Fix entry.
[official-gcc.git] / gcc / cp / call.c
blob5737e4fc0a11ffd1b21d5410c3cddb54de5c2909
1 /* Functions related to invoking methods and overloaded functions.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) and
5 modified by Brendan Kehoe (brendan@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 /* High-level class interface. */
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "cp-tree.h"
33 #include "output.h"
34 #include "flags.h"
35 #include "rtl.h"
36 #include "toplev.h"
37 #include "expr.h"
38 #include "diagnostic.h"
39 #include "intl.h"
40 #include "target.h"
41 #include "convert.h"
43 /* The various kinds of conversion. */
45 typedef enum conversion_kind {
46 ck_identity,
47 ck_lvalue,
48 ck_qual,
49 ck_std,
50 ck_ptr,
51 ck_pmem,
52 ck_base,
53 ck_ref_bind,
54 ck_user,
55 ck_ambig,
56 ck_rvalue
57 } conversion_kind;
59 /* The rank of the conversion. Order of the enumerals matters; better
60 conversions should come earlier in the list. */
62 typedef enum conversion_rank {
63 cr_identity,
64 cr_exact,
65 cr_promotion,
66 cr_std,
67 cr_pbool,
68 cr_user,
69 cr_ellipsis,
70 cr_bad
71 } conversion_rank;
73 /* An implicit conversion sequence, in the sense of [over.best.ics].
74 The first conversion to be performed is at the end of the chain.
75 That conversion is always an cr_identity conversion. */
77 typedef struct conversion conversion;
78 struct conversion {
79 /* The kind of conversion represented by this step. */
80 conversion_kind kind;
81 /* The rank of this conversion. */
82 conversion_rank rank;
83 BOOL_BITFIELD user_conv_p : 1;
84 BOOL_BITFIELD ellipsis_p : 1;
85 BOOL_BITFIELD this_p : 1;
86 BOOL_BITFIELD bad_p : 1;
87 /* If KIND is ck_ref_bind ck_base_conv, true to indicate that a
88 temporary should be created to hold the result of the
89 conversion. */
90 BOOL_BITFIELD need_temporary_p : 1;
91 /* If KIND is ck_identity or ck_base_conv, true to indicate that the
92 copy constructor must be accessible, even though it is not being
93 used. */
94 BOOL_BITFIELD check_copy_constructor_p : 1;
95 /* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion
96 from a pointer-to-derived to pointer-to-base is being performed. */
97 BOOL_BITFIELD base_p : 1;
98 /* The type of the expression resulting from the conversion. */
99 tree type;
100 union {
101 /* The next conversion in the chain. Since the conversions are
102 arranged from outermost to innermost, the NEXT conversion will
103 actually be performed before this conversion. This variant is
104 used only when KIND is neither ck_identity nor ck_ambig. */
105 conversion *next;
106 /* The expression at the beginning of the conversion chain. This
107 variant is used only if KIND is ck_identity or ck_ambig. */
108 tree expr;
109 } u;
110 /* The function candidate corresponding to this conversion
111 sequence. This field is only used if KIND is ck_user. */
112 struct z_candidate *cand;
115 #define CONVERSION_RANK(NODE) \
116 ((NODE)->bad_p ? cr_bad \
117 : (NODE)->ellipsis_p ? cr_ellipsis \
118 : (NODE)->user_conv_p ? cr_user \
119 : (NODE)->rank)
121 static struct obstack conversion_obstack;
122 static bool conversion_obstack_initialized;
124 static struct z_candidate * tourney (struct z_candidate *);
125 static int equal_functions (tree, tree);
126 static int joust (struct z_candidate *, struct z_candidate *, bool);
127 static int compare_ics (conversion *, conversion *);
128 static tree build_over_call (struct z_candidate *, int);
129 static tree build_java_interface_fn_ref (tree, tree);
130 #define convert_like(CONV, EXPR) \
131 convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
132 /*issue_conversion_warnings=*/true, \
133 /*c_cast_p=*/false)
134 #define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
135 convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
136 /*issue_conversion_warnings=*/true, \
137 /*c_cast_p=*/false)
138 static tree convert_like_real (conversion *, tree, tree, int, int, bool,
139 bool);
140 static void op_error (enum tree_code, enum tree_code, tree, tree,
141 tree, const char *);
142 static tree build_object_call (tree, tree);
143 static tree resolve_args (tree);
144 static struct z_candidate *build_user_type_conversion_1 (tree, tree, int);
145 static void print_z_candidate (const char *, struct z_candidate *);
146 static void print_z_candidates (struct z_candidate *);
147 static tree build_this (tree);
148 static struct z_candidate *splice_viable (struct z_candidate *, bool, bool *);
149 static bool any_strictly_viable (struct z_candidate *);
150 static struct z_candidate *add_template_candidate
151 (struct z_candidate **, tree, tree, tree, tree, tree,
152 tree, tree, int, unification_kind_t);
153 static struct z_candidate *add_template_candidate_real
154 (struct z_candidate **, tree, tree, tree, tree, tree,
155 tree, tree, int, tree, unification_kind_t);
156 static struct z_candidate *add_template_conv_candidate
157 (struct z_candidate **, tree, tree, tree, tree, tree, tree);
158 static void add_builtin_candidates
159 (struct z_candidate **, enum tree_code, enum tree_code,
160 tree, tree *, int);
161 static void add_builtin_candidate
162 (struct z_candidate **, enum tree_code, enum tree_code,
163 tree, tree, tree, tree *, tree *, int);
164 static bool is_complete (tree);
165 static void build_builtin_candidate
166 (struct z_candidate **, tree, tree, tree, tree *, tree *,
167 int);
168 static struct z_candidate *add_conv_candidate
169 (struct z_candidate **, tree, tree, tree, tree, tree);
170 static struct z_candidate *add_function_candidate
171 (struct z_candidate **, tree, tree, tree, tree, tree, int);
172 static conversion *implicit_conversion (tree, tree, tree, int);
173 static conversion *standard_conversion (tree, tree, tree, int);
174 static conversion *reference_binding (tree, tree, tree, int);
175 static conversion *build_conv (conversion_kind, tree, conversion *);
176 static bool is_subseq (conversion *, conversion *);
177 static tree maybe_handle_ref_bind (conversion **);
178 static void maybe_handle_implicit_object (conversion **);
179 static struct z_candidate *add_candidate
180 (struct z_candidate **, tree, tree, size_t,
181 conversion **, tree, tree, int);
182 static tree source_type (conversion *);
183 static void add_warning (struct z_candidate *, struct z_candidate *);
184 static bool reference_related_p (tree, tree);
185 static bool reference_compatible_p (tree, tree);
186 static conversion *convert_class_to_reference (tree, tree, tree);
187 static conversion *direct_reference_binding (tree, conversion *);
188 static bool promoted_arithmetic_type_p (tree);
189 static conversion *conditional_conversion (tree, tree);
190 static char *name_as_c_string (tree, tree, bool *);
191 static tree call_builtin_trap (void);
192 static tree prep_operand (tree);
193 static void add_candidates (tree, tree, tree, bool, tree, tree,
194 int, struct z_candidate **);
195 static conversion *merge_conversion_sequences (conversion *, conversion *);
196 static bool magic_varargs_p (tree);
197 static tree build_temp (tree, tree, int, void (**)(const char *, ...));
198 static void check_constructor_callable (tree, tree);
200 /* Returns nonzero iff the destructor name specified in NAME
201 (a BIT_NOT_EXPR) matches BASETYPE. The operand of NAME can take many
202 forms... */
204 bool
205 check_dtor_name (tree basetype, tree name)
207 name = TREE_OPERAND (name, 0);
209 /* Just accept something we've already complained about. */
210 if (name == error_mark_node)
211 return true;
213 if (TREE_CODE (name) == TYPE_DECL)
214 name = TREE_TYPE (name);
215 else if (TYPE_P (name))
216 /* OK */;
217 else if (TREE_CODE (name) == IDENTIFIER_NODE)
219 if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
220 || (TREE_CODE (basetype) == ENUMERAL_TYPE
221 && name == TYPE_IDENTIFIER (basetype)))
222 name = basetype;
223 else
224 name = get_type_value (name);
226 else
228 /* In the case of:
230 template <class T> struct S { ~S(); };
231 int i;
232 i.~S();
234 NAME will be a class template. */
235 gcc_assert (DECL_CLASS_TEMPLATE_P (name));
236 return false;
239 if (name && TYPE_MAIN_VARIANT (basetype) == TYPE_MAIN_VARIANT (name))
240 return true;
241 return false;
244 /* We want the address of a function or method. We avoid creating a
245 pointer-to-member function. */
247 tree
248 build_addr_func (tree function)
250 tree type = TREE_TYPE (function);
252 /* We have to do these by hand to avoid real pointer to member
253 functions. */
254 if (TREE_CODE (type) == METHOD_TYPE)
256 if (TREE_CODE (function) == OFFSET_REF)
258 tree object = build_address (TREE_OPERAND (function, 0));
259 return get_member_function_from_ptrfunc (&object,
260 TREE_OPERAND (function, 1));
262 function = build_address (function);
264 else
265 function = decay_conversion (function);
267 return function;
270 /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
271 POINTER_TYPE to those. Note, pointer to member function types
272 (TYPE_PTRMEMFUNC_P) must be handled by our callers. */
274 tree
275 build_call (tree function, tree parms)
277 int is_constructor = 0;
278 int nothrow;
279 tree tmp;
280 tree decl;
281 tree result_type;
282 tree fntype;
284 function = build_addr_func (function);
286 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
288 sorry ("unable to call pointer to member function here");
289 return error_mark_node;
292 fntype = TREE_TYPE (TREE_TYPE (function));
293 result_type = TREE_TYPE (fntype);
295 if (TREE_CODE (function) == ADDR_EXPR
296 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
297 decl = TREE_OPERAND (function, 0);
298 else
299 decl = NULL_TREE;
301 /* We check both the decl and the type; a function may be known not to
302 throw without being declared throw(). */
303 nothrow = ((decl && TREE_NOTHROW (decl))
304 || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function))));
306 if (decl && TREE_THIS_VOLATILE (decl) && cfun)
307 current_function_returns_abnormally = 1;
309 if (decl && TREE_DEPRECATED (decl))
310 warn_deprecated_use (decl);
311 require_complete_eh_spec_types (fntype, decl);
313 if (decl && DECL_CONSTRUCTOR_P (decl))
314 is_constructor = 1;
316 if (decl && ! TREE_USED (decl))
318 /* We invoke build_call directly for several library functions.
319 These may have been declared normally if we're building libgcc,
320 so we can't just check DECL_ARTIFICIAL. */
321 gcc_assert (DECL_ARTIFICIAL (decl)
322 || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
323 "__", 2));
324 mark_used (decl);
327 /* Don't pass empty class objects by value. This is useful
328 for tags in STL, which are used to control overload resolution.
329 We don't need to handle other cases of copying empty classes. */
330 if (! decl || ! DECL_BUILT_IN (decl))
331 for (tmp = parms; tmp; tmp = TREE_CHAIN (tmp))
332 if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp)))
333 && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp))))
335 tree t = build0 (EMPTY_CLASS_EXPR, TREE_TYPE (TREE_VALUE (tmp)));
336 TREE_VALUE (tmp) = build2 (COMPOUND_EXPR, TREE_TYPE (t),
337 TREE_VALUE (tmp), t);
340 function = build3 (CALL_EXPR, result_type, function, parms, NULL_TREE);
341 TREE_HAS_CONSTRUCTOR (function) = is_constructor;
342 TREE_NOTHROW (function) = nothrow;
344 return function;
347 /* Build something of the form ptr->method (args)
348 or object.method (args). This can also build
349 calls to constructors, and find friends.
351 Member functions always take their class variable
352 as a pointer.
354 INSTANCE is a class instance.
356 NAME is the name of the method desired, usually an IDENTIFIER_NODE.
358 PARMS help to figure out what that NAME really refers to.
360 BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
361 down to the real instance type to use for access checking. We need this
362 information to get protected accesses correct.
364 FLAGS is the logical disjunction of zero or more LOOKUP_
365 flags. See cp-tree.h for more info.
367 If this is all OK, calls build_function_call with the resolved
368 member function.
370 This function must also handle being called to perform
371 initialization, promotion/coercion of arguments, and
372 instantiation of default parameters.
374 Note that NAME may refer to an instance variable name. If
375 `operator()()' is defined for the type of that field, then we return
376 that result. */
378 /* New overloading code. */
380 typedef struct z_candidate z_candidate;
382 typedef struct candidate_warning candidate_warning;
383 struct candidate_warning {
384 z_candidate *loser;
385 candidate_warning *next;
388 struct z_candidate {
389 /* The FUNCTION_DECL that will be called if this candidate is
390 selected by overload resolution. */
391 tree fn;
392 /* The arguments to use when calling this function. */
393 tree args;
394 /* The implicit conversion sequences for each of the arguments to
395 FN. */
396 conversion **convs;
397 /* The number of implicit conversion sequences. */
398 size_t num_convs;
399 /* If FN is a user-defined conversion, the standard conversion
400 sequence from the type returned by FN to the desired destination
401 type. */
402 conversion *second_conv;
403 int viable;
404 /* If FN is a member function, the binfo indicating the path used to
405 qualify the name of FN at the call site. This path is used to
406 determine whether or not FN is accessible if it is selected by
407 overload resolution. The DECL_CONTEXT of FN will always be a
408 (possibly improper) base of this binfo. */
409 tree access_path;
410 /* If FN is a non-static member function, the binfo indicating the
411 subobject to which the `this' pointer should be converted if FN
412 is selected by overload resolution. The type pointed to the by
413 the `this' pointer must correspond to the most derived class
414 indicated by the CONVERSION_PATH. */
415 tree conversion_path;
416 tree template_decl;
417 candidate_warning *warnings;
418 z_candidate *next;
421 /* Returns true iff T is a null pointer constant in the sense of
422 [conv.ptr]. */
424 bool
425 null_ptr_cst_p (tree t)
427 /* [conv.ptr]
429 A null pointer constant is an integral constant expression
430 (_expr.const_) rvalue of integer type that evaluates to zero. */
431 t = integral_constant_value (t);
432 if (t == null_node
433 || (CP_INTEGRAL_TYPE_P (TREE_TYPE (t)) && integer_zerop (t)))
434 return true;
435 return false;
438 /* Returns nonzero if PARMLIST consists of only default parms and/or
439 ellipsis. */
441 bool
442 sufficient_parms_p (tree parmlist)
444 for (; parmlist && parmlist != void_list_node;
445 parmlist = TREE_CHAIN (parmlist))
446 if (!TREE_PURPOSE (parmlist))
447 return false;
448 return true;
451 /* Allocate N bytes of memory from the conversion obstack. The memory
452 is zeroed before being returned. */
454 static void *
455 conversion_obstack_alloc (size_t n)
457 void *p;
458 if (!conversion_obstack_initialized)
460 gcc_obstack_init (&conversion_obstack);
461 conversion_obstack_initialized = true;
463 p = obstack_alloc (&conversion_obstack, n);
464 memset (p, 0, n);
465 return p;
468 /* Dynamically allocate a conversion. */
470 static conversion *
471 alloc_conversion (conversion_kind kind)
473 conversion *c;
474 c = conversion_obstack_alloc (sizeof (conversion));
475 c->kind = kind;
476 return c;
479 #ifdef ENABLE_CHECKING
481 /* Make sure that all memory on the conversion obstack has been
482 freed. */
484 void
485 validate_conversion_obstack (void)
487 if (conversion_obstack_initialized)
488 gcc_assert ((obstack_next_free (&conversion_obstack)
489 == obstack_base (&conversion_obstack)));
492 #endif /* ENABLE_CHECKING */
494 /* Dynamically allocate an array of N conversions. */
496 static conversion **
497 alloc_conversions (size_t n)
499 return conversion_obstack_alloc (n * sizeof (conversion *));
502 static conversion *
503 build_conv (conversion_kind code, tree type, conversion *from)
505 conversion *t;
506 conversion_rank rank = CONVERSION_RANK (from);
508 /* We can't use buildl1 here because CODE could be USER_CONV, which
509 takes two arguments. In that case, the caller is responsible for
510 filling in the second argument. */
511 t = alloc_conversion (code);
512 t->type = type;
513 t->u.next = from;
515 switch (code)
517 case ck_ptr:
518 case ck_pmem:
519 case ck_base:
520 case ck_std:
521 if (rank < cr_std)
522 rank = cr_std;
523 break;
525 case ck_qual:
526 if (rank < cr_exact)
527 rank = cr_exact;
528 break;
530 default:
531 break;
533 t->rank = rank;
534 t->user_conv_p = (code == ck_user || from->user_conv_p);
535 t->bad_p = from->bad_p;
536 t->base_p = false;
537 return t;
540 /* Build a representation of the identity conversion from EXPR to
541 itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */
543 static conversion *
544 build_identity_conv (tree type, tree expr)
546 conversion *c;
548 c = alloc_conversion (ck_identity);
549 c->type = type;
550 c->u.expr = expr;
552 return c;
555 /* Converting from EXPR to TYPE was ambiguous in the sense that there
556 were multiple user-defined conversions to accomplish the job.
557 Build a conversion that indicates that ambiguity. */
559 static conversion *
560 build_ambiguous_conv (tree type, tree expr)
562 conversion *c;
564 c = alloc_conversion (ck_ambig);
565 c->type = type;
566 c->u.expr = expr;
568 return c;
571 tree
572 strip_top_quals (tree t)
574 if (TREE_CODE (t) == ARRAY_TYPE)
575 return t;
576 return cp_build_qualified_type (t, 0);
579 /* Returns the standard conversion path (see [conv]) from type FROM to type
580 TO, if any. For proper handling of null pointer constants, you must
581 also pass the expression EXPR to convert from. */
583 static conversion *
584 standard_conversion (tree to, tree from, tree expr, int flags)
586 enum tree_code fcode, tcode;
587 conversion *conv;
588 bool fromref = false;
590 to = non_reference (to);
591 if (TREE_CODE (from) == REFERENCE_TYPE)
593 fromref = true;
594 from = TREE_TYPE (from);
596 to = strip_top_quals (to);
597 from = strip_top_quals (from);
599 if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
600 && expr && type_unknown_p (expr))
602 expr = instantiate_type (to, expr, tf_conv);
603 if (expr == error_mark_node)
604 return NULL;
605 from = TREE_TYPE (expr);
608 fcode = TREE_CODE (from);
609 tcode = TREE_CODE (to);
611 conv = build_identity_conv (from, expr);
612 if (fcode == FUNCTION_TYPE)
614 from = build_pointer_type (from);
615 fcode = TREE_CODE (from);
616 conv = build_conv (ck_lvalue, from, conv);
618 else if (fcode == ARRAY_TYPE)
620 from = build_pointer_type (TREE_TYPE (from));
621 fcode = TREE_CODE (from);
622 conv = build_conv (ck_lvalue, from, conv);
624 else if (fromref || (expr && lvalue_p (expr)))
625 conv = build_conv (ck_rvalue, from, conv);
627 /* Allow conversion between `__complex__' data types. */
628 if (tcode == COMPLEX_TYPE && fcode == COMPLEX_TYPE)
630 /* The standard conversion sequence to convert FROM to TO is
631 the standard conversion sequence to perform componentwise
632 conversion. */
633 conversion *part_conv = standard_conversion
634 (TREE_TYPE (to), TREE_TYPE (from), NULL_TREE, flags);
636 if (part_conv)
638 conv = build_conv (part_conv->kind, to, conv);
639 conv->rank = part_conv->rank;
641 else
642 conv = NULL;
644 return conv;
647 if (same_type_p (from, to))
648 return conv;
650 if ((tcode == POINTER_TYPE || TYPE_PTR_TO_MEMBER_P (to))
651 && expr && null_ptr_cst_p (expr))
652 conv = build_conv (ck_std, to, conv);
653 else if ((tcode == INTEGER_TYPE && fcode == POINTER_TYPE)
654 || (tcode == POINTER_TYPE && fcode == INTEGER_TYPE))
656 /* For backwards brain damage compatibility, allow interconversion of
657 pointers and integers with a pedwarn. */
658 conv = build_conv (ck_std, to, conv);
659 conv->bad_p = true;
661 else if (tcode == ENUMERAL_TYPE && fcode == INTEGER_TYPE)
663 /* For backwards brain damage compatibility, allow interconversion of
664 enums and integers with a pedwarn. */
665 conv = build_conv (ck_std, to, conv);
666 conv->bad_p = true;
668 else if ((tcode == POINTER_TYPE && fcode == POINTER_TYPE)
669 || (TYPE_PTRMEM_P (to) && TYPE_PTRMEM_P (from)))
671 tree to_pointee;
672 tree from_pointee;
674 if (tcode == POINTER_TYPE
675 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from),
676 TREE_TYPE (to)))
678 else if (VOID_TYPE_P (TREE_TYPE (to))
679 && !TYPE_PTRMEM_P (from)
680 && TREE_CODE (TREE_TYPE (from)) != FUNCTION_TYPE)
682 from = build_pointer_type
683 (cp_build_qualified_type (void_type_node,
684 cp_type_quals (TREE_TYPE (from))));
685 conv = build_conv (ck_ptr, from, conv);
687 else if (TYPE_PTRMEM_P (from))
689 tree fbase = TYPE_PTRMEM_CLASS_TYPE (from);
690 tree tbase = TYPE_PTRMEM_CLASS_TYPE (to);
692 if (DERIVED_FROM_P (fbase, tbase)
693 && (same_type_ignoring_top_level_qualifiers_p
694 (TYPE_PTRMEM_POINTED_TO_TYPE (from),
695 TYPE_PTRMEM_POINTED_TO_TYPE (to))))
697 from = build_ptrmem_type (tbase,
698 TYPE_PTRMEM_POINTED_TO_TYPE (from));
699 conv = build_conv (ck_pmem, from, conv);
701 else if (!same_type_p (fbase, tbase))
702 return NULL;
704 else if (IS_AGGR_TYPE (TREE_TYPE (from))
705 && IS_AGGR_TYPE (TREE_TYPE (to))
706 /* [conv.ptr]
708 An rvalue of type "pointer to cv D," where D is a
709 class type, can be converted to an rvalue of type
710 "pointer to cv B," where B is a base class (clause
711 _class.derived_) of D. If B is an inaccessible
712 (clause _class.access_) or ambiguous
713 (_class.member.lookup_) base class of D, a program
714 that necessitates this conversion is ill-formed.
715 Therefore, we use DERIVED_FROM_P, and do not check
716 access or uniqueness. */
717 && DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from)))
719 from =
720 cp_build_qualified_type (TREE_TYPE (to),
721 cp_type_quals (TREE_TYPE (from)));
722 from = build_pointer_type (from);
723 conv = build_conv (ck_ptr, from, conv);
724 conv->base_p = true;
727 if (tcode == POINTER_TYPE)
729 to_pointee = TREE_TYPE (to);
730 from_pointee = TREE_TYPE (from);
732 else
734 to_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (to);
735 from_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (from);
738 if (same_type_p (from, to))
739 /* OK */;
740 else if (comp_ptr_ttypes (to_pointee, from_pointee))
741 conv = build_conv (ck_qual, to, conv);
742 else if (expr && string_conv_p (to, expr, 0))
743 /* converting from string constant to char *. */
744 conv = build_conv (ck_qual, to, conv);
745 else if (ptr_reasonably_similar (to_pointee, from_pointee))
747 conv = build_conv (ck_ptr, to, conv);
748 conv->bad_p = true;
750 else
751 return NULL;
753 from = to;
755 else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
757 tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
758 tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
759 tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
760 tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));
762 if (!DERIVED_FROM_P (fbase, tbase)
763 || !same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
764 || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
765 TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
766 || cp_type_quals (fbase) != cp_type_quals (tbase))
767 return 0;
769 from = cp_build_qualified_type (tbase, cp_type_quals (fbase));
770 from = build_method_type_directly (from,
771 TREE_TYPE (fromfn),
772 TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
773 from = build_ptrmemfunc_type (build_pointer_type (from));
774 conv = build_conv (ck_pmem, from, conv);
775 conv->base_p = true;
777 else if (tcode == BOOLEAN_TYPE)
779 /* [conv.bool]
781 An rvalue of arithmetic, enumeration, pointer, or pointer to
782 member type can be converted to an rvalue of type bool. */
783 if (ARITHMETIC_TYPE_P (from)
784 || fcode == ENUMERAL_TYPE
785 || fcode == POINTER_TYPE
786 || TYPE_PTR_TO_MEMBER_P (from))
788 conv = build_conv (ck_std, to, conv);
789 if (fcode == POINTER_TYPE
790 || TYPE_PTRMEM_P (from)
791 || (TYPE_PTRMEMFUNC_P (from)
792 && conv->rank < cr_pbool))
793 conv->rank = cr_pbool;
794 return conv;
797 return NULL;
799 /* We don't check for ENUMERAL_TYPE here because there are no standard
800 conversions to enum type. */
801 else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
802 || tcode == REAL_TYPE)
804 if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
805 return 0;
806 conv = build_conv (ck_std, to, conv);
808 /* Give this a better rank if it's a promotion. */
809 if (same_type_p (to, type_promotes_to (from))
810 && conv->u.next->rank <= cr_promotion)
811 conv->rank = cr_promotion;
813 else if (fcode == VECTOR_TYPE && tcode == VECTOR_TYPE
814 && vector_types_convertible_p (from, to))
815 return build_conv (ck_std, to, conv);
816 else if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE)
817 && IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
818 && is_properly_derived_from (from, to))
820 if (conv->kind == ck_rvalue)
821 conv = conv->u.next;
822 conv = build_conv (ck_base, to, conv);
823 /* The derived-to-base conversion indicates the initialization
824 of a parameter with base type from an object of a derived
825 type. A temporary object is created to hold the result of
826 the conversion. */
827 conv->need_temporary_p = true;
829 else
830 return NULL;
832 return conv;
835 /* Returns nonzero if T1 is reference-related to T2. */
837 static bool
838 reference_related_p (tree t1, tree t2)
840 t1 = TYPE_MAIN_VARIANT (t1);
841 t2 = TYPE_MAIN_VARIANT (t2);
843 /* [dcl.init.ref]
845 Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
846 to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
847 of T2. */
848 return (same_type_p (t1, t2)
849 || (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
850 && DERIVED_FROM_P (t1, t2)));
853 /* Returns nonzero if T1 is reference-compatible with T2. */
855 static bool
856 reference_compatible_p (tree t1, tree t2)
858 /* [dcl.init.ref]
860 "cv1 T1" is reference compatible with "cv2 T2" if T1 is
861 reference-related to T2 and cv1 is the same cv-qualification as,
862 or greater cv-qualification than, cv2. */
863 return (reference_related_p (t1, t2)
864 && at_least_as_qualified_p (t1, t2));
867 /* Determine whether or not the EXPR (of class type S) can be
868 converted to T as in [over.match.ref]. */
870 static conversion *
871 convert_class_to_reference (tree t, tree s, tree expr)
873 tree conversions;
874 tree arglist;
875 conversion *conv;
876 tree reference_type;
877 struct z_candidate *candidates;
878 struct z_candidate *cand;
879 bool any_viable_p;
881 conversions = lookup_conversions (s);
882 if (!conversions)
883 return NULL;
885 /* [over.match.ref]
887 Assuming that "cv1 T" is the underlying type of the reference
888 being initialized, and "cv S" is the type of the initializer
889 expression, with S a class type, the candidate functions are
890 selected as follows:
892 --The conversion functions of S and its base classes are
893 considered. Those that are not hidden within S and yield type
894 "reference to cv2 T2", where "cv1 T" is reference-compatible
895 (_dcl.init.ref_) with "cv2 T2", are candidate functions.
897 The argument list has one argument, which is the initializer
898 expression. */
900 candidates = 0;
902 /* Conceptually, we should take the address of EXPR and put it in
903 the argument list. Unfortunately, however, that can result in
904 error messages, which we should not issue now because we are just
905 trying to find a conversion operator. Therefore, we use NULL,
906 cast to the appropriate type. */
907 arglist = build_int_cst (build_pointer_type (s), 0);
908 arglist = build_tree_list (NULL_TREE, arglist);
910 reference_type = build_reference_type (t);
912 while (conversions)
914 tree fns = TREE_VALUE (conversions);
916 for (; fns; fns = OVL_NEXT (fns))
918 tree f = OVL_CURRENT (fns);
919 tree t2 = TREE_TYPE (TREE_TYPE (f));
921 cand = NULL;
923 /* If this is a template function, try to get an exact
924 match. */
925 if (TREE_CODE (f) == TEMPLATE_DECL)
927 cand = add_template_candidate (&candidates,
928 f, s,
929 NULL_TREE,
930 arglist,
931 reference_type,
932 TYPE_BINFO (s),
933 TREE_PURPOSE (conversions),
934 LOOKUP_NORMAL,
935 DEDUCE_CONV);
937 if (cand)
939 /* Now, see if the conversion function really returns
940 an lvalue of the appropriate type. From the
941 point of view of unification, simply returning an
942 rvalue of the right type is good enough. */
943 f = cand->fn;
944 t2 = TREE_TYPE (TREE_TYPE (f));
945 if (TREE_CODE (t2) != REFERENCE_TYPE
946 || !reference_compatible_p (t, TREE_TYPE (t2)))
948 candidates = candidates->next;
949 cand = NULL;
953 else if (TREE_CODE (t2) == REFERENCE_TYPE
954 && reference_compatible_p (t, TREE_TYPE (t2)))
955 cand = add_function_candidate (&candidates, f, s, arglist,
956 TYPE_BINFO (s),
957 TREE_PURPOSE (conversions),
958 LOOKUP_NORMAL);
960 if (cand)
962 conversion *identity_conv;
963 /* Build a standard conversion sequence indicating the
964 binding from the reference type returned by the
965 function to the desired REFERENCE_TYPE. */
966 identity_conv
967 = build_identity_conv (TREE_TYPE (TREE_TYPE
968 (TREE_TYPE (cand->fn))),
969 NULL_TREE);
970 cand->second_conv
971 = (direct_reference_binding
972 (reference_type, identity_conv));
973 cand->second_conv->bad_p |= cand->convs[0]->bad_p;
976 conversions = TREE_CHAIN (conversions);
979 candidates = splice_viable (candidates, pedantic, &any_viable_p);
980 /* If none of the conversion functions worked out, let our caller
981 know. */
982 if (!any_viable_p)
983 return NULL;
985 cand = tourney (candidates);
986 if (!cand)
987 return NULL;
989 /* Now that we know that this is the function we're going to use fix
990 the dummy first argument. */
991 cand->args = tree_cons (NULL_TREE,
992 build_this (expr),
993 TREE_CHAIN (cand->args));
995 /* Build a user-defined conversion sequence representing the
996 conversion. */
997 conv = build_conv (ck_user,
998 TREE_TYPE (TREE_TYPE (cand->fn)),
999 build_identity_conv (TREE_TYPE (expr), expr));
1000 conv->cand = cand;
1002 /* Merge it with the standard conversion sequence from the
1003 conversion function's return type to the desired type. */
1004 cand->second_conv = merge_conversion_sequences (conv, cand->second_conv);
1006 if (cand->viable == -1)
1007 conv->bad_p = true;
1009 return cand->second_conv;
1012 /* A reference of the indicated TYPE is being bound directly to the
1013 expression represented by the implicit conversion sequence CONV.
1014 Return a conversion sequence for this binding. */
1016 static conversion *
1017 direct_reference_binding (tree type, conversion *conv)
1019 tree t;
1021 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
1022 gcc_assert (TREE_CODE (conv->type) != REFERENCE_TYPE);
1024 t = TREE_TYPE (type);
1026 /* [over.ics.rank]
1028 When a parameter of reference type binds directly
1029 (_dcl.init.ref_) to an argument expression, the implicit
1030 conversion sequence is the identity conversion, unless the
1031 argument expression has a type that is a derived class of the
1032 parameter type, in which case the implicit conversion sequence is
1033 a derived-to-base Conversion.
1035 If the parameter binds directly to the result of applying a
1036 conversion function to the argument expression, the implicit
1037 conversion sequence is a user-defined conversion sequence
1038 (_over.ics.user_), with the second standard conversion sequence
1039 either an identity conversion or, if the conversion function
1040 returns an entity of a type that is a derived class of the
1041 parameter type, a derived-to-base conversion. */
1042 if (!same_type_ignoring_top_level_qualifiers_p (t, conv->type))
1044 /* Represent the derived-to-base conversion. */
1045 conv = build_conv (ck_base, t, conv);
1046 /* We will actually be binding to the base-class subobject in
1047 the derived class, so we mark this conversion appropriately.
1048 That way, convert_like knows not to generate a temporary. */
1049 conv->need_temporary_p = false;
1051 return build_conv (ck_ref_bind, type, conv);
1054 /* Returns the conversion path from type FROM to reference type TO for
1055 purposes of reference binding. For lvalue binding, either pass a
1056 reference type to FROM or an lvalue expression to EXPR. If the
1057 reference will be bound to a temporary, NEED_TEMPORARY_P is set for
1058 the conversion returned. */
1060 static conversion *
1061 reference_binding (tree rto, tree rfrom, tree expr, int flags)
1063 conversion *conv = NULL;
1064 tree to = TREE_TYPE (rto);
1065 tree from = rfrom;
1066 bool related_p;
1067 bool compatible_p;
1068 cp_lvalue_kind lvalue_p = clk_none;
1070 if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
1072 expr = instantiate_type (to, expr, tf_none);
1073 if (expr == error_mark_node)
1074 return NULL;
1075 from = TREE_TYPE (expr);
1078 if (TREE_CODE (from) == REFERENCE_TYPE)
1080 /* Anything with reference type is an lvalue. */
1081 lvalue_p = clk_ordinary;
1082 from = TREE_TYPE (from);
1084 else if (expr)
1085 lvalue_p = real_lvalue_p (expr);
1087 /* Figure out whether or not the types are reference-related and
1088 reference compatible. We have do do this after stripping
1089 references from FROM. */
1090 related_p = reference_related_p (to, from);
1091 compatible_p = reference_compatible_p (to, from);
1093 if (lvalue_p && compatible_p)
1095 /* [dcl.init.ref]
1097 If the initializer expression
1099 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
1100 is reference-compatible with "cv2 T2,"
1102 the reference is bound directly to the initializer expression
1103 lvalue. */
1104 conv = build_identity_conv (from, expr);
1105 conv = direct_reference_binding (rto, conv);
1106 if ((lvalue_p & clk_bitfield) != 0
1107 || ((lvalue_p & clk_packed) != 0 && !TYPE_PACKED (to)))
1108 /* For the purposes of overload resolution, we ignore the fact
1109 this expression is a bitfield or packed field. (In particular,
1110 [over.ics.ref] says specifically that a function with a
1111 non-const reference parameter is viable even if the
1112 argument is a bitfield.)
1114 However, when we actually call the function we must create
1115 a temporary to which to bind the reference. If the
1116 reference is volatile, or isn't const, then we cannot make
1117 a temporary, so we just issue an error when the conversion
1118 actually occurs. */
1119 conv->need_temporary_p = true;
1121 return conv;
1123 else if (CLASS_TYPE_P (from) && !(flags & LOOKUP_NO_CONVERSION))
1125 /* [dcl.init.ref]
1127 If the initializer expression
1129 -- has a class type (i.e., T2 is a class type) can be
1130 implicitly converted to an lvalue of type "cv3 T3," where
1131 "cv1 T1" is reference-compatible with "cv3 T3". (this
1132 conversion is selected by enumerating the applicable
1133 conversion functions (_over.match.ref_) and choosing the
1134 best one through overload resolution. (_over.match_).
1136 the reference is bound to the lvalue result of the conversion
1137 in the second case. */
1138 conv = convert_class_to_reference (to, from, expr);
1139 if (conv)
1140 return conv;
1143 /* From this point on, we conceptually need temporaries, even if we
1144 elide them. Only the cases above are "direct bindings". */
1145 if (flags & LOOKUP_NO_TEMP_BIND)
1146 return NULL;
1148 /* [over.ics.rank]
1150 When a parameter of reference type is not bound directly to an
1151 argument expression, the conversion sequence is the one required
1152 to convert the argument expression to the underlying type of the
1153 reference according to _over.best.ics_. Conceptually, this
1154 conversion sequence corresponds to copy-initializing a temporary
1155 of the underlying type with the argument expression. Any
1156 difference in top-level cv-qualification is subsumed by the
1157 initialization itself and does not constitute a conversion. */
1159 /* [dcl.init.ref]
1161 Otherwise, the reference shall be to a non-volatile const type. */
1162 if (!CP_TYPE_CONST_NON_VOLATILE_P (to))
1163 return NULL;
1165 /* [dcl.init.ref]
1167 If the initializer expression is an rvalue, with T2 a class type,
1168 and "cv1 T1" is reference-compatible with "cv2 T2", the reference
1169 is bound in one of the following ways:
1171 -- The reference is bound to the object represented by the rvalue
1172 or to a sub-object within that object.
1174 -- ...
1176 We use the first alternative. The implicit conversion sequence
1177 is supposed to be same as we would obtain by generating a
1178 temporary. Fortunately, if the types are reference compatible,
1179 then this is either an identity conversion or the derived-to-base
1180 conversion, just as for direct binding. */
1181 if (CLASS_TYPE_P (from) && compatible_p)
1183 conv = build_identity_conv (from, expr);
1184 conv = direct_reference_binding (rto, conv);
1185 if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE))
1186 conv->u.next->check_copy_constructor_p = true;
1187 return conv;
1190 /* [dcl.init.ref]
1192 Otherwise, a temporary of type "cv1 T1" is created and
1193 initialized from the initializer expression using the rules for a
1194 non-reference copy initialization. If T1 is reference-related to
1195 T2, cv1 must be the same cv-qualification as, or greater
1196 cv-qualification than, cv2; otherwise, the program is ill-formed. */
1197 if (related_p && !at_least_as_qualified_p (to, from))
1198 return NULL;
1200 conv = implicit_conversion (to, from, expr, flags);
1201 if (!conv)
1202 return NULL;
1204 conv = build_conv (ck_ref_bind, rto, conv);
1205 /* This reference binding, unlike those above, requires the
1206 creation of a temporary. */
1207 conv->need_temporary_p = true;
1209 return conv;
1212 /* Returns the implicit conversion sequence (see [over.ics]) from type FROM
1213 to type TO. The optional expression EXPR may affect the conversion.
1214 FLAGS are the usual overloading flags. Only LOOKUP_NO_CONVERSION is
1215 significant. */
1217 static conversion *
1218 implicit_conversion (tree to, tree from, tree expr, int flags)
1220 conversion *conv;
1222 if (from == error_mark_node || to == error_mark_node
1223 || expr == error_mark_node)
1224 return NULL;
1226 if (TREE_CODE (to) == REFERENCE_TYPE)
1227 conv = reference_binding (to, from, expr, flags);
1228 else
1229 conv = standard_conversion (to, from, expr, flags);
1231 if (conv)
1232 return conv;
1234 if (expr != NULL_TREE
1235 && (IS_AGGR_TYPE (from)
1236 || IS_AGGR_TYPE (to))
1237 && (flags & LOOKUP_NO_CONVERSION) == 0)
1239 struct z_candidate *cand;
1241 cand = build_user_type_conversion_1
1242 (to, expr, LOOKUP_ONLYCONVERTING);
1243 if (cand)
1244 conv = cand->second_conv;
1246 /* We used to try to bind a reference to a temporary here, but that
1247 is now handled by the recursive call to this function at the end
1248 of reference_binding. */
1249 return conv;
1252 return NULL;
1255 /* Add a new entry to the list of candidates. Used by the add_*_candidate
1256 functions. */
1258 static struct z_candidate *
1259 add_candidate (struct z_candidate **candidates,
1260 tree fn, tree args,
1261 size_t num_convs, conversion **convs,
1262 tree access_path, tree conversion_path,
1263 int viable)
1265 struct z_candidate *cand
1266 = conversion_obstack_alloc (sizeof (struct z_candidate));
1268 cand->fn = fn;
1269 cand->args = args;
1270 cand->convs = convs;
1271 cand->num_convs = num_convs;
1272 cand->access_path = access_path;
1273 cand->conversion_path = conversion_path;
1274 cand->viable = viable;
1275 cand->next = *candidates;
1276 *candidates = cand;
1278 return cand;
1281 /* Create an overload candidate for the function or method FN called with
1282 the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
1283 to implicit_conversion.
1285 CTYPE, if non-NULL, is the type we want to pretend this function
1286 comes from for purposes of overload resolution. */
1288 static struct z_candidate *
1289 add_function_candidate (struct z_candidate **candidates,
1290 tree fn, tree ctype, tree arglist,
1291 tree access_path, tree conversion_path,
1292 int flags)
1294 tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
1295 int i, len;
1296 conversion **convs;
1297 tree parmnode, argnode;
1298 tree orig_arglist;
1299 int viable = 1;
1301 /* Built-in functions that haven't been declared don't really
1302 exist. */
1303 if (DECL_ANTICIPATED (fn))
1304 return NULL;
1306 /* The `this', `in_chrg' and VTT arguments to constructors are not
1307 considered in overload resolution. */
1308 if (DECL_CONSTRUCTOR_P (fn))
1310 parmlist = skip_artificial_parms_for (fn, parmlist);
1311 orig_arglist = arglist;
1312 arglist = skip_artificial_parms_for (fn, arglist);
1314 else
1315 orig_arglist = arglist;
1317 len = list_length (arglist);
1318 convs = alloc_conversions (len);
1320 /* 13.3.2 - Viable functions [over.match.viable]
1321 First, to be a viable function, a candidate function shall have enough
1322 parameters to agree in number with the arguments in the list.
1324 We need to check this first; otherwise, checking the ICSes might cause
1325 us to produce an ill-formed template instantiation. */
1327 parmnode = parmlist;
1328 for (i = 0; i < len; ++i)
1330 if (parmnode == NULL_TREE || parmnode == void_list_node)
1331 break;
1332 parmnode = TREE_CHAIN (parmnode);
1335 if (i < len && parmnode)
1336 viable = 0;
1338 /* Make sure there are default args for the rest of the parms. */
1339 else if (!sufficient_parms_p (parmnode))
1340 viable = 0;
1342 if (! viable)
1343 goto out;
1345 /* Second, for F to be a viable function, there shall exist for each
1346 argument an implicit conversion sequence that converts that argument
1347 to the corresponding parameter of F. */
1349 parmnode = parmlist;
1350 argnode = arglist;
1352 for (i = 0; i < len; ++i)
1354 tree arg = TREE_VALUE (argnode);
1355 tree argtype = lvalue_type (arg);
1356 conversion *t;
1357 int is_this;
1359 if (parmnode == void_list_node)
1360 break;
1362 is_this = (i == 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
1363 && ! DECL_CONSTRUCTOR_P (fn));
1365 if (parmnode)
1367 tree parmtype = TREE_VALUE (parmnode);
1369 /* The type of the implicit object parameter ('this') for
1370 overload resolution is not always the same as for the
1371 function itself; conversion functions are considered to
1372 be members of the class being converted, and functions
1373 introduced by a using-declaration are considered to be
1374 members of the class that uses them.
1376 Since build_over_call ignores the ICS for the `this'
1377 parameter, we can just change the parm type. */
1378 if (ctype && is_this)
1380 parmtype
1381 = build_qualified_type (ctype,
1382 TYPE_QUALS (TREE_TYPE (parmtype)));
1383 parmtype = build_pointer_type (parmtype);
1386 t = implicit_conversion (parmtype, argtype, arg, flags);
1388 else
1390 t = build_identity_conv (argtype, arg);
1391 t->ellipsis_p = true;
1394 if (t && is_this)
1395 t->this_p = true;
1397 convs[i] = t;
1398 if (! t)
1400 viable = 0;
1401 break;
1404 if (t->bad_p)
1405 viable = -1;
1407 if (parmnode)
1408 parmnode = TREE_CHAIN (parmnode);
1409 argnode = TREE_CHAIN (argnode);
1412 out:
1413 return add_candidate (candidates, fn, orig_arglist, len, convs,
1414 access_path, conversion_path, viable);
1417 /* Create an overload candidate for the conversion function FN which will
1418 be invoked for expression OBJ, producing a pointer-to-function which
1419 will in turn be called with the argument list ARGLIST, and add it to
1420 CANDIDATES. FLAGS is passed on to implicit_conversion.
1422 Actually, we don't really care about FN; we care about the type it
1423 converts to. There may be multiple conversion functions that will
1424 convert to that type, and we rely on build_user_type_conversion_1 to
1425 choose the best one; so when we create our candidate, we record the type
1426 instead of the function. */
1428 static struct z_candidate *
1429 add_conv_candidate (struct z_candidate **candidates, tree fn, tree obj,
1430 tree arglist, tree access_path, tree conversion_path)
1432 tree totype = TREE_TYPE (TREE_TYPE (fn));
1433 int i, len, viable, flags;
1434 tree parmlist, parmnode, argnode;
1435 conversion **convs;
1437 for (parmlist = totype; TREE_CODE (parmlist) != FUNCTION_TYPE; )
1438 parmlist = TREE_TYPE (parmlist);
1439 parmlist = TYPE_ARG_TYPES (parmlist);
1441 len = list_length (arglist) + 1;
1442 convs = alloc_conversions (len);
1443 parmnode = parmlist;
1444 argnode = arglist;
1445 viable = 1;
1446 flags = LOOKUP_NORMAL;
1448 /* Don't bother looking up the same type twice. */
1449 if (*candidates && (*candidates)->fn == totype)
1450 return NULL;
1452 for (i = 0; i < len; ++i)
1454 tree arg = i == 0 ? obj : TREE_VALUE (argnode);
1455 tree argtype = lvalue_type (arg);
1456 conversion *t;
1458 if (i == 0)
1459 t = implicit_conversion (totype, argtype, arg, flags);
1460 else if (parmnode == void_list_node)
1461 break;
1462 else if (parmnode)
1463 t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg, flags);
1464 else
1466 t = build_identity_conv (argtype, arg);
1467 t->ellipsis_p = true;
1470 convs[i] = t;
1471 if (! t)
1472 break;
1474 if (t->bad_p)
1475 viable = -1;
1477 if (i == 0)
1478 continue;
1480 if (parmnode)
1481 parmnode = TREE_CHAIN (parmnode);
1482 argnode = TREE_CHAIN (argnode);
1485 if (i < len)
1486 viable = 0;
1488 if (!sufficient_parms_p (parmnode))
1489 viable = 0;
1491 return add_candidate (candidates, totype, arglist, len, convs,
1492 access_path, conversion_path, viable);
1495 static void
1496 build_builtin_candidate (struct z_candidate **candidates, tree fnname,
1497 tree type1, tree type2, tree *args, tree *argtypes,
1498 int flags)
1500 conversion *t;
1501 conversion **convs;
1502 size_t num_convs;
1503 int viable = 1, i;
1504 tree types[2];
1506 types[0] = type1;
1507 types[1] = type2;
1509 num_convs = args[2] ? 3 : (args[1] ? 2 : 1);
1510 convs = alloc_conversions (num_convs);
1512 for (i = 0; i < 2; ++i)
1514 if (! args[i])
1515 break;
1517 t = implicit_conversion (types[i], argtypes[i], args[i], flags);
1518 if (! t)
1520 viable = 0;
1521 /* We need something for printing the candidate. */
1522 t = build_identity_conv (types[i], NULL_TREE);
1524 else if (t->bad_p)
1525 viable = 0;
1526 convs[i] = t;
1529 /* For COND_EXPR we rearranged the arguments; undo that now. */
1530 if (args[2])
1532 convs[2] = convs[1];
1533 convs[1] = convs[0];
1534 t = implicit_conversion (boolean_type_node, argtypes[2], args[2], flags);
1535 if (t)
1536 convs[0] = t;
1537 else
1538 viable = 0;
1541 add_candidate (candidates, fnname, /*args=*/NULL_TREE,
1542 num_convs, convs,
1543 /*access_path=*/NULL_TREE,
1544 /*conversion_path=*/NULL_TREE,
1545 viable);
1548 static bool
1549 is_complete (tree t)
1551 return COMPLETE_TYPE_P (complete_type (t));
1554 /* Returns nonzero if TYPE is a promoted arithmetic type. */
1556 static bool
1557 promoted_arithmetic_type_p (tree type)
1559 /* [over.built]
1561 In this section, the term promoted integral type is used to refer
1562 to those integral types which are preserved by integral promotion
1563 (including e.g. int and long but excluding e.g. char).
1564 Similarly, the term promoted arithmetic type refers to promoted
1565 integral types plus floating types. */
1566 return ((INTEGRAL_TYPE_P (type)
1567 && same_type_p (type_promotes_to (type), type))
1568 || TREE_CODE (type) == REAL_TYPE);
1571 /* Create any builtin operator overload candidates for the operator in
1572 question given the converted operand types TYPE1 and TYPE2. The other
1573 args are passed through from add_builtin_candidates to
1574 build_builtin_candidate.
1576 TYPE1 and TYPE2 may not be permissible, and we must filter them.
1577 If CODE is requires candidates operands of the same type of the kind
1578 of which TYPE1 and TYPE2 are, we add both candidates
1579 CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
1581 static void
1582 add_builtin_candidate (struct z_candidate **candidates, enum tree_code code,
1583 enum tree_code code2, tree fnname, tree type1,
1584 tree type2, tree *args, tree *argtypes, int flags)
1586 switch (code)
1588 case POSTINCREMENT_EXPR:
1589 case POSTDECREMENT_EXPR:
1590 args[1] = integer_zero_node;
1591 type2 = integer_type_node;
1592 break;
1593 default:
1594 break;
1597 switch (code)
1600 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1601 and VQ is either volatile or empty, there exist candidate operator
1602 functions of the form
1603 VQ T& operator++(VQ T&);
1604 T operator++(VQ T&, int);
1605 5 For every pair T, VQ), where T is an enumeration type or an arithmetic
1606 type other than bool, and VQ is either volatile or empty, there exist
1607 candidate operator functions of the form
1608 VQ T& operator--(VQ T&);
1609 T operator--(VQ T&, int);
1610 6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
1611 complete object type, and VQ is either volatile or empty, there exist
1612 candidate operator functions of the form
1613 T*VQ& operator++(T*VQ&);
1614 T*VQ& operator--(T*VQ&);
1615 T* operator++(T*VQ&, int);
1616 T* operator--(T*VQ&, int); */
1618 case POSTDECREMENT_EXPR:
1619 case PREDECREMENT_EXPR:
1620 if (TREE_CODE (type1) == BOOLEAN_TYPE)
1621 return;
1622 case POSTINCREMENT_EXPR:
1623 case PREINCREMENT_EXPR:
1624 if (ARITHMETIC_TYPE_P (type1) || TYPE_PTROB_P (type1))
1626 type1 = build_reference_type (type1);
1627 break;
1629 return;
1631 /* 7 For every cv-qualified or cv-unqualified complete object type T, there
1632 exist candidate operator functions of the form
1634 T& operator*(T*);
1636 8 For every function type T, there exist candidate operator functions of
1637 the form
1638 T& operator*(T*); */
1640 case INDIRECT_REF:
1641 if (TREE_CODE (type1) == POINTER_TYPE
1642 && (TYPE_PTROB_P (type1)
1643 || TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
1644 break;
1645 return;
1647 /* 9 For every type T, there exist candidate operator functions of the form
1648 T* operator+(T*);
1650 10For every promoted arithmetic type T, there exist candidate operator
1651 functions of the form
1652 T operator+(T);
1653 T operator-(T); */
1655 case CONVERT_EXPR: /* unary + */
1656 if (TREE_CODE (type1) == POINTER_TYPE)
1657 break;
1658 case NEGATE_EXPR:
1659 if (ARITHMETIC_TYPE_P (type1))
1660 break;
1661 return;
1663 /* 11For every promoted integral type T, there exist candidate operator
1664 functions of the form
1665 T operator~(T); */
1667 case BIT_NOT_EXPR:
1668 if (INTEGRAL_TYPE_P (type1))
1669 break;
1670 return;
1672 /* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
1673 is the same type as C2 or is a derived class of C2, T is a complete
1674 object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
1675 there exist candidate operator functions of the form
1676 CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
1677 where CV12 is the union of CV1 and CV2. */
1679 case MEMBER_REF:
1680 if (TREE_CODE (type1) == POINTER_TYPE
1681 && TYPE_PTR_TO_MEMBER_P (type2))
1683 tree c1 = TREE_TYPE (type1);
1684 tree c2 = TYPE_PTRMEM_CLASS_TYPE (type2);
1686 if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
1687 && (TYPE_PTRMEMFUNC_P (type2)
1688 || is_complete (TREE_TYPE (TREE_TYPE (type2)))))
1689 break;
1691 return;
1693 /* 13For every pair of promoted arithmetic types L and R, there exist can-
1694 didate operator functions of the form
1695 LR operator*(L, R);
1696 LR operator/(L, R);
1697 LR operator+(L, R);
1698 LR operator-(L, R);
1699 bool operator<(L, R);
1700 bool operator>(L, R);
1701 bool operator<=(L, R);
1702 bool operator>=(L, R);
1703 bool operator==(L, R);
1704 bool operator!=(L, R);
1705 where LR is the result of the usual arithmetic conversions between
1706 types L and R.
1708 14For every pair of types T and I, where T is a cv-qualified or cv-
1709 unqualified complete object type and I is a promoted integral type,
1710 there exist candidate operator functions of the form
1711 T* operator+(T*, I);
1712 T& operator[](T*, I);
1713 T* operator-(T*, I);
1714 T* operator+(I, T*);
1715 T& operator[](I, T*);
1717 15For every T, where T is a pointer to complete object type, there exist
1718 candidate operator functions of the form112)
1719 ptrdiff_t operator-(T, T);
1721 16For every pointer or enumeration type T, there exist candidate operator
1722 functions of the form
1723 bool operator<(T, T);
1724 bool operator>(T, T);
1725 bool operator<=(T, T);
1726 bool operator>=(T, T);
1727 bool operator==(T, T);
1728 bool operator!=(T, T);
1730 17For every pointer to member type T, there exist candidate operator
1731 functions of the form
1732 bool operator==(T, T);
1733 bool operator!=(T, T); */
1735 case MINUS_EXPR:
1736 if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
1737 break;
1738 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1740 type2 = ptrdiff_type_node;
1741 break;
1743 case MULT_EXPR:
1744 case TRUNC_DIV_EXPR:
1745 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1746 break;
1747 return;
1749 case EQ_EXPR:
1750 case NE_EXPR:
1751 if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
1752 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
1753 break;
1754 if (TYPE_PTR_TO_MEMBER_P (type1) && null_ptr_cst_p (args[1]))
1756 type2 = type1;
1757 break;
1759 if (TYPE_PTR_TO_MEMBER_P (type2) && null_ptr_cst_p (args[0]))
1761 type1 = type2;
1762 break;
1764 /* Fall through. */
1765 case LT_EXPR:
1766 case GT_EXPR:
1767 case LE_EXPR:
1768 case GE_EXPR:
1769 case MAX_EXPR:
1770 case MIN_EXPR:
1771 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1772 break;
1773 if (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1774 break;
1775 if (TREE_CODE (type1) == ENUMERAL_TYPE && TREE_CODE (type2) == ENUMERAL_TYPE)
1776 break;
1777 if (TYPE_PTR_P (type1) && null_ptr_cst_p (args[1]))
1779 type2 = type1;
1780 break;
1782 if (null_ptr_cst_p (args[0]) && TYPE_PTR_P (type2))
1784 type1 = type2;
1785 break;
1787 return;
1789 case PLUS_EXPR:
1790 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1791 break;
1792 case ARRAY_REF:
1793 if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
1795 type1 = ptrdiff_type_node;
1796 break;
1798 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1800 type2 = ptrdiff_type_node;
1801 break;
1803 return;
1805 /* 18For every pair of promoted integral types L and R, there exist candi-
1806 date operator functions of the form
1807 LR operator%(L, R);
1808 LR operator&(L, R);
1809 LR operator^(L, R);
1810 LR operator|(L, R);
1811 L operator<<(L, R);
1812 L operator>>(L, R);
1813 where LR is the result of the usual arithmetic conversions between
1814 types L and R. */
1816 case TRUNC_MOD_EXPR:
1817 case BIT_AND_EXPR:
1818 case BIT_IOR_EXPR:
1819 case BIT_XOR_EXPR:
1820 case LSHIFT_EXPR:
1821 case RSHIFT_EXPR:
1822 if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
1823 break;
1824 return;
1826 /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
1827 type, VQ is either volatile or empty, and R is a promoted arithmetic
1828 type, there exist candidate operator functions of the form
1829 VQ L& operator=(VQ L&, R);
1830 VQ L& operator*=(VQ L&, R);
1831 VQ L& operator/=(VQ L&, R);
1832 VQ L& operator+=(VQ L&, R);
1833 VQ L& operator-=(VQ L&, R);
1835 20For every pair T, VQ), where T is any type and VQ is either volatile
1836 or empty, there exist candidate operator functions of the form
1837 T*VQ& operator=(T*VQ&, T*);
1839 21For every pair T, VQ), where T is a pointer to member type and VQ is
1840 either volatile or empty, there exist candidate operator functions of
1841 the form
1842 VQ T& operator=(VQ T&, T);
1844 22For every triple T, VQ, I), where T is a cv-qualified or cv-
1845 unqualified complete object type, VQ is either volatile or empty, and
1846 I is a promoted integral type, there exist candidate operator func-
1847 tions of the form
1848 T*VQ& operator+=(T*VQ&, I);
1849 T*VQ& operator-=(T*VQ&, I);
1851 23For every triple L, VQ, R), where L is an integral or enumeration
1852 type, VQ is either volatile or empty, and R is a promoted integral
1853 type, there exist candidate operator functions of the form
1855 VQ L& operator%=(VQ L&, R);
1856 VQ L& operator<<=(VQ L&, R);
1857 VQ L& operator>>=(VQ L&, R);
1858 VQ L& operator&=(VQ L&, R);
1859 VQ L& operator^=(VQ L&, R);
1860 VQ L& operator|=(VQ L&, R); */
1862 case MODIFY_EXPR:
1863 switch (code2)
1865 case PLUS_EXPR:
1866 case MINUS_EXPR:
1867 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1869 type2 = ptrdiff_type_node;
1870 break;
1872 case MULT_EXPR:
1873 case TRUNC_DIV_EXPR:
1874 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1875 break;
1876 return;
1878 case TRUNC_MOD_EXPR:
1879 case BIT_AND_EXPR:
1880 case BIT_IOR_EXPR:
1881 case BIT_XOR_EXPR:
1882 case LSHIFT_EXPR:
1883 case RSHIFT_EXPR:
1884 if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
1885 break;
1886 return;
1888 case NOP_EXPR:
1889 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1890 break;
1891 if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
1892 || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1893 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
1894 || ((TYPE_PTRMEMFUNC_P (type1)
1895 || TREE_CODE (type1) == POINTER_TYPE)
1896 && null_ptr_cst_p (args[1])))
1898 type2 = type1;
1899 break;
1901 return;
1903 default:
1904 gcc_unreachable ();
1906 type1 = build_reference_type (type1);
1907 break;
1909 case COND_EXPR:
1910 /* [over.built]
1912 For every pair of promoted arithmetic types L and R, there
1913 exist candidate operator functions of the form
1915 LR operator?(bool, L, R);
1917 where LR is the result of the usual arithmetic conversions
1918 between types L and R.
1920 For every type T, where T is a pointer or pointer-to-member
1921 type, there exist candidate operator functions of the form T
1922 operator?(bool, T, T); */
1924 if (promoted_arithmetic_type_p (type1)
1925 && promoted_arithmetic_type_p (type2))
1926 /* That's OK. */
1927 break;
1929 /* Otherwise, the types should be pointers. */
1930 if (!(TYPE_PTR_P (type1) || TYPE_PTR_TO_MEMBER_P (type1))
1931 || !(TYPE_PTR_P (type2) || TYPE_PTR_TO_MEMBER_P (type2)))
1932 return;
1934 /* We don't check that the two types are the same; the logic
1935 below will actually create two candidates; one in which both
1936 parameter types are TYPE1, and one in which both parameter
1937 types are TYPE2. */
1938 break;
1940 default:
1941 gcc_unreachable ();
1944 /* If we're dealing with two pointer types or two enumeral types,
1945 we need candidates for both of them. */
1946 if (type2 && !same_type_p (type1, type2)
1947 && TREE_CODE (type1) == TREE_CODE (type2)
1948 && (TREE_CODE (type1) == REFERENCE_TYPE
1949 || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1950 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
1951 || TYPE_PTRMEMFUNC_P (type1)
1952 || IS_AGGR_TYPE (type1)
1953 || TREE_CODE (type1) == ENUMERAL_TYPE))
1955 build_builtin_candidate
1956 (candidates, fnname, type1, type1, args, argtypes, flags);
1957 build_builtin_candidate
1958 (candidates, fnname, type2, type2, args, argtypes, flags);
1959 return;
1962 build_builtin_candidate
1963 (candidates, fnname, type1, type2, args, argtypes, flags);
1966 tree
1967 type_decays_to (tree type)
1969 if (TREE_CODE (type) == ARRAY_TYPE)
1970 return build_pointer_type (TREE_TYPE (type));
1971 if (TREE_CODE (type) == FUNCTION_TYPE)
1972 return build_pointer_type (type);
1973 return type;
1976 /* There are three conditions of builtin candidates:
1978 1) bool-taking candidates. These are the same regardless of the input.
1979 2) pointer-pair taking candidates. These are generated for each type
1980 one of the input types converts to.
1981 3) arithmetic candidates. According to the standard, we should generate
1982 all of these, but I'm trying not to...
1984 Here we generate a superset of the possible candidates for this particular
1985 case. That is a subset of the full set the standard defines, plus some
1986 other cases which the standard disallows. add_builtin_candidate will
1987 filter out the invalid set. */
1989 static void
1990 add_builtin_candidates (struct z_candidate **candidates, enum tree_code code,
1991 enum tree_code code2, tree fnname, tree *args,
1992 int flags)
1994 int ref1, i;
1995 int enum_p = 0;
1996 tree type, argtypes[3];
1997 /* TYPES[i] is the set of possible builtin-operator parameter types
1998 we will consider for the Ith argument. These are represented as
1999 a TREE_LIST; the TREE_VALUE of each node is the potential
2000 parameter type. */
2001 tree types[2];
2003 for (i = 0; i < 3; ++i)
2005 if (args[i])
2006 argtypes[i] = lvalue_type (args[i]);
2007 else
2008 argtypes[i] = NULL_TREE;
2011 switch (code)
2013 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
2014 and VQ is either volatile or empty, there exist candidate operator
2015 functions of the form
2016 VQ T& operator++(VQ T&); */
2018 case POSTINCREMENT_EXPR:
2019 case PREINCREMENT_EXPR:
2020 case POSTDECREMENT_EXPR:
2021 case PREDECREMENT_EXPR:
2022 case MODIFY_EXPR:
2023 ref1 = 1;
2024 break;
2026 /* 24There also exist candidate operator functions of the form
2027 bool operator!(bool);
2028 bool operator&&(bool, bool);
2029 bool operator||(bool, bool); */
2031 case TRUTH_NOT_EXPR:
2032 build_builtin_candidate
2033 (candidates, fnname, boolean_type_node,
2034 NULL_TREE, args, argtypes, flags);
2035 return;
2037 case TRUTH_ORIF_EXPR:
2038 case TRUTH_ANDIF_EXPR:
2039 build_builtin_candidate
2040 (candidates, fnname, boolean_type_node,
2041 boolean_type_node, args, argtypes, flags);
2042 return;
2044 case ADDR_EXPR:
2045 case COMPOUND_EXPR:
2046 case COMPONENT_REF:
2047 return;
2049 case COND_EXPR:
2050 case EQ_EXPR:
2051 case NE_EXPR:
2052 case LT_EXPR:
2053 case LE_EXPR:
2054 case GT_EXPR:
2055 case GE_EXPR:
2056 enum_p = 1;
2057 /* Fall through. */
2059 default:
2060 ref1 = 0;
2063 types[0] = types[1] = NULL_TREE;
2065 for (i = 0; i < 2; ++i)
2067 if (! args[i])
2069 else if (IS_AGGR_TYPE (argtypes[i]))
2071 tree convs;
2073 if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
2074 return;
2076 convs = lookup_conversions (argtypes[i]);
2078 if (code == COND_EXPR)
2080 if (real_lvalue_p (args[i]))
2081 types[i] = tree_cons
2082 (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
2084 types[i] = tree_cons
2085 (NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
2088 else if (! convs)
2089 return;
2091 for (; convs; convs = TREE_CHAIN (convs))
2093 type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));
2095 if (i == 0 && ref1
2096 && (TREE_CODE (type) != REFERENCE_TYPE
2097 || CP_TYPE_CONST_P (TREE_TYPE (type))))
2098 continue;
2100 if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
2101 types[i] = tree_cons (NULL_TREE, type, types[i]);
2103 type = non_reference (type);
2104 if (i != 0 || ! ref1)
2106 type = TYPE_MAIN_VARIANT (type_decays_to (type));
2107 if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
2108 types[i] = tree_cons (NULL_TREE, type, types[i]);
2109 if (INTEGRAL_TYPE_P (type))
2110 type = type_promotes_to (type);
2113 if (! value_member (type, types[i]))
2114 types[i] = tree_cons (NULL_TREE, type, types[i]);
2117 else
2119 if (code == COND_EXPR && real_lvalue_p (args[i]))
2120 types[i] = tree_cons
2121 (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
2122 type = non_reference (argtypes[i]);
2123 if (i != 0 || ! ref1)
2125 type = TYPE_MAIN_VARIANT (type_decays_to (type));
2126 if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
2127 types[i] = tree_cons (NULL_TREE, type, types[i]);
2128 if (INTEGRAL_TYPE_P (type))
2129 type = type_promotes_to (type);
2131 types[i] = tree_cons (NULL_TREE, type, types[i]);
2135 /* Run through the possible parameter types of both arguments,
2136 creating candidates with those parameter types. */
2137 for (; types[0]; types[0] = TREE_CHAIN (types[0]))
2139 if (types[1])
2140 for (type = types[1]; type; type = TREE_CHAIN (type))
2141 add_builtin_candidate
2142 (candidates, code, code2, fnname, TREE_VALUE (types[0]),
2143 TREE_VALUE (type), args, argtypes, flags);
2144 else
2145 add_builtin_candidate
2146 (candidates, code, code2, fnname, TREE_VALUE (types[0]),
2147 NULL_TREE, args, argtypes, flags);
2150 return;
2154 /* If TMPL can be successfully instantiated as indicated by
2155 EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
2157 TMPL is the template. EXPLICIT_TARGS are any explicit template
2158 arguments. ARGLIST is the arguments provided at the call-site.
2159 The RETURN_TYPE is the desired type for conversion operators. If
2160 OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
2161 If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
2162 add_conv_candidate. */
2164 static struct z_candidate*
2165 add_template_candidate_real (struct z_candidate **candidates, tree tmpl,
2166 tree ctype, tree explicit_targs, tree arglist,
2167 tree return_type, tree access_path,
2168 tree conversion_path, int flags, tree obj,
2169 unification_kind_t strict)
2171 int ntparms = DECL_NTPARMS (tmpl);
2172 tree targs = make_tree_vec (ntparms);
2173 tree args_without_in_chrg = arglist;
2174 struct z_candidate *cand;
2175 int i;
2176 tree fn;
2178 /* We don't do deduction on the in-charge parameter, the VTT
2179 parameter or 'this'. */
2180 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl))
2181 args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
2183 if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl)
2184 || DECL_BASE_CONSTRUCTOR_P (tmpl))
2185 && CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl)))
2186 args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
2188 i = fn_type_unification (tmpl, explicit_targs, targs,
2189 args_without_in_chrg,
2190 return_type, strict, -1);
2192 if (i != 0)
2193 return NULL;
2195 fn = instantiate_template (tmpl, targs, tf_none);
2196 if (fn == error_mark_node)
2197 return NULL;
2199 /* In [class.copy]:
2201 A member function template is never instantiated to perform the
2202 copy of a class object to an object of its class type.
2204 It's a little unclear what this means; the standard explicitly
2205 does allow a template to be used to copy a class. For example,
2208 struct A {
2209 A(A&);
2210 template <class T> A(const T&);
2212 const A f ();
2213 void g () { A a (f ()); }
2215 the member template will be used to make the copy. The section
2216 quoted above appears in the paragraph that forbids constructors
2217 whose only parameter is (a possibly cv-qualified variant of) the
2218 class type, and a logical interpretation is that the intent was
2219 to forbid the instantiation of member templates which would then
2220 have that form. */
2221 if (DECL_CONSTRUCTOR_P (fn) && list_length (arglist) == 2)
2223 tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (fn);
2224 if (arg_types && same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types)),
2225 ctype))
2226 return NULL;
2229 if (obj != NULL_TREE)
2230 /* Aha, this is a conversion function. */
2231 cand = add_conv_candidate (candidates, fn, obj, access_path,
2232 conversion_path, arglist);
2233 else
2234 cand = add_function_candidate (candidates, fn, ctype,
2235 arglist, access_path,
2236 conversion_path, flags);
2237 if (DECL_TI_TEMPLATE (fn) != tmpl)
2238 /* This situation can occur if a member template of a template
2239 class is specialized. Then, instantiate_template might return
2240 an instantiation of the specialization, in which case the
2241 DECL_TI_TEMPLATE field will point at the original
2242 specialization. For example:
2244 template <class T> struct S { template <class U> void f(U);
2245 template <> void f(int) {}; };
2246 S<double> sd;
2247 sd.f(3);
2249 Here, TMPL will be template <class U> S<double>::f(U).
2250 And, instantiate template will give us the specialization
2251 template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
2252 for this will point at template <class T> template <> S<T>::f(int),
2253 so that we can find the definition. For the purposes of
2254 overload resolution, however, we want the original TMPL. */
2255 cand->template_decl = tree_cons (tmpl, targs, NULL_TREE);
2256 else
2257 cand->template_decl = DECL_TEMPLATE_INFO (fn);
2259 return cand;
2263 static struct z_candidate *
2264 add_template_candidate (struct z_candidate **candidates, tree tmpl, tree ctype,
2265 tree explicit_targs, tree arglist, tree return_type,
2266 tree access_path, tree conversion_path, int flags,
2267 unification_kind_t strict)
2269 return
2270 add_template_candidate_real (candidates, tmpl, ctype,
2271 explicit_targs, arglist, return_type,
2272 access_path, conversion_path,
2273 flags, NULL_TREE, strict);
2277 static struct z_candidate *
2278 add_template_conv_candidate (struct z_candidate **candidates, tree tmpl,
2279 tree obj, tree arglist, tree return_type,
2280 tree access_path, tree conversion_path)
2282 return
2283 add_template_candidate_real (candidates, tmpl, NULL_TREE, NULL_TREE,
2284 arglist, return_type, access_path,
2285 conversion_path, 0, obj, DEDUCE_CONV);
2288 /* The CANDS are the set of candidates that were considered for
2289 overload resolution. Return the set of viable candidates. If none
2290 of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
2291 is true if a candidate should be considered viable only if it is
2292 strictly viable. */
2294 static struct z_candidate*
2295 splice_viable (struct z_candidate *cands,
2296 bool strict_p,
2297 bool *any_viable_p)
2299 struct z_candidate *viable;
2300 struct z_candidate **last_viable;
2301 struct z_candidate **cand;
2303 viable = NULL;
2304 last_viable = &viable;
2305 *any_viable_p = false;
2307 cand = &cands;
2308 while (*cand)
2310 struct z_candidate *c = *cand;
2311 if (strict_p ? c->viable == 1 : c->viable)
2313 *last_viable = c;
2314 *cand = c->next;
2315 c->next = NULL;
2316 last_viable = &c->next;
2317 *any_viable_p = true;
2319 else
2320 cand = &c->next;
2323 return viable ? viable : cands;
2326 static bool
2327 any_strictly_viable (struct z_candidate *cands)
2329 for (; cands; cands = cands->next)
2330 if (cands->viable == 1)
2331 return true;
2332 return false;
2335 /* OBJ is being used in an expression like "OBJ.f (...)". In other
2336 words, it is about to become the "this" pointer for a member
2337 function call. Take the address of the object. */
2339 static tree
2340 build_this (tree obj)
2342 /* In a template, we are only concerned about the type of the
2343 expression, so we can take a shortcut. */
2344 if (processing_template_decl)
2345 return build_address (obj);
2347 return build_unary_op (ADDR_EXPR, obj, 0);
2350 /* Returns true iff functions are equivalent. Equivalent functions are
2351 not '==' only if one is a function-local extern function or if
2352 both are extern "C". */
2354 static inline int
2355 equal_functions (tree fn1, tree fn2)
2357 if (DECL_LOCAL_FUNCTION_P (fn1) || DECL_LOCAL_FUNCTION_P (fn2)
2358 || DECL_EXTERN_C_FUNCTION_P (fn1))
2359 return decls_match (fn1, fn2);
2360 return fn1 == fn2;
2363 /* Print information about one overload candidate CANDIDATE. MSGSTR
2364 is the text to print before the candidate itself.
2366 NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
2367 to have been run through gettext by the caller. This wart makes
2368 life simpler in print_z_candidates and for the translators. */
2370 static void
2371 print_z_candidate (const char *msgstr, struct z_candidate *candidate)
2373 if (TREE_CODE (candidate->fn) == IDENTIFIER_NODE)
2375 if (candidate->num_convs == 3)
2376 inform ("%s %D(%T, %T, %T) <built-in>", msgstr, candidate->fn,
2377 candidate->convs[0]->type,
2378 candidate->convs[1]->type,
2379 candidate->convs[2]->type);
2380 else if (candidate->num_convs == 2)
2381 inform ("%s %D(%T, %T) <built-in>", msgstr, candidate->fn,
2382 candidate->convs[0]->type,
2383 candidate->convs[1]->type);
2384 else
2385 inform ("%s %D(%T) <built-in>", msgstr, candidate->fn,
2386 candidate->convs[0]->type);
2388 else if (TYPE_P (candidate->fn))
2389 inform ("%s %T <conversion>", msgstr, candidate->fn);
2390 else if (candidate->viable == -1)
2391 inform ("%J%s %+#D <near match>", candidate->fn, msgstr, candidate->fn);
2392 else
2393 inform ("%J%s %+#D", candidate->fn, msgstr, candidate->fn);
2396 static void
2397 print_z_candidates (struct z_candidate *candidates)
2399 const char *str;
2400 struct z_candidate *cand1;
2401 struct z_candidate **cand2;
2403 /* There may be duplicates in the set of candidates. We put off
2404 checking this condition as long as possible, since we have no way
2405 to eliminate duplicates from a set of functions in less than n^2
2406 time. Now we are about to emit an error message, so it is more
2407 permissible to go slowly. */
2408 for (cand1 = candidates; cand1; cand1 = cand1->next)
2410 tree fn = cand1->fn;
2411 /* Skip builtin candidates and conversion functions. */
2412 if (TREE_CODE (fn) != FUNCTION_DECL)
2413 continue;
2414 cand2 = &cand1->next;
2415 while (*cand2)
2417 if (TREE_CODE ((*cand2)->fn) == FUNCTION_DECL
2418 && equal_functions (fn, (*cand2)->fn))
2419 *cand2 = (*cand2)->next;
2420 else
2421 cand2 = &(*cand2)->next;
2425 if (!candidates)
2426 return;
2428 str = _("candidates are:");
2429 print_z_candidate (str, candidates);
2430 if (candidates->next)
2432 /* Indent successive candidates by the width of the translation
2433 of the above string. */
2434 size_t len = gcc_gettext_width (str) + 1;
2435 char *spaces = alloca (len);
2436 memset (spaces, ' ', len-1);
2437 spaces[len - 1] = '\0';
2439 candidates = candidates->next;
2442 print_z_candidate (spaces, candidates);
2443 candidates = candidates->next;
2445 while (candidates);
2449 /* USER_SEQ is a user-defined conversion sequence, beginning with a
2450 USER_CONV. STD_SEQ is the standard conversion sequence applied to
2451 the result of the conversion function to convert it to the final
2452 desired type. Merge the two sequences into a single sequence,
2453 and return the merged sequence. */
2455 static conversion *
2456 merge_conversion_sequences (conversion *user_seq, conversion *std_seq)
2458 conversion **t;
2460 gcc_assert (user_seq->kind == ck_user);
2462 /* Find the end of the second conversion sequence. */
2463 t = &(std_seq);
2464 while ((*t)->kind != ck_identity)
2465 t = &((*t)->u.next);
2467 /* Replace the identity conversion with the user conversion
2468 sequence. */
2469 *t = user_seq;
2471 /* The entire sequence is a user-conversion sequence. */
2472 std_seq->user_conv_p = true;
2474 return std_seq;
2477 /* Returns the best overload candidate to perform the requested
2478 conversion. This function is used for three the overloading situations
2479 described in [over.match.copy], [over.match.conv], and [over.match.ref].
2480 If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
2481 per [dcl.init.ref], so we ignore temporary bindings. */
2483 static struct z_candidate *
2484 build_user_type_conversion_1 (tree totype, tree expr, int flags)
2486 struct z_candidate *candidates, *cand;
2487 tree fromtype = TREE_TYPE (expr);
2488 tree ctors = NULL_TREE;
2489 tree conv_fns = NULL_TREE;
2490 conversion *conv = NULL;
2491 tree args = NULL_TREE;
2492 bool any_viable_p;
2494 /* We represent conversion within a hierarchy using RVALUE_CONV and
2495 BASE_CONV, as specified by [over.best.ics]; these become plain
2496 constructor calls, as specified in [dcl.init]. */
2497 gcc_assert (!IS_AGGR_TYPE (fromtype) || !IS_AGGR_TYPE (totype)
2498 || !DERIVED_FROM_P (totype, fromtype));
2500 if (IS_AGGR_TYPE (totype))
2501 ctors = lookup_fnfields (totype, complete_ctor_identifier, 0);
2503 if (IS_AGGR_TYPE (fromtype))
2504 conv_fns = lookup_conversions (fromtype);
2506 candidates = 0;
2507 flags |= LOOKUP_NO_CONVERSION;
2509 if (ctors)
2511 tree t;
2513 ctors = BASELINK_FUNCTIONS (ctors);
2515 t = build_int_cst (build_pointer_type (totype), 0);
2516 args = build_tree_list (NULL_TREE, expr);
2517 /* We should never try to call the abstract or base constructor
2518 from here. */
2519 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors))
2520 && !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors)));
2521 args = tree_cons (NULL_TREE, t, args);
2523 for (; ctors; ctors = OVL_NEXT (ctors))
2525 tree ctor = OVL_CURRENT (ctors);
2526 if (DECL_NONCONVERTING_P (ctor))
2527 continue;
2529 if (TREE_CODE (ctor) == TEMPLATE_DECL)
2530 cand = add_template_candidate (&candidates, ctor, totype,
2531 NULL_TREE, args, NULL_TREE,
2532 TYPE_BINFO (totype),
2533 TYPE_BINFO (totype),
2534 flags,
2535 DEDUCE_CALL);
2536 else
2537 cand = add_function_candidate (&candidates, ctor, totype,
2538 args, TYPE_BINFO (totype),
2539 TYPE_BINFO (totype),
2540 flags);
2542 if (cand)
2543 cand->second_conv = build_identity_conv (totype, NULL_TREE);
2546 if (conv_fns)
2547 args = build_tree_list (NULL_TREE, build_this (expr));
2549 for (; conv_fns; conv_fns = TREE_CHAIN (conv_fns))
2551 tree fns;
2552 tree conversion_path = TREE_PURPOSE (conv_fns);
2553 int convflags = LOOKUP_NO_CONVERSION;
2555 /* If we are called to convert to a reference type, we are trying to
2556 find an lvalue binding, so don't even consider temporaries. If
2557 we don't find an lvalue binding, the caller will try again to
2558 look for a temporary binding. */
2559 if (TREE_CODE (totype) == REFERENCE_TYPE)
2560 convflags |= LOOKUP_NO_TEMP_BIND;
2562 for (fns = TREE_VALUE (conv_fns); fns; fns = OVL_NEXT (fns))
2564 tree fn = OVL_CURRENT (fns);
2566 /* [over.match.funcs] For conversion functions, the function
2567 is considered to be a member of the class of the implicit
2568 object argument for the purpose of defining the type of
2569 the implicit object parameter.
2571 So we pass fromtype as CTYPE to add_*_candidate. */
2573 if (TREE_CODE (fn) == TEMPLATE_DECL)
2574 cand = add_template_candidate (&candidates, fn, fromtype,
2575 NULL_TREE,
2576 args, totype,
2577 TYPE_BINFO (fromtype),
2578 conversion_path,
2579 flags,
2580 DEDUCE_CONV);
2581 else
2582 cand = add_function_candidate (&candidates, fn, fromtype,
2583 args,
2584 TYPE_BINFO (fromtype),
2585 conversion_path,
2586 flags);
2588 if (cand)
2590 conversion *ics
2591 = implicit_conversion (totype,
2592 TREE_TYPE (TREE_TYPE (cand->fn)),
2593 0, convflags);
2595 cand->second_conv = ics;
2597 if (!ics)
2598 cand->viable = 0;
2599 else if (candidates->viable == 1 && ics->bad_p)
2600 cand->viable = -1;
2605 candidates = splice_viable (candidates, pedantic, &any_viable_p);
2606 if (!any_viable_p)
2607 return 0;
2609 cand = tourney (candidates);
2610 if (cand == 0)
2612 if (flags & LOOKUP_COMPLAIN)
2614 error ("conversion from %qT to %qT is ambiguous",
2615 fromtype, totype);
2616 print_z_candidates (candidates);
2619 cand = candidates; /* any one will do */
2620 cand->second_conv = build_ambiguous_conv (totype, expr);
2621 cand->second_conv->user_conv_p = true;
2622 if (!any_strictly_viable (candidates))
2623 cand->second_conv->bad_p = true;
2624 /* If there are viable candidates, don't set ICS_BAD_FLAG; an
2625 ambiguous conversion is no worse than another user-defined
2626 conversion. */
2628 return cand;
2631 /* Build the user conversion sequence. */
2632 conv = build_conv
2633 (ck_user,
2634 (DECL_CONSTRUCTOR_P (cand->fn)
2635 ? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
2636 build_identity_conv (TREE_TYPE (expr), expr));
2637 conv->cand = cand;
2639 /* Combine it with the second conversion sequence. */
2640 cand->second_conv = merge_conversion_sequences (conv,
2641 cand->second_conv);
2643 if (cand->viable == -1)
2644 cand->second_conv->bad_p = true;
2646 return cand;
2649 tree
2650 build_user_type_conversion (tree totype, tree expr, int flags)
2652 struct z_candidate *cand
2653 = build_user_type_conversion_1 (totype, expr, flags);
2655 if (cand)
2657 if (cand->second_conv->kind == ck_ambig)
2658 return error_mark_node;
2659 expr = convert_like (cand->second_conv, expr);
2660 return convert_from_reference (expr);
2662 return NULL_TREE;
2665 /* Do any initial processing on the arguments to a function call. */
2667 static tree
2668 resolve_args (tree args)
2670 tree t;
2671 for (t = args; t; t = TREE_CHAIN (t))
2673 tree arg = TREE_VALUE (t);
2675 if (arg == error_mark_node)
2676 return error_mark_node;
2677 else if (VOID_TYPE_P (TREE_TYPE (arg)))
2679 error ("invalid use of void expression");
2680 return error_mark_node;
2683 return args;
2686 /* Perform overload resolution on FN, which is called with the ARGS.
2688 Return the candidate function selected by overload resolution, or
2689 NULL if the event that overload resolution failed. In the case
2690 that overload resolution fails, *CANDIDATES will be the set of
2691 candidates considered, and ANY_VIABLE_P will be set to true or
2692 false to indicate whether or not any of the candidates were
2693 viable.
2695 The ARGS should already have gone through RESOLVE_ARGS before this
2696 function is called. */
2698 static struct z_candidate *
2699 perform_overload_resolution (tree fn,
2700 tree args,
2701 struct z_candidate **candidates,
2702 bool *any_viable_p)
2704 struct z_candidate *cand;
2705 tree explicit_targs = NULL_TREE;
2706 int template_only = 0;
2708 *candidates = NULL;
2709 *any_viable_p = true;
2711 /* Check FN and ARGS. */
2712 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL
2713 || TREE_CODE (fn) == TEMPLATE_DECL
2714 || TREE_CODE (fn) == OVERLOAD
2715 || TREE_CODE (fn) == TEMPLATE_ID_EXPR);
2716 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
2718 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2720 explicit_targs = TREE_OPERAND (fn, 1);
2721 fn = TREE_OPERAND (fn, 0);
2722 template_only = 1;
2725 /* Add the various candidate functions. */
2726 add_candidates (fn, args, explicit_targs, template_only,
2727 /*conversion_path=*/NULL_TREE,
2728 /*access_path=*/NULL_TREE,
2729 LOOKUP_NORMAL,
2730 candidates);
2732 *candidates = splice_viable (*candidates, pedantic, any_viable_p);
2733 if (!*any_viable_p)
2734 return NULL;
2736 cand = tourney (*candidates);
2737 return cand;
2740 /* Return an expression for a call to FN (a namespace-scope function,
2741 or a static member function) with the ARGS. */
2743 tree
2744 build_new_function_call (tree fn, tree args)
2746 struct z_candidate *candidates, *cand;
2747 bool any_viable_p;
2748 void *p;
2749 tree result;
2751 args = resolve_args (args);
2752 if (args == error_mark_node)
2753 return error_mark_node;
2755 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2756 p = conversion_obstack_alloc (0);
2758 cand = perform_overload_resolution (fn, args, &candidates, &any_viable_p);
2760 if (!cand)
2762 if (!any_viable_p && candidates && ! candidates->next)
2763 return build_function_call (candidates->fn, args);
2764 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2765 fn = TREE_OPERAND (fn, 0);
2766 if (!any_viable_p)
2767 error ("no matching function for call to %<%D(%A)%>",
2768 DECL_NAME (OVL_CURRENT (fn)), args);
2769 else
2770 error ("call of overloaded %<%D(%A)%> is ambiguous",
2771 DECL_NAME (OVL_CURRENT (fn)), args);
2772 if (candidates)
2773 print_z_candidates (candidates);
2774 result = error_mark_node;
2776 else
2777 result = build_over_call (cand, LOOKUP_NORMAL);
2779 /* Free all the conversions we allocated. */
2780 obstack_free (&conversion_obstack, p);
2782 return result;
2785 /* Build a call to a global operator new. FNNAME is the name of the
2786 operator (either "operator new" or "operator new[]") and ARGS are
2787 the arguments provided. *SIZE points to the total number of bytes
2788 required by the allocation, and is updated if that is changed here.
2789 *COOKIE_SIZE is non-NULL if a cookie should be used. If this
2790 function determines that no cookie should be used, after all,
2791 *COOKIE_SIZE is set to NULL_TREE. */
2793 tree
2794 build_operator_new_call (tree fnname, tree args, tree *size, tree *cookie_size)
2796 tree fns;
2797 struct z_candidate *candidates;
2798 struct z_candidate *cand;
2799 bool any_viable_p;
2801 args = tree_cons (NULL_TREE, *size, args);
2802 args = resolve_args (args);
2803 if (args == error_mark_node)
2804 return args;
2806 /* Based on:
2808 [expr.new]
2810 If this lookup fails to find the name, or if the allocated type
2811 is not a class type, the allocation function's name is looked
2812 up in the global scope.
2814 we disregard block-scope declarations of "operator new". */
2815 fns = lookup_function_nonclass (fnname, args, /*block_p=*/false);
2817 /* Figure out what function is being called. */
2818 cand = perform_overload_resolution (fns, args, &candidates, &any_viable_p);
2820 /* If no suitable function could be found, issue an error message
2821 and give up. */
2822 if (!cand)
2824 if (!any_viable_p)
2825 error ("no matching function for call to %<%D(%A)%>",
2826 DECL_NAME (OVL_CURRENT (fns)), args);
2827 else
2828 error ("call of overloaded %<%D(%A)%> is ambiguous",
2829 DECL_NAME (OVL_CURRENT (fns)), args);
2830 if (candidates)
2831 print_z_candidates (candidates);
2832 return error_mark_node;
2835 /* If a cookie is required, add some extra space. Whether
2836 or not a cookie is required cannot be determined until
2837 after we know which function was called. */
2838 if (*cookie_size)
2840 bool use_cookie = true;
2841 if (!abi_version_at_least (2))
2843 tree placement = TREE_CHAIN (args);
2844 /* In G++ 3.2, the check was implemented incorrectly; it
2845 looked at the placement expression, rather than the
2846 type of the function. */
2847 if (placement && !TREE_CHAIN (placement)
2848 && same_type_p (TREE_TYPE (TREE_VALUE (placement)),
2849 ptr_type_node))
2850 use_cookie = false;
2852 else
2854 tree arg_types;
2856 arg_types = TYPE_ARG_TYPES (TREE_TYPE (cand->fn));
2857 /* Skip the size_t parameter. */
2858 arg_types = TREE_CHAIN (arg_types);
2859 /* Check the remaining parameters (if any). */
2860 if (arg_types
2861 && TREE_CHAIN (arg_types) == void_list_node
2862 && same_type_p (TREE_VALUE (arg_types),
2863 ptr_type_node))
2864 use_cookie = false;
2866 /* If we need a cookie, adjust the number of bytes allocated. */
2867 if (use_cookie)
2869 /* Update the total size. */
2870 *size = size_binop (PLUS_EXPR, *size, *cookie_size);
2871 /* Update the argument list to reflect the adjusted size. */
2872 TREE_VALUE (args) = *size;
2874 else
2875 *cookie_size = NULL_TREE;
2878 /* Build the CALL_EXPR. */
2879 return build_over_call (cand, LOOKUP_NORMAL);
2882 static tree
2883 build_object_call (tree obj, tree args)
2885 struct z_candidate *candidates = 0, *cand;
2886 tree fns, convs, mem_args = NULL_TREE;
2887 tree type = TREE_TYPE (obj);
2888 bool any_viable_p;
2889 tree result = NULL_TREE;
2890 void *p;
2892 if (TYPE_PTRMEMFUNC_P (type))
2894 /* It's no good looking for an overloaded operator() on a
2895 pointer-to-member-function. */
2896 error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj);
2897 return error_mark_node;
2900 fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname (CALL_EXPR), 1);
2901 if (fns == error_mark_node)
2902 return error_mark_node;
2904 args = resolve_args (args);
2906 if (args == error_mark_node)
2907 return error_mark_node;
2909 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2910 p = conversion_obstack_alloc (0);
2912 if (fns)
2914 tree base = BINFO_TYPE (BASELINK_BINFO (fns));
2915 mem_args = tree_cons (NULL_TREE, build_this (obj), args);
2917 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
2919 tree fn = OVL_CURRENT (fns);
2920 if (TREE_CODE (fn) == TEMPLATE_DECL)
2921 add_template_candidate (&candidates, fn, base, NULL_TREE,
2922 mem_args, NULL_TREE,
2923 TYPE_BINFO (type),
2924 TYPE_BINFO (type),
2925 LOOKUP_NORMAL, DEDUCE_CALL);
2926 else
2927 add_function_candidate
2928 (&candidates, fn, base, mem_args, TYPE_BINFO (type),
2929 TYPE_BINFO (type), LOOKUP_NORMAL);
2933 convs = lookup_conversions (type);
2935 for (; convs; convs = TREE_CHAIN (convs))
2937 tree fns = TREE_VALUE (convs);
2938 tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));
2940 if ((TREE_CODE (totype) == POINTER_TYPE
2941 && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
2942 || (TREE_CODE (totype) == REFERENCE_TYPE
2943 && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
2944 || (TREE_CODE (totype) == REFERENCE_TYPE
2945 && TREE_CODE (TREE_TYPE (totype)) == POINTER_TYPE
2946 && TREE_CODE (TREE_TYPE (TREE_TYPE (totype))) == FUNCTION_TYPE))
2947 for (; fns; fns = OVL_NEXT (fns))
2949 tree fn = OVL_CURRENT (fns);
2950 if (TREE_CODE (fn) == TEMPLATE_DECL)
2951 add_template_conv_candidate
2952 (&candidates, fn, obj, args, totype,
2953 /*access_path=*/NULL_TREE,
2954 /*conversion_path=*/NULL_TREE);
2955 else
2956 add_conv_candidate (&candidates, fn, obj, args,
2957 /*conversion_path=*/NULL_TREE,
2958 /*access_path=*/NULL_TREE);
2962 candidates = splice_viable (candidates, pedantic, &any_viable_p);
2963 if (!any_viable_p)
2965 error ("no match for call to %<(%T) (%A)%>", TREE_TYPE (obj), args);
2966 print_z_candidates (candidates);
2967 result = error_mark_node;
2969 else
2971 cand = tourney (candidates);
2972 if (cand == 0)
2974 error ("call of %<(%T) (%A)%> is ambiguous", TREE_TYPE (obj), args);
2975 print_z_candidates (candidates);
2976 result = error_mark_node;
2978 /* Since cand->fn will be a type, not a function, for a conversion
2979 function, we must be careful not to unconditionally look at
2980 DECL_NAME here. */
2981 else if (TREE_CODE (cand->fn) == FUNCTION_DECL
2982 && DECL_OVERLOADED_OPERATOR_P (cand->fn) == CALL_EXPR)
2983 result = build_over_call (cand, LOOKUP_NORMAL);
2984 else
2986 obj = convert_like_with_context (cand->convs[0], obj, cand->fn, -1);
2987 obj = convert_from_reference (obj);
2988 result = build_function_call (obj, args);
2992 /* Free all the conversions we allocated. */
2993 obstack_free (&conversion_obstack, p);
2995 return result;
2998 static void
2999 op_error (enum tree_code code, enum tree_code code2,
3000 tree arg1, tree arg2, tree arg3, const char *problem)
3002 const char *opname;
3004 if (code == MODIFY_EXPR)
3005 opname = assignment_operator_name_info[code2].name;
3006 else
3007 opname = operator_name_info[code].name;
3009 switch (code)
3011 case COND_EXPR:
3012 error ("%s for ternary %<operator?:%> in %<%E ? %E : %E%>",
3013 problem, arg1, arg2, arg3);
3014 break;
3016 case POSTINCREMENT_EXPR:
3017 case POSTDECREMENT_EXPR:
3018 error ("%s for %<operator%s%> in %<%E%s%>", problem, opname, arg1, opname);
3019 break;
3021 case ARRAY_REF:
3022 error ("%s for %<operator[]%> in %<%E[%E]%>", problem, arg1, arg2);
3023 break;
3025 case REALPART_EXPR:
3026 case IMAGPART_EXPR:
3027 error ("%s for %qs in %<%s %E%>", problem, opname, opname, arg1);
3028 break;
3030 default:
3031 if (arg2)
3032 error ("%s for %<operator%s%> in %<%E %s %E%>",
3033 problem, opname, arg1, opname, arg2);
3034 else
3035 error ("%s for %<operator%s%> in %<%s%E%>",
3036 problem, opname, opname, arg1);
3037 break;
3041 /* Return the implicit conversion sequence that could be used to
3042 convert E1 to E2 in [expr.cond]. */
3044 static conversion *
3045 conditional_conversion (tree e1, tree e2)
3047 tree t1 = non_reference (TREE_TYPE (e1));
3048 tree t2 = non_reference (TREE_TYPE (e2));
3049 conversion *conv;
3050 bool good_base;
3052 /* [expr.cond]
3054 If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
3055 implicitly converted (clause _conv_) to the type "reference to
3056 T2", subject to the constraint that in the conversion the
3057 reference must bind directly (_dcl.init.ref_) to E1. */
3058 if (real_lvalue_p (e2))
3060 conv = implicit_conversion (build_reference_type (t2),
3063 LOOKUP_NO_TEMP_BIND);
3064 if (conv)
3065 return conv;
3068 /* [expr.cond]
3070 If E1 and E2 have class type, and the underlying class types are
3071 the same or one is a base class of the other: E1 can be converted
3072 to match E2 if the class of T2 is the same type as, or a base
3073 class of, the class of T1, and the cv-qualification of T2 is the
3074 same cv-qualification as, or a greater cv-qualification than, the
3075 cv-qualification of T1. If the conversion is applied, E1 is
3076 changed to an rvalue of type T2 that still refers to the original
3077 source class object (or the appropriate subobject thereof). */
3078 if (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
3079 && ((good_base = DERIVED_FROM_P (t2, t1)) || DERIVED_FROM_P (t1, t2)))
3081 if (good_base && at_least_as_qualified_p (t2, t1))
3083 conv = build_identity_conv (t1, e1);
3084 if (!same_type_p (TYPE_MAIN_VARIANT (t1),
3085 TYPE_MAIN_VARIANT (t2)))
3086 conv = build_conv (ck_base, t2, conv);
3087 else
3088 conv = build_conv (ck_rvalue, t2, conv);
3089 return conv;
3091 else
3092 return NULL;
3094 else
3095 /* [expr.cond]
3097 Otherwise: E1 can be converted to match E2 if E1 can be implicitly
3098 converted to the type that expression E2 would have if E2 were
3099 converted to an rvalue (or the type it has, if E2 is an rvalue). */
3100 return implicit_conversion (t2, t1, e1, LOOKUP_NORMAL);
3103 /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
3104 arguments to the conditional expression. */
3106 tree
3107 build_conditional_expr (tree arg1, tree arg2, tree arg3)
3109 tree arg2_type;
3110 tree arg3_type;
3111 tree result = NULL_TREE;
3112 tree result_type = NULL_TREE;
3113 bool lvalue_p = true;
3114 struct z_candidate *candidates = 0;
3115 struct z_candidate *cand;
3116 void *p;
3118 /* As a G++ extension, the second argument to the conditional can be
3119 omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
3120 c'.) If the second operand is omitted, make sure it is
3121 calculated only once. */
3122 if (!arg2)
3124 if (pedantic)
3125 pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
3127 /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
3128 if (real_lvalue_p (arg1))
3129 arg2 = arg1 = stabilize_reference (arg1);
3130 else
3131 arg2 = arg1 = save_expr (arg1);
3134 /* [expr.cond]
3136 The first expr ession is implicitly converted to bool (clause
3137 _conv_). */
3138 arg1 = perform_implicit_conversion (boolean_type_node, arg1);
3140 /* If something has already gone wrong, just pass that fact up the
3141 tree. */
3142 if (error_operand_p (arg1)
3143 || error_operand_p (arg2)
3144 || error_operand_p (arg3))
3145 return error_mark_node;
3147 /* [expr.cond]
3149 If either the second or the third operand has type (possibly
3150 cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
3151 array-to-pointer (_conv.array_), and function-to-pointer
3152 (_conv.func_) standard conversions are performed on the second
3153 and third operands. */
3154 arg2_type = TREE_TYPE (arg2);
3155 arg3_type = TREE_TYPE (arg3);
3156 if (VOID_TYPE_P (arg2_type) || VOID_TYPE_P (arg3_type))
3158 /* Do the conversions. We don't these for `void' type arguments
3159 since it can't have any effect and since decay_conversion
3160 does not handle that case gracefully. */
3161 if (!VOID_TYPE_P (arg2_type))
3162 arg2 = decay_conversion (arg2);
3163 if (!VOID_TYPE_P (arg3_type))
3164 arg3 = decay_conversion (arg3);
3165 arg2_type = TREE_TYPE (arg2);
3166 arg3_type = TREE_TYPE (arg3);
3168 /* [expr.cond]
3170 One of the following shall hold:
3172 --The second or the third operand (but not both) is a
3173 throw-expression (_except.throw_); the result is of the
3174 type of the other and is an rvalue.
3176 --Both the second and the third operands have type void; the
3177 result is of type void and is an rvalue.
3179 We must avoid calling force_rvalue for expressions of type
3180 "void" because it will complain that their value is being
3181 used. */
3182 if (TREE_CODE (arg2) == THROW_EXPR
3183 && TREE_CODE (arg3) != THROW_EXPR)
3185 if (!VOID_TYPE_P (arg3_type))
3186 arg3 = force_rvalue (arg3);
3187 arg3_type = TREE_TYPE (arg3);
3188 result_type = arg3_type;
3190 else if (TREE_CODE (arg2) != THROW_EXPR
3191 && TREE_CODE (arg3) == THROW_EXPR)
3193 if (!VOID_TYPE_P (arg2_type))
3194 arg2 = force_rvalue (arg2);
3195 arg2_type = TREE_TYPE (arg2);
3196 result_type = arg2_type;
3198 else if (VOID_TYPE_P (arg2_type) && VOID_TYPE_P (arg3_type))
3199 result_type = void_type_node;
3200 else
3202 error ("%qE has type %<void%> and is not a throw-expression",
3203 VOID_TYPE_P (arg2_type) ? arg2 : arg3);
3204 return error_mark_node;
3207 lvalue_p = false;
3208 goto valid_operands;
3210 /* [expr.cond]
3212 Otherwise, if the second and third operand have different types,
3213 and either has (possibly cv-qualified) class type, an attempt is
3214 made to convert each of those operands to the type of the other. */
3215 else if (!same_type_p (arg2_type, arg3_type)
3216 && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
3218 conversion *conv2;
3219 conversion *conv3;
3221 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3222 p = conversion_obstack_alloc (0);
3224 conv2 = conditional_conversion (arg2, arg3);
3225 conv3 = conditional_conversion (arg3, arg2);
3227 /* [expr.cond]
3229 If both can be converted, or one can be converted but the
3230 conversion is ambiguous, the program is ill-formed. If
3231 neither can be converted, the operands are left unchanged and
3232 further checking is performed as described below. If exactly
3233 one conversion is possible, that conversion is applied to the
3234 chosen operand and the converted operand is used in place of
3235 the original operand for the remainder of this section. */
3236 if ((conv2 && !conv2->bad_p
3237 && conv3 && !conv3->bad_p)
3238 || (conv2 && conv2->kind == ck_ambig)
3239 || (conv3 && conv3->kind == ck_ambig))
3241 error ("operands to ?: have different types");
3242 result = error_mark_node;
3244 else if (conv2 && !conv2->bad_p)
3246 arg2 = convert_like (conv2, arg2);
3247 arg2 = convert_from_reference (arg2);
3248 arg2_type = TREE_TYPE (arg2);
3250 else if (conv3 && !conv3->bad_p)
3252 arg3 = convert_like (conv3, arg3);
3253 arg3 = convert_from_reference (arg3);
3254 arg3_type = TREE_TYPE (arg3);
3257 /* Free all the conversions we allocated. */
3258 obstack_free (&conversion_obstack, p);
3260 if (result)
3261 return result;
3263 /* If, after the conversion, both operands have class type,
3264 treat the cv-qualification of both operands as if it were the
3265 union of the cv-qualification of the operands.
3267 The standard is not clear about what to do in this
3268 circumstance. For example, if the first operand has type
3269 "const X" and the second operand has a user-defined
3270 conversion to "volatile X", what is the type of the second
3271 operand after this step? Making it be "const X" (matching
3272 the first operand) seems wrong, as that discards the
3273 qualification without actually performing a copy. Leaving it
3274 as "volatile X" seems wrong as that will result in the
3275 conditional expression failing altogether, even though,
3276 according to this step, the one operand could be converted to
3277 the type of the other. */
3278 if ((conv2 || conv3)
3279 && CLASS_TYPE_P (arg2_type)
3280 && TYPE_QUALS (arg2_type) != TYPE_QUALS (arg3_type))
3281 arg2_type = arg3_type =
3282 cp_build_qualified_type (arg2_type,
3283 TYPE_QUALS (arg2_type)
3284 | TYPE_QUALS (arg3_type));
3287 /* [expr.cond]
3289 If the second and third operands are lvalues and have the same
3290 type, the result is of that type and is an lvalue. */
3291 if (real_lvalue_p (arg2)
3292 && real_lvalue_p (arg3)
3293 && same_type_p (arg2_type, arg3_type))
3295 result_type = arg2_type;
3296 goto valid_operands;
3299 /* [expr.cond]
3301 Otherwise, the result is an rvalue. If the second and third
3302 operand do not have the same type, and either has (possibly
3303 cv-qualified) class type, overload resolution is used to
3304 determine the conversions (if any) to be applied to the operands
3305 (_over.match.oper_, _over.built_). */
3306 lvalue_p = false;
3307 if (!same_type_p (arg2_type, arg3_type)
3308 && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
3310 tree args[3];
3311 conversion *conv;
3312 bool any_viable_p;
3314 /* Rearrange the arguments so that add_builtin_candidate only has
3315 to know about two args. In build_builtin_candidates, the
3316 arguments are unscrambled. */
3317 args[0] = arg2;
3318 args[1] = arg3;
3319 args[2] = arg1;
3320 add_builtin_candidates (&candidates,
3321 COND_EXPR,
3322 NOP_EXPR,
3323 ansi_opname (COND_EXPR),
3324 args,
3325 LOOKUP_NORMAL);
3327 /* [expr.cond]
3329 If the overload resolution fails, the program is
3330 ill-formed. */
3331 candidates = splice_viable (candidates, pedantic, &any_viable_p);
3332 if (!any_viable_p)
3334 op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
3335 print_z_candidates (candidates);
3336 return error_mark_node;
3338 cand = tourney (candidates);
3339 if (!cand)
3341 op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
3342 print_z_candidates (candidates);
3343 return error_mark_node;
3346 /* [expr.cond]
3348 Otherwise, the conversions thus determined are applied, and
3349 the converted operands are used in place of the original
3350 operands for the remainder of this section. */
3351 conv = cand->convs[0];
3352 arg1 = convert_like (conv, arg1);
3353 conv = cand->convs[1];
3354 arg2 = convert_like (conv, arg2);
3355 conv = cand->convs[2];
3356 arg3 = convert_like (conv, arg3);
3359 /* [expr.cond]
3361 Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
3362 and function-to-pointer (_conv.func_) standard conversions are
3363 performed on the second and third operands.
3365 We need to force the lvalue-to-rvalue conversion here for class types,
3366 so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
3367 that isn't wrapped with a TARGET_EXPR plays havoc with exception
3368 regions. */
3370 arg2 = force_rvalue (arg2);
3371 if (!CLASS_TYPE_P (arg2_type))
3372 arg2_type = TREE_TYPE (arg2);
3374 arg3 = force_rvalue (arg3);
3375 if (!CLASS_TYPE_P (arg2_type))
3376 arg3_type = TREE_TYPE (arg3);
3378 if (arg2 == error_mark_node || arg3 == error_mark_node)
3379 return error_mark_node;
3381 /* [expr.cond]
3383 After those conversions, one of the following shall hold:
3385 --The second and third operands have the same type; the result is of
3386 that type. */
3387 if (same_type_p (arg2_type, arg3_type))
3388 result_type = arg2_type;
3389 /* [expr.cond]
3391 --The second and third operands have arithmetic or enumeration
3392 type; the usual arithmetic conversions are performed to bring
3393 them to a common type, and the result is of that type. */
3394 else if ((ARITHMETIC_TYPE_P (arg2_type)
3395 || TREE_CODE (arg2_type) == ENUMERAL_TYPE)
3396 && (ARITHMETIC_TYPE_P (arg3_type)
3397 || TREE_CODE (arg3_type) == ENUMERAL_TYPE))
3399 /* In this case, there is always a common type. */
3400 result_type = type_after_usual_arithmetic_conversions (arg2_type,
3401 arg3_type);
3403 if (TREE_CODE (arg2_type) == ENUMERAL_TYPE
3404 && TREE_CODE (arg3_type) == ENUMERAL_TYPE)
3405 warning ("enumeral mismatch in conditional expression: %qT vs %qT",
3406 arg2_type, arg3_type);
3407 else if (extra_warnings
3408 && ((TREE_CODE (arg2_type) == ENUMERAL_TYPE
3409 && !same_type_p (arg3_type, type_promotes_to (arg2_type)))
3410 || (TREE_CODE (arg3_type) == ENUMERAL_TYPE
3411 && !same_type_p (arg2_type, type_promotes_to (arg3_type)))))
3412 warning ("enumeral and non-enumeral type in conditional expression");
3414 arg2 = perform_implicit_conversion (result_type, arg2);
3415 arg3 = perform_implicit_conversion (result_type, arg3);
3417 /* [expr.cond]
3419 --The second and third operands have pointer type, or one has
3420 pointer type and the other is a null pointer constant; pointer
3421 conversions (_conv.ptr_) and qualification conversions
3422 (_conv.qual_) are performed to bring them to their composite
3423 pointer type (_expr.rel_). The result is of the composite
3424 pointer type.
3426 --The second and third operands have pointer to member type, or
3427 one has pointer to member type and the other is a null pointer
3428 constant; pointer to member conversions (_conv.mem_) and
3429 qualification conversions (_conv.qual_) are performed to bring
3430 them to a common type, whose cv-qualification shall match the
3431 cv-qualification of either the second or the third operand.
3432 The result is of the common type. */
3433 else if ((null_ptr_cst_p (arg2)
3434 && (TYPE_PTR_P (arg3_type) || TYPE_PTR_TO_MEMBER_P (arg3_type)))
3435 || (null_ptr_cst_p (arg3)
3436 && (TYPE_PTR_P (arg2_type) || TYPE_PTR_TO_MEMBER_P (arg2_type)))
3437 || (TYPE_PTR_P (arg2_type) && TYPE_PTR_P (arg3_type))
3438 || (TYPE_PTRMEM_P (arg2_type) && TYPE_PTRMEM_P (arg3_type))
3439 || (TYPE_PTRMEMFUNC_P (arg2_type) && TYPE_PTRMEMFUNC_P (arg3_type)))
3441 result_type = composite_pointer_type (arg2_type, arg3_type, arg2,
3442 arg3, "conditional expression");
3443 if (result_type == error_mark_node)
3444 return error_mark_node;
3445 arg2 = perform_implicit_conversion (result_type, arg2);
3446 arg3 = perform_implicit_conversion (result_type, arg3);
3449 if (!result_type)
3451 error ("operands to ?: have different types");
3452 return error_mark_node;
3455 valid_operands:
3456 result = fold_if_not_in_template (build3 (COND_EXPR, result_type, arg1,
3457 arg2, arg3));
3458 /* We can't use result_type below, as fold might have returned a
3459 throw_expr. */
3461 /* Expand both sides into the same slot, hopefully the target of the
3462 ?: expression. We used to check for TARGET_EXPRs here, but now we
3463 sometimes wrap them in NOP_EXPRs so the test would fail. */
3464 if (!lvalue_p && CLASS_TYPE_P (TREE_TYPE (result)))
3465 result = get_target_expr (result);
3467 /* If this expression is an rvalue, but might be mistaken for an
3468 lvalue, we must add a NON_LVALUE_EXPR. */
3469 if (!lvalue_p && real_lvalue_p (result))
3470 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
3472 return result;
3475 /* OPERAND is an operand to an expression. Perform necessary steps
3476 required before using it. If OPERAND is NULL_TREE, NULL_TREE is
3477 returned. */
3479 static tree
3480 prep_operand (tree operand)
3482 if (operand)
3484 if (CLASS_TYPE_P (TREE_TYPE (operand))
3485 && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand)))
3486 /* Make sure the template type is instantiated now. */
3487 instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand)));
3490 return operand;
3493 /* Add each of the viable functions in FNS (a FUNCTION_DECL or
3494 OVERLOAD) to the CANDIDATES, returning an updated list of
3495 CANDIDATES. The ARGS are the arguments provided to the call,
3496 without any implicit object parameter. The EXPLICIT_TARGS are
3497 explicit template arguments provided. TEMPLATE_ONLY is true if
3498 only template functions should be considered. CONVERSION_PATH,
3499 ACCESS_PATH, and FLAGS are as for add_function_candidate. */
3501 static void
3502 add_candidates (tree fns, tree args,
3503 tree explicit_targs, bool template_only,
3504 tree conversion_path, tree access_path,
3505 int flags,
3506 struct z_candidate **candidates)
3508 tree ctype;
3509 tree non_static_args;
3511 ctype = conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE;
3512 /* Delay creating the implicit this parameter until it is needed. */
3513 non_static_args = NULL_TREE;
3515 while (fns)
3517 tree fn;
3518 tree fn_args;
3520 fn = OVL_CURRENT (fns);
3521 /* Figure out which set of arguments to use. */
3522 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
3524 /* If this function is a non-static member, prepend the implicit
3525 object parameter. */
3526 if (!non_static_args)
3527 non_static_args = tree_cons (NULL_TREE,
3528 build_this (TREE_VALUE (args)),
3529 TREE_CHAIN (args));
3530 fn_args = non_static_args;
3532 else
3533 /* Otherwise, just use the list of arguments provided. */
3534 fn_args = args;
3536 if (TREE_CODE (fn) == TEMPLATE_DECL)
3537 add_template_candidate (candidates,
3538 fn,
3539 ctype,
3540 explicit_targs,
3541 fn_args,
3542 NULL_TREE,
3543 access_path,
3544 conversion_path,
3545 flags,
3546 DEDUCE_CALL);
3547 else if (!template_only)
3548 add_function_candidate (candidates,
3550 ctype,
3551 fn_args,
3552 access_path,
3553 conversion_path,
3554 flags);
3555 fns = OVL_NEXT (fns);
3559 tree
3560 build_new_op (enum tree_code code, int flags, tree arg1, tree arg2, tree arg3,
3561 bool *overloaded_p)
3563 struct z_candidate *candidates = 0, *cand;
3564 tree arglist, fnname;
3565 tree args[3];
3566 tree result = NULL_TREE;
3567 bool result_valid_p = false;
3568 enum tree_code code2 = NOP_EXPR;
3569 conversion *conv;
3570 void *p;
3571 bool strict_p;
3572 bool any_viable_p;
3574 if (error_operand_p (arg1)
3575 || error_operand_p (arg2)
3576 || error_operand_p (arg3))
3577 return error_mark_node;
3579 if (code == MODIFY_EXPR)
3581 code2 = TREE_CODE (arg3);
3582 arg3 = NULL_TREE;
3583 fnname = ansi_assopname (code2);
3585 else
3586 fnname = ansi_opname (code);
3588 arg1 = prep_operand (arg1);
3590 switch (code)
3592 case NEW_EXPR:
3593 case VEC_NEW_EXPR:
3594 case VEC_DELETE_EXPR:
3595 case DELETE_EXPR:
3596 /* Use build_op_new_call and build_op_delete_call instead. */
3597 gcc_unreachable ();
3599 case CALL_EXPR:
3600 return build_object_call (arg1, arg2);
3602 default:
3603 break;
3606 arg2 = prep_operand (arg2);
3607 arg3 = prep_operand (arg3);
3609 if (code == COND_EXPR)
3611 if (arg2 == NULL_TREE
3612 || TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
3613 || TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
3614 || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
3615 && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
3616 goto builtin;
3618 else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
3619 && (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
3620 goto builtin;
3622 if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
3623 arg2 = integer_zero_node;
3625 arglist = NULL_TREE;
3626 if (arg3)
3627 arglist = tree_cons (NULL_TREE, arg3, arglist);
3628 if (arg2)
3629 arglist = tree_cons (NULL_TREE, arg2, arglist);
3630 arglist = tree_cons (NULL_TREE, arg1, arglist);
3632 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3633 p = conversion_obstack_alloc (0);
3635 /* Add namespace-scope operators to the list of functions to
3636 consider. */
3637 add_candidates (lookup_function_nonclass (fnname, arglist, /*block_p=*/true),
3638 arglist, NULL_TREE, false, NULL_TREE, NULL_TREE,
3639 flags, &candidates);
3640 /* Add class-member operators to the candidate set. */
3641 if (CLASS_TYPE_P (TREE_TYPE (arg1)))
3643 tree fns;
3645 fns = lookup_fnfields (TREE_TYPE (arg1), fnname, 1);
3646 if (fns == error_mark_node)
3648 result = error_mark_node;
3649 goto user_defined_result_ready;
3651 if (fns)
3652 add_candidates (BASELINK_FUNCTIONS (fns), arglist,
3653 NULL_TREE, false,
3654 BASELINK_BINFO (fns),
3655 TYPE_BINFO (TREE_TYPE (arg1)),
3656 flags, &candidates);
3659 /* Rearrange the arguments for ?: so that add_builtin_candidate only has
3660 to know about two args; a builtin candidate will always have a first
3661 parameter of type bool. We'll handle that in
3662 build_builtin_candidate. */
3663 if (code == COND_EXPR)
3665 args[0] = arg2;
3666 args[1] = arg3;
3667 args[2] = arg1;
3669 else
3671 args[0] = arg1;
3672 args[1] = arg2;
3673 args[2] = NULL_TREE;
3676 add_builtin_candidates (&candidates, code, code2, fnname, args, flags);
3678 switch (code)
3680 case COMPOUND_EXPR:
3681 case ADDR_EXPR:
3682 /* For these, the built-in candidates set is empty
3683 [over.match.oper]/3. We don't want non-strict matches
3684 because exact matches are always possible with built-in
3685 operators. The built-in candidate set for COMPONENT_REF
3686 would be empty too, but since there are no such built-in
3687 operators, we accept non-strict matches for them. */
3688 strict_p = true;
3689 break;
3691 default:
3692 strict_p = pedantic;
3693 break;
3696 candidates = splice_viable (candidates, strict_p, &any_viable_p);
3697 if (!any_viable_p)
3699 switch (code)
3701 case POSTINCREMENT_EXPR:
3702 case POSTDECREMENT_EXPR:
3703 /* Look for an `operator++ (int)'. If they didn't have
3704 one, then we fall back to the old way of doing things. */
3705 if (flags & LOOKUP_COMPLAIN)
3706 pedwarn ("no %<%D(int)%> declared for postfix %qs, "
3707 "trying prefix operator instead",
3708 fnname,
3709 operator_name_info[code].name);
3710 if (code == POSTINCREMENT_EXPR)
3711 code = PREINCREMENT_EXPR;
3712 else
3713 code = PREDECREMENT_EXPR;
3714 result = build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE,
3715 overloaded_p);
3716 break;
3718 /* The caller will deal with these. */
3719 case ADDR_EXPR:
3720 case COMPOUND_EXPR:
3721 case COMPONENT_REF:
3722 result = NULL_TREE;
3723 result_valid_p = true;
3724 break;
3726 default:
3727 if (flags & LOOKUP_COMPLAIN)
3729 op_error (code, code2, arg1, arg2, arg3, "no match");
3730 print_z_candidates (candidates);
3732 result = error_mark_node;
3733 break;
3736 else
3738 cand = tourney (candidates);
3739 if (cand == 0)
3741 if (flags & LOOKUP_COMPLAIN)
3743 op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
3744 print_z_candidates (candidates);
3746 result = error_mark_node;
3748 else if (TREE_CODE (cand->fn) == FUNCTION_DECL)
3750 if (overloaded_p)
3751 *overloaded_p = true;
3753 if (warn_synth
3754 && fnname == ansi_assopname (NOP_EXPR)
3755 && DECL_ARTIFICIAL (cand->fn)
3756 && candidates->next
3757 && ! candidates->next->next)
3759 warning ("using synthesized %q#D for copy assignment",
3760 cand->fn);
3761 cp_warning_at (" where cfront would use %q#D",
3762 cand == candidates
3763 ? candidates->next->fn
3764 : candidates->fn);
3767 result = build_over_call (cand, LOOKUP_NORMAL);
3769 else
3771 /* Give any warnings we noticed during overload resolution. */
3772 if (cand->warnings)
3774 struct candidate_warning *w;
3775 for (w = cand->warnings; w; w = w->next)
3776 joust (cand, w->loser, 1);
3779 /* Check for comparison of different enum types. */
3780 switch (code)
3782 case GT_EXPR:
3783 case LT_EXPR:
3784 case GE_EXPR:
3785 case LE_EXPR:
3786 case EQ_EXPR:
3787 case NE_EXPR:
3788 if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE
3789 && TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE
3790 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
3791 != TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
3793 warning ("comparison between %q#T and %q#T",
3794 TREE_TYPE (arg1), TREE_TYPE (arg2));
3796 break;
3797 default:
3798 break;
3801 /* We need to strip any leading REF_BIND so that bitfields
3802 don't cause errors. This should not remove any important
3803 conversions, because builtins don't apply to class
3804 objects directly. */
3805 conv = cand->convs[0];
3806 if (conv->kind == ck_ref_bind)
3807 conv = conv->u.next;
3808 arg1 = convert_like (conv, arg1);
3809 if (arg2)
3811 conv = cand->convs[1];
3812 if (conv->kind == ck_ref_bind)
3813 conv = conv->u.next;
3814 arg2 = convert_like (conv, arg2);
3816 if (arg3)
3818 conv = cand->convs[2];
3819 if (conv->kind == ck_ref_bind)
3820 conv = conv->u.next;
3821 arg3 = convert_like (conv, arg3);
3826 user_defined_result_ready:
3828 /* Free all the conversions we allocated. */
3829 obstack_free (&conversion_obstack, p);
3831 if (result || result_valid_p)
3832 return result;
3834 builtin:
3835 switch (code)
3837 case MODIFY_EXPR:
3838 return build_modify_expr (arg1, code2, arg2);
3840 case INDIRECT_REF:
3841 return build_indirect_ref (arg1, "unary *");
3843 case PLUS_EXPR:
3844 case MINUS_EXPR:
3845 case MULT_EXPR:
3846 case TRUNC_DIV_EXPR:
3847 case GT_EXPR:
3848 case LT_EXPR:
3849 case GE_EXPR:
3850 case LE_EXPR:
3851 case EQ_EXPR:
3852 case NE_EXPR:
3853 case MAX_EXPR:
3854 case MIN_EXPR:
3855 case LSHIFT_EXPR:
3856 case RSHIFT_EXPR:
3857 case TRUNC_MOD_EXPR:
3858 case BIT_AND_EXPR:
3859 case BIT_IOR_EXPR:
3860 case BIT_XOR_EXPR:
3861 case TRUTH_ANDIF_EXPR:
3862 case TRUTH_ORIF_EXPR:
3863 return cp_build_binary_op (code, arg1, arg2);
3865 case CONVERT_EXPR:
3866 case NEGATE_EXPR:
3867 case BIT_NOT_EXPR:
3868 case TRUTH_NOT_EXPR:
3869 case PREINCREMENT_EXPR:
3870 case POSTINCREMENT_EXPR:
3871 case PREDECREMENT_EXPR:
3872 case POSTDECREMENT_EXPR:
3873 case REALPART_EXPR:
3874 case IMAGPART_EXPR:
3875 return build_unary_op (code, arg1, candidates != 0);
3877 case ARRAY_REF:
3878 return build_array_ref (arg1, arg2);
3880 case COND_EXPR:
3881 return build_conditional_expr (arg1, arg2, arg3);
3883 case MEMBER_REF:
3884 return build_m_component_ref (build_indirect_ref (arg1, NULL), arg2);
3886 /* The caller will deal with these. */
3887 case ADDR_EXPR:
3888 case COMPONENT_REF:
3889 case COMPOUND_EXPR:
3890 return NULL_TREE;
3892 default:
3893 gcc_unreachable ();
3895 return NULL_TREE;
3898 /* Build a call to operator delete. This has to be handled very specially,
3899 because the restrictions on what signatures match are different from all
3900 other call instances. For a normal delete, only a delete taking (void *)
3901 or (void *, size_t) is accepted. For a placement delete, only an exact
3902 match with the placement new is accepted.
3904 CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
3905 ADDR is the pointer to be deleted.
3906 SIZE is the size of the memory block to be deleted.
3907 GLOBAL_P is true if the delete-expression should not consider
3908 class-specific delete operators.
3909 PLACEMENT is the corresponding placement new call, or NULL_TREE. */
3911 tree
3912 build_op_delete_call (enum tree_code code, tree addr, tree size,
3913 bool global_p, tree placement)
3915 tree fn = NULL_TREE;
3916 tree fns, fnname, argtypes, args, type;
3917 int pass;
3919 if (addr == error_mark_node)
3920 return error_mark_node;
3922 type = strip_array_types (TREE_TYPE (TREE_TYPE (addr)));
3924 fnname = ansi_opname (code);
3926 if (CLASS_TYPE_P (type)
3927 && COMPLETE_TYPE_P (complete_type (type))
3928 && !global_p)
3929 /* In [class.free]
3931 If the result of the lookup is ambiguous or inaccessible, or if
3932 the lookup selects a placement deallocation function, the
3933 program is ill-formed.
3935 Therefore, we ask lookup_fnfields to complain about ambiguity. */
3937 fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
3938 if (fns == error_mark_node)
3939 return error_mark_node;
3941 else
3942 fns = NULL_TREE;
3944 if (fns == NULL_TREE)
3945 fns = lookup_name_nonclass (fnname);
3947 if (placement)
3949 tree alloc_fn;
3950 tree call_expr;
3952 /* Find the allocation function that is being called. */
3953 call_expr = placement;
3954 /* Extract the function. */
3955 alloc_fn = get_callee_fndecl (call_expr);
3956 gcc_assert (alloc_fn != NULL_TREE);
3957 /* Then the second parm type. */
3958 argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
3959 /* Also the second argument. */
3960 args = TREE_CHAIN (TREE_OPERAND (call_expr, 1));
3962 else
3964 /* First try it without the size argument. */
3965 argtypes = void_list_node;
3966 args = NULL_TREE;
3969 /* Strip const and volatile from addr. */
3970 addr = cp_convert (ptr_type_node, addr);
3972 /* We make two tries at finding a matching `operator delete'. On
3973 the first pass, we look for a one-operator (or placement)
3974 operator delete. If we're not doing placement delete, then on
3975 the second pass we look for a two-argument delete. */
3976 for (pass = 0; pass < (placement ? 1 : 2); ++pass)
3978 /* Go through the `operator delete' functions looking for one
3979 with a matching type. */
3980 for (fn = BASELINK_P (fns) ? BASELINK_FUNCTIONS (fns) : fns;
3981 fn;
3982 fn = OVL_NEXT (fn))
3984 tree t;
3986 /* The first argument must be "void *". */
3987 t = TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn)));
3988 if (!same_type_p (TREE_VALUE (t), ptr_type_node))
3989 continue;
3990 t = TREE_CHAIN (t);
3991 /* On the first pass, check the rest of the arguments. */
3992 if (pass == 0)
3994 tree a = argtypes;
3995 while (a && t)
3997 if (!same_type_p (TREE_VALUE (a), TREE_VALUE (t)))
3998 break;
3999 a = TREE_CHAIN (a);
4000 t = TREE_CHAIN (t);
4002 if (!a && !t)
4003 break;
4005 /* On the second pass, the second argument must be
4006 "size_t". */
4007 else if (pass == 1
4008 && same_type_p (TREE_VALUE (t), sizetype)
4009 && TREE_CHAIN (t) == void_list_node)
4010 break;
4013 /* If we found a match, we're done. */
4014 if (fn)
4015 break;
4018 /* If we have a matching function, call it. */
4019 if (fn)
4021 /* Make sure we have the actual function, and not an
4022 OVERLOAD. */
4023 fn = OVL_CURRENT (fn);
4025 /* If the FN is a member function, make sure that it is
4026 accessible. */
4027 if (DECL_CLASS_SCOPE_P (fn))
4028 perform_or_defer_access_check (TYPE_BINFO (type), fn);
4030 if (pass == 0)
4031 args = tree_cons (NULL_TREE, addr, args);
4032 else
4033 args = tree_cons (NULL_TREE, addr,
4034 build_tree_list (NULL_TREE, size));
4036 if (placement)
4038 /* The placement args might not be suitable for overload
4039 resolution at this point, so build the call directly. */
4040 mark_used (fn);
4041 return build_cxx_call (fn, args);
4043 else
4044 return build_function_call (fn, args);
4047 /* If we are doing placement delete we do nothing if we don't find a
4048 matching op delete. */
4049 if (placement)
4050 return NULL_TREE;
4052 error ("no suitable %<operator %s> for %qT",
4053 operator_name_info[(int)code].name, type);
4054 return error_mark_node;
4057 /* If the current scope isn't allowed to access DECL along
4058 BASETYPE_PATH, give an error. The most derived class in
4059 BASETYPE_PATH is the one used to qualify DECL. */
4061 bool
4062 enforce_access (tree basetype_path, tree decl)
4064 gcc_assert (TREE_CODE (basetype_path) == TREE_BINFO);
4066 if (!accessible_p (basetype_path, decl, true))
4068 if (TREE_PRIVATE (decl))
4069 cp_error_at ("%q+#D is private", decl);
4070 else if (TREE_PROTECTED (decl))
4071 cp_error_at ("%q+#D is protected", decl);
4072 else
4073 cp_error_at ("%q+#D is inaccessible", decl);
4074 error ("within this context");
4075 return false;
4078 return true;
4081 /* Check that a callable constructor to initialize a temporary of
4082 TYPE from an EXPR exists. */
4084 static void
4085 check_constructor_callable (tree type, tree expr)
4087 build_special_member_call (NULL_TREE,
4088 complete_ctor_identifier,
4089 build_tree_list (NULL_TREE, expr),
4090 type,
4091 LOOKUP_NORMAL | LOOKUP_ONLYCONVERTING
4092 | LOOKUP_NO_CONVERSION
4093 | LOOKUP_CONSTRUCTOR_CALLABLE);
4096 /* Initialize a temporary of type TYPE with EXPR. The FLAGS are a
4097 bitwise or of LOOKUP_* values. If any errors are warnings are
4098 generated, set *DIAGNOSTIC_FN to "error" or "warning",
4099 respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN
4100 to NULL. */
4102 static tree
4103 build_temp (tree expr, tree type, int flags,
4104 void (**diagnostic_fn)(const char *, ...))
4106 int savew, savee;
4108 savew = warningcount, savee = errorcount;
4109 expr = build_special_member_call (NULL_TREE,
4110 complete_ctor_identifier,
4111 build_tree_list (NULL_TREE, expr),
4112 type, flags);
4113 if (warningcount > savew)
4114 *diagnostic_fn = warning;
4115 else if (errorcount > savee)
4116 *diagnostic_fn = error;
4117 else
4118 *diagnostic_fn = NULL;
4119 return expr;
4123 /* Perform the conversions in CONVS on the expression EXPR. FN and
4124 ARGNUM are used for diagnostics. ARGNUM is zero based, -1
4125 indicates the `this' argument of a method. INNER is nonzero when
4126 being called to continue a conversion chain. It is negative when a
4127 reference binding will be applied, positive otherwise. If
4128 ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
4129 conversions will be emitted if appropriate. If C_CAST_P is true,
4130 this conversion is coming from a C-style cast; in that case,
4131 conversions to inaccessible bases are permitted. */
4133 static tree
4134 convert_like_real (conversion *convs, tree expr, tree fn, int argnum,
4135 int inner, bool issue_conversion_warnings,
4136 bool c_cast_p)
4138 tree totype = convs->type;
4139 void (*diagnostic_fn)(const char *, ...);
4141 if (convs->bad_p
4142 && convs->kind != ck_user
4143 && convs->kind != ck_ambig
4144 && convs->kind != ck_ref_bind)
4146 conversion *t = convs;
4147 for (; t; t = convs->u.next)
4149 if (t->kind == ck_user || !t->bad_p)
4151 expr = convert_like_real (t, expr, fn, argnum, 1,
4152 /*issue_conversion_warnings=*/false,
4153 /*c_cast_p=*/false);
4154 break;
4156 else if (t->kind == ck_ambig)
4157 return convert_like_real (t, expr, fn, argnum, 1,
4158 /*issue_conversion_warnings=*/false,
4159 /*c_cast_p=*/false);
4160 else if (t->kind == ck_identity)
4161 break;
4163 pedwarn ("invalid conversion from %qT to %qT", TREE_TYPE (expr), totype);
4164 if (fn)
4165 pedwarn (" initializing argument %P of %qD", argnum, fn);
4166 return cp_convert (totype, expr);
4169 if (issue_conversion_warnings)
4171 tree t = non_reference (totype);
4173 /* Issue warnings about peculiar, but valid, uses of NULL. */
4174 if (ARITHMETIC_TYPE_P (t) && expr == null_node)
4176 if (fn)
4177 warning ("passing NULL to non-pointer argument %P of %qD",
4178 argnum, fn);
4179 else
4180 warning ("converting to non-pointer type %qT from NULL", t);
4183 /* Warn about assigning a floating-point type to an integer type. */
4184 if (TREE_CODE (TREE_TYPE (expr)) == REAL_TYPE
4185 && TREE_CODE (t) == INTEGER_TYPE)
4187 if (fn)
4188 warning ("passing %qT for argument %P to %qD",
4189 TREE_TYPE (expr), argnum, fn);
4190 else
4191 warning ("converting to %qT from %qT", t, TREE_TYPE (expr));
4193 /* And warn about assigning a negative value to an unsigned
4194 variable. */
4195 else if (TYPE_UNSIGNED (t) && TREE_CODE (t) != BOOLEAN_TYPE)
4197 if (TREE_CODE (expr) == INTEGER_CST && TREE_NEGATED_INT (expr))
4199 if (fn)
4200 warning ("passing negative value %qE for argument %P to %qD",
4201 expr, argnum, fn);
4202 else
4203 warning ("converting negative value %qE to %qT", expr, t);
4206 overflow_warning (expr);
4210 switch (convs->kind)
4212 case ck_user:
4214 struct z_candidate *cand = convs->cand;
4215 tree convfn = cand->fn;
4216 tree args;
4218 if (DECL_CONSTRUCTOR_P (convfn))
4220 tree t = build_int_cst (build_pointer_type (DECL_CONTEXT (convfn)),
4223 args = build_tree_list (NULL_TREE, expr);
4224 /* We should never try to call the abstract or base constructor
4225 from here. */
4226 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (convfn)
4227 && !DECL_HAS_VTT_PARM_P (convfn));
4228 args = tree_cons (NULL_TREE, t, args);
4230 else
4231 args = build_this (expr);
4232 expr = build_over_call (cand, LOOKUP_NORMAL);
4234 /* If this is a constructor or a function returning an aggr type,
4235 we need to build up a TARGET_EXPR. */
4236 if (DECL_CONSTRUCTOR_P (convfn))
4237 expr = build_cplus_new (totype, expr);
4239 /* The result of the call is then used to direct-initialize the object
4240 that is the destination of the copy-initialization. [dcl.init]
4242 Note that this step is not reflected in the conversion sequence;
4243 it affects the semantics when we actually perform the
4244 conversion, but is not considered during overload resolution.
4246 If the target is a class, that means call a ctor. */
4247 if (IS_AGGR_TYPE (totype)
4248 && (inner >= 0 || !lvalue_p (expr)))
4250 expr = (build_temp
4251 (expr, totype,
4252 /* Core issue 84, now a DR, says that we don't
4253 allow UDCs for these args (which deliberately
4254 breaks copy-init of an auto_ptr<Base> from an
4255 auto_ptr<Derived>). */
4256 LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING|LOOKUP_NO_CONVERSION,
4257 &diagnostic_fn));
4259 if (diagnostic_fn)
4261 if (fn)
4262 diagnostic_fn
4263 (" initializing argument %P of %qD from result of %qD",
4264 argnum, fn, convfn);
4265 else
4266 diagnostic_fn
4267 (" initializing temporary from result of %qD", convfn);
4269 expr = build_cplus_new (totype, expr);
4271 return expr;
4273 case ck_identity:
4274 if (type_unknown_p (expr))
4275 expr = instantiate_type (totype, expr, tf_error | tf_warning);
4276 /* Convert a constant to its underlying value, unless we are
4277 about to bind it to a reference, in which case we need to
4278 leave it as an lvalue. */
4279 if (inner >= 0)
4280 expr = integral_constant_value (expr);
4281 if (convs->check_copy_constructor_p)
4282 check_constructor_callable (totype, expr);
4283 return expr;
4284 case ck_ambig:
4285 /* Call build_user_type_conversion again for the error. */
4286 return build_user_type_conversion
4287 (totype, convs->u.expr, LOOKUP_NORMAL);
4289 default:
4290 break;
4293 expr = convert_like_real (convs->u.next, expr, fn, argnum,
4294 convs->kind == ck_ref_bind ? -1 : 1,
4295 /*issue_conversion_warnings=*/false,
4296 c_cast_p);
4297 if (expr == error_mark_node)
4298 return error_mark_node;
4300 switch (convs->kind)
4302 case ck_rvalue:
4303 if (! IS_AGGR_TYPE (totype))
4304 return expr;
4305 /* Else fall through. */
4306 case ck_base:
4307 if (convs->kind == ck_base && !convs->need_temporary_p)
4309 /* We are going to bind a reference directly to a base-class
4310 subobject of EXPR. */
4311 if (convs->check_copy_constructor_p)
4312 check_constructor_callable (TREE_TYPE (expr), expr);
4313 /* Build an expression for `*((base*) &expr)'. */
4314 expr = build_unary_op (ADDR_EXPR, expr, 0);
4315 expr = convert_to_base (expr, build_pointer_type (totype),
4316 !c_cast_p, /*nonnull=*/true);
4317 expr = build_indirect_ref (expr, "implicit conversion");
4318 return expr;
4321 /* Copy-initialization where the cv-unqualified version of the source
4322 type is the same class as, or a derived class of, the class of the
4323 destination [is treated as direct-initialization]. [dcl.init] */
4324 expr = build_temp (expr, totype, LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING,
4325 &diagnostic_fn);
4326 if (diagnostic_fn && fn)
4327 diagnostic_fn (" initializing argument %P of %qD", argnum, fn);
4328 return build_cplus_new (totype, expr);
4330 case ck_ref_bind:
4332 tree ref_type = totype;
4334 /* If necessary, create a temporary. */
4335 if (convs->need_temporary_p || !lvalue_p (expr))
4337 tree type = convs->u.next->type;
4338 cp_lvalue_kind lvalue = real_lvalue_p (expr);
4340 if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type)))
4342 /* If the reference is volatile or non-const, we
4343 cannot create a temporary. */
4344 if (lvalue & clk_bitfield)
4345 error ("cannot bind bitfield %qE to %qT",
4346 expr, ref_type);
4347 else if (lvalue & clk_packed)
4348 error ("cannot bind packed field %qE to %qT",
4349 expr, ref_type);
4350 else
4351 error ("cannot bind rvalue %qE to %qT", expr, ref_type);
4352 return error_mark_node;
4354 /* If the source is a packed field, and we must use a copy
4355 constructor, then building the target expr will require
4356 binding the field to the reference parameter to the
4357 copy constructor, and we'll end up with an infinite
4358 loop. If we can use a bitwise copy, then we'll be
4359 OK. */
4360 if ((lvalue & clk_packed)
4361 && CLASS_TYPE_P (type)
4362 && !TYPE_HAS_TRIVIAL_INIT_REF (type))
4364 error ("cannot bind packed field %qE to %qT",
4365 expr, ref_type);
4366 return error_mark_node;
4368 expr = build_target_expr_with_type (expr, type);
4371 /* Take the address of the thing to which we will bind the
4372 reference. */
4373 expr = build_unary_op (ADDR_EXPR, expr, 1);
4374 if (expr == error_mark_node)
4375 return error_mark_node;
4377 /* Convert it to a pointer to the type referred to by the
4378 reference. This will adjust the pointer if a derived to
4379 base conversion is being performed. */
4380 expr = cp_convert (build_pointer_type (TREE_TYPE (ref_type)),
4381 expr);
4382 /* Convert the pointer to the desired reference type. */
4383 return build_nop (ref_type, expr);
4386 case ck_lvalue:
4387 return decay_conversion (expr);
4389 case ck_qual:
4390 /* Warn about deprecated conversion if appropriate. */
4391 string_conv_p (totype, expr, 1);
4392 break;
4394 case ck_ptr:
4395 if (convs->base_p)
4396 expr = convert_to_base (expr, totype, !c_cast_p,
4397 /*nonnull=*/false);
4398 return build_nop (totype, expr);
4400 case ck_pmem:
4401 return convert_ptrmem (totype, expr, /*allow_inverse_p=*/false,
4402 c_cast_p);
4404 default:
4405 break;
4407 return ocp_convert (totype, expr, CONV_IMPLICIT,
4408 LOOKUP_NORMAL|LOOKUP_NO_CONVERSION);
4411 /* Build a call to __builtin_trap. */
4413 static tree
4414 call_builtin_trap (void)
4416 tree fn = implicit_built_in_decls[BUILT_IN_TRAP];
4418 gcc_assert (fn != NULL);
4419 fn = build_call (fn, NULL_TREE);
4420 return fn;
4423 /* ARG is being passed to a varargs function. Perform any conversions
4424 required. Return the converted value. */
4426 tree
4427 convert_arg_to_ellipsis (tree arg)
4429 /* [expr.call]
4431 The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4432 standard conversions are performed. */
4433 arg = decay_conversion (arg);
4434 /* [expr.call]
4436 If the argument has integral or enumeration type that is subject
4437 to the integral promotions (_conv.prom_), or a floating point
4438 type that is subject to the floating point promotion
4439 (_conv.fpprom_), the value of the argument is converted to the
4440 promoted type before the call. */
4441 if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
4442 && (TYPE_PRECISION (TREE_TYPE (arg))
4443 < TYPE_PRECISION (double_type_node)))
4444 arg = convert_to_real (double_type_node, arg);
4445 else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg)))
4446 arg = perform_integral_promotions (arg);
4448 arg = require_complete_type (arg);
4450 if (arg != error_mark_node
4451 && !pod_type_p (TREE_TYPE (arg)))
4453 /* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
4454 here and do a bitwise copy, but now cp_expr_size will abort if we
4455 try to do that.
4456 If the call appears in the context of a sizeof expression,
4457 there is no need to emit a warning, since the expression won't be
4458 evaluated. We keep the builtin_trap just as a safety check. */
4459 if (!skip_evaluation)
4460 warning ("cannot pass objects of non-POD type %q#T through %<...%>; "
4461 "call will abort at runtime", TREE_TYPE (arg));
4462 arg = call_builtin_trap ();
4463 arg = build2 (COMPOUND_EXPR, integer_type_node, arg,
4464 integer_zero_node);
4467 return arg;
4470 /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
4472 tree
4473 build_x_va_arg (tree expr, tree type)
4475 if (processing_template_decl)
4476 return build_min (VA_ARG_EXPR, type, expr);
4478 type = complete_type_or_else (type, NULL_TREE);
4480 if (expr == error_mark_node || !type)
4481 return error_mark_node;
4483 if (! pod_type_p (type))
4485 /* Undefined behavior [expr.call] 5.2.2/7. */
4486 warning ("cannot receive objects of non-POD type %q#T through %<...%>; "
4487 "call will abort at runtime", type);
4488 expr = convert (build_pointer_type (type), null_node);
4489 expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr),
4490 call_builtin_trap (), expr);
4491 expr = build_indirect_ref (expr, NULL);
4492 return expr;
4495 return build_va_arg (expr, type);
4498 /* TYPE has been given to va_arg. Apply the default conversions which
4499 would have happened when passed via ellipsis. Return the promoted
4500 type, or the passed type if there is no change. */
4502 tree
4503 cxx_type_promotes_to (tree type)
4505 tree promote;
4507 /* Perform the array-to-pointer and function-to-pointer
4508 conversions. */
4509 type = type_decays_to (type);
4511 promote = type_promotes_to (type);
4512 if (same_type_p (type, promote))
4513 promote = type;
4515 return promote;
4518 /* ARG is a default argument expression being passed to a parameter of
4519 the indicated TYPE, which is a parameter to FN. Do any required
4520 conversions. Return the converted value. */
4522 tree
4523 convert_default_arg (tree type, tree arg, tree fn, int parmnum)
4525 /* If the ARG is an unparsed default argument expression, the
4526 conversion cannot be performed. */
4527 if (TREE_CODE (arg) == DEFAULT_ARG)
4529 error ("the default argument for parameter %d of %qD has "
4530 "not yet been parsed",
4531 parmnum, fn);
4532 return error_mark_node;
4535 if (fn && DECL_TEMPLATE_INFO (fn))
4536 arg = tsubst_default_argument (fn, type, arg);
4538 arg = break_out_target_exprs (arg);
4540 if (TREE_CODE (arg) == CONSTRUCTOR)
4542 arg = digest_init (type, arg, 0);
4543 arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
4544 "default argument", fn, parmnum);
4546 else
4548 /* This could get clobbered by the following call. */
4549 if (TREE_HAS_CONSTRUCTOR (arg))
4550 arg = copy_node (arg);
4552 arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
4553 "default argument", fn, parmnum);
4554 arg = convert_for_arg_passing (type, arg);
4557 return arg;
4560 /* Returns the type which will really be used for passing an argument of
4561 type TYPE. */
4563 tree
4564 type_passed_as (tree type)
4566 /* Pass classes with copy ctors by invisible reference. */
4567 if (TREE_ADDRESSABLE (type))
4569 type = build_reference_type (type);
4570 /* There are no other pointers to this temporary. */
4571 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
4573 else if (targetm.calls.promote_prototypes (type)
4574 && INTEGRAL_TYPE_P (type)
4575 && COMPLETE_TYPE_P (type)
4576 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
4577 TYPE_SIZE (integer_type_node)))
4578 type = integer_type_node;
4580 return type;
4583 /* Actually perform the appropriate conversion. */
4585 tree
4586 convert_for_arg_passing (tree type, tree val)
4588 if (val == error_mark_node)
4590 /* Pass classes with copy ctors by invisible reference. */
4591 else if (TREE_ADDRESSABLE (type))
4592 val = build1 (ADDR_EXPR, build_reference_type (type), val);
4593 else if (targetm.calls.promote_prototypes (type)
4594 && INTEGRAL_TYPE_P (type)
4595 && COMPLETE_TYPE_P (type)
4596 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
4597 TYPE_SIZE (integer_type_node)))
4598 val = perform_integral_promotions (val);
4599 return val;
4602 /* Returns true iff FN is a function with magic varargs, i.e. ones for
4603 which no conversions at all should be done. This is true for some
4604 builtins which don't act like normal functions. */
4606 static bool
4607 magic_varargs_p (tree fn)
4609 if (DECL_BUILT_IN (fn))
4610 switch (DECL_FUNCTION_CODE (fn))
4612 case BUILT_IN_CLASSIFY_TYPE:
4613 case BUILT_IN_CONSTANT_P:
4614 case BUILT_IN_NEXT_ARG:
4615 case BUILT_IN_STDARG_START:
4616 case BUILT_IN_VA_START:
4617 return true;
4619 default:;
4622 return false;
4625 /* Subroutine of the various build_*_call functions. Overload resolution
4626 has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
4627 ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
4628 bitmask of various LOOKUP_* flags which apply to the call itself. */
4630 static tree
4631 build_over_call (struct z_candidate *cand, int flags)
4633 tree fn = cand->fn;
4634 tree args = cand->args;
4635 conversion **convs = cand->convs;
4636 conversion *conv;
4637 tree converted_args = NULL_TREE;
4638 tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
4639 tree arg, val;
4640 int i = 0;
4641 int is_method = 0;
4643 /* In a template, there is no need to perform all of the work that
4644 is normally done. We are only interested in the type of the call
4645 expression, i.e., the return type of the function. Any semantic
4646 errors will be deferred until the template is instantiated. */
4647 if (processing_template_decl)
4649 tree expr;
4650 tree return_type;
4651 return_type = TREE_TYPE (TREE_TYPE (fn));
4652 expr = build3 (CALL_EXPR, return_type, fn, args, NULL_TREE);
4653 if (TREE_THIS_VOLATILE (fn) && cfun)
4654 current_function_returns_abnormally = 1;
4655 if (!VOID_TYPE_P (return_type))
4656 require_complete_type (return_type);
4657 return convert_from_reference (expr);
4660 /* Give any warnings we noticed during overload resolution. */
4661 if (cand->warnings)
4663 struct candidate_warning *w;
4664 for (w = cand->warnings; w; w = w->next)
4665 joust (cand, w->loser, 1);
4668 if (DECL_FUNCTION_MEMBER_P (fn))
4670 /* If FN is a template function, two cases must be considered.
4671 For example:
4673 struct A {
4674 protected:
4675 template <class T> void f();
4677 template <class T> struct B {
4678 protected:
4679 void g();
4681 struct C : A, B<int> {
4682 using A::f; // #1
4683 using B<int>::g; // #2
4686 In case #1 where `A::f' is a member template, DECL_ACCESS is
4687 recorded in the primary template but not in its specialization.
4688 We check access of FN using its primary template.
4690 In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply
4691 because it is a member of class template B, DECL_ACCESS is
4692 recorded in the specialization `B<int>::g'. We cannot use its
4693 primary template because `B<T>::g' and `B<int>::g' may have
4694 different access. */
4695 if (DECL_TEMPLATE_INFO (fn)
4696 && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn)))
4697 perform_or_defer_access_check (cand->access_path,
4698 DECL_TI_TEMPLATE (fn));
4699 else
4700 perform_or_defer_access_check (cand->access_path, fn);
4703 if (args && TREE_CODE (args) != TREE_LIST)
4704 args = build_tree_list (NULL_TREE, args);
4705 arg = args;
4707 /* The implicit parameters to a constructor are not considered by overload
4708 resolution, and must be of the proper type. */
4709 if (DECL_CONSTRUCTOR_P (fn))
4711 converted_args = tree_cons (NULL_TREE, TREE_VALUE (arg), converted_args);
4712 arg = TREE_CHAIN (arg);
4713 parm = TREE_CHAIN (parm);
4714 /* We should never try to call the abstract constructor. */
4715 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn));
4717 if (DECL_HAS_VTT_PARM_P (fn))
4719 converted_args = tree_cons
4720 (NULL_TREE, TREE_VALUE (arg), converted_args);
4721 arg = TREE_CHAIN (arg);
4722 parm = TREE_CHAIN (parm);
4725 /* Bypass access control for 'this' parameter. */
4726 else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
4728 tree parmtype = TREE_VALUE (parm);
4729 tree argtype = TREE_TYPE (TREE_VALUE (arg));
4730 tree converted_arg;
4731 tree base_binfo;
4733 if (convs[i]->bad_p)
4734 pedwarn ("passing %qT as %<this%> argument of %q#D discards qualifiers",
4735 TREE_TYPE (argtype), fn);
4737 /* [class.mfct.nonstatic]: If a nonstatic member function of a class
4738 X is called for an object that is not of type X, or of a type
4739 derived from X, the behavior is undefined.
4741 So we can assume that anything passed as 'this' is non-null, and
4742 optimize accordingly. */
4743 gcc_assert (TREE_CODE (parmtype) == POINTER_TYPE);
4744 /* Convert to the base in which the function was declared. */
4745 gcc_assert (cand->conversion_path != NULL_TREE);
4746 converted_arg = build_base_path (PLUS_EXPR,
4747 TREE_VALUE (arg),
4748 cand->conversion_path,
4750 /* Check that the base class is accessible. */
4751 if (!accessible_base_p (TREE_TYPE (argtype),
4752 BINFO_TYPE (cand->conversion_path), true))
4753 error ("%qT is not an accessible base of %qT",
4754 BINFO_TYPE (cand->conversion_path),
4755 TREE_TYPE (argtype));
4756 /* If fn was found by a using declaration, the conversion path
4757 will be to the derived class, not the base declaring fn. We
4758 must convert from derived to base. */
4759 base_binfo = lookup_base (TREE_TYPE (TREE_TYPE (converted_arg)),
4760 TREE_TYPE (parmtype), ba_unique, NULL);
4761 converted_arg = build_base_path (PLUS_EXPR, converted_arg,
4762 base_binfo, 1);
4764 converted_args = tree_cons (NULL_TREE, converted_arg, converted_args);
4765 parm = TREE_CHAIN (parm);
4766 arg = TREE_CHAIN (arg);
4767 ++i;
4768 is_method = 1;
4771 for (; arg && parm;
4772 parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
4774 tree type = TREE_VALUE (parm);
4776 conv = convs[i];
4777 val = convert_like_with_context
4778 (conv, TREE_VALUE (arg), fn, i - is_method);
4780 val = convert_for_arg_passing (type, val);
4781 converted_args = tree_cons (NULL_TREE, val, converted_args);
4784 /* Default arguments */
4785 for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm), i++)
4786 converted_args
4787 = tree_cons (NULL_TREE,
4788 convert_default_arg (TREE_VALUE (parm),
4789 TREE_PURPOSE (parm),
4790 fn, i - is_method),
4791 converted_args);
4793 /* Ellipsis */
4794 for (; arg; arg = TREE_CHAIN (arg))
4796 tree a = TREE_VALUE (arg);
4797 if (magic_varargs_p (fn))
4798 /* Do no conversions for magic varargs. */;
4799 else
4800 a = convert_arg_to_ellipsis (a);
4801 converted_args = tree_cons (NULL_TREE, a, converted_args);
4804 converted_args = nreverse (converted_args);
4806 check_function_arguments (TYPE_ATTRIBUTES (TREE_TYPE (fn)),
4807 converted_args);
4809 /* Avoid actually calling copy constructors and copy assignment operators,
4810 if possible. */
4812 if (! flag_elide_constructors)
4813 /* Do things the hard way. */;
4814 else if (cand->num_convs == 1 && DECL_COPY_CONSTRUCTOR_P (fn))
4816 tree targ;
4817 arg = skip_artificial_parms_for (fn, converted_args);
4818 arg = TREE_VALUE (arg);
4820 /* Pull out the real argument, disregarding const-correctness. */
4821 targ = arg;
4822 while (TREE_CODE (targ) == NOP_EXPR
4823 || TREE_CODE (targ) == NON_LVALUE_EXPR
4824 || TREE_CODE (targ) == CONVERT_EXPR)
4825 targ = TREE_OPERAND (targ, 0);
4826 if (TREE_CODE (targ) == ADDR_EXPR)
4828 targ = TREE_OPERAND (targ, 0);
4829 if (!same_type_ignoring_top_level_qualifiers_p
4830 (TREE_TYPE (TREE_TYPE (arg)), TREE_TYPE (targ)))
4831 targ = NULL_TREE;
4833 else
4834 targ = NULL_TREE;
4836 if (targ)
4837 arg = targ;
4838 else
4839 arg = build_indirect_ref (arg, 0);
4841 /* [class.copy]: the copy constructor is implicitly defined even if
4842 the implementation elided its use. */
4843 if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
4844 mark_used (fn);
4846 /* If we're creating a temp and we already have one, don't create a
4847 new one. If we're not creating a temp but we get one, use
4848 INIT_EXPR to collapse the temp into our target. Otherwise, if the
4849 ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
4850 temp or an INIT_EXPR otherwise. */
4851 if (integer_zerop (TREE_VALUE (args)))
4853 if (TREE_CODE (arg) == TARGET_EXPR)
4854 return arg;
4855 else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
4856 return build_target_expr_with_type (arg, DECL_CONTEXT (fn));
4858 else if (TREE_CODE (arg) == TARGET_EXPR
4859 || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
4861 tree to = stabilize_reference
4862 (build_indirect_ref (TREE_VALUE (args), 0));
4864 val = build2 (INIT_EXPR, DECL_CONTEXT (fn), to, arg);
4865 return val;
4868 else if (DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR
4869 && copy_fn_p (fn)
4870 && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn)))
4872 tree to = stabilize_reference
4873 (build_indirect_ref (TREE_VALUE (converted_args), 0));
4874 tree type = TREE_TYPE (to);
4875 tree as_base = CLASSTYPE_AS_BASE (type);
4877 arg = TREE_VALUE (TREE_CHAIN (converted_args));
4878 if (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (as_base)))
4880 arg = build_indirect_ref (arg, 0);
4881 val = build2 (MODIFY_EXPR, TREE_TYPE (to), to, arg);
4883 else
4885 /* We must only copy the non-tail padding parts.
4886 Use __builtin_memcpy for the bitwise copy. */
4888 tree args, t;
4890 args = tree_cons (NULL, TYPE_SIZE_UNIT (as_base), NULL);
4891 args = tree_cons (NULL, arg, args);
4892 t = build_unary_op (ADDR_EXPR, to, 0);
4893 args = tree_cons (NULL, t, args);
4894 t = implicit_built_in_decls[BUILT_IN_MEMCPY];
4895 t = build_call (t, args);
4897 t = convert (TREE_TYPE (TREE_VALUE (args)), t);
4898 val = build_indirect_ref (t, 0);
4901 return val;
4904 mark_used (fn);
4906 if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0)
4908 tree t, *p = &TREE_VALUE (converted_args);
4909 tree binfo = lookup_base (TREE_TYPE (TREE_TYPE (*p)),
4910 DECL_CONTEXT (fn),
4911 ba_any, NULL);
4912 gcc_assert (binfo && binfo != error_mark_node);
4914 *p = build_base_path (PLUS_EXPR, *p, binfo, 1);
4915 if (TREE_SIDE_EFFECTS (*p))
4916 *p = save_expr (*p);
4917 t = build_pointer_type (TREE_TYPE (fn));
4918 if (DECL_CONTEXT (fn) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn)))
4919 fn = build_java_interface_fn_ref (fn, *p);
4920 else
4921 fn = build_vfn_ref (*p, DECL_VINDEX (fn));
4922 TREE_TYPE (fn) = t;
4924 else if (DECL_INLINE (fn))
4925 fn = inline_conversion (fn);
4926 else
4927 fn = build_addr_func (fn);
4929 return build_cxx_call (fn, converted_args);
4932 /* Build and return a call to FN, using ARGS. This function performs
4933 no overload resolution, conversion, or other high-level
4934 operations. */
4936 tree
4937 build_cxx_call (tree fn, tree args)
4939 tree fndecl;
4941 fn = build_call (fn, args);
4943 /* If this call might throw an exception, note that fact. */
4944 fndecl = get_callee_fndecl (fn);
4945 if ((!fndecl || !TREE_NOTHROW (fndecl))
4946 && at_function_scope_p ()
4947 && cfun)
4948 cp_function_chain->can_throw = 1;
4950 /* Some built-in function calls will be evaluated at compile-time in
4951 fold (). */
4952 fn = fold_if_not_in_template (fn);
4954 if (VOID_TYPE_P (TREE_TYPE (fn)))
4955 return fn;
4957 fn = require_complete_type (fn);
4958 if (fn == error_mark_node)
4959 return error_mark_node;
4961 if (IS_AGGR_TYPE (TREE_TYPE (fn)))
4962 fn = build_cplus_new (TREE_TYPE (fn), fn);
4963 return convert_from_reference (fn);
4966 static GTY(()) tree java_iface_lookup_fn;
4968 /* Make an expression which yields the address of the Java interface
4969 method FN. This is achieved by generating a call to libjava's
4970 _Jv_LookupInterfaceMethodIdx(). */
4972 static tree
4973 build_java_interface_fn_ref (tree fn, tree instance)
4975 tree lookup_args, lookup_fn, method, idx;
4976 tree klass_ref, iface, iface_ref;
4977 int i;
4979 if (!java_iface_lookup_fn)
4981 tree endlink = build_void_list_node ();
4982 tree t = tree_cons (NULL_TREE, ptr_type_node,
4983 tree_cons (NULL_TREE, ptr_type_node,
4984 tree_cons (NULL_TREE, java_int_type_node,
4985 endlink)));
4986 java_iface_lookup_fn
4987 = builtin_function ("_Jv_LookupInterfaceMethodIdx",
4988 build_function_type (ptr_type_node, t),
4989 0, NOT_BUILT_IN, NULL, NULL_TREE);
4992 /* Look up the pointer to the runtime java.lang.Class object for `instance'.
4993 This is the first entry in the vtable. */
4994 klass_ref = build_vtbl_ref (build_indirect_ref (instance, 0),
4995 integer_zero_node);
4997 /* Get the java.lang.Class pointer for the interface being called. */
4998 iface = DECL_CONTEXT (fn);
4999 iface_ref = lookup_field (iface, get_identifier ("class$"), 0, false);
5000 if (!iface_ref || TREE_CODE (iface_ref) != VAR_DECL
5001 || DECL_CONTEXT (iface_ref) != iface)
5003 error ("could not find class$ field in java interface type %qT",
5004 iface);
5005 return error_mark_node;
5007 iface_ref = build_address (iface_ref);
5008 iface_ref = convert (build_pointer_type (iface), iface_ref);
5010 /* Determine the itable index of FN. */
5011 i = 1;
5012 for (method = TYPE_METHODS (iface); method; method = TREE_CHAIN (method))
5014 if (!DECL_VIRTUAL_P (method))
5015 continue;
5016 if (fn == method)
5017 break;
5018 i++;
5020 idx = build_int_cst (NULL_TREE, i);
5022 lookup_args = tree_cons (NULL_TREE, klass_ref,
5023 tree_cons (NULL_TREE, iface_ref,
5024 build_tree_list (NULL_TREE, idx)));
5025 lookup_fn = build1 (ADDR_EXPR,
5026 build_pointer_type (TREE_TYPE (java_iface_lookup_fn)),
5027 java_iface_lookup_fn);
5028 return build3 (CALL_EXPR, ptr_type_node, lookup_fn, lookup_args, NULL_TREE);
5031 /* Returns the value to use for the in-charge parameter when making a
5032 call to a function with the indicated NAME.
5034 FIXME:Can't we find a neater way to do this mapping? */
5036 tree
5037 in_charge_arg_for_name (tree name)
5039 if (name == base_ctor_identifier
5040 || name == base_dtor_identifier)
5041 return integer_zero_node;
5042 else if (name == complete_ctor_identifier)
5043 return integer_one_node;
5044 else if (name == complete_dtor_identifier)
5045 return integer_two_node;
5046 else if (name == deleting_dtor_identifier)
5047 return integer_three_node;
5049 /* This function should only be called with one of the names listed
5050 above. */
5051 gcc_unreachable ();
5052 return NULL_TREE;
5055 /* Build a call to a constructor, destructor, or an assignment
5056 operator for INSTANCE, an expression with class type. NAME
5057 indicates the special member function to call; ARGS are the
5058 arguments. BINFO indicates the base of INSTANCE that is to be
5059 passed as the `this' parameter to the member function called.
5061 FLAGS are the LOOKUP_* flags to use when processing the call.
5063 If NAME indicates a complete object constructor, INSTANCE may be
5064 NULL_TREE. In this case, the caller will call build_cplus_new to
5065 store the newly constructed object into a VAR_DECL. */
5067 tree
5068 build_special_member_call (tree instance, tree name, tree args,
5069 tree binfo, int flags)
5071 tree fns;
5072 /* The type of the subobject to be constructed or destroyed. */
5073 tree class_type;
5075 gcc_assert (name == complete_ctor_identifier
5076 || name == base_ctor_identifier
5077 || name == complete_dtor_identifier
5078 || name == base_dtor_identifier
5079 || name == deleting_dtor_identifier
5080 || name == ansi_assopname (NOP_EXPR));
5081 if (TYPE_P (binfo))
5083 /* Resolve the name. */
5084 if (!complete_type_or_else (binfo, NULL_TREE))
5085 return error_mark_node;
5087 binfo = TYPE_BINFO (binfo);
5090 gcc_assert (binfo != NULL_TREE);
5092 class_type = BINFO_TYPE (binfo);
5094 /* Handle the special case where INSTANCE is NULL_TREE. */
5095 if (name == complete_ctor_identifier && !instance)
5097 instance = build_int_cst (build_pointer_type (class_type), 0);
5098 instance = build1 (INDIRECT_REF, class_type, instance);
5100 else
5102 if (name == complete_dtor_identifier
5103 || name == base_dtor_identifier
5104 || name == deleting_dtor_identifier)
5105 gcc_assert (args == NULL_TREE);
5107 /* Convert to the base class, if necessary. */
5108 if (!same_type_ignoring_top_level_qualifiers_p
5109 (TREE_TYPE (instance), BINFO_TYPE (binfo)))
5111 if (name != ansi_assopname (NOP_EXPR))
5112 /* For constructors and destructors, either the base is
5113 non-virtual, or it is virtual but we are doing the
5114 conversion from a constructor or destructor for the
5115 complete object. In either case, we can convert
5116 statically. */
5117 instance = convert_to_base_statically (instance, binfo);
5118 else
5119 /* However, for assignment operators, we must convert
5120 dynamically if the base is virtual. */
5121 instance = build_base_path (PLUS_EXPR, instance,
5122 binfo, /*nonnull=*/1);
5126 gcc_assert (instance != NULL_TREE);
5128 fns = lookup_fnfields (binfo, name, 1);
5130 /* When making a call to a constructor or destructor for a subobject
5131 that uses virtual base classes, pass down a pointer to a VTT for
5132 the subobject. */
5133 if ((name == base_ctor_identifier
5134 || name == base_dtor_identifier)
5135 && CLASSTYPE_VBASECLASSES (class_type))
5137 tree vtt;
5138 tree sub_vtt;
5140 /* If the current function is a complete object constructor
5141 or destructor, then we fetch the VTT directly.
5142 Otherwise, we look it up using the VTT we were given. */
5143 vtt = TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type));
5144 vtt = decay_conversion (vtt);
5145 vtt = build3 (COND_EXPR, TREE_TYPE (vtt),
5146 build2 (EQ_EXPR, boolean_type_node,
5147 current_in_charge_parm, integer_zero_node),
5148 current_vtt_parm,
5149 vtt);
5150 gcc_assert (BINFO_SUBVTT_INDEX (binfo));
5151 sub_vtt = build2 (PLUS_EXPR, TREE_TYPE (vtt), vtt,
5152 BINFO_SUBVTT_INDEX (binfo));
5154 args = tree_cons (NULL_TREE, sub_vtt, args);
5157 return build_new_method_call (instance, fns, args,
5158 TYPE_BINFO (BINFO_TYPE (binfo)),
5159 flags);
5162 /* Return the NAME, as a C string. The NAME indicates a function that
5163 is a member of TYPE. *FREE_P is set to true if the caller must
5164 free the memory returned.
5166 Rather than go through all of this, we should simply set the names
5167 of constructors and destructors appropriately, and dispense with
5168 ctor_identifier, dtor_identifier, etc. */
5170 static char *
5171 name_as_c_string (tree name, tree type, bool *free_p)
5173 char *pretty_name;
5175 /* Assume that we will not allocate memory. */
5176 *free_p = false;
5177 /* Constructors and destructors are special. */
5178 if (IDENTIFIER_CTOR_OR_DTOR_P (name))
5180 pretty_name
5181 = (char *) IDENTIFIER_POINTER (constructor_name (type));
5182 /* For a destructor, add the '~'. */
5183 if (name == complete_dtor_identifier
5184 || name == base_dtor_identifier
5185 || name == deleting_dtor_identifier)
5187 pretty_name = concat ("~", pretty_name, NULL);
5188 /* Remember that we need to free the memory allocated. */
5189 *free_p = true;
5192 else if (IDENTIFIER_TYPENAME_P (name))
5194 pretty_name = concat ("operator ",
5195 type_as_string (TREE_TYPE (name),
5196 TFF_PLAIN_IDENTIFIER),
5197 NULL);
5198 /* Remember that we need to free the memory allocated. */
5199 *free_p = true;
5201 else
5202 pretty_name = (char *) IDENTIFIER_POINTER (name);
5204 return pretty_name;
5207 /* Build a call to "INSTANCE.FN (ARGS)". */
5209 tree
5210 build_new_method_call (tree instance, tree fns, tree args,
5211 tree conversion_path, int flags)
5213 struct z_candidate *candidates = 0, *cand;
5214 tree explicit_targs = NULL_TREE;
5215 tree basetype = NULL_TREE;
5216 tree access_binfo;
5217 tree optype;
5218 tree mem_args = NULL_TREE, instance_ptr;
5219 tree name;
5220 tree user_args;
5221 tree call;
5222 tree fn;
5223 tree class_type;
5224 int template_only = 0;
5225 bool any_viable_p;
5226 tree orig_instance;
5227 tree orig_fns;
5228 tree orig_args;
5229 void *p;
5231 gcc_assert (instance != NULL_TREE);
5233 if (error_operand_p (instance)
5234 || error_operand_p (fns)
5235 || args == error_mark_node)
5236 return error_mark_node;
5238 orig_instance = instance;
5239 orig_fns = fns;
5240 orig_args = args;
5242 if (processing_template_decl)
5244 instance = build_non_dependent_expr (instance);
5245 if (!BASELINK_P (fns)
5246 && TREE_CODE (fns) != PSEUDO_DTOR_EXPR
5247 && TREE_TYPE (fns) != unknown_type_node)
5248 fns = build_non_dependent_expr (fns);
5249 args = build_non_dependent_args (orig_args);
5252 /* Process the argument list. */
5253 user_args = args;
5254 args = resolve_args (args);
5255 if (args == error_mark_node)
5256 return error_mark_node;
5258 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));
5259 instance_ptr = build_this (instance);
5261 if (!BASELINK_P (fns))
5263 error ("call to non-function %qD", fns);
5264 return error_mark_node;
5267 if (!conversion_path)
5268 conversion_path = BASELINK_BINFO (fns);
5269 access_binfo = BASELINK_ACCESS_BINFO (fns);
5270 optype = BASELINK_OPTYPE (fns);
5271 fns = BASELINK_FUNCTIONS (fns);
5273 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
5275 explicit_targs = TREE_OPERAND (fns, 1);
5276 fns = TREE_OPERAND (fns, 0);
5277 template_only = 1;
5280 gcc_assert (TREE_CODE (fns) == FUNCTION_DECL
5281 || TREE_CODE (fns) == TEMPLATE_DECL
5282 || TREE_CODE (fns) == OVERLOAD);
5284 /* XXX this should be handled before we get here. */
5285 if (! IS_AGGR_TYPE (basetype))
5287 if ((flags & LOOKUP_COMPLAIN) && basetype != error_mark_node)
5288 error ("request for member %qD in %qE, which is of non-aggregate "
5289 "type %qT",
5290 fns, instance, basetype);
5292 return error_mark_node;
5295 fn = get_first_fn (fns);
5296 name = DECL_NAME (fn);
5298 if (IDENTIFIER_CTOR_OR_DTOR_P (name))
5300 /* Callers should explicitly indicate whether they want to construct
5301 the complete object or just the part without virtual bases. */
5302 gcc_assert (name != ctor_identifier);
5303 /* Similarly for destructors. */
5304 gcc_assert (name != dtor_identifier);
5307 /* It's OK to call destructors on cv-qualified objects. Therefore,
5308 convert the INSTANCE_PTR to the unqualified type, if necessary. */
5309 if (DECL_DESTRUCTOR_P (fn))
5311 tree type = build_pointer_type (basetype);
5312 if (!same_type_p (type, TREE_TYPE (instance_ptr)))
5313 instance_ptr = build_nop (type, instance_ptr);
5316 class_type = (conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE);
5317 mem_args = tree_cons (NULL_TREE, instance_ptr, args);
5319 /* Get the high-water mark for the CONVERSION_OBSTACK. */
5320 p = conversion_obstack_alloc (0);
5322 for (fn = fns; fn; fn = OVL_NEXT (fn))
5324 tree t = OVL_CURRENT (fn);
5325 tree this_arglist;
5327 /* We can end up here for copy-init of same or base class. */
5328 if ((flags & LOOKUP_ONLYCONVERTING)
5329 && DECL_NONCONVERTING_P (t))
5330 continue;
5332 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t))
5333 this_arglist = mem_args;
5334 else
5335 this_arglist = args;
5337 if (TREE_CODE (t) == TEMPLATE_DECL)
5338 /* A member template. */
5339 add_template_candidate (&candidates, t,
5340 class_type,
5341 explicit_targs,
5342 this_arglist, optype,
5343 access_binfo,
5344 conversion_path,
5345 flags,
5346 DEDUCE_CALL);
5347 else if (! template_only)
5348 add_function_candidate (&candidates, t,
5349 class_type,
5350 this_arglist,
5351 access_binfo,
5352 conversion_path,
5353 flags);
5356 candidates = splice_viable (candidates, pedantic, &any_viable_p);
5357 if (!any_viable_p)
5359 if (!COMPLETE_TYPE_P (basetype))
5360 cxx_incomplete_type_error (instance_ptr, basetype);
5361 else
5363 char *pretty_name;
5364 bool free_p;
5366 pretty_name = name_as_c_string (name, basetype, &free_p);
5367 error ("no matching function for call to %<%T::%s(%A)%#V%>",
5368 basetype, pretty_name, user_args,
5369 TREE_TYPE (TREE_TYPE (instance_ptr)));
5370 if (free_p)
5371 free (pretty_name);
5373 print_z_candidates (candidates);
5374 call = error_mark_node;
5376 else
5378 cand = tourney (candidates);
5379 if (cand == 0)
5381 char *pretty_name;
5382 bool free_p;
5384 pretty_name = name_as_c_string (name, basetype, &free_p);
5385 error ("call of overloaded %<%s(%A)%> is ambiguous", pretty_name,
5386 user_args);
5387 print_z_candidates (candidates);
5388 if (free_p)
5389 free (pretty_name);
5390 call = error_mark_node;
5392 else
5394 if (!(flags & LOOKUP_NONVIRTUAL)
5395 && DECL_PURE_VIRTUAL_P (cand->fn)
5396 && instance == current_class_ref
5397 && (DECL_CONSTRUCTOR_P (current_function_decl)
5398 || DECL_DESTRUCTOR_P (current_function_decl)))
5399 /* This is not an error, it is runtime undefined
5400 behavior. */
5401 warning ((DECL_CONSTRUCTOR_P (current_function_decl) ?
5402 "abstract virtual %q#D called from constructor"
5403 : "abstract virtual %q#D called from destructor"),
5404 cand->fn);
5406 if (TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
5407 && is_dummy_object (instance_ptr))
5409 error ("cannot call member function %qD without object",
5410 cand->fn);
5411 call = error_mark_node;
5413 else
5415 if (DECL_VINDEX (cand->fn) && ! (flags & LOOKUP_NONVIRTUAL)
5416 && resolves_to_fixed_type_p (instance, 0))
5417 flags |= LOOKUP_NONVIRTUAL;
5419 call = build_over_call (cand, flags);
5421 /* In an expression of the form `a->f()' where `f' turns
5422 out to be a static member function, `a' is
5423 none-the-less evaluated. */
5424 if (TREE_CODE (TREE_TYPE (cand->fn)) != METHOD_TYPE
5425 && !is_dummy_object (instance_ptr)
5426 && TREE_SIDE_EFFECTS (instance))
5427 call = build2 (COMPOUND_EXPR, TREE_TYPE (call),
5428 instance, call);
5433 if (processing_template_decl && call != error_mark_node)
5434 call = (build_min_non_dep
5435 (CALL_EXPR, call,
5436 build_min_nt (COMPONENT_REF, orig_instance, orig_fns, NULL_TREE),
5437 orig_args, NULL_TREE));
5439 /* Free all the conversions we allocated. */
5440 obstack_free (&conversion_obstack, p);
5442 return call;
5445 /* Returns true iff standard conversion sequence ICS1 is a proper
5446 subsequence of ICS2. */
5448 static bool
5449 is_subseq (conversion *ics1, conversion *ics2)
5451 /* We can assume that a conversion of the same code
5452 between the same types indicates a subsequence since we only get
5453 here if the types we are converting from are the same. */
5455 while (ics1->kind == ck_rvalue
5456 || ics1->kind == ck_lvalue)
5457 ics1 = ics1->u.next;
5459 while (1)
5461 while (ics2->kind == ck_rvalue
5462 || ics2->kind == ck_lvalue)
5463 ics2 = ics2->u.next;
5465 if (ics2->kind == ck_user
5466 || ics2->kind == ck_ambig
5467 || ics2->kind == ck_identity)
5468 /* At this point, ICS1 cannot be a proper subsequence of
5469 ICS2. We can get a USER_CONV when we are comparing the
5470 second standard conversion sequence of two user conversion
5471 sequences. */
5472 return false;
5474 ics2 = ics2->u.next;
5476 if (ics2->kind == ics1->kind
5477 && same_type_p (ics2->type, ics1->type)
5478 && same_type_p (ics2->u.next->type,
5479 ics1->u.next->type))
5480 return true;
5484 /* Returns nonzero iff DERIVED is derived from BASE. The inputs may
5485 be any _TYPE nodes. */
5487 bool
5488 is_properly_derived_from (tree derived, tree base)
5490 if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
5491 || !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
5492 return false;
5494 /* We only allow proper derivation here. The DERIVED_FROM_P macro
5495 considers every class derived from itself. */
5496 return (!same_type_ignoring_top_level_qualifiers_p (derived, base)
5497 && DERIVED_FROM_P (base, derived));
5500 /* We build the ICS for an implicit object parameter as a pointer
5501 conversion sequence. However, such a sequence should be compared
5502 as if it were a reference conversion sequence. If ICS is the
5503 implicit conversion sequence for an implicit object parameter,
5504 modify it accordingly. */
5506 static void
5507 maybe_handle_implicit_object (conversion **ics)
5509 if ((*ics)->this_p)
5511 /* [over.match.funcs]
5513 For non-static member functions, the type of the
5514 implicit object parameter is "reference to cv X"
5515 where X is the class of which the function is a
5516 member and cv is the cv-qualification on the member
5517 function declaration. */
5518 conversion *t = *ics;
5519 tree reference_type;
5521 /* The `this' parameter is a pointer to a class type. Make the
5522 implicit conversion talk about a reference to that same class
5523 type. */
5524 reference_type = TREE_TYPE (t->type);
5525 reference_type = build_reference_type (reference_type);
5527 if (t->kind == ck_qual)
5528 t = t->u.next;
5529 if (t->kind == ck_ptr)
5530 t = t->u.next;
5531 t = build_identity_conv (TREE_TYPE (t->type), NULL_TREE);
5532 t = direct_reference_binding (reference_type, t);
5533 *ics = t;
5537 /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
5538 and return the type to which the reference refers. Otherwise,
5539 leave *ICS unchanged and return NULL_TREE. */
5541 static tree
5542 maybe_handle_ref_bind (conversion **ics)
5544 if ((*ics)->kind == ck_ref_bind)
5546 conversion *old_ics = *ics;
5547 tree type = TREE_TYPE (old_ics->type);
5548 *ics = old_ics->u.next;
5549 (*ics)->user_conv_p = old_ics->user_conv_p;
5550 (*ics)->bad_p = old_ics->bad_p;
5551 return type;
5554 return NULL_TREE;
5557 /* Compare two implicit conversion sequences according to the rules set out in
5558 [over.ics.rank]. Return values:
5560 1: ics1 is better than ics2
5561 -1: ics2 is better than ics1
5562 0: ics1 and ics2 are indistinguishable */
5564 static int
5565 compare_ics (conversion *ics1, conversion *ics2)
5567 tree from_type1;
5568 tree from_type2;
5569 tree to_type1;
5570 tree to_type2;
5571 tree deref_from_type1 = NULL_TREE;
5572 tree deref_from_type2 = NULL_TREE;
5573 tree deref_to_type1 = NULL_TREE;
5574 tree deref_to_type2 = NULL_TREE;
5575 conversion_rank rank1, rank2;
5577 /* REF_BINDING is nonzero if the result of the conversion sequence
5578 is a reference type. In that case TARGET_TYPE is the
5579 type referred to by the reference. */
5580 tree target_type1;
5581 tree target_type2;
5583 /* Handle implicit object parameters. */
5584 maybe_handle_implicit_object (&ics1);
5585 maybe_handle_implicit_object (&ics2);
5587 /* Handle reference parameters. */
5588 target_type1 = maybe_handle_ref_bind (&ics1);
5589 target_type2 = maybe_handle_ref_bind (&ics2);
5591 /* [over.ics.rank]
5593 When comparing the basic forms of implicit conversion sequences (as
5594 defined in _over.best.ics_)
5596 --a standard conversion sequence (_over.ics.scs_) is a better
5597 conversion sequence than a user-defined conversion sequence
5598 or an ellipsis conversion sequence, and
5600 --a user-defined conversion sequence (_over.ics.user_) is a
5601 better conversion sequence than an ellipsis conversion sequence
5602 (_over.ics.ellipsis_). */
5603 rank1 = CONVERSION_RANK (ics1);
5604 rank2 = CONVERSION_RANK (ics2);
5606 if (rank1 > rank2)
5607 return -1;
5608 else if (rank1 < rank2)
5609 return 1;
5611 if (rank1 == cr_bad)
5613 /* XXX Isn't this an extension? */
5614 /* Both ICS are bad. We try to make a decision based on what
5615 would have happened if they'd been good. */
5616 if (ics1->user_conv_p > ics2->user_conv_p
5617 || ics1->rank > ics2->rank)
5618 return -1;
5619 else if (ics1->user_conv_p < ics2->user_conv_p
5620 || ics1->rank < ics2->rank)
5621 return 1;
5623 /* We couldn't make up our minds; try to figure it out below. */
5626 if (ics1->ellipsis_p)
5627 /* Both conversions are ellipsis conversions. */
5628 return 0;
5630 /* User-defined conversion sequence U1 is a better conversion sequence
5631 than another user-defined conversion sequence U2 if they contain the
5632 same user-defined conversion operator or constructor and if the sec-
5633 ond standard conversion sequence of U1 is better than the second
5634 standard conversion sequence of U2. */
5636 if (ics1->user_conv_p)
5638 conversion *t1;
5639 conversion *t2;
5641 for (t1 = ics1; t1->kind != ck_user; t1 = t1->u.next)
5642 if (t1->kind == ck_ambig)
5643 return 0;
5644 for (t2 = ics2; t2->kind != ck_user; t2 = t2->u.next)
5645 if (t2->kind == ck_ambig)
5646 return 0;
5648 if (t1->cand->fn != t2->cand->fn)
5649 return 0;
5651 /* We can just fall through here, after setting up
5652 FROM_TYPE1 and FROM_TYPE2. */
5653 from_type1 = t1->type;
5654 from_type2 = t2->type;
5656 else
5658 conversion *t1;
5659 conversion *t2;
5661 /* We're dealing with two standard conversion sequences.
5663 [over.ics.rank]
5665 Standard conversion sequence S1 is a better conversion
5666 sequence than standard conversion sequence S2 if
5668 --S1 is a proper subsequence of S2 (comparing the conversion
5669 sequences in the canonical form defined by _over.ics.scs_,
5670 excluding any Lvalue Transformation; the identity
5671 conversion sequence is considered to be a subsequence of
5672 any non-identity conversion sequence */
5674 t1 = ics1;
5675 while (t1->kind != ck_identity)
5676 t1 = t1->u.next;
5677 from_type1 = t1->type;
5679 t2 = ics2;
5680 while (t2->kind != ck_identity)
5681 t2 = t2->u.next;
5682 from_type2 = t2->type;
5685 if (same_type_p (from_type1, from_type2))
5687 if (is_subseq (ics1, ics2))
5688 return 1;
5689 if (is_subseq (ics2, ics1))
5690 return -1;
5692 /* Otherwise, one sequence cannot be a subsequence of the other; they
5693 don't start with the same type. This can happen when comparing the
5694 second standard conversion sequence in two user-defined conversion
5695 sequences. */
5697 /* [over.ics.rank]
5699 Or, if not that,
5701 --the rank of S1 is better than the rank of S2 (by the rules
5702 defined below):
5704 Standard conversion sequences are ordered by their ranks: an Exact
5705 Match is a better conversion than a Promotion, which is a better
5706 conversion than a Conversion.
5708 Two conversion sequences with the same rank are indistinguishable
5709 unless one of the following rules applies:
5711 --A conversion that is not a conversion of a pointer, or pointer
5712 to member, to bool is better than another conversion that is such
5713 a conversion.
5715 The ICS_STD_RANK automatically handles the pointer-to-bool rule,
5716 so that we do not have to check it explicitly. */
5717 if (ics1->rank < ics2->rank)
5718 return 1;
5719 else if (ics2->rank < ics1->rank)
5720 return -1;
5722 to_type1 = ics1->type;
5723 to_type2 = ics2->type;
5725 if (TYPE_PTR_P (from_type1)
5726 && TYPE_PTR_P (from_type2)
5727 && TYPE_PTR_P (to_type1)
5728 && TYPE_PTR_P (to_type2))
5730 deref_from_type1 = TREE_TYPE (from_type1);
5731 deref_from_type2 = TREE_TYPE (from_type2);
5732 deref_to_type1 = TREE_TYPE (to_type1);
5733 deref_to_type2 = TREE_TYPE (to_type2);
5735 /* The rules for pointers to members A::* are just like the rules
5736 for pointers A*, except opposite: if B is derived from A then
5737 A::* converts to B::*, not vice versa. For that reason, we
5738 switch the from_ and to_ variables here. */
5739 else if ((TYPE_PTRMEM_P (from_type1) && TYPE_PTRMEM_P (from_type2)
5740 && TYPE_PTRMEM_P (to_type1) && TYPE_PTRMEM_P (to_type2))
5741 || (TYPE_PTRMEMFUNC_P (from_type1)
5742 && TYPE_PTRMEMFUNC_P (from_type2)
5743 && TYPE_PTRMEMFUNC_P (to_type1)
5744 && TYPE_PTRMEMFUNC_P (to_type2)))
5746 deref_to_type1 = TYPE_PTRMEM_CLASS_TYPE (from_type1);
5747 deref_to_type2 = TYPE_PTRMEM_CLASS_TYPE (from_type2);
5748 deref_from_type1 = TYPE_PTRMEM_CLASS_TYPE (to_type1);
5749 deref_from_type2 = TYPE_PTRMEM_CLASS_TYPE (to_type2);
5752 if (deref_from_type1 != NULL_TREE
5753 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
5754 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
5756 /* This was one of the pointer or pointer-like conversions.
5758 [over.ics.rank]
5760 --If class B is derived directly or indirectly from class A,
5761 conversion of B* to A* is better than conversion of B* to
5762 void*, and conversion of A* to void* is better than
5763 conversion of B* to void*. */
5764 if (TREE_CODE (deref_to_type1) == VOID_TYPE
5765 && TREE_CODE (deref_to_type2) == VOID_TYPE)
5767 if (is_properly_derived_from (deref_from_type1,
5768 deref_from_type2))
5769 return -1;
5770 else if (is_properly_derived_from (deref_from_type2,
5771 deref_from_type1))
5772 return 1;
5774 else if (TREE_CODE (deref_to_type1) == VOID_TYPE
5775 || TREE_CODE (deref_to_type2) == VOID_TYPE)
5777 if (same_type_p (deref_from_type1, deref_from_type2))
5779 if (TREE_CODE (deref_to_type2) == VOID_TYPE)
5781 if (is_properly_derived_from (deref_from_type1,
5782 deref_to_type1))
5783 return 1;
5785 /* We know that DEREF_TO_TYPE1 is `void' here. */
5786 else if (is_properly_derived_from (deref_from_type1,
5787 deref_to_type2))
5788 return -1;
5791 else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
5792 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
5794 /* [over.ics.rank]
5796 --If class B is derived directly or indirectly from class A
5797 and class C is derived directly or indirectly from B,
5799 --conversion of C* to B* is better than conversion of C* to
5800 A*,
5802 --conversion of B* to A* is better than conversion of C* to
5803 A* */
5804 if (same_type_p (deref_from_type1, deref_from_type2))
5806 if (is_properly_derived_from (deref_to_type1,
5807 deref_to_type2))
5808 return 1;
5809 else if (is_properly_derived_from (deref_to_type2,
5810 deref_to_type1))
5811 return -1;
5813 else if (same_type_p (deref_to_type1, deref_to_type2))
5815 if (is_properly_derived_from (deref_from_type2,
5816 deref_from_type1))
5817 return 1;
5818 else if (is_properly_derived_from (deref_from_type1,
5819 deref_from_type2))
5820 return -1;
5824 else if (CLASS_TYPE_P (non_reference (from_type1))
5825 && same_type_p (from_type1, from_type2))
5827 tree from = non_reference (from_type1);
5829 /* [over.ics.rank]
5831 --binding of an expression of type C to a reference of type
5832 B& is better than binding an expression of type C to a
5833 reference of type A&
5835 --conversion of C to B is better than conversion of C to A, */
5836 if (is_properly_derived_from (from, to_type1)
5837 && is_properly_derived_from (from, to_type2))
5839 if (is_properly_derived_from (to_type1, to_type2))
5840 return 1;
5841 else if (is_properly_derived_from (to_type2, to_type1))
5842 return -1;
5845 else if (CLASS_TYPE_P (non_reference (to_type1))
5846 && same_type_p (to_type1, to_type2))
5848 tree to = non_reference (to_type1);
5850 /* [over.ics.rank]
5852 --binding of an expression of type B to a reference of type
5853 A& is better than binding an expression of type C to a
5854 reference of type A&,
5856 --conversion of B to A is better than conversion of C to A */
5857 if (is_properly_derived_from (from_type1, to)
5858 && is_properly_derived_from (from_type2, to))
5860 if (is_properly_derived_from (from_type2, from_type1))
5861 return 1;
5862 else if (is_properly_derived_from (from_type1, from_type2))
5863 return -1;
5867 /* [over.ics.rank]
5869 --S1 and S2 differ only in their qualification conversion and yield
5870 similar types T1 and T2 (_conv.qual_), respectively, and the cv-
5871 qualification signature of type T1 is a proper subset of the cv-
5872 qualification signature of type T2 */
5873 if (ics1->kind == ck_qual
5874 && ics2->kind == ck_qual
5875 && same_type_p (from_type1, from_type2))
5876 return comp_cv_qual_signature (to_type1, to_type2);
5878 /* [over.ics.rank]
5880 --S1 and S2 are reference bindings (_dcl.init.ref_), and the
5881 types to which the references refer are the same type except for
5882 top-level cv-qualifiers, and the type to which the reference
5883 initialized by S2 refers is more cv-qualified than the type to
5884 which the reference initialized by S1 refers */
5886 if (target_type1 && target_type2
5887 && same_type_ignoring_top_level_qualifiers_p (to_type1, to_type2))
5888 return comp_cv_qualification (target_type2, target_type1);
5890 /* Neither conversion sequence is better than the other. */
5891 return 0;
5894 /* The source type for this standard conversion sequence. */
5896 static tree
5897 source_type (conversion *t)
5899 for (;; t = t->u.next)
5901 if (t->kind == ck_user
5902 || t->kind == ck_ambig
5903 || t->kind == ck_identity)
5904 return t->type;
5906 gcc_unreachable ();
5909 /* Note a warning about preferring WINNER to LOSER. We do this by storing
5910 a pointer to LOSER and re-running joust to produce the warning if WINNER
5911 is actually used. */
5913 static void
5914 add_warning (struct z_candidate *winner, struct z_candidate *loser)
5916 candidate_warning *cw;
5918 cw = conversion_obstack_alloc (sizeof (candidate_warning));
5919 cw->loser = loser;
5920 cw->next = winner->warnings;
5921 winner->warnings = cw;
5924 /* Compare two candidates for overloading as described in
5925 [over.match.best]. Return values:
5927 1: cand1 is better than cand2
5928 -1: cand2 is better than cand1
5929 0: cand1 and cand2 are indistinguishable */
5931 static int
5932 joust (struct z_candidate *cand1, struct z_candidate *cand2, bool warn)
5934 int winner = 0;
5935 int off1 = 0, off2 = 0;
5936 size_t i;
5937 size_t len;
5939 /* Candidates that involve bad conversions are always worse than those
5940 that don't. */
5941 if (cand1->viable > cand2->viable)
5942 return 1;
5943 if (cand1->viable < cand2->viable)
5944 return -1;
5946 /* If we have two pseudo-candidates for conversions to the same type,
5947 or two candidates for the same function, arbitrarily pick one. */
5948 if (cand1->fn == cand2->fn
5949 && (IS_TYPE_OR_DECL_P (cand1->fn)))
5950 return 1;
5952 /* a viable function F1
5953 is defined to be a better function than another viable function F2 if
5954 for all arguments i, ICSi(F1) is not a worse conversion sequence than
5955 ICSi(F2), and then */
5957 /* for some argument j, ICSj(F1) is a better conversion sequence than
5958 ICSj(F2) */
5960 /* For comparing static and non-static member functions, we ignore
5961 the implicit object parameter of the non-static function. The
5962 standard says to pretend that the static function has an object
5963 parm, but that won't work with operator overloading. */
5964 len = cand1->num_convs;
5965 if (len != cand2->num_convs)
5967 int static_1 = DECL_STATIC_FUNCTION_P (cand1->fn);
5968 int static_2 = DECL_STATIC_FUNCTION_P (cand2->fn);
5970 gcc_assert (static_1 != static_2);
5972 if (static_1)
5973 off2 = 1;
5974 else
5976 off1 = 1;
5977 --len;
5981 for (i = 0; i < len; ++i)
5983 conversion *t1 = cand1->convs[i + off1];
5984 conversion *t2 = cand2->convs[i + off2];
5985 int comp = compare_ics (t1, t2);
5987 if (comp != 0)
5989 if (warn_sign_promo
5990 && (CONVERSION_RANK (t1) + CONVERSION_RANK (t2)
5991 == cr_std + cr_promotion)
5992 && t1->kind == ck_std
5993 && t2->kind == ck_std
5994 && TREE_CODE (t1->type) == INTEGER_TYPE
5995 && TREE_CODE (t2->type) == INTEGER_TYPE
5996 && (TYPE_PRECISION (t1->type)
5997 == TYPE_PRECISION (t2->type))
5998 && (TYPE_UNSIGNED (t1->u.next->type)
5999 || (TREE_CODE (t1->u.next->type)
6000 == ENUMERAL_TYPE)))
6002 tree type = t1->u.next->type;
6003 tree type1, type2;
6004 struct z_candidate *w, *l;
6005 if (comp > 0)
6006 type1 = t1->type, type2 = t2->type,
6007 w = cand1, l = cand2;
6008 else
6009 type1 = t2->type, type2 = t1->type,
6010 w = cand2, l = cand1;
6012 if (warn)
6014 warning ("passing %qT chooses %qT over %qT",
6015 type, type1, type2);
6016 warning (" in call to %qD", w->fn);
6018 else
6019 add_warning (w, l);
6022 if (winner && comp != winner)
6024 winner = 0;
6025 goto tweak;
6027 winner = comp;
6031 /* warn about confusing overload resolution for user-defined conversions,
6032 either between a constructor and a conversion op, or between two
6033 conversion ops. */
6034 if (winner && warn_conversion && cand1->second_conv
6035 && (!DECL_CONSTRUCTOR_P (cand1->fn) || !DECL_CONSTRUCTOR_P (cand2->fn))
6036 && winner != compare_ics (cand1->second_conv, cand2->second_conv))
6038 struct z_candidate *w, *l;
6039 bool give_warning = false;
6041 if (winner == 1)
6042 w = cand1, l = cand2;
6043 else
6044 w = cand2, l = cand1;
6046 /* We don't want to complain about `X::operator T1 ()'
6047 beating `X::operator T2 () const', when T2 is a no less
6048 cv-qualified version of T1. */
6049 if (DECL_CONTEXT (w->fn) == DECL_CONTEXT (l->fn)
6050 && !DECL_CONSTRUCTOR_P (w->fn) && !DECL_CONSTRUCTOR_P (l->fn))
6052 tree t = TREE_TYPE (TREE_TYPE (l->fn));
6053 tree f = TREE_TYPE (TREE_TYPE (w->fn));
6055 if (TREE_CODE (t) == TREE_CODE (f) && POINTER_TYPE_P (t))
6057 t = TREE_TYPE (t);
6058 f = TREE_TYPE (f);
6060 if (!comp_ptr_ttypes (t, f))
6061 give_warning = true;
6063 else
6064 give_warning = true;
6066 if (!give_warning)
6067 /*NOP*/;
6068 else if (warn)
6070 tree source = source_type (w->convs[0]);
6071 if (! DECL_CONSTRUCTOR_P (w->fn))
6072 source = TREE_TYPE (source);
6073 warning ("choosing %qD over %qD", w->fn, l->fn);
6074 warning (" for conversion from %qT to %qT",
6075 source, w->second_conv->type);
6076 warning (" because conversion sequence for the argument is better");
6078 else
6079 add_warning (w, l);
6082 if (winner)
6083 return winner;
6085 /* or, if not that,
6086 F1 is a non-template function and F2 is a template function
6087 specialization. */
6089 if (!cand1->template_decl && cand2->template_decl)
6090 return 1;
6091 else if (cand1->template_decl && !cand2->template_decl)
6092 return -1;
6094 /* or, if not that,
6095 F1 and F2 are template functions and the function template for F1 is
6096 more specialized than the template for F2 according to the partial
6097 ordering rules. */
6099 if (cand1->template_decl && cand2->template_decl)
6101 winner = more_specialized
6102 (TI_TEMPLATE (cand1->template_decl),
6103 TI_TEMPLATE (cand2->template_decl),
6104 DEDUCE_ORDER,
6105 /* Tell the deduction code how many real function arguments
6106 we saw, not counting the implicit 'this' argument. But,
6107 add_function_candidate() suppresses the "this" argument
6108 for constructors.
6110 [temp.func.order]: The presence of unused ellipsis and default
6111 arguments has no effect on the partial ordering of function
6112 templates. */
6113 cand1->num_convs
6114 - (DECL_NONSTATIC_MEMBER_FUNCTION_P (cand1->fn)
6115 - DECL_CONSTRUCTOR_P (cand1->fn)));
6116 if (winner)
6117 return winner;
6120 /* or, if not that,
6121 the context is an initialization by user-defined conversion (see
6122 _dcl.init_ and _over.match.user_) and the standard conversion
6123 sequence from the return type of F1 to the destination type (i.e.,
6124 the type of the entity being initialized) is a better conversion
6125 sequence than the standard conversion sequence from the return type
6126 of F2 to the destination type. */
6128 if (cand1->second_conv)
6130 winner = compare_ics (cand1->second_conv, cand2->second_conv);
6131 if (winner)
6132 return winner;
6135 /* Check whether we can discard a builtin candidate, either because we
6136 have two identical ones or matching builtin and non-builtin candidates.
6138 (Pedantically in the latter case the builtin which matched the user
6139 function should not be added to the overload set, but we spot it here.
6141 [over.match.oper]
6142 ... the builtin candidates include ...
6143 - do not have the same parameter type list as any non-template
6144 non-member candidate. */
6146 if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE
6147 || TREE_CODE (cand2->fn) == IDENTIFIER_NODE)
6149 for (i = 0; i < len; ++i)
6150 if (!same_type_p (cand1->convs[i]->type,
6151 cand2->convs[i]->type))
6152 break;
6153 if (i == cand1->num_convs)
6155 if (cand1->fn == cand2->fn)
6156 /* Two built-in candidates; arbitrarily pick one. */
6157 return 1;
6158 else if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
6159 /* cand1 is built-in; prefer cand2. */
6160 return -1;
6161 else
6162 /* cand2 is built-in; prefer cand1. */
6163 return 1;
6167 /* If the two functions are the same (this can happen with declarations
6168 in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
6169 if (DECL_P (cand1->fn) && DECL_P (cand2->fn)
6170 && equal_functions (cand1->fn, cand2->fn))
6171 return 1;
6173 tweak:
6175 /* Extension: If the worst conversion for one candidate is worse than the
6176 worst conversion for the other, take the first. */
6177 if (!pedantic)
6179 conversion_rank rank1 = cr_identity, rank2 = cr_identity;
6180 struct z_candidate *w = 0, *l = 0;
6182 for (i = 0; i < len; ++i)
6184 if (CONVERSION_RANK (cand1->convs[i+off1]) > rank1)
6185 rank1 = CONVERSION_RANK (cand1->convs[i+off1]);
6186 if (CONVERSION_RANK (cand2->convs[i + off2]) > rank2)
6187 rank2 = CONVERSION_RANK (cand2->convs[i + off2]);
6189 if (rank1 < rank2)
6190 winner = 1, w = cand1, l = cand2;
6191 if (rank1 > rank2)
6192 winner = -1, w = cand2, l = cand1;
6193 if (winner)
6195 if (warn)
6197 pedwarn ("\
6198 ISO C++ says that these are ambiguous, even \
6199 though the worst conversion for the first is better than \
6200 the worst conversion for the second:");
6201 print_z_candidate (_("candidate 1:"), w);
6202 print_z_candidate (_("candidate 2:"), l);
6204 else
6205 add_warning (w, l);
6206 return winner;
6210 gcc_assert (!winner);
6211 return 0;
6214 /* Given a list of candidates for overloading, find the best one, if any.
6215 This algorithm has a worst case of O(2n) (winner is last), and a best
6216 case of O(n/2) (totally ambiguous); much better than a sorting
6217 algorithm. */
6219 static struct z_candidate *
6220 tourney (struct z_candidate *candidates)
6222 struct z_candidate *champ = candidates, *challenger;
6223 int fate;
6224 int champ_compared_to_predecessor = 0;
6226 /* Walk through the list once, comparing each current champ to the next
6227 candidate, knocking out a candidate or two with each comparison. */
6229 for (challenger = champ->next; challenger; )
6231 fate = joust (champ, challenger, 0);
6232 if (fate == 1)
6233 challenger = challenger->next;
6234 else
6236 if (fate == 0)
6238 champ = challenger->next;
6239 if (champ == 0)
6240 return 0;
6241 champ_compared_to_predecessor = 0;
6243 else
6245 champ = challenger;
6246 champ_compared_to_predecessor = 1;
6249 challenger = champ->next;
6253 /* Make sure the champ is better than all the candidates it hasn't yet
6254 been compared to. */
6256 for (challenger = candidates;
6257 challenger != champ
6258 && !(champ_compared_to_predecessor && challenger->next == champ);
6259 challenger = challenger->next)
6261 fate = joust (champ, challenger, 0);
6262 if (fate != 1)
6263 return 0;
6266 return champ;
6269 /* Returns nonzero if things of type FROM can be converted to TO. */
6271 bool
6272 can_convert (tree to, tree from)
6274 return can_convert_arg (to, from, NULL_TREE);
6277 /* Returns nonzero if ARG (of type FROM) can be converted to TO. */
6279 bool
6280 can_convert_arg (tree to, tree from, tree arg)
6282 conversion *t;
6283 void *p;
6284 bool ok_p;
6286 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6287 p = conversion_obstack_alloc (0);
6289 t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
6290 ok_p = (t && !t->bad_p);
6292 /* Free all the conversions we allocated. */
6293 obstack_free (&conversion_obstack, p);
6295 return ok_p;
6298 /* Like can_convert_arg, but allows dubious conversions as well. */
6300 bool
6301 can_convert_arg_bad (tree to, tree from, tree arg)
6303 conversion *t;
6304 void *p;
6306 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6307 p = conversion_obstack_alloc (0);
6308 /* Try to perform the conversion. */
6309 t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
6310 /* Free all the conversions we allocated. */
6311 obstack_free (&conversion_obstack, p);
6313 return t != NULL;
6316 /* Convert EXPR to TYPE. Return the converted expression.
6318 Note that we allow bad conversions here because by the time we get to
6319 this point we are committed to doing the conversion. If we end up
6320 doing a bad conversion, convert_like will complain. */
6322 tree
6323 perform_implicit_conversion (tree type, tree expr)
6325 conversion *conv;
6326 void *p;
6328 if (error_operand_p (expr))
6329 return error_mark_node;
6331 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6332 p = conversion_obstack_alloc (0);
6334 conv = implicit_conversion (type, TREE_TYPE (expr), expr,
6335 LOOKUP_NORMAL);
6336 if (!conv)
6338 error ("could not convert %qE to %qT", expr, type);
6339 expr = error_mark_node;
6341 else
6342 expr = convert_like (conv, expr);
6344 /* Free all the conversions we allocated. */
6345 obstack_free (&conversion_obstack, p);
6347 return expr;
6350 /* Convert EXPR to TYPE (as a direct-initialization) if that is
6351 permitted. If the conversion is valid, the converted expression is
6352 returned. Otherwise, NULL_TREE is returned, except in the case
6353 that TYPE is a class type; in that case, an error is issued. If
6354 C_CAST_P is true, then this direction initialization is taking
6355 place as part of a static_cast being attempted as part of a C-style
6356 cast. */
6358 tree
6359 perform_direct_initialization_if_possible (tree type,
6360 tree expr,
6361 bool c_cast_p)
6363 conversion *conv;
6364 void *p;
6366 if (type == error_mark_node || error_operand_p (expr))
6367 return error_mark_node;
6368 /* [dcl.init]
6370 If the destination type is a (possibly cv-qualified) class type:
6372 -- If the initialization is direct-initialization ...,
6373 constructors are considered. ... If no constructor applies, or
6374 the overload resolution is ambiguous, the initialization is
6375 ill-formed. */
6376 if (CLASS_TYPE_P (type))
6378 expr = build_special_member_call (NULL_TREE, complete_ctor_identifier,
6379 build_tree_list (NULL_TREE, expr),
6380 type, LOOKUP_NORMAL);
6381 return build_cplus_new (type, expr);
6384 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6385 p = conversion_obstack_alloc (0);
6387 conv = implicit_conversion (type, TREE_TYPE (expr), expr,
6388 LOOKUP_NORMAL);
6389 if (!conv || conv->bad_p)
6390 expr = NULL_TREE;
6391 else
6392 expr = convert_like_real (conv, expr, NULL_TREE, 0, 0,
6393 /*issue_conversion_warnings=*/false,
6394 c_cast_p);
6396 /* Free all the conversions we allocated. */
6397 obstack_free (&conversion_obstack, p);
6399 return expr;
6402 /* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
6403 is being bound to a temporary. Create and return a new VAR_DECL
6404 with the indicated TYPE; this variable will store the value to
6405 which the reference is bound. */
6407 tree
6408 make_temporary_var_for_ref_to_temp (tree decl, tree type)
6410 tree var;
6412 /* Create the variable. */
6413 var = build_decl (VAR_DECL, NULL_TREE, type);
6414 DECL_ARTIFICIAL (var) = 1;
6415 DECL_IGNORED_P (var) = 1;
6416 TREE_USED (var) = 1;
6418 /* Register the variable. */
6419 if (TREE_STATIC (decl))
6421 /* Namespace-scope or local static; give it a mangled name. */
6422 tree name;
6424 TREE_STATIC (var) = 1;
6425 name = mangle_ref_init_variable (decl);
6426 DECL_NAME (var) = name;
6427 SET_DECL_ASSEMBLER_NAME (var, name);
6428 var = pushdecl_top_level (var);
6430 else
6432 /* Create a new cleanup level if necessary. */
6433 maybe_push_cleanup_level (type);
6434 /* Don't push unnamed temps. Do set DECL_CONTEXT, though. */
6435 DECL_CONTEXT (var) = current_function_decl;
6438 return var;
6441 /* Convert EXPR to the indicated reference TYPE, in a way suitable for
6442 initializing a variable of that TYPE. If DECL is non-NULL, it is
6443 the VAR_DECL being initialized with the EXPR. (In that case, the
6444 type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
6445 also be non-NULL, and with *CLEANUP initialized to NULL. Upon
6446 return, if *CLEANUP is no longer NULL, it will be an expression
6447 that should be pushed as a cleanup after the returned expression
6448 is used to initialize DECL.
6450 Return the converted expression. */
6452 tree
6453 initialize_reference (tree type, tree expr, tree decl, tree *cleanup)
6455 conversion *conv;
6456 void *p;
6458 if (type == error_mark_node || error_operand_p (expr))
6459 return error_mark_node;
6461 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6462 p = conversion_obstack_alloc (0);
6464 conv = reference_binding (type, TREE_TYPE (expr), expr, LOOKUP_NORMAL);
6465 if (!conv || conv->bad_p)
6467 if (!(TYPE_QUALS (TREE_TYPE (type)) & TYPE_QUAL_CONST)
6468 && !real_lvalue_p (expr))
6469 error ("invalid initialization of non-const reference of "
6470 "type %qT from a temporary of type %qT",
6471 type, TREE_TYPE (expr));
6472 else
6473 error ("invalid initialization of reference of type "
6474 "%qT from expression of type %qT", type,
6475 TREE_TYPE (expr));
6476 return error_mark_node;
6479 /* If DECL is non-NULL, then this special rule applies:
6481 [class.temporary]
6483 The temporary to which the reference is bound or the temporary
6484 that is the complete object to which the reference is bound
6485 persists for the lifetime of the reference.
6487 The temporaries created during the evaluation of the expression
6488 initializing the reference, except the temporary to which the
6489 reference is bound, are destroyed at the end of the
6490 full-expression in which they are created.
6492 In that case, we store the converted expression into a new
6493 VAR_DECL in a new scope.
6495 However, we want to be careful not to create temporaries when
6496 they are not required. For example, given:
6498 struct B {};
6499 struct D : public B {};
6500 D f();
6501 const B& b = f();
6503 there is no need to copy the return value from "f"; we can just
6504 extend its lifetime. Similarly, given:
6506 struct S {};
6507 struct T { operator S(); };
6508 T t;
6509 const S& s = t;
6511 we can extend the lifetime of the return value of the conversion
6512 operator. */
6513 gcc_assert (conv->kind == ck_ref_bind);
6514 if (decl)
6516 tree var;
6517 tree base_conv_type;
6519 /* Skip over the REF_BIND. */
6520 conv = conv->u.next;
6521 /* If the next conversion is a BASE_CONV, skip that too -- but
6522 remember that the conversion was required. */
6523 if (conv->kind == ck_base)
6525 if (conv->check_copy_constructor_p)
6526 check_constructor_callable (TREE_TYPE (expr), expr);
6527 base_conv_type = conv->type;
6528 conv = conv->u.next;
6530 else
6531 base_conv_type = NULL_TREE;
6532 /* Perform the remainder of the conversion. */
6533 expr = convert_like_real (conv, expr,
6534 /*fn=*/NULL_TREE, /*argnum=*/0,
6535 /*inner=*/-1,
6536 /*issue_conversion_warnings=*/true,
6537 /*c_cast_p=*/false);
6538 if (error_operand_p (expr))
6539 expr = error_mark_node;
6540 else
6542 if (!real_lvalue_p (expr))
6544 tree init;
6545 tree type;
6547 /* Create the temporary variable. */
6548 type = TREE_TYPE (expr);
6549 var = make_temporary_var_for_ref_to_temp (decl, type);
6550 layout_decl (var, 0);
6551 /* If the rvalue is the result of a function call it will be
6552 a TARGET_EXPR. If it is some other construct (such as a
6553 member access expression where the underlying object is
6554 itself the result of a function call), turn it into a
6555 TARGET_EXPR here. It is important that EXPR be a
6556 TARGET_EXPR below since otherwise the INIT_EXPR will
6557 attempt to make a bitwise copy of EXPR to initialize
6558 VAR. */
6559 if (TREE_CODE (expr) != TARGET_EXPR)
6560 expr = get_target_expr (expr);
6561 /* Create the INIT_EXPR that will initialize the temporary
6562 variable. */
6563 init = build2 (INIT_EXPR, type, var, expr);
6564 if (at_function_scope_p ())
6566 add_decl_expr (var);
6567 *cleanup = cxx_maybe_build_cleanup (var);
6569 /* We must be careful to destroy the temporary only
6570 after its initialization has taken place. If the
6571 initialization throws an exception, then the
6572 destructor should not be run. We cannot simply
6573 transform INIT into something like:
6575 (INIT, ({ CLEANUP_STMT; }))
6577 because emit_local_var always treats the
6578 initializer as a full-expression. Thus, the
6579 destructor would run too early; it would run at the
6580 end of initializing the reference variable, rather
6581 than at the end of the block enclosing the
6582 reference variable.
6584 The solution is to pass back a cleanup expression
6585 which the caller is responsible for attaching to
6586 the statement tree. */
6588 else
6590 rest_of_decl_compilation (var, /*toplev=*/1, at_eof);
6591 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
6592 static_aggregates = tree_cons (NULL_TREE, var,
6593 static_aggregates);
6595 /* Use its address to initialize the reference variable. */
6596 expr = build_address (var);
6597 if (base_conv_type)
6598 expr = convert_to_base (expr,
6599 build_pointer_type (base_conv_type),
6600 /*check_access=*/true,
6601 /*nonnull=*/true);
6602 expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr), init, expr);
6604 else
6605 /* Take the address of EXPR. */
6606 expr = build_unary_op (ADDR_EXPR, expr, 0);
6607 /* If a BASE_CONV was required, perform it now. */
6608 if (base_conv_type)
6609 expr = (perform_implicit_conversion
6610 (build_pointer_type (base_conv_type), expr));
6611 expr = build_nop (type, expr);
6614 else
6615 /* Perform the conversion. */
6616 expr = convert_like (conv, expr);
6618 /* Free all the conversions we allocated. */
6619 obstack_free (&conversion_obstack, p);
6621 return expr;
6624 #include "gt-cp-call.h"