1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
62 pseudo-register number, allocno class, conflicting allocnos and
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
78 - *Hard-register costs*. This is a vector of size equal to the
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
145 IRA major passes are:
147 o Building IRA internal representation which consists of the
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
157 * IRA creates live ranges of each allocno, calulates register
158 pressure for each pressure class in each region, sets up
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
169 * IRA creates all caps (file ira-build.c).
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
195 the allocation. IRA uses some heuristics to improve the
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
334 Literature is worth to read for better understanding the code:
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
362 #include "coretypes.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
377 #include "tree-pass.h"
381 #include "diagnostic-core.h"
382 #include "function.h"
389 struct target_ira default_target_ira
;
390 struct target_ira_int default_target_ira_int
;
391 #if SWITCHABLE_TARGET
392 struct target_ira
*this_target_ira
= &default_target_ira
;
393 struct target_ira_int
*this_target_ira_int
= &default_target_ira_int
;
396 /* A modified value of flag `-fira-verbose' used internally. */
397 int internal_flag_ira_verbose
;
399 /* Dump file of the allocator if it is not NULL. */
402 /* The number of elements in the following array. */
403 int ira_spilled_reg_stack_slots_num
;
405 /* The following array contains info about spilled pseudo-registers
406 stack slots used in current function so far. */
407 struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
409 /* Correspondingly overall cost of the allocation, overall cost before
410 reload, cost of the allocnos assigned to hard-registers, cost of
411 the allocnos assigned to memory, cost of loads, stores and register
412 move insns generated for pseudo-register live range splitting (see
414 int ira_overall_cost
, overall_cost_before
;
415 int ira_reg_cost
, ira_mem_cost
;
416 int ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
417 int ira_move_loops_num
, ira_additional_jumps_num
;
419 /* All registers that can be eliminated. */
421 HARD_REG_SET eliminable_regset
;
423 /* Temporary hard reg set used for a different calculation. */
424 static HARD_REG_SET temp_hard_regset
;
426 #define last_mode_for_init_move_cost \
427 (this_target_ira_int->x_last_mode_for_init_move_cost)
430 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
432 setup_reg_mode_hard_regset (void)
434 int i
, m
, hard_regno
;
436 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
437 for (hard_regno
= 0; hard_regno
< FIRST_PSEUDO_REGISTER
; hard_regno
++)
439 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset
[hard_regno
][m
]);
440 for (i
= hard_regno_nregs
[hard_regno
][m
] - 1; i
>= 0; i
--)
441 if (hard_regno
+ i
< FIRST_PSEUDO_REGISTER
)
442 SET_HARD_REG_BIT (ira_reg_mode_hard_regset
[hard_regno
][m
],
448 #define no_unit_alloc_regs \
449 (this_target_ira_int->x_no_unit_alloc_regs)
451 /* The function sets up the three arrays declared above. */
453 setup_class_hard_regs (void)
455 int cl
, i
, hard_regno
, n
;
456 HARD_REG_SET processed_hard_reg_set
;
458 ira_assert (SHRT_MAX
>= FIRST_PSEUDO_REGISTER
);
459 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
461 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
462 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
463 CLEAR_HARD_REG_SET (processed_hard_reg_set
);
464 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
466 ira_non_ordered_class_hard_regs
[cl
][i
] = -1;
467 ira_class_hard_reg_index
[cl
][i
] = -1;
469 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
471 #ifdef REG_ALLOC_ORDER
472 hard_regno
= reg_alloc_order
[i
];
476 if (TEST_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
))
478 SET_HARD_REG_BIT (processed_hard_reg_set
, hard_regno
);
479 if (! TEST_HARD_REG_BIT (temp_hard_regset
, hard_regno
))
480 ira_class_hard_reg_index
[cl
][hard_regno
] = -1;
483 ira_class_hard_reg_index
[cl
][hard_regno
] = n
;
484 ira_class_hard_regs
[cl
][n
++] = hard_regno
;
487 ira_class_hard_regs_num
[cl
] = n
;
488 for (n
= 0, i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
489 if (TEST_HARD_REG_BIT (temp_hard_regset
, i
))
490 ira_non_ordered_class_hard_regs
[cl
][n
++] = i
;
491 ira_assert (ira_class_hard_regs_num
[cl
] == n
);
495 /* Set up global variables defining info about hard registers for the
496 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
497 that we can use the hard frame pointer for the allocation. */
499 setup_alloc_regs (bool use_hard_frame_p
)
501 #ifdef ADJUST_REG_ALLOC_ORDER
502 ADJUST_REG_ALLOC_ORDER
;
504 COPY_HARD_REG_SET (no_unit_alloc_regs
, fixed_reg_set
);
505 if (! use_hard_frame_p
)
506 SET_HARD_REG_BIT (no_unit_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
507 setup_class_hard_regs ();
512 #define alloc_reg_class_subclasses \
513 (this_target_ira_int->x_alloc_reg_class_subclasses)
515 /* Initialize the table of subclasses of each reg class. */
517 setup_reg_subclasses (void)
520 HARD_REG_SET temp_hard_regset2
;
522 for (i
= 0; i
< N_REG_CLASSES
; i
++)
523 for (j
= 0; j
< N_REG_CLASSES
; j
++)
524 alloc_reg_class_subclasses
[i
][j
] = LIM_REG_CLASSES
;
526 for (i
= 0; i
< N_REG_CLASSES
; i
++)
528 if (i
== (int) NO_REGS
)
531 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
532 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
533 if (hard_reg_set_empty_p (temp_hard_regset
))
535 for (j
= 0; j
< N_REG_CLASSES
; j
++)
540 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[j
]);
541 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
542 if (! hard_reg_set_subset_p (temp_hard_regset
,
545 p
= &alloc_reg_class_subclasses
[j
][0];
546 while (*p
!= LIM_REG_CLASSES
) p
++;
547 *p
= (enum reg_class
) i
;
554 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
556 setup_class_subset_and_memory_move_costs (void)
558 int cl
, cl2
, mode
, cost
;
559 HARD_REG_SET temp_hard_regset2
;
561 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
562 ira_memory_move_cost
[mode
][NO_REGS
][0]
563 = ira_memory_move_cost
[mode
][NO_REGS
][1] = SHRT_MAX
;
564 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
566 if (cl
!= (int) NO_REGS
)
567 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
569 ira_max_memory_move_cost
[mode
][cl
][0]
570 = ira_memory_move_cost
[mode
][cl
][0]
571 = memory_move_cost ((enum machine_mode
) mode
,
572 (reg_class_t
) cl
, false);
573 ira_max_memory_move_cost
[mode
][cl
][1]
574 = ira_memory_move_cost
[mode
][cl
][1]
575 = memory_move_cost ((enum machine_mode
) mode
,
576 (reg_class_t
) cl
, true);
577 /* Costs for NO_REGS are used in cost calculation on the
578 1st pass when the preferred register classes are not
579 known yet. In this case we take the best scenario. */
580 if (ira_memory_move_cost
[mode
][NO_REGS
][0]
581 > ira_memory_move_cost
[mode
][cl
][0])
582 ira_max_memory_move_cost
[mode
][NO_REGS
][0]
583 = ira_memory_move_cost
[mode
][NO_REGS
][0]
584 = ira_memory_move_cost
[mode
][cl
][0];
585 if (ira_memory_move_cost
[mode
][NO_REGS
][1]
586 > ira_memory_move_cost
[mode
][cl
][1])
587 ira_max_memory_move_cost
[mode
][NO_REGS
][1]
588 = ira_memory_move_cost
[mode
][NO_REGS
][1]
589 = ira_memory_move_cost
[mode
][cl
][1];
592 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
593 for (cl2
= (int) N_REG_CLASSES
- 1; cl2
>= 0; cl2
--)
595 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
596 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
597 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
598 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
599 ira_class_subset_p
[cl
][cl2
]
600 = hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
);
601 if (! hard_reg_set_empty_p (temp_hard_regset2
)
602 && hard_reg_set_subset_p (reg_class_contents
[cl2
],
603 reg_class_contents
[cl
]))
604 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
606 cost
= ira_memory_move_cost
[mode
][cl2
][0];
607 if (cost
> ira_max_memory_move_cost
[mode
][cl
][0])
608 ira_max_memory_move_cost
[mode
][cl
][0] = cost
;
609 cost
= ira_memory_move_cost
[mode
][cl2
][1];
610 if (cost
> ira_max_memory_move_cost
[mode
][cl
][1])
611 ira_max_memory_move_cost
[mode
][cl
][1] = cost
;
614 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
615 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
617 ira_memory_move_cost
[mode
][cl
][0]
618 = ira_max_memory_move_cost
[mode
][cl
][0];
619 ira_memory_move_cost
[mode
][cl
][1]
620 = ira_max_memory_move_cost
[mode
][cl
][1];
622 setup_reg_subclasses ();
627 /* Define the following macro if allocation through malloc if
629 #define IRA_NO_OBSTACK
631 #ifndef IRA_NO_OBSTACK
632 /* Obstack used for storing all dynamic data (except bitmaps) of the
634 static struct obstack ira_obstack
;
637 /* Obstack used for storing all bitmaps of the IRA. */
638 static struct bitmap_obstack ira_bitmap_obstack
;
640 /* Allocate memory of size LEN for IRA data. */
642 ira_allocate (size_t len
)
646 #ifndef IRA_NO_OBSTACK
647 res
= obstack_alloc (&ira_obstack
, len
);
654 /* Free memory ADDR allocated for IRA data. */
656 ira_free (void *addr ATTRIBUTE_UNUSED
)
658 #ifndef IRA_NO_OBSTACK
666 /* Allocate and returns bitmap for IRA. */
668 ira_allocate_bitmap (void)
670 return BITMAP_ALLOC (&ira_bitmap_obstack
);
673 /* Free bitmap B allocated for IRA. */
675 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED
)
682 /* Output information about allocation of all allocnos (except for
683 caps) into file F. */
685 ira_print_disposition (FILE *f
)
691 fprintf (f
, "Disposition:");
692 max_regno
= max_reg_num ();
693 for (n
= 0, i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
694 for (a
= ira_regno_allocno_map
[i
];
696 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
701 fprintf (f
, " %4d:r%-4d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
702 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
703 fprintf (f
, "b%-3d", bb
->index
);
705 fprintf (f
, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
706 if (ALLOCNO_HARD_REGNO (a
) >= 0)
707 fprintf (f
, " %3d", ALLOCNO_HARD_REGNO (a
));
714 /* Outputs information about allocation of all allocnos into
717 ira_debug_disposition (void)
719 ira_print_disposition (stderr
);
724 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
725 register class containing stack registers or NO_REGS if there are
726 no stack registers. To find this class, we iterate through all
727 register pressure classes and choose the first register pressure
728 class containing all the stack registers and having the biggest
731 setup_stack_reg_pressure_class (void)
733 ira_stack_reg_pressure_class
= NO_REGS
;
738 HARD_REG_SET temp_hard_regset2
;
740 CLEAR_HARD_REG_SET (temp_hard_regset
);
741 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
742 SET_HARD_REG_BIT (temp_hard_regset
, i
);
744 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
746 cl
= ira_pressure_classes
[i
];
747 COPY_HARD_REG_SET (temp_hard_regset2
, temp_hard_regset
);
748 AND_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
749 size
= hard_reg_set_size (temp_hard_regset2
);
753 ira_stack_reg_pressure_class
= cl
;
760 /* Find pressure classes which are register classes for which we
761 calculate register pressure in IRA, register pressure sensitive
762 insn scheduling, and register pressure sensitive loop invariant
765 To make register pressure calculation easy, we always use
766 non-intersected register pressure classes. A move of hard
767 registers from one register pressure class is not more expensive
768 than load and store of the hard registers. Most likely an allocno
769 class will be a subset of a register pressure class and in many
770 cases a register pressure class. That makes usage of register
771 pressure classes a good approximation to find a high register
774 setup_pressure_classes (void)
776 int cost
, i
, n
, curr
;
778 enum reg_class pressure_classes
[N_REG_CLASSES
];
780 HARD_REG_SET temp_hard_regset2
;
784 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
786 if (ira_class_hard_regs_num
[cl
] == 0)
788 if (ira_class_hard_regs_num
[cl
] != 1
789 /* A register class without subclasses may contain a few
790 hard registers and movement between them is costly
791 (e.g. SPARC FPCC registers). We still should consider it
792 as a candidate for a pressure class. */
793 && alloc_reg_class_subclasses
[cl
][0] < cl
)
795 /* Check that the moves between any hard registers of the
796 current class are not more expensive for a legal mode
797 than load/store of the hard registers of the current
798 class. Such class is a potential candidate to be a
799 register pressure class. */
800 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
802 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
803 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
804 AND_COMPL_HARD_REG_SET (temp_hard_regset
,
805 ira_prohibited_class_mode_regs
[cl
][m
]);
806 if (hard_reg_set_empty_p (temp_hard_regset
))
808 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
809 cost
= ira_register_move_cost
[m
][cl
][cl
];
810 if (cost
<= ira_max_memory_move_cost
[m
][cl
][1]
811 || cost
<= ira_max_memory_move_cost
[m
][cl
][0])
814 if (m
>= NUM_MACHINE_MODES
)
819 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
821 /* Remove so far added pressure classes which are subset of the
822 current candidate class. Prefer GENERAL_REGS as a pressure
823 register class to another class containing the same
824 allocatable hard registers. We do this because machine
825 dependent cost hooks might give wrong costs for the latter
826 class but always give the right cost for the former class
828 for (i
= 0; i
< n
; i
++)
830 cl2
= pressure_classes
[i
];
831 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl2
]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
833 if (hard_reg_set_subset_p (temp_hard_regset
, temp_hard_regset2
)
834 && (! hard_reg_set_equal_p (temp_hard_regset
, temp_hard_regset2
)
835 || cl2
== (int) GENERAL_REGS
))
837 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
841 if (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
)
842 && (! hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
)
843 || cl
== (int) GENERAL_REGS
))
845 if (hard_reg_set_equal_p (temp_hard_regset2
, temp_hard_regset
))
847 pressure_classes
[curr
++] = (enum reg_class
) cl2
;
849 /* If the current candidate is a subset of a so far added
850 pressure class, don't add it to the list of the pressure
853 pressure_classes
[curr
++] = (enum reg_class
) cl
;
856 #ifdef ENABLE_IRA_CHECKING
858 HARD_REG_SET ignore_hard_regs
;
860 /* Check pressure classes correctness: here we check that hard
861 registers from all register pressure classes contains all hard
862 registers available for the allocation. */
863 CLEAR_HARD_REG_SET (temp_hard_regset
);
864 CLEAR_HARD_REG_SET (temp_hard_regset2
);
865 COPY_HARD_REG_SET (ignore_hard_regs
, no_unit_alloc_regs
);
866 for (cl
= 0; cl
< LIM_REG_CLASSES
; cl
++)
868 /* For some targets (like MIPS with MD_REGS), there are some
869 classes with hard registers available for allocation but
870 not able to hold value of any mode. */
871 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
872 if (contains_reg_of_mode
[cl
][m
])
874 if (m
>= NUM_MACHINE_MODES
)
876 IOR_HARD_REG_SET (ignore_hard_regs
, reg_class_contents
[cl
]);
879 for (i
= 0; i
< n
; i
++)
880 if ((int) pressure_classes
[i
] == cl
)
882 IOR_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
884 IOR_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
886 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
887 /* Some targets (like SPARC with ICC reg) have alocatable regs
888 for which no reg class is defined. */
889 if (REGNO_REG_CLASS (i
) == NO_REGS
)
890 SET_HARD_REG_BIT (ignore_hard_regs
, i
);
891 AND_COMPL_HARD_REG_SET (temp_hard_regset
, ignore_hard_regs
);
892 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, ignore_hard_regs
);
893 ira_assert (hard_reg_set_subset_p (temp_hard_regset2
, temp_hard_regset
));
896 ira_pressure_classes_num
= 0;
897 for (i
= 0; i
< n
; i
++)
899 cl
= (int) pressure_classes
[i
];
900 ira_reg_pressure_class_p
[cl
] = true;
901 ira_pressure_classes
[ira_pressure_classes_num
++] = (enum reg_class
) cl
;
903 setup_stack_reg_pressure_class ();
906 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
907 whose register move cost between any registers of the class is the
908 same as for all its subclasses. We use the data to speed up the
909 2nd pass of calculations of allocno costs. */
911 setup_uniform_class_p (void)
915 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
917 ira_uniform_class_p
[cl
] = false;
918 if (ira_class_hard_regs_num
[cl
] == 0)
920 /* We can not use alloc_reg_class_subclasses here because move
921 cost hooks does not take into account that some registers are
922 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
923 is element of alloc_reg_class_subclasses for GENERAL_REGS
924 because SSE regs are unavailable. */
925 for (i
= 0; (cl2
= reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
; i
++)
927 if (ira_class_hard_regs_num
[cl2
] == 0)
929 for (m
= 0; m
< NUM_MACHINE_MODES
; m
++)
930 if (contains_reg_of_mode
[cl
][m
] && contains_reg_of_mode
[cl2
][m
])
932 ira_init_register_move_cost_if_necessary ((enum machine_mode
) m
);
933 if (ira_register_move_cost
[m
][cl
][cl
]
934 != ira_register_move_cost
[m
][cl2
][cl2
])
937 if (m
< NUM_MACHINE_MODES
)
940 if (cl2
== LIM_REG_CLASSES
)
941 ira_uniform_class_p
[cl
] = true;
945 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
946 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
948 Target may have many subtargets and not all target hard regiters can
949 be used for allocation, e.g. x86 port in 32-bit mode can not use
950 hard registers introduced in x86-64 like r8-r15). Some classes
951 might have the same allocatable hard registers, e.g. INDEX_REGS
952 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
953 calculations efforts we introduce allocno classes which contain
954 unique non-empty sets of allocatable hard-registers.
956 Pseudo class cost calculation in ira-costs.c is very expensive.
957 Therefore we are trying to decrease number of classes involved in
958 such calculation. Register classes used in the cost calculation
959 are called important classes. They are allocno classes and other
960 non-empty classes whose allocatable hard register sets are inside
961 of an allocno class hard register set. From the first sight, it
962 looks like that they are just allocno classes. It is not true. In
963 example of x86-port in 32-bit mode, allocno classes will contain
964 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
965 registers are the same for the both classes). The important
966 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
967 because a machine description insn constraint may refers for
968 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
969 of the insn constraints. */
971 setup_allocno_and_important_classes (void)
975 HARD_REG_SET temp_hard_regset2
;
976 static enum reg_class classes
[LIM_REG_CLASSES
+ 1];
979 /* Collect classes which contain unique sets of allocatable hard
980 registers. Prefer GENERAL_REGS to other classes containing the
981 same set of hard registers. */
982 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
984 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[i
]);
985 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
986 for (j
= 0; j
< n
; j
++)
989 COPY_HARD_REG_SET (temp_hard_regset2
, reg_class_contents
[cl
]);
990 AND_COMPL_HARD_REG_SET (temp_hard_regset2
,
992 if (hard_reg_set_equal_p (temp_hard_regset
,
997 classes
[n
++] = (enum reg_class
) i
;
998 else if (i
== GENERAL_REGS
)
999 /* Prefer general regs. For i386 example, it means that
1000 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1001 (all of them consists of the same available hard
1003 classes
[j
] = (enum reg_class
) i
;
1005 classes
[n
] = LIM_REG_CLASSES
;
1007 /* Set up classes which can be used for allocnos as classes
1008 conatining non-empty unique sets of allocatable hard
1010 ira_allocno_classes_num
= 0;
1011 for (i
= 0; (cl
= classes
[i
]) != LIM_REG_CLASSES
; i
++)
1012 if (ira_class_hard_regs_num
[cl
] > 0)
1013 ira_allocno_classes
[ira_allocno_classes_num
++] = (enum reg_class
) cl
;
1014 ira_important_classes_num
= 0;
1015 /* Add non-allocno classes containing to non-empty set of
1016 allocatable hard regs. */
1017 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1018 if (ira_class_hard_regs_num
[cl
] > 0)
1020 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1021 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1023 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1025 COPY_HARD_REG_SET (temp_hard_regset2
,
1026 reg_class_contents
[ira_allocno_classes
[j
]]);
1027 AND_COMPL_HARD_REG_SET (temp_hard_regset2
, no_unit_alloc_regs
);
1028 if ((enum reg_class
) cl
== ira_allocno_classes
[j
])
1030 else if (hard_reg_set_subset_p (temp_hard_regset
,
1034 if (set_p
&& j
>= ira_allocno_classes_num
)
1035 ira_important_classes
[ira_important_classes_num
++]
1036 = (enum reg_class
) cl
;
1038 /* Now add allocno classes to the important classes. */
1039 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1040 ira_important_classes
[ira_important_classes_num
++]
1041 = ira_allocno_classes
[j
];
1042 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1044 ira_reg_allocno_class_p
[cl
] = false;
1045 ira_reg_pressure_class_p
[cl
] = false;
1047 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1048 ira_reg_allocno_class_p
[ira_allocno_classes
[j
]] = true;
1049 setup_pressure_classes ();
1050 setup_uniform_class_p ();
1053 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1054 given by array CLASSES of length CLASSES_NUM. The function is used
1055 make translation any reg class to an allocno class or to an
1056 pressure class. This translation is necessary for some
1057 calculations when we can use only allocno or pressure classes and
1058 such translation represents an approximate representation of all
1061 The translation in case when allocatable hard register set of a
1062 given class is subset of allocatable hard register set of a class
1063 in CLASSES is pretty simple. We use smallest classes from CLASSES
1064 containing a given class. If allocatable hard register set of a
1065 given class is not a subset of any corresponding set of a class
1066 from CLASSES, we use the cheapest (with load/store point of view)
1067 class from CLASSES whose set intersects with given class set */
1069 setup_class_translate_array (enum reg_class
*class_translate
,
1070 int classes_num
, enum reg_class
*classes
)
1073 enum reg_class aclass
, best_class
, *cl_ptr
;
1074 int i
, cost
, min_cost
, best_cost
;
1076 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1077 class_translate
[cl
] = NO_REGS
;
1079 for (i
= 0; i
< classes_num
; i
++)
1081 aclass
= classes
[i
];
1082 for (cl_ptr
= &alloc_reg_class_subclasses
[aclass
][0];
1083 (cl
= *cl_ptr
) != LIM_REG_CLASSES
;
1085 if (class_translate
[cl
] == NO_REGS
)
1086 class_translate
[cl
] = aclass
;
1087 class_translate
[aclass
] = aclass
;
1089 /* For classes which are not fully covered by one of given classes
1090 (in other words covered by more one given class), use the
1092 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1094 if (cl
== NO_REGS
|| class_translate
[cl
] != NO_REGS
)
1096 best_class
= NO_REGS
;
1097 best_cost
= INT_MAX
;
1098 for (i
= 0; i
< classes_num
; i
++)
1100 aclass
= classes
[i
];
1101 COPY_HARD_REG_SET (temp_hard_regset
,
1102 reg_class_contents
[aclass
]);
1103 AND_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1104 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1105 if (! hard_reg_set_empty_p (temp_hard_regset
))
1108 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1110 cost
= (ira_memory_move_cost
[mode
][cl
][0]
1111 + ira_memory_move_cost
[mode
][cl
][1]);
1112 if (min_cost
> cost
)
1115 if (best_class
== NO_REGS
|| best_cost
> min_cost
)
1117 best_class
= aclass
;
1118 best_cost
= min_cost
;
1122 class_translate
[cl
] = best_class
;
1126 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1127 IRA_PRESSURE_CLASS_TRANSLATE. */
1129 setup_class_translate (void)
1131 setup_class_translate_array (ira_allocno_class_translate
,
1132 ira_allocno_classes_num
, ira_allocno_classes
);
1133 setup_class_translate_array (ira_pressure_class_translate
,
1134 ira_pressure_classes_num
, ira_pressure_classes
);
1137 /* Order numbers of allocno classes in original target allocno class
1138 array, -1 for non-allocno classes. */
1139 static int allocno_class_order
[N_REG_CLASSES
];
1141 /* The function used to sort the important classes. */
1143 comp_reg_classes_func (const void *v1p
, const void *v2p
)
1145 enum reg_class cl1
= *(const enum reg_class
*) v1p
;
1146 enum reg_class cl2
= *(const enum reg_class
*) v2p
;
1147 enum reg_class tcl1
, tcl2
;
1150 tcl1
= ira_allocno_class_translate
[cl1
];
1151 tcl2
= ira_allocno_class_translate
[cl2
];
1152 if (tcl1
!= NO_REGS
&& tcl2
!= NO_REGS
1153 && (diff
= allocno_class_order
[tcl1
] - allocno_class_order
[tcl2
]) != 0)
1155 return (int) cl1
- (int) cl2
;
1158 /* For correct work of function setup_reg_class_relation we need to
1159 reorder important classes according to the order of their allocno
1160 classes. It places important classes containing the same
1161 allocatable hard register set adjacent to each other and allocno
1162 class with the allocatable hard register set right after the other
1163 important classes with the same set.
1165 In example from comments of function
1166 setup_allocno_and_important_classes, it places LEGACY_REGS and
1167 GENERAL_REGS close to each other and GENERAL_REGS is after
1170 reorder_important_classes (void)
1174 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1175 allocno_class_order
[i
] = -1;
1176 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1177 allocno_class_order
[ira_allocno_classes
[i
]] = i
;
1178 qsort (ira_important_classes
, ira_important_classes_num
,
1179 sizeof (enum reg_class
), comp_reg_classes_func
);
1180 for (i
= 0; i
< ira_important_classes_num
; i
++)
1181 ira_important_class_nums
[ira_important_classes
[i
]] = i
;
1184 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1185 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1186 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1187 please see corresponding comments in ira-int.h. */
1189 setup_reg_class_relations (void)
1191 int i
, cl1
, cl2
, cl3
;
1192 HARD_REG_SET intersection_set
, union_set
, temp_set2
;
1193 bool important_class_p
[N_REG_CLASSES
];
1195 memset (important_class_p
, 0, sizeof (important_class_p
));
1196 for (i
= 0; i
< ira_important_classes_num
; i
++)
1197 important_class_p
[ira_important_classes
[i
]] = true;
1198 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1200 ira_reg_class_super_classes
[cl1
][0] = LIM_REG_CLASSES
;
1201 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1203 ira_reg_classes_intersect_p
[cl1
][cl2
] = false;
1204 ira_reg_class_intersect
[cl1
][cl2
] = NO_REGS
;
1205 ira_reg_class_subset
[cl1
][cl2
] = NO_REGS
;
1206 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl1
]);
1207 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1208 COPY_HARD_REG_SET (temp_set2
, reg_class_contents
[cl2
]);
1209 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1210 if (hard_reg_set_empty_p (temp_hard_regset
)
1211 && hard_reg_set_empty_p (temp_set2
))
1213 /* The both classes have no allocatable hard registers
1214 -- take all class hard registers into account and use
1215 reg_class_subunion and reg_class_superunion. */
1218 cl3
= reg_class_subclasses
[cl1
][i
];
1219 if (cl3
== LIM_REG_CLASSES
)
1221 if (reg_class_subset_p (ira_reg_class_intersect
[cl1
][cl2
],
1222 (enum reg_class
) cl3
))
1223 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1225 ira_reg_class_subunion
[cl1
][cl2
] = reg_class_subunion
[cl1
][cl2
];
1226 ira_reg_class_superunion
[cl1
][cl2
] = reg_class_superunion
[cl1
][cl2
];
1229 ira_reg_classes_intersect_p
[cl1
][cl2
]
1230 = hard_reg_set_intersect_p (temp_hard_regset
, temp_set2
);
1231 if (important_class_p
[cl1
] && important_class_p
[cl2
]
1232 && hard_reg_set_subset_p (temp_hard_regset
, temp_set2
))
1234 /* CL1 and CL2 are important classes and CL1 allocatable
1235 hard register set is inside of CL2 allocatable hard
1236 registers -- make CL1 a superset of CL2. */
1239 p
= &ira_reg_class_super_classes
[cl1
][0];
1240 while (*p
!= LIM_REG_CLASSES
)
1242 *p
++ = (enum reg_class
) cl2
;
1243 *p
= LIM_REG_CLASSES
;
1245 ira_reg_class_subunion
[cl1
][cl2
] = NO_REGS
;
1246 ira_reg_class_superunion
[cl1
][cl2
] = NO_REGS
;
1247 COPY_HARD_REG_SET (intersection_set
, reg_class_contents
[cl1
]);
1248 AND_HARD_REG_SET (intersection_set
, reg_class_contents
[cl2
]);
1249 AND_COMPL_HARD_REG_SET (intersection_set
, no_unit_alloc_regs
);
1250 COPY_HARD_REG_SET (union_set
, reg_class_contents
[cl1
]);
1251 IOR_HARD_REG_SET (union_set
, reg_class_contents
[cl2
]);
1252 AND_COMPL_HARD_REG_SET (union_set
, no_unit_alloc_regs
);
1253 for (cl3
= 0; cl3
< N_REG_CLASSES
; cl3
++)
1255 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl3
]);
1256 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1257 if (hard_reg_set_subset_p (temp_hard_regset
, intersection_set
))
1259 /* CL3 allocatable hard register set is inside of
1260 intersection of allocatable hard register sets
1262 if (important_class_p
[cl3
])
1267 [(int) ira_reg_class_intersect
[cl1
][cl2
]]);
1268 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1269 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1270 /* If the allocatable hard register sets are
1271 the same, prefer GENERAL_REGS or the
1272 smallest class for debugging
1274 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1275 && (cl3
== GENERAL_REGS
1276 || ((ira_reg_class_intersect
[cl1
][cl2
]
1278 && hard_reg_set_subset_p
1279 (reg_class_contents
[cl3
],
1282 ira_reg_class_intersect
[cl1
][cl2
]])))))
1283 ira_reg_class_intersect
[cl1
][cl2
] = (enum reg_class
) cl3
;
1287 reg_class_contents
[(int) ira_reg_class_subset
[cl1
][cl2
]]);
1288 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1289 if (! hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1290 /* Ignore unavailable hard registers and prefer
1291 smallest class for debugging purposes. */
1292 || (hard_reg_set_equal_p (temp_hard_regset
, temp_set2
)
1293 && hard_reg_set_subset_p
1294 (reg_class_contents
[cl3
],
1296 [(int) ira_reg_class_subset
[cl1
][cl2
]])))
1297 ira_reg_class_subset
[cl1
][cl2
] = (enum reg_class
) cl3
;
1299 if (important_class_p
[cl3
]
1300 && hard_reg_set_subset_p (temp_hard_regset
, union_set
))
1302 /* CL3 allocatbale hard register set is inside of
1303 union of allocatable hard register sets of CL1
1307 reg_class_contents
[(int) ira_reg_class_subunion
[cl1
][cl2
]]);
1308 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1309 if (ira_reg_class_subunion
[cl1
][cl2
] == NO_REGS
1310 || (hard_reg_set_subset_p (temp_set2
, temp_hard_regset
)
1312 && (! hard_reg_set_equal_p (temp_set2
,
1314 || cl3
== GENERAL_REGS
1315 /* If the allocatable hard register sets are the
1316 same, prefer GENERAL_REGS or the smallest
1317 class for debugging purposes. */
1318 || (ira_reg_class_subunion
[cl1
][cl2
] != GENERAL_REGS
1319 && hard_reg_set_subset_p
1320 (reg_class_contents
[cl3
],
1322 [(int) ira_reg_class_subunion
[cl1
][cl2
]])))))
1323 ira_reg_class_subunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1325 if (hard_reg_set_subset_p (union_set
, temp_hard_regset
))
1327 /* CL3 allocatable hard register set contains union
1328 of allocatable hard register sets of CL1 and
1332 reg_class_contents
[(int) ira_reg_class_superunion
[cl1
][cl2
]]);
1333 AND_COMPL_HARD_REG_SET (temp_set2
, no_unit_alloc_regs
);
1334 if (ira_reg_class_superunion
[cl1
][cl2
] == NO_REGS
1335 || (hard_reg_set_subset_p (temp_hard_regset
, temp_set2
)
1337 && (! hard_reg_set_equal_p (temp_set2
,
1339 || cl3
== GENERAL_REGS
1340 /* If the allocatable hard register sets are the
1341 same, prefer GENERAL_REGS or the smallest
1342 class for debugging purposes. */
1343 || (ira_reg_class_superunion
[cl1
][cl2
] != GENERAL_REGS
1344 && hard_reg_set_subset_p
1345 (reg_class_contents
[cl3
],
1347 [(int) ira_reg_class_superunion
[cl1
][cl2
]])))))
1348 ira_reg_class_superunion
[cl1
][cl2
] = (enum reg_class
) cl3
;
1355 /* Output all unifrom and important classes into file F. */
1357 print_unform_and_important_classes (FILE *f
)
1359 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1362 fprintf (f
, "Uniform classes:\n");
1363 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1364 if (ira_uniform_class_p
[cl
])
1365 fprintf (f
, " %s", reg_class_names
[cl
]);
1366 fprintf (f
, "\nImportant classes:\n");
1367 for (i
= 0; i
< ira_important_classes_num
; i
++)
1368 fprintf (f
, " %s", reg_class_names
[ira_important_classes
[i
]]);
1372 /* Output all possible allocno or pressure classes and their
1373 translation map into file F. */
1375 print_translated_classes (FILE *f
, bool pressure_p
)
1377 int classes_num
= (pressure_p
1378 ? ira_pressure_classes_num
: ira_allocno_classes_num
);
1379 enum reg_class
*classes
= (pressure_p
1380 ? ira_pressure_classes
: ira_allocno_classes
);
1381 enum reg_class
*class_translate
= (pressure_p
1382 ? ira_pressure_class_translate
1383 : ira_allocno_class_translate
);
1384 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1387 fprintf (f
, "%s classes:\n", pressure_p
? "Pressure" : "Allocno");
1388 for (i
= 0; i
< classes_num
; i
++)
1389 fprintf (f
, " %s", reg_class_names
[classes
[i
]]);
1390 fprintf (f
, "\nClass translation:\n");
1391 for (i
= 0; i
< N_REG_CLASSES
; i
++)
1392 fprintf (f
, " %s -> %s\n", reg_class_names
[i
],
1393 reg_class_names
[class_translate
[i
]]);
1396 /* Output all possible allocno and translation classes and the
1397 translation maps into stderr. */
1399 ira_debug_allocno_classes (void)
1401 print_unform_and_important_classes (stderr
);
1402 print_translated_classes (stderr
, false);
1403 print_translated_classes (stderr
, true);
1406 /* Set up different arrays concerning class subsets, allocno and
1407 important classes. */
1409 find_reg_classes (void)
1411 setup_allocno_and_important_classes ();
1412 setup_class_translate ();
1413 reorder_important_classes ();
1414 setup_reg_class_relations ();
1419 /* Set up the array above. */
1421 setup_hard_regno_aclass (void)
1425 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1428 ira_hard_regno_allocno_class
[i
]
1429 = (TEST_HARD_REG_BIT (no_unit_alloc_regs
, i
)
1431 : ira_allocno_class_translate
[REGNO_REG_CLASS (i
)]);
1435 ira_hard_regno_allocno_class
[i
] = NO_REGS
;
1436 for (j
= 0; j
< ira_allocno_classes_num
; j
++)
1438 cl
= ira_allocno_classes
[j
];
1439 if (ira_class_hard_reg_index
[cl
][i
] >= 0)
1441 ira_hard_regno_allocno_class
[i
] = cl
;
1451 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1453 setup_reg_class_nregs (void)
1457 for (m
= 0; m
< MAX_MACHINE_MODE
; m
++)
1459 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1460 ira_reg_class_max_nregs
[cl
][m
]
1461 = ira_reg_class_min_nregs
[cl
][m
]
1462 = targetm
.class_max_nregs ((reg_class_t
) cl
, (enum machine_mode
) m
);
1463 for (cl
= 0; cl
< N_REG_CLASSES
; cl
++)
1465 (cl2
= alloc_reg_class_subclasses
[cl
][i
]) != LIM_REG_CLASSES
;
1467 if (ira_reg_class_min_nregs
[cl2
][m
]
1468 < ira_reg_class_min_nregs
[cl
][m
])
1469 ira_reg_class_min_nregs
[cl
][m
] = ira_reg_class_min_nregs
[cl2
][m
];
1475 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1476 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1478 setup_prohibited_class_mode_regs (void)
1480 int j
, k
, hard_regno
, cl
, last_hard_regno
, count
;
1482 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1484 COPY_HARD_REG_SET (temp_hard_regset
, reg_class_contents
[cl
]);
1485 AND_COMPL_HARD_REG_SET (temp_hard_regset
, no_unit_alloc_regs
);
1486 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1489 last_hard_regno
= -1;
1490 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs
[cl
][j
]);
1491 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1493 hard_regno
= ira_class_hard_regs
[cl
][k
];
1494 if (! HARD_REGNO_MODE_OK (hard_regno
, (enum machine_mode
) j
))
1495 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1497 else if (in_hard_reg_set_p (temp_hard_regset
,
1498 (enum machine_mode
) j
, hard_regno
))
1500 last_hard_regno
= hard_regno
;
1504 ira_class_singleton
[cl
][j
] = (count
== 1 ? last_hard_regno
: -1);
1509 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1510 spanning from one register pressure class to another one. It is
1511 called after defining the pressure classes. */
1513 clarify_prohibited_class_mode_regs (void)
1515 int j
, k
, hard_regno
, cl
, pclass
, nregs
;
1517 for (cl
= (int) N_REG_CLASSES
- 1; cl
>= 0; cl
--)
1518 for (j
= 0; j
< NUM_MACHINE_MODES
; j
++)
1520 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs
[cl
][j
]);
1521 for (k
= ira_class_hard_regs_num
[cl
] - 1; k
>= 0; k
--)
1523 hard_regno
= ira_class_hard_regs
[cl
][k
];
1524 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
], hard_regno
))
1526 nregs
= hard_regno_nregs
[hard_regno
][j
];
1527 if (hard_regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
1529 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1533 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
1534 for (nregs
-- ;nregs
>= 0; nregs
--)
1535 if (((enum reg_class
) pclass
1536 != ira_pressure_class_translate
[REGNO_REG_CLASS
1537 (hard_regno
+ nregs
)]))
1539 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1543 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs
[cl
][j
],
1545 add_to_hard_reg_set (&ira_useful_class_mode_regs
[cl
][j
],
1546 (enum machine_mode
) j
, hard_regno
);
1551 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1552 and IRA_MAY_MOVE_OUT_COST for MODE. */
1554 ira_init_register_move_cost (enum machine_mode mode
)
1556 static unsigned short last_move_cost
[N_REG_CLASSES
][N_REG_CLASSES
];
1557 bool all_match
= true;
1558 unsigned int cl1
, cl2
;
1560 ira_assert (ira_register_move_cost
[mode
] == NULL
1561 && ira_may_move_in_cost
[mode
] == NULL
1562 && ira_may_move_out_cost
[mode
] == NULL
);
1563 ira_assert (have_regs_of_mode
[mode
]);
1564 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1565 if (contains_reg_of_mode
[cl1
][mode
])
1566 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1569 if (!contains_reg_of_mode
[cl2
][mode
])
1573 cost
= register_move_cost (mode
, (enum reg_class
) cl1
,
1574 (enum reg_class
) cl2
);
1575 ira_assert (cost
< 65535);
1577 all_match
&= (last_move_cost
[cl1
][cl2
] == cost
);
1578 last_move_cost
[cl1
][cl2
] = cost
;
1580 if (all_match
&& last_mode_for_init_move_cost
!= -1)
1582 ira_register_move_cost
[mode
]
1583 = ira_register_move_cost
[last_mode_for_init_move_cost
];
1584 ira_may_move_in_cost
[mode
]
1585 = ira_may_move_in_cost
[last_mode_for_init_move_cost
];
1586 ira_may_move_out_cost
[mode
]
1587 = ira_may_move_out_cost
[last_mode_for_init_move_cost
];
1590 last_mode_for_init_move_cost
= mode
;
1591 ira_register_move_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1592 ira_may_move_in_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1593 ira_may_move_out_cost
[mode
] = XNEWVEC (move_table
, N_REG_CLASSES
);
1594 for (cl1
= 0; cl1
< N_REG_CLASSES
; cl1
++)
1595 if (contains_reg_of_mode
[cl1
][mode
])
1596 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1599 enum reg_class
*p1
, *p2
;
1601 if (last_move_cost
[cl1
][cl2
] == 65535)
1603 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1604 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1605 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1609 cost
= last_move_cost
[cl1
][cl2
];
1611 for (p2
= ®_class_subclasses
[cl2
][0];
1612 *p2
!= LIM_REG_CLASSES
; p2
++)
1613 if (ira_class_hard_regs_num
[*p2
] > 0
1614 && (ira_reg_class_max_nregs
[*p2
][mode
]
1615 <= ira_class_hard_regs_num
[*p2
]))
1616 cost
= MAX (cost
, ira_register_move_cost
[mode
][cl1
][*p2
]);
1618 for (p1
= ®_class_subclasses
[cl1
][0];
1619 *p1
!= LIM_REG_CLASSES
; p1
++)
1620 if (ira_class_hard_regs_num
[*p1
] > 0
1621 && (ira_reg_class_max_nregs
[*p1
][mode
]
1622 <= ira_class_hard_regs_num
[*p1
]))
1623 cost
= MAX (cost
, ira_register_move_cost
[mode
][*p1
][cl2
]);
1625 ira_assert (cost
<= 65535);
1626 ira_register_move_cost
[mode
][cl1
][cl2
] = cost
;
1628 if (ira_class_subset_p
[cl1
][cl2
])
1629 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 0;
1631 ira_may_move_in_cost
[mode
][cl1
][cl2
] = cost
;
1633 if (ira_class_subset_p
[cl2
][cl1
])
1634 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 0;
1636 ira_may_move_out_cost
[mode
][cl1
][cl2
] = cost
;
1640 for (cl2
= 0; cl2
< N_REG_CLASSES
; cl2
++)
1642 ira_register_move_cost
[mode
][cl1
][cl2
] = 65535;
1643 ira_may_move_in_cost
[mode
][cl1
][cl2
] = 65535;
1644 ira_may_move_out_cost
[mode
][cl1
][cl2
] = 65535;
1649 /* This is called once during compiler work. It sets up
1650 different arrays whose values don't depend on the compiled
1653 ira_init_once (void)
1655 ira_init_costs_once ();
1659 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1660 ira_may_move_out_cost for each mode. */
1662 free_register_move_costs (void)
1666 /* Reset move_cost and friends, making sure we only free shared
1667 table entries once. */
1668 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
1669 if (ira_register_move_cost
[mode
])
1672 i
< mode
&& (ira_register_move_cost
[i
]
1673 != ira_register_move_cost
[mode
]);
1678 free (ira_register_move_cost
[mode
]);
1679 free (ira_may_move_in_cost
[mode
]);
1680 free (ira_may_move_out_cost
[mode
]);
1683 memset (ira_register_move_cost
, 0, sizeof ira_register_move_cost
);
1684 memset (ira_may_move_in_cost
, 0, sizeof ira_may_move_in_cost
);
1685 memset (ira_may_move_out_cost
, 0, sizeof ira_may_move_out_cost
);
1686 last_mode_for_init_move_cost
= -1;
1689 /* This is called every time when register related information is
1694 free_register_move_costs ();
1695 setup_reg_mode_hard_regset ();
1696 setup_alloc_regs (flag_omit_frame_pointer
!= 0);
1697 setup_class_subset_and_memory_move_costs ();
1698 setup_reg_class_nregs ();
1699 setup_prohibited_class_mode_regs ();
1700 find_reg_classes ();
1701 clarify_prohibited_class_mode_regs ();
1702 setup_hard_regno_aclass ();
1707 /* Function called once at the end of compiler work. */
1709 ira_finish_once (void)
1711 ira_finish_costs_once ();
1712 free_register_move_costs ();
1717 #define ira_prohibited_mode_move_regs_initialized_p \
1718 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1722 setup_prohibited_mode_move_regs (void)
1725 rtx test_reg1
, test_reg2
, move_pat
, move_insn
;
1727 if (ira_prohibited_mode_move_regs_initialized_p
)
1729 ira_prohibited_mode_move_regs_initialized_p
= true;
1730 test_reg1
= gen_rtx_REG (VOIDmode
, 0);
1731 test_reg2
= gen_rtx_REG (VOIDmode
, 0);
1732 move_pat
= gen_rtx_SET (VOIDmode
, test_reg1
, test_reg2
);
1733 move_insn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, move_pat
, 0, -1, 0);
1734 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
1736 SET_HARD_REG_SET (ira_prohibited_mode_move_regs
[i
]);
1737 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1739 if (! HARD_REGNO_MODE_OK (j
, (enum machine_mode
) i
))
1741 SET_REGNO_RAW (test_reg1
, j
);
1742 PUT_MODE (test_reg1
, (enum machine_mode
) i
);
1743 SET_REGNO_RAW (test_reg2
, j
);
1744 PUT_MODE (test_reg2
, (enum machine_mode
) i
);
1745 INSN_CODE (move_insn
) = -1;
1746 recog_memoized (move_insn
);
1747 if (INSN_CODE (move_insn
) < 0)
1749 extract_insn (move_insn
);
1750 if (! constrain_operands (1))
1752 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs
[i
], j
);
1759 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1761 ira_bad_reload_regno_1 (int regno
, rtx x
)
1765 enum reg_class pref
;
1767 /* We only deal with pseudo regs. */
1768 if (! x
|| GET_CODE (x
) != REG
)
1771 x_regno
= REGNO (x
);
1772 if (x_regno
< FIRST_PSEUDO_REGISTER
)
1775 /* If the pseudo prefers REGNO explicitly, then do not consider
1776 REGNO a bad spill choice. */
1777 pref
= reg_preferred_class (x_regno
);
1778 if (reg_class_size
[pref
] == 1)
1779 return !TEST_HARD_REG_BIT (reg_class_contents
[pref
], regno
);
1781 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1782 poor choice for a reload regno. */
1783 a
= ira_regno_allocno_map
[x_regno
];
1784 n
= ALLOCNO_NUM_OBJECTS (a
);
1785 for (i
= 0; i
< n
; i
++)
1787 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
1788 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), regno
))
1794 /* Return nonzero if REGNO is a particularly bad choice for reloading
1797 ira_bad_reload_regno (int regno
, rtx in
, rtx out
)
1799 return (ira_bad_reload_regno_1 (regno
, in
)
1800 || ira_bad_reload_regno_1 (regno
, out
));
1803 /* Return TRUE if *LOC contains an asm. */
1805 insn_contains_asm_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
1809 if (GET_CODE (*loc
) == ASM_OPERANDS
)
1815 /* Return TRUE if INSN contains an ASM. */
1817 insn_contains_asm (rtx insn
)
1819 return for_each_rtx (&insn
, insn_contains_asm_1
, NULL
);
1822 /* Add register clobbers from asm statements. */
1824 compute_regs_asm_clobbered (void)
1831 FOR_BB_INSNS_REVERSE (bb
, insn
)
1835 if (insn_contains_asm (insn
))
1836 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
1838 df_ref def
= *def_rec
;
1839 unsigned int dregno
= DF_REF_REGNO (def
);
1840 if (HARD_REGISTER_NUM_P (dregno
))
1841 add_to_hard_reg_set (&crtl
->asm_clobbers
,
1842 GET_MODE (DF_REF_REAL_REG (def
)),
1850 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.
1851 If the function is called from IRA (not from the insn scheduler or
1852 RTL loop invariant motion), FROM_IRA_P is true. */
1854 ira_setup_eliminable_regset (bool from_ira_p
)
1856 #ifdef ELIMINABLE_REGS
1858 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
1860 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1861 sp for alloca. So we can't eliminate the frame pointer in that
1862 case. At some point, we should improve this by emitting the
1863 sp-adjusting insns for this case. */
1864 frame_pointer_needed
1865 = (! flag_omit_frame_pointer
1866 || (cfun
->calls_alloca
&& EXIT_IGNORE_STACK
)
1867 /* We need the frame pointer to catch stack overflow exceptions
1868 if the stack pointer is moving. */
1869 || (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1870 || crtl
->accesses_prior_frames
1871 || crtl
->stack_realign_needed
1872 || targetm
.frame_pointer_required ());
1874 if (from_ira_p
&& ira_use_lra_p
)
1875 /* It can change FRAME_POINTER_NEEDED. We call it only from IRA
1876 because it is expensive. */
1877 lra_init_elimination ();
1879 if (frame_pointer_needed
)
1880 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
1882 COPY_HARD_REG_SET (ira_no_alloc_regs
, no_unit_alloc_regs
);
1883 CLEAR_HARD_REG_SET (eliminable_regset
);
1885 compute_regs_asm_clobbered ();
1887 /* Build the regset of all eliminable registers and show we can't
1888 use those that we already know won't be eliminated. */
1889 #ifdef ELIMINABLE_REGS
1890 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
1893 = (! targetm
.can_eliminate (eliminables
[i
].from
, eliminables
[i
].to
)
1894 || (eliminables
[i
].to
== STACK_POINTER_REGNUM
&& frame_pointer_needed
));
1896 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, eliminables
[i
].from
))
1898 SET_HARD_REG_BIT (eliminable_regset
, eliminables
[i
].from
);
1901 SET_HARD_REG_BIT (ira_no_alloc_regs
, eliminables
[i
].from
);
1903 else if (cannot_elim
)
1904 error ("%s cannot be used in asm here",
1905 reg_names
[eliminables
[i
].from
]);
1907 df_set_regs_ever_live (eliminables
[i
].from
, true);
1909 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1910 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
1912 SET_HARD_REG_BIT (eliminable_regset
, HARD_FRAME_POINTER_REGNUM
);
1913 if (frame_pointer_needed
)
1914 SET_HARD_REG_BIT (ira_no_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
1916 else if (frame_pointer_needed
)
1917 error ("%s cannot be used in asm here",
1918 reg_names
[HARD_FRAME_POINTER_REGNUM
]);
1920 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM
, true);
1924 if (!TEST_HARD_REG_BIT (crtl
->asm_clobbers
, HARD_FRAME_POINTER_REGNUM
))
1926 SET_HARD_REG_BIT (eliminable_regset
, FRAME_POINTER_REGNUM
);
1927 if (frame_pointer_needed
)
1928 SET_HARD_REG_BIT (ira_no_alloc_regs
, FRAME_POINTER_REGNUM
);
1930 else if (frame_pointer_needed
)
1931 error ("%s cannot be used in asm here", reg_names
[FRAME_POINTER_REGNUM
]);
1933 df_set_regs_ever_live (FRAME_POINTER_REGNUM
, true);
1939 /* Vector of substitutions of register numbers,
1940 used to map pseudo regs into hardware regs.
1941 This is set up as a result of register allocation.
1942 Element N is the hard reg assigned to pseudo reg N,
1943 or is -1 if no hard reg was assigned.
1944 If N is a hard reg number, element N is N. */
1945 short *reg_renumber
;
1947 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1948 the allocation found by IRA. */
1950 setup_reg_renumber (void)
1952 int regno
, hard_regno
;
1954 ira_allocno_iterator ai
;
1956 caller_save_needed
= 0;
1957 FOR_EACH_ALLOCNO (a
, ai
)
1959 if (ira_use_lra_p
&& ALLOCNO_CAP_MEMBER (a
) != NULL
)
1961 /* There are no caps at this point. */
1962 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
1963 if (! ALLOCNO_ASSIGNED_P (a
))
1964 /* It can happen if A is not referenced but partially anticipated
1965 somewhere in a region. */
1966 ALLOCNO_ASSIGNED_P (a
) = true;
1967 ira_free_allocno_updated_costs (a
);
1968 hard_regno
= ALLOCNO_HARD_REGNO (a
);
1969 regno
= ALLOCNO_REGNO (a
);
1970 reg_renumber
[regno
] = (hard_regno
< 0 ? -1 : hard_regno
);
1971 if (hard_regno
>= 0)
1974 enum reg_class pclass
;
1977 pclass
= ira_pressure_class_translate
[REGNO_REG_CLASS (hard_regno
)];
1978 nwords
= ALLOCNO_NUM_OBJECTS (a
);
1979 for (i
= 0; i
< nwords
; i
++)
1981 obj
= ALLOCNO_OBJECT (a
, i
);
1982 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
1983 reg_class_contents
[pclass
]);
1985 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0
1986 && ira_hard_reg_set_intersection_p (hard_regno
, ALLOCNO_MODE (a
),
1989 ira_assert (!optimize
|| flag_caller_saves
1990 || (ALLOCNO_CALLS_CROSSED_NUM (a
)
1991 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
))
1992 || regno
>= ira_reg_equiv_len
1993 || ira_equiv_no_lvalue_p (regno
));
1994 caller_save_needed
= 1;
2000 /* Set up allocno assignment flags for further allocation
2003 setup_allocno_assignment_flags (void)
2007 ira_allocno_iterator ai
;
2009 FOR_EACH_ALLOCNO (a
, ai
)
2011 if (! ALLOCNO_ASSIGNED_P (a
))
2012 /* It can happen if A is not referenced but partially anticipated
2013 somewhere in a region. */
2014 ira_free_allocno_updated_costs (a
);
2015 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2016 /* Don't assign hard registers to allocnos which are destination
2017 of removed store at the end of loop. It has no sense to keep
2018 the same value in different hard registers. It is also
2019 impossible to assign hard registers correctly to such
2020 allocnos because the cost info and info about intersected
2021 calls are incorrect for them. */
2022 ALLOCNO_ASSIGNED_P (a
) = (hard_regno
>= 0
2023 || ALLOCNO_EMIT_DATA (a
)->mem_optimized_dest_p
2024 || (ALLOCNO_MEMORY_COST (a
)
2025 - ALLOCNO_CLASS_COST (a
)) < 0);
2028 || ira_hard_reg_in_set_p (hard_regno
, ALLOCNO_MODE (a
),
2029 reg_class_contents
[ALLOCNO_CLASS (a
)]));
2033 /* Evaluate overall allocation cost and the costs for using hard
2034 registers and memory for allocnos. */
2036 calculate_allocation_cost (void)
2038 int hard_regno
, cost
;
2040 ira_allocno_iterator ai
;
2042 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
2043 FOR_EACH_ALLOCNO (a
, ai
)
2045 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2046 ira_assert (hard_regno
< 0
2047 || (ira_hard_reg_in_set_p
2048 (hard_regno
, ALLOCNO_MODE (a
),
2049 reg_class_contents
[ALLOCNO_CLASS (a
)])));
2052 cost
= ALLOCNO_MEMORY_COST (a
);
2053 ira_mem_cost
+= cost
;
2055 else if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
)
2057 cost
= (ALLOCNO_HARD_REG_COSTS (a
)
2058 [ira_class_hard_reg_index
2059 [ALLOCNO_CLASS (a
)][hard_regno
]]);
2060 ira_reg_cost
+= cost
;
2064 cost
= ALLOCNO_CLASS_COST (a
);
2065 ira_reg_cost
+= cost
;
2067 ira_overall_cost
+= cost
;
2070 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
2072 fprintf (ira_dump_file
,
2073 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2074 ira_overall_cost
, ira_reg_cost
, ira_mem_cost
,
2075 ira_load_cost
, ira_store_cost
, ira_shuffle_cost
);
2076 fprintf (ira_dump_file
, "+++ move loops %d, new jumps %d\n",
2077 ira_move_loops_num
, ira_additional_jumps_num
);
2082 #ifdef ENABLE_IRA_CHECKING
2083 /* Check the correctness of the allocation. We do need this because
2084 of complicated code to transform more one region internal
2085 representation into one region representation. */
2087 check_allocation (void)
2090 int hard_regno
, nregs
, conflict_nregs
;
2091 ira_allocno_iterator ai
;
2093 FOR_EACH_ALLOCNO (a
, ai
)
2095 int n
= ALLOCNO_NUM_OBJECTS (a
);
2098 if (ALLOCNO_CAP_MEMBER (a
) != NULL
2099 || (hard_regno
= ALLOCNO_HARD_REGNO (a
)) < 0)
2101 nregs
= hard_regno_nregs
[hard_regno
][ALLOCNO_MODE (a
)];
2103 /* We allocated a single hard register. */
2106 /* We allocated multiple hard registers, and we will test
2107 conflicts in a granularity of single hard regs. */
2110 for (i
= 0; i
< n
; i
++)
2112 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2113 ira_object_t conflict_obj
;
2114 ira_object_conflict_iterator oci
;
2115 int this_regno
= hard_regno
;
2118 if (REG_WORDS_BIG_ENDIAN
)
2119 this_regno
+= n
- i
- 1;
2123 FOR_EACH_OBJECT_CONFLICT (obj
, conflict_obj
, oci
)
2125 ira_allocno_t conflict_a
= OBJECT_ALLOCNO (conflict_obj
);
2126 int conflict_hard_regno
= ALLOCNO_HARD_REGNO (conflict_a
);
2127 if (conflict_hard_regno
< 0)
2132 [conflict_hard_regno
][ALLOCNO_MODE (conflict_a
)]);
2134 if (ALLOCNO_NUM_OBJECTS (conflict_a
) > 1
2135 && conflict_nregs
== ALLOCNO_NUM_OBJECTS (conflict_a
))
2137 if (REG_WORDS_BIG_ENDIAN
)
2138 conflict_hard_regno
+= (ALLOCNO_NUM_OBJECTS (conflict_a
)
2139 - OBJECT_SUBWORD (conflict_obj
) - 1);
2141 conflict_hard_regno
+= OBJECT_SUBWORD (conflict_obj
);
2145 if ((conflict_hard_regno
<= this_regno
2146 && this_regno
< conflict_hard_regno
+ conflict_nregs
)
2147 || (this_regno
<= conflict_hard_regno
2148 && conflict_hard_regno
< this_regno
+ nregs
))
2150 fprintf (stderr
, "bad allocation for %d and %d\n",
2151 ALLOCNO_REGNO (a
), ALLOCNO_REGNO (conflict_a
));
2160 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2161 be already calculated. */
2163 setup_reg_equiv_init (void)
2166 int max_regno
= max_reg_num ();
2168 for (i
= 0; i
< max_regno
; i
++)
2169 reg_equiv_init (i
) = ira_reg_equiv
[i
].init_insns
;
2172 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2173 are insns which were generated for such movement. It is assumed
2174 that FROM_REGNO and TO_REGNO always have the same value at the
2175 point of any move containing such registers. This function is used
2176 to update equiv info for register shuffles on the region borders
2177 and for caller save/restore insns. */
2179 ira_update_equiv_info_by_shuffle_insn (int to_regno
, int from_regno
, rtx insns
)
2183 if (! ira_reg_equiv
[from_regno
].defined_p
2184 && (! ira_reg_equiv
[to_regno
].defined_p
2185 || ((x
= ira_reg_equiv
[to_regno
].memory
) != NULL_RTX
2186 && ! MEM_READONLY_P (x
))))
2189 if (NEXT_INSN (insn
) != NULL_RTX
)
2191 if (! ira_reg_equiv
[to_regno
].defined_p
)
2193 ira_assert (ira_reg_equiv
[to_regno
].init_insns
== NULL_RTX
);
2196 ira_reg_equiv
[to_regno
].defined_p
= false;
2197 ira_reg_equiv
[to_regno
].memory
2198 = ira_reg_equiv
[to_regno
].constant
2199 = ira_reg_equiv
[to_regno
].invariant
2200 = ira_reg_equiv
[to_regno
].init_insns
= NULL_RTX
;
2201 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2202 fprintf (ira_dump_file
,
2203 " Invalidating equiv info for reg %d\n", to_regno
);
2206 /* It is possible that FROM_REGNO still has no equivalence because
2207 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2208 insn was not processed yet. */
2209 if (ira_reg_equiv
[from_regno
].defined_p
)
2211 ira_reg_equiv
[to_regno
].defined_p
= true;
2212 if ((x
= ira_reg_equiv
[from_regno
].memory
) != NULL_RTX
)
2214 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
2215 && ira_reg_equiv
[from_regno
].constant
== NULL_RTX
);
2216 ira_assert (ira_reg_equiv
[to_regno
].memory
== NULL_RTX
2217 || rtx_equal_p (ira_reg_equiv
[to_regno
].memory
, x
));
2218 ira_reg_equiv
[to_regno
].memory
= x
;
2219 if (! MEM_READONLY_P (x
))
2220 /* We don't add the insn to insn init list because memory
2221 equivalence is just to say what memory is better to use
2222 when the pseudo is spilled. */
2225 else if ((x
= ira_reg_equiv
[from_regno
].constant
) != NULL_RTX
)
2227 ira_assert (ira_reg_equiv
[from_regno
].invariant
== NULL_RTX
);
2228 ira_assert (ira_reg_equiv
[to_regno
].constant
== NULL_RTX
2229 || rtx_equal_p (ira_reg_equiv
[to_regno
].constant
, x
));
2230 ira_reg_equiv
[to_regno
].constant
= x
;
2234 x
= ira_reg_equiv
[from_regno
].invariant
;
2235 ira_assert (x
!= NULL_RTX
);
2236 ira_assert (ira_reg_equiv
[to_regno
].invariant
== NULL_RTX
2237 || rtx_equal_p (ira_reg_equiv
[to_regno
].invariant
, x
));
2238 ira_reg_equiv
[to_regno
].invariant
= x
;
2240 if (find_reg_note (insn
, REG_EQUIV
, x
) == NULL_RTX
)
2242 note
= set_unique_reg_note (insn
, REG_EQUIV
, x
);
2243 gcc_assert (note
!= NULL_RTX
);
2244 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2246 fprintf (ira_dump_file
,
2247 " Adding equiv note to insn %u for reg %d ",
2248 INSN_UID (insn
), to_regno
);
2249 print_value_slim (ira_dump_file
, x
, 1);
2250 fprintf (ira_dump_file
, "\n");
2254 ira_reg_equiv
[to_regno
].init_insns
2255 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
2256 ira_reg_equiv
[to_regno
].init_insns
);
2257 if (internal_flag_ira_verbose
> 3 && ira_dump_file
!= NULL
)
2258 fprintf (ira_dump_file
,
2259 " Adding equiv init move insn %u to reg %d\n",
2260 INSN_UID (insn
), to_regno
);
2263 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2266 fix_reg_equiv_init (void)
2268 unsigned int max_regno
= max_reg_num ();
2269 int i
, new_regno
, max
;
2270 rtx x
, prev
, next
, insn
, set
;
2272 if (vec_safe_length (reg_equivs
) < max_regno
)
2274 max
= vec_safe_length (reg_equivs
);
2276 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
2277 for (prev
= NULL_RTX
, x
= reg_equiv_init (i
);
2283 set
= single_set (insn
);
2284 ira_assert (set
!= NULL_RTX
2285 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))));
2286 if (REG_P (SET_DEST (set
))
2287 && ((int) REGNO (SET_DEST (set
)) == i
2288 || (int) ORIGINAL_REGNO (SET_DEST (set
)) == i
))
2289 new_regno
= REGNO (SET_DEST (set
));
2290 else if (REG_P (SET_SRC (set
))
2291 && ((int) REGNO (SET_SRC (set
)) == i
2292 || (int) ORIGINAL_REGNO (SET_SRC (set
)) == i
))
2293 new_regno
= REGNO (SET_SRC (set
));
2300 /* Remove the wrong list element. */
2301 if (prev
== NULL_RTX
)
2302 reg_equiv_init (i
) = next
;
2304 XEXP (prev
, 1) = next
;
2305 XEXP (x
, 1) = reg_equiv_init (new_regno
);
2306 reg_equiv_init (new_regno
) = x
;
2312 #ifdef ENABLE_IRA_CHECKING
2313 /* Print redundant memory-memory copies. */
2315 print_redundant_copies (void)
2319 ira_copy_t cp
, next_cp
;
2320 ira_allocno_iterator ai
;
2322 FOR_EACH_ALLOCNO (a
, ai
)
2324 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2327 hard_regno
= ALLOCNO_HARD_REGNO (a
);
2328 if (hard_regno
>= 0)
2330 for (cp
= ALLOCNO_COPIES (a
); cp
!= NULL
; cp
= next_cp
)
2332 next_cp
= cp
->next_first_allocno_copy
;
2335 next_cp
= cp
->next_second_allocno_copy
;
2336 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
2337 && cp
->insn
!= NULL_RTX
2338 && ALLOCNO_HARD_REGNO (cp
->first
) == hard_regno
)
2339 fprintf (ira_dump_file
,
2340 " Redundant move from %d(freq %d):%d\n",
2341 INSN_UID (cp
->insn
), cp
->freq
, hard_regno
);
2347 /* Setup preferred and alternative classes for new pseudo-registers
2348 created by IRA starting with START. */
2350 setup_preferred_alternate_classes_for_new_pseudos (int start
)
2353 int max_regno
= max_reg_num ();
2355 for (i
= start
; i
< max_regno
; i
++)
2357 old_regno
= ORIGINAL_REGNO (regno_reg_rtx
[i
]);
2358 ira_assert (i
!= old_regno
);
2359 setup_reg_classes (i
, reg_preferred_class (old_regno
),
2360 reg_alternate_class (old_regno
),
2361 reg_allocno_class (old_regno
));
2362 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
2363 fprintf (ira_dump_file
,
2364 " New r%d: setting preferred %s, alternative %s\n",
2365 i
, reg_class_names
[reg_preferred_class (old_regno
)],
2366 reg_class_names
[reg_alternate_class (old_regno
)]);
2371 /* The number of entries allocated in teg_info. */
2372 static int allocated_reg_info_size
;
2374 /* Regional allocation can create new pseudo-registers. This function
2375 expands some arrays for pseudo-registers. */
2377 expand_reg_info (void)
2380 int size
= max_reg_num ();
2383 for (i
= allocated_reg_info_size
; i
< size
; i
++)
2384 setup_reg_classes (i
, GENERAL_REGS
, ALL_REGS
, GENERAL_REGS
);
2385 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size
);
2386 allocated_reg_info_size
= size
;
2389 /* Return TRUE if there is too high register pressure in the function.
2390 It is used to decide when stack slot sharing is worth to do. */
2392 too_high_register_pressure_p (void)
2395 enum reg_class pclass
;
2397 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2399 pclass
= ira_pressure_classes
[i
];
2400 if (ira_loop_tree_root
->reg_pressure
[pclass
] > 10000)
2408 /* Indicate that hard register number FROM was eliminated and replaced with
2409 an offset from hard register number TO. The status of hard registers live
2410 at the start of a basic block is updated by replacing a use of FROM with
2414 mark_elimination (int from
, int to
)
2422 if (bitmap_bit_p (r
, from
))
2424 bitmap_clear_bit (r
, from
);
2425 bitmap_set_bit (r
, to
);
2429 r
= DF_LIVE_IN (bb
);
2430 if (bitmap_bit_p (r
, from
))
2432 bitmap_clear_bit (r
, from
);
2433 bitmap_set_bit (r
, to
);
2440 /* The length of the following array. */
2441 int ira_reg_equiv_len
;
2443 /* Info about equiv. info for each register. */
2444 struct ira_reg_equiv
*ira_reg_equiv
;
2446 /* Expand ira_reg_equiv if necessary. */
2448 ira_expand_reg_equiv (void)
2450 int old
= ira_reg_equiv_len
;
2452 if (ira_reg_equiv_len
> max_reg_num ())
2454 ira_reg_equiv_len
= max_reg_num () * 3 / 2 + 1;
2456 = (struct ira_reg_equiv
*) xrealloc (ira_reg_equiv
,
2458 * sizeof (struct ira_reg_equiv
));
2459 gcc_assert (old
< ira_reg_equiv_len
);
2460 memset (ira_reg_equiv
+ old
, 0,
2461 sizeof (struct ira_reg_equiv
) * (ira_reg_equiv_len
- old
));
2465 init_reg_equiv (void)
2467 ira_reg_equiv_len
= 0;
2468 ira_reg_equiv
= NULL
;
2469 ira_expand_reg_equiv ();
2473 finish_reg_equiv (void)
2475 free (ira_reg_equiv
);
2482 /* Set when a REG_EQUIV note is found or created. Use to
2483 keep track of what memory accesses might be created later,
2487 /* The list of each instruction which initializes this register. */
2489 /* Loop depth is used to recognize equivalences which appear
2490 to be present within the same loop (or in an inner loop). */
2492 /* Nonzero if this had a preexisting REG_EQUIV note. */
2493 int is_arg_equivalence
;
2494 /* Set when an attempt should be made to replace a register
2495 with the associated src_p entry. */
2499 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2500 structure for that register. */
2501 static struct equivalence
*reg_equiv
;
2503 /* Used for communication between the following two functions: contains
2504 a MEM that we wish to ensure remains unchanged. */
2505 static rtx equiv_mem
;
2507 /* Set nonzero if EQUIV_MEM is modified. */
2508 static int equiv_mem_modified
;
2510 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2511 Called via note_stores. */
2513 validate_equiv_mem_from_store (rtx dest
, const_rtx set ATTRIBUTE_UNUSED
,
2514 void *data ATTRIBUTE_UNUSED
)
2517 && reg_overlap_mentioned_p (dest
, equiv_mem
))
2519 && true_dependence (dest
, VOIDmode
, equiv_mem
)))
2520 equiv_mem_modified
= 1;
2523 /* Verify that no store between START and the death of REG invalidates
2524 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2525 by storing into an overlapping memory location, or with a non-const
2528 Return 1 if MEMREF remains valid. */
2530 validate_equiv_mem (rtx start
, rtx reg
, rtx memref
)
2536 equiv_mem_modified
= 0;
2538 /* If the memory reference has side effects or is volatile, it isn't a
2539 valid equivalence. */
2540 if (side_effects_p (memref
))
2543 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
2545 if (! INSN_P (insn
))
2548 if (find_reg_note (insn
, REG_DEAD
, reg
))
2551 /* This used to ignore readonly memory and const/pure calls. The problem
2552 is the equivalent form may reference a pseudo which gets assigned a
2553 call clobbered hard reg. When we later replace REG with its
2554 equivalent form, the value in the call-clobbered reg has been
2555 changed and all hell breaks loose. */
2559 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
, NULL
);
2561 /* If a register mentioned in MEMREF is modified via an
2562 auto-increment, we lose the equivalence. Do the same if one
2563 dies; although we could extend the life, it doesn't seem worth
2566 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2567 if ((REG_NOTE_KIND (note
) == REG_INC
2568 || REG_NOTE_KIND (note
) == REG_DEAD
)
2569 && REG_P (XEXP (note
, 0))
2570 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
2577 /* Returns zero if X is known to be invariant. */
2579 equiv_init_varies_p (rtx x
)
2581 RTX_CODE code
= GET_CODE (x
);
2588 return !MEM_READONLY_P (x
) || equiv_init_varies_p (XEXP (x
, 0));
2597 return reg_equiv
[REGNO (x
)].replace
== 0 && rtx_varies_p (x
, 0);
2600 if (MEM_VOLATILE_P (x
))
2609 fmt
= GET_RTX_FORMAT (code
);
2610 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2613 if (equiv_init_varies_p (XEXP (x
, i
)))
2616 else if (fmt
[i
] == 'E')
2619 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2620 if (equiv_init_varies_p (XVECEXP (x
, i
, j
)))
2627 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2628 X is only movable if the registers it uses have equivalent initializations
2629 which appear to be within the same loop (or in an inner loop) and movable
2630 or if they are not candidates for local_alloc and don't vary. */
2632 equiv_init_movable_p (rtx x
, int regno
)
2636 enum rtx_code code
= GET_CODE (x
);
2641 return equiv_init_movable_p (SET_SRC (x
), regno
);
2656 return ((reg_equiv
[REGNO (x
)].loop_depth
>= reg_equiv
[regno
].loop_depth
2657 && reg_equiv
[REGNO (x
)].replace
)
2658 || (REG_BASIC_BLOCK (REGNO (x
)) < NUM_FIXED_BLOCKS
2659 && ! rtx_varies_p (x
, 0)));
2661 case UNSPEC_VOLATILE
:
2665 if (MEM_VOLATILE_P (x
))
2674 fmt
= GET_RTX_FORMAT (code
);
2675 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2679 if (! equiv_init_movable_p (XEXP (x
, i
), regno
))
2683 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2684 if (! equiv_init_movable_p (XVECEXP (x
, i
, j
), regno
))
2692 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2695 contains_replace_regs (rtx x
)
2699 enum rtx_code code
= GET_CODE (x
);
2713 return reg_equiv
[REGNO (x
)].replace
;
2719 fmt
= GET_RTX_FORMAT (code
);
2720 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2724 if (contains_replace_regs (XEXP (x
, i
)))
2728 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2729 if (contains_replace_regs (XVECEXP (x
, i
, j
)))
2737 /* TRUE if X references a memory location that would be affected by a store
2740 memref_referenced_p (rtx memref
, rtx x
)
2744 enum rtx_code code
= GET_CODE (x
);
2759 return (reg_equiv
[REGNO (x
)].replacement
2760 && memref_referenced_p (memref
,
2761 reg_equiv
[REGNO (x
)].replacement
));
2764 if (true_dependence (memref
, VOIDmode
, x
))
2769 /* If we are setting a MEM, it doesn't count (its address does), but any
2770 other SET_DEST that has a MEM in it is referencing the MEM. */
2771 if (MEM_P (SET_DEST (x
)))
2773 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
2776 else if (memref_referenced_p (memref
, SET_DEST (x
)))
2779 return memref_referenced_p (memref
, SET_SRC (x
));
2785 fmt
= GET_RTX_FORMAT (code
);
2786 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2790 if (memref_referenced_p (memref
, XEXP (x
, i
)))
2794 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2795 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
2803 /* TRUE if some insn in the range (START, END] references a memory location
2804 that would be affected by a store to MEMREF. */
2806 memref_used_between_p (rtx memref
, rtx start
, rtx end
)
2810 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2811 insn
= NEXT_INSN (insn
))
2813 if (!NONDEBUG_INSN_P (insn
))
2816 if (memref_referenced_p (memref
, PATTERN (insn
)))
2819 /* Nonconst functions may access memory. */
2820 if (CALL_P (insn
) && (! RTL_CONST_CALL_P (insn
)))
2827 /* Mark REG as having no known equivalence.
2828 Some instructions might have been processed before and furnished
2829 with REG_EQUIV notes for this register; these notes will have to be
2831 STORE is the piece of RTL that does the non-constant / conflicting
2832 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2833 but needs to be there because this function is called from note_stores. */
2835 no_equiv (rtx reg
, const_rtx store ATTRIBUTE_UNUSED
,
2836 void *data ATTRIBUTE_UNUSED
)
2843 regno
= REGNO (reg
);
2844 list
= reg_equiv
[regno
].init_insns
;
2845 if (list
== const0_rtx
)
2847 reg_equiv
[regno
].init_insns
= const0_rtx
;
2848 reg_equiv
[regno
].replacement
= NULL_RTX
;
2849 /* This doesn't matter for equivalences made for argument registers, we
2850 should keep their initialization insns. */
2851 if (reg_equiv
[regno
].is_arg_equivalence
)
2853 ira_reg_equiv
[regno
].defined_p
= false;
2854 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
2855 for (; list
; list
= XEXP (list
, 1))
2857 rtx insn
= XEXP (list
, 0);
2858 remove_note (insn
, find_reg_note (insn
, REG_EQUIV
, NULL_RTX
));
2862 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2863 equivalent replacement. */
2866 adjust_cleared_regs (rtx loc
, const_rtx old_rtx ATTRIBUTE_UNUSED
, void *data
)
2870 bitmap cleared_regs
= (bitmap
) data
;
2871 if (bitmap_bit_p (cleared_regs
, REGNO (loc
)))
2872 return simplify_replace_fn_rtx (*reg_equiv
[REGNO (loc
)].src_p
,
2873 NULL_RTX
, adjust_cleared_regs
, data
);
2878 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2879 static int recorded_label_ref
;
2881 /* Find registers that are equivalent to a single value throughout the
2882 compilation (either because they can be referenced in memory or are
2883 set once from a single constant). Lower their priority for a
2886 If such a register is only referenced once, try substituting its
2887 value into the using insn. If it succeeds, we can eliminate the
2888 register completely.
2890 Initialize init_insns in ira_reg_equiv array.
2892 Return non-zero if jump label rebuilding should be done. */
2894 update_equiv_regs (void)
2899 bitmap cleared_regs
;
2901 /* We need to keep track of whether or not we recorded a LABEL_REF so
2902 that we know if the jump optimizer needs to be rerun. */
2903 recorded_label_ref
= 0;
2905 reg_equiv
= XCNEWVEC (struct equivalence
, max_regno
);
2908 init_alias_analysis ();
2910 /* Scan the insns and find which registers have equivalences. Do this
2911 in a separate scan of the insns because (due to -fcse-follow-jumps)
2912 a register can be set below its use. */
2915 loop_depth
= bb_loop_depth (bb
);
2917 for (insn
= BB_HEAD (bb
);
2918 insn
!= NEXT_INSN (BB_END (bb
));
2919 insn
= NEXT_INSN (insn
))
2926 if (! INSN_P (insn
))
2929 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2930 if (REG_NOTE_KIND (note
) == REG_INC
)
2931 no_equiv (XEXP (note
, 0), note
, NULL
);
2933 set
= single_set (insn
);
2935 /* If this insn contains more (or less) than a single SET,
2936 only mark all destinations as having no known equivalence. */
2939 note_stores (PATTERN (insn
), no_equiv
, NULL
);
2942 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2946 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
2948 rtx part
= XVECEXP (PATTERN (insn
), 0, i
);
2950 note_stores (part
, no_equiv
, NULL
);
2954 dest
= SET_DEST (set
);
2955 src
= SET_SRC (set
);
2957 /* See if this is setting up the equivalence between an argument
2958 register and its stack slot. */
2959 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
2962 gcc_assert (REG_P (dest
));
2963 regno
= REGNO (dest
);
2965 /* Note that we don't want to clear init_insns in
2966 ira_reg_equiv even if there are multiple sets of this
2968 reg_equiv
[regno
].is_arg_equivalence
= 1;
2970 /* Record for reload that this is an equivalencing insn. */
2971 if (rtx_equal_p (src
, XEXP (note
, 0)))
2972 ira_reg_equiv
[regno
].init_insns
2973 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
2974 ira_reg_equiv
[regno
].init_insns
);
2976 /* Continue normally in case this is a candidate for
2983 /* We only handle the case of a pseudo register being set
2984 once, or always to the same value. */
2985 /* ??? The mn10200 port breaks if we add equivalences for
2986 values that need an ADDRESS_REGS register and set them equivalent
2987 to a MEM of a pseudo. The actual problem is in the over-conservative
2988 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2989 calculate_needs, but we traditionally work around this problem
2990 here by rejecting equivalences when the destination is in a register
2991 that's likely spilled. This is fragile, of course, since the
2992 preferred class of a pseudo depends on all instructions that set
2996 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
2997 || reg_equiv
[regno
].init_insns
== const0_rtx
2998 || (targetm
.class_likely_spilled_p (reg_preferred_class (regno
))
2999 && MEM_P (src
) && ! reg_equiv
[regno
].is_arg_equivalence
))
3001 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3002 also set somewhere else to a constant. */
3003 note_stores (set
, no_equiv
, NULL
);
3007 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
3009 /* cse sometimes generates function invariants, but doesn't put a
3010 REG_EQUAL note on the insn. Since this note would be redundant,
3011 there's no point creating it earlier than here. */
3012 if (! note
&& ! rtx_varies_p (src
, 0))
3013 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
3015 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3016 since it represents a function call */
3017 if (note
&& GET_CODE (XEXP (note
, 0)) == EXPR_LIST
)
3020 if (DF_REG_DEF_COUNT (regno
) != 1
3022 || rtx_varies_p (XEXP (note
, 0), 0)
3023 || (reg_equiv
[regno
].replacement
3024 && ! rtx_equal_p (XEXP (note
, 0),
3025 reg_equiv
[regno
].replacement
))))
3027 no_equiv (dest
, set
, NULL
);
3030 /* Record this insn as initializing this register. */
3031 reg_equiv
[regno
].init_insns
3032 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv
[regno
].init_insns
);
3034 /* If this register is known to be equal to a constant, record that
3035 it is always equivalent to the constant. */
3036 if (DF_REG_DEF_COUNT (regno
) == 1
3037 && note
&& ! rtx_varies_p (XEXP (note
, 0), 0))
3039 rtx note_value
= XEXP (note
, 0);
3040 remove_note (insn
, note
);
3041 set_unique_reg_note (insn
, REG_EQUIV
, note_value
);
3044 /* If this insn introduces a "constant" register, decrease the priority
3045 of that register. Record this insn if the register is only used once
3046 more and the equivalence value is the same as our source.
3048 The latter condition is checked for two reasons: First, it is an
3049 indication that it may be more efficient to actually emit the insn
3050 as written (if no registers are available, reload will substitute
3051 the equivalence). Secondly, it avoids problems with any registers
3052 dying in this insn whose death notes would be missed.
3054 If we don't have a REG_EQUIV note, see if this insn is loading
3055 a register used only in one basic block from a MEM. If so, and the
3056 MEM remains unchanged for the life of the register, add a REG_EQUIV
3059 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
3061 if (note
== 0 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3062 && MEM_P (SET_SRC (set
))
3063 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
3064 note
= set_unique_reg_note (insn
, REG_EQUIV
, copy_rtx (SET_SRC (set
)));
3068 int regno
= REGNO (dest
);
3069 rtx x
= XEXP (note
, 0);
3071 /* If we haven't done so, record for reload that this is an
3072 equivalencing insn. */
3073 if (!reg_equiv
[regno
].is_arg_equivalence
)
3074 ira_reg_equiv
[regno
].init_insns
3075 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
3076 ira_reg_equiv
[regno
].init_insns
);
3078 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3079 We might end up substituting the LABEL_REF for uses of the
3080 pseudo here or later. That kind of transformation may turn an
3081 indirect jump into a direct jump, in which case we must rerun the
3082 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3083 if (GET_CODE (x
) == LABEL_REF
3084 || (GET_CODE (x
) == CONST
3085 && GET_CODE (XEXP (x
, 0)) == PLUS
3086 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
)))
3087 recorded_label_ref
= 1;
3089 reg_equiv
[regno
].replacement
= x
;
3090 reg_equiv
[regno
].src_p
= &SET_SRC (set
);
3091 reg_equiv
[regno
].loop_depth
= loop_depth
;
3093 /* Don't mess with things live during setjmp. */
3094 if (REG_LIVE_LENGTH (regno
) >= 0 && optimize
)
3096 /* Note that the statement below does not affect the priority
3098 REG_LIVE_LENGTH (regno
) *= 2;
3100 /* If the register is referenced exactly twice, meaning it is
3101 set once and used once, indicate that the reference may be
3102 replaced by the equivalence we computed above. Do this
3103 even if the register is only used in one block so that
3104 dependencies can be handled where the last register is
3105 used in a different block (i.e. HIGH / LO_SUM sequences)
3106 and to reduce the number of registers alive across
3109 if (REG_N_REFS (regno
) == 2
3110 && (rtx_equal_p (x
, src
)
3111 || ! equiv_init_varies_p (src
))
3112 && NONJUMP_INSN_P (insn
)
3113 && equiv_init_movable_p (PATTERN (insn
), regno
))
3114 reg_equiv
[regno
].replace
= 1;
3123 /* A second pass, to gather additional equivalences with memory. This needs
3124 to be done after we know which registers we are going to replace. */
3126 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3131 if (! INSN_P (insn
))
3134 set
= single_set (insn
);
3138 dest
= SET_DEST (set
);
3139 src
= SET_SRC (set
);
3141 /* If this sets a MEM to the contents of a REG that is only used
3142 in a single basic block, see if the register is always equivalent
3143 to that memory location and if moving the store from INSN to the
3144 insn that set REG is safe. If so, put a REG_EQUIV note on the
3147 Don't add a REG_EQUIV note if the insn already has one. The existing
3148 REG_EQUIV is likely more useful than the one we are adding.
3150 If one of the regs in the address has reg_equiv[REGNO].replace set,
3151 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3152 optimization may move the set of this register immediately before
3153 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3154 the mention in the REG_EQUIV note would be to an uninitialized
3157 if (MEM_P (dest
) && REG_P (src
)
3158 && (regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
3159 && REG_BASIC_BLOCK (regno
) >= NUM_FIXED_BLOCKS
3160 && DF_REG_DEF_COUNT (regno
) == 1
3161 && reg_equiv
[regno
].init_insns
!= 0
3162 && reg_equiv
[regno
].init_insns
!= const0_rtx
3163 && ! find_reg_note (XEXP (reg_equiv
[regno
].init_insns
, 0),
3164 REG_EQUIV
, NULL_RTX
)
3165 && ! contains_replace_regs (XEXP (dest
, 0)))
3167 rtx init_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3168 if (validate_equiv_mem (init_insn
, src
, dest
)
3169 && ! memref_used_between_p (dest
, init_insn
, insn
)
3170 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3172 && set_unique_reg_note (init_insn
, REG_EQUIV
, copy_rtx (dest
)))
3174 /* This insn makes the equivalence, not the one initializing
3176 ira_reg_equiv
[regno
].init_insns
3177 = gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
3178 df_notes_rescan (init_insn
);
3183 cleared_regs
= BITMAP_ALLOC (NULL
);
3184 /* Now scan all regs killed in an insn to see if any of them are
3185 registers only used that once. If so, see if we can replace the
3186 reference with the equivalent form. If we can, delete the
3187 initializing reference and this register will go away. If we
3188 can't replace the reference, and the initializing reference is
3189 within the same loop (or in an inner loop), then move the register
3190 initialization just before the use, so that they are in the same
3192 FOR_EACH_BB_REVERSE (bb
)
3194 loop_depth
= bb_loop_depth (bb
);
3195 for (insn
= BB_END (bb
);
3196 insn
!= PREV_INSN (BB_HEAD (bb
));
3197 insn
= PREV_INSN (insn
))
3201 if (! INSN_P (insn
))
3204 /* Don't substitute into a non-local goto, this confuses CFG. */
3206 && find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
3209 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
3211 if (REG_NOTE_KIND (link
) == REG_DEAD
3212 /* Make sure this insn still refers to the register. */
3213 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
3215 int regno
= REGNO (XEXP (link
, 0));
3218 if (! reg_equiv
[regno
].replace
3219 || reg_equiv
[regno
].loop_depth
< loop_depth
3220 /* There is no sense to move insns if we did
3221 register pressure-sensitive scheduling was
3222 done because it will not improve allocation
3223 but worsen insn schedule with a big
3225 || (flag_sched_pressure
&& flag_schedule_insns
))
3228 /* reg_equiv[REGNO].replace gets set only when
3229 REG_N_REFS[REGNO] is 2, i.e. the register is set
3230 once and used once. (If it were only set, but
3231 not used, flow would have deleted the setting
3232 insns.) Hence there can only be one insn in
3233 reg_equiv[REGNO].init_insns. */
3234 gcc_assert (reg_equiv
[regno
].init_insns
3235 && !XEXP (reg_equiv
[regno
].init_insns
, 1));
3236 equiv_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
3238 /* We may not move instructions that can throw, since
3239 that changes basic block boundaries and we are not
3240 prepared to adjust the CFG to match. */
3241 if (can_throw_internal (equiv_insn
))
3244 if (asm_noperands (PATTERN (equiv_insn
)) < 0
3245 && validate_replace_rtx (regno_reg_rtx
[regno
],
3246 *(reg_equiv
[regno
].src_p
), insn
))
3252 /* Find the last note. */
3253 for (last_link
= link
; XEXP (last_link
, 1);
3254 last_link
= XEXP (last_link
, 1))
3257 /* Append the REG_DEAD notes from equiv_insn. */
3258 equiv_link
= REG_NOTES (equiv_insn
);
3262 equiv_link
= XEXP (equiv_link
, 1);
3263 if (REG_NOTE_KIND (note
) == REG_DEAD
)
3265 remove_note (equiv_insn
, note
);
3266 XEXP (last_link
, 1) = note
;
3267 XEXP (note
, 1) = NULL_RTX
;
3272 remove_death (regno
, insn
);
3273 SET_REG_N_REFS (regno
, 0);
3274 REG_FREQ (regno
) = 0;
3275 delete_insn (equiv_insn
);
3277 reg_equiv
[regno
].init_insns
3278 = XEXP (reg_equiv
[regno
].init_insns
, 1);
3280 ira_reg_equiv
[regno
].init_insns
= NULL_RTX
;
3281 bitmap_set_bit (cleared_regs
, regno
);
3283 /* Move the initialization of the register to just before
3284 INSN. Update the flow information. */
3285 else if (prev_nondebug_insn (insn
) != equiv_insn
)
3289 new_insn
= emit_insn_before (PATTERN (equiv_insn
), insn
);
3290 REG_NOTES (new_insn
) = REG_NOTES (equiv_insn
);
3291 REG_NOTES (equiv_insn
) = 0;
3292 /* Rescan it to process the notes. */
3293 df_insn_rescan (new_insn
);
3295 /* Make sure this insn is recognized before
3296 reload begins, otherwise
3297 eliminate_regs_in_insn will die. */
3298 INSN_CODE (new_insn
) = INSN_CODE (equiv_insn
);
3300 delete_insn (equiv_insn
);
3302 XEXP (reg_equiv
[regno
].init_insns
, 0) = new_insn
;
3304 REG_BASIC_BLOCK (regno
) = bb
->index
;
3305 REG_N_CALLS_CROSSED (regno
) = 0;
3306 REG_FREQ_CALLS_CROSSED (regno
) = 0;
3307 REG_N_THROWING_CALLS_CROSSED (regno
) = 0;
3308 REG_LIVE_LENGTH (regno
) = 2;
3310 if (insn
== BB_HEAD (bb
))
3311 BB_HEAD (bb
) = PREV_INSN (insn
);
3313 ira_reg_equiv
[regno
].init_insns
3314 = gen_rtx_INSN_LIST (VOIDmode
, new_insn
, NULL_RTX
);
3315 bitmap_set_bit (cleared_regs
, regno
);
3322 if (!bitmap_empty_p (cleared_regs
))
3326 bitmap_and_compl_into (DF_LR_IN (bb
), cleared_regs
);
3327 bitmap_and_compl_into (DF_LR_OUT (bb
), cleared_regs
);
3330 bitmap_and_compl_into (DF_LIVE_IN (bb
), cleared_regs
);
3331 bitmap_and_compl_into (DF_LIVE_OUT (bb
), cleared_regs
);
3334 /* Last pass - adjust debug insns referencing cleared regs. */
3335 if (MAY_HAVE_DEBUG_INSNS
)
3336 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3337 if (DEBUG_INSN_P (insn
))
3339 rtx old_loc
= INSN_VAR_LOCATION_LOC (insn
);
3340 INSN_VAR_LOCATION_LOC (insn
)
3341 = simplify_replace_fn_rtx (old_loc
, NULL_RTX
,
3342 adjust_cleared_regs
,
3343 (void *) cleared_regs
);
3344 if (old_loc
!= INSN_VAR_LOCATION_LOC (insn
))
3345 df_insn_rescan (insn
);
3349 BITMAP_FREE (cleared_regs
);
3354 end_alias_analysis ();
3356 return recorded_label_ref
;
3361 /* Set up fields memory, constant, and invariant from init_insns in
3362 the structures of array ira_reg_equiv. */
3364 setup_reg_equiv (void)
3367 rtx elem
, insn
, set
, x
;
3369 for (i
= FIRST_PSEUDO_REGISTER
; i
< ira_reg_equiv_len
; i
++)
3370 for (elem
= ira_reg_equiv
[i
].init_insns
; elem
; elem
= XEXP (elem
, 1))
3372 insn
= XEXP (elem
, 0);
3373 set
= single_set (insn
);
3375 /* Init insns can set up equivalence when the reg is a destination or
3376 a source (in this case the destination is memory). */
3377 if (set
!= 0 && (REG_P (SET_DEST (set
)) || REG_P (SET_SRC (set
))))
3379 if ((x
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != NULL
)
3381 else if (REG_P (SET_DEST (set
))
3382 && REGNO (SET_DEST (set
)) == (unsigned int) i
)
3386 gcc_assert (REG_P (SET_SRC (set
))
3387 && REGNO (SET_SRC (set
)) == (unsigned int) i
);
3390 if (! function_invariant_p (x
)
3392 /* A function invariant is often CONSTANT_P but may
3393 include a register. We promise to only pass
3394 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3395 || (CONSTANT_P (x
) && LEGITIMATE_PIC_OPERAND_P (x
)))
3397 /* It can happen that a REG_EQUIV note contains a MEM
3398 that is not a legitimate memory operand. As later
3399 stages of reload assume that all addresses found in
3400 the lra_regno_equiv_* arrays were originally
3401 legitimate, we ignore such REG_EQUIV notes. */
3402 if (memory_operand (x
, VOIDmode
))
3404 ira_reg_equiv
[i
].defined_p
= true;
3405 ira_reg_equiv
[i
].memory
= x
;
3408 else if (function_invariant_p (x
))
3410 enum machine_mode mode
;
3412 mode
= GET_MODE (SET_DEST (set
));
3413 if (GET_CODE (x
) == PLUS
3414 || x
== frame_pointer_rtx
|| x
== arg_pointer_rtx
)
3415 /* This is PLUS of frame pointer and a constant,
3417 ira_reg_equiv
[i
].invariant
= x
;
3418 else if (targetm
.legitimate_constant_p (mode
, x
))
3419 ira_reg_equiv
[i
].constant
= x
;
3422 ira_reg_equiv
[i
].memory
= force_const_mem (mode
, x
);
3423 if (ira_reg_equiv
[i
].memory
== NULL_RTX
)
3425 ira_reg_equiv
[i
].defined_p
= false;
3426 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
3430 ira_reg_equiv
[i
].defined_p
= true;
3435 ira_reg_equiv
[i
].defined_p
= false;
3436 ira_reg_equiv
[i
].init_insns
= NULL_RTX
;
3443 /* Print chain C to FILE. */
3445 print_insn_chain (FILE *file
, struct insn_chain
*c
)
3447 fprintf (file
, "insn=%d, ", INSN_UID(c
->insn
));
3448 bitmap_print (file
, &c
->live_throughout
, "live_throughout: ", ", ");
3449 bitmap_print (file
, &c
->dead_or_set
, "dead_or_set: ", "\n");
3453 /* Print all reload_insn_chains to FILE. */
3455 print_insn_chains (FILE *file
)
3457 struct insn_chain
*c
;
3458 for (c
= reload_insn_chain
; c
; c
= c
->next
)
3459 print_insn_chain (file
, c
);
3462 /* Return true if pseudo REGNO should be added to set live_throughout
3463 or dead_or_set of the insn chains for reload consideration. */
3465 pseudo_for_reload_consideration_p (int regno
)
3467 /* Consider spilled pseudos too for IRA because they still have a
3468 chance to get hard-registers in the reload when IRA is used. */
3469 return (reg_renumber
[regno
] >= 0 || ira_conflicts_p
);
3472 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3473 REG to the number of nregs, and INIT_VALUE to get the
3474 initialization. ALLOCNUM need not be the regno of REG. */
3476 init_live_subregs (bool init_value
, sbitmap
*live_subregs
,
3477 bitmap live_subregs_used
, int allocnum
, rtx reg
)
3479 unsigned int regno
= REGNO (SUBREG_REG (reg
));
3480 int size
= GET_MODE_SIZE (GET_MODE (regno_reg_rtx
[regno
]));
3482 gcc_assert (size
> 0);
3484 /* Been there, done that. */
3485 if (bitmap_bit_p (live_subregs_used
, allocnum
))
3488 /* Create a new one. */
3489 if (live_subregs
[allocnum
] == NULL
)
3490 live_subregs
[allocnum
] = sbitmap_alloc (size
);
3492 /* If the entire reg was live before blasting into subregs, we need
3493 to init all of the subregs to ones else init to 0. */
3495 bitmap_ones (live_subregs
[allocnum
]);
3497 bitmap_clear (live_subregs
[allocnum
]);
3499 bitmap_set_bit (live_subregs_used
, allocnum
);
3502 /* Walk the insns of the current function and build reload_insn_chain,
3503 and record register life information. */
3505 build_insn_chain (void)
3508 struct insn_chain
**p
= &reload_insn_chain
;
3510 struct insn_chain
*c
= NULL
;
3511 struct insn_chain
*next
= NULL
;
3512 bitmap live_relevant_regs
= BITMAP_ALLOC (NULL
);
3513 bitmap elim_regset
= BITMAP_ALLOC (NULL
);
3514 /* live_subregs is a vector used to keep accurate information about
3515 which hardregs are live in multiword pseudos. live_subregs and
3516 live_subregs_used are indexed by pseudo number. The live_subreg
3517 entry for a particular pseudo is only used if the corresponding
3518 element is non zero in live_subregs_used. The sbitmap size of
3519 live_subreg[allocno] is number of bytes that the pseudo can
3521 sbitmap
*live_subregs
= XCNEWVEC (sbitmap
, max_regno
);
3522 bitmap live_subregs_used
= BITMAP_ALLOC (NULL
);
3524 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3525 if (TEST_HARD_REG_BIT (eliminable_regset
, i
))
3526 bitmap_set_bit (elim_regset
, i
);
3527 FOR_EACH_BB_REVERSE (bb
)
3532 CLEAR_REG_SET (live_relevant_regs
);
3533 bitmap_clear (live_subregs_used
);
3535 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
), 0, i
, bi
)
3537 if (i
>= FIRST_PSEUDO_REGISTER
)
3539 bitmap_set_bit (live_relevant_regs
, i
);
3542 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb
),
3543 FIRST_PSEUDO_REGISTER
, i
, bi
)
3545 if (pseudo_for_reload_consideration_p (i
))
3546 bitmap_set_bit (live_relevant_regs
, i
);
3549 FOR_BB_INSNS_REVERSE (bb
, insn
)
3551 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
3553 unsigned int uid
= INSN_UID (insn
);
3557 c
= new_insn_chain ();
3564 c
->block
= bb
->index
;
3567 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
3569 df_ref def
= *def_rec
;
3570 unsigned int regno
= DF_REF_REGNO (def
);
3572 /* Ignore may clobbers because these are generated
3573 from calls. However, every other kind of def is
3574 added to dead_or_set. */
3575 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_MAY_CLOBBER
))
3577 if (regno
< FIRST_PSEUDO_REGISTER
)
3579 if (!fixed_regs
[regno
])
3580 bitmap_set_bit (&c
->dead_or_set
, regno
);
3582 else if (pseudo_for_reload_consideration_p (regno
))
3583 bitmap_set_bit (&c
->dead_or_set
, regno
);
3586 if ((regno
< FIRST_PSEUDO_REGISTER
3587 || reg_renumber
[regno
] >= 0
3589 && (!DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
)))
3591 rtx reg
= DF_REF_REG (def
);
3593 /* We can model subregs, but not if they are
3594 wrapped in ZERO_EXTRACTS. */
3595 if (GET_CODE (reg
) == SUBREG
3596 && !DF_REF_FLAGS_IS_SET (def
, DF_REF_ZERO_EXTRACT
))
3598 unsigned int start
= SUBREG_BYTE (reg
);
3599 unsigned int last
= start
3600 + GET_MODE_SIZE (GET_MODE (reg
));
3603 (bitmap_bit_p (live_relevant_regs
, regno
),
3604 live_subregs
, live_subregs_used
, regno
, reg
);
3606 if (!DF_REF_FLAGS_IS_SET
3607 (def
, DF_REF_STRICT_LOW_PART
))
3609 /* Expand the range to cover entire words.
3610 Bytes added here are "don't care". */
3612 = start
/ UNITS_PER_WORD
* UNITS_PER_WORD
;
3613 last
= ((last
+ UNITS_PER_WORD
- 1)
3614 / UNITS_PER_WORD
* UNITS_PER_WORD
);
3617 /* Ignore the paradoxical bits. */
3618 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
3619 last
= SBITMAP_SIZE (live_subregs
[regno
]);
3621 while (start
< last
)
3623 bitmap_clear_bit (live_subregs
[regno
], start
);
3627 if (bitmap_empty_p (live_subregs
[regno
]))
3629 bitmap_clear_bit (live_subregs_used
, regno
);
3630 bitmap_clear_bit (live_relevant_regs
, regno
);
3633 /* Set live_relevant_regs here because
3634 that bit has to be true to get us to
3635 look at the live_subregs fields. */
3636 bitmap_set_bit (live_relevant_regs
, regno
);
3640 /* DF_REF_PARTIAL is generated for
3641 subregs, STRICT_LOW_PART, and
3642 ZERO_EXTRACT. We handle the subreg
3643 case above so here we have to keep from
3644 modeling the def as a killing def. */
3645 if (!DF_REF_FLAGS_IS_SET (def
, DF_REF_PARTIAL
))
3647 bitmap_clear_bit (live_subregs_used
, regno
);
3648 bitmap_clear_bit (live_relevant_regs
, regno
);
3654 bitmap_and_compl_into (live_relevant_regs
, elim_regset
);
3655 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
3658 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
3660 df_ref use
= *use_rec
;
3661 unsigned int regno
= DF_REF_REGNO (use
);
3662 rtx reg
= DF_REF_REG (use
);
3664 /* DF_REF_READ_WRITE on a use means that this use
3665 is fabricated from a def that is a partial set
3666 to a multiword reg. Here, we only model the
3667 subreg case that is not wrapped in ZERO_EXTRACT
3668 precisely so we do not need to look at the
3670 if (DF_REF_FLAGS_IS_SET (use
, DF_REF_READ_WRITE
)
3671 && !DF_REF_FLAGS_IS_SET (use
, DF_REF_ZERO_EXTRACT
)
3672 && DF_REF_FLAGS_IS_SET (use
, DF_REF_SUBREG
))
3675 /* Add the last use of each var to dead_or_set. */
3676 if (!bitmap_bit_p (live_relevant_regs
, regno
))
3678 if (regno
< FIRST_PSEUDO_REGISTER
)
3680 if (!fixed_regs
[regno
])
3681 bitmap_set_bit (&c
->dead_or_set
, regno
);
3683 else if (pseudo_for_reload_consideration_p (regno
))
3684 bitmap_set_bit (&c
->dead_or_set
, regno
);
3687 if (regno
< FIRST_PSEUDO_REGISTER
3688 || pseudo_for_reload_consideration_p (regno
))
3690 if (GET_CODE (reg
) == SUBREG
3691 && !DF_REF_FLAGS_IS_SET (use
,
3693 | DF_REF_ZERO_EXTRACT
))
3695 unsigned int start
= SUBREG_BYTE (reg
);
3696 unsigned int last
= start
3697 + GET_MODE_SIZE (GET_MODE (reg
));
3700 (bitmap_bit_p (live_relevant_regs
, regno
),
3701 live_subregs
, live_subregs_used
, regno
, reg
);
3703 /* Ignore the paradoxical bits. */
3704 if (last
> SBITMAP_SIZE (live_subregs
[regno
]))
3705 last
= SBITMAP_SIZE (live_subregs
[regno
]);
3707 while (start
< last
)
3709 bitmap_set_bit (live_subregs
[regno
], start
);
3714 /* Resetting the live_subregs_used is
3715 effectively saying do not use the subregs
3716 because we are reading the whole
3718 bitmap_clear_bit (live_subregs_used
, regno
);
3719 bitmap_set_bit (live_relevant_regs
, regno
);
3725 /* FIXME!! The following code is a disaster. Reload needs to see the
3726 labels and jump tables that are just hanging out in between
3727 the basic blocks. See pr33676. */
3728 insn
= BB_HEAD (bb
);
3730 /* Skip over the barriers and cruft. */
3731 while (insn
&& (BARRIER_P (insn
) || NOTE_P (insn
)
3732 || BLOCK_FOR_INSN (insn
) == bb
))
3733 insn
= PREV_INSN (insn
);
3735 /* While we add anything except barriers and notes, the focus is
3736 to get the labels and jump tables into the
3737 reload_insn_chain. */
3740 if (!NOTE_P (insn
) && !BARRIER_P (insn
))
3742 if (BLOCK_FOR_INSN (insn
))
3745 c
= new_insn_chain ();
3751 /* The block makes no sense here, but it is what the old
3753 c
->block
= bb
->index
;
3755 bitmap_copy (&c
->live_throughout
, live_relevant_regs
);
3757 insn
= PREV_INSN (insn
);
3761 reload_insn_chain
= c
;
3764 for (i
= 0; i
< (unsigned int) max_regno
; i
++)
3765 if (live_subregs
[i
] != NULL
)
3766 sbitmap_free (live_subregs
[i
]);
3767 free (live_subregs
);
3768 BITMAP_FREE (live_subregs_used
);
3769 BITMAP_FREE (live_relevant_regs
);
3770 BITMAP_FREE (elim_regset
);
3773 print_insn_chains (dump_file
);
3776 /* Examine the rtx found in *LOC, which is read or written to as determined
3777 by TYPE. Return false if we find a reason why an insn containing this
3778 rtx should not be moved (such as accesses to non-constant memory), true
3781 rtx_moveable_p (rtx
*loc
, enum op_type type
)
3785 enum rtx_code code
= GET_CODE (x
);
3788 code
= GET_CODE (x
);
3798 return type
== OP_IN
;
3804 if (x
== frame_pointer_rtx
)
3806 if (HARD_REGISTER_P (x
))
3812 if (type
== OP_IN
&& MEM_READONLY_P (x
))
3813 return rtx_moveable_p (&XEXP (x
, 0), OP_IN
);
3817 return (rtx_moveable_p (&SET_SRC (x
), OP_IN
)
3818 && rtx_moveable_p (&SET_DEST (x
), OP_OUT
));
3820 case STRICT_LOW_PART
:
3821 return rtx_moveable_p (&XEXP (x
, 0), OP_OUT
);
3825 return (rtx_moveable_p (&XEXP (x
, 0), type
)
3826 && rtx_moveable_p (&XEXP (x
, 1), OP_IN
)
3827 && rtx_moveable_p (&XEXP (x
, 2), OP_IN
));
3830 return rtx_moveable_p (&SET_DEST (x
), OP_OUT
);
3836 fmt
= GET_RTX_FORMAT (code
);
3837 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3841 if (!rtx_moveable_p (&XEXP (x
, i
), type
))
3844 else if (fmt
[i
] == 'E')
3845 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3847 if (!rtx_moveable_p (&XVECEXP (x
, i
, j
), type
))
3854 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
3855 to give dominance relationships between two insns I1 and I2. */
3857 insn_dominated_by_p (rtx i1
, rtx i2
, int *uid_luid
)
3859 basic_block bb1
= BLOCK_FOR_INSN (i1
);
3860 basic_block bb2
= BLOCK_FOR_INSN (i2
);
3863 return uid_luid
[INSN_UID (i2
)] < uid_luid
[INSN_UID (i1
)];
3864 return dominated_by_p (CDI_DOMINATORS
, bb1
, bb2
);
3867 /* Record the range of register numbers added by find_moveable_pseudos. */
3868 int first_moveable_pseudo
, last_moveable_pseudo
;
3870 /* These two vectors hold data for every register added by
3871 find_movable_pseudos, with index 0 holding data for the
3872 first_moveable_pseudo. */
3873 /* The original home register. */
3874 static vec
<rtx
> pseudo_replaced_reg
;
3876 /* Look for instances where we have an instruction that is known to increase
3877 register pressure, and whose result is not used immediately. If it is
3878 possible to move the instruction downwards to just before its first use,
3879 split its lifetime into two ranges. We create a new pseudo to compute the
3880 value, and emit a move instruction just before the first use. If, after
3881 register allocation, the new pseudo remains unallocated, the function
3882 move_unallocated_pseudos then deletes the move instruction and places
3883 the computation just before the first use.
3885 Such a move is safe and profitable if all the input registers remain live
3886 and unchanged between the original computation and its first use. In such
3887 a situation, the computation is known to increase register pressure, and
3888 moving it is known to at least not worsen it.
3890 We restrict moves to only those cases where a register remains unallocated,
3891 in order to avoid interfering too much with the instruction schedule. As
3892 an exception, we may move insns which only modify their input register
3893 (typically induction variables), as this increases the freedom for our
3894 intended transformation, and does not limit the second instruction
3898 find_moveable_pseudos (void)
3901 int max_regs
= max_reg_num ();
3902 int max_uid
= get_max_uid ();
3904 int *uid_luid
= XNEWVEC (int, max_uid
);
3905 rtx
*closest_uses
= XNEWVEC (rtx
, max_regs
);
3906 /* A set of registers which are live but not modified throughout a block. */
3907 bitmap_head
*bb_transp_live
= XNEWVEC (bitmap_head
, last_basic_block
);
3908 /* A set of registers which only exist in a given basic block. */
3909 bitmap_head
*bb_local
= XNEWVEC (bitmap_head
, last_basic_block
);
3910 /* A set of registers which are set once, in an instruction that can be
3911 moved freely downwards, but are otherwise transparent to a block. */
3912 bitmap_head
*bb_moveable_reg_sets
= XNEWVEC (bitmap_head
, last_basic_block
);
3913 bitmap_head live
, used
, set
, interesting
, unusable_as_input
;
3915 bitmap_initialize (&interesting
, 0);
3917 first_moveable_pseudo
= max_regs
;
3918 pseudo_replaced_reg
.release ();
3919 pseudo_replaced_reg
.safe_grow_cleared (max_regs
);
3922 calculate_dominance_info (CDI_DOMINATORS
);
3925 bitmap_initialize (&live
, 0);
3926 bitmap_initialize (&used
, 0);
3927 bitmap_initialize (&set
, 0);
3928 bitmap_initialize (&unusable_as_input
, 0);
3932 bitmap transp
= bb_transp_live
+ bb
->index
;
3933 bitmap moveable
= bb_moveable_reg_sets
+ bb
->index
;
3934 bitmap local
= bb_local
+ bb
->index
;
3936 bitmap_initialize (local
, 0);
3937 bitmap_initialize (transp
, 0);
3938 bitmap_initialize (moveable
, 0);
3939 bitmap_copy (&live
, df_get_live_out (bb
));
3940 bitmap_and_into (&live
, df_get_live_in (bb
));
3941 bitmap_copy (transp
, &live
);
3942 bitmap_clear (moveable
);
3943 bitmap_clear (&live
);
3944 bitmap_clear (&used
);
3945 bitmap_clear (&set
);
3946 FOR_BB_INSNS (bb
, insn
)
3947 if (NONDEBUG_INSN_P (insn
))
3949 df_ref
*u_rec
, *d_rec
;
3951 uid_luid
[INSN_UID (insn
)] = i
++;
3953 u_rec
= DF_INSN_USES (insn
);
3954 d_rec
= DF_INSN_DEFS (insn
);
3955 if (d_rec
[0] != NULL
&& d_rec
[1] == NULL
3956 && u_rec
[0] != NULL
&& u_rec
[1] == NULL
3957 && DF_REF_REGNO (*u_rec
) == DF_REF_REGNO (*d_rec
)
3958 && !bitmap_bit_p (&set
, DF_REF_REGNO (*u_rec
))
3959 && rtx_moveable_p (&PATTERN (insn
), OP_IN
))
3961 unsigned regno
= DF_REF_REGNO (*u_rec
);
3962 bitmap_set_bit (moveable
, regno
);
3963 bitmap_set_bit (&set
, regno
);
3964 bitmap_set_bit (&used
, regno
);
3965 bitmap_clear_bit (transp
, regno
);
3970 unsigned regno
= DF_REF_REGNO (*u_rec
);
3971 bitmap_set_bit (&used
, regno
);
3972 if (bitmap_clear_bit (moveable
, regno
))
3973 bitmap_clear_bit (transp
, regno
);
3979 unsigned regno
= DF_REF_REGNO (*d_rec
);
3980 bitmap_set_bit (&set
, regno
);
3981 bitmap_clear_bit (transp
, regno
);
3982 bitmap_clear_bit (moveable
, regno
);
3988 bitmap_clear (&live
);
3989 bitmap_clear (&used
);
3990 bitmap_clear (&set
);
3994 bitmap local
= bb_local
+ bb
->index
;
3997 FOR_BB_INSNS (bb
, insn
)
3998 if (NONDEBUG_INSN_P (insn
))
4000 rtx def_insn
, closest_use
, note
;
4001 df_ref
*def_rec
, def
, use
;
4003 bool all_dominated
, all_local
;
4004 enum machine_mode mode
;
4006 def_rec
= DF_INSN_DEFS (insn
);
4007 /* There must be exactly one def in this insn. */
4009 if (!def
|| def_rec
[1] || !single_set (insn
))
4011 /* This must be the only definition of the reg. We also limit
4012 which modes we deal with so that we can assume we can generate
4013 move instructions. */
4014 regno
= DF_REF_REGNO (def
);
4015 mode
= GET_MODE (DF_REF_REG (def
));
4016 if (DF_REG_DEF_COUNT (regno
) != 1
4017 || !DF_REF_INSN_INFO (def
)
4018 || HARD_REGISTER_NUM_P (regno
)
4019 || DF_REG_EQ_USE_COUNT (regno
) > 0
4020 || (!INTEGRAL_MODE_P (mode
) && !FLOAT_MODE_P (mode
)))
4022 def_insn
= DF_REF_INSN (def
);
4024 for (note
= REG_NOTES (def_insn
); note
; note
= XEXP (note
, 1))
4025 if (REG_NOTE_KIND (note
) == REG_EQUIV
&& MEM_P (XEXP (note
, 0)))
4031 fprintf (dump_file
, "Ignoring reg %d, has equiv memory\n",
4033 bitmap_set_bit (&unusable_as_input
, regno
);
4037 use
= DF_REG_USE_CHAIN (regno
);
4038 all_dominated
= true;
4040 closest_use
= NULL_RTX
;
4041 for (; use
; use
= DF_REF_NEXT_REG (use
))
4044 if (!DF_REF_INSN_INFO (use
))
4046 all_dominated
= false;
4050 insn
= DF_REF_INSN (use
);
4051 if (DEBUG_INSN_P (insn
))
4053 if (BLOCK_FOR_INSN (insn
) != BLOCK_FOR_INSN (def_insn
))
4055 if (!insn_dominated_by_p (insn
, def_insn
, uid_luid
))
4056 all_dominated
= false;
4057 if (closest_use
!= insn
&& closest_use
!= const0_rtx
)
4059 if (closest_use
== NULL_RTX
)
4061 else if (insn_dominated_by_p (closest_use
, insn
, uid_luid
))
4063 else if (!insn_dominated_by_p (insn
, closest_use
, uid_luid
))
4064 closest_use
= const0_rtx
;
4070 fprintf (dump_file
, "Reg %d not all uses dominated by set\n",
4075 bitmap_set_bit (local
, regno
);
4076 if (closest_use
== const0_rtx
|| closest_use
== NULL
4077 || next_nonnote_nondebug_insn (def_insn
) == closest_use
)
4080 fprintf (dump_file
, "Reg %d uninteresting%s\n", regno
,
4081 closest_use
== const0_rtx
|| closest_use
== NULL
4082 ? " (no unique first use)" : "");
4086 if (reg_referenced_p (cc0_rtx
, PATTERN (closest_use
)))
4089 fprintf (dump_file
, "Reg %d: closest user uses cc0\n",
4094 bitmap_set_bit (&interesting
, regno
);
4095 closest_uses
[regno
] = closest_use
;
4097 if (dump_file
&& (all_local
|| all_dominated
))
4099 fprintf (dump_file
, "Reg %u:", regno
);
4101 fprintf (dump_file
, " local to bb %d", bb
->index
);
4103 fprintf (dump_file
, " def dominates all uses");
4104 if (closest_use
!= const0_rtx
)
4105 fprintf (dump_file
, " has unique first use");
4106 fputs ("\n", dump_file
);
4111 EXECUTE_IF_SET_IN_BITMAP (&interesting
, 0, i
, bi
)
4113 df_ref def
= DF_REG_DEF_CHAIN (i
);
4114 rtx def_insn
= DF_REF_INSN (def
);
4115 basic_block def_block
= BLOCK_FOR_INSN (def_insn
);
4116 bitmap def_bb_local
= bb_local
+ def_block
->index
;
4117 bitmap def_bb_moveable
= bb_moveable_reg_sets
+ def_block
->index
;
4118 bitmap def_bb_transp
= bb_transp_live
+ def_block
->index
;
4119 bool local_to_bb_p
= bitmap_bit_p (def_bb_local
, i
);
4120 rtx use_insn
= closest_uses
[i
];
4121 df_ref
*def_insn_use_rec
= DF_INSN_USES (def_insn
);
4123 bool all_transp
= true;
4125 if (!REG_P (DF_REF_REG (def
)))
4131 fprintf (dump_file
, "Reg %u not local to one basic block\n",
4135 if (reg_equiv_init (i
) != NULL_RTX
)
4138 fprintf (dump_file
, "Ignoring reg %u with equiv init insn\n",
4142 if (!rtx_moveable_p (&PATTERN (def_insn
), OP_IN
))
4145 fprintf (dump_file
, "Found def insn %d for %d to be not moveable\n",
4146 INSN_UID (def_insn
), i
);
4150 fprintf (dump_file
, "Examining insn %d, def for %d\n",
4151 INSN_UID (def_insn
), i
);
4152 while (*def_insn_use_rec
!= NULL
)
4154 df_ref use
= *def_insn_use_rec
;
4155 unsigned regno
= DF_REF_REGNO (use
);
4156 if (bitmap_bit_p (&unusable_as_input
, regno
))
4160 fprintf (dump_file
, " found unusable input reg %u.\n", regno
);
4163 if (!bitmap_bit_p (def_bb_transp
, regno
))
4165 if (bitmap_bit_p (def_bb_moveable
, regno
)
4166 && !control_flow_insn_p (use_insn
)
4168 && !sets_cc0_p (use_insn
)
4172 if (modified_between_p (DF_REF_REG (use
), def_insn
, use_insn
))
4174 rtx x
= NEXT_INSN (def_insn
);
4175 while (!modified_in_p (DF_REF_REG (use
), x
))
4177 gcc_assert (x
!= use_insn
);
4181 fprintf (dump_file
, " input reg %u modified but insn %d moveable\n",
4182 regno
, INSN_UID (x
));
4183 emit_insn_after (PATTERN (x
), use_insn
);
4184 set_insn_deleted (x
);
4189 fprintf (dump_file
, " input reg %u modified between def and use\n",
4202 if (!dbg_cnt (ira_move
))
4205 fprintf (dump_file
, " all ok%s\n", all_transp
? " and transp" : "");
4209 rtx def_reg
= DF_REF_REG (def
);
4210 rtx newreg
= ira_create_new_reg (def_reg
);
4211 if (validate_change (def_insn
, DF_REF_LOC (def
), newreg
, 0))
4213 unsigned nregno
= REGNO (newreg
);
4214 emit_insn_before (gen_move_insn (def_reg
, newreg
), use_insn
);
4216 pseudo_replaced_reg
[nregno
] = def_reg
;
4223 bitmap_clear (bb_local
+ bb
->index
);
4224 bitmap_clear (bb_transp_live
+ bb
->index
);
4225 bitmap_clear (bb_moveable_reg_sets
+ bb
->index
);
4227 bitmap_clear (&interesting
);
4228 bitmap_clear (&unusable_as_input
);
4230 free (closest_uses
);
4232 free (bb_transp_live
);
4233 free (bb_moveable_reg_sets
);
4235 last_moveable_pseudo
= max_reg_num ();
4237 fix_reg_equiv_init ();
4239 regstat_free_n_sets_and_refs ();
4241 regstat_init_n_sets_and_refs ();
4242 regstat_compute_ri ();
4243 free_dominance_info (CDI_DOMINATORS
);
4246 /* Perform the second half of the transformation started in
4247 find_moveable_pseudos. We look for instances where the newly introduced
4248 pseudo remains unallocated, and remove it by moving the definition to
4249 just before its use, replacing the move instruction generated by
4250 find_moveable_pseudos. */
4252 move_unallocated_pseudos (void)
4255 for (i
= first_moveable_pseudo
; i
< last_moveable_pseudo
; i
++)
4256 if (reg_renumber
[i
] < 0)
4258 int idx
= i
- first_moveable_pseudo
;
4259 rtx other_reg
= pseudo_replaced_reg
[idx
];
4260 rtx def_insn
= DF_REF_INSN (DF_REG_DEF_CHAIN (i
));
4261 /* The use must follow all definitions of OTHER_REG, so we can
4262 insert the new definition immediately after any of them. */
4263 df_ref other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
));
4264 rtx move_insn
= DF_REF_INSN (other_def
);
4265 rtx newinsn
= emit_insn_after (PATTERN (def_insn
), move_insn
);
4270 fprintf (dump_file
, "moving def of %d (insn %d now) ",
4271 REGNO (other_reg
), INSN_UID (def_insn
));
4273 delete_insn (move_insn
);
4274 while ((other_def
= DF_REG_DEF_CHAIN (REGNO (other_reg
))))
4275 delete_insn (DF_REF_INSN (other_def
));
4276 delete_insn (def_insn
);
4278 set
= single_set (newinsn
);
4279 success
= validate_change (newinsn
, &SET_DEST (set
), other_reg
, 0);
4280 gcc_assert (success
);
4282 fprintf (dump_file
, " %d) rather than keep unallocated replacement %d\n",
4283 INSN_UID (newinsn
), i
);
4284 SET_REG_N_REFS (i
, 0);
4288 /* If the backend knows where to allocate pseudos for hard
4289 register initial values, register these allocations now. */
4291 allocate_initial_values (void)
4293 if (targetm
.allocate_initial_value
)
4298 for (i
= 0; HARD_REGISTER_NUM_P (i
); i
++)
4300 if (! initial_value_entry (i
, &hreg
, &preg
))
4303 x
= targetm
.allocate_initial_value (hreg
);
4304 regno
= REGNO (preg
);
4305 if (x
&& REG_N_SETS (regno
) <= 1)
4308 reg_equiv_memory_loc (regno
) = x
;
4314 gcc_assert (REG_P (x
));
4315 new_regno
= REGNO (x
);
4316 reg_renumber
[regno
] = new_regno
;
4317 /* Poke the regno right into regno_reg_rtx so that even
4318 fixed regs are accepted. */
4319 SET_REGNO (preg
, new_regno
);
4320 /* Update global register liveness information. */
4323 if (REGNO_REG_SET_P(df_get_live_in (bb
), regno
))
4324 SET_REGNO_REG_SET (df_get_live_in (bb
), new_regno
);
4325 if (REGNO_REG_SET_P(df_get_live_out (bb
), regno
))
4326 SET_REGNO_REG_SET (df_get_live_out (bb
), new_regno
);
4332 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER
,
4338 /* True when we use LRA instead of reload pass for the current
4342 /* All natural loops. */
4343 struct loops ira_loops
;
4345 /* True if we have allocno conflicts. It is false for non-optimized
4346 mode or when the conflict table is too big. */
4347 bool ira_conflicts_p
;
4349 /* Saved between IRA and reload. */
4350 static int saved_flag_ira_share_spill_slots
;
4352 /* This is the main entry of IRA. */
4357 int max_regno_before_ira
, ira_max_point_before_emit
;
4359 bool saved_flag_caller_saves
= flag_caller_saves
;
4360 enum ira_region saved_flag_ira_region
= flag_ira_region
;
4362 ira_conflicts_p
= optimize
> 0;
4364 ira_use_lra_p
= targetm
.lra_p ();
4365 /* If there are too many pseudos and/or basic blocks (e.g. 10K
4366 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
4367 use simplified and faster algorithms in LRA. */
4369 = (ira_use_lra_p
&& max_reg_num () >= (1 << 26) / last_basic_block
);
4372 /* It permits to skip live range splitting in LRA. */
4373 flag_caller_saves
= false;
4374 /* There is no sense to do regional allocation when we use
4376 flag_ira_region
= IRA_REGION_ONE
;
4377 ira_conflicts_p
= false;
4380 #ifndef IRA_NO_OBSTACK
4381 gcc_obstack_init (&ira_obstack
);
4383 bitmap_obstack_initialize (&ira_bitmap_obstack
);
4385 if (flag_caller_saves
)
4386 init_caller_save ();
4388 if (flag_ira_verbose
< 10)
4390 internal_flag_ira_verbose
= flag_ira_verbose
;
4395 internal_flag_ira_verbose
= flag_ira_verbose
- 10;
4396 ira_dump_file
= stderr
;
4399 setup_prohibited_mode_move_regs ();
4401 df_note_add_problem ();
4403 /* DF_LIVE can't be used in the register allocator, too many other
4404 parts of the compiler depend on using the "classic" liveness
4405 interpretation of the DF_LR problem. See PR38711.
4406 Remove the problem, so that we don't spend time updating it in
4407 any of the df_analyze() calls during IRA/LRA. */
4409 df_remove_problem (df_live
);
4410 gcc_checking_assert (df_live
== NULL
);
4412 #ifdef ENABLE_CHECKING
4413 df
->changeable_flags
|= DF_VERIFY_SCHEDULED
;
4416 df_clear_flags (DF_NO_INSN_RESCAN
);
4417 regstat_init_n_sets_and_refs ();
4418 regstat_compute_ri ();
4420 /* If we are not optimizing, then this is the only place before
4421 register allocation where dataflow is done. And that is needed
4422 to generate these warnings. */
4424 generate_setjmp_warnings ();
4426 /* Determine if the current function is a leaf before running IRA
4427 since this can impact optimizations done by the prologue and
4428 epilogue thus changing register elimination offsets. */
4429 crtl
->is_leaf
= leaf_function_p ();
4431 if (resize_reg_info () && flag_ira_loop_pressure
)
4432 ira_set_pseudo_classes (true, ira_dump_file
);
4435 rebuild_p
= update_equiv_regs ();
4437 setup_reg_equiv_init ();
4439 if (optimize
&& rebuild_p
)
4441 timevar_push (TV_JUMP
);
4442 rebuild_jump_labels (get_insns ());
4443 if (purge_all_dead_edges ())
4444 delete_unreachable_blocks ();
4445 timevar_pop (TV_JUMP
);
4448 allocated_reg_info_size
= max_reg_num ();
4450 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4453 /* It is not worth to do such improvement when we use a simple
4454 allocation because of -O0 usage or because the function is too
4456 if (ira_conflicts_p
)
4457 find_moveable_pseudos ();
4459 max_regno_before_ira
= max_reg_num ();
4460 ira_setup_eliminable_regset (true);
4462 ira_overall_cost
= ira_reg_cost
= ira_mem_cost
= 0;
4463 ira_load_cost
= ira_store_cost
= ira_shuffle_cost
= 0;
4464 ira_move_loops_num
= ira_additional_jumps_num
= 0;
4466 ira_assert (current_loops
== NULL
);
4467 if (flag_ira_region
== IRA_REGION_ALL
|| flag_ira_region
== IRA_REGION_MIXED
)
4469 flow_loops_find (&ira_loops
);
4470 current_loops
= &ira_loops
;
4471 record_loop_exits ();
4474 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
4475 fprintf (ira_dump_file
, "Building IRA IR\n");
4476 loops_p
= ira_build ();
4478 ira_assert (ira_conflicts_p
|| !loops_p
);
4480 saved_flag_ira_share_spill_slots
= flag_ira_share_spill_slots
;
4481 if (too_high_register_pressure_p () || cfun
->calls_setjmp
)
4482 /* It is just wasting compiler's time to pack spilled pseudos into
4483 stack slots in this case -- prohibit it. We also do this if
4484 there is setjmp call because a variable not modified between
4485 setjmp and longjmp the compiler is required to preserve its
4486 value and sharing slots does not guarantee it. */
4487 flag_ira_share_spill_slots
= FALSE
;
4491 ira_max_point_before_emit
= ira_max_point
;
4493 ira_initiate_emit_data ();
4497 max_regno
= max_reg_num ();
4498 if (ira_conflicts_p
)
4502 if (! ira_use_lra_p
)
4503 ira_initiate_assign ();
4512 ira_allocno_iterator ai
;
4514 FOR_EACH_ALLOCNO (a
, ai
)
4515 ALLOCNO_REGNO (a
) = REGNO (ALLOCNO_EMIT_DATA (a
)->reg
);
4519 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
4520 fprintf (ira_dump_file
, "Flattening IR\n");
4521 ira_flattening (max_regno_before_ira
, ira_max_point_before_emit
);
4523 /* New insns were generated: add notes and recalculate live
4527 /* ??? Rebuild the loop tree, but why? Does the loop tree
4528 change if new insns were generated? Can that be handled
4529 by updating the loop tree incrementally? */
4530 release_recorded_exits ();
4531 flow_loops_free (&ira_loops
);
4532 flow_loops_find (&ira_loops
);
4533 current_loops
= &ira_loops
;
4534 record_loop_exits ();
4536 if (! ira_use_lra_p
)
4538 setup_allocno_assignment_flags ();
4539 ira_initiate_assign ();
4540 ira_reassign_conflict_allocnos (max_regno
);
4545 ira_finish_emit_data ();
4547 setup_reg_renumber ();
4549 calculate_allocation_cost ();
4551 #ifdef ENABLE_IRA_CHECKING
4552 if (ira_conflicts_p
)
4553 check_allocation ();
4556 if (max_regno
!= max_regno_before_ira
)
4558 regstat_free_n_sets_and_refs ();
4560 regstat_init_n_sets_and_refs ();
4561 regstat_compute_ri ();
4564 overall_cost_before
= ira_overall_cost
;
4565 if (! ira_conflicts_p
)
4569 fix_reg_equiv_init ();
4571 #ifdef ENABLE_IRA_CHECKING
4572 print_redundant_copies ();
4575 ira_spilled_reg_stack_slots_num
= 0;
4576 ira_spilled_reg_stack_slots
4577 = ((struct ira_spilled_reg_stack_slot
*)
4578 ira_allocate (max_regno
4579 * sizeof (struct ira_spilled_reg_stack_slot
)));
4580 memset (ira_spilled_reg_stack_slots
, 0,
4581 max_regno
* sizeof (struct ira_spilled_reg_stack_slot
));
4583 allocate_initial_values ();
4585 /* See comment for find_moveable_pseudos call. */
4586 if (ira_conflicts_p
)
4587 move_unallocated_pseudos ();
4589 /* Restore original values. */
4592 flag_caller_saves
= saved_flag_caller_saves
;
4593 flag_ira_region
= saved_flag_ira_region
;
4603 if (flag_ira_verbose
< 10)
4604 ira_dump_file
= dump_file
;
4606 timevar_push (TV_RELOAD
);
4609 if (current_loops
!= NULL
)
4611 release_recorded_exits ();
4612 flow_loops_free (&ira_loops
);
4613 free_dominance_info (CDI_DOMINATORS
);
4616 bb
->loop_father
= NULL
;
4617 current_loops
= NULL
;
4619 if (ira_conflicts_p
)
4620 ira_free (ira_spilled_reg_stack_slots
);
4624 lra (ira_dump_file
);
4625 /* ???!!! Move it before lra () when we use ira_reg_equiv in
4627 vec_free (reg_equivs
);
4633 df_set_flags (DF_NO_INSN_RESCAN
);
4634 build_insn_chain ();
4636 need_dce
= reload (get_insns (), ira_conflicts_p
);
4640 timevar_pop (TV_RELOAD
);
4642 timevar_push (TV_IRA
);
4644 if (ira_conflicts_p
&& ! ira_use_lra_p
)
4646 ira_free (ira_spilled_reg_stack_slots
);
4647 ira_finish_assign ();
4650 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
4651 && overall_cost_before
!= ira_overall_cost
)
4652 fprintf (ira_dump_file
, "+++Overall after reload %d\n", ira_overall_cost
);
4654 flag_ira_share_spill_slots
= saved_flag_ira_share_spill_slots
;
4656 if (! ira_use_lra_p
)
4659 if (current_loops
!= NULL
)
4661 release_recorded_exits ();
4662 flow_loops_free (&ira_loops
);
4663 free_dominance_info (CDI_DOMINATORS
);
4666 bb
->loop_father
= NULL
;
4667 current_loops
= NULL
;
4670 regstat_free_n_sets_and_refs ();
4674 cleanup_cfg (CLEANUP_EXPENSIVE
);
4676 finish_reg_equiv ();
4678 bitmap_obstack_release (&ira_bitmap_obstack
);
4679 #ifndef IRA_NO_OBSTACK
4680 obstack_free (&ira_obstack
, NULL
);
4683 /* The code after the reload has changed so much that at this point
4684 we might as well just rescan everything. Note that
4685 df_rescan_all_insns is not going to help here because it does not
4686 touch the artificial uses and defs. */
4687 df_finish_pass (true);
4688 df_scan_alloc (NULL
);
4693 df_live_add_problem ();
4694 df_live_set_all_dirty ();
4700 if (need_dce
&& optimize
)
4703 timevar_pop (TV_IRA
);
4706 /* Run the integrated register allocator. */
4708 rest_of_handle_ira (void)
4714 struct rtl_opt_pass pass_ira
=
4719 OPTGROUP_NONE
, /* optinfo_flags */
4721 rest_of_handle_ira
, /* execute */
4724 0, /* static_pass_number */
4726 0, /* properties_required */
4727 0, /* properties_provided */
4728 0, /* properties_destroyed */
4729 0, /* todo_flags_start */
4730 0, /* todo_flags_finish */
4735 rest_of_handle_reload (void)
4741 struct rtl_opt_pass pass_reload
=
4745 "reload", /* name */
4746 OPTGROUP_NONE
, /* optinfo_flags */
4748 rest_of_handle_reload
, /* execute */
4751 0, /* static_pass_number */
4752 TV_RELOAD
, /* tv_id */
4753 0, /* properties_required */
4754 0, /* properties_provided */
4755 0, /* properties_destroyed */
4756 0, /* todo_flags_start */
4757 TODO_ggc_collect
/* todo_flags_finish */