1 /* Copyright (C) 2000-2017 Free Software Foundation, Inc.
3 This file is part of GCC.
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 Under Section 7 of GPL version 3, you are granted additional
16 permissions described in the GCC Runtime Library Exception, version
17 3.1, as published by the Free Software Foundation.
19 You should have received a copy of the GNU General Public License and
20 a copy of the GCC Runtime Library Exception along with this program;
21 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
22 <http://www.gnu.org/licenses/>. */
24 /* Standard register usage. */
26 /* Number of actual hardware registers.
27 The hardware registers are assigned numbers for the compiler
28 from 0 to just below FIRST_PSEUDO_REGISTER.
29 All registers that the compiler knows about must be given numbers,
30 even those that are not normally considered general registers.
32 HP-PA 1.0 has 32 fullword registers and 16 floating point
33 registers. The floating point registers hold either word or double
36 16 additional registers are reserved.
38 HP-PA 1.1 has 32 fullword registers and 32 floating point
39 registers. However, the floating point registers behave
40 differently: the left and right halves of registers are addressable
41 as 32-bit registers. So, we will set things up like the 68k which
42 has different fp units: define separate register sets for the 1.0
45 #define FIRST_PSEUDO_REGISTER 90 /* 32 general regs + 56 fp regs +
46 + 1 shift reg + frame pointer */
48 /* 1 for registers that have pervasive standard uses
49 and are not available for the register allocator.
51 On the HP-PA, these are:
52 Reg 0 = 0 (hardware). However, 0 is used for condition code,
54 Reg 1 = ADDIL target/Temporary (hardware).
55 Reg 2 = Return Pointer
57 Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
58 Reg 4-18 = Preserved Registers
59 Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
60 Reg 20-22 = Temporary Registers
61 Reg 23-26 = Temporary/Parameter Registers
62 Reg 27 = Global Data Pointer (hp)
63 Reg 28 = Temporary/Return Value register
64 Reg 29 = Temporary/Static Chain/Return Value register #2
65 Reg 30 = stack pointer
66 Reg 31 = Temporary/Millicode Return Pointer (hp)
68 Freg 0-3 = Status Registers -- Not known to the compiler.
69 Freg 4-7 = Arguments/Return Value
70 Freg 8-11 = Temporary Registers
71 Freg 12-15 = Preserved Registers
75 On the Snake, fp regs are
77 Freg 0-3 = Status Registers -- Not known to the compiler.
78 Freg 4L-7R = Arguments/Return Value
79 Freg 8L-11R = Temporary Registers
80 Freg 12L-21R = Preserved Registers
81 Freg 22L-31R = Temporary Registers
85 #define FIXED_REGISTERS \
86 {0, 0, 0, 0, 0, 0, 0, 0, \
87 0, 0, 0, 0, 0, 0, 0, 0, \
88 0, 0, 0, 0, 0, 0, 0, 0, \
89 0, 0, 0, 1, 0, 0, 1, 0, \
91 0, 0, 0, 0, 0, 0, 0, 0, \
92 0, 0, 0, 0, 0, 0, 0, 0, \
93 0, 0, 0, 0, 0, 0, 0, 0, \
94 0, 0, 0, 0, 0, 0, 0, 0, \
95 0, 0, 0, 0, 0, 0, 0, 0, \
96 0, 0, 0, 0, 0, 0, 0, 0, \
97 0, 0, 0, 0, 0, 0, 0, 0, \
98 /* shift register and soft frame pointer */ \
101 /* 1 for registers not available across function calls.
102 These must include the FIXED_REGISTERS and also any
103 registers that can be used without being saved.
104 The latter must include the registers where values are returned
105 and the register where structure-value addresses are passed.
106 Aside from that, you can include as many other registers as you like. */
107 #define CALL_USED_REGISTERS \
108 {1, 1, 1, 0, 0, 0, 0, 0, \
109 0, 0, 0, 0, 0, 0, 0, 0, \
110 0, 0, 0, 1, 1, 1, 1, 1, \
111 1, 1, 1, 1, 1, 1, 1, 1, \
113 1, 1, 1, 1, 1, 1, 1, 1, \
114 1, 1, 1, 1, 1, 1, 1, 1, \
115 0, 0, 0, 0, 0, 0, 0, 0, \
116 0, 0, 0, 0, 0, 0, 0, 0, \
117 0, 0, 0, 0, 1, 1, 1, 1, \
118 1, 1, 1, 1, 1, 1, 1, 1, \
119 1, 1, 1, 1, 1, 1, 1, 1, \
120 /* shift register and soft frame pointer */ \
123 /* Allocate the call used registers first. This should minimize
124 the number of registers that need to be saved (as call used
125 registers will generally not be allocated across a call).
127 Experimentation has shown slightly better results by allocating
128 FP registers first. We allocate the caller-saved registers more
129 or less in reverse order to their allocation as arguments.
131 FP registers are ordered so that all L registers are selected before
132 R registers. This works around a false dependency interlock on the
133 PA8000 when accessing the high and low parts of an FP register
136 #define REG_ALLOC_ORDER \
138 /* caller-saved fp regs. */ \
139 68, 70, 72, 74, 76, 78, 80, 82, \
140 84, 86, 40, 42, 44, 46, 38, 36, \
142 69, 71, 73, 75, 77, 79, 81, 83, \
143 85, 87, 41, 43, 45, 47, 39, 37, \
145 /* caller-saved general regs. */ \
146 28, 19, 20, 21, 22, 31, 27, 29, \
148 /* callee-saved fp regs. */ \
149 48, 50, 52, 54, 56, 58, 60, 62, \
151 49, 51, 53, 55, 57, 59, 61, 63, \
153 /* callee-saved general regs. */ \
154 3, 4, 5, 6, 7, 8, 9, 10, \
155 11, 12, 13, 14, 15, 16, 17, 18, \
156 /* special registers. */ \
160 /* Return number of consecutive hard regs needed starting at reg REGNO
161 to hold something of mode MODE.
162 This is ordinarily the length in words of a value of mode MODE
163 but can be less for certain modes in special long registers.
165 On the HP-PA, general registers are 32 bits wide. The floating
166 point registers are 64 bits wide. Snake fp regs are treated as
167 32 bits wide since the left and right parts are independently
169 #define HARD_REGNO_NREGS(REGNO, MODE) \
170 (FP_REGNO_P (REGNO) \
172 ? COMPLEX_MODE_P (MODE) ? 2 : 1 \
173 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
174 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
176 /* There are no instructions that use DImode in PA 1.0, so we only
177 allow it in PA 1.1 and later. */
178 #define VALID_FP_MODE_P(MODE) \
179 ((MODE) == SFmode || (MODE) == DFmode \
180 || (MODE) == SCmode || (MODE) == DCmode \
181 || (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
183 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
185 On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
186 For the 64-bit modes, we choose a set of non-overlapping general registers
187 that includes the incoming arguments and the return value. We specify a
188 set with no overlaps so that we don't have to specify that the destination
189 register is an early clobber in patterns using this mode. Except for the
190 return value, the starting registers are odd. For 128 and 256 bit modes,
191 we similarly specify non-overlapping sets of cpu registers. However,
192 there aren't any patterns defined for modes larger than 64 bits at the
195 We limit the modes allowed in the floating point registers to the
196 set of modes used in the machine definition. In addition, we allow
197 the complex modes SCmode and DCmode. The real and imaginary parts
198 of complex modes are allocated to separate registers. This might
199 allow patterns to be defined in the future to operate on these values.
201 The PA 2.0 architecture specifies that quad-precision floating-point
202 values should start on an even floating point register. Thus, we
203 choose non-overlapping sets of registers starting on even register
204 boundaries for large modes. However, there is currently no support
205 in the machine definition for modes larger than 64 bits. TFmode is
206 supported under HP-UX using libcalls. Since TFmode values are passed
207 by reference, they never need to be loaded into the floating-point
209 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
210 ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
211 : (REGNO) == 88 ? SCALAR_INT_MODE_P (MODE) \
212 : !TARGET_PA_11 && FP_REGNO_P (REGNO) \
213 ? (VALID_FP_MODE_P (MODE) \
214 && (GET_MODE_SIZE (MODE) <= 8 \
215 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0))) \
216 : FP_REGNO_P (REGNO) \
217 ? (VALID_FP_MODE_P (MODE) \
218 && (GET_MODE_SIZE (MODE) <= 4 \
219 || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0) \
220 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0) \
221 || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0))) \
222 : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
223 || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \
224 && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \
225 || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \
226 && ((REGNO) & 3) == 3 && (REGNO) <= 23) \
227 || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD \
228 && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
230 /* How to renumber registers for dbx and gdb.
232 Registers 0 - 31 remain unchanged.
234 Registers 32 - 87 are mapped to 72 - 127
236 Register 88 is mapped to 32. */
238 #define DBX_REGISTER_NUMBER(REGNO) \
239 ((REGNO) <= 31 ? (REGNO) : \
240 ((REGNO) <= 87 ? (REGNO) + 40 : 32))
242 /* We must not use the DBX register numbers for the DWARF 2 CFA column
243 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
244 Instead use the identity mapping. */
245 #define DWARF_FRAME_REGNUM(REG) REG
247 /* Define the classes of registers for register constraints in the
248 machine description. Also define ranges of constants.
250 One of the classes must always be named ALL_REGS and include all hard regs.
251 If there is more than one class, another class must be named NO_REGS
252 and contain no registers.
254 The name GENERAL_REGS must be the name of a class (or an alias for
255 another name such as ALL_REGS). This is the class of registers
256 that is allowed by "g" or "r" in a register constraint.
257 Also, registers outside this class are allocated only when
258 instructions express preferences for them.
260 The classes must be numbered in nondecreasing order; that is,
261 a larger-numbered class must never be contained completely
262 in a smaller-numbered class.
264 For any two classes, it is very desirable that there be another
265 class that represents their union. */
267 /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
268 1.1 fp regs, and the high 1.1 fp regs, to which the operands of
269 fmpyadd and fmpysub are restricted. */
271 enum reg_class
{ NO_REGS
, R1_REGS
, GENERAL_REGS
, FPUPPER_REGS
, FP_REGS
,
272 GENERAL_OR_FP_REGS
, SHIFT_REGS
, ALL_REGS
, LIM_REG_CLASSES
};
274 #define N_REG_CLASSES (int) LIM_REG_CLASSES
276 /* Give names of register classes as strings for dump file. */
278 #define REG_CLASS_NAMES \
279 {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
280 "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
282 /* Define which registers fit in which classes.
283 This is an initializer for a vector of HARD_REG_SET
284 of length N_REG_CLASSES. Register 0, the "condition code" register,
287 #define REG_CLASS_CONTENTS \
288 {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \
289 {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \
290 {0xfffffffe, 0x00000000, 0x02000000}, /* GENERAL_REGS */ \
291 {0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \
292 {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \
293 {0xfffffffe, 0xffffffff, 0x02ffffff}, /* GENERAL_OR_FP_REGS */ \
294 {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \
295 {0xfffffffe, 0xffffffff, 0x03ffffff}} /* ALL_REGS */
297 /* Defines invalid mode changes. */
299 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
300 pa_cannot_change_mode_class (FROM, TO, CLASS)
302 /* Return the class number of the smallest class containing
303 reg number REGNO. This could be a conditional expression
304 or could index an array. */
306 #define REGNO_REG_CLASS(REGNO) \
307 ((REGNO) == 0 ? NO_REGS \
308 : (REGNO) == 1 ? R1_REGS \
309 : (REGNO) < 32 || (REGNO) == 89 ? GENERAL_REGS \
310 : (REGNO) < 56 ? FP_REGS \
311 : (REGNO) < 88 ? FPUPPER_REGS \
314 /* Return the maximum number of consecutive registers
315 needed to represent mode MODE in a register of class CLASS. */
316 #define CLASS_MAX_NREGS(CLASS, MODE) \
317 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \
319 ? COMPLEX_MODE_P (MODE) ? 2 : 1 \
320 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
321 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
323 /* 1 if N is a possible register number for function argument passing. */
325 #define FUNCTION_ARG_REGNO_P(N) \
326 (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
328 /* How to refer to registers in assembler output.
329 This sequence is indexed by compiler's hard-register-number (see above). */
331 #define REGISTER_NAMES \
332 {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
333 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
334 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
335 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
336 "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
337 "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \
338 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
339 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
340 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
341 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
342 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
345 #define ADDITIONAL_REGISTER_NAMES \
346 {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \
347 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \
348 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \
349 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \
350 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \
351 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \
352 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \
355 #define FP_SAVED_REG_LAST 66
356 #define FP_SAVED_REG_FIRST 48
357 #define FP_REG_STEP 2
358 #define FP_REG_FIRST 32
359 #define FP_REG_LAST 87