1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew Macleod <amacleod@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "ssaexpand.h"
39 /* FIXME: A lot of code here deals with expanding to RTL. All that code
40 should be in cfgexpand.c. */
44 DEF_VEC_I(source_location
);
45 DEF_VEC_ALLOC_I(source_location
,heap
);
47 /* Used to hold all the components required to do SSA PHI elimination.
48 The node and pred/succ list is a simple linear list of nodes and
49 edges represented as pairs of nodes.
51 The predecessor and successor list: Nodes are entered in pairs, where
52 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
53 predecessors, all the odd elements are successors.
56 When implemented as bitmaps, very large programs SSA->Normal times were
57 being dominated by clearing the interference graph.
59 Typically this list of edges is extremely small since it only includes
60 PHI results and uses from a single edge which have not coalesced with
61 each other. This means that no virtual PHI nodes are included, and
62 empirical evidence suggests that the number of edges rarely exceed
63 3, and in a bootstrap of GCC, the maximum size encountered was 7.
64 This also limits the number of possible nodes that are involved to
65 rarely more than 6, and in the bootstrap of gcc, the maximum number
66 of nodes encountered was 12. */
68 typedef struct _elim_graph
{
69 /* Size of the elimination vectors. */
72 /* List of nodes in the elimination graph. */
75 /* The predecessor and successor edge list. */
76 VEC(int,heap
) *edge_list
;
78 /* Source locus on each edge */
79 VEC(source_location
,heap
) *edge_locus
;
84 /* Stack for visited nodes. */
87 /* The variable partition map. */
90 /* Edge being eliminated by this graph. */
93 /* List of constant copies to emit. These are pushed on in pairs. */
94 VEC(int,heap
) *const_dests
;
95 VEC(tree
,heap
) *const_copies
;
97 /* Source locations for any constant copies. */
98 VEC(source_location
,heap
) *copy_locus
;
102 /* For an edge E find out a good source location to associate with
103 instructions inserted on edge E. If E has an implicit goto set,
104 use its location. Otherwise search instructions in predecessors
105 of E for a location, and use that one. That makes sense because
106 we insert on edges for PHI nodes, and effects of PHIs happen on
107 the end of the predecessor conceptually. */
110 set_location_for_edge (edge e
)
114 set_curr_insn_source_location (e
->goto_locus
);
115 set_curr_insn_block (e
->goto_block
);
119 basic_block bb
= e
->src
;
120 gimple_stmt_iterator gsi
;
124 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
126 gimple stmt
= gsi_stmt (gsi
);
127 if (is_gimple_debug (stmt
))
129 if (gimple_has_location (stmt
) || gimple_block (stmt
))
131 set_curr_insn_source_location (gimple_location (stmt
));
132 set_curr_insn_block (gimple_block (stmt
));
136 /* Nothing found in this basic block. Make a half-assed attempt
137 to continue with another block. */
138 if (single_pred_p (bb
))
139 bb
= single_pred (bb
);
143 while (bb
!= e
->src
);
147 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
148 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
149 which we deduce the size to copy in that case. */
152 emit_partition_copy (rtx dest
, rtx src
, int unsignedsrcp
, tree sizeexp
)
158 if (GET_MODE (src
) != VOIDmode
&& GET_MODE (src
) != GET_MODE (dest
))
159 src
= convert_to_mode (GET_MODE (dest
), src
, unsignedsrcp
);
160 if (GET_MODE (src
) == BLKmode
)
162 gcc_assert (GET_MODE (dest
) == BLKmode
);
163 emit_block_move (dest
, src
, expr_size (sizeexp
), BLOCK_OP_NORMAL
);
166 emit_move_insn (dest
, src
);
174 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
177 insert_partition_copy_on_edge (edge e
, int dest
, int src
, source_location locus
)
181 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
184 "Inserting a partition copy on edge BB%d->BB%d :"
187 e
->dest
->index
, dest
, src
);
188 fprintf (dump_file
, "\n");
191 gcc_assert (SA
.partition_to_pseudo
[dest
]);
192 gcc_assert (SA
.partition_to_pseudo
[src
]);
194 set_location_for_edge (e
);
195 /* If a locus is provided, override the default. */
197 set_curr_insn_source_location (locus
);
199 var
= partition_to_var (SA
.map
, src
);
200 seq
= emit_partition_copy (SA
.partition_to_pseudo
[dest
],
201 SA
.partition_to_pseudo
[src
],
202 TYPE_UNSIGNED (TREE_TYPE (var
)),
205 insert_insn_on_edge (seq
, e
);
208 /* Insert a copy instruction from expression SRC to partition DEST
212 insert_value_copy_on_edge (edge e
, int dest
, tree src
, source_location locus
)
215 enum machine_mode dest_mode
, src_mode
;
219 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
222 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
224 e
->dest
->index
, dest
);
225 print_generic_expr (dump_file
, src
, TDF_SLIM
);
226 fprintf (dump_file
, "\n");
229 gcc_assert (SA
.partition_to_pseudo
[dest
]);
231 set_location_for_edge (e
);
232 /* If a locus is provided, override the default. */
234 set_curr_insn_source_location (locus
);
238 var
= SSA_NAME_VAR (partition_to_var (SA
.map
, dest
));
239 src_mode
= TYPE_MODE (TREE_TYPE (src
));
240 dest_mode
= promote_decl_mode (var
, &unsignedp
);
241 gcc_assert (src_mode
== TYPE_MODE (TREE_TYPE (var
)));
242 gcc_assert (dest_mode
== GET_MODE (SA
.partition_to_pseudo
[dest
]));
244 if (src_mode
!= dest_mode
)
246 x
= expand_expr (src
, NULL
, src_mode
, EXPAND_NORMAL
);
247 x
= convert_modes (dest_mode
, src_mode
, x
, unsignedp
);
249 else if (src_mode
== BLKmode
)
251 x
= SA
.partition_to_pseudo
[dest
];
252 store_expr (src
, x
, 0, false);
255 x
= expand_expr (src
, SA
.partition_to_pseudo
[dest
],
256 dest_mode
, EXPAND_NORMAL
);
258 if (x
!= SA
.partition_to_pseudo
[dest
])
259 emit_move_insn (SA
.partition_to_pseudo
[dest
], x
);
263 insert_insn_on_edge (seq
, e
);
266 /* Insert a copy instruction from RTL expression SRC to partition DEST
270 insert_rtx_to_part_on_edge (edge e
, int dest
, rtx src
, int unsignedsrcp
,
271 source_location locus
)
274 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
277 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
279 e
->dest
->index
, dest
);
280 print_simple_rtl (dump_file
, src
);
281 fprintf (dump_file
, "\n");
284 gcc_assert (SA
.partition_to_pseudo
[dest
]);
286 set_location_for_edge (e
);
287 /* If a locus is provided, override the default. */
289 set_curr_insn_source_location (locus
);
291 /* We give the destination as sizeexp in case src/dest are BLKmode
292 mems. Usually we give the source. As we result from SSA names
293 the left and right size should be the same (and no WITH_SIZE_EXPR
294 involved), so it doesn't matter. */
295 seq
= emit_partition_copy (SA
.partition_to_pseudo
[dest
],
297 partition_to_var (SA
.map
, dest
));
299 insert_insn_on_edge (seq
, e
);
302 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
306 insert_part_to_rtx_on_edge (edge e
, rtx dest
, int src
, source_location locus
)
310 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
313 "Inserting a temp copy on edge BB%d->BB%d : ",
316 print_simple_rtl (dump_file
, dest
);
317 fprintf (dump_file
, "= PART.%d\n", src
);
320 gcc_assert (SA
.partition_to_pseudo
[src
]);
322 set_location_for_edge (e
);
323 /* If a locus is provided, override the default. */
325 set_curr_insn_source_location (locus
);
327 var
= partition_to_var (SA
.map
, src
);
328 seq
= emit_partition_copy (dest
,
329 SA
.partition_to_pseudo
[src
],
330 TYPE_UNSIGNED (TREE_TYPE (var
)),
333 insert_insn_on_edge (seq
, e
);
337 /* Create an elimination graph with SIZE nodes and associated data
341 new_elim_graph (int size
)
343 elim_graph g
= (elim_graph
) xmalloc (sizeof (struct _elim_graph
));
345 g
->nodes
= VEC_alloc (int, heap
, 30);
346 g
->const_dests
= VEC_alloc (int, heap
, 20);
347 g
->const_copies
= VEC_alloc (tree
, heap
, 20);
348 g
->copy_locus
= VEC_alloc (source_location
, heap
, 10);
349 g
->edge_list
= VEC_alloc (int, heap
, 20);
350 g
->edge_locus
= VEC_alloc (source_location
, heap
, 10);
351 g
->stack
= VEC_alloc (int, heap
, 30);
353 g
->visited
= sbitmap_alloc (size
);
359 /* Empty elimination graph G. */
362 clear_elim_graph (elim_graph g
)
364 VEC_truncate (int, g
->nodes
, 0);
365 VEC_truncate (int, g
->edge_list
, 0);
366 VEC_truncate (source_location
, g
->edge_locus
, 0);
370 /* Delete elimination graph G. */
373 delete_elim_graph (elim_graph g
)
375 sbitmap_free (g
->visited
);
376 VEC_free (int, heap
, g
->stack
);
377 VEC_free (int, heap
, g
->edge_list
);
378 VEC_free (tree
, heap
, g
->const_copies
);
379 VEC_free (int, heap
, g
->const_dests
);
380 VEC_free (int, heap
, g
->nodes
);
381 VEC_free (source_location
, heap
, g
->copy_locus
);
382 VEC_free (source_location
, heap
, g
->edge_locus
);
388 /* Return the number of nodes in graph G. */
391 elim_graph_size (elim_graph g
)
393 return VEC_length (int, g
->nodes
);
397 /* Add NODE to graph G, if it doesn't exist already. */
400 elim_graph_add_node (elim_graph g
, int node
)
405 FOR_EACH_VEC_ELT (int, g
->nodes
, x
, t
)
408 VEC_safe_push (int, heap
, g
->nodes
, node
);
412 /* Add the edge PRED->SUCC to graph G. */
415 elim_graph_add_edge (elim_graph g
, int pred
, int succ
, source_location locus
)
417 VEC_safe_push (int, heap
, g
->edge_list
, pred
);
418 VEC_safe_push (int, heap
, g
->edge_list
, succ
);
419 VEC_safe_push (source_location
, heap
, g
->edge_locus
, locus
);
423 /* Remove an edge from graph G for which NODE is the predecessor, and
424 return the successor node. -1 is returned if there is no such edge. */
427 elim_graph_remove_succ_edge (elim_graph g
, int node
, source_location
*locus
)
431 for (x
= 0; x
< VEC_length (int, g
->edge_list
); x
+= 2)
432 if (VEC_index (int, g
->edge_list
, x
) == node
)
434 VEC_replace (int, g
->edge_list
, x
, -1);
435 y
= VEC_index (int, g
->edge_list
, x
+ 1);
436 VEC_replace (int, g
->edge_list
, x
+ 1, -1);
437 *locus
= VEC_index (source_location
, g
->edge_locus
, x
/ 2);
438 VEC_replace (source_location
, g
->edge_locus
, x
/ 2, UNKNOWN_LOCATION
);
441 *locus
= UNKNOWN_LOCATION
;
446 /* Find all the nodes in GRAPH which are successors to NODE in the
447 edge list. VAR will hold the partition number found. CODE is the
448 code fragment executed for every node found. */
450 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
454 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
456 y_ = VEC_index (int, (GRAPH)->edge_list, x_); \
459 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \
460 (void) ((LOCUS) = VEC_index (source_location, \
461 (GRAPH)->edge_locus, x_ / 2)); \
467 /* Find all the nodes which are predecessors of NODE in the edge list for
468 GRAPH. VAR will hold the partition number found. CODE is the
469 code fragment executed for every node found. */
471 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
475 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
477 y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \
480 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \
481 (void) ((LOCUS) = VEC_index (source_location, \
482 (GRAPH)->edge_locus, x_ / 2)); \
488 /* Add T to elimination graph G. */
491 eliminate_name (elim_graph g
, int T
)
493 elim_graph_add_node (g
, T
);
497 /* Build elimination graph G for basic block BB on incoming PHI edge
501 eliminate_build (elim_graph g
)
505 gimple_stmt_iterator gsi
;
507 clear_elim_graph (g
);
509 for (gsi
= gsi_start_phis (g
->e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
511 gimple phi
= gsi_stmt (gsi
);
512 source_location locus
;
514 p0
= var_to_partition (g
->map
, gimple_phi_result (phi
));
515 /* Ignore results which are not in partitions. */
516 if (p0
== NO_PARTITION
)
519 Ti
= PHI_ARG_DEF (phi
, g
->e
->dest_idx
);
520 locus
= gimple_phi_arg_location_from_edge (phi
, g
->e
);
522 /* If this argument is a constant, or a SSA_NAME which is being
523 left in SSA form, just queue a copy to be emitted on this
525 if (!phi_ssa_name_p (Ti
)
526 || (TREE_CODE (Ti
) == SSA_NAME
527 && var_to_partition (g
->map
, Ti
) == NO_PARTITION
))
529 /* Save constant copies until all other copies have been emitted
531 VEC_safe_push (int, heap
, g
->const_dests
, p0
);
532 VEC_safe_push (tree
, heap
, g
->const_copies
, Ti
);
533 VEC_safe_push (source_location
, heap
, g
->copy_locus
, locus
);
537 pi
= var_to_partition (g
->map
, Ti
);
540 eliminate_name (g
, p0
);
541 eliminate_name (g
, pi
);
542 elim_graph_add_edge (g
, p0
, pi
, locus
);
549 /* Push successors of T onto the elimination stack for G. */
552 elim_forward (elim_graph g
, int T
)
555 source_location locus
;
557 SET_BIT (g
->visited
, T
);
558 FOR_EACH_ELIM_GRAPH_SUCC (g
, T
, S
, locus
,
560 if (!TEST_BIT (g
->visited
, S
))
563 VEC_safe_push (int, heap
, g
->stack
, T
);
567 /* Return 1 if there unvisited predecessors of T in graph G. */
570 elim_unvisited_predecessor (elim_graph g
, int T
)
573 source_location locus
;
575 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
577 if (!TEST_BIT (g
->visited
, P
))
583 /* Process predecessors first, and insert a copy. */
586 elim_backward (elim_graph g
, int T
)
589 source_location locus
;
591 SET_BIT (g
->visited
, T
);
592 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
594 if (!TEST_BIT (g
->visited
, P
))
596 elim_backward (g
, P
);
597 insert_partition_copy_on_edge (g
->e
, P
, T
, locus
);
602 /* Allocate a new pseudo register usable for storing values sitting
603 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
606 get_temp_reg (tree name
)
608 tree var
= TREE_CODE (name
) == SSA_NAME
? SSA_NAME_VAR (name
) : name
;
609 tree type
= TREE_TYPE (var
);
611 enum machine_mode reg_mode
= promote_decl_mode (var
, &unsignedp
);
612 rtx x
= gen_reg_rtx (reg_mode
);
613 if (POINTER_TYPE_P (type
))
614 mark_reg_pointer (x
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var
))));
618 /* Insert required copies for T in graph G. Check for a strongly connected
619 region, and create a temporary to break the cycle if one is found. */
622 elim_create (elim_graph g
, int T
)
625 source_location locus
;
627 if (elim_unvisited_predecessor (g
, T
))
629 tree var
= partition_to_var (g
->map
, T
);
630 rtx U
= get_temp_reg (var
);
631 int unsignedsrcp
= TYPE_UNSIGNED (TREE_TYPE (var
));
633 insert_part_to_rtx_on_edge (g
->e
, U
, T
, UNKNOWN_LOCATION
);
634 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
636 if (!TEST_BIT (g
->visited
, P
))
638 elim_backward (g
, P
);
639 insert_rtx_to_part_on_edge (g
->e
, P
, U
, unsignedsrcp
, locus
);
645 S
= elim_graph_remove_succ_edge (g
, T
, &locus
);
648 SET_BIT (g
->visited
, T
);
649 insert_partition_copy_on_edge (g
->e
, T
, S
, locus
);
655 /* Eliminate all the phi nodes on edge E in graph G. */
658 eliminate_phi (edge e
, elim_graph g
)
662 gcc_assert (VEC_length (tree
, g
->const_copies
) == 0);
663 gcc_assert (VEC_length (source_location
, g
->copy_locus
) == 0);
665 /* Abnormal edges already have everything coalesced. */
666 if (e
->flags
& EDGE_ABNORMAL
)
673 if (elim_graph_size (g
) != 0)
677 sbitmap_zero (g
->visited
);
678 VEC_truncate (int, g
->stack
, 0);
680 FOR_EACH_VEC_ELT (int, g
->nodes
, x
, part
)
682 if (!TEST_BIT (g
->visited
, part
))
683 elim_forward (g
, part
);
686 sbitmap_zero (g
->visited
);
687 while (VEC_length (int, g
->stack
) > 0)
689 x
= VEC_pop (int, g
->stack
);
690 if (!TEST_BIT (g
->visited
, x
))
695 /* If there are any pending constant copies, issue them now. */
696 while (VEC_length (tree
, g
->const_copies
) > 0)
700 source_location locus
;
702 src
= VEC_pop (tree
, g
->const_copies
);
703 dest
= VEC_pop (int, g
->const_dests
);
704 locus
= VEC_pop (source_location
, g
->copy_locus
);
705 insert_value_copy_on_edge (e
, dest
, src
, locus
);
710 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
711 check to see if this allows another PHI node to be removed. */
714 remove_gimple_phi_args (gimple phi
)
719 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
721 fprintf (dump_file
, "Removing Dead PHI definition: ");
722 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
725 FOR_EACH_PHI_ARG (arg_p
, phi
, iter
, SSA_OP_USE
)
727 tree arg
= USE_FROM_PTR (arg_p
);
728 if (TREE_CODE (arg
) == SSA_NAME
)
730 /* Remove the reference to the existing argument. */
731 SET_USE (arg_p
, NULL_TREE
);
732 if (has_zero_uses (arg
))
735 gimple_stmt_iterator gsi
;
737 stmt
= SSA_NAME_DEF_STMT (arg
);
739 /* Also remove the def if it is a PHI node. */
740 if (gimple_code (stmt
) == GIMPLE_PHI
)
742 remove_gimple_phi_args (stmt
);
743 gsi
= gsi_for_stmt (stmt
);
744 remove_phi_node (&gsi
, true);
752 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
755 eliminate_useless_phis (void)
758 gimple_stmt_iterator gsi
;
763 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
765 gimple phi
= gsi_stmt (gsi
);
766 result
= gimple_phi_result (phi
);
767 if (!is_gimple_reg (SSA_NAME_VAR (result
)))
769 #ifdef ENABLE_CHECKING
771 /* There should be no arguments which are not virtual, or the
772 results will be incorrect. */
773 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
775 tree arg
= PHI_ARG_DEF (phi
, i
);
776 if (TREE_CODE (arg
) == SSA_NAME
777 && is_gimple_reg (SSA_NAME_VAR (arg
)))
779 fprintf (stderr
, "Argument of PHI is not virtual (");
780 print_generic_expr (stderr
, arg
, TDF_SLIM
);
781 fprintf (stderr
, "), but the result is :");
782 print_gimple_stmt (stderr
, phi
, 0, TDF_SLIM
);
783 internal_error ("SSA corruption");
787 remove_phi_node (&gsi
, true);
791 /* Also remove real PHIs with no uses. */
792 if (has_zero_uses (result
))
794 remove_gimple_phi_args (phi
);
795 remove_phi_node (&gsi
, true);
805 /* This function will rewrite the current program using the variable mapping
806 found in MAP. If the replacement vector VALUES is provided, any
807 occurrences of partitions with non-null entries in the vector will be
808 replaced with the expression in the vector instead of its mapped
812 rewrite_trees (var_map map ATTRIBUTE_UNUSED
)
814 #ifdef ENABLE_CHECKING
816 /* Search for PHIs where the destination has no partition, but one
817 or more arguments has a partition. This should not happen and can
818 create incorrect code. */
821 gimple_stmt_iterator gsi
;
822 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
824 gimple phi
= gsi_stmt (gsi
);
825 tree T0
= var_to_partition_to_var (map
, gimple_phi_result (phi
));
829 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
831 tree arg
= PHI_ARG_DEF (phi
, i
);
833 if (TREE_CODE (arg
) == SSA_NAME
834 && var_to_partition (map
, arg
) != NO_PARTITION
)
836 fprintf (stderr
, "Argument of PHI is in a partition :(");
837 print_generic_expr (stderr
, arg
, TDF_SLIM
);
838 fprintf (stderr
, "), but the result is not :");
839 print_gimple_stmt (stderr
, phi
, 0, TDF_SLIM
);
840 internal_error ("SSA corruption");
849 /* Given the out-of-ssa info object SA (with prepared partitions)
850 eliminate all phi nodes in all basic blocks. Afterwards no
851 basic block will have phi nodes anymore and there are possibly
852 some RTL instructions inserted on edges. */
855 expand_phi_nodes (struct ssaexpand
*sa
)
858 elim_graph g
= new_elim_graph (sa
->map
->num_partitions
);
861 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
862 if (!gimple_seq_empty_p (phi_nodes (bb
)))
866 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
867 eliminate_phi (e
, g
);
868 set_phi_nodes (bb
, NULL
);
869 /* We can't redirect EH edges in RTL land, so we need to do this
870 here. Redirection happens only when splitting is necessary,
871 which it is only for critical edges, normally. For EH edges
872 it might also be necessary when the successor has more than
873 one predecessor. In that case the edge is either required to
874 be fallthru (which EH edges aren't), or the predecessor needs
875 to end with a jump (which again, isn't the case with EH edges).
876 Hence, split all EH edges on which we inserted instructions
877 and whose successor has multiple predecessors. */
878 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
880 if (e
->insns
.r
&& (e
->flags
& EDGE_EH
)
881 && !single_pred_p (e
->dest
))
883 rtx insns
= e
->insns
.r
;
885 e
->insns
.r
= NULL_RTX
;
887 single_pred_edge (bb
)->insns
.r
= insns
;
894 delete_elim_graph (g
);
898 /* Remove the ssa-names in the current function and translate them into normal
899 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
900 should also be used. */
903 remove_ssa_form (bool perform_ter
, struct ssaexpand
*sa
)
905 bitmap values
= NULL
;
909 map
= coalesce_ssa_name ();
911 /* Return to viewing the variable list as just all reference variables after
912 coalescing has been performed. */
913 partition_view_normal (map
, false);
915 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
917 fprintf (dump_file
, "After Coalescing:\n");
918 dump_var_map (dump_file
, map
);
923 values
= find_replaceable_exprs (map
);
924 if (values
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
925 dump_replaceable_exprs (dump_file
, values
);
932 sa
->partition_has_default_def
= BITMAP_ALLOC (NULL
);
933 for (i
= 1; i
< num_ssa_names
; i
++)
935 tree t
= ssa_name (i
);
936 if (t
&& SSA_NAME_IS_DEFAULT_DEF (t
))
938 int p
= var_to_partition (map
, t
);
939 if (p
!= NO_PARTITION
)
940 bitmap_set_bit (sa
->partition_has_default_def
, p
);
946 /* If not already done so for basic block BB, assign increasing uids
947 to each of its instructions. */
950 maybe_renumber_stmts_bb (basic_block bb
)
953 gimple_stmt_iterator gsi
;
958 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
960 gimple stmt
= gsi_stmt (gsi
);
961 gimple_set_uid (stmt
, i
);
967 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
968 of a PHI node) and ARG (one of its arguments) conflict. Return false
969 otherwise, also when we simply aren't sure. */
972 trivially_conflicts_p (basic_block bb
, tree result
, tree arg
)
975 imm_use_iterator imm_iter
;
976 gimple defa
= SSA_NAME_DEF_STMT (arg
);
978 /* If ARG isn't defined in the same block it's too complicated for
980 if (gimple_bb (defa
) != bb
)
983 FOR_EACH_IMM_USE_FAST (use
, imm_iter
, result
)
985 gimple use_stmt
= USE_STMT (use
);
986 if (is_gimple_debug (use_stmt
))
988 /* Now, if there's a use of RESULT that lies outside this basic block,
989 then there surely is a conflict with ARG. */
990 if (gimple_bb (use_stmt
) != bb
)
992 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
994 /* The use now is in a real stmt of BB, so if ARG was defined
995 in a PHI node (like RESULT) both conflict. */
996 if (gimple_code (defa
) == GIMPLE_PHI
)
998 maybe_renumber_stmts_bb (bb
);
999 /* If the use of RESULT occurs after the definition of ARG,
1000 the two conflict too. */
1001 if (gimple_uid (defa
) < gimple_uid (use_stmt
))
1009 /* Search every PHI node for arguments associated with backedges which
1010 we can trivially determine will need a copy (the argument is either
1011 not an SSA_NAME or the argument has a different underlying variable
1012 than the PHI result).
1014 Insert a copy from the PHI argument to a new destination at the
1015 end of the block with the backedge to the top of the loop. Update
1016 the PHI argument to reference this new destination. */
1019 insert_backedge_copies (void)
1022 gimple_stmt_iterator gsi
;
1026 /* Mark block as possibly needing calculation of UIDs. */
1029 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1031 gimple phi
= gsi_stmt (gsi
);
1032 tree result
= gimple_phi_result (phi
);
1036 if (!is_gimple_reg (result
))
1039 result_var
= SSA_NAME_VAR (result
);
1040 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1042 tree arg
= gimple_phi_arg_def (phi
, i
);
1043 edge e
= gimple_phi_arg_edge (phi
, i
);
1045 /* If the argument is not an SSA_NAME, then we will need a
1046 constant initialization. If the argument is an SSA_NAME with
1047 a different underlying variable then a copy statement will be
1049 if ((e
->flags
& EDGE_DFS_BACK
)
1050 && (TREE_CODE (arg
) != SSA_NAME
1051 || SSA_NAME_VAR (arg
) != result_var
1052 || trivially_conflicts_p (bb
, result
, arg
)))
1055 gimple stmt
, last
= NULL
;
1056 gimple_stmt_iterator gsi2
;
1058 gsi2
= gsi_last_bb (gimple_phi_arg_edge (phi
, i
)->src
);
1059 if (!gsi_end_p (gsi2
))
1060 last
= gsi_stmt (gsi2
);
1062 /* In theory the only way we ought to get back to the
1063 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1064 However, better safe than sorry.
1065 If the block ends with a control statement or
1066 something that might throw, then we have to
1067 insert this assignment before the last
1068 statement. Else insert it after the last statement. */
1069 if (last
&& stmt_ends_bb_p (last
))
1071 /* If the last statement in the block is the definition
1072 site of the PHI argument, then we can't insert
1073 anything after it. */
1074 if (TREE_CODE (arg
) == SSA_NAME
1075 && SSA_NAME_DEF_STMT (arg
) == last
)
1079 /* Create a new instance of the underlying variable of the
1081 stmt
= gimple_build_assign (result_var
,
1082 gimple_phi_arg_def (phi
, i
));
1083 name
= make_ssa_name (result_var
, stmt
);
1084 gimple_assign_set_lhs (stmt
, name
);
1086 /* copy location if present. */
1087 if (gimple_phi_arg_has_location (phi
, i
))
1088 gimple_set_location (stmt
,
1089 gimple_phi_arg_location (phi
, i
));
1091 /* Insert the new statement into the block and update
1093 if (last
&& stmt_ends_bb_p (last
))
1094 gsi_insert_before (&gsi2
, stmt
, GSI_NEW_STMT
);
1096 gsi_insert_after (&gsi2
, stmt
, GSI_NEW_STMT
);
1097 SET_PHI_ARG_DEF (phi
, i
, name
);
1102 /* Unmark this block again. */
1107 /* Free all memory associated with going out of SSA form. SA is
1108 the outof-SSA info object. */
1111 finish_out_of_ssa (struct ssaexpand
*sa
)
1113 free (sa
->partition_to_pseudo
);
1115 BITMAP_FREE (sa
->values
);
1116 delete_var_map (sa
->map
);
1117 BITMAP_FREE (sa
->partition_has_default_def
);
1118 memset (sa
, 0, sizeof *sa
);
1121 /* Take the current function out of SSA form, translating PHIs as described in
1122 R. Morgan, ``Building an Optimizing Compiler'',
1123 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1126 rewrite_out_of_ssa (struct ssaexpand
*sa
)
1128 /* If elimination of a PHI requires inserting a copy on a backedge,
1129 then we will have to split the backedge which has numerous
1130 undesirable performance effects.
1132 A significant number of such cases can be handled here by inserting
1133 copies into the loop itself. */
1134 insert_backedge_copies ();
1137 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1138 eliminate_useless_phis ();
1140 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1141 gimple_dump_cfg (dump_file
, dump_flags
& ~TDF_DETAILS
);
1143 remove_ssa_form (flag_tree_ter
, sa
);
1145 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1146 gimple_dump_cfg (dump_file
, dump_flags
& ~TDF_DETAILS
);