511 if (vect_print_dump_info (REPORT_DETAILS))
513 fprintf (vect_dump, "Analyze phi: ");
514 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
517 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
518 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
520 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
521 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
522 &double_reduc);
523 if (reduc_stmt)
525 if (double_reduc)
527 if (vect_print_dump_info (REPORT_DETAILS))
528 fprintf (vect_dump, "Detected double reduction.");
530 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
531 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
532 vect_double_reduction_def;
534 else
536 if (nested_cycle)
538 if (vect_print_dump_info (REPORT_DETAILS))
539 fprintf (vect_dump, "Detected vectorizable nested cycle.");
541 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
542 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
543 vect_nested_cycle;
545 else
547 if (vect_print_dump_info (REPORT_DETAILS))
548 fprintf (vect_dump, "Detected reduction.");
550 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
551 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
552 vect_reduction_def;
553 /* Store the reduction cycles for possible vectorization in
554 loop-aware SLP. */
555 VEC_safe_push (gimple, heap,
556 LOOP_VINFO_REDUCTIONS (loop_vinfo),
557 reduc_stmt);
561 else
562 if (vect_print_dump_info (REPORT_DETAILS))
563 fprintf (vect_dump, "Unknown def-use cycle pattern.");
566 VEC_free (gimple, heap, worklist);
570 /* Function vect_analyze_scalar_cycles.
572 Examine the cross iteration def-use cycles of scalar variables, by
573 analyzing the loop-header PHIs of scalar variables. Classify each
574 cycle as one of the following: invariant, induction, reduction, unknown.
575 We do that for the loop represented by LOOP_VINFO, and also to its
576 inner-loop, if exists.
577 Examples for scalar cycles:
579 Example1: reduction:
581 loop1:
582 for (i=0; i<N; i++)
583 sum += a[i];
585 Example2: induction:
587 loop2:
588 for (i=0; i<N; i++)
589 a[i] = i; */
591 static void
592 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
594 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
596 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
598 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
599 Reductions in such inner-loop therefore have different properties than
600 the reductions in the nest that gets vectorized:
601 1. When vectorized, they are executed in the same order as in the original
602 scalar loop, so we can't change the order of computation when
603 vectorizing them.
604 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
605 current checks are too strict. */
607 if (loop->inner)
608 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
611 /* Function vect_get_loop_niters.
613 Determine how many iterations the loop is executed.
614 If an expression that represents the number of iterations
615 can be constructed, place it in NUMBER_OF_ITERATIONS.
616 Return the loop exit condition. */
618 static gimple
619 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
621 tree niters;
623 if (vect_print_dump_info (REPORT_DETAILS))
624 fprintf (vect_dump, "=== get_loop_niters ===");
626 niters = number_of_exit_cond_executions (loop);
628 if (niters != NULL_TREE
629 && niters != chrec_dont_know)
631 *number_of_iterations = niters;
633 if (vect_print_dump_info (REPORT_DETAILS))
635 fprintf (vect_dump, "==> get_loop_niters:" );
636 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
640 return get_loop_exit_condition (loop);
644 /* Function bb_in_loop_p
646 Used as predicate for dfs order traversal of the loop bbs. */
648 static bool
649 bb_in_loop_p (const_basic_block bb, const void *data)
651 const struct loop *const loop = (const struct loop *)data;
652 if (flow_bb_inside_loop_p (loop, bb))
653 return true;
654 return false;
658 /* Function new_loop_vec_info.
660 Create and initialize a new loop_vec_info struct for LOOP, as well as
661 stmt_vec_info structs for all the stmts in LOOP. */
663 static loop_vec_info
664 new_loop_vec_info (struct loop *loop)
666 loop_vec_info res;
667 basic_block *bbs;
668 gimple_stmt_iterator si;
669 unsigned int i, nbbs;
671 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
672 LOOP_VINFO_LOOP (res) = loop;
674 bbs = get_loop_body (loop);
676 /* Create/Update stmt_info for all stmts in the loop. */
677 for (i = 0; i < loop->num_nodes; i++)
679 basic_block bb = bbs[i];
681 /* BBs in a nested inner-loop will have been already processed (because
682 we will have called vect_analyze_loop_form for any nested inner-loop).
683 Therefore, for stmts in an inner-loop we just want to update the
684 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
685 loop_info of the outer-loop we are currently considering to vectorize
686 (instead of the loop_info of the inner-loop).
687 For stmts in other BBs we need to create a stmt_info from scratch. */
688 if (bb->loop_father != loop)
690 /* Inner-loop bb. */
691 gcc_assert (loop->inner && bb->loop_father == loop->inner);
692 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
694 gimple phi = gsi_stmt (si);
695 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
696 loop_vec_info inner_loop_vinfo =
697 STMT_VINFO_LOOP_VINFO (stmt_info);
698 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
699 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
701 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
703 gimple stmt = gsi_stmt (si);
704 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
705 loop_vec_info inner_loop_vinfo =
706 STMT_VINFO_LOOP_VINFO (stmt_info);
707 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
708 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
711 else
713 /* bb in current nest. */
714 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
716 gimple phi = gsi_stmt (si);
717 gimple_set_uid (phi, 0);
718 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
721 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
723 gimple stmt = gsi_stmt (si);
724 gimple_set_uid (stmt, 0);
725 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
730 /* CHECKME: We want to visit all BBs before their successors (except for
731 latch blocks, for which this assertion wouldn't hold). In the simple
732 case of the loop forms we allow, a dfs order of the BBs would the same
733 as reversed postorder traversal, so we are safe. */
735 free (bbs);
736 bbs = XCNEWVEC (basic_block, loop->num_nodes);
737 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
738 bbs, loop->num_nodes, loop);
739 gcc_assert (nbbs == loop->num_nodes);
741 LOOP_VINFO_BBS (res) = bbs;
742 LOOP_VINFO_NITERS (res) = NULL;
743 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
744 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
745 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
746 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
747 LOOP_VINFO_VECT_FACTOR (res) = 0;
748 LOOP_VINFO_LOOP_NEST (res) = VEC_alloc (loop_p, heap, 3);
749 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
750 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
751 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
752 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
753 VEC_alloc (gimple, heap,
754 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
755 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
756 VEC_alloc (ddr_p, heap,
757 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
758 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
759 LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
760 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
761 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
762 LOOP_VINFO_PEELING_HTAB (res) = NULL;
764 return res;
768 /* Function destroy_loop_vec_info.
770 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
771 stmts in the loop. */
773 void
774 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
776 struct loop *loop;
777 basic_block *bbs;
778 int nbbs;
779 gimple_stmt_iterator si;
780 int j;
781 VEC (slp_instance, heap) *slp_instances;
782 slp_instance instance;
784 if (!loop_vinfo)
785 return;
787 loop = LOOP_VINFO_LOOP (loop_vinfo);
789 bbs = LOOP_VINFO_BBS (loop_vinfo);
790 nbbs = loop->num_nodes;
792 if (!clean_stmts)
794 free (LOOP_VINFO_BBS (loop_vinfo));
795 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
796 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
797 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
798 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
799 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
801 free (loop_vinfo);
802 loop->aux = NULL;
803 return;
806 for (j = 0; j < nbbs; j++)
808 basic_block bb = bbs[j];
809 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
810 free_stmt_vec_info (gsi_stmt (si));
812 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
814 gimple stmt = gsi_stmt (si);
815 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
817 if (stmt_info)
819 /* Check if this is a "pattern stmt" (introduced by the
820 vectorizer during the pattern recognition pass). */
821 bool remove_stmt_p = false;
822 gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
823 if (orig_stmt)
825 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
826 if (orig_stmt_info
827 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
828 remove_stmt_p = true;
831 /* Free stmt_vec_info. */
832 free_stmt_vec_info (stmt);
834 /* Remove dead "pattern stmts". */
835 if (remove_stmt_p)
836 gsi_remove (&si, true);
838 gsi_next (&si);
842 free (LOOP_VINFO_BBS (loop_vinfo));
843 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
844 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
845 VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
846 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
847 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
848 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
849 FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
850 vect_free_slp_instance (instance);
852 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
853 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
854 VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
856 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
857 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
859 free (loop_vinfo);
860 loop->aux = NULL;
864 /* Function vect_analyze_loop_1.
866 Apply a set of analyses on LOOP, and create a loop_vec_info struct
867 for it. The different analyses will record information in the
868 loop_vec_info struct. This is a subset of the analyses applied in
869 vect_analyze_loop, to be applied on an inner-loop nested in the loop
870 that is now considered for (outer-loop) vectorization. */
872 static loop_vec_info
873 vect_analyze_loop_1 (struct loop *loop)
875 loop_vec_info loop_vinfo;
877 if (vect_print_dump_info (REPORT_DETAILS))
878 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
880 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
882 loop_vinfo = vect_analyze_loop_form (loop);
883 if (!loop_vinfo)
885 if (vect_print_dump_info (REPORT_DETAILS))
886 fprintf (vect_dump, "bad inner-loop form.");
887 return NULL;
890 return loop_vinfo;
894 /* Function vect_analyze_loop_form.
896 Verify that certain CFG restrictions hold, including:
897 - the loop has a pre-header
898 - the loop has a single entry and exit
899 - the loop exit condition is simple enough, and the number of iterations
900 can be analyzed (a countable loop). */
902 loop_vec_info
903 vect_analyze_loop_form (struct loop *loop)
905 loop_vec_info loop_vinfo;
906 gimple loop_cond;
907 tree number_of_iterations = NULL;
908 loop_vec_info inner_loop_vinfo = NULL;
910 if (vect_print_dump_info (REPORT_DETAILS))
911 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
913 /* Different restrictions apply when we are considering an inner-most loop,
914 vs. an outer (nested) loop.
915 (FORNOW. May want to relax some of these restrictions in the future). */
917 if (!loop->inner)
919 /* Inner-most loop. We currently require that the number of BBs is
920 exactly 2 (the header and latch). Vectorizable inner-most loops
921 look like this:
923 (pre-header)
925 header <--------+
926 | | |
927 | +--> latch --+
929 (exit-bb) */
931 if (loop->num_nodes != 2)
933 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
934 fprintf (vect_dump, "not vectorized: control flow in loop.");
935 return NULL;
938 if (empty_block_p (loop->header))
940 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
941 fprintf (vect_dump, "not vectorized: empty loop.");
942 return NULL;
945 else
947 struct loop *innerloop = loop->inner;
948 edge entryedge;
950 /* Nested loop. We currently require that the loop is doubly-nested,
951 contains a single inner loop, and the number of BBs is exactly 5.
952 Vectorizable outer-loops look like this:
954 (pre-header)
956 header <---+
958 inner-loop |
960 tail ------+
962 (exit-bb)
964 The inner-loop has the properties expected of inner-most loops
965 as described above. */
967 if ((loop->inner)->inner || (loop->inner)->next)
969 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
970 fprintf (vect_dump, "not vectorized: multiple nested loops.");
971 return NULL;
974 /* Analyze the inner-loop. */
975 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
976 if (!inner_loop_vinfo)
978 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
979 fprintf (vect_dump, "not vectorized: Bad inner loop.");
980 return NULL;
983 if (!expr_invariant_in_loop_p (loop,
984 LOOP_VINFO_NITERS (inner_loop_vinfo)))
986 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
987 fprintf (vect_dump,
988 "not vectorized: inner-loop count not invariant.");
989 destroy_loop_vec_info (inner_loop_vinfo, true);
990 return NULL;
993 if (loop->num_nodes != 5)
995 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
996 fprintf (vect_dump, "not vectorized: control flow in loop.");
997 destroy_loop_vec_info (inner_loop_vinfo, true);
998 return NULL;
1001 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1002 entryedge = EDGE_PRED (innerloop->header, 0);
1003 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1004 entryedge = EDGE_PRED (innerloop->header, 1);
1006 if (entryedge->src != loop->header
1007 || !single_exit (innerloop)
1008 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1010 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1011 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
1012 destroy_loop_vec_info (inner_loop_vinfo, true);
1013 return NULL;
1016 if (vect_print_dump_info (REPORT_DETAILS))
1017 fprintf (vect_dump, "Considering outer-loop vectorization.");
1020 if (!single_exit (loop)
1021 || EDGE_COUNT (loop->header->preds) != 2)
1023 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1025 if (!single_exit (loop))
1026 fprintf (vect_dump, "not vectorized: multiple exits.");
1027 else if (EDGE_COUNT (loop->header->preds) != 2)
1028 fprintf (vect_dump, "not vectorized: too many incoming edges.");
1030 if (inner_loop_vinfo)
1031 destroy_loop_vec_info (inner_loop_vinfo, true);
1032 return NULL;
1035 /* We assume that the loop exit condition is at the end of the loop. i.e,
1036 that the loop is represented as a do-while (with a proper if-guard
1037 before the loop if needed), where the loop header contains all the
1038 executable statements, and the latch is empty. */
1039 if (!empty_block_p (loop->latch)
1040 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1042 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1043 fprintf (vect_dump, "not vectorized: unexpected loop form.");
1044 if (inner_loop_vinfo)
1045 destroy_loop_vec_info (inner_loop_vinfo, true);
1046 return NULL;
1049 /* Make sure there exists a single-predecessor exit bb: */
1050 if (!single_pred_p (single_exit (loop)->dest))
1052 edge e = single_exit (loop);
1053 if (!(e->flags & EDGE_ABNORMAL))
1055 split_loop_exit_edge (e);
1056 if (vect_print_dump_info (REPORT_DETAILS))
1057 fprintf (vect_dump, "split exit edge.");
1059 else
1061 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1062 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1063 if (inner_loop_vinfo)
1064 destroy_loop_vec_info (inner_loop_vinfo, true);
1065 return NULL;
1069 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1070 if (!loop_cond)
1072 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1073 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1074 if (inner_loop_vinfo)
1075 destroy_loop_vec_info (inner_loop_vinfo, true);
1076 return NULL;
1079 if (!number_of_iterations)
1081 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1082 fprintf (vect_dump,
1083 "not vectorized: number of iterations cannot be computed.");
1084 if (inner_loop_vinfo)
1085 destroy_loop_vec_info (inner_loop_vinfo, true);
1086 return NULL;
1089 if (chrec_contains_undetermined (number_of_iterations))
1091 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1092 fprintf (vect_dump, "Infinite number of iterations.");
1093 if (inner_loop_vinfo)
1094 destroy_loop_vec_info (inner_loop_vinfo, true);
1095 return NULL;
1098 if (!NITERS_KNOWN_P (number_of_iterations))
1100 if (vect_print_dump_info (REPORT_DETAILS))
1102 fprintf (vect_dump, "Symbolic number of iterations is ");
1103 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1106 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1108 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1109 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1110 if (inner_loop_vinfo)
1111 destroy_loop_vec_info (inner_loop_vinfo, false);
1112 return NULL;
1115 loop_vinfo = new_loop_vec_info (loop);
1116 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1117 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1119 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1121 /* CHECKME: May want to keep it around it in the future. */
1122 if (inner_loop_vinfo)
1123 destroy_loop_vec_info (inner_loop_vinfo, false);
1125 gcc_assert (!loop->aux);
1126 loop->aux = loop_vinfo;
1127 return loop_vinfo;
1131 /* Get cost by calling cost target builtin. */
1133 static inline int
1134 vect_get_cost (enum vect_cost_for_stmt type_of_cost)
1136 tree dummy_type = NULL;
1137 int dummy = 0;
1139 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1140 dummy_type, dummy);
1144 /* Function vect_analyze_loop_operations.
1146 Scan the loop stmts and make sure they are all vectorizable. */
1148 static bool
1149 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1151 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1152 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1153 int nbbs = loop->num_nodes;
1154 gimple_stmt_iterator si;
1155 unsigned int vectorization_factor = 0;
1156 int i;
1157 gimple phi;
1158 stmt_vec_info stmt_info;
1159 bool need_to_vectorize = false;
1160 int min_profitable_iters;
1161 int min_scalar_loop_bound;
1162 unsigned int th;
1163 bool only_slp_in_loop = true, ok;
1165 if (vect_print_dump_info (REPORT_DETAILS))
1166 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1168 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1169 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1171 for (i = 0; i < nbbs; i++)
1173 basic_block bb = bbs[i];
1175 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1177 phi = gsi_stmt (si);
1178 ok = true;
1180 stmt_info = vinfo_for_stmt (phi);
1181 if (vect_print_dump_info (REPORT_DETAILS))
1183 fprintf (vect_dump, "examining phi: ");
1184 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1187 if (! is_loop_header_bb_p (bb))
1189 /* inner-loop loop-closed exit phi in outer-loop vectorization
1190 (i.e. a phi in the tail of the outer-loop).
1191 FORNOW: we currently don't support the case that these phis
1192 are not used in the outerloop (unless it is double reduction,
1193 i.e., this phi is vect_reduction_def), cause this case
1194 requires to actually do something here. */
1195 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1196 || STMT_VINFO_LIVE_P (stmt_info))
1197 && STMT_VINFO_DEF_TYPE (stmt_info)
1198 != vect_double_reduction_def)
1200 if (vect_print_dump_info (REPORT_DETAILS))
1201 fprintf (vect_dump,
1202 "Unsupported loop-closed phi in outer-loop.");
1203 return false;
1205 continue;
1208 gcc_assert (stmt_info);
1210 if (STMT_VINFO_LIVE_P (stmt_info))
1212 /* FORNOW: not yet supported. */
1213 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1214 fprintf (vect_dump, "not vectorized: value used after loop.");
1215 return false;
1218 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1219 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1221 /* A scalar-dependence cycle that we don't support. */
1222 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1223 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1224 return false;
1227 if (STMT_VINFO_RELEVANT_P (stmt_info))
1229 need_to_vectorize = true;
1230 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1231 ok = vectorizable_induction (phi, NULL, NULL);
1234 if (!ok)
1236 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1238 fprintf (vect_dump,
1239 "not vectorized: relevant phi not supported: ");
1240 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1242 return false;
1246 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1248 gimple stmt = gsi_stmt (si);
1249 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1251 gcc_assert (stmt_info);
1253 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1254 return false;
1256 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1257 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1258 && !PURE_SLP_STMT (stmt_info))
1259 /* STMT needs both SLP and loop-based vectorization. */
1260 only_slp_in_loop = false;
1262 } /* bbs */
1264 /* All operations in the loop are either irrelevant (deal with loop
1265 control, or dead), or only used outside the loop and can be moved
1266 out of the loop (e.g. invariants, inductions). The loop can be
1267 optimized away by scalar optimizations. We're better off not
1268 touching this loop. */
1269 if (!need_to_vectorize)
1271 if (vect_print_dump_info (REPORT_DETAILS))
1272 fprintf (vect_dump,
1273 "All the computation can be taken out of the loop.");
1274 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1275 fprintf (vect_dump,
1276 "not vectorized: redundant loop. no profit to vectorize.");
1277 return false;
1280 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1281 vectorization factor of the loop is the unrolling factor required by the
1282 SLP instances. If that unrolling factor is 1, we say, that we perform
1283 pure SLP on loop - cross iteration parallelism is not exploited. */
1284 if (only_slp_in_loop)
1285 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1286 else
1287 vectorization_factor = least_common_multiple (vectorization_factor,
1288 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1290 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1292 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1293 && vect_print_dump_info (REPORT_DETAILS))
1294 fprintf (vect_dump,
1295 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1296 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1298 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1299 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1301 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1302 fprintf (vect_dump, "not vectorized: iteration count too small.");
1303 if (vect_print_dump_info (REPORT_DETAILS))
1304 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1305 "vectorization factor.");
1306 return false;
1309 /* Analyze cost. Decide if worth while to vectorize. */
1311 /* Once VF is set, SLP costs should be updated since the number of created
1312 vector stmts depends on VF. */
1313 vect_update_slp_costs_according_to_vf (loop_vinfo);
1315 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1316 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1318 if (min_profitable_iters < 0)
1320 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1321 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1322 if (vect_print_dump_info (REPORT_DETAILS))
1323 fprintf (vect_dump, "not vectorized: vector version will never be "
1324 "profitable.");
1325 return false;
1328 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1329 * vectorization_factor) - 1);
1331 /* Use the cost model only if it is more conservative than user specified
1332 threshold. */
1334 th = (unsigned) min_scalar_loop_bound;
1335 if (min_profitable_iters
1336 && (!min_scalar_loop_bound
1337 || min_profitable_iters > min_scalar_loop_bound))
1338 th = (unsigned) min_profitable_iters;
1340 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1341 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1343 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1344 fprintf (vect_dump, "not vectorized: vectorization not "
1345 "profitable.");
1346 if (vect_print_dump_info (REPORT_DETAILS))
1347 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1348 "user specified loop bound parameter or minimum "
1349 "profitable iterations (whichever is more conservative).");
1350 return false;
1353 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1354 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1355 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1357 if (vect_print_dump_info (REPORT_DETAILS))
1358 fprintf (vect_dump, "epilog loop required.");
1359 if (!vect_can_advance_ivs_p (loop_vinfo))
1361 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1362 fprintf (vect_dump,
1363 "not vectorized: can't create epilog loop 1.");
1364 return false;
1366 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1368 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1369 fprintf (vect_dump,
1370 "not vectorized: can't create epilog loop 2.");
1371 return false;
1375 return true;
1379 /* Function vect_analyze_loop_2.
1381 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1382 for it. The different analyses will record information in the
1383 loop_vec_info struct. */
1384 static bool
1385 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1387 bool ok, dummy;
1388 int max_vf = MAX_VECTORIZATION_FACTOR;
1389 int min_vf = 2;
1391 /* Find all data references in the loop (which correspond to vdefs/vuses)
1392 and analyze their evolution in the loop. Also adjust the minimal
1393 vectorization factor according to the loads and stores.
1395 FORNOW: Handle only simple, array references, which
1396 alignment can be forced, and aligned pointer-references. */
1398 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1399 if (!ok)
1401 if (vect_print_dump_info (REPORT_DETAILS))
1402 fprintf (vect_dump, "bad data references.");
1403 return false;
1406 /* Classify all cross-iteration scalar data-flow cycles.
1407 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1409 vect_analyze_scalar_cycles (loop_vinfo);
1411 vect_pattern_recog (loop_vinfo);
1413 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1415 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1416 if (!ok)
1418 if (vect_print_dump_info (REPORT_DETAILS))
1419 fprintf (vect_dump, "unexpected pattern.");
1420 return false;
1423 /* Analyze data dependences between the data-refs in the loop
1424 and adjust the maximum vectorization factor according to
1425 the dependences.
1426 FORNOW: fail at the first data dependence that we encounter. */
1428 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf, &dummy);
1429 if (!ok
1430 || max_vf < min_vf)
1432 if (vect_print_dump_info (REPORT_DETAILS))
1433 fprintf (vect_dump, "bad data dependence.");
1434 return false;
1437 ok = vect_determine_vectorization_factor (loop_vinfo);
1438 if (!ok)
1440 if (vect_print_dump_info (REPORT_DETAILS))
1441 fprintf (vect_dump, "can't determine vectorization factor.");
1442 return false;
1444 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1446 if (vect_print_dump_info (REPORT_DETAILS))
1447 fprintf (vect_dump, "bad data dependence.");
1448 return false;
1451 /* Analyze the alignment of the data-refs in the loop.
1452 Fail if a data reference is found that cannot be vectorized. */
1454 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1455 if (!ok)
1457 if (vect_print_dump_info (REPORT_DETAILS))
1458 fprintf (vect_dump, "bad data alignment.");
1459 return false;
1462 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1463 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1465 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1466 if (!ok)
1468 if (vect_print_dump_info (REPORT_DETAILS))
1469 fprintf (vect_dump, "bad data access.");
1470 return false;
1473 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1474 It is important to call pruning after vect_analyze_data_ref_accesses,
1475 since we use grouping information gathered by interleaving analysis. */
1476 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1477 if (!ok)
1479 if (vect_print_dump_info (REPORT_DETAILS))
1480 fprintf (vect_dump, "too long list of versioning for alias "
1481 "run-time tests.");
1482 return false;
1485 /* This pass will decide on using loop versioning and/or loop peeling in
1486 order to enhance the alignment of data references in the loop. */
1488 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1489 if (!ok)
1491 if (vect_print_dump_info (REPORT_DETAILS))
1492 fprintf (vect_dump, "bad data alignment.");
1493 return false;
1496 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1497 ok = vect_analyze_slp (loop_vinfo, NULL);
1498 if (ok)
1500 /* Decide which possible SLP instances to SLP. */
1501 vect_make_slp_decision (loop_vinfo);
1503 /* Find stmts that need to be both vectorized and SLPed. */
1504 vect_detect_hybrid_slp (loop_vinfo);
1507 /* Scan all the operations in the loop and make sure they are
1508 vectorizable. */
1510 ok = vect_analyze_loop_operations (loop_vinfo);
1511 if (!ok)
1513 if (vect_print_dump_info (REPORT_DETAILS))
1514 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1515 return false;
1518 return true;
1521 /* Function vect_analyze_loop.
1523 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1524 for it. The different analyses will record information in the
1525 loop_vec_info struct. */
1526 loop_vec_info
1527 vect_analyze_loop (struct loop *loop)
1529 loop_vec_info loop_vinfo;
1530 unsigned int vector_sizes;
1532 /* Autodetect first vector size we try. */
1533 current_vector_size = 0;
1534 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1536 if (vect_print_dump_info (REPORT_DETAILS))
1537 fprintf (vect_dump, "===== analyze_loop_nest =====");
1539 if (loop_outer (loop)
1540 && loop_vec_info_for_loop (loop_outer (loop))
1541 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1543 if (vect_print_dump_info (REPORT_DETAILS))
1544 fprintf (vect_dump, "outer-loop already vectorized.");
1545 return NULL;
1548 while (1)
1550 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1551 loop_vinfo = vect_analyze_loop_form (loop);
1552 if (!loop_vinfo)
1554 if (vect_print_dump_info (REPORT_DETAILS))
1555 fprintf (vect_dump, "bad loop form.");
1556 return NULL;
1559 if (vect_analyze_loop_2 (loop_vinfo))
1561 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1563 return loop_vinfo;
1566 destroy_loop_vec_info (loop_vinfo, true);
1568 vector_sizes &= ~current_vector_size;
1569 if (vector_sizes == 0
1570 || current_vector_size == 0)
1571 return NULL;
1573 /* Try the next biggest vector size. */
1574 current_vector_size = 1 << floor_log2 (vector_sizes);
1575 if (vect_print_dump_info (REPORT_DETAILS))
1576 fprintf (vect_dump, "***** Re-trying analysis with "
1577 "vector size %d\n", current_vector_size);
1582 /* Function reduction_code_for_scalar_code
1584 Input:
1585 CODE - tree_code of a reduction operations.
1587 Output:
1588 REDUC_CODE - the corresponding tree-code to be used to reduce the
1589 vector of partial results into a single scalar result (which
1590 will also reside in a vector) or ERROR_MARK if the operation is
1591 a supported reduction operation, but does not have such tree-code.
1593 Return FALSE if CODE currently cannot be vectorized as reduction. */
1595 static bool
1596 reduction_code_for_scalar_code (enum tree_code code,
1597 enum tree_code *reduc_code)
1599 switch (code)
1601 case MAX_EXPR:
1602 *reduc_code = REDUC_MAX_EXPR;
1603 return true;
1605 case MIN_EXPR:
1606 *reduc_code = REDUC_MIN_EXPR;
1607 return true;
1609 case PLUS_EXPR:
1610 *reduc_code = REDUC_PLUS_EXPR;
1611 return true;
1613 case MULT_EXPR:
1614 case MINUS_EXPR:
1615 case BIT_IOR_EXPR:
1616 case BIT_XOR_EXPR:
1617 case BIT_AND_EXPR:
1618 *reduc_code = ERROR_MARK;
1619 return true;
1621 default:
1622 return false;
1627 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1628 STMT is printed with a message MSG. */
1630 static void
1631 report_vect_op (gimple stmt, const char *msg)
1633 fprintf (vect_dump, "%s", msg);
1634 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1638 /* Function vect_is_simple_reduction_1
1640 (1) Detect a cross-iteration def-use cycle that represents a simple
1641 reduction computation. We look for the following pattern:
1643 loop_header:
1644 a1 = phi < a0, a2 >
1645 a3 = ...
1646 a2 = operation (a3, a1)
1648 such that:
1649 1. operation is commutative and associative and it is safe to
1650 change the order of the computation (if CHECK_REDUCTION is true)
1651 2. no uses for a2 in the loop (a2 is used out of the loop)
1652 3. no uses of a1 in the loop besides the reduction operation
1653 4. no uses of a1 outside the loop.
1655 Conditions 1,4 are tested here.
1656 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1658 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1659 nested cycles, if CHECK_REDUCTION is false.
1661 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1662 reductions:
1664 a1 = phi < a0, a2 >
1665 inner loop (def of a3)
1666 a2 = phi < a3 >
1668 If MODIFY is true it tries also to rework the code in-place to enable
1669 detection of more reduction patterns. For the time being we rewrite
1670 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
1673 static gimple
1674 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
1675 bool check_reduction, bool *double_reduc,
1676 bool modify)
1678 struct loop *loop = (gimple_bb (phi))->loop_father;
1679 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1680 edge latch_e = loop_latch_edge (loop);
1681 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1682 gimple def_stmt, def1 = NULL, def2 = NULL;
1683 enum tree_code orig_code, code;
1684 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1685 tree type;
1686 int nloop_uses;
1687 tree name;
1688 imm_use_iterator imm_iter;
1689 use_operand_p use_p;
1690 bool phi_def;
1692 *double_reduc = false;
1694 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1695 otherwise, we assume outer loop vectorization. */
1696 gcc_assert ((check_reduction && loop == vect_loop)
1697 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1699 name = PHI_RESULT (phi);
1700 nloop_uses = 0;
1701 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1703 gimple use_stmt = USE_STMT (use_p);
1704 if (is_gimple_debug (use_stmt))
1705 continue;
1707 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1709 if (vect_print_dump_info (REPORT_DETAILS))
1710 fprintf (vect_dump, "intermediate value used outside loop.");
1712 return NULL;
1715 if (vinfo_for_stmt (use_stmt)
1716 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1717 nloop_uses++;
1718 if (nloop_uses > 1)
1720 if (vect_print_dump_info (REPORT_DETAILS))
1721 fprintf (vect_dump, "reduction used in loop.");
1722 return NULL;
1726 if (TREE_CODE (loop_arg) != SSA_NAME)
1728 if (vect_print_dump_info (REPORT_DETAILS))
1730 fprintf (vect_dump, "reduction: not ssa_name: ");
1731 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1733 return NULL;
1736 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1737 if (!def_stmt)
1739 if (vect_print_dump_info (REPORT_DETAILS))
1740 fprintf (vect_dump, "reduction: no def_stmt.");
1741 return NULL;
1744 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
1746 if (vect_print_dump_info (REPORT_DETAILS))
1747 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1748 return NULL;
1751 if (is_gimple_assign (def_stmt))
1753 name = gimple_assign_lhs (def_stmt);
1754 phi_def = false;
1756 else
1758 name = PHI_RESULT (def_stmt);
1759 phi_def = true;
1762 nloop_uses = 0;
1763 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1765 gimple use_stmt = USE_STMT (use_p);
1766 if (is_gimple_debug (use_stmt))
1767 continue;
1768 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1769 && vinfo_for_stmt (use_stmt)
1770 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1771 nloop_uses++;
1772 if (nloop_uses > 1)
1774 if (vect_print_dump_info (REPORT_DETAILS))
1775 fprintf (vect_dump, "reduction used in loop.");
1776 return NULL;
1780 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
1781 defined in the inner loop. */
1782 if (phi_def)
1784 op1 = PHI_ARG_DEF (def_stmt, 0);
1786 if (gimple_phi_num_args (def_stmt) != 1
1787 || TREE_CODE (op1) != SSA_NAME)
1789 if (vect_print_dump_info (REPORT_DETAILS))
1790 fprintf (vect_dump, "unsupported phi node definition.");
1792 return NULL;
1795 def1 = SSA_NAME_DEF_STMT (op1);
1796 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1797 && loop->inner
1798 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
1799 && is_gimple_assign (def1))
1801 if (vect_print_dump_info (REPORT_DETAILS))
1802 report_vect_op (def_stmt, "detected double reduction: ");
1804 *double_reduc = true;
1805 return def_stmt;
1808 return NULL;
1811 code = orig_code = gimple_assign_rhs_code (def_stmt);
1813 /* We can handle "res -= x[i]", which is non-associative by
1814 simply rewriting this into "res += -x[i]". Avoid changing
1815 gimple instruction for the first simple tests and only do this
1816 if we're allowed to change code at all. */
1817 if (code == MINUS_EXPR
1818 && modify
1819 && (op1 = gimple_assign_rhs1 (def_stmt))
1820 && TREE_CODE (op1) == SSA_NAME
1821 && SSA_NAME_DEF_STMT (op1) == phi)
1822 code = PLUS_EXPR;
1824 if (check_reduction
1825 && (!commutative_tree_code (code) || !associative_tree_code (code)))
1827 if (vect_print_dump_info (REPORT_DETAILS))
1828 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
1829 return NULL;
1832 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
1834 if (code != COND_EXPR)
1836 if (vect_print_dump_info (REPORT_DETAILS))
1837 report_vect_op (def_stmt, "reduction: not binary operation: ");
1839 return NULL;
1842 op3 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
1843 if (COMPARISON_CLASS_P (op3))
1845 op4 = TREE_OPERAND (op3, 1);
1846 op3 = TREE_OPERAND (op3, 0);
1849 op1 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 1);
1850 op2 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 2);
1852 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
1854 if (vect_print_dump_info (REPORT_DETAILS))
1855 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1857 return NULL;
1860 else
1862 op1 = gimple_assign_rhs1 (def_stmt);
1863 op2 = gimple_assign_rhs2 (def_stmt);
1865 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1867 if (vect_print_dump_info (REPORT_DETAILS))
1868 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1870 return NULL;
1874 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
1875 if ((TREE_CODE (op1) == SSA_NAME
1876 && !types_compatible_p (type,TREE_TYPE (op1)))
1877 || (TREE_CODE (op2) == SSA_NAME
1878 && !types_compatible_p (type, TREE_TYPE (op2)))
1879 || (op3 && TREE_CODE (op3) == SSA_NAME
1880 && !types_compatible_p (type, TREE_TYPE (op3)))
1881 || (op4 && TREE_CODE (op4) == SSA_NAME
1882 && !types_compatible_p (type, TREE_TYPE (op4))))
1884 if (vect_print_dump_info (REPORT_DETAILS))
1886 fprintf (vect_dump, "reduction: multiple types: operation type: ");
1887 print_generic_expr (vect_dump, type, TDF_SLIM);
1888 fprintf (vect_dump, ", operands types: ");
1889 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1890 fprintf (vect_dump, ",");
1891 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1892 if (op3)
1894 fprintf (vect_dump, ",");
1895 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
1898 if (op4)
1900 fprintf (vect_dump, ",");
1901 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
1905 return NULL;
1908 /* Check that it's ok to change the order of the computation.
1909 Generally, when vectorizing a reduction we change the order of the
1910 computation. This may change the behavior of the program in some
1911 cases, so we need to check that this is ok. One exception is when
1912 vectorizing an outer-loop: the inner-loop is executed sequentially,
1913 and therefore vectorizing reductions in the inner-loop during
1914 outer-loop vectorization is safe. */
1916 /* CHECKME: check for !flag_finite_math_only too? */
1917 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
1918 && check_reduction)
1920 /* Changing the order of operations changes the semantics. */
1921 if (vect_print_dump_info (REPORT_DETAILS))
1922 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
1923 return NULL;
1925 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
1926 && check_reduction)
1928 /* Changing the order of operations changes the semantics. */
1929 if (vect_print_dump_info (REPORT_DETAILS))
1930 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
1931 return NULL;
1933 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
1935 /* Changing the order of operations changes the semantics. */
1936 if (vect_print_dump_info (REPORT_DETAILS))
1937 report_vect_op (def_stmt,
1938 "reduction: unsafe fixed-point math optimization: ");
1939 return NULL;
1942 /* If we detected "res -= x[i]" earlier, rewrite it into
1943 "res += -x[i]" now. If this turns out to be useless reassoc
1944 will clean it up again. */
1945 if (orig_code == MINUS_EXPR)
1947 tree rhs = gimple_assign_rhs2 (def_stmt);
1948 tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
1949 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
1950 rhs, NULL);
1951 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
1952 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
1953 loop_info, NULL));
1954 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
1955 gimple_assign_set_rhs2 (def_stmt, negrhs);
1956 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
1957 update_stmt (def_stmt);
1960 /* Reduction is safe. We're dealing with one of the following:
1961 1) integer arithmetic and no trapv
1962 2) floating point arithmetic, and special flags permit this optimization
1963 3) nested cycle (i.e., outer loop vectorization). */
1964 if (TREE_CODE (op1) == SSA_NAME)
1965 def1 = SSA_NAME_DEF_STMT (op1);
1967 if (TREE_CODE (op2) == SSA_NAME)
1968 def2 = SSA_NAME_DEF_STMT (op2);
1970 if (code != COND_EXPR
1971 && (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)))
1973 if (vect_print_dump_info (REPORT_DETAILS))
1974 report_vect_op (def_stmt, "reduction: no defs for operands: ");
1975 return NULL;
1978 /* Check that one def is the reduction def, defined by PHI,
1979 the other def is either defined in the loop ("vect_internal_def"),
1980 or it's an induction (defined by a loop-header phi-node). */
1982 if (def2 && def2 == phi
1983 && (code == COND_EXPR
1984 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
1985 && (is_gimple_assign (def1)
1986 || is_gimple_call (def1)
1987 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1988 == vect_induction_def
1989 || (gimple_code (def1) == GIMPLE_PHI
1990 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1991 == vect_internal_def
1992 && !is_loop_header_bb_p (gimple_bb (def1)))))))
1994 if (vect_print_dump_info (REPORT_DETAILS))
1995 report_vect_op (def_stmt, "detected reduction: ");
1996 return def_stmt;
1998 else if (def1 && def1 == phi
1999 && (code == COND_EXPR
2000 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2001 && (is_gimple_assign (def2)
2002 || is_gimple_call (def2)
2003 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2004 == vect_induction_def
2005 || (gimple_code (def2) == GIMPLE_PHI
2006 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2007 == vect_internal_def
2008 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2010 if (check_reduction)
2012 /* Swap operands (just for simplicity - so that the rest of the code
2013 can assume that the reduction variable is always the last (second)
2014 argument). */
2015 if (vect_print_dump_info (REPORT_DETAILS))
2016 report_vect_op (def_stmt,
2017 "detected reduction: need to swap operands: ");
2019 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2020 gimple_assign_rhs2_ptr (def_stmt));
2022 else
2024 if (vect_print_dump_info (REPORT_DETAILS))
2025 report_vect_op (def_stmt, "detected reduction: ");
2028 return def_stmt;
2030 else
2032 if (vect_print_dump_info (REPORT_DETAILS))
2033 report_vect_op (def_stmt, "reduction: unknown pattern: ");
2035 return NULL;
2039 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2040 in-place. Arguments as there. */
2042 static gimple
2043 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2044 bool check_reduction, bool *double_reduc)
2046 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2047 double_reduc, false);
2050 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2051 in-place if it enables detection of more reductions. Arguments
2052 as there. */
2054 gimple
2055 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2056 bool check_reduction, bool *double_reduc)
2058 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2059 double_reduc, true);
2062 /* Calculate the cost of one scalar iteration of the loop. */
2064 vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
2066 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2067 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2068 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2069 int innerloop_iters, i, stmt_cost;
2071 /* Count statements in scalar loop. Using this as scalar cost for a single
2072 iteration for now.
2074 TODO: Add outer loop support.
2076 TODO: Consider assigning different costs to different scalar
2077 statements. */
2079 /* FORNOW. */
2080 innerloop_iters = 1;
2081 if (loop->inner)
2082 innerloop_iters = 50; /* FIXME */
2084 for (i = 0; i < nbbs; i++)
2086 gimple_stmt_iterator si;
2087 basic_block bb = bbs[i];
2089 if (bb->loop_father == loop->inner)
2090 factor = innerloop_iters;
2091 else
2092 factor = 1;
2094 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2096 gimple stmt = gsi_stmt (si);
2097 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2099 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2100 continue;
2102 /* Skip stmts that are not vectorized inside the loop. */
2103 if (stmt_info
2104 && !STMT_VINFO_RELEVANT_P (stmt_info)
2105 && (!STMT_VINFO_LIVE_P (stmt_info)
2106 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2107 continue;
2109 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2111 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2112 stmt_cost = vect_get_cost (scalar_load);
2113 else
2114 stmt_cost = vect_get_cost (scalar_store);
2116 else
2117 stmt_cost = vect_get_cost (scalar_stmt);
2119 scalar_single_iter_cost += stmt_cost * factor;
2122 return scalar_single_iter_cost;
2125 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2127 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2128 int *peel_iters_epilogue,
2129 int scalar_single_iter_cost)
2131 int peel_guard_costs = 0;
2132 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2134 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2136 *peel_iters_epilogue = vf/2;
2137 if (vect_print_dump_info (REPORT_COST))
2138 fprintf (vect_dump, "cost model: "
2139 "epilogue peel iters set to vf/2 because "
2140 "loop iterations are unknown .");
2142 /* If peeled iterations are known but number of scalar loop
2143 iterations are unknown, count a taken branch per peeled loop. */
2144 peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
2146 else
2148 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2149 peel_iters_prologue = niters < peel_iters_prologue ?
2150 niters : peel_iters_prologue;
2151 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2154 return (peel_iters_prologue * scalar_single_iter_cost)
2155 + (*peel_iters_epilogue * scalar_single_iter_cost)
2156 + peel_guard_costs;
2159 /* Function vect_estimate_min_profitable_iters
2161 Return the number of iterations required for the vector version of the
2162 loop to be profitable relative to the cost of the scalar version of the
2163 loop.
2165 TODO: Take profile info into account before making vectorization
2166 decisions, if available. */
2169 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
2171 int i;
2172 int min_profitable_iters;
2173 int peel_iters_prologue;
2174 int peel_iters_epilogue;
2175 int vec_inside_cost = 0;
2176 int vec_outside_cost = 0;
2177 int scalar_single_iter_cost = 0;
2178 int scalar_outside_cost = 0;
2179 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2180 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2181 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2182 int nbbs = loop->num_nodes;
2183 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2184 int peel_guard_costs = 0;
2185 int innerloop_iters = 0, factor;
2186 VEC (slp_instance, heap) *slp_instances;
2187 slp_instance instance;
2189 /* Cost model disabled. */
2190 if (!flag_vect_cost_model)
2192 if (vect_print_dump_info (REPORT_COST))
2193 fprintf (vect_dump, "cost model disabled.");
2194 return 0;
2197 /* Requires loop versioning tests to handle misalignment. */
2198 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2200 /* FIXME: Make cost depend on complexity of individual check. */
2201 vec_outside_cost +=
2202 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
2203 if (vect_print_dump_info (REPORT_COST))
2204 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2205 "versioning to treat misalignment.\n");
2208 /* Requires loop versioning with alias checks. */
2209 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2211 /* FIXME: Make cost depend on complexity of individual check. */
2212 vec_outside_cost +=
2213 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
2214 if (vect_print_dump_info (REPORT_COST))
2215 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2216 "versioning aliasing.\n");
2219 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2220 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2221 vec_outside_cost += vect_get_cost (cond_branch_taken);
2223 /* Count statements in scalar loop. Using this as scalar cost for a single
2224 iteration for now.
2226 TODO: Add outer loop support.
2228 TODO: Consider assigning different costs to different scalar
2229 statements. */
2231 /* FORNOW. */
2232 if (loop->inner)
2233 innerloop_iters = 50; /* FIXME */
2235 for (i = 0; i < nbbs; i++)
2237 gimple_stmt_iterator si;
2238 basic_block bb = bbs[i];
2240 if (bb->loop_father == loop->inner)
2241 factor = innerloop_iters;
2242 else
2243 factor = 1;
2245 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2247 gimple stmt = gsi_stmt (si);
2248 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2249 /* Skip stmts that are not vectorized inside the loop. */
2250 if (!STMT_VINFO_RELEVANT_P (stmt_info)
2251 && (!STMT_VINFO_LIVE_P (stmt_info)
2252 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2253 continue;
2254 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
2255 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
2256 some of the "outside" costs are generated inside the outer-loop. */
2257 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
2261 scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
2263 /* Add additional cost for the peeled instructions in prologue and epilogue
2264 loop.
2266 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2267 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2269 TODO: Build an expression that represents peel_iters for prologue and
2270 epilogue to be used in a run-time test. */
2272 if (npeel < 0)
2274 peel_iters_prologue = vf/2;
2275 if (vect_print_dump_info (REPORT_COST))
2276 fprintf (vect_dump, "cost model: "
2277 "prologue peel iters set to vf/2.");
2279 /* If peeling for alignment is unknown, loop bound of main loop becomes
2280 unknown. */
2281 peel_iters_epilogue = vf/2;
2282 if (vect_print_dump_info (REPORT_COST))
2283 fprintf (vect_dump, "cost model: "
2284 "epilogue peel iters set to vf/2 because "
2285 "peeling for alignment is unknown .");
2287 /* If peeled iterations are unknown, count a taken branch and a not taken
2288 branch per peeled loop. Even if scalar loop iterations are known,
2289 vector iterations are not known since peeled prologue iterations are
2290 not known. Hence guards remain the same. */
2291 peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
2292 + vect_get_cost (cond_branch_not_taken));
2293 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2294 + (peel_iters_epilogue * scalar_single_iter_cost)
2295 + peel_guard_costs;
2297 else
2299 peel_iters_prologue = npeel;
2300 vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
2301 peel_iters_prologue, &peel_iters_epilogue,
2302 scalar_single_iter_cost);
2305 /* FORNOW: The scalar outside cost is incremented in one of the
2306 following ways:
2308 1. The vectorizer checks for alignment and aliasing and generates
2309 a condition that allows dynamic vectorization. A cost model
2310 check is ANDED with the versioning condition. Hence scalar code
2311 path now has the added cost of the versioning check.
2313 if (cost > th & versioning_check)
2314 jmp to vector code
2316 Hence run-time scalar is incremented by not-taken branch cost.
2318 2. The vectorizer then checks if a prologue is required. If the
2319 cost model check was not done before during versioning, it has to
2320 be done before the prologue check.
2322 if (cost <= th)
2323 prologue = scalar_iters
2324 if (prologue == 0)
2325 jmp to vector code
2326 else
2327 execute prologue
2328 if (prologue == num_iters)
2329 go to exit
2331 Hence the run-time scalar cost is incremented by a taken branch,
2332 plus a not-taken branch, plus a taken branch cost.
2334 3. The vectorizer then checks if an epilogue is required. If the
2335 cost model check was not done before during prologue check, it
2336 has to be done with the epilogue check.
2338 if (prologue == 0)
2339 jmp to vector code
2340 else
2341 execute prologue
2342 if (prologue == num_iters)
2343 go to exit
2344 vector code:
2345 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2346 jmp to epilogue
2348 Hence the run-time scalar cost should be incremented by 2 taken
2349 branches.
2351 TODO: The back end may reorder the BBS's differently and reverse
2352 conditions/branch directions. Change the estimates below to
2353 something more reasonable. */
2355 /* If the number of iterations is known and we do not do versioning, we can
2356 decide whether to vectorize at compile time. Hence the scalar version
2357 do not carry cost model guard costs. */
2358 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2359 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2360 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2362 /* Cost model check occurs at versioning. */
2363 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2364 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2365 scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
2366 else
2368 /* Cost model check occurs at prologue generation. */
2369 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2370 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
2371 + vect_get_cost (cond_branch_not_taken);
2372 /* Cost model check occurs at epilogue generation. */
2373 else
2374 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
2378 /* Add SLP costs. */
2379 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2380 FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
2382 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2383 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2386 /* Calculate number of iterations required to make the vector version
2387 profitable, relative to the loop bodies only. The following condition
2388 must hold true:
2389 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2390 where
2391 SIC = scalar iteration cost, VIC = vector iteration cost,
2392 VOC = vector outside cost, VF = vectorization factor,
2393 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2394 SOC = scalar outside cost for run time cost model check. */
2396 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2398 if (vec_outside_cost <= 0)
2399 min_profitable_iters = 1;
2400 else
2402 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2403 - vec_inside_cost * peel_iters_prologue
2404 - vec_inside_cost * peel_iters_epilogue)
2405 / ((scalar_single_iter_cost * vf)
2406 - vec_inside_cost);
2408 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2409 <= ((vec_inside_cost * min_profitable_iters)
2410 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2411 min_profitable_iters++;
2414 /* vector version will never be profitable. */
2415 else
2417 if (vect_print_dump_info (REPORT_COST))
2418 fprintf (vect_dump, "cost model: the vector iteration cost = %d "
2419 "divided by the scalar iteration cost = %d "
2420 "is greater or equal to the vectorization factor = %d.",
2421 vec_inside_cost, scalar_single_iter_cost, vf);
2422 return -1;
2425 if (vect_print_dump_info (REPORT_COST))
2427 fprintf (vect_dump, "Cost model analysis: \n");
2428 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2429 vec_inside_cost);
2430 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2431 vec_outside_cost);
2432 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2433 scalar_single_iter_cost);
2434 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2435 fprintf (vect_dump, " prologue iterations: %d\n",
2436 peel_iters_prologue);
2437 fprintf (vect_dump, " epilogue iterations: %d\n",
2438 peel_iters_epilogue);
2439 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2440 min_profitable_iters);
2443 min_profitable_iters =
2444 min_profitable_iters < vf ? vf : min_profitable_iters;
2446 /* Because the condition we create is:
2447 if (niters <= min_profitable_iters)
2448 then skip the vectorized loop. */
2449 min_profitable_iters--;
2451 if (vect_print_dump_info (REPORT_COST))
2452 fprintf (vect_dump, " Profitability threshold = %d\n",
2453 min_profitable_iters);
2455 return min_profitable_iters;
2459 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2460 functions. Design better to avoid maintenance issues. */
2462 /* Function vect_model_reduction_cost.
2464 Models cost for a reduction operation, including the vector ops
2465 generated within the strip-mine loop, the initial definition before
2466 the loop, and the epilogue code that must be generated. */
2468 static bool
2469 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2470 int ncopies)
2472 int outer_cost = 0;
2473 enum tree_code code;
2474 optab optab;
2475 tree vectype;
2476 gimple stmt, orig_stmt;
2477 tree reduction_op;
2478 enum machine_mode mode;
2479 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2480 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2483 /* Cost of reduction op inside loop. */
2484 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2485 += ncopies * vect_get_cost (vector_stmt);
2487 stmt = STMT_VINFO_STMT (stmt_info);
2489 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2491 case GIMPLE_SINGLE_RHS:
2492 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2493 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2494 break;
2495 case GIMPLE_UNARY_RHS:
2496 reduction_op = gimple_assign_rhs1 (stmt);
2497 break;
2498 case GIMPLE_BINARY_RHS:
2499 reduction_op = gimple_assign_rhs2 (stmt);
2500 break;
2501 default:
2502 gcc_unreachable ();
2505 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2506 if (!vectype)
2508 if (vect_print_dump_info (REPORT_COST))
2510 fprintf (vect_dump, "unsupported data-type ");
2511 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2513 return false;
2516 mode = TYPE_MODE (vectype);
2517 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2519 if (!orig_stmt)
2520 orig_stmt = STMT_VINFO_STMT (stmt_info);
2522 code = gimple_assign_rhs_code (orig_stmt);
2524 /* Add in cost for initial definition. */
2525 outer_cost += vect_get_cost (scalar_to_vec);
2527 /* Determine cost of epilogue code.
2529 We have a reduction operator that will reduce the vector in one statement.
2530 Also requires scalar extract. */
2532 if (!nested_in_vect_loop_p (loop, orig_stmt))
2534 if (reduc_code != ERROR_MARK)
2535 outer_cost += vect_get_cost (vector_stmt)
2536 + vect_get_cost (vec_to_scalar);
2537 else
2539 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2540 tree bitsize =
2541 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2542 int element_bitsize = tree_low_cst (bitsize, 1);
2543 int nelements = vec_size_in_bits / element_bitsize;
2545 optab = optab_for_tree_code (code, vectype, optab_default);
2547 /* We have a whole vector shift available. */
2548 if (VECTOR_MODE_P (mode)
2549 && optab_handler (optab, mode) != CODE_FOR_nothing
2550 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
2551 /* Final reduction via vector shifts and the reduction operator. Also
2552 requires scalar extract. */
2553 outer_cost += ((exact_log2(nelements) * 2)
2554 * vect_get_cost (vector_stmt)
2555 + vect_get_cost (vec_to_scalar));
2556 else
2557 /* Use extracts and reduction op for final reduction. For N elements,
2558 we have N extracts and N-1 reduction ops. */
2559 outer_cost += ((nelements + nelements - 1)
2560 * vect_get_cost (vector_stmt));
2564 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2566 if (vect_print_dump_info (REPORT_COST))
2567 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2568 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2569 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2571 return true;
2575 /* Function vect_model_induction_cost.
2577 Models cost for induction operations. */
2579 static void
2580 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2582 /* loop cost for vec_loop. */
2583 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2584 = ncopies * vect_get_cost (vector_stmt);
2585 /* prologue cost for vec_init and vec_step. */
2586 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
2587 = 2 * vect_get_cost (scalar_to_vec);
2589 if (vect_print_dump_info (REPORT_COST))
2590 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2591 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2592 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2596 /* Function get_initial_def_for_induction
2598 Input:
2599 STMT - a stmt that performs an induction operation in the loop.
2600 IV_PHI - the initial value of the induction variable
2602 Output:
2603 Return a vector variable, initialized with the first VF values of
2604 the induction variable. E.g., for an iv with IV_PHI='X' and
2605 evolution S, for a vector of 4 units, we want to return:
2606 [X, X + S, X + 2*S, X + 3*S]. */
2608 static tree
2609 get_initial_def_for_induction (gimple iv_phi)
2611 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2612 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2613 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2614 tree scalar_type;
2615 tree vectype;
2616 int nunits;
2617 edge pe = loop_preheader_edge (loop);
2618 struct loop *iv_loop;
2619 basic_block new_bb;
2620 tree vec, vec_init, vec_step, t;
2621 tree access_fn;
2622 tree new_var;
2623 tree new_name;
2624 gimple init_stmt, induction_phi, new_stmt;
2625 tree induc_def, vec_def, vec_dest;
2626 tree init_expr, step_expr;
2627 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2628 int i;
2629 bool ok;
2630 int ncopies;
2631 tree expr;
2632 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2633 bool nested_in_vect_loop = false;
2634 gimple_seq stmts = NULL;
2635 imm_use_iterator imm_iter;
2636 use_operand_p use_p;
2637 gimple exit_phi;
2638 edge latch_e;
2639 tree loop_arg;
2640 gimple_stmt_iterator si;
2641 basic_block bb = gimple_bb (iv_phi);
2642 tree stepvectype;
2643 tree resvectype;
2645 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2646 if (nested_in_vect_loop_p (loop, iv_phi))
2648 nested_in_vect_loop = true;
2649 iv_loop = loop->inner;
2651 else
2652 iv_loop = loop;
2653 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2655 latch_e = loop_latch_edge (iv_loop);
2656 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2658 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2659 gcc_assert (access_fn);
2660 STRIP_NOPS (access_fn);
2661 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2662 &init_expr, &step_expr);
2663 gcc_assert (ok);
2664 pe = loop_preheader_edge (iv_loop);
2666 scalar_type = TREE_TYPE (init_expr);
2667 vectype = get_vectype_for_scalar_type (scalar_type);
2668 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
2669 gcc_assert (vectype);
2670 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2671 ncopies = vf / nunits;
2673 gcc_assert (phi_info);
2674 gcc_assert (ncopies >= 1);
2676 /* Find the first insertion point in the BB. */
2677 si = gsi_after_labels (bb);
2679 /* Create the vector that holds the initial_value of the induction. */
2680 if (nested_in_vect_loop)
2682 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2683 been created during vectorization of previous stmts. We obtain it
2684 from the STMT_VINFO_VEC_STMT of the defining stmt. */
2685 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2686 loop_preheader_edge (iv_loop));
2687 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2689 else
2691 /* iv_loop is the loop to be vectorized. Create:
2692 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2693 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2694 add_referenced_var (new_var);
2696 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
2697 if (stmts)
2699 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2700 gcc_assert (!new_bb);
2703 t = NULL_TREE;
2704 t = tree_cons (NULL_TREE, new_name, t);
2705 for (i = 1; i < nunits; i++)
2707 /* Create: new_name_i = new_name + step_expr */
2708 enum tree_code code = POINTER_TYPE_P (scalar_type)
2709 ? POINTER_PLUS_EXPR : PLUS_EXPR;
2710 init_stmt = gimple_build_assign_with_ops (code, new_var,
2711 new_name, step_expr);
2712 new_name = make_ssa_name (new_var, init_stmt);
2713 gimple_assign_set_lhs (init_stmt, new_name);
2715 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
2716 gcc_assert (!new_bb);
2718 if (vect_print_dump_info (REPORT_DETAILS))
2720 fprintf (vect_dump, "created new init_stmt: ");
2721 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
2723 t = tree_cons (NULL_TREE, new_name, t);
2725 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
2726 vec = build_constructor_from_list (vectype, nreverse (t));
2727 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
2731 /* Create the vector that holds the step of the induction. */
2732 if (nested_in_vect_loop)
2733 /* iv_loop is nested in the loop to be vectorized. Generate:
2734 vec_step = [S, S, S, S] */
2735 new_name = step_expr;
2736 else
2738 /* iv_loop is the loop to be vectorized. Generate:
2739 vec_step = [VF*S, VF*S, VF*S, VF*S] */
2740 expr = build_int_cst (TREE_TYPE (step_expr), vf);
2741 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2742 expr, step_expr);
2745 t = unshare_expr (new_name);
2746 gcc_assert (CONSTANT_CLASS_P (new_name));
2747 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
2748 gcc_assert (stepvectype);
2749 vec = build_vector_from_val (stepvectype, t);
2750 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2753 /* Create the following def-use cycle:
2754 loop prolog:
2755 vec_init = ...
2756 vec_step = ...
2757 loop:
2758 vec_iv = PHI <vec_init, vec_loop>
2760 STMT
2762 vec_loop = vec_iv + vec_step; */
2764 /* Create the induction-phi that defines the induction-operand. */
2765 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
2766 add_referenced_var (vec_dest);
2767 induction_phi = create_phi_node (vec_dest, iv_loop->header);
2768 set_vinfo_for_stmt (induction_phi,
2769 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
2770 induc_def = PHI_RESULT (induction_phi);
2772 /* Create the iv update inside the loop */
2773 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2774 induc_def, vec_step);
2775 vec_def = make_ssa_name (vec_dest, new_stmt);
2776 gimple_assign_set_lhs (new_stmt, vec_def);
2777 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2778 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
2779 NULL));
2781 /* Set the arguments of the phi node: */
2782 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
2783 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
2784 UNKNOWN_LOCATION);
2787 /* In case that vectorization factor (VF) is bigger than the number
2788 of elements that we can fit in a vectype (nunits), we have to generate
2789 more than one vector stmt - i.e - we need to "unroll" the
2790 vector stmt by a factor VF/nunits. For more details see documentation
2791 in vectorizable_operation. */
2793 if (ncopies > 1)
2795 stmt_vec_info prev_stmt_vinfo;
2796 /* FORNOW. This restriction should be relaxed. */
2797 gcc_assert (!nested_in_vect_loop);
2799 /* Create the vector that holds the step of the induction. */
2800 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
2801 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2802 expr, step_expr);
2803 t = unshare_expr (new_name);
2804 gcc_assert (CONSTANT_CLASS_P (new_name));
2805 vec = build_vector_from_val (stepvectype, t);
2806 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2808 vec_def = induc_def;
2809 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
2810 for (i = 1; i < ncopies; i++)
2812 /* vec_i = vec_prev + vec_step */
2813 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2814 vec_def, vec_step);
2815 vec_def = make_ssa_name (vec_dest, new_stmt);
2816 gimple_assign_set_lhs (new_stmt, vec_def);
2818 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2819 if (!useless_type_conversion_p (resvectype, vectype))
2821 new_stmt = gimple_build_assign_with_ops
2822 (VIEW_CONVERT_EXPR,
2823 vect_get_new_vect_var (resvectype, vect_simple_var,
2824 "vec_iv_"),
2825 build1 (VIEW_CONVERT_EXPR, resvectype,
2826 gimple_assign_lhs (new_stmt)), NULL_TREE);
2827 gimple_assign_set_lhs (new_stmt,
2828 make_ssa_name
2829 (gimple_assign_lhs (new_stmt), new_stmt));
2830 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2832 set_vinfo_for_stmt (new_stmt,
2833 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
2834 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
2835 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
2839 if (nested_in_vect_loop)
2841 /* Find the loop-closed exit-phi of the induction, and record
2842 the final vector of induction results: */
2843 exit_phi = NULL;
2844 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
2846 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
2848 exit_phi = USE_STMT (use_p);
2849 break;
2852 if (exit_phi)
2854 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
2855 /* FORNOW. Currently not supporting the case that an inner-loop induction
2856 is not used in the outer-loop (i.e. only outside the outer-loop). */
2857 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
2858 && !STMT_VINFO_LIVE_P (stmt_vinfo));
2860 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
2861 if (vect_print_dump_info (REPORT_DETAILS))
2863 fprintf (vect_dump, "vector of inductions after inner-loop:");
2864 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
2870 if (vect_print_dump_info (REPORT_DETAILS))
2872 fprintf (vect_dump, "transform induction: created def-use cycle: ");
2873 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
2874 fprintf (vect_dump, "\n");
2875 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
2878 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
2879 if (!useless_type_conversion_p (resvectype, vectype))
2881 new_stmt = gimple_build_assign_with_ops
2882 (VIEW_CONVERT_EXPR,
2883 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
2884 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
2885 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
2886 gimple_assign_set_lhs (new_stmt, induc_def);
2887 si = gsi_start_bb (bb);
2888 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2891 return induc_def;
2895 /* Function get_initial_def_for_reduction
2897 Input:
2898 STMT - a stmt that performs a reduction operation in the loop.
2899 INIT_VAL - the initial value of the reduction variable
2901 Output:
2902 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
2903 of the reduction (used for adjusting the epilog - see below).
2904 Return a vector variable, initialized according to the operation that STMT
2905 performs. This vector will be used as the initial value of the
2906 vector of partial results.
2908 Option1 (adjust in epilog): Initialize the vector as follows:
2909 add/bit or/xor: [0,0,...,0,0]
2910 mult/bit and: [1,1,...,1,1]
2911 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
2912 and when necessary (e.g. add/mult case) let the caller know
2913 that it needs to adjust the result by init_val.
2915 Option2: Initialize the vector as follows:
2916 add/bit or/xor: [init_val,0,0,...,0]
2917 mult/bit and: [init_val,1,1,...,1]
2918 min/max/cond_expr: [init_val,init_val,...,init_val]
2919 and no adjustments are needed.
2921 For example, for the following code:
2923 s = init_val;
2924 for (i=0;i<n;i++)
2925 s = s + a[i];
2927 STMT is 's = s + a[i]', and the reduction variable is 's'.
2928 For a vector of 4 units, we want to return either [0,0,0,init_val],
2929 or [0,0,0,0] and let the caller know that it needs to adjust
2930 the result at the end by 'init_val'.
2932 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
2933 initialization vector is simpler (same element in all entries), if
2934 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
2936 A cost model should help decide between these two schemes. */
2938 tree
2939 get_initial_def_for_reduction (gimple stmt, tree init_val,
2940 tree *adjustment_def)
2942 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2943 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2944 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2945 tree scalar_type = TREE_TYPE (init_val);
2946 tree vectype = get_vectype_for_scalar_type (scalar_type);
2947 int nunits;
2948 enum tree_code code = gimple_assign_rhs_code (stmt);
2949 tree def_for_init;
2950 tree init_def;
2951 tree t = NULL_TREE;
2952 int i;
2953 bool nested_in_vect_loop = false;
2954 tree init_value;
2955 REAL_VALUE_TYPE real_init_val = dconst0;
2956 int int_init_val = 0;
2957 gimple def_stmt = NULL;
2959 gcc_assert (vectype);
2960 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2962 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
2963 || SCALAR_FLOAT_TYPE_P (scalar_type));
2965 if (nested_in_vect_loop_p (loop, stmt))
2966 nested_in_vect_loop = true;
2967 else
2968 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
2970 /* In case of double reduction we only create a vector variable to be put
2971 in the reduction phi node. The actual statement creation is done in
2972 vect_create_epilog_for_reduction. */
2973 if (adjustment_def && nested_in_vect_loop
2974 && TREE_CODE (init_val) == SSA_NAME
2975 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
2976 && gimple_code (def_stmt) == GIMPLE_PHI
2977 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2978 && vinfo_for_stmt (def_stmt)
2979 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2980 == vect_double_reduction_def)
2982 *adjustment_def = NULL;
2983 return vect_create_destination_var (init_val, vectype);
2986 if (TREE_CONSTANT (init_val))
2988 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2989 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
2990 else
2991 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
2993 else
2994 init_value = init_val;
2996 switch (code)
2998 case WIDEN_SUM_EXPR:
2999 case DOT_PROD_EXPR:
3000 case PLUS_EXPR:
3001 case MINUS_EXPR:
3002 case BIT_IOR_EXPR:
3003 case BIT_XOR_EXPR:
3004 case MULT_EXPR:
3005 case BIT_AND_EXPR:
3006 /* ADJUSMENT_DEF is NULL when called from
3007 vect_create_epilog_for_reduction to vectorize double reduction. */
3008 if (adjustment_def)
3010 if (nested_in_vect_loop)
3011 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3012 NULL);
3013 else
3014 *adjustment_def = init_val;
3017 if (code == MULT_EXPR)
3019 real_init_val = dconst1;
3020 int_init_val = 1;
3023 if (code == BIT_AND_EXPR)
3024 int_init_val = -1;
3026 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3027 def_for_init = build_real (scalar_type, real_init_val);
3028 else
3029 def_for_init = build_int_cst (scalar_type, int_init_val);
3031 /* Create a vector of '0' or '1' except the first element. */
3032 for (i = nunits - 2; i >= 0; --i)
3033 t = tree_cons (NULL_TREE, def_for_init, t);
3035 /* Option1: the first element is '0' or '1' as well. */
3036 if (adjustment_def)
3038 t = tree_cons (NULL_TREE, def_for_init, t);
3039 init_def = build_vector (vectype, t);
3040 break;
3043 /* Option2: the first element is INIT_VAL. */
3044 t = tree_cons (NULL_TREE, init_value, t);
3045 if (TREE_CONSTANT (init_val))
3046 init_def = build_vector (vectype, t);
3047 else
3048 init_def = build_constructor_from_list (vectype, t);
3050 break;
3052 case MIN_EXPR:
3053 case MAX_EXPR:
3054 case COND_EXPR:
3055 if (adjustment_def)
3057 *adjustment_def = NULL_TREE;
3058 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3059 break;
3062 init_def = build_vector_from_val (vectype, init_value);
3063 break;
3065 default:
3066 gcc_unreachable ();
3069 return init_def;
3073 /* Function vect_create_epilog_for_reduction
3075 Create code at the loop-epilog to finalize the result of a reduction
3076 computation.
3078 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3079 reduction statements.
3080 STMT is the scalar reduction stmt that is being vectorized.
3081 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3082 number of elements that we can fit in a vectype (nunits). In this case
3083 we have to generate more than one vector stmt - i.e - we need to "unroll"
3084 the vector stmt by a factor VF/nunits. For more details see documentation
3085 in vectorizable_operation.
3086 REDUC_CODE is the tree-code for the epilog reduction.
3087 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3088 computation.
3089 REDUC_INDEX is the index of the operand in the right hand side of the
3090 statement that is defined by REDUCTION_PHI.
3091 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3092 SLP_NODE is an SLP node containing a group of reduction statements. The
3093 first one in this group is STMT.
3095 This function:
3096 1. Creates the reduction def-use cycles: sets the arguments for
3097 REDUCTION_PHIS:
3098 The loop-entry argument is the vectorized initial-value of the reduction.
3099 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3100 sums.
3101 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3102 by applying the operation specified by REDUC_CODE if available, or by
3103 other means (whole-vector shifts or a scalar loop).
3104 The function also creates a new phi node at the loop exit to preserve
3105 loop-closed form, as illustrated below.
3107 The flow at the entry to this function:
3109 loop:
3110 vec_def = phi <null, null> # REDUCTION_PHI
3111 VECT_DEF = vector_stmt # vectorized form of STMT
3112 s_loop = scalar_stmt # (scalar) STMT
3113 loop_exit:
3114 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3115 use <s_out0>
3116 use <s_out0>
3118 The above is transformed by this function into:
3120 loop:
3121 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3122 VECT_DEF = vector_stmt # vectorized form of STMT
3123 s_loop = scalar_stmt # (scalar) STMT
3124 loop_exit:
3125 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3126 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3127 v_out2 = reduce <v_out1>
3128 s_out3 = extract_field <v_out2, 0>
3129 s_out4 = adjust_result <s_out3>
3130 use <s_out4>
3131 use <s_out4>
3134 static void
3135 vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
3136 int ncopies, enum tree_code reduc_code,
3137 VEC (gimple, heap) *reduction_phis,
3138 int reduc_index, bool double_reduc,
3139 slp_tree slp_node)
3141 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3142 stmt_vec_info prev_phi_info;
3143 tree vectype;
3144 enum machine_mode mode;
3145 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3146 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3147 basic_block exit_bb;
3148 tree scalar_dest;
3149 tree scalar_type;
3150 gimple new_phi = NULL, phi;
3151 gimple_stmt_iterator exit_gsi;
3152 tree vec_dest;
3153 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3154 gimple epilog_stmt = NULL;
3155 enum tree_code code = gimple_assign_rhs_code (stmt);
3156 gimple exit_phi;
3157 tree bitsize, bitpos;
3158 tree adjustment_def = NULL;
3159 tree vec_initial_def = NULL;
3160 tree reduction_op, expr, def;
3161 tree orig_name, scalar_result;
3162 imm_use_iterator imm_iter, phi_imm_iter;
3163 use_operand_p use_p, phi_use_p;
3164 bool extract_scalar_result = false;
3165 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3166 bool nested_in_vect_loop = false;
3167 VEC (gimple, heap) *new_phis = NULL;
3168 enum vect_def_type dt = vect_unknown_def_type;
3169 int j, i;
3170 VEC (tree, heap) *scalar_results = NULL;
3171 unsigned int group_size = 1, k, ratio;
3172 VEC (tree, heap) *vec_initial_defs = NULL;
3173 VEC (gimple, heap) *phis;
3175 if (slp_node)
3176 group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
3178 if (nested_in_vect_loop_p (loop, stmt))
3180 outer_loop = loop;
3181 loop = loop->inner;
3182 nested_in_vect_loop = true;
3183 gcc_assert (!slp_node);
3186 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3188 case GIMPLE_SINGLE_RHS:
3189 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3190 == ternary_op);
3191 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3192 break;
3193 case GIMPLE_UNARY_RHS:
3194 reduction_op = gimple_assign_rhs1 (stmt);
3195 break;
3196 case GIMPLE_BINARY_RHS:
3197 reduction_op = reduc_index ?
3198 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3199 break;
3200 default:
3201 gcc_unreachable ();
3204 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3205 gcc_assert (vectype);
3206 mode = TYPE_MODE (vectype);
3208 /* 1. Create the reduction def-use cycle:
3209 Set the arguments of REDUCTION_PHIS, i.e., transform
3211 loop:
3212 vec_def = phi <null, null> # REDUCTION_PHI
3213 VECT_DEF = vector_stmt # vectorized form of STMT
3216 into:
3218 loop:
3219 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3220 VECT_DEF = vector_stmt # vectorized form of STMT
3223 (in case of SLP, do it for all the phis). */
3225 /* Get the loop-entry arguments. */
3226 if (slp_node)
3227 vect_get_slp_defs (reduction_op, NULL_TREE, slp_node, &vec_initial_defs,
3228 NULL, reduc_index);
3229 else
3231 vec_initial_defs = VEC_alloc (tree, heap, 1);
3232 /* For the case of reduction, vect_get_vec_def_for_operand returns
3233 the scalar def before the loop, that defines the initial value
3234 of the reduction variable. */
3235 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3236 &adjustment_def);
3237 VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
3240 /* Set phi nodes arguments. */
3241 FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
3243 tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
3244 tree def = VEC_index (tree, vect_defs, i);
3245 for (j = 0; j < ncopies; j++)
3247 /* Set the loop-entry arg of the reduction-phi. */
3248 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3249 UNKNOWN_LOCATION);
3251 /* Set the loop-latch arg for the reduction-phi. */
3252 if (j > 0)
3253 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3255 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3257 if (vect_print_dump_info (REPORT_DETAILS))
3259 fprintf (vect_dump, "transform reduction: created def-use"
3260 " cycle: ");
3261 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
3262 fprintf (vect_dump, "\n");
3263 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
3264 TDF_SLIM);
3267 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3271 VEC_free (tree, heap, vec_initial_defs);
3273 /* 2. Create epilog code.
3274 The reduction epilog code operates across the elements of the vector
3275 of partial results computed by the vectorized loop.
3276 The reduction epilog code consists of:
3278 step 1: compute the scalar result in a vector (v_out2)
3279 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3280 step 3: adjust the scalar result (s_out3) if needed.
3282 Step 1 can be accomplished using one the following three schemes:
3283 (scheme 1) using reduc_code, if available.
3284 (scheme 2) using whole-vector shifts, if available.
3285 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3286 combined.
3288 The overall epilog code looks like this:
3290 s_out0 = phi <s_loop> # original EXIT_PHI
3291 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3292 v_out2 = reduce <v_out1> # step 1
3293 s_out3 = extract_field <v_out2, 0> # step 2
3294 s_out4 = adjust_result <s_out3> # step 3
3296 (step 3 is optional, and steps 1 and 2 may be combined).
3297 Lastly, the uses of s_out0 are replaced by s_out4. */
3300 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3301 v_out1 = phi <VECT_DEF>
3302 Store them in NEW_PHIS. */
3304 exit_bb = single_exit (loop)->dest;
3305 prev_phi_info = NULL;
3306 new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
3307 FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
3309 for (j = 0; j < ncopies; j++)
3311 phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
3312 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3313 if (j == 0)
3314 VEC_quick_push (gimple, new_phis, phi);
3315 else
3317 def = vect_get_vec_def_for_stmt_copy (dt, def);
3318 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3321 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3322 prev_phi_info = vinfo_for_stmt (phi);
3326 /* The epilogue is created for the outer-loop, i.e., for the loop being
3327 vectorized. */
3328 if (double_reduc)
3330 loop = outer_loop;
3331 exit_bb = single_exit (loop)->dest;
3334 exit_gsi = gsi_after_labels (exit_bb);
3336 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3337 (i.e. when reduc_code is not available) and in the final adjustment
3338 code (if needed). Also get the original scalar reduction variable as
3339 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3340 represents a reduction pattern), the tree-code and scalar-def are
3341 taken from the original stmt that the pattern-stmt (STMT) replaces.
3342 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3343 are taken from STMT. */
3345 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3346 if (!orig_stmt)
3348 /* Regular reduction */
3349 orig_stmt = stmt;
3351 else
3353 /* Reduction pattern */
3354 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3355 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3356 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3359 code = gimple_assign_rhs_code (orig_stmt);
3360 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3361 partial results are added and not subtracted. */
3362 if (code == MINUS_EXPR)
3363 code = PLUS_EXPR;
3365 scalar_dest = gimple_assign_lhs (orig_stmt);
3366 scalar_type = TREE_TYPE (scalar_dest);
3367 scalar_results = VEC_alloc (tree, heap, group_size);
3368 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3369 bitsize = TYPE_SIZE (scalar_type);
3371 /* In case this is a reduction in an inner-loop while vectorizing an outer
3372 loop - we don't need to extract a single scalar result at the end of the
3373 inner-loop (unless it is double reduction, i.e., the use of reduction is
3374 outside the outer-loop). The final vector of partial results will be used
3375 in the vectorized outer-loop, or reduced to a scalar result at the end of
3376 the outer-loop. */
3377 if (nested_in_vect_loop && !double_reduc)
3378 goto vect_finalize_reduction;
3380 /* 2.3 Create the reduction code, using one of the three schemes described
3381 above. In SLP we simply need to extract all the elements from the
3382 vector (without reducing them), so we use scalar shifts. */
3383 if (reduc_code != ERROR_MARK && !slp_node)
3385 tree tmp;
3387 /*** Case 1: Create:
3388 v_out2 = reduc_expr <v_out1> */
3390 if (vect_print_dump_info (REPORT_DETAILS))
3391 fprintf (vect_dump, "Reduce using direct vector reduction.");
3393 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3394 new_phi = VEC_index (gimple, new_phis, 0);
3395 tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
3396 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3397 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3398 gimple_assign_set_lhs (epilog_stmt, new_temp);
3399 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3401 extract_scalar_result = true;
3403 else
3405 enum tree_code shift_code = ERROR_MARK;
3406 bool have_whole_vector_shift = true;
3407 int bit_offset;
3408 int element_bitsize = tree_low_cst (bitsize, 1);
3409 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3410 tree vec_temp;
3412 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3413 shift_code = VEC_RSHIFT_EXPR;
3414 else
3415 have_whole_vector_shift = false;
3417 /* Regardless of whether we have a whole vector shift, if we're
3418 emulating the operation via tree-vect-generic, we don't want
3419 to use it. Only the first round of the reduction is likely
3420 to still be profitable via emulation. */
3421 /* ??? It might be better to emit a reduction tree code here, so that
3422 tree-vect-generic can expand the first round via bit tricks. */
3423 if (!VECTOR_MODE_P (mode))
3424 have_whole_vector_shift = false;
3425 else
3427 optab optab = optab_for_tree_code (code, vectype, optab_default);
3428 if (optab_handler (optab, mode) == CODE_FOR_nothing)
3429 have_whole_vector_shift = false;
3432 if (have_whole_vector_shift && !slp_node)
3434 /*** Case 2: Create:
3435 for (offset = VS/2; offset >= element_size; offset/=2)
3437 Create: va' = vec_shift <va, offset>
3438 Create: va = vop <va, va'>
3439 } */
3441 if (vect_print_dump_info (REPORT_DETAILS))
3442 fprintf (vect_dump, "Reduce using vector shifts");
3444 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3445 new_phi = VEC_index (gimple, new_phis, 0);
3446 new_temp = PHI_RESULT (new_phi);
3447 for (bit_offset = vec_size_in_bits/2;
3448 bit_offset >= element_bitsize;
3449 bit_offset /= 2)
3451 tree bitpos = size_int (bit_offset);
3453 epilog_stmt = gimple_build_assign_with_ops (shift_code,
3454 vec_dest, new_temp, bitpos);
3455 new_name = make_ssa_name (vec_dest, epilog_stmt);
3456 gimple_assign_set_lhs (epilog_stmt, new_name);
3457 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3459 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3460 new_name, new_temp);
3461 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3462 gimple_assign_set_lhs (epilog_stmt, new_temp);
3463 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3466 extract_scalar_result = true;
3468 else
3470 tree rhs;
3472 /*** Case 3: Create:
3473 s = extract_field <v_out2, 0>
3474 for (offset = element_size;
3475 offset < vector_size;
3476 offset += element_size;)
3478 Create: s' = extract_field <v_out2, offset>
3479 Create: s = op <s, s'> // For non SLP cases
3480 } */
3482 if (vect_print_dump_info (REPORT_DETAILS))
3483 fprintf (vect_dump, "Reduce using scalar code. ");
3485 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3486 FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
3488 vec_temp = PHI_RESULT (new_phi);
3489 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3490 bitsize_zero_node);
3491 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3492 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3493 gimple_assign_set_lhs (epilog_stmt, new_temp);
3494 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3496 /* In SLP we don't need to apply reduction operation, so we just
3497 collect s' values in SCALAR_RESULTS. */
3498 if (slp_node)
3499 VEC_safe_push (tree, heap, scalar_results, new_temp);
3501 for (bit_offset = element_bitsize;
3502 bit_offset < vec_size_in_bits;
3503 bit_offset += element_bitsize)
3505 tree bitpos = bitsize_int (bit_offset);
3506 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
3507 bitsize, bitpos);
3509 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3510 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3511 gimple_assign_set_lhs (epilog_stmt, new_name);
3512 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3514 if (slp_node)
3516 /* In SLP we don't need to apply reduction operation, so
3517 we just collect s' values in SCALAR_RESULTS. */
3518 new_temp = new_name;
3519 VEC_safe_push (tree, heap, scalar_results, new_name);
3521 else
3523 epilog_stmt = gimple_build_assign_with_ops (code,
3524 new_scalar_dest, new_name, new_temp);
3525 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3526 gimple_assign_set_lhs (epilog_stmt, new_temp);
3527 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3532 /* The only case where we need to reduce scalar results in SLP, is
3533 unrolling. If the size of SCALAR_RESULTS is greater than
3534 GROUP_SIZE, we reduce them combining elements modulo
3535 GROUP_SIZE. */
3536 if (slp_node)
3538 tree res, first_res, new_res;
3539 gimple new_stmt;
3541 /* Reduce multiple scalar results in case of SLP unrolling. */
3542 for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
3543 j++)
3545 first_res = VEC_index (tree, scalar_results, j % group_size);
3546 new_stmt = gimple_build_assign_with_ops (code,
3547 new_scalar_dest, first_res, res);
3548 new_res = make_ssa_name (new_scalar_dest, new_stmt);
3549 gimple_assign_set_lhs (new_stmt, new_res);
3550 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
3551 VEC_replace (tree, scalar_results, j % group_size, new_res);
3554 else
3555 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
3556 VEC_safe_push (tree, heap, scalar_results, new_temp);
3558 extract_scalar_result = false;
3562 /* 2.4 Extract the final scalar result. Create:
3563 s_out3 = extract_field <v_out2, bitpos> */
3565 if (extract_scalar_result)
3567 tree rhs;
3569 if (vect_print_dump_info (REPORT_DETAILS))
3570 fprintf (vect_dump, "extract scalar result");
3572 if (BYTES_BIG_ENDIAN)
3573 bitpos = size_binop (MULT_EXPR,
3574 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3575 TYPE_SIZE (scalar_type));
3576 else
3577 bitpos = bitsize_zero_node;
3579 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3580 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3581 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3582 gimple_assign_set_lhs (epilog_stmt, new_temp);
3583 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3584 VEC_safe_push (tree, heap, scalar_results, new_temp);
3587 vect_finalize_reduction:
3589 if (double_reduc)
3590 loop = loop->inner;
3592 /* 2.5 Adjust the final result by the initial value of the reduction
3593 variable. (When such adjustment is not needed, then
3594 'adjustment_def' is zero). For example, if code is PLUS we create:
3595 new_temp = loop_exit_def + adjustment_def */
3597 if (adjustment_def)
3599 gcc_assert (!slp_node);
3600 if (nested_in_vect_loop)
3602 new_phi = VEC_index (gimple, new_phis, 0);
3603 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3604 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3605 new_dest = vect_create_destination_var (scalar_dest, vectype);
3607 else
3609 new_temp = VEC_index (tree, scalar_results, 0);
3610 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3611 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3612 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3615 epilog_stmt = gimple_build_assign (new_dest, expr);
3616 new_temp = make_ssa_name (new_dest, epilog_stmt);
3617 gimple_assign_set_lhs (epilog_stmt, new_temp);
3618 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3619 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3620 if (nested_in_vect_loop)
3622 set_vinfo_for_stmt (epilog_stmt,
3623 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3624 NULL));
3625 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3626 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3628 if (!double_reduc)
3629 VEC_quick_push (tree, scalar_results, new_temp);
3630 else
3631 VEC_replace (tree, scalar_results, 0, new_temp);
3633 else
3634 VEC_replace (tree, scalar_results, 0, new_temp);
3636 VEC_replace (gimple, new_phis, 0, epilog_stmt);
3639 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
3640 phis with new adjusted scalar results, i.e., replace use <s_out0>
3641 with use <s_out4>.
3643 Transform:
3644 loop_exit:
3645 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3646 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3647 v_out2 = reduce <v_out1>
3648 s_out3 = extract_field <v_out2, 0>
3649 s_out4 = adjust_result <s_out3>
3650 use <s_out0>
3651 use <s_out0>
3653 into:
3655 loop_exit:
3656 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3657 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3658 v_out2 = reduce <v_out1>
3659 s_out3 = extract_field <v_out2, 0>
3660 s_out4 = adjust_result <s_out3>
3661 use <s_out4>
3662 use <s_out4> */
3664 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
3665 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
3666 need to match SCALAR_RESULTS with corresponding statements. The first
3667 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
3668 the first vector stmt, etc.
3669 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
3670 if (group_size > VEC_length (gimple, new_phis))
3672 ratio = group_size / VEC_length (gimple, new_phis);
3673 gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
3675 else
3676 ratio = 1;
3678 for (k = 0; k < group_size; k++)
3680 if (k % ratio == 0)
3682 epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
3683 reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
3686 if (slp_node)
3688 gimple current_stmt = VEC_index (gimple,
3689 SLP_TREE_SCALAR_STMTS (slp_node), k);
3691 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
3692 /* SLP statements can't participate in patterns. */
3693 gcc_assert (!orig_stmt);
3694 scalar_dest = gimple_assign_lhs (current_stmt);
3697 phis = VEC_alloc (gimple, heap, 3);
3698 /* Find the loop-closed-use at the loop exit of the original scalar
3699 result. (The reduction result is expected to have two immediate uses -
3700 one at the latch block, and one at the loop exit). */
3701 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3702 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3703 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3705 /* We expect to have found an exit_phi because of loop-closed-ssa
3706 form. */
3707 gcc_assert (!VEC_empty (gimple, phis));
3709 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
3711 if (outer_loop)
3713 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
3714 gimple vect_phi;
3716 /* FORNOW. Currently not supporting the case that an inner-loop
3717 reduction is not used in the outer-loop (but only outside the
3718 outer-loop), unless it is double reduction. */
3719 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
3720 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
3721 || double_reduc);
3723 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
3724 if (!double_reduc
3725 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
3726 != vect_double_reduction_def)
3727 continue;
3729 /* Handle double reduction:
3731 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
3732 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
3733 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
3734 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
3736 At that point the regular reduction (stmt2 and stmt3) is
3737 already vectorized, as well as the exit phi node, stmt4.
3738 Here we vectorize the phi node of double reduction, stmt1, and
3739 update all relevant statements. */
3741 /* Go through all the uses of s2 to find double reduction phi
3742 node, i.e., stmt1 above. */
3743 orig_name = PHI_RESULT (exit_phi);
3744 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3746 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
3747 stmt_vec_info new_phi_vinfo;
3748 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
3749 basic_block bb = gimple_bb (use_stmt);
3750 gimple use;
3752 /* Check that USE_STMT is really double reduction phi
3753 node. */
3754 if (gimple_code (use_stmt) != GIMPLE_PHI
3755 || gimple_phi_num_args (use_stmt) != 2
3756 || !use_stmt_vinfo
3757 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
3758 != vect_double_reduction_def
3759 || bb->loop_father != outer_loop)
3760 continue;
3762 /* Create vector phi node for double reduction:
3763 vs1 = phi <vs0, vs2>
3764 vs1 was created previously in this function by a call to
3765 vect_get_vec_def_for_operand and is stored in
3766 vec_initial_def;
3767 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
3768 vs0 is created here. */
3770 /* Create vector phi node. */
3771 vect_phi = create_phi_node (vec_initial_def, bb);
3772 new_phi_vinfo = new_stmt_vec_info (vect_phi,
3773 loop_vec_info_for_loop (outer_loop), NULL);
3774 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
3776 /* Create vs0 - initial def of the double reduction phi. */
3777 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
3778 loop_preheader_edge (outer_loop));
3779 init_def = get_initial_def_for_reduction (stmt,
3780 preheader_arg, NULL);
3781 vect_phi_init = vect_init_vector (use_stmt, init_def,
3782 vectype, NULL);
3784 /* Update phi node arguments with vs0 and vs2. */
3785 add_phi_arg (vect_phi, vect_phi_init,
3786 loop_preheader_edge (outer_loop),
3787 UNKNOWN_LOCATION);
3788 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
3789 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
3790 if (vect_print_dump_info (REPORT_DETAILS))
3792 fprintf (vect_dump, "created double reduction phi "
3793 "node: ");
3794 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
3797 vect_phi_res = PHI_RESULT (vect_phi);
3799 /* Replace the use, i.e., set the correct vs1 in the regular
3800 reduction phi node. FORNOW, NCOPIES is always 1, so the
3801 loop is redundant. */
3802 use = reduction_phi;
3803 for (j = 0; j < ncopies; j++)
3805 edge pr_edge = loop_preheader_edge (loop);
3806 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
3807 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
3813 VEC_free (gimple, heap, phis);
3814 if (nested_in_vect_loop)
3816 if (double_reduc)
3817 loop = outer_loop;
3818 else
3819 continue;
3822 phis = VEC_alloc (gimple, heap, 3);
3823 /* Find the loop-closed-use at the loop exit of the original scalar
3824 result. (The reduction result is expected to have two immediate uses,
3825 one at the latch block, and one at the loop exit). For double
3826 reductions we are looking for exit phis of the outer loop. */
3827 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3829 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3830 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3831 else
3833 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
3835 tree phi_res = PHI_RESULT (USE_STMT (use_p));
3837 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
3839 if (!flow_bb_inside_loop_p (loop,
3840 gimple_bb (USE_STMT (phi_use_p))))
3841 VEC_safe_push (gimple, heap, phis,
3842 USE_STMT (phi_use_p));
3848 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
3850 /* Replace the uses: */
3851 orig_name = PHI_RESULT (exit_phi);
3852 scalar_result = VEC_index (tree, scalar_results, k);
3853 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3854 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3855 SET_USE (use_p, scalar_result);
3858 VEC_free (gimple, heap, phis);
3861 VEC_free (tree, heap, scalar_results);
3862 VEC_free (gimple, heap, new_phis);
3866 /* Function vectorizable_reduction.
3868 Check if STMT performs a reduction operation that can be vectorized.
3869 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3870 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3871 Return FALSE if not a vectorizable STMT, TRUE otherwise.
3873 This function also handles reduction idioms (patterns) that have been
3874 recognized in advance during vect_pattern_recog. In this case, STMT may be
3875 of this form:
3876 X = pattern_expr (arg0, arg1, ..., X)
3877 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
3878 sequence that had been detected and replaced by the pattern-stmt (STMT).
3880 In some cases of reduction patterns, the type of the reduction variable X is
3881 different than the type of the other arguments of STMT.
3882 In such cases, the vectype that is used when transforming STMT into a vector
3883 stmt is different than the vectype that is used to determine the
3884 vectorization factor, because it consists of a different number of elements
3885 than the actual number of elements that are being operated upon in parallel.
3887 For example, consider an accumulation of shorts into an int accumulator.
3888 On some targets it's possible to vectorize this pattern operating on 8
3889 shorts at a time (hence, the vectype for purposes of determining the
3890 vectorization factor should be V8HI); on the other hand, the vectype that
3891 is used to create the vector form is actually V4SI (the type of the result).
3893 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
3894 indicates what is the actual level of parallelism (V8HI in the example), so
3895 that the right vectorization factor would be derived. This vectype
3896 corresponds to the type of arguments to the reduction stmt, and should *NOT*
3897 be used to create the vectorized stmt. The right vectype for the vectorized
3898 stmt is obtained from the type of the result X:
3899 get_vectype_for_scalar_type (TREE_TYPE (X))
3901 This means that, contrary to "regular" reductions (or "regular" stmts in
3902 general), the following equation:
3903 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
3904 does *NOT* necessarily hold for reduction patterns. */
3906 bool
3907 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
3908 gimple *vec_stmt, slp_tree slp_node)
3910 tree vec_dest;
3911 tree scalar_dest;
3912 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
3913 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3914 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3915 tree vectype_in = NULL_TREE;
3916 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3917 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3918 enum tree_code code, orig_code, epilog_reduc_code;
3919 enum machine_mode vec_mode;
3920 int op_type;
3921 optab optab, reduc_optab;
3922 tree new_temp = NULL_TREE;
3923 tree def;
3924 gimple def_stmt;
3925 enum vect_def_type dt;
3926 gimple new_phi = NULL;
3927 tree scalar_type;
3928 bool is_simple_use;
3929 gimple orig_stmt;
3930 stmt_vec_info orig_stmt_info;
3931 tree expr = NULL_TREE;
3932 int i;
3933 int ncopies;
3934 int epilog_copies;
3935 stmt_vec_info prev_stmt_info, prev_phi_info;
3936 bool single_defuse_cycle = false;
3937 tree reduc_def = NULL_TREE;
3938 gimple new_stmt = NULL;
3939 int j;
3940 tree ops[3];
3941 bool nested_cycle = false, found_nested_cycle_def = false;
3942 gimple reduc_def_stmt = NULL;
3943 /* The default is that the reduction variable is the last in statement. */
3944 int reduc_index = 2;
3945 bool double_reduc = false, dummy;
3946 basic_block def_bb;
3947 struct loop * def_stmt_loop, *outer_loop = NULL;
3948 tree def_arg;
3949 gimple def_arg_stmt;
3950 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
3951 VEC (gimple, heap) *phis = NULL;
3952 int vec_num;
3953 tree def0, def1, tem;
3955 if (nested_in_vect_loop_p (loop, stmt))
3957 outer_loop = loop;
3958 loop = loop->inner;
3959 nested_cycle = true;
3962 /* 1. Is vectorizable reduction? */
3963 /* Not supportable if the reduction variable is used in the loop. */
3964 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
3965 return false;
3967 /* Reductions that are not used even in an enclosing outer-loop,
3968 are expected to be "live" (used out of the loop). */
3969 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
3970 && !STMT_VINFO_LIVE_P (stmt_info))
3971 return false;
3973 /* Make sure it was already recognized as a reduction computation. */
3974 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
3975 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
3976 return false;
3978 /* 2. Has this been recognized as a reduction pattern?
3980 Check if STMT represents a pattern that has been recognized
3981 in earlier analysis stages. For stmts that represent a pattern,
3982 the STMT_VINFO_RELATED_STMT field records the last stmt in
3983 the original sequence that constitutes the pattern. */
3985 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3986 if (orig_stmt)
3988 orig_stmt_info = vinfo_for_stmt (orig_stmt);
3989 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
3990 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
3991 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
3994 /* 3. Check the operands of the operation. The first operands are defined
3995 inside the loop body. The last operand is the reduction variable,
3996 which is defined by the loop-header-phi. */
3998 gcc_assert (is_gimple_assign (stmt));
4000 /* Flatten RHS. */
4001 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4003 case GIMPLE_SINGLE_RHS:
4004 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4005 if (op_type == ternary_op)
4007 tree rhs = gimple_assign_rhs1 (stmt);
4008 ops[0] = TREE_OPERAND (rhs, 0);
4009 ops[1] = TREE_OPERAND (rhs, 1);
4010 ops[2] = TREE_OPERAND (rhs, 2);
4011 code = TREE_CODE (rhs);
4013 else
4014 return false;
4015 break;
4017 case GIMPLE_BINARY_RHS:
4018 code = gimple_assign_rhs_code (stmt);
4019 op_type = TREE_CODE_LENGTH (code);
4020 gcc_assert (op_type == binary_op);
4021 ops[0] = gimple_assign_rhs1 (stmt);
4022 ops[1] = gimple_assign_rhs2 (stmt);
4023 break;
4025 case GIMPLE_UNARY_RHS:
4026 return false;
4028 default:
4029 gcc_unreachable ();
4032 scalar_dest = gimple_assign_lhs (stmt);
4033 scalar_type = TREE_TYPE (scalar_dest);
4034 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4035 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4036 return false;
4038 /* All uses but the last are expected to be defined in the loop.
4039 The last use is the reduction variable. In case of nested cycle this
4040 assumption is not true: we use reduc_index to record the index of the
4041 reduction variable. */
4042 for (i = 0; i < op_type-1; i++)
4044 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4045 if (i == 0 && code == COND_EXPR)
4046 continue;
4048 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL,
4049 &def_stmt, &def, &dt, &tem);
4050 if (!vectype_in)
4051 vectype_in = tem;
4052 gcc_assert (is_simple_use);
4053 if (dt != vect_internal_def
4054 && dt != vect_external_def
4055 && dt != vect_constant_def
4056 && dt != vect_induction_def
4057 && !(dt == vect_nested_cycle && nested_cycle))
4058 return false;
4060 if (dt == vect_nested_cycle)
4062 found_nested_cycle_def = true;
4063 reduc_def_stmt = def_stmt;
4064 reduc_index = i;
4068 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL, &def_stmt,
4069 &def, &dt, &tem);
4070 if (!vectype_in)
4071 vectype_in = tem;
4072 gcc_assert (is_simple_use);
4073 gcc_assert (dt == vect_reduction_def
4074 || dt == vect_nested_cycle
4075 || ((dt == vect_internal_def || dt == vect_external_def
4076 || dt == vect_constant_def || dt == vect_induction_def)
4077 && nested_cycle && found_nested_cycle_def));
4078 if (!found_nested_cycle_def)
4079 reduc_def_stmt = def_stmt;
4081 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4082 if (orig_stmt)
4083 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4084 reduc_def_stmt,
4085 !nested_cycle,
4086 &dummy));
4087 else
4088 gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4089 !nested_cycle, &dummy));
4091 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4092 return false;
4094 if (slp_node)
4095 ncopies = 1;
4096 else
4097 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4098 / TYPE_VECTOR_SUBPARTS (vectype_in));
4100 gcc_assert (ncopies >= 1);
4102 vec_mode = TYPE_MODE (vectype_in);
4104 if (code == COND_EXPR)
4106 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0))
4108 if (vect_print_dump_info (REPORT_DETAILS))
4109 fprintf (vect_dump, "unsupported condition in reduction");
4111 return false;
4114 else
4116 /* 4. Supportable by target? */
4118 /* 4.1. check support for the operation in the loop */
4119 optab = optab_for_tree_code (code, vectype_in, optab_default);
4120 if (!optab)
4122 if (vect_print_dump_info (REPORT_DETAILS))
4123 fprintf (vect_dump, "no optab.");
4125 return false;
4128 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4130 if (vect_print_dump_info (REPORT_DETAILS))
4131 fprintf (vect_dump, "op not supported by target.");
4133 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4134 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4135 < vect_min_worthwhile_factor (code))
4136 return false;
4138 if (vect_print_dump_info (REPORT_DETAILS))
4139 fprintf (vect_dump, "proceeding using word mode.");
4142 /* Worthwhile without SIMD support? */
4143 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4144 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4145 < vect_min_worthwhile_factor (code))
4147 if (vect_print_dump_info (REPORT_DETAILS))
4148 fprintf (vect_dump, "not worthwhile without SIMD support.");
4150 return false;
4154 /* 4.2. Check support for the epilog operation.
4156 If STMT represents a reduction pattern, then the type of the
4157 reduction variable may be different than the type of the rest
4158 of the arguments. For example, consider the case of accumulation
4159 of shorts into an int accumulator; The original code:
4160 S1: int_a = (int) short_a;
4161 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4163 was replaced with:
4164 STMT: int_acc = widen_sum <short_a, int_acc>
4166 This means that:
4167 1. The tree-code that is used to create the vector operation in the
4168 epilog code (that reduces the partial results) is not the
4169 tree-code of STMT, but is rather the tree-code of the original
4170 stmt from the pattern that STMT is replacing. I.e, in the example
4171 above we want to use 'widen_sum' in the loop, but 'plus' in the
4172 epilog.
4173 2. The type (mode) we use to check available target support
4174 for the vector operation to be created in the *epilog*, is
4175 determined by the type of the reduction variable (in the example
4176 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4177 However the type (mode) we use to check available target support
4178 for the vector operation to be created *inside the loop*, is
4179 determined by the type of the other arguments to STMT (in the
4180 example we'd check this: optab_handler (widen_sum_optab,
4181 vect_short_mode)).
4183 This is contrary to "regular" reductions, in which the types of all
4184 the arguments are the same as the type of the reduction variable.
4185 For "regular" reductions we can therefore use the same vector type
4186 (and also the same tree-code) when generating the epilog code and
4187 when generating the code inside the loop. */
4189 if (orig_stmt)
4191 /* This is a reduction pattern: get the vectype from the type of the
4192 reduction variable, and get the tree-code from orig_stmt. */
4193 orig_code = gimple_assign_rhs_code (orig_stmt);
4194 gcc_assert (vectype_out);
4195 vec_mode = TYPE_MODE (vectype_out);
4197 else
4199 /* Regular reduction: use the same vectype and tree-code as used for
4200 the vector code inside the loop can be used for the epilog code. */
4201 orig_code = code;
4204 if (nested_cycle)
4206 def_bb = gimple_bb (reduc_def_stmt);
4207 def_stmt_loop = def_bb->loop_father;
4208 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4209 loop_preheader_edge (def_stmt_loop));
4210 if (TREE_CODE (def_arg) == SSA_NAME
4211 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4212 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4213 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4214 && vinfo_for_stmt (def_arg_stmt)
4215 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4216 == vect_double_reduction_def)
4217 double_reduc = true;
4220 epilog_reduc_code = ERROR_MARK;
4221 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4223 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4224 optab_default);
4225 if (!reduc_optab)
4227 if (vect_print_dump_info (REPORT_DETAILS))
4228 fprintf (vect_dump, "no optab for reduction.");
4230 epilog_reduc_code = ERROR_MARK;
4233 if (reduc_optab
4234 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4236 if (vect_print_dump_info (REPORT_DETAILS))
4237 fprintf (vect_dump, "reduc op not supported by target.");
4239 epilog_reduc_code = ERROR_MARK;
4242 else
4244 if (!nested_cycle || double_reduc)
4246 if (vect_print_dump_info (REPORT_DETAILS))
4247 fprintf (vect_dump, "no reduc code for scalar code.");
4249 return false;
4253 if (double_reduc && ncopies > 1)
4255 if (vect_print_dump_info (REPORT_DETAILS))
4256 fprintf (vect_dump, "multiple types in double reduction");
4258 return false;
4261 if (!vec_stmt) /* transformation not required. */
4263 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4264 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4265 return false;
4266 return true;
4269 /** Transform. **/
4271 if (vect_print_dump_info (REPORT_DETAILS))
4272 fprintf (vect_dump, "transform reduction.");
4274 /* FORNOW: Multiple types are not supported for condition. */
4275 if (code == COND_EXPR)
4276 gcc_assert (ncopies == 1);
4278 /* Create the destination vector */
4279 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4281 /* In case the vectorization factor (VF) is bigger than the number
4282 of elements that we can fit in a vectype (nunits), we have to generate
4283 more than one vector stmt - i.e - we need to "unroll" the
4284 vector stmt by a factor VF/nunits. For more details see documentation
4285 in vectorizable_operation. */
4287 /* If the reduction is used in an outer loop we need to generate
4288 VF intermediate results, like so (e.g. for ncopies=2):
4289 r0 = phi (init, r0)
4290 r1 = phi (init, r1)
4291 r0 = x0 + r0;
4292 r1 = x1 + r1;
4293 (i.e. we generate VF results in 2 registers).
4294 In this case we have a separate def-use cycle for each copy, and therefore
4295 for each copy we get the vector def for the reduction variable from the
4296 respective phi node created for this copy.
4298 Otherwise (the reduction is unused in the loop nest), we can combine
4299 together intermediate results, like so (e.g. for ncopies=2):
4300 r = phi (init, r)
4301 r = x0 + r;
4302 r = x1 + r;
4303 (i.e. we generate VF/2 results in a single register).
4304 In this case for each copy we get the vector def for the reduction variable
4305 from the vectorized reduction operation generated in the previous iteration.
4308 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
4310 single_defuse_cycle = true;
4311 epilog_copies = 1;
4313 else
4314 epilog_copies = ncopies;
4316 prev_stmt_info = NULL;
4317 prev_phi_info = NULL;
4318 if (slp_node)
4320 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4321 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
4322 == TYPE_VECTOR_SUBPARTS (vectype_in));
4324 else
4326 vec_num = 1;
4327 vec_oprnds0 = VEC_alloc (tree, heap, 1);
4328 if (op_type == ternary_op)
4329 vec_oprnds1 = VEC_alloc (tree, heap, 1);
4332 phis = VEC_alloc (gimple, heap, vec_num);
4333 vect_defs = VEC_alloc (tree, heap, vec_num);
4334 if (!slp_node)
4335 VEC_quick_push (tree, vect_defs, NULL_TREE);
4337 for (j = 0; j < ncopies; j++)
4339 if (j == 0 || !single_defuse_cycle)
4341 for (i = 0; i < vec_num; i++)
4343 /* Create the reduction-phi that defines the reduction
4344 operand. */
4345 new_phi = create_phi_node (vec_dest, loop->header);
4346 set_vinfo_for_stmt (new_phi,
4347 new_stmt_vec_info (new_phi, loop_vinfo,
4348 NULL));
4349 if (j == 0 || slp_node)
4350 VEC_quick_push (gimple, phis, new_phi);
4354 if (code == COND_EXPR)
4356 gcc_assert (!slp_node);
4357 vectorizable_condition (stmt, gsi, vec_stmt,
4358 PHI_RESULT (VEC_index (gimple, phis, 0)),
4359 reduc_index);
4360 /* Multiple types are not supported for condition. */
4361 break;
4364 /* Handle uses. */
4365 if (j == 0)
4367 tree op0, op1 = NULL_TREE;
4369 op0 = ops[!reduc_index];
4370 if (op_type == ternary_op)
4372 if (reduc_index == 0)
4373 op1 = ops[2];
4374 else
4375 op1 = ops[1];
4378 if (slp_node)
4379 vect_get_slp_defs (op0, op1, slp_node, &vec_oprnds0, &vec_oprnds1,
4380 -1);
4381 else
4383 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
4384 stmt, NULL);
4385 VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
4386 if (op_type == ternary_op)
4388 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
4389 NULL);
4390 VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
4394 else
4396 if (!slp_node)
4398 enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
4399 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
4400 VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
4401 if (op_type == ternary_op)
4403 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
4404 loop_vec_def1);
4405 VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
4409 if (single_defuse_cycle)
4410 reduc_def = gimple_assign_lhs (new_stmt);
4412 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
4415 FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
4417 if (slp_node)
4418 reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
4419 else
4421 if (!single_defuse_cycle || j == 0)
4422 reduc_def = PHI_RESULT (new_phi);
4425 def1 = ((op_type == ternary_op)
4426 ? VEC_index (tree, vec_oprnds1, i) : NULL);
4427 if (op_type == binary_op)
4429 if (reduc_index == 0)
4430 expr = build2 (code, vectype_out, reduc_def, def0);
4431 else
4432 expr = build2 (code, vectype_out, def0, reduc_def);
4434 else
4436 if (reduc_index == 0)
4437 expr = build3 (code, vectype_out, reduc_def, def0, def1);
4438 else
4440 if (reduc_index == 1)
4441 expr = build3 (code, vectype_out, def0, reduc_def, def1);
4442 else
4443 expr = build3 (code, vectype_out, def0, def1, reduc_def);
4447 new_stmt = gimple_build_assign (vec_dest, expr);
4448 new_temp = make_ssa_name (vec_dest, new_stmt);
4449 gimple_assign_set_lhs (new_stmt, new_temp);
4450 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4451 if (slp_node)
4453 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
4454 VEC_quick_push (tree, vect_defs, new_temp);
4456 else
4457 VEC_replace (tree, vect_defs, 0, new_temp);
4460 if (slp_node)
4461 continue;
4463 if (j == 0)
4464 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4465 else
4466 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4468 prev_stmt_info = vinfo_for_stmt (new_stmt);
4469 prev_phi_info = vinfo_for_stmt (new_phi);
4472 /* Finalize the reduction-phi (set its arguments) and create the
4473 epilog reduction code. */
4474 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
4476 new_temp = gimple_assign_lhs (*vec_stmt);
4477 VEC_replace (tree, vect_defs, 0, new_temp);
4480 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
4481 epilog_reduc_code, phis, reduc_index,
4482 double_reduc, slp_node);
4484 VEC_free (gimple, heap, phis);
4485 VEC_free (tree, heap, vec_oprnds0);
4486 if (vec_oprnds1)
4487 VEC_free (tree, heap, vec_oprnds1);
4489 return true;
4492 /* Function vect_min_worthwhile_factor.
4494 For a loop where we could vectorize the operation indicated by CODE,
4495 return the minimum vectorization factor that makes it worthwhile
4496 to use generic vectors. */
4498 vect_min_worthwhile_factor (enum tree_code code)
4500 switch (code)
4502 case PLUS_EXPR:
4503 case MINUS_EXPR:
4504 case NEGATE_EXPR:
4505 return 4;
4507 case BIT_AND_EXPR:
4508 case BIT_IOR_EXPR:
4509 case BIT_XOR_EXPR:
4510 case BIT_NOT_EXPR:
4511 return 2;
4513 default:
4514 return INT_MAX;
4519 /* Function vectorizable_induction
4521 Check if PHI performs an induction computation that can be vectorized.
4522 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
4523 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
4524 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4526 bool
4527 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4528 gimple *vec_stmt)
4530 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
4531 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4532 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4533 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4534 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4535 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4536 tree vec_def;
4538 gcc_assert (ncopies >= 1);
4539 /* FORNOW. This restriction should be relaxed. */
4540 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
4542 if (vect_print_dump_info (REPORT_DETAILS))
4543 fprintf (vect_dump, "multiple types in nested loop.");
4544 return false;
4547 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4548 return false;
4550 /* FORNOW: SLP not supported. */
4551 if (STMT_SLP_TYPE (stmt_info))
4552 return false;
4554 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4556 if (gimple_code (phi) != GIMPLE_PHI)
4557 return false;
4559 if (!vec_stmt) /* transformation not required. */
4561 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4562 if (vect_print_dump_info (REPORT_DETAILS))
4563 fprintf (vect_dump, "=== vectorizable_induction ===");
4564 vect_model_induction_cost (stmt_info, ncopies);
4565 return true;
4568 /** Transform. **/
4570 if (vect_print_dump_info (REPORT_DETAILS))
4571 fprintf (vect_dump, "transform induction phi.");
4573 vec_def = get_initial_def_for_induction (phi);
4574 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
4575 return true;
4578 /* Function vectorizable_live_operation.
4580 STMT computes a value that is used outside the loop. Check if
4581 it can be supported. */
4583 bool
4584 vectorizable_live_operation (gimple stmt,
4585 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4586 gimple *vec_stmt ATTRIBUTE_UNUSED)
4588 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4589 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4590 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4591 int i;
4592 int op_type;
4593 tree op;
4594 tree def;
4595 gimple def_stmt;
4596 enum vect_def_type dt;
4597 enum tree_code code;
4598 enum gimple_rhs_class rhs_class;
4600 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
4602 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
4603 return false;
4605 if (!is_gimple_assign (stmt))
4606 return false;
4608 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4609 return false;
4611 /* FORNOW. CHECKME. */
4612 if (nested_in_vect_loop_p (loop, stmt))
4613 return false;
4615 code = gimple_assign_rhs_code (stmt);
4616 op_type = TREE_CODE_LENGTH (code);
4617 rhs_class = get_gimple_rhs_class (code);
4618 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
4619 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
4621 /* FORNOW: support only if all uses are invariant. This means
4622 that the scalar operations can remain in place, unvectorized.
4623 The original last scalar value that they compute will be used. */
4625 for (i = 0; i < op_type; i++)
4627 if (rhs_class == GIMPLE_SINGLE_RHS)
4628 op = TREE_OPERAND (gimple_op (stmt, 1), i);
4629 else
4630 op = gimple_op (stmt, i + 1);
4631 if (op
4632 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
4634 if (vect_print_dump_info (REPORT_DETAILS))
4635 fprintf (vect_dump, "use not simple.");
4636 return false;
4639 if (dt != vect_external_def && dt != vect_constant_def)
4640 return false;
4643 /* No transformation is required for the cases we currently support. */
4644 return true;
4647 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
4649 static void
4650 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
4652 ssa_op_iter op_iter;
4653 imm_use_iterator imm_iter;
4654 def_operand_p def_p;
4655 gimple ustmt;
4657 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
4659 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
4661 basic_block bb;
4663 if (!is_gimple_debug (ustmt))
4664 continue;
4666 bb = gimple_bb (ustmt);
4668 if (!flow_bb_inside_loop_p (loop, bb))
4670 if (gimple_debug_bind_p (ustmt))
4672 if (vect_print_dump_info (REPORT_DETAILS))
4673 fprintf (vect_dump, "killing debug use");
4675 gimple_debug_bind_reset_value (ustmt);
4676 update_stmt (ustmt);
4678 else
4679 gcc_unreachable ();
4685 /* Function vect_transform_loop.
4687 The analysis phase has determined that the loop is vectorizable.
4688 Vectorize the loop - created vectorized stmts to replace the scalar
4689 stmts in the loop, and update the loop exit condition. */
4691 void
4692 vect_transform_loop (loop_vec_info loop_vinfo)
4694 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4695 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
4696 int nbbs = loop->num_nodes;
4697 gimple_stmt_iterator si;
4698 int i;
4699 tree ratio = NULL;
4700 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4701 bool strided_store;
4702 bool slp_scheduled = false;
4703 unsigned int nunits;
4704 tree cond_expr = NULL_TREE;
4705 gimple_seq cond_expr_stmt_list = NULL;
4706 bool do_peeling_for_loop_bound;
4708 if (vect_print_dump_info (REPORT_DETAILS))
4709 fprintf (vect_dump, "=== vec_transform_loop ===");
4711 /* Peel the loop if there are data refs with unknown alignment.
4712 Only one data ref with unknown store is allowed. */
4714 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
4715 vect_do_peeling_for_alignment (loop_vinfo);
4717 do_peeling_for_loop_bound
4718 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4719 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4720 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0));
4722 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
4723 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
4724 vect_loop_versioning (loop_vinfo,
4725 !do_peeling_for_loop_bound,
4726 &cond_expr, &cond_expr_stmt_list);
4728 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
4729 compile time constant), or it is a constant that doesn't divide by the
4730 vectorization factor, then an epilog loop needs to be created.
4731 We therefore duplicate the loop: the original loop will be vectorized,
4732 and will compute the first (n/VF) iterations. The second copy of the loop
4733 will remain scalar and will compute the remaining (n%VF) iterations.
4734 (VF is the vectorization factor). */
4736 if (do_peeling_for_loop_bound)
4737 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
4738 cond_expr, cond_expr_stmt_list);
4739 else
4740 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
4741 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
4743 /* 1) Make sure the loop header has exactly two entries
4744 2) Make sure we have a preheader basic block. */
4746 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
4748 split_edge (loop_preheader_edge (loop));
4750 /* FORNOW: the vectorizer supports only loops which body consist
4751 of one basic block (header + empty latch). When the vectorizer will
4752 support more involved loop forms, the order by which the BBs are
4753 traversed need to be reconsidered. */
4755 for (i = 0; i < nbbs; i++)
4757 basic_block bb = bbs[i];
4758 stmt_vec_info stmt_info;
4759 gimple phi;
4761 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4763 phi = gsi_stmt (si);
4764 if (vect_print_dump_info (REPORT_DETAILS))
4766 fprintf (vect_dump, "------>vectorizing phi: ");
4767 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
4769 stmt_info = vinfo_for_stmt (phi);
4770 if (!stmt_info)
4771 continue;
4773 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4774 vect_loop_kill_debug_uses (loop, phi);
4776 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4777 && !STMT_VINFO_LIVE_P (stmt_info))
4778 continue;
4780 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
4781 != (unsigned HOST_WIDE_INT) vectorization_factor)
4782 && vect_print_dump_info (REPORT_DETAILS))
4783 fprintf (vect_dump, "multiple-types.");
4785 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
4787 if (vect_print_dump_info (REPORT_DETAILS))
4788 fprintf (vect_dump, "transform phi.");
4789 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
4793 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
4795 gimple stmt = gsi_stmt (si);
4796 bool is_store;
4798 if (vect_print_dump_info (REPORT_DETAILS))
4800 fprintf (vect_dump, "------>vectorizing statement: ");
4801 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4804 stmt_info = vinfo_for_stmt (stmt);
4806 /* vector stmts created in the outer-loop during vectorization of
4807 stmts in an inner-loop may not have a stmt_info, and do not
4808 need to be vectorized. */
4809 if (!stmt_info)
4811 gsi_next (&si);
4812 continue;
4815 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4816 vect_loop_kill_debug_uses (loop, stmt);
4818 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4819 && !STMT_VINFO_LIVE_P (stmt_info))
4821 gsi_next (&si);
4822 continue;
4825 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
4826 nunits =
4827 (unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4828 if (!STMT_SLP_TYPE (stmt_info)
4829 && nunits != (unsigned int) vectorization_factor
4830 && vect_print_dump_info (REPORT_DETAILS))
4831 /* For SLP VF is set according to unrolling factor, and not to
4832 vector size, hence for SLP this print is not valid. */
4833 fprintf (vect_dump, "multiple-types.");
4835 /* SLP. Schedule all the SLP instances when the first SLP stmt is
4836 reached. */
4837 if (STMT_SLP_TYPE (stmt_info))
4839 if (!slp_scheduled)
4841 slp_scheduled = true;
4843 if (vect_print_dump_info (REPORT_DETAILS))
4844 fprintf (vect_dump, "=== scheduling SLP instances ===");
4846 vect_schedule_slp (loop_vinfo, NULL);
4849 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
4850 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
4852 gsi_next (&si);
4853 continue;
4857 /* -------- vectorize statement ------------ */
4858 if (vect_print_dump_info (REPORT_DETAILS))
4859 fprintf (vect_dump, "transform statement.");
4861 strided_store = false;
4862 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
4863 if (is_store)
4865 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
4867 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
4868 interleaving chain was completed - free all the stores in
4869 the chain. */
4870 vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
4871 gsi_remove (&si, true);
4872 continue;
4874 else
4876 /* Free the attached stmt_vec_info and remove the stmt. */
4877 free_stmt_vec_info (stmt);
4878 gsi_remove (&si, true);
4879 continue;
4882 gsi_next (&si);
4883 } /* stmts in BB */
4884 } /* BBs in loop */
4886 slpeel_make_loop_iterate_ntimes (loop, ratio);
4888 /* The memory tags and pointers in vectorized statements need to
4889 have their SSA forms updated. FIXME, why can't this be delayed
4890 until all the loops have been transformed? */
4891 update_ssa (TODO_update_ssa);
4893 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4894 fprintf (vect_dump, "LOOP VECTORIZED.");
4895 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4896 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");